
Numerical Investigation of the
Campbell Diffuser Concept

by

Wai Chung AU

B.A., Cambridge University (1988)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Master of Science
in

Aeronautics and Astronautics
at the

Massachusetts Institute of Technology

February, 1991

@Massachusetts Institute of Technology 1991

Signature of Author

(1J

Department of Aeronautics and Astronautics
December 18, 1990

Certified by
Dr. Choon S. Tan
Thesis Supervisor

Accepted by
Professor Harold Y. Wachman

Chairman, Department Graduate Committee

MASSACHUSETTS I'STII UTE
OF TECHN(O OGY

FEB 19 1991

LIBRARIES



Numerical Investigation of the Campbell Diffuser Concept

by

Wai Chung AU

Submitted to the Department of Aeronautics and Astronautics
on December 18, 1990, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Campbell diffusers have a unique feature in that they lack axial symmetry in the end
walls. It has been proposed that the asymmetry of the end wall in a vaned diffuser can
be tailored to improve its performance. This concept is applied to the redesign of two
vaned diffuser configurations: (1) diffuser with straight leading edge; (2) diffuser with
parabolic leading edge. In the redesign, the original axisymmetric end wall configuration
is modified so that the resulting end walls on the pressure side converge from the leading
edge to the throat and then diverge back to the original passage depth. Thus to maintain
the same flow area distribution as the original vaned diffuser, the end walls on the suction
side would have to be tailored so that they diverge from the beginning of the channel
region to the throat before converging back to the original passage depth at the exit.
A three dimensional inviscid Euler code is used to evaluate the performance of these
diffusers. The performance of Campbell diffusers and two dimensional diffusers have
been compared at an optimized operating point. The operating point has been chosen
such that the Mach number at the throat is as high as possible (with a limit of one).
Important parameters that govern the extent of the flow response to end walls changes
are studied. These are (i) the pitch-chord ratio; and (ii) the ratio of passage depth to
chord. When these two ratios are small (of the order of 0.1), which is typically found in
practical vaned diffusers, the flow is essentially one dimensional so that its response to
the end wall contouring is not as dramatic. However, when either of the two ratios is
large enough, the effect of end wall contouring can be more significant. In the case where
the passage depth to chord ratio is sufficiently large, Campbell diffusers can potentially
outperform two-dimensional diffusers in term of pressure recovery based on the present
computational results.

Thesis Supervisor: Dr. Choon S. Tan
Title: Principal Research Engineer
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Nomenclature

A flow area (normal to mean velocity vector)

AR aspect ratio

a speed of sound

CFL Courant-Friedrichs-Lewy number

c diffuser chord length

cp pressure recovery coefficient

D dissipation operator

eo total internal energy/unit mass

h static enthalpy/unit mass

ho total enthalpy/unit mass

J_, J+ Riemann invariants

LE leading edge

M Mach number

MR 2  mach number ratio = Mrellt/Mrel2

MS midstream

rht mass flow rate

N shaft speed

ni unit vector normal to boundary

P static pressure

PS pressure side

Po stagnation pressure

pr pressure ratio

r radius

s entropy,distance along streamline

SS suction side

t time

T static temperature
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P

Po

trailing edge

stagnation temperature

radial velocity

tangential velocity

axial velocity

volume of computational cell

number of vanes

absolute flow angle

multistage timestepping coefficients

swirl angle

central difference operator,diffuser passage depth

time step size

diffuser passage width

second and fourth difference artifical viscosity coefficients

ratio os specific heats

diffuser divergence angle

density

stagnation density

streamfunction

subscripts

0

1,2,..

D

j

stagnation

station

diffuser

jet



r radial component

rel relative to impeller coordinates

t tip

z axial component

0 tangential component

superscripts

mass average quantity (f xp dV)/(f p dV)

dimensional quantity

nondimensionalized quantity

n quantity at nt h iteration

station

1 impeller inlet

2 impeller exit

3 diffuser inlet

4 diffuser exit
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Chapter 1

Introduction

1.1 Introduction

Small gas turbine engines utilizing centrifugal compressor stages are used as helicopter

engines and are increasingly tested for automobiles applications.. Currently, impeller

efficiencies are of the order of 90%. However, the stage efficiency is lower than that due

to the diffuser performance. Both the efficiency and surge-to-choke operating range of

a centrifugal compressor depend strongly on the performance of the diffuser. Figure 1-

1(from [1]) illustrates the importance of diffuser performance to the stage. It shows the

effect of impeller diffusion (expressed by the diffusion parameter,MR 2) and of diffuser

recovery (CpD) on stage efficiency. The improvements in stage efficiency with diffuser

recovery are quite uniform with about 3 point increase in Op giving a point increase in

stage efficiency. High diffuser performance cannot be easily obtained, especially in high

pressure ratio designs [2]. This is because high pressure ratio compressors require vaned

diffusers to achieve high pressure recovery and it is complicated to model the flow of the

vaned diffuser theoretically or to investigate experimentally. The nonuniform flow at the

impeller exit is viewed as unsteady flow by the diffuser vanes, while the presence of the

diffuser vanes is seen as an unsteady disturbance by the impeller. It is not possible to

choose a frame of reference which will produce only steady processes.
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Figure 1-1: The influence of impeller and diffuser recovery performance upon stage effi-
ciency

A way to improve the centrifugal compressor performance is to increase the speed

of the impeller. The kinetic energy at the impeller exit will become so large that e---••.

_ diffusers are no longer suitable for efficient pressure recovery [3]. The geometrical

constraint limits the size of the vaneless diffuser while a large radius of the vaneless

diffuser is required to achieve efficient pressure recovery. Moreover, the high swirl flow

due to high impeller speed will cause instability in vaneless diffusers and reverse flow

will occur [4, 5]. Therefore these compressors have to be equipped with vaned diffusers.

At a certain limit of impeller speed, the flow will become supersonic. By introducing a

vaned diffuser in the supersonic region, shock waves may occur at the diffuser entrance

region. The characteristic features of the flow field will be changed quite significantly.

The shock wave can interact with the boundary layer, which may then separate. The

influence of changes in diffuser geometry on the performance must be well understood

before a systematic increase in the efficiency for a centrifugal compressor can be made.

Vaned diffusers are most suitable for medium to high pressure ratio applications; they



have been investigated experimentally and theoretically. Baghdadi and McDonald [6]

used vortex nozzle to produce a wake-free, swirling, supersonic flow at the inlet to a

radial diffuser. Visual studies and performance measurements had been made for three

set of vane representing common designs for vaned diffusers. It was observed that the

surge is an instability triggered by flow separation in the vaneless or semi-vaneless space

ahead of the diffuser throat. The surge-to-choke operating range of the three vaned

diffusers were found to be a function of the number of diffuser vanes only. Rayan and

Yang [7] reported tests of vane-island diffusers at high swirl. Their study indicated that

the performance of the vane-island diffuser depends on the fluid mechanics of the flow at

the impeller exit. The investigation also showed that the radial distance from the vane

leading edge to the impeller exit is one important factor in diffuser effectiveness. The

minimum loss coefficient they could obtain was achieved when the vane-island leading

edge was at a radius approximately equal to 1.2 time the diffuser inlet radius. Inoue

and Cumpsty [8] presented experimental study of centrifugal impeller discharge flow in

vaneless and vaned diffusers. They observed that the circumferential distortion from the

impeller was attenuated very rapidly and had only minor effects on the flow inside the

vaned diffuser passage. The effect of the diffuser vanes on the flow discharged from the

impeller was evident and reversal of the flow back into the impeller was detected when

the diffuser vanes were close to the impeller and the flow rate was not very high. On the

other hand, Teipel,Weidermann,Jeske and Colantuoni [9, 10, 11, 12] have carried out in

theoretical study of transonic radial vaned diffusers. Teipel and Wiedermann considered

the influence of different geometries of the blades on the pressure distribution in tran-

sonic flow field. They changed the stagger angle of the diffuser vanes and observed that

with increasing stagger angle change, the flow reacted very sensitively to altered pressure

conditions at the diffuser exit. Colantuoni used a two-dimensional Euler code to study

the effect of blade shape of transonic vaned diffusers on performance and range. He then

optimized the blade shape to give a shock-free deceleration for the diffuser.



1.2 Background

The fluid dynamic task of diffusers is the conversion of kinetic energy into static pressure.

In order to get an efficient stage, the kinetic energy must be efficiently recovered. Diffusers

convert kinetic energy into static pressure through the principles of (i) conservation of

mass and (ii) conservation of angular momentum.

i) conservation of mass:

an increase in flow area in order to bring about a reduction in the average velocity and

hence an increase in static pressure.

ii) conservation of angular momentum:

a change in mean flow path radius to bring about a change in tangential velocity through,

rVe - constant.

As mentioned in the previous section, vaned diffusers are used to increase the flow

area to get sufficient pressure recovery. However, a good design is required to avoid high

loss due to separation and to maintain stable operating conditions.

In 1978 Kenneth Campbell (131 proposed a centrifugal compressor diffuser which

incorporated vane's and non-axisyrmetric end walls. The unique feature of his design

was the lack of axial symmetry in the end walls which was introduced in such a manner

as to cause the flow to naturally follow the direction of the suction surface of the vane,

thus reducing the vane-to-vane pressure gradient. His concept was proposed for subsonic

diffusers and it was not quite successful [141. However, in transonic and supersonic

flow field, the flow is more sensitive to geometrical change than that in incompressible

flow. His approach may have something to offer for supersonic diffusers which typically

suffer from a strong inlet shock wave and the accompanying separation and high losses.

Campbell's design approach may produce lower losses at the diffuser entrance.



1.3 Typical performance characteristics

Fig.1-2 and fig.1-3 (from [15]) show the typical performance characteristic for centrifugal

compressors with and without vaned diffuser. The most noticeable difference between the

characteristic maps is the much larger flow range exhibited by the vaneless configuration.

However, the peak stage efficiency is 5 points higher for the vaned configuration. The

speed lines tend to be steeper for the vaned configuration. All these differences are well

known and expected.

1.4 Objectives

The objective of this investigation is to evaluate the potential merits of the Campbell

design concept for diffusers of centrifugal compressors with supersonic flow at the impeller

exit.

For a vane diffuser, Dean [2] divided the flow field into three regions ( fig. 1-4). They

are the vaneless region(I), semi-vaneless region(II) and the divergent channel(III). His

flow model is based on the jet-wake flow pattern at the impeller exit. The flow pattern

in regions (I) and (II) can be predicted with reasonable accuracy using his analytical

results. He reported that optimization of the performance of a vaned diffuser depends on

the interaction between impeller and diffuser (region (I)), interaction between the flow

in the vaneless space and the leading edges of the diffuser (region (II)) as well as the

region of the vaned diffuser (region (III)). Changing the passage width only alters the

divergent channel geometry. However, it may affect the pressure distribution in other

regions as well. The pressure distribution in turn has an influence on the shock. The

criterion for judging the diffuser performance will be the strength of the shock and the

overall pressure recovery. The strength of the shock is estimated from the Mach number

distribution. The overall pressure recovery is given below:

P-P 2
CpD - p -2A
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Figure 1-4: Flow regions of the vaned diffuser

The present investigation serves as a preliminary assessment of the merit of Campbell

diffuser design concept applied to supersonic flow. In order to save time and effort, only

the performance of the Campbell liffuser at design point is studied and compared with

that of parallel end walls diffusers with the same vane shape. A more thorough calculation

over different impeller speed and mass-flow rate can be followed if the Campbell diffuser

design is found to outperform the parallel end walls diffusers.

1.5 Method of investigation

A numerical simulation is used to investigate the flow fields of the different diffuser con-

figurations. The calculation involves solving inviscid three-dimensional Euler equations.

The flow field in the impeller exit/diffuser entry region is complex and the fluid dy-

namics in that region is.not well understood. The flow is highly turbulent and unsteady.

It is unsteady in the absolute (diffuser) and relative (impeller) coordinates. The un-

steadiness in the absolute frame is due to the non-uniformity of the flow leaving the



impeller and the unsteadiness in the relative frame is due to the presence of the diffuser

vanes. The unsteady pressure fluctuations at the diffuser throat is of the order of 10% of

the mean value. Boundary layers grow rapidly on the side walls under the influence of

the adverse pressure gradient at the diffuser entry. These boundary layers are turbulent

and three-dimensional. The situation is further complicated by the interaction between

the impeller blade tip and the diffuser vanes. The Mach number in the diffuser entry

is about 1.1 and shocks will occur in the flow. Shock wave-boundary layer interaction

should be taken into consideration [2, 12]. Certain assumptions are made to simplify the

situation. The inlet flow is assumed to be steady and uniform, i.e. there is no interaction

between the impeller and the diffuser. The flow is assumed to be steady, inviscid and

adiabatic. As the first step of the investigation, the boundary layer blockage is ignored.

The author is aware that without taking into consideration of blockage, one cannot hope

to obtain a realistic solution. However, analysis of the inviscid flow field will be helpful

for defining the fluid dynamic behavior of the flow and hence determine the performance

of the diffusers.

The advantage of using inviscid ,Euler equations is that the solution can be obtained

with a reasonable amount of computational resource. Unlike experimental study, nu-

merical simulation can separate the influence of diffuser geometry, inlet conditions and

unsteadiness easily by using the simpler flow model. It provides a faster and cheaper

mean for a parametric study of different diffuser configurations.



Chapter 2

Diffuser Configurations

2.1 Introduction

Four diffusers are used to investigate the effect of Campbell diffuser concept. It is thought

that the diffuser configurations chosen in the present investigation are enough to illustrate

the Campbell diffuser concept [14]. Two of them are two-dimensional diffusers i.e. vaned

diffusers with axisymmetric end walls. The others are constructed by changing the end

walls of the two-dimensional diffuser in a non-axisymmetric way. The detail of the diffuser

geometry will be described in this chapter.

2.2 Diffuser design

It has been known that vaned diffusers are the most efficient devices to decelerate the

transonic or supersonic flow to achieve desired pressure recovery in a diffuser. There is

a wide range of vaned diffuser types. The most commonly used are passage diffusers

and airfoil diffusers. Japikse [16] made a good comparison between passage and airfoil

diffusers. He pointed out that although several references [4] reported the superiority of

the airfoil diffuser, they lacked the necessary industrial verification and proof through

application experience. Many manufacturers avoid using airfoil diffusers. Instead they



use well-known vaneless diffusers, straight wall channel diffusers or pipe diffusers to meet

their diffuser needs.

A vane island diffuser is chosen for the investigation. A wide range of curved vane

island diffusers were evaluated by Sagi and Johnston [17] under uniform inlet condition.

They showed that the straight center diffusers had a better performance than the curve

ones (see fig. 2-1)

Two different diffusers vane leading edges are used. One is with straight leading edge

on pressure side up to the throat while the other is with parabolic shape pressure side

up to the throat. The shape of the vane suction surface is so designed that it nearly

coincides with a spiral streamline in an unperturbed free vortex flow. Aft the throat, a

divergent channel with straight center-line is used.

The number of vanes employed in vane island diffusers in contemporary practice can

vary from 8 to 60 [2]. There is no clear preference of certain number of vanes. A low

number of vanes stabilize the shock at entry but reduce the channel diffuser performance.

In the present investigation, 31 vanes are used.

2.3 Choice of design parameters

Precise diffuser recovery prediction is still not possible from any existing theory. A careful

design of suction side surface shape is required to limit the strength of the shock upstream

of the throat. There are relatively few performance data for high speed centrifugal

diffusers on the open literature. As we have mentioned in the above, the vane suction

side surface nearly coincides with a spiral streamline in an unperturbed free vortex flow.

The operating point is chosen to maximize the diffuser recovery. According to Os-

borne [15], it can be achieved by setting the Mach number at the throat as high as

possible (with a limit of one) consistent with flow range requirements (both to choke and

to surge). The impeller exit Mach number is chosen to be about 1.14 with an absolute

swirl angle of 710. The exit pressure is adjusted so that it corresponds to that at the
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operating point. The exit pressure is not known in priori; it can only be estimated by 1D

analysis and then adjusted to the correct value during the course of the calculation. The

calculation of supersonic diffusers is very sensitive to the pressure ratio imposed [18]. A

slightly high pressure ratio can reverse the flow direction while too low pressure ratio will

move the operation to choke line. When the flow is choked, the shock moves into the

subsonic channel through an undesirable reacceleration from the sonic throat.

2.4 Detail of diffuser geometry

Four diffuser configurations are chosen for the present computational investigation:

1. A straight vane leading edge with parallel end walls (i.e. with axisymmetric end

walls).

2. A straight vane leading edge with non-axisymmetric end walls.

3. A parabolic vane leading edge with parallel end walls (i.e. with axisymmetric

end walls).

4. A parabolic vane leading edge with non-axisymmetric end walls..

The parameters that characterize the diffuser geometry is delineated in Table 2.1; the

vane shape for that with a straight leading edge is shown in figure 2-2 while for that

with a parabolic leading edge is in figure 2-3. The location of the diffuser throat is also

indicated in the figures.

In the non-axisymmetric cases, the diffusers have parallel end walls at its entrance

and exit. On the pressure side, the end wall passage depth converges to half the passage

width of the inlet (0.3 inch) at the throat and then expands back to the original depth

at diffuser exit. The passage profile of the pressure side and that of the suction side



diffuser parameter description
r3/r 2 = 1.025 radius ratio diffuser leading edge/impeller exit

r4/r2 = 1.32 radius ratio diffuser discharge/impeller exit

6/r2 = 0.06 ratio of passage depth to impeller exit

20 = 70 channel divergence angle

Zd = 31 vane number

Table 2.1: Diffuser parameters

are shown in figure 2-4 and figure 2-5 respectively. For a fair comparison, the area

distributions of the two cases should be the same. Therefore, the end wall passage width

of the suction side is contoured in such a way that the one dimensional area distribution

along the meridional direction is the same as the parallel end walls case. The passage

width varies linearly from blade-to-blade across a plane perpendicular to the meridional

plane.



Figure 2-2: Straight leading edge blade

roat

Figure 2-3: Parabolic leading edge blade
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Chapter 3

Computational Algorithm

3.1 Introduction

The computational code [19] for the present computational investigation was developed

by J. Adamczyk et al at NASA Lewis research center. It is based on the Jameson's

finite volume time stepping scheme [20]. Although the code was originally written for

axial turbomachinery, modifications have been made to tailor the program for the present

study. The modifications are in the inflow and outflow boundary conditions and will be

discussed in a later section.

3.2 Governing equations

The Euler equations are written in cylindrical coordinate system. Here, we have used r

to denote the radial coordinate, 0 the tangential coordinate and z the axial coordinate;

the corresponding velocity components are denoted by v,, ve and v,. In vector form, the

Euler equation can be written as

d/ UdVol + L() = f KdVol (3.1)
(T.1



P

PtVr

rpve

peo

peo

L(U) = f[F.dA, + G dA + H dA,]

Pvr

pvt + P

rpvoev,

phov,.

Pvve

r(pi4 + P)

phove

pvz+P

rpove

py 2 + P

phov,

with

where

U

F

G=G'=

H



0

(pV2 + P)/r
K= 0

0

0

The vector U consists of the following flow variables: density (p), axial and radial mo-

menta (pv, and pv,), angular momentum (prve) and total internal energy (peo). The

operator L(IU) is a flux operator for the mass, axial and radial momenta, angular mo-

mentum and energy through an elemental control volume dVol, whereas f KdVol can be

viewed as a source term due to the use of cylindrical coordinate system.

Upon using the equation of state, the total internal energy can be related to the

pressure P as follows

P 1 2 21o= + (ve+ Vzev )

;the total enthalpy ho can be related to eo and P by

P
ho = eo + -

P

We are interested in using the inviscid steady state solution for evaluating the perfor-

mance of the diffusers. Thus in the solution procedure, the unsteady Euler equation is

allowed to evolve in time until it achieves an asymptotic steady state. This can be done

with the choice of Jameson's scheme for the discretization of the unsteady Euler equation

written in the form of eqn.( 3.1).

3.3 Nondimensionalizat ion and discretization

Before we begin to apply discretization to eqn.( 3.1), it is useful to make all variables non-

dimensional with respect to characteristic quantities in the situation of interest here. We

have found it appropriate to nondimensionalize all lengths by the diffuser inlet radius; the
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velocity, pressure, and density by the far upstream stagnation pressure and density. To

be more specific, in non-dimensional term we would have (with ^ indicating dimensional

quantity),

r - ;v - P -

Z ;in = -z = ---- ;p = --- ;, =
ref Pore• POrte2

where

Poref
Oref

÷,,1 is the diffuser inlet radius, Pov,, the stagnation pressure at inlet and Po,,r the stag-

nation density at inlet. Note that cl may be viewed as a stagnation sound speed (in

fact it is -7C). With the above nondimensionalization scheme, we can now proceed to

discretize eqn.( 3.1) in space and time.

Equation 3.1 is discretized in space for a cell volume as shown in Figure 3-1 by



approximating the surface integrals with the midpoint rule. The resulting semi-discrete

equations form a system of ordinary differential equations of the form

() + E[FdA, + GdAe + HdA,] = K (3.2)

where V is the volume of a cell.

The surface areas, dA,,dAe,dA, are calculated using the cross product of the diagonals

of a cell face and the volume is determined using the formula described by Holmes and

Tong [21]. All the flow variables are cell-centered. The value of a variable at any surface,

except at solid boundaries, is determined by taking the average of that variable for the

two neighboring cells. The above discretization scheme simply reduces to that of second

order accurate central differencing for a uniform mesh [20].

3.4 Time integration

A four-stage Runge-Kutta scheme [20] is adopted to advance equation(3.2) in time. It

can be written as

n L n ( )
, = r" - aAt( ) + K")

U2 = -a 2 At( +K)

U3 = U 13At -V + K') (3.3)

L( 3)U4 = --ha 4 At(( + K")

"+ = "4+ D(U 4)



where

a1=1/4

a2=1/3

a0=1/2

a4 = 1

and D(U) is the dissipation operator.

The maximum permissible time step for this is restricted by CFL stability limit. The

CFL stability limit was found by Jameson [20] to be 2v2. Since we are only interested in

obtaining steady state solution, a local time step is chosen to maximize the CFL number

and hence accelerates the converging rate.

3.5 Artificial dissipation

To suppress the odd-even point decoupling and to prevent the appearance of wiggles

in regions containing severe pressure gradients in the neighboring of shocks waves or

stagnation points, Jameson [20] developed a blend of second and fourth order difference

smoothing operators through extensive numerical experiments. The fourth order artificial
viscosity has the following form

(4) ( +i s V (ij j (4) 3 (L C U4) 63 (3.4)

where

Vjk is the cell volume

6, is the central difference operator

Atijk is the time step for a cell, scaled to a CFL number of 1

-= max(0, 1/32 - vijk))

The fourth difference dissipation provides a background dissipation to stabilize the

time stepping scheme. However, it will have a destabilizing effect near the shock where

the pressure gradient is high. It will be turned off near the shock and a second difference



is used to capture the shock. The second difference artificial viscosity is of the form

(2) V'i2 - Vjk (2) U6j (3+5)Dik = mtijk '3k8XiUijk + Xj( AtVijk Uijk)+ /-6,,Eijk

where

S(2> = min(0.25,2vi•k)

i+jk
Pi+l,j,k + 2Pi,j,k + Pi-l,j,k

The variable vijk is proportional to the square of the mesh spacing in smooth pressure field

region and linear in mesh spacing in regions of large pressure gradients. This pressure

sensitive switch makes it possible to capture shock sharply and retain second order accu-

racy away from shocks. Thus D(U) operator combines the second and fourth difference

terms to give

Dijk= D + D )

3.6 Boundary conditions

Boundary conditions on the computational domain are required to solve the system of

equations. However, we may not be able to get sufficient boundary conditions to close

the system. Extra relations are derived from local analysis.

Periodic boundary condition is imposed upstream of the blades. The flow will exhibit

a spatial periodicity equal to the pitch of the blade row. Any information required from

cells outside the computational domain can be obtained from their corresponding cells

inside the computational domain. One of the advantages of using periodic boundary is

that it can give the unique incidence of the flow which is not known beforehand.

At solid surfaces, the requirement of no flux through the walls is applied. For the



continuity and energy equations, this can be implemented by setting

U* A =0 (3.6)

where n^ is the unit normal at the surface, 7 is the velocity vector. However in the

momentum equation, there is a pressure contribution at the solid wall. The pressure

is extrapolated from the interior using the normal momentum equation formulated by

Rizzi [22]. The expression is obtained by writing the momentum equation at the wall

and dotting it with the unit normal [23],

O, 1
t n + (,. V)* -n = -Vp -A (3.7)

Using eqn.(3.6) and noting that Oi4/Ot = 0 for stationary solid boundary, the momentum

equation may be rewritten as

.- (U. Vn) = On(3.8)

Equation (3.8) gives the pressure gradient normal to the solid surface in term of the

surface curvature and the velocity at the wall. The velocity at the wall is taken to be the

tangential component of the velocity in the first computational cell off the body; Op/On

at the wall is computed using eqn.(3.8), and the pressure is extrapolated to the wall from

the first interior cell. Solid boundary condition is imposed from leading edge to the end

of computational domain. This is due to a complexity in grid generation at trailing edge

as we shall see subsequently in the next chapter.

The flow at the inlet has a subsonic radial component, so only four quantities are

specified. They are the axial velocity v, which is zero, the circulation rvye, stagnation

pressure Po and stagnation density po. In the absence of external torque (which is true in

the case of diffusers), the circulation cannot change. So physically it is correct to specify

the circulation at the inflow. Denton [24] has pointed out that this condition must

be used when the inflow Mach number is supersonic. He found that by specifying the

circulation, the calculation will then automatically satisfy the unique incidence condition.



We need one more quantity to close the system and this is given by the Riemann invariant.

Riemann invariant J_. based on the radial velocity is extrapolated from the interior

domain. The radial velocity v, is obtained by solving the following equations

a
J_ =v, - 2 .(3.9)

7-I

To = T(1 + -1M2) (3.10)

At the exit, the flow is subsonic. We specified the static pressure and extrapolate the

axial velocity, the entropy, the Riemann invariant J+ and the circulation rve. The Rie-

mann invariant J+ is associated with the information originating from the computational

domain. We extrapolate the circulation because there is no external torque. The density

is calculated from
P- = exp(s)(3.11)
pf

and then radial velocity v, is obtained from

a
j+ = v, + 2 (3.12)

7-1

3.7 Convergence

The convergence history for the four cases are shown in fig. 3-2 to 3-5. The convergence

parameters chosen are the time derivative of density (dp/dt) and L2 norm of the change

of the flow variables over the entire computational domain. L2 is defined as

S= >I: Z(UIjk - U)2
1=1 ijk

where Ul,ijk is the lth component of the state vector U at the ijkth cell. The average

value of (dp/dt) is determined by evaluating the sum of the absolute value of the time



derivative at each point in the field divided by the number of points. The jumps in

the curves are due to adjustments made in the exit pressure to optimize the operating

condition because one does not know the exit pressure at optimal operating condition

a priori. Typical convergence history are shown in fig. 3-6 to 3-9; they show the L 2

norm of the difference of the averaged solutions calculated between two time steps. The

computations are assumed to have converged when there is a drop of two orders of

magnitude in both (dp/dt) and the L 2 norm.
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Chapter 4

Grid Generation

4.1 Introduction

A smooth grid is essential for accurate computation. Since entropy is to be used as a

measure of the goodness of computation results as well as the performance of diffusers,

spurious entropy generation due to an inappropriate grid (such as a non smooth grid, a

highly skewed grid) should be minimized as far as possible. In the inviscid flow model,

entropy is generated by shock waves only. The artificial smoothing operators in the

computational scheme can generate entropy numerically. We attempted to separate the

physically valid entropy generation from the numerical one through a careful examination

of the computed pressure field. The entropy generation can be viewed to be of physical

origin if it is associated with the shock.

Calculation for all the four diffuser configurations were done with the use of H-type

grids. The blade-to-blade grids (on the r - 0 plane) have been generated through the

numerical solution of a system of elliptic equations [25]. This technique of grid generation

will be described in more detail in section 4.2. A typical H-type grid is shown in figure 4-

1.

As the diffuser configuration is three dimensional, the three-dimensional grid has

been generated by stacking several blade-to-blade grids from one end wall to the other
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Figure 4-1: A typical H-type grid

end wall. For the diffuser with parallel end walls, the procedure is direct. However

for the diffuser with non-axisymmetric end walls, we start with the corresponding two-

dimensional diffuser grid, and then rescale the hub to shroud distance according to the

conditions specified in chapter 2 to form a 3D grid.

4.2 Mathematical development of 2D grid

generation

A brief description of the generation of boundary-fitted curvilinear coordinate systems is

presented here. Complete detail can be found in Ref. [26, 27].

The curvilinear coordinates are generated by solving an elliptic system of the form

S+yy=P(', 77) (4.1)
77x=+77yy=Q(ý7 1)
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with Dirichlet boundary conditions, one coordinate being specified to be equal to a con-

stant on the pressure side and the other equal to another constant on the suction side.

P((, 77), Q(ý, 77) are the functions that control the spacing of the grid lines. As sug-

gested by Thompson [26, 27] P and Q can be chosen to be the followings:

P(, 77) --7 El aisgn(( - i)erp(-ci;( - i 1) (4.2)

- ZEL 1 bjsgnQ( - ej)&p(-djV(ý - .j)2 + (7 - 77j)')

Q(7, 7) - - an(77 - 77,) e(- ci77 - 77,1) (4.3)

- Lbj~sg(7 - 77j)ep(-dj(ý - ýj) 2 + (77 - 77j)')

where the positive amplitudes a's, b's and decay factors c's, d's can be chosen differently

for each equation. The first term of P((, 77) has an attracting effect on ý lines to ;i's while

the second term has an attracting effect on ( lines to the point (ýj, 7j). Q(,i77) terms

attract 77 lines in the same way.

Eqn.(4.1) is in terms of dependent variables in (ý, 77) domain. However, we want to

perform all the numerical computation in the uniform rectangular transformed plane.

After interchanging the dependent and independent variables, the equations become

axre - 20P, + yIx, + J2 (Pxý + Qx?) = 0
(4.4)

ayýý - 20ye, + 7y,7, + J2 (Pyý + Qy,) = 0

where

2 2a = x. + y 2

S= Xýr,7 + Y0Y7

S 2 2y

J = X0 77 - Zy7, i



Figure 4-2: Computational domain

4.3 Numerical implementation

As we are solving the inviscid Euler:equation, it is not necessary to cluster too many grid

lines near the solid surfaces. Only a few terms are added to Q(4, r) to draw the 7 lines

closer to the solid surfaces to resolve the flow feature at the leading edge region.

All the derivatives in eqn.(4.4) are approximated by second-order central differencing.

By choosing A4 and Aij to be unity, we arrive at the following expressions

()4ij 1/2(fi+,,j - fi,-1)

(f,)qi fi+ij - 2fi + fj-1 i+

(fq")iX fij+l - 2fii + fii-+

(fsni q 1/4(f+.j+~+ f -- fi-,j+l + fi-,-1)

The computational domain is as shown in figure 4-2. By specifying the values of (X, y) at

inlet, exit and solid boundary, we get a set of 2(I-1)(J-1) nonlinear difference equations,

i



Figure 4-3: Illustration of the problem of closing trailing edge

two for each point(i,j). They are solved by successive over relaxation. The iteration is

stopped when the maximum change of the variables (x,y) between iterations is less than

10-.

4.4 Trailing edge problem

Island vane diffusers have blunt trailing edges which introduce a difficulty in closing

the blade to form a periodic boundary downstream of the trailing edge. This point is

illustrated in figure 4-3. To overcome this, we have chosen to extend the straight channel

to about 10 times the passage width and assume that the flow has achieved a state

with uniform static pressure there . As we are interested in examining the influence of

contouring end wall in the neighborhood of the throat region, it is quite appropriate

to argue that the exit may not-necessarily contaminate the flow field in the region of

interest if we choose the exit boundary to be far away from the throat, e.g. 10 throat

widths downstream of the diffuser throat location.

k: t.

ýe
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Figure 4-4: The profile of thepressure side of the blade

4.5 Non-axisymmetric diffuser grid generation

The vane pressure side profile is determined and is shown in fig. 4-4. It is symmetric

about the center line and consists of two cubic curves both of which have a minimum at

the throat. Starting with the corresponding two-dimensional diffuser, the pressure side

is rescaled according to the specified profile from leading edge to trailing edge. Then a

perpendicular line is drawn from the pressure side leading edge and another perpendicular

line is drawn from suction side trailing edge to define the region for rescaling. This is

shown in fig. 4-5. Both lines are on the same r - 8 plane. The next step involves the

determination of points nearest to the first and second perpendicular lines for every grid

line of constant K index. These points are the starting and ending points for rescaling

of each grid line. The distances between the starting point and other points on the same

grid line have been normalized by.the distance between the starting point and the ending

point. We call this normalized distance s. Now every point has a value of s ranging from

0 to 1. Rescaling the blade height of the suction side so that the average of the suction



Figure 4-5: The region for rescaling of the two dimensional diffuser on r - 0 plane

side blade height h, and the corresponding pressure side blade height h, is the same as

that of the parallel end wall case. For example, if a grid point on the suction side has

the value of s equals 0.3, then we' have to know the blade height of the pressure side

at a point where it has the same value of s. In this procedure, the use of interpolation

may be necessary. With the knowledge of these corresponding blade heights, we can

then compute h, from h, = 2h, - h,, where h. is the original blade height of the two

dimensional diffuser. After defining the profiles of the pressure and suction sides, the

hub to shroud distance for interior grid points can be calculated by taking the weighted

average of the corresponding pressure and suction side blade heights. The weight function

is related to the distances between the grid points and two blades. A typical grid point

a in fig 4-5 has the hub to shroud distance given by

.. A = dh + dh (4.5)
dp + d,



Total no. of grid points 106 x 19 x 19
No. of grid points from blade to blade 19
No. of grid points from hub to shroud 19
No. of grid points from inlet to leading edge 37

Table 4.1: Grid information

where d, is the distance between the grid point and the pressure side of the blade and

d, is the distance between the grid point and the suction side of the blade. Thus, a

relatively smooth but complicated surface can be generated by simple scaling.

4.6 Final grids

The information about the grid is given in table 4.1 The grid of straight leading edge

diffuser at the leading edge region is shown in figure 4-6 and that of the parabolic leading

edge case is shown in figure 4-7. The two grids are smooth and the cells have reasonable

aspect ratio. The maximum aspect ratio of the cell is about 10 near the exit. At the

entrance region of the diffuser, however, the grid is rather skew (the grid lines intersect

each other at 70 deg.). This is unavoidable for a H-type grid [28] in the present vanes

orientation. A numerical diagnostic test will be carried out in chapter 5 to check if the

skewness of the grid will give rise to any disastrous error.



Figure 4-6: The leading edge region of the diffuser with straight leading edge and parallel
end walls

Figure 4-7: The leading edge region of the diffuser with parabolic leading edge and
parallel end walls



Chapter 5

Diagnostic Test

5.1 Introduction

The 3-D inviscid computer code used in the present investigation has been shown to be

reliable and accurate in computing inviscid flow in axial turbomachines [19]. However,

it has not been used in computing flow in radial diffusers of type of interest here. In this

chapter, results from diagnostic calculations are presented to demonstrate the adequacy

of the computer code for the present application.

A two dimensional spiral flow is chosen to be the test case. An analytical solution can

be obtained [29] and the resulting flow field bears similarity to the flow in the diffuser

configurations described in chapter 2. A transonic spiral flow field can be computed

using this analytical technique. In an inviscid flow, the streamsurface can be replaced

by a solid surface without changing the flow field. In the diagnostic test, we choose two

adjacent streamlines and impose solid boundary condition from a chosen radial location

(this might be, for instance, the inlet of a diffuser of interest here) to the exit. This is

equivalent to the calculation of a vaned diffuser with zero thickness vanes. As the solid

surfaces coincide with the streamlines, the flow pattern should be the same as that of the

flow without solid surfaces. The computed results are then compared with the analytical

solution obtained in [291.



5.2 An axisymmetric compressible spiral flow

An axisymmetric spiral flow may be formed from a combination of a vortex flow and

a radial flow. A typical streamline pattern in such a flow configuration may be found

in [29]. For the sake of completeness and convenience, we will present the analytical

solution here. Using polar coordinates, the equations are:

for a flow with a source at the origin

2xrpv, = oPo = constant (5.1)

for a flow associated with the potential vortex

2.rve = x = constant (5.2)

1/2(v' + v )= c,To[l -( ()P - , (5.3)
Po

Upon using 2cpTo = q2,, and combining eqn.(5.1) , eqn.(5.2) and eqn.(5.3), we arrive at

1 K2( )2 + .2(5.4)r = PO (5.4)

Streamlines for this flow can be most conveniently computed by using a stream-

function 4' given as:
1 8 p a"--v, - (5.5)
r 80 Po 2rr

S--ve o (5.6)
Or Po 27rr

Upon introducing a variable A defined as

a
A= -a

ao



we can show that

Po

We can now rewrite eqn.(5.4) in terms of A to give

2  1 K 2A10 + L 2
r A A

4'2q2. A10[1- A2]

Upon differentiating eqn.(5.7), we have

dr A2
r 1 - A2

50 52  dA
; 2A10 + 0.2 A

The use of eqn.(5.8) in eqn.(5.6) yields

d=- { n A6

2r 1 -A2
5"2A4  i dA

K2A'0 +0"2

++ A 3 +3

(5.9)

which, upon integration, results in

KA s

arctan
0"

1 1+A
- In
2 1-A

A} + f (9)

However eqn.(5.5) can be integrated to give

0 = + g(r)2r

Thus from eqn.(5.10) and eqn.(5.11), we can identify

..9

(5.10)

(5.11)

so that 0 is given by

2r = {0 0 + arctan -iA
0-"

(5.7)

(5.8)

r= I o
2- w

-A-1A3 -1 A1
3 5 (5.12) .1 I1+A

2 (1-A)



Figure 5-1: Streamline of spiral flow

The results in eqn.(5.7) and eqn.(5.12) can now be used to compute the stieamline

pattern for this simple flow. Since altering the value of b is equivalent to altering the

value of 0, all streamlines have the me shape. Fig. 5-1 (from [291) shows the complete
streamlines as determined from equations (5.7) and (5.12).

5.3 Computational results

In this section we present results to demonstrate that the computer code yields results

that agree with the analytical solution. It should be noted here that we are using a three-

dimensional Euler code to compute a two-dimensional flow. The two dimensional grid in

r - 8 plane is shown in fig. 5-2. The three dimensional grid is constructed by stacking

the two dimensional grids in the z direction. The swirl angle at the inflow is 69 deg.

The exit pressure is the same as that calculated from the theory in the previous section.

Fig. 5-3 shows the pressure distribution calculated from the code while fig. 5-4 shows the

pressure distribution from the theory. It can be seen that the computed results agree



Figure 5-2: Computational grid of test case, r - 0 plane



very well with the analytical solution. The largest difference between the two pressure

field occurs at the leading edge region; the maximum difference being less than 5%. Such

a difference is due to a change in boundary condition from periodic boundary condition

to that of solid surface boundary condition at the leading edge. The error is acceptable

in the present investigation because it only affects the flow field locally. The difference

between the two pressure fields becomes negligible after several grid points downstream

the leading edge.

5.4 Concluding remark

We have shown that the computational results agree favorably with the analytical solu-

tion. Some errors can be seen in the leading edge region. In the test case, the angle of

incidence is 0 deg. The leading edge error may become more severe when the angle of

incidence becomes larger. Apparently, the skewness of the grid does not result in sig-

nificant errors. The modification of the computer code in inflow and outflow conditions

gives satisfactory results in the two dimensional flow test case. The diagnostic test case

provides a simple way to verify the correctness of the modification. The code is three di-

mensional and it has been tested thoroughly by Adamczyk et al [19] in three dimensional

flow. No test case has been done in the present investigation to verify its correctness in

three-dimensional applications. This diagnostic test serves to demonstrate the validity of

the use of this code for computing flow in a flow configuration representative of a radial

diffuser.



.inc = 0.04

Figure 5-3: Computed presure distribution

/nc = 0.04

inc = 0.04

Figure 5-4: Pressure distribution from analytical solution
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Chapter 6

Results and discussion

6.1 Introduction

An analysis of the computed flow fields for four different diffuser configurations will be

presented. The geometrical configuration for these four diffusers will be described in

the following. An inviscid flow model is assumed and all the calculations have been

implemented using the inviscid Euler code alluded in the previous chapter. The diffuser

inlet conditions are assumed to be uniform in axial and tangential directions. Pressure

recovery and changes in entropy will be used to assess the influence of Campbell diffuser.

The four diffusers configurations being investigated are as follows:

1. A straight vane.leading edge with parallel end walls.

2. A straight vane leading edge with non-axisymmetric end walls.

3. A parabolic vane leading edge with parallel end walls.

4. A parabolic vane leading edge with non-axisymmetric end walls.

The characteristic geometrical parameters are delineated in Table 2.1 in chapter 2. These

four diffuser configurations will serve as the baseline calculations. Additional calculations

62



based on variations of these four baseline diffuser configurations have also been carried

out. These additional calculations are used to interpret findings in the baseline calcula-

tions. Details of the additional calculations will be given after the presentation of results

from the baseline calculations.

6.2 Velocity field and streamwise pressure

gradient

Figures 6-1 and 6-2 show the velocity fields at midspan around the leading edge region of

the diffuser with straight vane leading edge and parallel end walls and that with straight

vane leading edge and non-axisymmetric end walls . It can be seen that the flow enter

the blade surface at about 5 deg. incidence at the pressure side. After a short distance

downstream from the leading edge, the velocity appears to follow the diffuser passage.

Figures 6-3 and 6-4 show the velocity field in the throat region on z - 0 plane. In

these figures, the velocity vectors are projected on the z - 0 plane of radial location

of the throat. These show that the./axial velocity (z- component) is much smaller than

the absolute velocity, as one would have expected from the specified diffuser geometrical

configurations.
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Figures 6-5 and 6-6 show the streamwise pressure gradient(v' VP/I*I) on the end

wall of the diffuser with straight vane leading edge and parallel end walls and that

with straight vane leading edge and non-axisymmetric end walls respectively. A large

magnitude of streamwise pressure gradient is observed near the leading edge. The rapid

change in flow direction to follow the solid boundary gives rise to the rapid change in

pressure gradient in that region. Upon comparing the computed results, it appears that

the flow entering the diffuser more smoothly in the non-axisymmetric end walls diffuser.

There is a higher adverse pressure gradient between the two blades in the parallel end

wall diffuser. Converging the pressure side passage depth helps the flow to follow the

pressure side at the diffuser entry. However, we have to pay the price at the suction

side. In order to keep the one-dimensional area distribution the same in two cases, the

suction side passage width must be diverging. The concave shape of the end wall has a

less favorable pressure gradient than that in the parallel end walls diffuser.

The velocity field and the streamwise pressure gradient field shown in this section are

to be expected. They serve a diagnostic purpose to show that the computer code yields

reasonable results.

6.3 Straight leading edge vaned diffusers

The Mach number distribution of the two diffusers at mid-span in the vaneless and semi-

vaneless space are shown in figure 6-7 and figure 6-8.

Only three passages are shown in the figures. In the centrifugal diffuser, there should

be 31 passages, but the three passages shown here should be enough to illustrate the

periodicity in the circumferential direction. The Mach number distribution indicates

that there is a bow shock upstream of the throat. Similar results have been obtained by

Colantuoni et al. [12]. Figure 6-9 shows a sketch of Mach number distribution deduced

from the computed results. Only three Mach lines are shown to illustrated the formation

of bow shock. The Mach number changes from 1.2 to a subsonic value in the region



inc = 1.0

Figure 6-5: Streamwise pressure gradient on end wall of the diffuser with straight leading.
edge and parallel end walls

inc = 1.0

Figure 6-6: Streamwise pressure gradient on end wall of the diffuser with straight leading
edge and non-axisymmetric end walls



Figure 6-7: Mach number distribution at mid-span of the straight leading edge parallel
end walls diffuser

inc= .1

Figure 6-8: Mach number distribution at
axisymmetric end walls diffuser

mid-span of the straight leading edge non-
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Figure 6-9: Sketch of the Mach number distribution to illustrate the bow shock region

Figure 6-10: cascade at subsonic radial inlet flow Mach number
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upstream of the leading edge suggesting that there is a bow shock. The formation of this

bow shock will be explained in the following.

Lichtfuss and Starken gave a comprehensive account of the difference between a cas-

cade and a single profile in supersonic flow [30]. Figure 6-10 shows a radial cascade with

a subsonic radial inlet flow Mach number. For a radial cascade, there are infinitely many

blades in front of each blade. Since the radial component is subsonic, the disturbance

can extend in the radial direction upstream. The entire flow area upstream of the cas-

cade inlet is then covered by Mach lines. The Mach lines extend upstream to infinity

and therefore are able to influence the inlet flow presumed to be there. As shown in

figure 6-10, the concave shape of the suction side results in the convergence of the Mach

lines emanating from the surface to form a shock i.e. the characteristics coming from the

blade contour form an envelope, at the cusp of which an oblique shock wave starts [31].

In figures 6-7 and 6-8 we can see a similar merging of the Mach lines starting from

the concave suction side and conclude that there is a bow shock in the flow.

6.3.1 Pressure distribution

The pressure distribution at midspan of the parallel end walls diffuser and that of the

non-axisymmetric end walls diffuser are shown in figure 6-11 and figure 6-12. Firstly, we

notice that the pressure contour does not bear the similarity to the Mach number contour

as one might have anticipated in an inviscid isentropic flow; this feature of the comparison

between the computed pressure contour and the computed Mach number contour can be

clearly seen near the solid boundary. This is due to the entropy generated at the leading

edge by the inherent artificial viscosity used in the Euler code [19]. Because of this, we

argue that it is far more appropriate to use the pressure field as a better representation of

the flow field than that given in term of Mach number. From now on, only the pressure

field is used for the investigation. There is no much difference between the two cases in

the semi-vaneless region shown in figures 6-11 and 6-12. Figure 6-13 and figure 6-14 show

the pressure distribution at hub and shroud of the non-axisymmetric diffuser respectively.



The computed results show that the shock, which is located in the semi-vaneless region,

is not affected by the contouring of end wall in the channel diffuser region. It can be

observed that the variation in flow field from one end wall to another is quite negligible.

(comparing fig. 6-12, fig. 6-13 and fig. 6-14).

Figure 6-15 and figure 6-16 show the isobars on the blade surfaces and midstream

meridional plane of the parallel end walls diffuser and the non-axisymmetric diffuser

respectively. The suction side reacceleration is less significant in the non-axisymmetric

diffuser. In a diffuser, reacceleration of flow is undesirable, and should be minimized for

better performance. The spacing of the isobars of the parallel end walls diffuser is closer

than that of the non-axisymmetric end walls diffuser suggesting that there is a sharper

change in pressure gradient in the parallel end walls diffuser. Large adverse pressure

gradient at the entrance may cause flow separation in that region.



Figure 6-11: Pressure distribution at midspan of the diffuser with straight leading edge
and parallel end walls

Figure 6-12: Pressure distribution at midspan of the diffuser with straight leading edge
and non-axisymmetric end walls



Figure 6-13: Pressure distribution at hub of the diffuser with straight leading edge and
non-axisymmetric end walls

Figure 6-14: Pressure distribution at shroud of the diffuser with straight leading edge
and non-axisymmetric end walls
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6.3.2 Pressure recovery

Pressure recovery is an important factor to consider when designing a diffuser. The

overall pressure discovery is defined as

CpD 0 - (6.1)PO2 - P2
where - denotes the mass average of the quantity. The CD of the parallel end walls

diffuser is 0.83 while that of the non-axisymmetric end walls diffuser is 0.84. Figure 6-17

shows pressure recovery along the radial distance in two cases. The difference in pressure

recovery between the Campbell diffuser and the two-dimensional diffuser is negligible.

6.3.3 Stagnation pressure loss and entropy

The stagnation pressure loss of the two cases is rather high. It is about 5% in both cases.

This value is higher than the change in stagnation pressure across an assumed normal

shock corresponding to a Mach number of 1.2. Dolan and Runstadker[32] reported such

a problem in 1979 and also Osborne and Japikse [33] thereafter. Data covering this loss

is extremely limited. The computational results is further deteriorated by the artificial

viscosity. In figure 6-18, it can be seen that the entropy is generated at the leading

edge and is being convected downstream. The production of entropy is due to the finite

incidence of the flow at the blade leading edge. The flow is constrained to follow the

solid boundary. This will create a high pressure gradient locally which in turn switch

on the second order smoothing. The smoothing term produces entropy and non-physical

stagnation pressure loss. Since the two cases are subjected to identical conditions, so

that comparison of entropy can still be used to assess the performance of the diffuser.

Figure 6-20 and 6-21 shows the stagnation pressure loss of straight leading edge

diffusers at midspan. Before the diffuser throat, there is a significant loss. The mass

average of the stagnation pressure of the two cases are plotted along the radial distance

from inlet to the leading edge in figure 6-22. From this plot, we can compare the loss
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Figure 6-17: Pressure recovery of diffusers with straight vane leading edge

from inlet to the leading edge in figure 6-22. From this plot, we can compare. the loss

of stagnation pressure due to the shock. The stagnation pressure loss of the diffuser

with parallel end walls obtained from the computed results is 2.9% while that of the

diffuser with non-axisymmetric end walls is 3.2%. The entropy contours of the two cases

at midspan are shown in figure 6-18 and 6-19. Figure 6-23 show the stagnation pressure

loss of the non-axisymmetric diffuser at the hub. It is very similar as that at the midspan.

This is expected since variation of flow field in axial direction appears to be negligible.



Figure 6-18: Entropy at midspan of the diffuser with straight leading edge and parallel
end walls

Figure 6-19: Entropy at midspan of the
axisymmetric end walls diffuser

diffuser with straight leading edge and non-



Figure 6-20: Stagnation pressure loss at midspan of the diffuser with straight leading
edge and parallel end walls

Figure 6-21: Stagnation pressure loss at midspan of the diffuser with straight leading
edge and non-axisymmetric end walls
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6.4 Parabolic leading edge vaned diffusers

In this section similar results from the calculations 'with the straight leading edge vane

replaced by parabolic leading edge vane will be presented to illustrate the influence of the

resulting end wall contouring on the computed flow fields. As in the case with straight

leading edge vaned diffusers, it will be seen that the parabolic leading edge vaned diffusers

with parallel end walls and that with non-axisymmetric end walls have similar flow fields.

6.4.1 Pressure distribution

The pressure distribution at midspan of the parallel end walls diffuser and the non-

axisymmetric end walls diffuser are shown in figure 6-24 and figure 6-25 respectively.

Again there is no much difference between the two cases. Figure 6-26 and figure 6-27

show the pressure distribution at hub and shroud of the non-axisymmetric end walls

diffuser respectively. Figure 6-28 and figure 6-29 show isobars on the blade surfaces and

midspan meridional plane of the two diffusers respectively. From these it can be observed

that the flow field from one end wall to another is quite negligible./



Figure 6-24: Pressure distribution at midspan of the diffuser with parabolic leading edge
and parallel end walls

Figure 6-25: Pressure distribution at midspan of the diffuser with parabolic leading edge
and non-axisymmetric end walls



Figure 6-26: Pressure distribution at hub of the diffuser with parabolic leading edge and
non-axisymmetric end walls

Figure 6-27: Pressure distribution at shroud of the diffuser with parabolic leading edge
and non-axisymmetric end walls
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6.4.2 Pressure recovery

The pressure recovery of the diffusers is shown in figure 6-30. The c.D of the parallel end

walls diffuser and that of the non-axisymmetric end walls diffuser are the same (0.82).

The two curves effectively collapse into one. The less than 0.002 difference in cp is within

computational error.

C,
0
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U

Nondlmensionai radial distance R/R2

Figure 6-30: Pressure recovery of the diffusers with parabolic leading edge



6.4.3 Stagnation pressure loss and entropy

The stagnation pressure loss of the diffusers with parabolic leading edge is smaller than

that of the diffusers with straight leading edge. Figure 6-31 and figure 6-32 show the

stagnation pressure loss of the diffuser with parallel end walls at midspan and that of

the diffuser with non-axisymmetric end walls at midspan respectively. The stagnation

pressure loss due to shock is smaller. Similar entropy generation due to incidence can

be seen in figure 6-33 and figure 6-34. Figure 6-35 shows the mass average stagnation

pressure along the radial direction from inlet to leading edge. From the computed results,

the stagnation pressure loss of the diffuser with parallel end walls is 1.3% while that of

the one with non-axisymmetric end walls is 1.5%. It can be seen in both straight leading

and parabolic leading edge cases, the Campbell diffusers appear to have about the same

stagnation pressure loss. The difference of about .2% in both cases is not sufficient to

make a concluding statement on the shock strength by assessing the stagnation pressure

loss.



Figure 6-31: Stagnation pressure loss at midspan of the diffuser with parabolic leadiug
edge and parallel end walls
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Figure 6-32: Stagnation pressure loss at midspan of the diffuser with parabolic leading
edge and non-axisymmetric end walls



Figure 6-33: Entropy
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at midspan of the diffuser with parabolic leading edge and parallel
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Figure 6-34: Entropy at midspan of the diffuser with parabolic leading edge and non-
axisymmetric end walls
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Figure 6-35: Mass average stagnation pressure of diffusers with parabolic leading edge
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6.5 Synthesis of observations on computed results

The results of the calculations described in the foregoing sections may be rather surprising

at first glance; a change in geometry due to end wall contouring seems to have little

effect on the flow field. In these diffuser configurations, the characteristic length scales

on the crossflow plane (i.e. the pitch and the distance between the end walls) are small

compared to the characteristic length scale in the streamwise direction (i.e. the chord

length). Consequently these diffuser passages tend to form narrow flow path to constrain

the flow in the passage to remain essentially one dimensional [34]. The introduction of

end wall contouring would merely bring about a change in the flow dimension on the

crossflow plane so that it is not surprising to find that the resulting change in the flow

field is minimal. In an attempt to clarify this particular aspect of the flow field, further

parametric calculations are carried out to show the influence of both the ratio of passage

depth to chord length (6/c) and the ratio of pitch to chord (e/c). These will be presented

in the next section.

6.6 Further computational investigation

Calculations are implemented to show the influence of 6/c and e/c. The calculations of

the previous four diffusers are repeated with the passage depth increased by 2.5 times.

The calculations of diffusers with different pitch-to-chord ratio(e/c) have also been carried

out. The pitch-to-chord ratio is changed by varying the stagger angle and the number

of blades. A straight leading edge vaned diffuser with the same number of blades as the

baseline calculation (31 blades) is used in the calculation. The stagger angle is decreased

to open up the flow area. The pitch-to-chord ratio is therefore increased. The diffusers

with parallel end walls and that with non-axisymmetric end walls are studied at the new

stagger angle. Finally, the pitch-to-chord ratio is decreased by increasing the number

of blades to 41. It is appropriate to point out that in the parametric calculations to

investigate the influence of the pitch-to-chord ratio, the flow passage does not resemble



any practical diffusers. The divergence angle of the channel is close to 0 deg. and the

profile of the suction side has not been tailored for the new stagger angle. A large

incidence angle is expected and separation may possibly occur.

In the following, we present results of two sets of parametric calculations. The first

set is to investigate the influence of passage depth to chord ratio on end wall contouring

while the second set is to investigate the influence of pitch-to chord ratio.

6.6.1 Investigation of influence of passage depth to chord ratio

To show the influence of passage depth to chord ratio, the following calculations were

carried out:

1. same diffuser configuration as the diffuser with straight leading edge and

parallel end walls but with its passage depth increased by 2.5 times

2. same diffuser configuration as the diffuser with straight leading edge and

non-axisymmetric end walls but with its passage depth increased by 2.5 times

.3. same diffuser configuration as the diffuser with parabolic leading edge and

parallel end walls but with its passage depth increased by 2.5 times

4. same diffuser configuration as the diffuser with parabolic leading edge and

non-axisymmetric end walls but with its passage depth increased by 2.5 times

Pressure distribution

Figure 6-36 and figure 6-37 show the pressure distribution at midspan of the straight

leading edge diffusers. The pressure fields look similar. This is because the midspan is far

away from the end wall and the end wall contouring effect is not being felt here. However,

it has been observed that pressure is higher in the throat region in the non-axisymmetric



Figure 6-36: Pressure distribution at midspan of the diffuser with straight leading edge,
parallel end walls and larger passage depth

Figure 6-37: Pressure distribution at midspan of the diffuser with straight leading edge,
non-axisymmetric end walls and larger passage depth



Figure 6-38: Pressure distribution at hub of the diffuser with straight leading edge, non-
axisymmetric end walls and larger passage depth

end wall diffuser than that in the parallel end wall one by about 2%. Figure 6-38 shows

the pressure distribution of the straight leading edge non-axisymmetric end walls diffuser

at hub. It can be seen that in the throat region, the pressure field is different from that in

the midspan and from that in the parallel end wall diffuser. Figure 6-39 and figure 6-40

show the pressure distribution at hub of the parabolic leading edge diffusers. Similar

comment can be applied to these computed results. The convergence of the pressure side

passage height near the throat leads to a local low pressure region around there, hence a

higher pressure recovery in that region as will be shown in the next section.



Figure 6-39: Pressure distribution at hub of the diffuser with parabolic leading edge,
parallel end walls and larger passage depth

Figure 6-40: Pressure distribution at hub of the diffuser with parabolic leading edge,
non-axisymmetric end walls and larger passage depth
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Figure 6-41: Pressure recovery of the diffuser with straight leading edge and larger pas-
sage depth

Pressure recovery

It has been shown that increases in'the ratio of passage depth to chord length tends to

make the effect of contouring end walls more prominent. Figure 6-41 and figure 6-42

show the pressure recovery along the radial direction of different cases. Comparing with

figure 6-17 and 6-30, a larger difference can be seen, especially in the throat region. The

cpD of the Campbell diffusers are higher than the two dimensional diffusers by 0.05 in

both the straight and the parabolic leading edge cases. For these situations, it may be

possible that the end wall contouring suggested by Campbell can lead to an improvement

in the diffuser performance.

When the ratio of passage depth to chord ratio is increased, the influence of the end

wall contouring appears to become more pronounced.
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Figure 6-42: Pressure recovery of the diffuser with parabolic leading edge and larger
passage depth

Stagnation pressure loss

The mass average stagnation pressure of the straight leading edge diffusers is shown in

figure 6-43 and that of the parabolic leading edge diffusers is shown in figure 6-44. Again

the stagnation pressure loss is larger for the non-axisymmetric end walls diffusers. The

difference in stagnation pressure loss between the parallel end walls cases and the non-

axisymmetric end walls cases has increased from 0.2% to 0.5% as the passage depth is

increased by 2.5 times. The increase in the difference in stagnation pressure may be

numerical since we increase the number of grid points by 2.5 times in the calculation.
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6.6.2 The influence of the pitch-chord ratio

In the following investigation, the pitch-chord ratio is changed by changing the stagger

angle and the number of blades. The following calculations have been carried out:

1. diffuser with straight leading edge and parallel end walls in which stagger angle

has been changed from 71 deg. to 37 deg.

2. diffuser with straight leading edge and non-axisymmetric end walls in which

stagger angle has been changed from 71 deg. to 37 deg.

3. same as 1 but with the number of blades increased to 41

4. same as 2 but with the number of blades increased to 41

Pressure distribution

Figures 6-45 and 6-46 show the pressure distribution at end wall of the parallel end walls

diffuser (1) and that of the non-axisymmetric end wall diffuser (2). In the throat region

of the latter, it has a very similar pressure field as that of the diffuser in previous section.

We conclude that this region of low pressure is due to the contouring of end walls and

that this effect becomes significant only when either the pitch or the passage depth is

comparable to the chord length. Figure 6-47 and 6-48 show the pressure distribution at

end wall of 3 and 4. It can be seen that the difference between two pressure fields is

diminished when the pitch-chord ratio is lowered by increasing the number of blades.

As mentioned earlier, the investigation is extended for elucidating the influence of the

pitch-to-chord ratio on the one-dimensionality of the flow. It is not intended to assess

the performance of a diffuser with such a configuration. From this investigation, we see

that the end wall contouring has larger effect with larger pitch-to-chord ratio.



Figure 6-45: Pressure distribution at end wall of the diffuser with straight leading edge,
parallel end walls, a smaller stagger angle and 31 blades

Figure 6-46: Pressure distribution at end wall of the diffuser with straight leading edge,
non-axisymmetric end walls, a smaller stagger angle and 31 blades



Figure 6-47: Pressure distribution at end wall of the diffuser with straight leading edge,
parallel end walls, a smaller stagger angle and 41 blades

Figure 6-48: Pressure distribution at end wall of the diffuser with straight leading edge,
non-axisymmetric end walls, a smaller stagger angle and 41 blades



Chapter 7

Analysis

7.1 Introduction

In this chapter we shall attempt to develop an analysis with the aim of explaining the

observed trend in the computational results. Since the validity of the one dimensional flow

depends on the configuration of the diffuser and not on the fluid property, incompressible

flow model (for its simplicity) can be used to illustrate why the flow is not responsive to

geometrical change in the proposed diffuser configuration for investigation. Based on this

incompressible flow model, the influence of both the pitch to chord ratio and the passage

depth to chord ratio can be assessed. An analysis is also attempted with the intent of

explaining the fact that the flow in the proposed diffuser configuration is insensitive to

geometrical changes even in transonic regime as one might have anticipated otherwise.

7.2 Incompressible flow analysis

The governing equations expressed in cylindrical co-ordinates are as following:

1 ryv 1 8vyo O,
+r + 0 (7.1)r jr r 80 az
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Figure 7-1: The intrinsic coordinate system in r
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Let m denote the meridional direction on the r - 0 plane, n the perpendicular to m

and 6 the angle between m and the radial direction. The coordinate system is as shown

in fig. 7-1. The meridional velocity is given by
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It can further be shown that:

O 0 sin fl
S cos -+ - (7.5)

Om Or r 0d
O sin 8 cos 8= -sn -+
-n Or r 00

Using (7.5), (7.1) can be rewritten as

V,' cos# ( 0 Ov,, Ov,+1n + + -, = 0 (7.6)
r On + m rOz

Upon multiplying (7.2) by cos P,(7.3) by sin1 , and adding, we arrive at

OVm OVm 1 OP
Vm + v8z =-- (7.7)am z p am

Likewise, upon multiplying (7.2) by cos 3,(7.3) by cos 1 and subtracting the former from

latter, we have
2 8M Pi n3 1 OP

v. + sin + _ + VzVm (7.8)
am r Oz p On

so that eqn.(7.4) reduces to

V,z 8v. 1 8 P
-m +  z - (7.9)am az p Oz

The flow variables can be made nondimensional based on the following characteristics

quantities: they are the velocity at inlet v,, chord length c, pitch 6, passage depth e,

stagnation pressure at inlet Po and density p. Three length scales are used in the nondi-

mensionalization because they are needed to characteristize the diffuser configuration.

The variables are nondimensionalized to be of order unity as follow:

Sm r * m
vm - -r = -;m = -

VC0  C C

n z P - Pon z P 2
S - P* PV
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We nondimensionalize v, by v, and then an attempt is made to estimate its order of

magnitude from the continuity equation. We have

z: 
V z

VW0

From (7.6),

VCOy* Cos 8 v1n7 8# V" Bu . 8y*, + + + =o
cr* e an* c Om* 6 Oz'

which upon simplifying gives

v1 cos • 0 Oz,' c oy;+ + - = 0 (7.10)
r* e/c On* am* 6 z*'

From the diffuser configuration we have E/c < 1 ,6/c < 1 and the change of swirl angle

across a narrow diffuser passage is negligible so that Of/On' z, 0. The first and the third

terms of the equation, namely v~ cos p/r* and Ovl/Om*, are of the order unity; hence

the last term is almost of order unity,

S= o(1)
6 az*

so that we arrive at

It is more convenient to redefine the nondimensional v* to be of order unity for later

analysis. From now on, v, is nondimensionalized by v,,, c and 6 as follows:

V. c v

b -- 6 v

103



Using this new v*, eqn.( 7.10) can be rewritten as

vm cos um dp av, O
SOS U+ + v* + =V 0 (7.11)
r* e/c n* 8am* az*

with 8p0/n* 0 0.

Substituting the nondimensional variables into eqn.(7.7), we have

8v* 8v* aP*
v* v , -F* (7.12)
m m* '- + 8z* 8m*

Likewise from eqn.(7.8)(E 2I 80 ev* sin o 80 aP*
v2  - +- u* - (7.13)c + c r* c z* an*

And from eqn.(7.9)

( 6 a eu* 6+  Bu* az* - P*
u* _ (7.14)

c § mam* c z\c * izz

In eqn.(7.12), we deduce that
aP*

S = 0(1)

and from eqn.(7.13), we have aP* E
an* -C

and similarly for eqn.(7.14), we have

This implies that the flow is essential one dimensional when E/c and 6/c <K 1. In the

original four cases with the small passage depth, the flow does not respond to the changes

in end wall contouring. When the passage depth is increased, the effect of contouring end

wall becomes significant. When the stagger angle is decreased, the flow area is opened up.

The pitch-chord ratio e/c is increased. It affects the 8P*/&z* term through equation 7.11.
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When e/c increases, a larger change in streamline curvature can be sustained across

the passage and the term 80/a8n* is no longer negligible. The order of v, cannot be

determined by method of dominant balance since we do not know the relative importance

of each term.- From the numerical investigation presented in previous chapter, it is found

that the flow becomes more responsive to geometrical changes when the pitch-chord

ratio increases. Physically, the diffuser passage can be viewed as a thin, narrow and

long channel. Changing the passage depth locally does not have much influence on the

entire flow field because a substantial pressure gradient between the end walls cannot be

developed in a short distance. Therefore, the flow is essentially one-dimensional in this

channel.

7.3 Compressible flow analysis

In the previous section, we have used incompressible flow model to show that due to

the geometrical constraints, the flow in the proposed diffuser configuration is essentially

one dimensional. The flow is in transonic regime in the present investigation. One

would anticipate a more drastic change of flow field in response to geometrical changes

in transonic flow. In this section, a compressible flow analysis is presented in an attempt

to show why the flow is not responsive to geometrical changes even in transonic regime.

It is more convenient to do the following analysis in vector form. The Euler equations

can be expressed in three-dimensional intrinsic coordinates [35]. The intrinsic variables

are ds and dit, where ds is the distance along a streamline and d, is a two dimensional

vector normal to the streamline. The operator V is defined as

8 8V = el + e2
On1  On2

where the ei are unit vectors orthogonal to each other and to the streamline directions,

and 8/8in are the intrinsic spatial derivatives in those directions.
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The velocity vector in the three dimensional space is expressed as

t is unit vector having the direction of the streamline.

The continuity equation may be written as

api
Osas + pUV -.= 0

and momentum equation in streamline direction is

p a + = 0Os Os

Condition of constant entropy along a streamline yields

aS
as

Eqns.(7.15), (7.16) and (7.17) can be used to derive

(7.15)

(7.16)

(7.17)

(7.18)
M 2 - lOP

- +V . =
pu2 Os

V . t may be interpreted as the logarithmic derivative OA/(Aas) of the area of the

streamtube. The other form of (7.18) may be more familiar

8P pzu2 8A7+ M2 0
8s M 2 - 1 Ads

(7.19)

The momentum equations in the normal directions are in the form of

t'
p-2_ + VP = 0

Os
(7.20)

106



It can be seen in equation (7.19) that the area change OA/&s is amplified by a factor

of 1/(M 2 - 1) in the transonic regime. However, the Campbell diffuser end walls are

tailored in such a way that the area distribution along the flow direction is the same

as that in the diffuser with parallel end walls, i.e. 8A/Os is the same in both cases;

thus OP/Os is expected to be similar. From equation (7.20), we see that it9/Os is a

function of the streamline pattern and there is no explicit Mach number dependence in

this equation, therefore the pressure gradients in the crossflow directions (VP) should

not change significantly in the transonic regime. This simple analysis serve as a mean to

illustrate that Campbell Diffuser concept is not quite effective even in the transonic flow

regime.
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Chapter 8

Summary and conclusion

8.1 Summary

The Campbell diffuser concept has been assessed using four diffuser configurations. Care-

ful study of the computed results in chapter 6 and the analysis in the previous' chapter

appears to indicate that two parameters are of particular importance, namely the pitch-

to-chord ratio and the passage depth to chord ratio. If these two ratios are small, the

flow is essentially one dimensional. That is, the flow will not respond to changes in end

wall contouring, as long as the one dimensional area distribution is unchanged. This is

true even in the transonic regime because the transonic effect influences the flow field

through the area change in streamwise direction and such area change is the same in the

Campbell diffusers and the corresponding parallel end wall diffusers.

Bow shocks appear in the semi-vaneless region from the computed results. It is

observed that contouring the end walls in the channel region has little effect on the shocks.

However, since the present investigation uses the inviscid flow model, the computed

results may not represent a realistic shock structure in the flow.

Based on the present computational result, it appears that there is a gain of 5% in

cD in Campbell diffusers when the pitch chord ratio or passage depth-chord ratio is

sufficiently large. The stagnation pressure loss and entropy generation are functions of
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shock strength and are hardly affected by end wall contouring.

8.2 Conclusion

1. For the four proposed configurations, Campbell effect is negligible as shown in the

computed results.

2. Two important parameters control the nature of the flow. They are the pitch-to-

chord ratio and the passage depth to chord ratio. When they are small, the flow is

essentially one-dimensional.
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