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ABSTRACT

The dynamics of a hypersonic vehicle (HSV) along an entry trajectory

were analyzed using the asymptotic method of Generalized Multiple Scales

(GMS). A mathematical model describing the expected performance of

future HSVs was provided by NASA called the Generic Hypersonic

Aerodynamic Model Example (GHAME). This model was used for computer

simulation of flight along an entry trajectory which is flown by the Space

Shuttle. The characteristic modes of motion of the GHAME vehicle are

recorded, and the equations of motion are analyzed through the GMS

technique.

The results show that the analytical solutions to the equations of

aircraft motion developed by the GMS technique closely approximate the

numerical solutions. From these results, the approximations are shown to

be valid for stability and control analysis. A stability criterion for the

modes of the GHAME vehicle was established and a feedback controller was

designed to stabilize an unstable mode.
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Chapter 1. Introduction

1. INTRODUCTION

HYPERSONIC FLIGHT

The technology related to hypersonic vehicles (HSVs) has been given

increased attention in recent years. HSVs are aerospace vehicles designed

to fly at speeds in excess of Mach 6 and have air breathing propulsion

systems. Now that the Space Shuttle is operational, research interest has

turned to the development of other reusable space transportation systems

as long term alternative shuttle-like vehicles. These systems would provide

additional operational capabilities such as increased maneuverability

within the atmosphere, lower cost of payload to orbit, quicker turnaround

time and less ground support. This technology, which has many military as

well as civilian applications, will be demonstrated by the proposed National

Aerospace Plane (NASP). In order to develop HSVs, research is required to

increase the knowledge base of these vehicles.

The NASP is a single stage-to-orbit horizontal take-off and landing

vehicle expected to fly at approximately Mach 25. Research related to this

vehicle is currently being conducted at a number of facilities throughout

the government and private industry. Although high speed atmospheric

trajectories such as that flown by the Space Shuttle have provided much

relevant data on hypersonic flight, these trajectories provide limited

information regarding the NASP because of the restricted shuttle flight

envelope. This leaves much additional research to assure success of the

NASP. Remaining research includes hypersonic propulsion systems,

guidance and control systems, air data measurement systems and airframe



Chapter 1. Introduction

design. These systems are interrelated so that the design of one affects the

design of others.

An understanding of the fundamental dynamics of HSVs along high

speed atmospheric trajectories is critical to the overall vehicle design and

integration of its various subsystems. This thesis attempts to gain insight

into the dynamics of an HSV along an entry trajectory. A mathematical

model is used which simulates the expected performance of future HSVs.

It was provided by NASA and called the Generic Hypersonic Aerodynamic

Model Example (GHAME). This model is used for computer simulation of

flight along a nominal re-entry trajectory and the aircraft equations of

motion are computed at discrete points along the trajectory. The equations

of motion are analyzed using the technique of Generalized Multiple Scales

(GMS) developed by Rudrapatna Ramnath on the principles of asymptotic

analyses [11-14].

ASYMPTOTIC ANALYSIS

The equations of aircraft motion result in a series of linear

differential equations with variable coefficients. It is impossible to obtain

exact solutions of such equations except in rare cases. Therefore,

approximate methods of solution are used to understand the dynamics of

the system. A broad class of approximations use perturbation methods to

give an approximate solution in closed analytical form.

Asymptotic analysis deals with the limiting behavior of functions

that arise as solutions to mathematical models such as differential

equations. Functions are considered to be dependent upon variables and

parameters. The method of asymptotic expansions is based on the idea of
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expansion of the unknown solution f(x,e) in a series of powers of some

small parameter e and grouping like powers of the parameter to develop

solutions. The power series are normally divergent, yet the approximate

solutions can be obtained by cutting off the formal series at some finite

term [5]. Convergent series may not always be practical computationally.

Asymptotic series give the ability to compute the solution with only a small

number of terms.

The approximate solutions obtained in this way are asymptotic to the

exact solution. Instead of tending to the exact solution with increasing

number of terms, the approximate solution approaches the exact solution as

the small parameter tends to zero. Greater accuracy is obtained by

considering higher powers of e. However, this direct perturbation method

leads to difficulties especially in the study of dynamic systems. The

approximations fail to yield uniformly accurate solutions in many cases. As

terms are added to the approximation, the solution may improve in one

region but degrade in accuracy in another region. These nonuniformities

lead to the development of the technique of Generalized Multiple Scales in

order to obtain uniformly accurate asymptotic approximations to the

solutions of differential equations.

Asymptotic expansions have their origins in the 18th century in the

work of Euler and Laplace, who employed divergent series approximations

[5]. Asymptotic representations of solutions to differential equations were

already present in the works of Liouville (1837), Green (1837) and Stokes

(1848) [8]. However, for much of the 19th century these methods were

largely ignored because of the concentration on rigorous mathematical

analysis. It was not until the rigorous definition of asymptotic expansions

10
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by Poincare' (1886) that they were used to approximate solutions to

ordinary differential equations [5].

Asymptotic approximations developed rapidly in problems such as

those encountered in mathematical physics as well as practical problems

such as projectile motion. Poincare' applied direct perturbation methods to

his research in celestial mechanics. The work done by Birkhoff (1908)

generalized asymptotic results to nth order and for systems of equations

[5]. The work by Pugachev in the period 1940-46 related the theory of

asymptotic representations of solutions of nonhomogeneous ordinary

differential equations of second and higher order whose coefficients

contained a parameter [8]. Kylov and Bogoliubov developed asymptotic

methods for the solutions to problems in nonlinear mechanics [8].

Ramnath continued the work of asymptotic expansions with the

development of the Generalized Multiple Scales method which gives

uniformly valid approximate solutions to linear and nonlinear differential

equations with variable coefficients.

PROJECT OVERVIEW

In this thesis, the Generalized Multiple Scales method of asymptotic

approximation developed by Ramnath [11-14] is applied to investigate the

dynamics of the Generic Hypersonic Aerodynamic Model Example (GHAME)

along a nominal entry trajectory. The research deals with asymptotic

approximations to solutions of linear differential equations in which the

coefficients are a function of a slow time parameter. This indicates that the

coefficients of the equation vary slowly; their derivatives with respect to

the independent variable are proportional to the small parameter.

11



Chapter 1. Introduction

Chapter Two presents the general equations of aircraft motion. The

aerodynamic axes and parameters are defined, rigid body dynamics are

reviewed, and the aircraft dynamics are separated into longitudinal and

lateral-directional motion. Small disturbance theory is employed to arrive

at nondimensional perturbation equations of motion. Finally, the

aerodynamic forces, moments and stability derivatives are calculated.

Chapter Three describes the general modes of aircraft motion and

reviews the general types of dynamic solutions to characteristic equations.

Typical root locations for longitudinal and lateral-directional modes of

motion are also presented. Chapter Four describes the GHAME

aerodynamic model to include the vehicle description, mass properties and

presentation of aerodynamic data. The entry trajectory to be flown by the

GHAME vehicle is described in Chapter Five. The guidance concept is

described, the vehicle constraints and interface conditions are presented,

and the nominal values of trajectory parameters are plotted.

Chapter Six presents the Generalized Multiple Scales technique of

asymptotic approximations. The development of the method is reviewed,

and the technique is applied to the unified angle of attack equation

developed by Vinh and Laitone [15]. Chapter Seven describes the

simulation of the GHAME vehicle along the entry trajectory. The root

locations of the equation describing the unified angle of attack dynamics as

well as those describing longitudinal and lateral-directional motion are

presented. The solutions to the GHAME equations of motion are presented

in Chapter Eight. Numerical solutions are determined for each mode of

motion and compared to "frozen" approximations with constant coefficients.

The GMS solutions are then compared with the numerical solutions and

conclusions are drawn. Chapter Nine applies the GMS solutions to the

12
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analysis of stability and control. A stability criterion is determined based

on the GMS solutions, and a feedback controller is designed to stabilize an

unstable mode. The highlights of the thesis are summarized in Chapter Ten

and conclusions are drawn as to the validity and application of the GMS

asymptotic solutions to the GHAME equations of motion.

13



Chapter 2. Equations of Aircraft Motion

2. EQUATIONS OF AIRCRAFT MOTION

INTRODUCTION

An airplane in flight is a complicated dynamic system. To describe

its motion it is necessary to define a suitable coordinate system to

formulate the equations of motion. The aircraft is assumed to be a single

rigid body. The equations of motion are developed through the application

of Newton's second law for both translational and rotational dynamics. The

summation of the external forces on the airplane describe the translational

motion of the center of mass, while the summation of the external moments

describe the rotational motion of the airplane.

The equations derived from Newton's second law are linearized

using small-disturbance theory. The aerodynamic forces and moments are

also linearized. The resulting equations are nondimensionalized for

generality and separated into those describing longitudinal motion and

those describing lateral-directional motion.

AXES AND NOTATION

Two coordinate systems are used to describe aircraft dynamics. One

coordinate system is fixed to the earth and is considered to be an inertial

frame of reference. The other is fixed to the aircraft and rotates with it.

Both frames of reference are orthogonal right hand rule

coordinate systems. The principle axes used to define the forces and

moments acting on the aircraft are fixed to the airplane with origin at the

center of mass and move with the airplane. The X axis passes out the nose

14
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of the aircraft, the Y axis passes out the right wing and the Z axis passes

through the bottom. The XZ plane is the plane of symmetry. Figure 2.1

shows the aircraft axis system and Table 2.1 defines the aerodynamic

parameters.

Figure 2.1 - Aircraft Body Fixed Axes and Notation

Parameter Roll Axis Pitch Axis Yaw Axis
X Y Z

Velocity Component u U w
Aerodynamic Force Component x y z
Angular Rates P Q R
Aerodynamic Moment Component L M N
Angular Displacement v
Moment of Inertia IX Iy. I'.

Table 2.1 - Aerodynamic Parameters in Body Fixed Coordinates

15
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Chapter 2. Equations of Aircraft Motion

The position and orientation of the aircraft cannot be described using

the body fixed frame of reference alone because it moves with the aircraft.

Therefore, the inertial coordinate system fixed to the earth is used. The

body fixed angular velocity vector describes the rotation of the body fixed

axes with respect to the inertial frame of reference. From this relation the

position and orientation of the aircraft can be determined.

The angle of attack (a) is the angular difference between the X axis

and the wind velocity vector in the XZ plane. This is positive when the

wind velocity vector is between the positive X axis and the positive Z axis.

The angle of side slip (0) is the angle between the wind velocity vector and

the XZ plane. This is positive when the wind velocity vector is between the

positive X axis and the positive Y axis. The flight path angle (y) is the

difference between the angle of attack and the pitch angle.

a = tan-i (w/u) 0 = sin-1 (v/v) y=a -0

Figure 2.2 - (a) Definition of a. (b) Definition of [

16
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Chapter 2. Equations of Aircraft Motion

RIGID BODY EQUATIONS OF MOTION

The rigid body equations of motion are obtained from Newton's

second law which states that the summation of all external forces acting on

the body is equal to the time rate of change of linear momentum (my) of

the body, and the summation of the external moments acting on the body is

equal to the time rate of change of angular momentum (H). Newton's

second law is expressed in the vector equations

(linear momentum equation)

IF = ALmv)
dt

and

(angular momentum equation)

M = d~(H)
dt

The vector equations can be rewritten in scalar form as three force

equations and three moment equations. The force equations are

Fx = d-(mu) Fy =-( m) F = mw)

dt Y dt dt

The forces are composed of contributions due to the aerodynamic,

propulsive, and gravitational forces acting on the aircraft. The moment

equations are

Mx = -(H x) My= Mz= -kHz)

The moments and products of inertia are defined as

xx J= (y2 + z2)dm I= llxydm
I, = I(x2 + z2)dm Iz = Jxzdm

Iz =f (x2 + y2)dm yz = fyzdm

17
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If the reference frame is not rotating then the moments and products of

inertia will vary with time as the aircraft rotates. To avoid this, the axis

system is fixed to the aircraft. The moments and products of inertia are

then constant.

The derivation of the equations of aircraft motion can be seen in

Nelson's Flight Stability and Automatic Control [7]. The resulting equations

are presented below.

Translation:

Fx = m(t + qw - ru)

Fy = m(6 + ru - pw)

Fz = m (* + pu - qu)

Rotation:

L = Ix + qHz - r Hy

M = y + rHx - pHz

N = Iz + pHy - qHx

The XZ plane is the plane of symmetry so the products of inertia Iyz and

I xy go to zero. The moment equations can then be written as

L = Ixx~ - Ixzr + qt(Izz - Iyy) - IxzPq

M = IyyQ + rp(Ixx-Izz) + Ixz(p 2 - r 2 )

N = -Ixz + Izzt + pq(Iyy-Ixx) + Ixzqr

LONGITUDINAL AND LATERAL-DIRECTIONAL MOTION

Because of the existence of a plane of symmetry the equations of

motion can be divided into longitudinal motion and lateral-directional

motion. Longitudinal motion occurs in the plane of symmetry. This

consists of translation along the flight path, translation perpendicular to

18
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the flight path and rotation about the Y axis. The lateral-directional motion

occurs outside the plane of symmetry. This includes translation along the

Y axis, roll rotation and yaw rotation. The longitudinal force diagram is

presented in Figure 2.3.

Figure 2.3 Longitudinal Force Diagram of Aircraft in Flight

The lift vector is perpendicular to the flight path (v). The drag vector is

opposite the flight path and perpendicular to the lift vector. The

aerodynamic force in the X direction is given by

X = Lsina - (D-T)cosa

The aerodynamic force in the Z direction is given by

Z = -Lcosa - (D-T)sinaz

The lateral-directional force diagram is presented in Figure 2.4. The

gravitational force acts through the center of mass and contributes to the

19
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Chapter 2. Equations of Aircraft Motion

external force acting on the aircraft. It can be seen from the force

diagrams to have components along each of the body axes. It will not,

Figure 2.4 Lateral-Directional Force Diagram of Aircraft in Flight

however, produce any moments because it acts through the mass center.

Fx gravity = - mg sin 0

Fy gravity = mg cos 0 sin 4

Fz gravity = mg cos 0 cos

The components of gravity are included in the equations of motion, and the

resulting equations are summarized in Table 2.2 [7].

Force Equations Moment Equations

X - mg sin0 = m(~ s + qw - L - IxxP - Ixzr + qt(Izz - Ivy) - Ixzp

Y + mg cos 0 sin = m( + ru + pw) M = I + rp(Ixx-Izz)+ Ixz(p 2 - r2)
Z + mg cos 0 cos = m(* + pU - qu) N= -IxzP + Izzt + pq(Ivv-Ixx) + Ixzqr

Table 2.2 - Summary of Aircraft Equations of Motion

20
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SMALL DISTURBANCE THEORY

The equations of motion are linearized for stability and control

analysis by assuming that the motion of the airplane consists of small

deviations from a reference steady state condition. The details of this

derivation are shown in Nelson's text, and the highlights are presented here

[7]. All the variables in the equations of motion are replaced by a

reference value plus a perturbation or disturbance.

The reference flight condition is defined where there are no external

forces or moments acting on the aircraft. Only first order disturbance

terms are kept because they are assumed to be small such that products

and squares of the perturbations go to zero. The perturbation X force

equation of motion is represented as

AX - mgA0cos00 = mAl

The equation can be further simplified by expanding the change in the X

force in a Taylor series in terms of the perturbation variables. Assuming

that AX is only a function of u and a it can be expanded as

ax ax a2X a2X az2XAX = -- Au + ---Aa + -A +-- a2 + ---AuAa
5u aa 2au 2  2aa 2  auaa

The perturbation is linearized by neglecting the higher order terms. This is

valid if the disturbances are small. The quantities

ax ax
au aa

are called stability derivatives and are evaluated at the reference flight

condition. After rearranging, the equation becomes

d X aX-- ))Au ---- a + mgcoseoAO = 0
dt au aa

21



Chapter 2. Equations of Aircraft Motion

The equation is further generalized by making it nondimensional. This is

done by dividing through by the mass.

(s - XU)Au - XaAc4 + gcosOoAO = 0

where

0X adt

The remaining equations of motion are developed in a similar way. The

moment equations are nondimensionalized by dividing through by the

moment of inertia. The resulting perturbation equations of motion are

described by six linear differential equations. They are derived by Nelson

and presented in Table 2.3 [7].

LONGITUDINAL EQUATIONS

1. (s - Xiu)Au - XnAa + (gcos0p)AO = 0
2. -7idAu + (s - Z,)Aa - (su - gsinO0)AO = 0
3. -MuAu - (Mas + Ma)Aa + (s - MA)sAO = 0

LATERAL-DIRECTIONAL EQUATIONS

1. (s - Yy)Av + (u - Yr)Ar - (gcosocosO0)A0 = 0

2. -LvAv + ( s - Lr)Ar + (s2 - Lps)A = 0
Ixx

3. NAv + (s- Nr)Ar - ( s - Np)A0 = 0

Table 2.3 - Nondimensional Perturbation Equations of Motion

The longitudinal equations are made useful for simulation by

expressing the X and Z forces in terms of lift and drag and simplifying the

equations by assuming that

0o = 0 -+ cos0o = l and sin0o = 0

22
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The X and Z force equations then become

(s + cDu - c2Lu)Au + (ciDa - c2La)Aa + gA0 = 0

(cL + ))Au + (s + c + L c2Da sAO = Ou u u u
where c = cosa and c2 = sina.

CALCULATION OF AERODYNAMIC FORCES, MOMENTS AND

STABILITY DERIVATIVES

The three aerodynamic forces acting on an aircraft are lift, drag and

side force. These forces are determined from aerodynamic coefficients by

the following equations.

Lift: L = qSCL

CL = CLO + CLa a + CLqqCmac/ 2 u

Drag: D = qSCD

CD =CDo + CDa a

Side Force: Fy=qSCy

Cy = CyO + Cyp I + Cyp P(b/2u) + CyR R(b/2u)

where

q = dynamic pressure = pu 2 /2

S = wing aerodynamic reference area

b = wing aerodynamic reference span

Cmac = wing aerodynamic reference chord

The moments acting on the aircraft are defined as torques about the

principle axes and include rolling moment, pitching moment and yawing

moment. These moments are calculated from aerodynamic coefficients by

the following equations.

23



Chapter 2. Equations of Aircraft Motion

Rolling moment: L = qSbCI

Cl =Clo + Clp 13 + CIP P(b/2u) + CIR R(b/2u)

Pitching moment: M = qScmacCM

CM = CM0 + CMa a + CMq q(cmac/2u)

Yawing moment: N = qSbCn

Cn = Cno + Co 13 +CaP P(b/2u) + CnR R(b/2u)

The linearized equations of aircraft motion can be expressed in terms

of stability derivatives. These derivatives represent the changes in

aerodynamic forces and moments due to small changes in the perturbation

variables. As an example, the a derivatives describe the changes that take

place in the forces and moments when the angle of attack is increased.

This normally results in an increase in lift, an increase in drag and a

negative pitching moment [7]. The stability derivatives are defined in

terms of partial derivatives and expressed in terms of elementary

aerodynamic parameters for simulation. The Du derivative is derived

below [9].
Du fiDu D = -pu2SCD

puSCD puSCD
u SC Du m

This expression gives the value at the equilibrium point of the stability

derivative Du in terms of elementary aerodynamic parameters that can be

readily measured. The remaining stability derivatives are evaluated in

similar manner and the results are presented in Table 2.4 [9].

24
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Stability Definition Expression
derivative

Du D 1puSCD
au m m

Da dD I puSCDa
_ a m m

Ld L puSCL
au m m

Lu. 1 puSCa
_a m m

Mu aM 1 0
au IVY

Ma aM 1 pu2Scmac
a" Iyy 2IYY CMa

4 dM- 0

dM 1 puSc2 C
_ae yy 4Iy CMq

Y dYgdL 1 pyS

o I-4xx 4i C

Lp L 1 puSb 2
_p Ixx 4I p

Na N 12puSbSU I :Nr N L1 puSb 2

Or I_4_CnYp N 1 puSb2

0p Izz 4I , p

_ 1P_ _ 41 77 nP

Table 2.4 - Stability Derivatives
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Chapter 3. General Modes of Aircraft Motion

3. GENERAL MODES OF AIRCRAFT
MOTION

INTRODUCTION

The equations of motion derived earlier describe the stability of an

aircraft due to small perturbations from a reference steady state condition.

The equations are separated into two independent groups describing

longitudinal stability and lateral-directional stability. At any point along

the trajectory of a moving aircraft, the flight conditions can be frozen and

its stability can be described by these equations. Under frozen flight

conditions, the equations are fourth order, ordinary, linear, differential

equations with constant coefficients. The solutions to such equations are

always exponential in-form. For example, the solution for angle of attack

(a) perturbations is of the form

ax = aleX1t + a2eX2t + a3eX3t + a4 eX4t

where 1, 12, X3, X4 are roots of the characteristic equation. The exponential

solution will continue to grow when X is a positive real number and will

decay toward zero when it is a negative real number. Complex roots

always appear in conjugate pairs and result in solutions that have

oscillations. Table 3.1 lists the possible kinds of roots to the characteristic

equation and gives their corresponding types of solutions [7].

The motion corresponding to each real root or each complex pair is

called a natural mode. Figure 3.1 illustrates the types of solutions

corresponding to the various types of modes [7].
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Root Type of Solution

A. Real - Positive Nonoscillatory / Unstable

B. Real - Negative Nonoscillatory / Stable

C. Complex - Positive Real Part Oscillatory / Unstable

D. Complex - Negative Real Part Oscillatory / Stable

Table 3.1 - Possible Roots and Corresponding Solutions

Figure 3.1 - Modes of Motion (a) Real-Positive (b) Real-Negative
(c) Complex-Positive Real Part (d) Complex-Negative Real Part
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Chapter 3. General Modes of Aircraft Motion

The equations of motion describing aircraft dynamics have

coefficients which vary as the aircraft flies along a prescribed trajectory.

Under these conditions the system stability is not necessarily given by the

location of the roots of the frozen approximation [10]. The system may

have roots entirely in the left half plane and still be unstable, or it may

have roots in the right half plane and be stable. Therefore, frozen

approximations to root locations are not adequate to predict the stability of

the system. As will be seen later, asymptotic approximations in closed

analytical form will be developed from which the stability of the system

can be predicted.

LONGITUDINAL MODES OF MOTION

The longitudinal perturbation equations of motion are

1. (s - Xu)Au - XaAa + gA0 = 0

2. -ZuAu + (s - Za)Aa - suAO = 0
3. -MvAv - (Mas + Ma)Aa + (s - M6)sAO = 0

The equations are put in to the form Ax = 0 where & is the vector of

perturbation variables and A is the matrix of coefficients. This form of the

equations is called the state-space form and is useful in analyzing the

solutions to the equations.

(S -Xu,) X, g Au 0
-Z, (s -Z) -su Aa = 0
-Mu -(MaS + Ma) (s - M0)s AO O
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The stability of each perturbation variable is determined by the

characteristic equation (det/A/ = 0). The stability of each variable will be

the same when there are constant coefficients in the A matrix. However,

with variable coefficients, each variable may have different stability

characteristics [10]. The longitudinal characteristic equation is a fourth

order differential equation with variable coefficients.

S4 +3 s3 + c2 S2 + c1 s + co = 0

where

c3 = - a -Xu - uMi

c2 = -ZaM6 - XaZu + -uMa + XuM6 + XuZa + XuuM&

Cl = -Xu(ZaM6 - uMa) + Zu(XaM6 + gMa) - Mu(uXa - g)

co = g(ZaMa - MuZa)

The roots of the longitudinal characteristic equation define the modes of

motion. The longitudinal equations normally have two modes

corresponding to two pairs of complex conjugate roots. Figure 3.2 shows

the typical root locations for the longitudinal mode [9].

s - Plane 
Imaginar

x 4

X

x

x

x

Mode B Mode A

Figure 3.2 - Longitudinal Roots
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A. Phugoid Mode - low frequency and low damping results in

slowly damped oscillation.

B. Short Period Mode - high frequency and high damping

results in quickly damped oscillation.

LATERAL-DIRECTIONAL MODES OF MOTION

The lateral-directional perturbation equations of motion are

1. (s - Yv)AV + (u - Yr)sAX - (gcos~ 0 )A4 = 0
2. -LVAv + (Izs2 -Lrs)AV + (s2 -Lps)A• = 0

Ixx
3. NvAv + (s2 -Nrs)A¶ - (IXZs2 - Nps)AO = 0Izz

These equations are expressed in state-space form and the modes of

motion are determined from the characteristic equation.

(s - YV) (u - Yr) -gcos#

-Lv (Is2 - Lrs) (S2 - Lps)
Ixx

-Nv (s2 - Nrs) -(xZS2 + NpS)
Izz

The lateral-directional characteristic equation is also a fourth order

differential equation with variable coefficients.

c4 4 + c3 s3 + c2 S2 + c l s + co = 0

where

c4 = 1 I
IxxIzz

c3 = -Y(1 - IX2 Lp - Nr
IXxITz
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Chapter 3. General Modes of Aircraft Motion

C2 = UN. + Lp(Y. + Nr) + Np(*Y + Yu(Lr + N) + ur

cl = -uNLp + YL(NpLr - LpNr) + uNpLu - gcos4(Lu + N'V
"xx

co = gcosý(LVNr - LuLr)

The lateral-directional equations normally have three modes corresponding

to two real roots and one pair of complex conjugates. The typical root

locations are shown in figure 3.3 [9].

Xx
4h

s - lanne imainanr

Real

Mode B Mode C Mode A

Figure 3.3 - Lateral-Directional Roots

A. Spiral Mode - Damped exponential response to yaw disturbance

B. Roll Mode - Damped exponential response to roll disturbance

C. Dutch Roll Mode - Damped oscillation of coupled roll-yaw motion
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Chapter 4. GHAME: Hypersonic Aerodynamic Model

4. GHAME: HYPERSONIC AERODYNAMIC
MODEL

INTRODUCTION

A Generic Hypersonic Aerodynamic Model Example (GHAME) was

provided by NASA Ames Research Center for computer simulation [1]. The

model consists of realistic data of aerodynamic coefficients in the

hypersonic flight regime. The data was presented without analysis for the

purpose of providing a simulation model for research and development

analysis.

The model is based upon flight test data from the Space Shuttle and

the X-24C and theoretical data from a swept double-delta .configuration and

a 6 degree half-angle cone using modified Newtonian Impact Flow method.

The mission selected for the GHAME vehicle is a single-stage-to-orbit

(SSTO). This entails taking off horizontally from a conventional runway,

accelerating to orbital velocity as an air-breathing aircraft and insertion

into a Low-Earth Orbit (LEO). After the mission is complete the aircraft

would reenter the atmosphere and glide to a horizontal landing.

VEHICLE DESCRIPTION

The vehicle geometry was built from simple geometric shapes and is

shown in figure 4.1 [1]. This allowed simplified estimates of the vehicle

mass properties. The primary structure was modeled as a cylinder 20 feet

in diameter and 120 feet long. This ensured the internal volume required

for storage of the liquid hydrogen propellant. A pair of 10 degree half
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Chapter 4. GHAME: Hypersonic Aerodynamic Model

angle cones were attached to this cylinder to form the nose and boat-tail

and complete the fuselage assembly. The wings and vertical tail were

modeled as thin triangular plates. The wings -start at the fuselage midpoint

Figure 4.1 - GHAME Configuration
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Chapter 4. GHAME: Hypersonic Aerodynamic Model

and have no dihedral angle. The engine module wraps around the lower

surface of the fuselage. The overall length is 233.4 ft with the following

aerodynamic design parameters: the reference area is 6,000 ft2 , the

reference chord is 75 ft, and the reference span is 80 ft.

MASS PROPERTIES

The mass properties of the GHAME vehicle were assumed to be of the

same order of magnitude as current supersonic cruise aircraft and were

specifically derived from the XB-70 aircraft [1]. The take off gross weight

was modeled to be 300,000 pounds with 60% (180,000 pounds) as liquid

hydrogen fuel. The nominal reference center of mass occurs at .33 x cmac.

The mass moments of inertia were then calculated from the simple

geometric shapes used for the vehicle configuration and are listed below.

At take off:

Ixx = 1.16x10 6 slug-ft2

Iyy = 23.3x106 slug-ft2

Izz= 24.0x10 6 slug-ft 2

Ixz= 0.28x10 6 slug-ft 2

At fuel burn out:

Ixx = 0.87x10 6 slug-ft 2

Ivy = 14.2x10 6 slug-ft 2

Izz = 14.9x10 6 slug-ft 2

Ixz = 0.28x10 6 slug-ft2
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Chapter 4. GHAME: Hypersonic Aerodynamic Model

AERODYNAMIC DATA

GHAME data consists of tables of aerodynamic coefficients used to

calculate forces and moments on the aircraft for simulation purposes. Each

coefficient varies as a function of Mach number and angle of attack. They

are arranged in data arrays of 13 by 9 with row variation according to

Mach number (0.4, 0.6, 0.8, 0.9, 0.95, 1.05, 1.2, 1.5, 2.0, 3.0, 6.0, 12.0, 24.0)

and column variation according to angle of attack in degrees (-3.0, 0.0, 3.0,

6.0, 9.0, 12.0, 15.0, 18.0, 21.0). The symbolic notation used to describe the

aerodynamic data is presented below.

Symbolic Notation of Aerodynamic Coefficients:

A. Superscripts

CL - coefficient of lift force

CD - coefficient of drag force

Cy - coefficient of side force

CM - coefficient of pitching moment

C1 - coefficient of rolling moment

Cn - coefficient of yawing moment

B. Subscripts

-0 zeroth coefficient term

- a alpha coefficient term (per degree)

-f beta coefficient term (per degree)

-P roll rate (radian per second)

-Q pitch rate (radian per second)

-R yaw rate (radian per second)
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Chapter 4. GHAME: Hypersonic Aerodynamic Model

The GHAME data is used for simulation by providing aerodynamic

data at discrete points along a trajectory according to Mach number and

angle of attack. This data is used to calculate the forces and moments

acting on the aircraft. This information defines the equations that govern

its dynamic motion. The following chapters describe the simulation of the

GHAME model along an entry trajectory and present a method to analyze

the differential equations resulting from computer simulation.
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5. DESCRIPTION OF ENTRY TRAJECTORY

INTRODUCITON

The trajectory used to study the GHAME vehicle dynamics was

chosen to follow the entry trajectory flown by the Space Shuttle Orbiter [4].

This decision was made to provide a realistic trajectory currently being

flown by an existing hypersonic vehicle (HSV). The entry guidance of the

Space Shuttle Orbiter provides steering commands to control the entry

trajectory from initial penetration of the Earth's atmosphere until

activation of terminal area guidance. The unpowered entry guidance of

HSVs is complicated because of physical flight constraints (temperature,

g-load, dynamic pressure), termination requirements, variations in

atmospheric density, uncertainties in vehicle mass and aerodynamic

characteristics, measurement errors and time-varying control authorities.

The trajectory is flown to minimize the demands on the vehicle systems

and deliver the vehicle to a satisfactory attitude and energy state at

activation of terminal area guidance.

GUIDANCE CONCEPT

The orbiter entry guidance is designed on the principle of defining a

desired drag acceleration profile and commanding the vehicle attitudes to

achieve the desired profile. The drag acceleration profile is based on

vehicle system constraints and terminal attitude and energy state

requirements. The systems of most concern are thermal protection system

(TPS), flight control system (FCS) and vehicle structure.
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The minimum weight and thickness required for the TPS is achieved

by minimizing the heat load into the structure and limiting the allowable

surface temperature. These constraints are met by flying at the maximum

angle of attack allowable for crossrange requirements.

Demands on the FCS are limited by minimizing the attitude

maneuvering required by the guidance algorithm. This is accomplished by

limiting the angular acceleration and rate for both the bank angle and the

pitch angle. FCS requirements also limit the allowable dynamic pressure so

that aerodynamic control surface hinge movements are small.

The internal vehicle structure weight is minimized by limiting the

aerodynamic loads during entry. Because the total aerodynamic force

during entry is essentially perpendicular to the vehicle longitudinal axis,

the load constraint is achieved by limiting the normal aerodynamic load

factor.

The activation of the terminal area guidance requires that the vehicle

has an angle of attack no greater than the value corresponding to maximum

L/D. This is achieved by a pitch down maneuver designed to reduce the

angle of attack from its maximum value required by the TPS to a value

near maximum L/D at activation of terminal area guidance.

The desired entry profile is defined based on vehicle constraints and

termination requirements. A control law is then developed to compute

guidance commands to control the vehicle to this profile. The commanded

L/D required to maintain the reference profile is achieved by a

combination of bank angle modulation and angle of attack modulation.

Bank angle modulation is the primary trajectory control parameter because

the angle of attack is selected to minimize aerodynamic heating.
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Chapter 5. Description of Entry Trajectory

Bank angle magnitude controls total range, and the direction of the

bank angle controls vehicle heading. Roll reversals are accomplished to

maintain heading within a specified error deadband. Trajectory response

to bank angle modulation is slow due to low angular acceleration and rate

capabilities, requiring the angle of attack to be modulated on a short period

basis to maintain the reference profile and minimize the transient effects of

bank angle reversals. Tables 5.1-5.3 present the vehicle constraints along

the trajectory, the interface conditions to begin entry guidance and the

desired termination conditions respectively [4]. Figure 5.1 presents the

nominal values of parameters along the entry trajectory [6].
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Chapter 5. Description of Entry Trajectory

VEHICLE CONSTRAINTS & INTERFACE CONDITIONS

Aerodynamic Load 3.0 g's

Dynamic Pressure 1800 (lbf/ft2 )

Bank Acceleration 1.7 (deg/sec 2 )

Bank Rate 5.0 (deg/sec)

Pitch Acceleration 5.0 (deg/sec 2)

Pitch Rate 2.0 (deg/sec)

Thermal Tskin < 2300 F

Qnet(Tmax) < 0

Table 5.1 - Summary of Vehicle Constraints

Altitude 400,000 (ft)

Inertial Velocity 25,744 (ft/sec)

Earth-Relative Velocity 24,193.7 (ft/sec)

Altitude Rate -576.1 (ft/sec)

Longitude 0 (deg)

Latitude 0 (deg)

Heading w.r.t. True North 90 (deg) equatorial orbit

Table 5.2 - Entry Interface Conditions

Altitude 80,000 (ft)

Earth-Relative Velocity 2500 (ft/sec)

Angle of Attack 8.5 (deg)

Heading w.r.t. True North 90 (deg)

Longitude 67.728 (deg)

Latitude 0 (deg)

Table 5.3 - Desired Termination Conditions
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NOMINAL VALUES OF TRAJECTORY PARAMETERS
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6. GENERALIZED MULTIPLE SCALES
TECHNIQUE

INTRODUCTION

Differential equations with varying coefficients, as seen in aircraft

dynamics, cannot generally be solved exactly. For very particular

variations of the coefficients, some equations can be solved in terms of

special mathematical functions such as those of Bessel, Kummer or Mathieu.

Even these solutions are only available as tabulated values. The technique

of Generalized Multiple Scales developed by Ramnath [11-14] allows for the

development of asymptotic approximate solutions to linear and nonlinear

differential equations with time varying coefficients. These approximate

solutions are in closed analytical form in terms of elementary functions

such as sine, cosine and exponential and are uniformly valid over a wide

range of the independent variable. The approximate solutions are possible

by considering the dynamics of the system to occur much faster than the

change in coefficients of the mathematical model. For aircraft dynamics

problems the trajectory must be chosen so that the coefficients are slowly

varying functions of the independent variable. The resulting asymptotic

solutions turn out to be very good approximations to the actual solution

and are very useful in the analysis of the system dynamics. This method

has only been developed relatively recently, yet it is rapidly becoming well

known.
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DEVELOPMENT OF METHOD

The method of Generalized Multiple Scales (GMS) is used to develop

asymptotic solutions to differential equations with time varying coefficients

in terms of elementary functions. The method is general enough to include

linear, nonlinear, ordinary and partial differential equations. This

technique has its origins in the work on asymptotic analysis done by

Poincare', Krylov and Bogoliubov who allowed the constants arising in

direct perturbation theory to be slowly varying functions. Direct

perturbation methods lead to nonuniformities in the solutions of many

dynamic problems. This occurs because the solutions are expressed in an

inappropriate scale. Physical systems often exhibit a mixture of rapid and

slow dynamics, and separate scales are often necessary to describe their

motion. An example of such a system is the motion of a satellite orbiting

an oblate earth. The fast motion consists of an elliptical orbit while the

slow motion consists of a rotation of the ellipse due to the oblateness. The

GMS method eliminates the nonuniformities of direct perturbation theory

by expressing the solution in multiple time scales. The fast and slow parts

of the dynamics are separated through an extension of the independent

variable. As a result of the extension, a system of ordinary differential

equations is converted into one of partial differential equations. The

system is then solved asymptotically, and the solutions are restricted to the

original problem variables.

In order to achieve such a separation, the independent variable is

extended into a space of higher dimension by means of nonlinear scale

functions [10,14]. Instead of a one-to-one relationship between variables

there is a one-to-many extension of the independent variable. This is a
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generalization of the concept of variable transformations. The multiple

scaling is not merely a transformation but an extension from one dimension

to many dimensions. Each dimension is assumed to be independent, and

the resulting equations are solved asymptotically [10,14].

As developed by Ramnath [10-14], the independent variable is

extended into a higher dimension in terms of the small parameter e in

order to separate the fast and slow parts of the dynamics.

t -+ (o,ZC1

'o = t (slow)

1 =I k(4)dt (fast)

where k(4) is a nonlinear scale function ( or clock function), and to and 'r

are treated as independent variables. The original problem variables

become

x(t,e) -+ X (o,'r ,E)

The equation is ordered in terms of e and solved asymptotically. The

solution is then restricted to the problem variables of e and t. This is not an

exact solution, but it is a good approximation.

The scale function k(4) can take on any value and is in general a

complex quantity [10-14]. The small parameter e which is introduced in

order to apply the GMS technique falls out of the final form of the solution.

It can be combined with the arbitrary constant of the approximation to

yield a general form of the solution.

An essential aspect of using an approximation method is the error

with respect to the function being approximated. The error at any stage of

this asymptotic method is of the order of the first term neglected in the

power series. The magnitude of each successive term in the expansion
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decreases rapidly so a sufficiently accurate approximation can be obtained.

In addition to this, Ramnath has shown that error theorems provide strict

and sharp analytical bounds on the errors of approximation of the GMS

method [14].

APPLICATION OF METHOD

The Generalized Multiple Scales technique has been applied by

Ramnath and Sinha in their work " On the Dynamics of The Space Shuttle

During Entry into Earth's Atmosphere" [14]. The method was used to

develop an analytical asymptotic representation of the dynamics, in the

plane of symmetry, of the Space Shuttle vehicle during entry into the

earth's atmosphere. The procedure and results are presented here.

The angle of attack oscillations of a shuttle vehicle during entry into

the atmosphere has been described by a unified equation developed by the

work of Vinh and Laitone [15]. The result of their work is given by

equation 6.1.

a" + ol(4) a' + o0o(4) a = f(4) (6.1)

where the independent variable 4 is the distance traveled by the center of

mass along the trajectory in terms of the number of reference lengths (L).

I' = V(t)

The reference length represents the length of the vehicle being analyzed.

The coefficients ol and 0o are functions of aerodynamic parameters which

vary with respect to the independent variable 4 [15]. They are determined

from aerodynamic parameters by the following equations.
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(O1() = 8[CLa - s(Cmq)] + (V'/V)

O0(Q) = -8(aCma + (gL/V 2) CDa COSy) + ' CLa + 8(V'/V) CLa

-82[CLa (OCmq + CDO) + CLO CDa] + (3L/r)(gL/V 2) U cos 2(y+ao)

where

8 = pSL/2m

1) = (Ixx -Izz)/Iyy

a = mL 2 /Iyy

The primes denote differentiation with respect to 4. The coefficients can be

determined explicitly if the trajectory flown by the center of mass is

known and the aerodynamic parameters can be determined.

It is, in general, impossible to integrate equation 6.1 exactly in order

to obtain a solution. Previous work done by Vinh and Laitone show that

for two specific entry trajectories equation 6.1 can be reduced to well-

known dynamic equations. For a straight line ballistic entry at steep angles

the equation is reduced to a Bessel equation of zeroth order [15]. For a

shallow gliding entry the equation can be described as a damped Mathieu

equation with periodic forcing terms [15]. These equations can be solved

exactly but only from tabulated values and are applicable only when the

trajectory is one of these specific cases. A typical entry trajectory will fall

somewhere in between the steep straight line entry and the shallow gliding

entry. A more general approach is needed to analyze the dynamics of

vehicles traveling along a typical trajectory. These two specific forms of

the equation provide an analytical feel for the system from which to

develop general asymptotic solutions.

Experience with entry trajectories of missiles and the Space Shuttle

show that the coefficients ol and wo are slowly varying along the trajectory.

From penetration of the earth's atmosphere at about 400,000 feet until
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terminal guidance is activated at about 80,000 feet, the variation in the

coefficients are primarily due to changes in density, velocity, and the

aerodynamic force and moment parameters along the the entry trajectory.

These variations are slow compared to the time constant of the vehicle

dynamics. Therefore the coefficients of equation 6.1 can be shown to vary

according to a slow variable L = e4, where e is a small positive parameter

which is a measure of the ratio of the time constant of the vehicle dynamics

to the variation in the coefficients. The asymptotic solution is developed as

this separation becomes greater or as e goes to zero.

The small parameter e is introduced into equation 6.1 in order to

apply the GMS technique. Equation 6.1 is parameterized in terms of e and

written as

e2a", + aiw()a' + o0(L)a =fn)

The fast and slow parts of the dynamics are separated by an extension of

the independent variable through scale functions. For oscillatory dynamics

the scale function k(4) is necessarily a complex quantity. The real and

imaginary parts are denoted by

k(4) = kr( ) + iki(4)

From this separation, analytical approximate solutions can be obtained

through the GMS method.

The solution to the unified angle of attack equation developed by

Vinh and Laitone using the GMS technique was developed by the work of

Ramnath and Sinha [14]. The resulting solution is presented here.

a(4) = a,) af(4)

where as(4) is the slow part of the solution and a f(4)is the fast part. The

fast part is described by

47



Chapter 6. Generalized Multiple Scales Technique

af(4) = Ci[ex{ kr(4)d si(f ki()d)] + Cf2exf kr(4)d) cof ki()d)]

or

a9(4) = C•1a() + C2afA( )
where C1 and C2 are arbitrary constants which incorporate the small

parameter e. The fast scale solution primarily describes the frequency and

phase of the solution. The slow part of the solution is described by

as() = (q2 - 4W0)-1/4

and primarily contributes to the amplitude of the oscillations. The

resulting asymptotic solution to equation 6.1 determined by the GMS

method with both fast and slow dynamics is

a(4) = ((012 -400)-14 [laf.() + C C2af()]

The Generalized Multiple Scales solution to the unified angle of attack

equation were applied by Ramnath and Sinha to study the dynamics of the

the Space Shuttle [14]. The shuttle is flown along a typical entry trajectory

and the variation of the coefficients of the governing equation (6.1) are

tracked. The independent variable is defined as the nondimensional

distance along the trajectory (4). The coefficients are seen to be slowly

varying functions of the independent variable.

A reference solution to equation 6.1 is determined through numerical

integration while allowing the coefficients to vary along the trajectory. A

"frozen" approximate solution is determined by holding the coefficients

constant at their initial values. These solutions are compared to those

obtained from the analytical asymptotic solutions derived from the GMS

method. The results show that the "frozen" approximation is not an

adequate representation of the dynamics. It fails to predict the dynamics
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of the system beyond the first quarter cycle of the oscillation. The fast part

of the GMS solution predicts the frequency variations well, but has a small

error in amplitude. This is corrected by including the slow part of the

solution. The result shows that the GMS approximation to the first order

represents the true solution very well [14]. This technique will be applied

in the following chapters to the equations describing the GHAME vehicle

dynamics along an entry trajectory.
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7. GHAME SIMULATION AND MODES OF
MOTION

SIMULATION

In this chapter the coefficients of the equations describing the

dynamics of the GHAME vehicle will be recorded along an entry trajectory.

Ramnath's GMS technique will be applied to these equations in the

following chapter. The unified angle of attack equation developed by Vinh

and Laitone will be used to describe the angle of attack oscillations of the

GHAME vehicle. The coefficients of this equation as well as those

describing the longitudinal and lateral-directional dynamics of the GHAME

vehicle will be recorded. A complete Fortran implementation of the

current shuttle entry guidance algorithm- was applied. The code was

adapted for MACINTOSH simulation of the GHAME vehicle model [6]. The

simulation of the vehicle dynamics is based on a table look-up method. At

each discrete point along the trajectory the stability derivatives are

obtained from data tables according to Mach number and angle of attack.

A linear extrapolation routine is used to determine the stability derivatives

when the flight condition exceeds the limits of the tabulated values [6]. A

weighted average routine determines the stability derivatives when the

flight condition falls between the tabulated values [6].

The entry guidance simulation begins at an altitude of 400,000 feet

with the appropriate velocity, position and attitude as described in Chapter

Five. It continues for fourteen hundred and fifty seconds until termination

of the entry guidance algorithm. The independent variable along the

trajectory is changed, as was done by Vinh and Laitone, in order to apply
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the GMS technique presented in the previous chapter. The independent

variable 4 is the distance traveled by the center of mass along the

trajectory in terms of the number of reference lengths (L).

LA' = V(t)

The reference length used in this simulation was 150 feet to represent the

length of the GHAME vehicle. The value of the independent variable 4 is

recorded at discrete points along the trajectory. It is a nonlinear function

of time and has a range from zero to 1.68066 x 105.

The stability derivatives for the GHAME vehicle are calculated along

the entry trajectory and presented in Figures 7.1 and 7.2. Figure 7.1

presents the longitudinal stability derivatives while Figure 7.2 presents the

lateral-directional derivatives. The independent variable 4 is labeled "ksi".

The stability derivatives are used to calculate the coefficients of the

unified angle of attack equation for the GHAME vehicle as well as the

coefficients of the longitudinal and lateral-directional characteristic

equations. These equations are integrated using a fourth order Runge-

Kutta integration routine. Their coefficients are recorded at discrete points

along the trajectory, and the roots of each are determined using the

software application MatLab. The root locations are plotted in the complex

plane as they vary along the trajectory in the following sections.
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UNIFIED ANGLE OF ATTACK DYNAMICS

The angle of attack dynamics of the GHAME vehicle are described by

the unified equation developed by Vinh and Laitone as shown in the

previous chapter. The coefficients of this equation are recorded as the

vehicle flies along the entry trajectory. They are presented in Figure 7.3.

0.015

0.01

0.005

n

3

2

1

0I

0 5 10 15 20 0 5 10 15 20
ksi x10 4  ksi x104

Figure 7.3 Coefficients of Unified Angle of Attack Equation (a) (o (b) 0)

Both quantities, a1 and oo, are slowly increasing functions with the

independent variable. At the end of the trajectory they both experience a

sharp downward spike. The sudden change in direction occurs at the same

time as the downward pitching maneuver initiated by the guidance

algorithm. This can be seen in the angle of attack profile for this trajectory

shown in Chapter Five. The solutions to be developed by the GMS

technique require that the coefficients be slowly varying quantities. The

sharp spike might lead to complications resulting from a turning point in

the solution. At a turning point there is a transition from one type of

solution to another such as a transition from an oscillatory solution to an
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Chapter 7. GHAME Simulation and Modes of Motion

exponential solution. The transition occurs in the vicinity of the turning

point. Therefore, the trajectory will be restricted to eliminate this problem.

The independent variable , will will be restricted to a range from zero to

1.6x10 5 .

The roots of the unified angle of attack equation are plotted in the

complex plane in Figures 7.4 and 7.5. Figure 7.4 presents the roots over

the restricted trajectory; 4 [0, 1.6x105]. Figure 7.5 presents an expanded

view of the roots at the origin in order to have a better view of how they

begin. The roots begin at "x" and end at "o". The results show one pair of

ft A

-2.5 -2 -1.5 -1 -0.5 0

xlO-3Real

Figure 7.4 Unified Angle of Attack Roots Along Entry Trajectory
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Figure 7.5 Expanded View of Unified Angle of Attack Roots

complex conjugate roots. These will be used in the following section as the

scale functions of the GMS solutions. The expended view shows that they

begin near the origin inside the left half plane and move farther into the

left half plane along the trajectory. They increase in both frequency and

damping as they move. Constant coefficient theory suggests that this is a

stable mode with roots entirely in the left half plane. The solution will be

some sort of damped oscillation.
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LONGITUDINAL MODES OF MOTION

The longitudinal perturbation equations were simplified for the

GHAME simulation by determining the following derivatives to be zero for

this vehicle.

The angle of attack is taken to be constant at 34 degrees. This is an

adequate approximation because the angle of attack does not vary much

over the course of the trajectory. The pitch down maneuver occurs at the

end of the trajectory and is neglected for this simulation. The roots of the
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Figure 7.6 Longitudinal Roots Along Entry Trajectory
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longitudinal characteristic equation vary along the trajectory and are

plotted in the complex plane in Figures 7.6 and 7.7. The roots begin at "x"

and end at "o". Figure 7.6 presents the roots over the restricted

trajectory, 4 [0,1.6xl0 5], while Figure 7.7 shows the roots in an expanded

view at the origin.
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Figure 7.7 Expanded View of Longitudinal Roots

The results show a typical pattern of two pairs of complex conjugate

roots describing the longitudinal motion of the GHAME vehicle. These will

be used for the scale functions of the GMS solutions. Mode A (near the

origin) corresponds to the Phugoid mode described in Chapter Three. Mode
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B (far from the origin) corresponds to the Short Period mode. As seen in

the expanded view, both pairs of roots begin near the origin of the complex

plane. They begin inside the left half plane and move further into the left

half plane as the GHAME vehicle travels along the trajectory. Both pairs

show an increase in frequency and damping as they move. The Phugoid

roots show a very small movement from the origin while the Short Period

roots experience a large increase in both frequency and damping. The

expanded view of the roots at the origin in Figure 7.7 reveals that they are

always in the left half plane. Constant coefficient theory again suggests

that these are both stable modes based on the root locations.

LATERAL-DIRECTIONAL MODES OF MOTION

The lateral-directional perturbation equations of motion were

simplified by determining that Yr equals zero for this vehicle and the

quantity Ixz2/Ixx is small enough to be considered zero. The root locations

of the GHAME vehicle's lateral-directional modes are shown in Figures 7.8

and 7.9. Figure 7.8 shows the roots over the restricted trajectory while

Figure 7.9 shows the roots in an expanded view at the origin.

The results show three distinct modes corresponding to those

described in Chapter Three. There is one real root in the right half plane

corresponding to the Spiral mode, one real root in the left half plane

corresponding to the Roll mode and one complex pair corresponding to the

Dutch Roll mode. According to constant coefficient theory the root locations

show that the Spiral mode is unstable, the Roll mode is stable and the Dutch

Roll mode begins unstable and moves to a region of stability.
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Figure 7.8 Lateral-Directional Roots Along Entry Trajectory

The expanded view shows that all the roots begin near the origin.

The Spiral mode moves along the real axis into the right half plane while

the Roll mode moves along the real axis into the left half plane. The

complex Dutch Roll mode begins in the right half plane and initially moves

further into that plane. It then reverses direction and begins to move

toward the left half plane. The Dutch Roll mode primarily increases in

frequency with only a slight increase in damping and ends up in the left

half plane. This movement would indicate that the solution is initially an

unstable oscillation and then becomes a stable oscillation.
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Figure 7.9 Expanded View of Lateral-Directional Roots

Root locations of constant coefficient differential equations are

sufficient to determine the stability of their dynamics. However, root -

locations are not sufficient to completely predict the stability of systems

with variable coefficients such as those which describe the GHAME

dynamics. These systems can exhibit counter intuitive behavior with

respect to their root locations [10]. A system with variable coefficients may

have roots entirely in the left half plane and yet be unstable, while a

system may have roots in the right half plane and be stable. Therefore, the

GMS technique is applied to these equations to obtain analytical

approximate solutions. From these solutions stability characteristics can be

determined and control laws can be formulated.
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8. SOLUTIONS TO GHAME EQUATIONS OF
MOTION

UNIFIED ANGIE OF ATTACK DYNAMICS

The Generalized Multiple Scales (GMS) technique will be applied in

this chapter to develop approximate analytical solutions to the equations

describing the dynamics of the GHAME vehicle. Reference solutions to the

dynamics will be obtained through numerical integration and will be

compared to the GMS solutions.

As seen in the previous chapter, the unified angle of attack dynamics

of the GHAME vehicle is described as a second order differential equation

and characterized by one oscillatory mode. This equation is numerically

integrated using a fourth order Runge-Kutta routine to obtain a reference

solution. The small parameter e is introduced into the equation in order to

make use of the GMS technique. The second order equation is

parameterized by the following method

X + 01 + 0dX _-0e E2
The coefficients, moi and oo, are slowly varying quantities along the

trajectory. The small parameter e was determined to be 1/161 for this

problem. An intuitive feel for arriving at the value of a will be discussed

later in this chapter. The numerical integration satisfies the initial

conditions

X(O) = 0

X(0) = 1
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Before the GMS technique is applied, a "frozen" approximation of the

solution is compared to the numerical solution. This is done by freezing the

coefficients at their initial values and integrating as a constant coefficient

differential equation. The numerical solution is compared to the "frozen"

approximation in Figure 8.1. The independent variable , is labeled "ksi".
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Figure 8.1 Numerical Solutions to Unified Angle of Attack Dynamics
solid - Numerical Solution
dashed - "Frozen" Approximation

The numerical solution shows a damped oscillation which increases

in both frequency and damping along the trajectory. The results show that
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the "frozen" approximation is not able to predict the dynamics beyond the

first quarter cycle of the oscillation. This is clearly an inadequate

representation of the vehicle motion and is not practical for applications

involving stability and control analysis. Therefore, Ramnath's GMS

technique will be used to develop a more accurate and practical

approximation to the dynamics of the GHAME vehicle motion.

The GMS technique is applied to the GHAME equations of motion in

order to determine analytical asymptotic approximations to the vehicle

dynamics. The GMS solution to a second order differential equation with

time varying coefficients was presented in Chapter Six to be

X(4) = xS(4)x()
or

X(4) = (0)12 - 4.) "1 /4 [C 1Xf. (4) + C2Xf,()]

or

X(4) = ('012- 4(0 i Ci C[ex kr()d) sif ki(4)d) + exp kr()d) cos ki(4)d4)])

where C1 and C2 are determined by the initial conditions [14]. Kr is the real

component of the complex root and ki is the imaginary component.

This asymptotic analytical solution will be applied to the unified

angle of attack equation and compared to the numerical solution. The GMS

solutions must satisfy the same initial conditions as the numerical solution

in order to compare the two. The constants C1 and C2 are determined in

order to satisfy the initial conditions

X(O) = 0

r(0) = 1

First, just the fast scale solution is considered.
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Xf(O) = C le0 sin(O) + C2eOcos(O) = 0

C2 = 0

Xf(O) = Cil[kre 0sin(O) + kie0 cos(0)] + C2[kre 0cos(0) - kie 0 sin(0)]= 1

Clki + C2kr = 1

C, = 1/ki

The constants C1 and C2 are now derived for the complete GMS

solution with both fast and slow response.

D-1/4 = ()1 2 - 4(o)- 1 /4

X(0) =D-1/4 (Cisin(O) + C2cos(0)) = 0

C2=0

X(O) = D-1/4(Clki + C2kr) = 1

C 1 = 1/kiD- 1/4

The GMS fast scale solution and the GMS combined solution are

compared to the numerical solution for the angle of attack dynamics in

Figure 8.2. The GMS fast scale solution accurately predicts the frequency of

oscillation but over estimates the magnitude of the numerical solution. The

slow scale correction adjusts the magnitude at the appropriate time and in

the appropriate direction so that the combined GMS solution accurately

predicts the angle of attack dynamics of the GHAME vehicle.

The GMS technique of approximating solutions to differential

equations is dependent upon introducing a small parameter e into the

equation. The parameter e must be much less than 1 to allow for the use of

asymptotic analysis. The parameter e is a measure of the ratio of the time

constant of the vehicle dynamics to the time constant of the variation in the

coefficients. Its value is determined in a trial and error fashion. The

numerical solution is seen to increase in frequency as e decreases. A
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Figure 8.2 GMS Solutions to Unified Angle of Attack Dynamics
solid - Numerical Solution
dashed - GMS Fast Scale Solution
dotted - GMS Fast and Slow Scale Solution

proper value of e leads to a match of the zero crossings of the numerical

solution and those of the GMS solutions. The value of a was determined to

be 1/161 for the GHAME vehicle along the entry trajectory.
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LONGITUDINAL DYNAMICS

The GMS technique will now be applied to the longitudinal motion of

the GHAME vehicle. It was shown in the previous chapter that this motion

is characterized by two oscillatory modes. The longitudinal motion can be

conveniently represented by two second order differential equations, one

.equation for each mode. The reference solution to each mode of

longitudinal motion is determined by numerical integration and compared

to the "frozen" approximation. The GMS solution for each mode is then

determined. It will be shown that the GMS solutions closely approximate

the numerical solutions and can therefore be used for stability and control

analysis.

A second order differential equation is constructed for each mode of

the GHAME vehicle's longitudinal motion using the following technique.

RA + COiXA + 00XA = 0

mi = -(kA + kA*)

0o = kA(kA*)

where kA and kA* are the roots corresponding to Mode A, and kA* is the

complex conjugate of kA. Similarly, a second order model for Mode B using

kg and ks* is constructed. The coefficients, ol and ho, are slowly varying

quantities along the trajectory for both modes.

The equations describing each mode are parameterized in terms of e

as was done in the analysis of the unified angle of attack dynamics

(e=1/161). The numerical solution for Mode A is compared to the "frozen"

approximation in Figure 8.3. The numerical solution shows a damped

oscillation which increases in both frequency and damping along the

trajectory. This mode is characteristic of Phugoid motion. It has relatively
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low frequency and low damping as might be expected from the root

locations shown in the previous chapter to be near the origin. Again, the

"frozen" approximation is unable to predict the dynamics of this mode

beyond the first quarter cycle of the oscillation.

x10 4 Mode A frozen

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

KSI

5

x104

Figure 8.3 Numerical Solutions to Mode A
solid - Numerical Solution
dashed - "Frozen" Approximation

Figure 8.4 shows the numerical solutions for Mode B. The numerical

solution is a damped oscillation which increases in both frequency and

damping along the trajectory. This mode is characteristic of Short Period

motion. It has relatively high frequency and high damping as might be
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expected by its root locations shown to be far from the origin. The "frozen"

approximation is unable to predict the actual dynamics beyond the first

quarter cycle of the oscillation. Both "frozen" approximations for the

longitudinal modes cannot predict the dynamics of the GHAME vehicle.

They are inadequate for any practical application involving stability and

control analysis.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

KSI x10 4

Figure 8.4 Numerical Solutions to Mode B
solid - Numerical Solution
dashed - "Frozen" Approximation

69



Chapter 8. Solutions to GHAME Equations of Motion

The GMS solutions are determined for each mode of longitudinal

motion in the same way as was done for the unified angle of attack

equation. They are compared to the reference solutions determined by

numerical integration. The solutions to Mode A are shown in Figure 8.5.

The GMS fast scale solution accurately predicts the frequency of oscillation

but is shown to overshoot the magnitude of the numerical solution. The

combined GMS solution accurately predicts the complete dynamics of the

longitudinal motion of Mode A.

x10 4

0 0.5 1 1.5 2 2.5

KSI

Figure 8.5 GMS Solutions to Mode A
solid - Numerical Solution
dashed - GMS Fast Scale Solution
dotted - GMS Fast and Slow Scale Solution
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Chapter 8. Solutions to GHAME Equations of Motion

The same technique is applied to Mode B, and the solutions are

shown in Figure 8.6. The results are similar. The GMS fast scale solution

overshoots the numerical solution while the addition of the slow correction

accurately predicts the dynamics of the longitudinal motion of Mode B.
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Figure 8.6 GMS Solutions to Mode B
solid - Numerical Solution
dashed - GMS Fast Scale Solution
dotted - GMS Fast and Slow Scale Solution
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Chapter 8. Solutions to GHAME Equations of Motion

LATERAL-DIRECTIONAL DYNAMICS

As seen in the previous chapter, the lateral-directional motion along

the entry trajectory is characterized by one oscillatory mode and two

nonoscillatory modes. The two real roots (nonoscillatory modes) are

degenerate cases. The spiral mode is unstable and will be an increasing

exponential function. The Roll mode is stable and will be a decreasing

exponential function. The Dutch-Roll mode, however, will have an
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Figure 8.7 GMS Solutions to Dutch-Roll Mode
solid - Numerical Solution
dashed - GMS Fast Scale Solution
dotted - GMS Fast and Slow Scale Solution

72



Chapter 8. Solutions to GHAME Equations of Motion

oscillatory solution because of its complex roots. It can be evaluated in the

same way as the longitudinal modes by constructing a second order

equation and introducing the small parameter e. The numerical

and GMS solutions are shown in Figure 8.7. The response is initially an

unstable oscillation consistent with complex roots in the right half plane.

The amplitude of the oscillation initially increases. As the roots progress to

the left half plane the response becomes a stable oscillation, and the

amplitude begins to damp out. The GMS solutions for this mode are similar

to those for the longitudinal modes. The GMS fast scale solution is seen to

overshoot the numerical solution while the GMS fast and slow scale solution

accurately predicts the Dutch-Roll motion of the GHAME vehicle.

The GMS approximations to each of the second order modes of

motion have been seen to accurately predict the dynamics of the GHAME

vehicle. These results have been extended by Ramnath [13] to the fourth

order models describing longitudinal and lateral-directional motions. The

fourth order differential equation is parameterized with e according to the

following equation
(4)+ 3X(3) + 0 2X(2 ) + o1X( 1) + OX =

The GMS solution is given by

X(4) = Xs(V)XA()

where

X() = Ciexf kAr()d) sin kA(4)d) + Ce kAr(4)d) coj kA()d)

+ C3e f kBr(4)d) sirf kBi(4)d4) + C ex(f kBr()d) cof kBi(4)d)
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The root of one oscillatory mode is kA and the other is kB. The arbitrary

constants are C1, C2, C3 and C4 which are determined by the initial

conditions.

The results of simulation show that the analytical asymptotic

solutions developed by the GMS method accurately predict the dynamics of

the GHAME vehicle along the entry trajectory. They will be applied in the

following chapter to stability and control analysis.
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9. STABILITY AND CONTROL ANALYSIS

STABILITY CRITERION

Stability and control analysis is a primary application that comes

from the understanding of aircraft dynamics. In the previous chapters, the

motion of the GHAME vehicle was described by differential -equations with

time varying coefficients. The angle of attack dynamics were described by

the unified equation developed by Vinh and Laitone. The longitudinal and

lateral-directional motion were described by fourth order characteristic

equations derived from Newton's Law. The roots of these were plotted as

the vehicle moved along an entry trajectory. As mentioned earlier, the root

locations are not sufficient to predict the stability of time varying systems.

These systems can often exhibit counterintuitive behavior [10]. Therefore,

asymptotic analytical solutions were developed using the GMS technique.

From these solutions, the stability of the dynamics can be predicted and

control laws can be developed. The GMS solution to a second order

differential equation with one oscillatory mode was shown to be

X(I) = (012- 44oo C[ expf kr(4)d) sinJ ki(4)d) + C ex( kr(4)d( cos ki()d)

From this solution a GMS stability criterion can be developed [10]. It can

be concluded that the real part of the complex root must be in the left half

plane to ensure stability.

kr <O

This would give a decaying exponential term in the solution and result in a

damped oscillatory motion.
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The results from the previous chapter which show the solutions to

the equations of motion support this criterion for stability. The unified

angle of attack motion has roots in the left half plane and is shown to have

a stable oscillatory solution. Both modes of longitudinal motion have roots

in the left half plane and are also shown to have stable oscillatory solutions.

The Dutch Roll mode of the lateral-directional motion has roots that begin

in the right half plane and move into the left half plane. The solution is

consistent with the stability criterion determined above. It is initially an

unstable oscillation which could reach a large magnitude. It then becomes

a stable oscillation as the roots move into the left half plane and the

amplitude decays.

FEEDBACK CONTROL

A control law can be developed for the Dutch Roll mode to ensure

that the roots always lie in the left half plane. The Routh stability criterion,

often used in linear time-invariant problems, can be extended by means of

the GMS theory to apply to time-varying problems as well. It will be used

to develop a feedback control law that will stabilize this mode. The Routh

criterion tells us whether or not there are positive roots of a polynomial

without actually solving for them. It states that the number of roots of the

polynomial with positive real parts is equal to the number of changes in

sign of the coefficients in the first column of the Routh array. See Etkin's

Dynamics of Flight: Stability and Control for the details of this procedure

[3].

The Routh stability criterion is only valid for constant coefficient

differential equations but can be applied to this time varying problem
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because of the stability criterion derived from the GMS solution. A

sufficient condition for the stability of the GMS approximation is that the

roots always lie in the left half plane. Therefore, the Routh criterion can be

applied to this time varying problem to develop a control law. The general

system equation is

k2 + olk + wo =0

The Routh criterion results in two inequalities that would ensure stability

Wo >0 (o0>0

When both of these conditions are met the GMS solution is stable. Figure

9.1 shows both of these quantities as they vary along the trajectory. It is

seen that wo initially violates the stability criterion while wo always lies

within the prescribed boundary for stability.
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Figure 9.1 Coefficients of Dutch Roll Mode (a) lI (b) oo

A feedback control law will be developed according to the block

diagram in Figure 9.2 where K, is the feedback gain. Only the ol coefficient

needs to be modified since the condition on o0 is already satisfied. The
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control law will modify the dynamics of the system and stabilize the

response. The closed loop characteristic equation becomes

k2 + (co1 + Ki)k + coo = 0

The resulting Routh inequalities with feedback control are

o1 +K > O )o>O

The wo constraint was already shown to be satisfied over the entire

trajectory. KI will be chosen to satisfy the constraint on ol.

Figure 9.2 Feedback Control Block Diagram

The feedback gain was chosen to be a constant at KI=2.5. This

satisfies the inequality constraint on the ol coefficient. Figure 9.3 shows

the response of the Dutch Roll mode when the feedback is applied. The

large spike of the uncontrolled response, shown in Figure 8.7, is removed

by the feedback controller. The controlled response is shown to be a stable

oscillation that is heavily damped.
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Figure 9.3 Dutch Roll Response With Feedback Control
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10. SUMMARY AND CONCLUSIONS

SIMULATION

In this paper, the dynamics of a hypersonic vehicle (HSV) were

analyzed along an entry trajectory using the asymptotic method of

Generalized Multiple Scales (GMS). The rigid body equations and the

general modes of aircraft motion were reviewed. A mathematical model

describing the expected performance of future HSVs was provided by

NASA called the Generic Hypersonic Aerodynamic Model Example (GHAME).

A description of the GHAME vehicle was given along with its mass

properties and aerodynamic data.

The model was used for computer simulation based on a table look-

up method in which the stability derivatives of the vehicle were

determined at discrete points along the trajectory. The GHAME vehicle is

flown along a nominal entry trajectory used by the Space Shuttle which

duplicates its interface conditions, vehicle constraints and trajectory

parameters. A Fortran implementation of the shuttle entry guidance

algorithm was adapted for MACINTOSH simulation of the GHAME vehicle.

GMS MEIHOD

The equations describing the motion of the GHAME vehicle result in a

series of linear differential equations with variable coefficients. It is

impossible to obtain exact solutions to such equations except in rare cases.

Direct perturbation methods based on asymptotic analysis lead to

nonuniformities in the approximate solutions to dynamic systems. The
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technique of Generalized Multiple Scales (GMS) allows for the development

of asymptotic solutions to linear and nonlinear differential equations with

variable coefficients. These approximations are in an analytical form in

terms of elementary functions and are uniformly valid over a wide range

of the independent variable. The solutions are possible by considering the

dynamics of the system to occur much faster than the changes in the

coefficients of the model. The fast and slow parts of the dynamics are

separated through an extension of the independent variable.

The coefficients of the equations describing the dynamics of the

GHAME vehicle are recorded along the trajectory. The independent

variable is changed from time to the distance traveled by the center of

mass along the trajectory. The equations are parameterized in terms of a

small parameter e, and approximate solutions are determined using the

GMS method. The equations analyzed include the unified equation

describing angle of attack oscillations developed by Vinh and Laitone as

well as the characteristic equations describing longitudinal and lateral-

directional motion.

RESULTS

The trajectory was restricted to eliminate a small region where there

might be complications in the solutions due to a possible turning point in

the-vicinity. The unified angle of attack dynamics of the GHAME vehicle

was characterized by one oscillatory mode. The complex pair of roots

began in the left half plane and increased in both frequency and damping

as the vehicle moved along the trajectory. A reference solution to the

dynamics was obtained through numerical integration. A "frozen"
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approximation to the dynamics was obtained by holding the coefficients

constant at their initial values and integrating. The reference solution was

a damped oscillation which increased in both frequency and damping. The

"frozen" approximation failed to predict the dynamics within the first

quarter cycle of the oscillation. The GMS solution with only the fast

dynamics accurately predicts the frequency of oscillation but overshoots

the magnitude of the reference solution. The combined GMS solution with

both fast and slow dynamics accurately predicts the entire dynamics of this

motion.

The longitudinal motion of the GHAME vehicle was characterized by

two oscillatory modes corresponding to the Phugoid and Short Period

motion of aircraft. Each mode was isolated and then evaluated in the same

manner described above. The Phugoid mode resulted in a low frequency

and low damping oscillation while the Short Period mode was characterized

by a high frequency and high damping oscillation. The results from the

approximate solutions were the same as those from the unified angle of

attack equation. The "frozen" solutions were inadequate approximations

while the combined GMS solutions were able to accurately predict the

dynamics of each mode.

The lateral-directional motion of the GHAME vehicle was

characterized by three modes corresponding to the Roll, Yaw and Dutch Roll

modes of motion. The Dutch Roll mode resulted in an oscillation that was

initially unstable. It then became a stable oscillation as the amplitude

damped out. The GMS combined solution was again shown to accurately

predict the dynamics of this mode.

The analytical asymptotic solutions developed by the GMS method

were shown to accurately predict the dynamics of the GHAME vehicle along
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the entry trajectory. These approximate solutions lead to the development

of a criterion which would ensure the stability of motion. The real part of

the complex root must be in the left half plane for stability.

The solutions to the equations of motion confirm this criterion.

Modes with roots in the left half plane were stable while those with roots

in the right half plane were unstable. A feedback control law was then

developed from this criterion to stabilize the oscillation of the Dutch Roll

mode. A control gain was determined which produced a well damped

oscillation. The unstable region of the Dutch Roll motion was eliminated by

the feedback controller based on the stability criterion developed from the

GMS solutions.
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