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Abstract

A multivariable compensator design methodology is constructed consisting of
a model-matching, inner loop compensator and an H,, outer loop compensator
to provide robust control of plants with real parametric uncertainty. The inner
loop compensator desensitizes the plant to the parametric uncertainty. The
inner loop compensator is constructed by minimizing the difference between a
designer supplied desired closed loop system and the actual closed loop system
in a least squares sense. The inner loop compensator design allows for arbi-
trary constraints on compensator order and structure. The H, compensator
provides the desired closed loop performance characteristics and robustness to
unstructured uncertainty. Model reduction techniques are used to reduce the
order of the H,, compensator.

The methodology is applied to a (SISO) benchmark problem for robust
control, consisting of a mass-spring system with uncertainty in the value of the
spring constant and it is shown to meet the problem stability and performance
specifications. The design approach is then applied to a multivariable mass-
spring-dashpot system with simultaneous uncertainty in the spring constants.
Again, robust stability and performance to parametric uncertainty is achieved.

Thesis Supervisor: Lena Valavani
Title: Associate Professor, Department of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 The Problem: Parametric Uncertainty

and Robust Control

This thesis deals with an important problem in multivariable control system
design, parametric uncertainty. In particular, practical methods of designing
robust compensators in the face of such uncertainty are explored. A compen-
sator design methodology is provided for systems which are modeled as finite
dimensional, linear time invariant (FDLTI) and may be realized in terms of a
set of state equations.

Uncertainty is inherent in all models of a given physical process. For FDLTI
systems it has typically been modeled as unstructured uncertainty, dynamic
structured uncertainty or real parametric uncertainty. Parametric uncertainty
is a form of structured uncertainty; it is uncertainty in the real parameters
used to construct the FDLTI model, the elements which make up the state-
space equations. For example, in a mass-spring system the value of the mass
or masses may only be known within a certain range, or some nominal value
of the mass may be known but with some uncertainty.

Consider the FDLTI system expressed as a transfer function matrix G(s).
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Now G(s) may be expressed as
G(s)=C(sI- A)"'B+D

where A, B, C, D are the matrices defining the state-space equations which

describe G(s). Then G(s) or G may be written conveniently as
G =(A,B,C, D).

Given a state-space system G with real parametric uncertainty, it may be

expressed in terms of the system matrices:
G=(A+AA, B+ AB,C+AC, D+ AD)

where the parametric uncertainty is represented by the perturbations A A4, etc.

to the state-space matrices and the nominal system Gpop is
Gnom = (A,B,C, D).

The terms parametric uncertainty, parameter variation, etc. are used in-
terchangeably throughout this document!. Efforts to incorporate parametric
uncertainty into robustness specifications and émalysis include the structured
singular value (SSV) of Doyle [11, 10], Safonov’s Multivariable Stability Mar-
gin (MSM) [23], and others such as the robustness margin presented in [24] by
Sideris and Pefia. Unfortunately, the most popular of these approaches, the
SSV (u), is conservative for multiple parameter uncertainty.

Most efforts in multi-input multi-output (MIMO) robust control of FDLTI

systems have focused on producing control methodologies which provide ro-

LThese are used only in the context of FDLTI systems; time-varying parameters are not
treated here.
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bust stability and nominal performance to (bounded) unstructured uncer-
tainty, such as the H,/H, methodologies, see for example Doyle et al [12].
Unfortunately, such methodologies are not robust for parametric uncertainty,
as shown by Craig [8]. Another alternative, the SSV based compensator de-
sign u-synthesis technique is only approximate with no real guarantees. Some
approaches to H,/H,, which provide for real parameter variation have also
recently been developed, such as [19] by Madiwale et al. However, these tend
to yield conservative designs. The methodology introduced here does not ex-
plicitly account for parameter uncertainty but is shown to be insensitive to
it. Given a measurement of the effects of the parametric uncertainty, it could
be used to provide a non-conservative design by iterating on the inner loop
compensator design until performance or stability was bounded by the uncer-
tainty. The methodology provides the control system designer with a method
which is easily implementable, practical, and robust, and operates within the

frequency domain framework which many designers are used to working.

1.2 Motivation

The typical compensator synthesis techniques, Hp/H., which are used to
handle bounded unstructured uncertainty are not robust to parametric un-
certainty. This stems from the fact that most compensators seek to invert
the plant, i.e. cancel the plant dynamics, and substitute desirable dynamics
specified by the designer. It is in the specifications of the desired dynamics,
by limiting the closed loop bandwidth, for example, that the unstructured un-
certainty is handled. However, parametric variation acts on the part of the
methodology involved in the plant cancellation. If the plant contains lightly
damped poles, whose locations may vary with parametric uncertainty, this may

cause the closed loop system to be unstable in the presence of that uncertainty
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8].

However, since H,/H, techniques are very popular and are supported
by several computer-aided design packages, it is desirable to investigate ways
to improve their robustness to parametric uncertainty so as to be able to
routinely use them to design multivariable control systems. These techniques
also allow explicit loopshaping in the frequency domain, which is desirable from
the viewpoint of the control system designer. A method is needed, however,
which will desensitize the plant inversion techniques of H,/H,, to parametric
uncertainty. In [8] the use of (full-state) inner feedback loops was shown
to accomplish this goal. Unfortunately, most control designs do not have
the benefit of full-state feedback, so a method of output feedback dynamic
compensation was needed to provide the same benefit. Such a method is
developed here based on a model-matching feedback path compensator which

is wrapped around the plant before an H, compensator is constructed.

1.3 Thesis Contribution

This thesis contributes a design methodology for the synthesis of MIMO com-
pensators which produce a closed loop system robust to bounded parametric
and unstructured uncertainty. The approach used is the construction of an
inner loop, feedback path, model-matching compensator which is insensitive
to parametric uncertainty, and a unity feedback, forward path compensator
which is insensitive to unstructured uncertainty and provides closed loop per-
formance, disturbance rejection, command following, etc.

The approach presented does not explicitly account for parameter variation.
The inner loop compensator is insensitive to parametric variation because it
is a feedback compensator designed without attempting to cancel the plant

dynamics. Other advantages of the inner loop design methodology allow for the
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designer to set the compensator order and impose arbitrary constraints on the
compensator structure. Inner loop performance is specified in the frequency
domain. The outer loop is constructed using the H, methodology which also
allows for explicit frequency domain performance specifications and robustness
to unstructured uncertainty.

It is the intention that this methodology be a systematic, easy to use
approach to constructing compensators for problems with parametric uncer-

tainty.

1.4 Thesis Organization

The thesis is organized into five chapters.

The first chapter has been the introduction. In Chapter 2 a comprehensive
explanation of the compensator methodology, used to robustify the sys-
tem to parametric uncertainty, is presented. Also discussed are frequency

domain loopshaping and a robustness measure.

In Chapter 3 the methodology is applied to a benchmark problem for robust

control [25]. Two separate designs are presented.

In Chapter 4 the methodology is applied to a MIMO mass-spring-damper

system.

Last, in Chapter 5, the effectiveness of the methodology is assessed and rec-

ommendations for further research are given.
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Chapter 2

The Approach: Inner Loop and

Heo

2.1 Overview

This chapter presents a methodology for designing a compensator structure
which is robust in stability and performance to both the effects of parametric
uncertainty and to normal additive or multiplicative unstructured uncertainty.
The methodology involves first construction of an inner loop, feedback path,
compensator using a model-matching design technique. This compensator re-
duces the effects of parametric uncertainty on the system. An H, outer loop
compensator is then designed to provide robust system performance. The
reason for choosing this approach stems from needing to desensitize the Hy
methodology to real parametric uncertainty since it provides a flexible, stan-
dardized architecture for designing multivariable compensators.

The methodology used here results in a closed loop system with both a
feedback path, K;.ner, and a forward path, K., compensator as shown in

Figure 2.1.
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Figure 2.1: The Closed Loop System with Forward and Feedback Path Com-
pensators

2.2 The Standard Feedback Configuration,
Loopshaping, and Stability Robustness

The H, methodology will be used to construct compensators for use in the
standard feedback configuration. This configuration, shown in Figure 2.2, con-
sists of a plant, G, unity gain feedback of the plant outputs, y, to constructing
an error, e, by comparison with a set of reference inputs, r, and the controller,

K, operating on that error in order to provide a set of plant control inputs, u.

rie J x v | a 'R

Figure 2.2: The Standard Feedback Configuration

For the standard feedback configuration, Figure 2.2, the common loop-
shapes which are examined are the open loop, sensitivity and complementary

sensitivity transfer functions {2, 3, 9]. For the loop broken at the plant output,
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the open loop transfer function is
Ly(s)=GK (2.1)

where the s subscript signifies servo. For the loop broken at the plant input,

the open loop transfer function is
L.(s)=KG (2.2)

where the r subscript signifies regulator. For SISO systems these are, of course,
equivalent. The complementary sensitivity (or closed loop) transfer function,
T(s) is expressed as

T(s) = (I + GK)™'GK. (2.3)

While the sensitivity function calculated at the plant output, S(s) is
S(s)=(I+GK)™. (2.4)

The open loop transfer functions are indicative of performance at the plant
input (regulator) versus the plant output (servo). The servo open loop transfer
function provides information on command following, disturbance rejection to
disturbances injected at the plant outputs, and insensitivity to sensor noise on
the plant outputs. The regulator open loop transfer function provides informa-
tion on disturbance rejection to disturbances injected at the plant inputs and
actuator noise insensitivity at the plant inputs. The complementary sensitivity
function provides indications of closed loop command following for a reference
input, as well as stability robustness to unstructured uncertainty, if such spec-
ifications have been developed [2, 3]. The sensitivity function provides the
transfer function from error to output or the attenuation of disturbances in-

jected at the plant output.
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The sensitivity transfer function is also used to provide the MIMO gain
and phase margin of the system, [16]. This is a conservative measure of plant
stability robustness at the plant output. It can also be used to measure ro-
bustness at the plant input if the input sensitivity transfer function is used,
1.€.

Si(s) =T+ K@), (2.5)

This technique is based on the multivariable Nyquist criterion and may be

computed as follows. For robustness at the plant output let o be
a = [[5(s)llec- (2.6)

Then the gain/phase margins are computed as

1GM < ail (2.7)
GM > ail (2.8)
PM = >2sin~! (515) (2.9)

where these are independent and simultaneous margins in all of the channels
of the closed loop system. The arrows indicate upward or downward gain

margin. For robustness at the plant input, S;(s) is used instead.

2.3 Loopshaping with Both Forward and
Feedback Path Compensators

For the compensator configuration used here, Figure 2.1, the equivalent for-
mulas for the transfer functions are derived as follows. The servo open loop

transfer function is obtained by breaking the loop in Figure 2.1 at the plant
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output, y. The transfer function from y to y is then

Ly(s) = G(Kee + Kinner)- (2.10)
Similarly, breaking the loop at the plant input u yields

L.(s) = (K + Kinner)G (2.11)

the open loop regulator transfer function.
The closed loop, or complementary sensitivity, is obtained by computing

the transfer function from r to y in Figure 2.1 and is
T(s) = [I + G(Kee + Kinner)] 'GK . (2.12)

Finally, the sensitivity transfer function is computed from a fictional distur-
bance, d, which is thought to be injected at the plant output in Figure 2.1, to
y and yields

5(8) = [I + G(Koe + Kinner)] ™. (2.13)

Notice however, that if the transfer function from the reference input r to the
tracking error e is computed from Figure 2.1, (an alternate definition of the

sensitivity) it will be
Se(s) = [I + G(Koo + Kinner)] (I + GKinner) (2.14)

Since specifying the tracking error specifies the command following abil-
ity of the closed loop system this means that, unlike in the standard feedback

configuration, Figure 2.2, that specifications on disturbance rejection and com-
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mand following are no longer equivalent. That is now
T(s)+ S(s)#1 (2.15)

but,
T(s)+ Se(s) =1 (2.16)

which may be seen by simply adding the appropriate equations given above.

So, specifiying an S(s) does not specify a T'(s).

2.4 Inner Loop Compensator Synthesis with

a Model-Matching Design Methodology

2.4.1 Introduction to the Inner Loop Model-Matching
Methodology

The inner loop compensator, Kinner, is designed so the closed loop system
shown in Figure 2.3 is relatively invariant to the parametric variation. Inoue
[14] showed that a robust H. design requires a “smooth” singular value plot,
which this compensator provides. Specifically, it is the transfer function from
%o to y which is of interest. This is the transfer function which will be “seen”

by the outer loop compensator and is expressed as:
Tinner = (I + GKinner)_lG (217)

The approach used to design the inner loop compensator for plants with
output feedback is based on a model-matching methodology, specifically that
developed in the GE based ISICLE system [20, 21]. The approach in ISICLE

was in turn based on Edmunds’ algorithm, an explanation of which is contained
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Figure 2.3: The Closed Loop System, Tipner: Plant with Inner Loop Compen-
sator
in [18]. The reasons for choosing this methodology are primarily its flexibility.
The methodology is amenable to dealing with square plants, i.e. those with
the same number of inputs and outputs. It allows the introduction of designer
imposed constraints on compensator structure and order. As an intermediate
step, the methodology indicates the frequency response of the compensator
needed to exactly obtain the desired closed loop performance, regardless of
whether this compensator is causal. The compensator generating algorithm
is itself iterative. Because the design method is easy to use, it allows the
designer to try several alternative designs to obtain one which best meets the
requirements.

The model-matching design methodology starts with the designer choosing
a desired closed loop transfer function Hy. For a multivariable system, the de-
signer chooses every desired closed loop transfer function element of the closed
loop transfer function matrix Hy. To do this one examines the individual nom-
inal plant transfer function matrix elements and then replaces each one with a
similar element which has the effects of the uncertainty removed. For example,
if the uncertainty is manifested in an element of the plant transfer runction
matrix as the location of lightly damped poles, one simply defines a transfer

function matrix element with those poles damped. The methodology then pro-
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vides a compensator which minimizes the difference between the desired closed
loop transfer function, Hy, and the actual closed loop transfer function, H, in
a least squares sense over some specified frequency range. The minimization
process is subject to a number of designer imposed constraints. These include
selecting the compensator denominator transfer function matrix, selecting the
numerator transfer function matrix order and structure, and the frequency
range over which the minimization is to proceed. The designer can also weight
the compensator channels relative to each other.

An analysis and discussion of the methodology is provided in the following
sections. It is important to realize that this is a frequency domain methodol-
ogy, i.e. by this it is meant that it is smplemented as point-by-point calculations
in the frequency domain. The importance of this will become apparent in the
realizations computed and the lack of guarantees provided by the method-
ology, though it does have a theoretical underpinnings based on the Youla
parametrization [18]. The following is based on a similar explanation for unity

feedback compensators by Minto in [20].

2.4.2 The Model-Matching Problem

The motivation for the methodology is visualized in Figure 2.4, which shows
the inner loop transfer function Tipper, referred to here as H, in parallel with
some desired representation of the plant dynamics, Hy.

It is desired that for an input » a compensator K be constructed so the
actual output y is equal to the desired output y4. The objective of the meth-
odology is to minimize the error, € in a least squares sense by choosing an

appropriate K, or, mathematically,

m}n |Hq — H|2 (2.18)
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Figure 2.4: Model-Matching Design Objective

2.4.3 Compensator Parametrization

In this section the theoretical underpinnings which led to the use of the model-
matching algorithm are explored. It is also shown why placing the compensator
in the feedback path desensitizes the closed loop system Tj,n., to parametric

variation.

" G

Yy
K + Vs
+

Figure 2.5: General Feedback System

The Youla parametrization [13, 18] states, given the general feedback sys-
tem shown in Figure 2.5, for a stable plant G, the set of all controllers K that
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stabilize G may be parameterized as
K=QUI-GQ)™ (2.19)

where @ is any stable transfer function matrix. This result is a special case
as the Youla parametrization allows for an unstable plant G [13, 18]. The
Youla parametrization for an unstable plant could be used here, but would
only cloud the presentation. This result means that, if K stabilizes G, it must

be of the form given in equation 2.19 for some Q equal to
Q@=K({I+GK)™". (2.20)

Also, given any stable @, a compensator K may be obtained from equa-
tion 2.19. Notice that Figure 2.5 applies to compensators in either the forward
or feedback path.

A closed loop system H with a feedback path compensator K may be

expressed as

H=(I+GK)'G (2.21)

from equation 2.17. Substituting equation 2.19 for K yields
H =G - GQaG. (2.22)

This implies that all achievable closed loop transfer functions are also pa-
rametrized by ). Furthermore, the desired closed loop response H; may be

decoupled from the plant G by choosing
Q=G'-G'H,G! (2.23)

if G is square, invertible, and minimum phase. If this is substituted into
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equation 2.22, it yields
H=H,

indicating this desired transfer function is achievable. If G and H, are square,
invertible, and minimum phase, ) is chosen as in equation 2.23, and the result

is substituted into equation 2.19, then K is shown to be
K = Hd_l -G! (224)

which does not necessarily have the poles of G present in the compensator K.
This result is important in avoiding the effects of plant inversion because even
though G appears inverted in the compensator, it is present not as a product
but as a sum.

To demonstrate this consider a simple SISO example with lightly damped

poles. Let,
C - (s +2)(s+2)
(s+1+0.15)(s + 1 — 0.15)
and
Hy = (s+2)(s+2)

"~ (s + 1.005)(s + 1.005)
where Hy; and G are identical except the lightly damped poles of G have
been moved to the real axis. Then from equation 2.24 the solution for the

compensator necessary to obtain this closed loop transfer function is

(s + 1.005)(s + 1.005) — (s + 1 + 0.15)(s + 1 — 0.1j)
(s +2)(s+2)
(s? +2.01s + 1.01) — (s + 25 + 1.01)
(s+2)(s+2)

K =

0.01s
(s+2)(s+2)

which has none of the poles of G present in its transfer function. Now H equals

H; as that is the definition of equation 2.24. This provides added robustness
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to the feedback path compensator for parameter variation. This can be seen
by extending the example, if there was some parameter uncertainty in G and

it actually had the transfer function

(s +2)(s +2)
(s+2+0.15)(s + 2 - 0.15)

then using equation 2.21, H would be

(s +2)(s+2)(s+2)(s+2)
(s +2)(s +2)[.01s + (s + 2 +0.15)(s + 2 — 0.15)]
(s+2)(s+2)
52 +4.01s +4.01
(s +2)(s +2)
(s +2.1051)(s + 1.9049)

H

which shows that the actual closed loop system also has its poles on the real
axis. The lightly damped poles of G do not appear here. This example clearly
demonstrates the robustness of the feedback path compensators designed to
parameter uncertainty.

However, if a a unity feedback compensator were to be designed using the

same method, Figure 2.2, the equivalent results are as follows [20]. Since
H=(I+GK)'GK

substituting equation 2.19 into it yields the parametrization of all closed loop
systems

H=GQ. (2.25)

Again if G is square, invertible and minimum phase then given an Hy Q) may
be expressed as

Q@ = G 'Hy. (2.26)
This can be substituted back into equation 2.19 to yield a compensator of the

35



form

K= G_lﬂd(f - Hd)_l. (227)

Notice this compensator will always have the poles of G present in it because

it is a product of the inverse of G and the desired closed loop dynamics.

2.4.4 The Ideal Compensator

As stated in equation 2.21, the transfer function H may be expressed as:

H=(I+GK)'G.

Now, if we assume that some ideal compensator is available — even if it can’t
actually be realized as G does not meet the conditions given in Section 2.4.3

— to attain the desired plant Hy, the latter may be expressed as
Hy= (I + GKigeat)"'G. (2.28)
This may then be rearranged to yield
Kigew = Hy™' — G7. (2.29)

Notice this is the form given in equation 2.24; an explicit state-space form
for Kigeq is realizable only if both H; and G are invertible. Often the ideal
compensator K;g.o will not be realizable. However, the frequency response of

both G and H, can be computed over some finite frequency vector w made up
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of p discrete frequency points or

wi

wa

Then if G has m inputs and outputs, the frequency responses of G and Hy are

available as mp X m matrices expressed as

[ G(juw) 1

G
Gfr = (‘7.""2)

| G(jwp) ]
[ Hy(jw) -

Hd(jw2
der = . )

I Hy(jwp)

These frequency responses can then be inverted at each frequency point, wp,

o

to obtain Hd;} and Gf‘,1 Therefore, K;4. may always be expressed as a
frequency response and may be thought of as the subtraction of two bode
plots or

Kigeatsr = Ha7! — G5}

In fact, it is not necessary to have a state-space realization of K;4eq; besides
it is often not desirable as it would be of unnecessarily high order. This ideal
compensator frequency response is generally used as a guide to selecting the
order and structure of the actual compensator.

Because the ideal compensator is calculated as a frequency response, each
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channel of this response can be plotted as a bode plot. Then its structure,
whether non-causal or causal, will be apparent to the designer. For example,
if rate feedback is needed to achieve the desired plant, the ideal compensator
will indicate this. Regardless of the form of the ideal compensator, information
is available to guide the designer in choosing the compensator structure or in

assessing the choice of Hy.

2.4.5 Formulating the Minimization Problem

The error in outputs between the ideal y,; and the actual outptut y is defined
to be
A
e=H;— H. (2.30)

This may also be expressed as
e=Hy;—(I+GK)'G.
After some manipulation (see Appendix A) this results in
e=H(G'H;-1)+ HKH, (2.31)

Where G-! is available since all of the above transfer function matrices are
given in terms of frequency responses.

Since K can be expressed as a transfer function matrix

( LOVEEN OV AT ]
di di2 dim
n nz2 :
K=| d d»
nmi Nmm
dml dmm
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then, if the denominator transfer function matrix, Dy is fixed as

L L i
dyy  di dim
L L
d: d
D, = 21 22
e dml dmm -

equation 2.31 may be transformed into a linear least squares problem for the

numerator transfer function matrix N;. We note N, may be expressed as

M1y M2 *** Mim
N21 Ta22
N, =
L Npy o Nmm _

The designer chooses the structure and order of Ny guaranteeing the causality
of the compensator K.

This minimization problem may then be solved on a point-by-point basis
in the frequency domain. The minimization problem shown in equation 2.31

can be more generally expressed (dropping the fr subscript)
mKi,n Y — AKB||, (2.32)

where

B = D;H,

and all have been evaluated point-by-point in the frequency domain. This
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problem may then be converted to the form
ménHY - X0, (2.33)

by using the vec operator on equation 2.32 [18].

The vec operator is defined as the following. Given a matrix

Z=|:zl 29 23]

where 2, 25, 23 are the column vectors of Z, the operation vec Z is defined as

Also, given the matrices, X, Y, Z, the quantity vec (XY Z) is
vee (XY Z) = (Z7 ® X)vecY

where ® signifies a kronecker delta multiplication.
Therefore, if the frequency responses for the system are arranged as an

mm X p matrix, then for example, -

-y1(jw1) ?lm(J'wl)T
Y, = yl(J:wz) ym(iwz)
| v1(iwp) -+ ym(Jwp) |

where each y,(jwp) is an 1 X m matrix of the form

ym(09) = [ (i) - V(i) |
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Notice that Ny is still in coefficient form. Therefore, for a compensator of

order [, Ny takes the form:

nlu(jwl) nlﬁl(j‘-”l_l) n(l)l(jwo)

nh(jw') i Gwtt) oo 0 (5u0)
N, =

| A (J@) nln (W) e (W) |

Since any element n! ,, may be zero, the numerators are not all constrained
to be of the same order. So applying the vec operator to equation 2.32 the

classic least squares form is obtained or

Y -X0=0. (2.34)
where
Y =vecY
X = BT @ AY
© = vec N;.

The matrix Y is now mml x 1 of the form

r -

y11(jun)

Y = ymm(jwl)

i ymm(j“’p) ]

and the matrix BT ® A is mm x mm. Then X results from factoring vec Ny
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into the mm(l + 1) x 1 vector

made up of the constant elements of the numerator transfer function matrix

and the mm x mm(l + 1) matrix ¥ containing the dynamics, where

[ (w)! (w1 - 1 0]
Gw) (w)-t -1

0 (w)  (Gw)=t .- 1]

Finally, since it is desired that the solution to the least squares problem be

real, the problem may be restated as

YRe X Re
},Im X Im

) (2.35)

where Y = Yre + jYim, X = Xgre + jXim- This can then be solved for a real
solution © using the numerically stable QR algorithm [18].
Therefore, returning to equation 2.31 the procedure to obtain Nj is as

follows:

1. Choose an Hy, Dy and w.
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2. Let H = Hy, ¢ = 0.

3. Compute the appropriate frequency responses and find a least squares

solution to equation 2.31.
4. Compute H and e.
5. If € is less than some tolerance, quit, else return to step 3.

The algorithm may also be stopped after some specified number of itera-
tions. Note that the algorithm is not convex and is not guaranteed to converge.
Extensive experience shows, however, that for reasonable choices of Hy, the
algorithm will converge quickly. Generally, a few iterations will suffice. It is
recommended that the designer observe the error after each iteration and stop

the iterations when deemed appropriate.

2.4.6 Constraints

One of the advantages of this methodology is that the order of each individual
transfer function in the compensator transfer function matrix may be con-
strained. Therefore, the order of each transfer function element may be set
appropria.teiy, usually using the ideal compensator as a guide. This is achieved
within the minimization by setting higher order terms to zero and not letting
the minimization routine act on them. Similarly, the values of any of the
individual transfer function elements and even just the individual values of a
specific numerator may be fixed and the minimization allowed to proceed. The
constraints are achieved within the minimization by moving the constrained

elements to the left side of equation 2.34.
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2.4.7 Weights

Another aspect of the methodology is that it is possible to weigh individual
channels of the actual transfer function H within the minimization problem.

This may be expressed as
min |W.x (Hy - H)|; (2.36)

Where the .x operation signifies an element-by-element multiplication. Note

that all elements of the weight matrix W must be greater than zero.

2.4.8 Methodology Summary

After several iterations of choosing ideal plants and manipulating the denom-
inators, channel weights, etc., the designer should be able to derive an inner
loop compensator which will provide the necessary damping over the full range
of parameter variation.

To summarize, the steps for constructing an inner loop compensator are as

follows.

1. A desired closed loop transfer function, Hy, in terms of channel-by-
channel desired transfer functions is obtained; Hjy reflects the system
shown in Figure 2.3. The most important decisions in using the method-
ology are choosing the desired closed loop shape, Hy, the compensator
pole locations, and the numerator order. Remember the methodology
provides no guarantees, therefore it helps to choose Hy “intelligently”
with roughly the same magnitude and bandwidth of the plant. While
the methodology can provide compensators which improve the closed
loop performance, here the H,, compensator will provide performance,

the inner loop is used to desensitize the plant to parameter uncertainty.
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2. A frequency domain channel-by-channel representation of the ideal com-
pensator, Kigeq, is obtained. It is suggested that a fairly large frequency
range be used in this step to fully obtain the ideal compensator charac-

teristics.

3. Using this ideal compensator and the constraints of the problem, the
denominators for the individual channel transfer functions are chosen
(fixing the order of the compensator). Generally, the denominators are
chosen using the ideal compensator as a guide. The shape of the ideal
compensator will also provide guidance on choosing the order of the
denominator. An advantage of this methodology is that it allows the
compensator order to be less than that of the plant. Some iteration may

be necessary to place the denominator poles correctly.

4. Any remaining constraints on the numerators are expressed; these in-
clude fixing the order of each of the elements of Ny and also constraining
any of the elements of N, as desired, i.e. setting a particular element of

/v to a predetermined numerator polynomial (including 0). Here one

also reflects the relative weighting of the individual channels.

5. The compensator is then optimized to reduce the least squares error be-
tween the desired plant, H;, and the actual plant, H, point-by-point
along a given frequency vector. The frequency range chosen is a design
variable. It is recommended that the range be limited to some interval
about crossover. If the compensator or desired plant has low or high
frequency characteristics that the designer wishes to maintain, the fre-
quency range may be extended. The number of frequency points must
also be chosen so as to seek a balance between fully reflecting the plant

characteristics and achieving desirable numerical iteration speed.

6. The resulting system, Tinner, is checked to determine if it meets the
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requirements.

This process is repeated as necessary until a satisfactory compensator is ob-
tained.

This methodology is useful and effective for the following reasons:

o The compensator structure chosen is inherently resistant to parametric
uncertainty, especially that affecting the plant open loop pole location.
See Section 2.4.3.

o The methodology lets the designer choose the order of the compensator

and this allows the minimization of compensator complexity (see Sec-

tion 2.4.5.

¢ The methdology allows the designer to work in the frequency domain,
choosing the desired closed loop system (Tinner) frequency response.
Based on this response the methodology indicates the structure of the

necessary compensator, Kinne-(see Sections 2.4.2 and 2.4.4).

e The methodology is amenable to various compensator constraints (see

Section 2.4.6).

After completing the design of the inner loop compensator, one would be

ready to proceed with the outer loop design using the H, methodology.

2.5 Design of the H,, Compensator

The H,, methodology was chosen for the outer loop compensator because it
is a popular MIMO technique which derives closed loop system performance
through explicit frequency domain loopshaping. H,.. designs tend to be robust
to unstructured uncertainty for well behaved plants. The H,, design procedure

is well documented, see for example [9, 13] for the theory and [5, 8] for actual
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design examples, and, therefore, it will be explained only briefly here. Though
in this application it is desired that the H, methodology construct a compen-
sator of the standard feedback design, the methodology is very general. Given
a FDLTI system of the form shown in Figure 2.6, where

u; = exogenous inputs (references, disturbances, etc. )

up = control {actuator) inputs

y1 = controlled outputs

Y2 = measured outputs.

The objective of the H,, methodology is: for a transfer function matrix, P'(s),

construct a stabilizing compensator, K(s), to minimize the closed loop trans-

fer function from u; to y;, Ty1.1 such that
min || Tyru flec = Yoptimat (2.37)

Practically, one iterates on the value of 4 until it is aribrarily close to (but not

necessarily equal 10) Yoptimal-

U ———— —_—Y
1 P(s) 1

U2 > Y2

C(s) -

Figure 2.6: The H,, Problem
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The transfer function P’(s) represents the plant (in this thesis with the
inner loop compensator) augmented by some weighting functions. To solve
the problem, the H,, methodology expresses this augmented plant, P’ in state-

space form as

4| B B,
P'(s) =1 G 4 Dy Dy,
C, | D;; Dy

The H, compensator is then obtained by solving two Ricatti equations, see
[12].

To design a controller for the standard feedback configuration, the H,
methodology generally uses the following approach. The plant, P (here the
original plant G with the inner loop compensator, Kinner ), is augmented with
weighting functions Wi(s), Wa(s), and Wj(s) as shown in Figure 2.7 to yield

an augmented plant, P'.

P'(s)
" W3 = Y13
o Wy = Y12
t ' l o Wi ==y
Ug P —iv+ Yo

Ko e

Figure 2.7: The H,, Standard Feedback Configuration with Weights
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The weighting functions are used for loopshaping, where W(s) provides
performance and is generally the inverse of the desired sensitivity function.
Wi3(s) is used to provide robustness to unstructured uncertainty and is gener-
ally the inverse of the desired closed loop (complementary sensitivity) transfer
function. Wo(s) provides any desired weighting on the controller. The trans-
fer function which is being reflected by W, will be called R. It is the transfer

function from r to u, and is expressed as
R=K(I+GK)*

in terms of the standard feedback configuration as shown in Figure 2.2.

The combination of weights W; and Wj is known as the mixed sensitivity
problem. The designer attempts to find a balance between disturbance re-
jection, as reflected by Wy, and the closed loop bandwidth which will specify
robustness to unstructured uncertainty and command following performance,
reflected by W3. One of the many issues that arise in this type of problem
is whether to allow peaking in the sensitivity and complementary sensitivity
transfer functions. To allow more freedom in the design, W, is often weighted
by a scalar p; this allows it to be adjusted independently of Ws. If so, this sys-

tem of plant and weights may be represented as the following transfer function

matIix. ] . ) _
Y1 pWi(s) —pWi(s)P(s) .
1
Y12 0 Wa(s)
Y13 0 Ws(s)P(s)
| Y2 | T —P(s)
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The actual solution to the H,, problem now may be expressed as

pW15
W)R = (2.38)
WsT

oc
where

Y 2 Yoptimal

The weight, W;(s) used to express the constraint on the sensitivity transfer
function (the actual constraint is enforced by W ') is subject to a special
condition in this design. Given the system shown in Figure 2.2, the system
to which the H, design process is being applied, is the standard feedback

configuration with G equal to T, with the sensitivity function given as
S'(8) = (I + Tinner Koo)' (2.39)
Substituting for Tinner and rearranging,
§'(8) = [I + G(Kinner + Koo )™ (I + GKinner) (2.40)

which is equal to to S.(s) as given in equation 2.14, the transfer function from
reference r to error e. Since the sensitivity of the closed loop system with both

compensators to an output disturbance was given in equation 2.13 as
S(S) = [I + G(Koc + Kinner)]-l
this indicates that the inverse of the actual constraint placed on the sensitivity

by Wi(s) is
Wll(s) = (I + GKirmer)Wl- (2.41)
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Care must be used in choosing W; so as to restrict the disturbance sensi-
tivity function, S(s) as well as the command following properties of S.(s). If

a W/ is chosen then the weight W; to be used in the H, design is
W1 = (I + GKinner)”'W,. (2.42)

Therefore, the designer can determine the desired sensitivity function relating
to an output disturbance, S(s), and check the error sensitivity function, S.(s),
or vice-versa.

Software to facilitate the standard feedback problem is commercially avail-
able as is software which solves the general H,, problem, for example, the
PRO-MATLAB Robust Control Toolbox. Since the Hu approach is general,
any feedback configuration, with any fictitious inputs or outputs desired, could
be used as long as the problem can be put in the form of Figure 2.6. If so it
is relatively easy to write the accompanying state-space description which will
allow this to be used with commercially available H,. software packages.

Generally, P(s) will be in state-space form while the weights are expressed
as multivariable transfer function matrices. Several methods exist to allow for
improper Wj(s). Wa(s) is often chosen to be of the form eI, where ¢ is some
small number, to ensure that D, is of full rank [5].

Explanations of how the H, methodology is applied are contained in the
design examples. For further explanation the references cited above, [5, 8] are
useful.

When the H,, design is finished, the complete compensation network will
have been designed. This compensation network should then provide stabil-
ity and performance which is robust to the range of parametric uncertainty
expected. Moreover, this design should be robust to standard design uncer-
tainties such as unmodelled dynamics, plant disturbances, etc. if a reasonable

bandwidth was selected for Ws.
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2.6 H, Compensator Order Reduction

One disadvantage of the H,, methodology is that it leads to compensators
of high order, as an H, compensator will always have at least the order of
the augmented plant, P'(s), used to create it. High order and complexity
makes the compensator more difficult to implement. Therefore, it is desirable
to reduce the compensator order when possible. Fortunately, some amount
of compensator order reduction is usually possible. However, though the H,
methodology guarantees some amount of robust stability, all such gurantees
are lost when the compensator order is reduced. Therefore, it is very important
to check that the system with the reduced order compensator meets the same
specifications which the original system achieved.

The steps used here to reduce the order of the H, compensator are as

follows.

1. From the bode or singular value plots of the n'* order H,. compensator,
estimate the number of states (k) the compensator can be reduced to.
This may be done by observing the changes in slope in the plot and
estimating the number of poles necessary to achieve those changes in
slope. The algorithms used, see (2) below, also allow the examination
of the Hankel singular values of the full order compensator which may

provide information on the number of states which can be eliminated.

2. Compute a reduced order realization of the compensator. The techniques
used herein are Schur model reduction, as implemented by the PRO-
MATLAB Robust Control Toolbox function schmr [5], and balanced
least squares model reduction, as implemented by the PRO-MATLAB
Robust Control Toolbox function balmr [5].

3. Compare the reduced order compensator to the original compensator.

This can be done in several ways. A quantitative measure of the dif-
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ference in the compensators is contained in the algorithms used. Both
algorithms compute a k" order reduced compensator according to the

criterion

1Ko~ Kl €2 " k(i) (2.43)

i=k+1
and return the value of 237, . ; k(7). It is also useful to compare the
Bode or singular value plots of the compensators and compute the error
as a function of frequency. If these measures are small it is likely that the
reduced order compensator will achieve the design objectives. It is ad-
visable to iterate between steps 2 and 3 until the compensator has been
reduced as much as possible while maintaining its frequency response
characteristics. The H, methodology guarantees that the nominal sys-
tem is closed loop stable; reducing the order of the compensator removes
this guarantee. However, one is usually able to reduce the compensator
order by some amount while maintaining all of the stability and perfor-

mance results of the nominal H,, compensator.

. Generate the compensated system with the reduced order compensator
and check the system stability, frequency response, and time domain
response as for the original H,, compensator. If the reduced order com-
pensator does not meet the performance of the original H,. compensator,
obviously a higher order compensator should be used. If the system re-
sponse with the reduced order compensator meets the requirements, then

the design is finished.

2.7 Analyzing the Closed Loop System

This compensation network should provide stability and performance which

is robust to the range of parametric uncertainty expected. Moreover, this

design should be robust to standard design uncertainties such as unmodelled
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dynamics, plant disturbances, etc. The following loopshapes will be examined
in an attempt to determine the success of a design: open loop (both servo
and regulator), closed loop, and the sensitivity. The MIMO or SISO gain
and phase margins will be calculated to determine robustness to unstructured
uncertainty.

It is also important to determine the effect of the inner loop on the plant
without the presence of the outer loop because it is unlikely that the full com-
pensation network will have desirable properties if Tj,,., does not desensitize
the plant to parameter uncertainty. In fact, this should be determined before
design of the outer loop begins. Therefore, one should examine the open and
closed loop shapes to determine robustness to both the parametric variation
and unstrucured uncertainty. It also important to know the characteristics of
the Tinner loop shape the H, methodology will use.

For all of the above loop shapes the fact that this is a plant with some
amount of parametric variation must be accounted for. Therefore, it is impoz-
tant to examine the loop shapes not only in terms of some nominal parameter
values for which the compensator has been designed, but also the ranges of
parameter variation to be considered. Therefore, in this thesis the following

cases are examined:
o The nominal case (also the design case).
e The minimum value of the parameter variation.
e The maximum value of the parameter variation.

The assumption of the nominal case as the design case implies that it is desired
that the system performance be optimized for this case, with the system ro-
bustness extending that performance over the range of parametric uncertainty.

The approach listed above will lead to a large number of singular value plots.
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Notice that for cases of multiple parametric uncertainty one may not be
able to calculate the minimum and maximum cases of parametric variation
as these may be hard to determine. The cases examined in this thesis allow
for such a determination and were chosen as such for illustration purposes.
In a case where this information is not available, the options include use of
a multivariable margin which accounts for real parametric uncertainty, see
Section 1.1, through Monte Carlo simulation, or placing an upper (or lower)
bound on each element of the state-space matrices and assuming this reflects
the worst case.

One of the primary results of the parameter variation in the examples
considered in this thesis is that the positions of lightly damped poles will vary
with the uncertainty. Since the primary function of the inner loop will be
to damp these poles, it will also be instructive to consider the locations and
damping ratios of these poles over the range of parameter variation with the
inclusion of the inner loop compensator. This will be expressed in terms of
root locus plots and tabular listings of poles, frequencies, and damping ratios.

Time domain responses of the compensated systems are also important to
understanding the system and determining if they meet the time domain design
specifications. Several types of time respoﬁse simulations will be considered.

These include:

¢ Injection of an impulse disturbance to determine disturbance rejection

characterisitics.

o Injection of a constant frequency sinusoidal disturbance to determine

disturbance rejection characteristics.

o Reference step commands to determine the command following charac-

teristics of the closed loop system.

e The inclusion of random Gaussian measurement noise in certain simula-
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tions to determine the system noise rejection characteristics.

For each of these simulations the items of interest are the output position and
the control efforts of the model-matching and H,, compensators as functions

of time.

2.8 Summary of the Methodology

The approach taken here towards constructing compensators which provide
robust stability and performance to systems with parametric uncertainty may

be summarized in the following steps.

1. Obtain/construct a model of the plant. Ascertain the range of parameter
uncertainty or variation present in this model. Construct/apply design
specifications both for the nominal plant and the range of parameter
variation, i.e. nominal performance or performance over a specified range

of parametric variation.

2. Construct an inner loop compensator using the model-matching meth-
odology presented herein. Attempt to minimize the effects of the param-

etric uncertainty.

3. Construct an H, compensator using the standard H, methodology.
Use weighting functions which reflect the design specifications and/or

robustness bounds.

4. Analyze the entire system, plant, inner loop compensator, and H,, com-
pensator with regard to the design specifications. If the nominal system
does not meet the performance specifications return to step 3. If the
parametric uncertainty degrades the performance significantly return to

step 2. Iterate until a satisfactory system has been obtained.
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5. If compensator complexity is an issue, apply a model reduction algo-
rithm to the H, compensator. Check the stability robustness and per-
formance of the reduced order compensator with regard to the design

specifications.
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Chapter 3

A Benchmark Problem for
Robust Control Design

The following problem was proposed by Wie and Bernstein [25] as a bench-
mark for testing different robust control methodologies. A 1990 American
Control Conference (ACC) session was devoted to controllers which “solved”
the problem [4, 6, 7, 17, 22]. Here the methodology of a model matching inner
loop and an H,, outer loop is used to construct two different designs. Both
designs meet most of the performance goals of the problem while producing
designs of high order. The results are compared to those from the ACC session

and are shown to outperform the majority of the ACC designs.

3.1 The Plant

The benchmark problem is shown in Figure 3.1 and is a two mass, one spring

system with non-colocated sensor and actuator.
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Figure 3.1: The Mass-Spring System with Noncolocated Sensor and Actuator

The system may be expressed in state-space form as:

(2] [o o 10l[z] [o] [o]
To 0 0 01 T, 0 0
: = -k _k * 1 vt v
z3 - o 00 23 r— 0
| 2, | _-;‘:;;;—’:00__:1:4_ | 0 =4
Yy = T+
zZ = I,
where
z; = position of body 1
z, = position of body 2
z3 = velocity of body 1
z4 = velocity of body 2
u = control input
w = plant disturbance
Yy = sensor measurement
v = Sensor noise
z = performance variable (output to be controlled).
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The problem may also be expressed in transfer function form [6] as

2(s) _ k
u(s) - mls2imls2 + k(l n _z_%)] (31)

3.2 Design Specifications

The design specifications are presented as three sub-problems. All three specify
that m; = my = 1, in the nominal system k& = 1, and that the compensator be
a constant gain, linear feedback design expressible in state-space form. The

three specifications are then:
Design 1
(i) The closed loop system is stable for 0.5 < k < 2.0.

(ii) For w(t) = unit impulse at t = 0, z has a settling time of 15 seconds for

the nominal system.
(iii) The measurement noise is to be characterized by each designer.
(iv) Achieve reasonable performance and stability robustness.
(v) Minimize controller effort.

(vi) Minimize controller complexity.

Design 2
Replace (ii) above with

w(t) is a sinusoidal disturbance of frequency 0.5 rad/sec but un-
known amplitude and phase. Achieve asymptotic rejection of the

disturbance in z with a 20 second settling time for 0.5 < k < 2.0.

Design 3
Replace (i) with
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maximize a stability performance measure with respect to the three

uncertain parameters, m;,m,, k, whose nominal values are 1.0.

The concept of parametric uncertainty is represented here as a known pa-
rametric variation which is easily measured. The effort shall be to design a
compensator system which attempts to meet the requirements of the first two

designs simultaneously. The criteria for Design 3 are not addressed.

3.3 Analysis of the Plant

To help understand the problem, Figure 3.2 shows the bode plots of the nom-
inal system, as well as the system with k = 0.5 and k = 2.0. It can be seen
that the natural frequency of the undamped poles migrates from 1 rad/sec to

2 rad/sec as k varies from 0.5 to 2.0, with a value of 1.414 (1/2) when k = 1.0.

Both pole location and plant gain are changing as k varies.
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o

-100
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g
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Figure 3.2: Bode Plot of the Benchmark Problem with k = 0.5, 1.0, 2.0
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3.4 Compensator Design A

It was stated above that the designs in this section would be developed in
two stages. The first stage is where the inner closed loop transfer function
Tinner 15 designed to have two free integrators, as does the nominal plant.
The reason for this approach is to have the integrators available for closed
loop performance (Type 2 system) and to attempt to replicate the original
plant as closely as possible with the effects of the uncertainty removed. The
second stage, Design B, won’t have any free integrators in the inner closed
loop transfer function.

The closed loop system with both compensators and all of the signals of
interest is shown in Figure 3.3. This closed loop system is used to analyze all

of the designs in this thesis.

K inner [* ()

Figure 3.3: The Closed Loop System with Feedforward and Feedback Path
Compensators, Showing All Inputs and Outputs

The variables shown in Figure 3.3 are:

G = the plant

K, = the compensator generated using the H,, methodology
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Kinner = the inner loop compensator generated using the model-matching

methodology
r = an external reference
e = the error signal
y = the measured output

z = the performance output (the controlled variable)
w = an external disturbance

v = measurement noise

u = the plant input (us — u,)

Uy = the H, compensator output (control signal)

u; = the inner loop compensator output (control signal)

3.4.1 Constructing the Inner Loop Compensator: De-
sign A

The first step in constructing the inner loop compensator is construction of a
desired plant, Hy. Here an obvious choice for such a plant is the same system
as that given in the problem, but with the undamped poles placed on the real

axis. Such a desired plant would have the transfer function

2(s) 1

ws)  oim + gt

for the nominal case (k = 1) and the bode plot shown in Figure 3.4. Construct-
ing a frequency vector from 0.01 to 100 rad/sec and computing the frequency
responses of G~! and H,; ™! yields the frequency domain realization of the ideal
compensator as shown in Figure 3.5. The ideal compensator is obviously non-

causal and appears to consist of two zeros at the origin and two lead networks.
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Figure 3.4: Bode Plot of the Ideal Plant, Hy
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Figure 3.5: Bode Plot of the Ideal Compensator, K;4eq
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Using this information, we then construct a fourth order compensator to

match the ideal compensator; choosing its form to be

32(0252 + a1s + ao)
(0ls 1 1)

Kinner(s) =

The two free zeros in the numerator are necessary to guarantee that there will
be two free integrators in the denominator of the closed loop system, Tinner.
Therefore, the zeros at the origin are constrained to be present in the com-
pensator (see Section 2.4.6) and the model matching method has the freedom
to iterate on the values of g, a;, ;. The ability to arbitrarily constrain the
compensator in this way is one of the key advantages of this methodology. The
denominator is chosen to have four poles at 100 rad/sec. Since the ideal com-
pensator indicates that a pure lead network is desired, the poles are moved out
past the frequency range of interest to allow a realizable system. The frequency
vector over which to match the desired plant is chosen from 0.1 to 100 rad/sec
with fifty frequency points. Experience has shown that fifty frequency points
represent accurately the desired and actual closed loop dynamics. Therefore,
this number of frequency points is used for all of the designs in this thesis.

The method then yields the compensator

_ (0.5174s — 1)(0.8577s — 1)s?
B (0.01s + 1)

Kinner(s)

which has the bode plot as shown in Figure 3.6. The model-matching algorithm
yielded this compensator in two iterations, guaranteeing a least-squares norm
(2-norm) of the error € (see equation 2.30) equal to 0.0267. The difference
between this error and the least-squares error after the first iteration was
—4.335 x 107%. This illustrates that, for well chosen plants, the algorithm
converges rapidly. In fact, two iterations were used for all of the inner loop

compensators generated in this thesis because good convergence was observed
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after this number of iterations.

180 RS A T TTTTm 45

160

Figure 3.6: Bode Plot of the Initial Inner Loop Compensator

Combining this compensator with not only the nominal plant but also
the plants with the values k = 0.5 and k = 2.0, yields the results shown in
Table 3.1 and Figure 3.7. Table 3.1 shows the poles with associated frequencies
and damping ratios and Figure.3.7 is a root locus of the closed loop system
for 0.5 < k < 2.0.

These indicate that, while the compensator does a reasonably good job on
the nominal plant by moving the undamped poles to the real axis, it does not
perform well in reducing the effect of the parametric variation. Therefore, we

have to investigate using an inner loop compensator of the form

s%(oys + ap)

Kinner(8) = Tots 71 -

Here the compensator will iterate on the value of a; and ag. The reduced

order of this compensator is chosen based on a desire to reduce complexity.
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Figure 3.7: Root Locus of the Closed loop System, T} per, for 0.5 < k < 2.0

[ k=05 I k=1.0 k=2.0
Poles w ¢ Poles w ¢ Poles w ¢
0 0 NaN 0 0 NaN 1) 0 NaN
0 0 NaN 0 0 NaN 0 0 NaN
-.473-0.6716j | 0.8214 | 0.5758 -1.163 { 1.163 1 -0.702 | 0.702 1
-.47340.6716j | 0.8214 | 0.5758 -1.971 | 1.971 1 -.5616-8.569) | 8.587 | 6.540e-02
-29.62 29.62 1 -14.29 | 14.29 1 -.561648.569j | 8.587 | 6.540e-02
-100.2-68.99j 121.7 | 0.8238 -100.3-82j | 129.6 | 0.7742 -100.4-97.45) 139.9 0.7175
-100.24-68.99j 121.7 | 0.8238 -100.3+82j | 129.6 | 0.7742 -100.4+97.455 | 139.9 0.7175
-168.9 168.9 1 -182 182 1 -197.4 | 1974 1

Table 3.1: Poles of the

Closed Loop System, Tinper, for k = 0.5, 1.0, 2.0
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Also, from a classical viewpoint, the compensator needs to supply at least
180 degrees of phase to stabilize the system. The first design matched Hy
well, but did not desensitize the system to parametric variation. Therefore,
a compensator of lower order may be less “optimized” for the nominal plant
and so provide greater robustness to parametric variation.

The compensator obtained is

0.9922(1.3965 — 1)
(0ls +1)3

Kinner(s) =

and has the bode plot shown in Figure 3.8 below.
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Figure 3.8: Bode Plot of the Third Order Inner Loop Compensator: Design A

Again the closed loop systems are formed and the results presented in
Table 3.2 show the poles with their frequencies and damping ratios. Figure 3.9
shows the root locus as k varies over the range of parametric uncertainty. Here
the poles start complex and move towards the real axis as k increases from 0.5

to 2.0.
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Figure 3.9: Root Locus of the Closed loop System, Tinner, for 0.5 < k < 2.0

k=0.5 1 k=1.0 il k= 2.0
Poles w — < Poles w 4 Poles w ¢
0 1] NaN 0 0 NaN 0 0 NaN
0 0 NaN 0 0 NaN 0 0 NaN
-0.3613-0.62j | 0.7176 | 0.5035 -0.739-0.7123j | 1.026 0.72 -1.111 { 1.111 1
-0.3613+4+0.62j | 0.7176 | 0.5035 -0.73940.7123; | 1.026 0.72 -1.993 | 1.993 1
-79.35 79.35 1 -73.28 | 73.28 1 -64.94 | 64.94 1
-110-15.52; 111.1 { 0.9902 -112.6-19.25] | 114.3 | 0.9857 -116-23.79j | 118.4 | 0.9796
-110415.52j 111.1 | 0.9902 -112.6+4+19.25j | 114.3 | 0.9857 -116423.79j | 118.4 | 0.9796

Table 3.2: Poles of the Closed Loop System, Tinner, for k = 0.5, 1.0, 2.0
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The bode plot of the closed loop transfer function, Tipner(s), is shown in
Figure 3.10 for £ = 0.5, 1.0, 2.0. All three magnitude plots have about
the same crossover frequency, so the inner loop compensator has significantly
reduced the variation due to the parameter uncertainty. This example shows
that while the nominal case does not fully match the desired plant, as Tinner
has complex poles while H; has real poles, they are well-damped and the
compensator does robustify the system to the parametric variation. Though
when k is equal to 0.5 there is a pair of slightly underdamped poles near the
origin. It is important to realize that robustness to parameter variation is the

goal when choosing the compensator structure.

Magnitude (dB)
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Figure 3.10: Bode Plot of The Closed Loop System, Tisper, for £ = 0.5, 1.0, 2.0

Notice also that, although the compensator is nonminimum phase, the
closed loop system is minimum phase. This is because, for an inner loop
compensator, the closed loop transfer function has the form

T'inner(s) = (I + GK)-lG
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or, for a SISO system, specifically, the closed loop transfer function can be
written explicitly in terms of compensator and plant numerators and denomi-

nators, respectively:
Tinner(8) = ——lGﬁ{——
nenk + dgdg
Notice that the zeros of the compensator nx are not present in the zeros of
the closed loop transfer function ngdx. A nonminimum phase compensator
does not necessarily result in a nonminimum phase overall closed loop system.
The normal performance limitations induced by nonminimum phase zeros are
not necessarily induced by a nonminimum phase feedback path compensator;
however, it does complicate implementation issues, such as sampling, initial-
ization, etc.
Before proceeding on to the H,, design we compare the desired plant with

the actual plant. Figure 3.11 combines the two transfer functions bode plots. It

'XOVR=0607 GM=-7236db  PM = 360deg
80'XOVR = 08554 GM = 154db - - PM=297.6deg-

)

~+ ==« Desired Plant

Nomiianhnt. . )

iddil

ol%" 101 100 10t 102

Frequency (rad/sec)

Figure 3.11: Bode Plot Comparing the Desired and Actual Plants

shows that while the desired plant has about the same gain crossover frequency
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as the actual plant it does not have quite the same magnitude characteristic
above the crossover frequency. Perhaps a better design can be achieved by
lowering the gain of the desired plant.

If H; takes the form

z(s) 0.25
- 52 , 2(.7071)s
u(s) (Tai? T —%m%' +1

then the following third order compensator can be achieved

1.973(2.967s + 1)

Kinncr = .
() = o257 12035 T 17

The fourth order design is also worse in this case in terms of minimizing
the effects of the parametric uncertainty, as measured by the damping ratios
of the closed loop poles. The compensator poles have been moved to lower
frequencies to bound the compensator gain at high frequencies so as to achieve
better measurement noise rejection properties. The compensator bode plot is
shown in Figure 3.12.

The effects of parametric variation on this system are illustrated in Ta-
ble 3.3, showing the closed loop poles and their damping ratio and natural
frequency. Also, Figure 3.13 shows the root locus of the closed loop system for
0.5 < k < 2.0. For this compensator design the poles in the frequency range
of interest remain on the real axis regardless of the value of k.

The reason for the high degree of robustness to the parametric variation
appears to be that the second H; was easier to achieve, since not as much
compensator “effort” was necessary to push down the high frequency magni-
tude. Therefore, the compensator produced was able to also achieve similar
results over the full range of parametric uncertainty.

Examining the open loop bode plot for the given range of parameter vari-

ation, Figure 3.14 indicates that the system has good gain and phase margins,

72



140 I —rrrrm 45
120+ +0deg
100 45
80r ) -90
60F -135
40k---c -180
20+ 4-225
b of - S " {21
-20+ s
- . . e . . [ W e ae J _Bw
wor E(deg) E(dh), :
e L ke A I/ NEwel L IS SEE e Lededrddndedel -405
-6100'2 10! 100 10t 102

Frequency (rad/sec)

Figure 3.12: Bode Plot of the Model-Matching Design Inner Loop Compen-

sator

20 — -
%
: )
x -
5F - i
g OF P S
& :
5 - LIRS
%
: L
.10+ e \ .
150 e . 4
.20 H H i
-40 -35 -30 -25 -20 -15 -10 -5 0

Figure 3.13: Root Locus of the Closed loop System, Tinner, for 0.5 < k < 2.0

73



which are tabulated in Table 3.4.
The closed loop bode plot (Figure 3.15) reveals that the inner loop com-

pensator:
e Provided a well behaved nominal system for use in the H, design.

e Significantly reduced the effect of the parameter uncertainty in the fre-

quency range of interest.

e Achieved these results at the expense of the closed loop crossover fre-

quency.

Next, the H,, methodology will be used to extend this as needed.

3.4.2 Lessons of the Inner Loop Design

The examples of inner loop compensator design have shown that the method-
ology presented can achieve an inner loop design that is more amenable to the
H,. design methodology by removing the effects of parameter uncertainty. It

has also demonstrated some useful lessons in using the methodology.

o Choice of the desired plant, Hy will dictate the results of the compensator
design and resulting closed loop system. That is, one wants to define
a desired plant that differs as little as possible from the nominal plant,
while removing the effects of the parametric uncertainty, here the peaking
caused by the lightly damped poles. This is no different from any other
frequency design technique; intelligent specifications (here on Hy) lead

to achievable systems.

o Therefore, choosing a desired plant with a magnitude characteristic (over
all frequencies) which is less than or equal to that of the actual plant

facilitates a good design. While this may cause a loss in closed loop
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system bandwidth versus the nominal plant, the H,, design can be used

to extend the bandwidth as necessary.

The ideal compensator is a useful indicator in choosing the order and
placement of the poles of the inner loop compensator. However, it is
just an indicator; the algorithm which constructs the compensator at-
tempts to minimize the difference between the actual and desired closed
loop transfer function matrices at selected frequency points without any

explicit information from the ideal compensator directly.

Since the parametric uncertainty is not explicitly accounted for, the de-
signer must exercise judgement in applying the methodology. This means
choosing a desired plant which is attainable over the range of parametric
variation and choosing the compensator poles so they do not interfere
with the compensator effort over the range of parametric variation. For
example, in the above design, keeping the compensator poles at a high
enough frequency so they do not interfere with the lead network when k

is equal to 2.0.

3.4.3 Constructing the H,, Compensator: Design A

Both the H, methodology in designing the outer loop compensator and the

model matching methodology in designing the inner loop compensator make

use of frequency domain choices of the desired closed loop system response.

The difference, however, lies in that in the H, methodology, the frequency

domain specifications are expressed as limits on the maximum singular values

of various closed loop transfer function matrices, while in the model-matching

inner loop the specifications are expressed in terms of the transfer functions

of each element of the desired closed loop transfer function matrix. In the

H,, methodology these choices are expressed as frequency dependent weights
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on various transfer functions. In the standard feedback conﬁgurdtion used
here the weights express the desired sensitivity and complementary sensitivity
transfer functions. A constant weight on the control output is also used to
meet certain technical aspects of the methodology.

The weight W;(s) is subject to the following conditions in this design; first,
Wi(s) must be designed to reflect desired disturbance rejection characteristics
as reflected in S(s) and command following characteristics as reflected in S.(s)
(Section 2.5). Second, because the design plant, the plant augmented by the
inner loop compensator, G’, has two free integrators Wi(s) must also have
two free integrators to guarantee the stability of the closed loop system (with
the H,, compensator) [15]. For W3, the closed loop transfer function using
the standard feedback configuration with T;,,., substituted for G, remains
identical to that given in equation 2.12 for the closed loop system, T'.

After several iterations the following weights were used to obtain a com-

pensator which meets the requirements for the problem set forth above.

1 20p

Wi(s) = v 52(100s + 1)

Wz(s) = %002

1(0.55 +1)?
Wa(s)=;_—__( - )

Where equation 2.38 has been converted to the form

WS
SWR | =1 (3.2)
IWLT
p

o0

It should be noted, as was already mentioned in Section 2.5, that this is a

case of an improper W and a constant W;. If the plant P(s) (Tinper) is strictly
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proper, the improper W5 can be incorporated into the plant. This results in
y2 being the output of the original plant C, matrix and y3 (see Figure 2.7)
being the output of a new matrix, Cpy,. If the plant is augmented in this way

then the following state-space formulation of the problem may be obtained.

4 0] 0 B,
—B,,Cp Ay, | Bs, O
—Dy, Cu |D,, O

0 0 0 W
Cows 0 | 0 Chu
-c, 0|1 o

L g

P'(s) =

This is a general multivariable realization where all of the elements represent
matrices and all of the inputs and outputs are vectors. It is used not only
for this design, but all others found in this thesis. Note that p is generally
incorporated into W, before this realization is constructed.

The design parameters for the near optimal H, compensator obtained were

The magnitudes of the inverses of the weights are shown in Figure 3.16 as

functions of frequency. The inverse of the sensitivity specification

Wi (s) = Wi(s) (I + GKinner) ™",

is also illustrated in the same plot.
The compensator obtained is shown in Figure 3.17 with a state-space real-

ization given in Appendix B.1.1. It acts as a low frequency lag followed by a
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k=05 Ji k=1.0 Il k=20 k

Poles « ¢ Poles w ¢ Poles v ¢

0 i) NaN 0 0 NaN 0 0 NaN

0 0| NaN 0 0| NaN 0 0 NaN
-0.9033 | 0.9033 1 -0.7411 0.7411 1 -0.6939 | 0.6939 1
-3.584 3.584 1 -5.63-7.73) 9.575 0.39 -2.94-12.55j 12.89 | 0.2281

-12.07 12.07 1 -5.65+7.73j 9.575 0.59 || -2.94+12.55} 12.89 | 0.2281
-43.86-18.42j 47.57 | 0.922 -44.58-22.22j 49.81 | 0.895 -45.49-26.5j 52.64 | 0.8641
-43.86+18.42) 47.537 | 0.922 || -44.58422.22j 49.81 | 0.895 || -45.49426.5j 52.64 | 0.8641
-62.39 62.39 1 -65.47 65.47 1 -69.12 69.12 1

Table 3.3: Poles of the Closed Loop System, Tipner, for k = 0.5, 1.0, 2.0

k=05k=101 k=20
Gain Margin 7.70 3.83 1.90
Phase Margin (deg) | 65.64 53.0 29.1

Table 3.4: Gain and Phase Margin of the Open Loop System, GKnner: De-
sign A
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Figure 3.16: H,, Design Weights and Actual Sensitivity Specification
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lead-lag network, with a high gain at low frequencies for disturbance rejection

and lead around 1 rad/sec to boost the bandwidth of the closed loop system.

_120'. e e e :
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140" MAGNITUDE(b) {_;
102 10! 10°
Frequency (rad/sec)

Figure 3.17: Bode Plot of the H,, Compensator

The compensator provides a stable closed loop system not only for the
nominal plant, but also for the full range of k. The range of parametric

variation for which the closed loop system is stable is
0.24 < k< 3.78

which clearly exceeds the design requirements and demonstrates the ability
of the methodology to construct robust compensators. The behavior of the
closed loop poles as k is varied is shown by the root locus in Figure 3.18. One
can detect one pair of poles moving towards the imaginary axis as k increases.
Another pair of poles, with a small natural frequency, moves towards the
imaginary axis as k decreases. The movement of these pole pairs bound the

range of stable closed loop systems for varying k.
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3.4.4 Frequency Response of the Compensated Sys-
tem: Design A

The loop transfer bode plot of the system is shown in Figure 3.19 and shows
how the H. compensator causes the nominal system to crossover at -20
dB/decade for good closed loop performance. It can also be noticed that,
for k equal to 0.5, the magnitude plot crosses closer to a higher slope and so
the closed loop performance can be expected to be slightly degraded for this
case.

The gain and phase margins of the open loop system are shown in Table 3.5.
These margins are almost identical to those given for the plant and inner loop,
Table 3.4, though the H,, compensator appears to have degraded the margins
slightly for k¥ = 0.5. The nominal system has excellent robustness margins.
However, stability robustness is degraded as k increases due to the increase in

crossover frequency. Still, even at k = 2.0, reasonable margins are obtained.
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Figure 3.19: Bode Plot of the Open Loop System G(Kinner + Ko) for k =
0.5,1.0,2.0

k=05k=10| k=20
Gain Margin 7.74 3.85 1.91
Phase Margin (deg) | 52.8 56.9 30.1

Table 3.5: Gain and Phase Margin of the Open Loop System, G(Kinner + Koo ):
Design A
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The loss in closed loop performance for k equal to 0.5 is shown in Fig-
ure 3.20, the closed loop system bode plot, which shows exhibits peaking in
T(s) for k equal to 0.5 versus k equal to 1.0 or 2.0. However, none of the
three cases exhibits excessive peaking, which should lead to good stability

robustness.

102 10

-60100‘2 ‘ ‘li):‘ 100 101 102
Frequency (rad/sec)

Figure 3.20: Bode Plot of the Closed Loop System T'(s) for k = 0.5, 1.0, 2.0

In this problem the design specifications set an emphasis on disturbance
rejection and so it is the sensitivity transfer function S(s) which is of the
greatest importance. Its bode plot is shown in Figure 3.21 which shows good
disturbance attenuation up to 2 rad/sec for the nominal case.

These frequency response plots seem to indicate that a good design has
been achieved. The design specifications concentrate on attenuating the spe-
cific transfer function from the actual disturbance w to the performance vari-
able 2 as the design goal. The bode plot of this transfer function is shown in
Figure 3.22 and suggests that this objective has largely been achieved as the

disturbance is attenuated for all frequencies.
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3.4.5 Time Response of the Compensated System:
Design A

The time response of the compensated system, to the unit impulse disturbance
at time zero specified in Design 1 of the Design Specifications, is shown in
Figure 3.23. The various plots show, for the cases where & is equal to 0.5,
1.0, and 2.0, the response of the closed loop system. The first plot shows
the performance variable, z, the position of mass 2. The next plot shows the
output of the inner loop compensator. The last plot shows the output of the
H,, compensator. The plots show that the disturbance is well attenuated in z,
which also meets the requirement of a 15 second settling time. The disturbance
is attenuated by the large initial response of the inner loop compensator. A
compensator effort this large could cause problems and fails to meets one of
the given specifications. The effort of the H,, compensator is of a reasonable
magnitude. This example does not have any measurement noise present in the
output y.

Consider the time response of the impulse disturbance with measurement
noise v; the measurement noise was characterized as Gaussian white noise with
a variance of 0.0001. This is a common, general noise model with a standard
deviation equal to 1% of the disturbance magnitude. Obviously, with the
high lead inner loop compensator constructed, it can be expected that the
control signal will have a large noise content. This is expected to hamper noise
attenuation in the closed loop system. Before examining the time response of
the system we calculate the transfer function from the measurement noise, v,

to the controlled variable, z,
N(s) = [I + G(Ko + Kinner)] ' G(Koo + Kinner) (3.3)
from Figure 3.3. Because of the presence of the high lead inner loop compen-
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Figure 3.23: Closed Loop System Response to a Unit Impulse Disturbance

sator in the numerator of the transfer function, it can be expected that the
above assumption is true. Figure 3.24, showing the Bode plot of N(s), indi-
cates that measurement noise is not attenuated in the output until a frequency
of 10 rad/sec (and peaking occurs here for & = 2.0).

This behavior is harder to detect in the time response, as shown in Fig-
ure 3.25, except for the output of the inner loop compensator which shows
large noise amplification. However; the noise content in the system output,
z is small for all of the cases considered and does not otherwise disturb the
system. If this system were actually implemented, software limits could be
placed upon the output of the inner loop actuator. Therefore, the actual

effect of noise on the system would likely be small.
The design specifications in Design 2 require the system to attenuate

a sinusoidal disturbance of frequency 0.5 rad/sec with unknown phase and
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amplitude. The disturbance is modeled as
w(t) = 1.0 sin(0.5t).

The response of the system to this disturbance is shown in Figure 3.26. The
compensated system attenuates the disturbance by approximately a factor of
one half over the full range of parameter uncertainty. The asymptotic settling
time of the system to the disturbance is less than 20 seconds for the full range
of parameter uncertainty, thus meeting the Design 2 specification.

The effects of measurement noise in this case are much the same as for the
impulse disturbance considered above. Therefore, the case of the sinusoidal
disturbance with measurement noise will not be considered here.

While not explicitly called for in the design specifications, the command
following performance of the control system is of interest. It is explored here
through the use of a unit step change in the reference. The response is shown
in Figure 3.27. Response is characterized by a very large overshoot of approxi-
mately 50%. This is due to the peaking found in the closed loop response bode
plot. The control efforts of both compensators are also large. This indicates
the nominal design does not have good command folowing performance. Inter-
estingly, Figure 3.27 indicates that the system is robust in terms of command
following performance. Therefore, though it was not done, constructing a new
H compensator could possibly improve command following over the range of

parametric uncertainty.

3.4.6 H, Compensator Order Reduction: Design A

The approach to the H,, compensator reduction outlined in Section 2.6 was
used to reduce the H,, compensator from 9 states to 4 states using the Schur

model reduction technique. The bode plot of the reduced order H,, compen-
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sator, K72 is indistinguishable from the original H, compensator. The infinity
norm of the difference between the compensators (equation 2.43) is equal to
0.096. The state-space realization of the reduced order compensator is given
in Appendix B.1.2.

The root locus plots of the closed loop system as k varies is shown in Fig-
ures 3.28 and 3.29. These indicate that the robustness of the system with the
reduced order compensator is identical to that of the full order compensator;
in fact, the reduced order compensator stabilizes the plant over the same range
of k as the full order compensator. The set of frequency response, and time
domain response plots for the system with the reduced order compensator are
identical to those of the original compensator indicating performance and ro-
bustness have been maintained. The entire set of plots and tables presented

above may be found for the reduced order compensator in Appendix C.

3.4.7 Summary of Design A

The system of compensators consisting of an inner loop and reduced order H
compensator were used to provide a “solution” for the benchmark problem.

The compensators met the following design objectives:

o The closed loop system is stable over more than the full range of param-

eter variation, for 0.24 < k < 3.78.

e For a disturbance consisting of a unit impulse at time zero, the position
of mass 2 (the performance variable) has a settling time of less than 15

seconds for the full range of parameter variation.

e For 0.5 < k < 2.0 the system has phase and gain margins of

30.08 < PM < 56.88

90



Figure 3.28: Root Locus of the Design A Closed Loop System with the Reduced
Order H,, Compensator for 0.5 < k < 2.0 — Poles Near the Origin
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Figure 3.29: Root Locus of the Design A Closed Loop System with the Reduced
Order H,, Compensator for 0.5 < k < 2.0
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191 <GM < 1.74

e For a sinusoidal disturbance with a frequency of 0.5 rad/sec the com-
pensated system will attenuate the disturbance by a minimum of nearly
50% regardless of the parametric variation. Again, regardless of the pa-
rameter variation the disturbance will be asymptotically rejected in less

than 20 seconds.

The following design objectives were not fully met.

¢ The controller effort was large in response to the impulse disturbance
and measurement noise. However, the impulse response effort would not
present a problem as the large control effort was of very short duration;
in an actual system it probably would not saturate the actuator. The
results of measurement noise are slightly more problematic. Because
of the large phase loss in the plant, lead compensation, which leads to

measurement noise amplification, is required.

o Measurement noise was not attenuated until almost a decade past the
closed loop bandwidth of the system. This is due to the large lead in the

inner loop compensator.

o The compensator system (K and Kipner ) is an 8-state system, twice the
order of the plant. It is a complex compensator and this is an inherent
property of the methodology. The methodology trades off compensator

complexity for performance.

The compensated system met most of the design requirements and overall
the methodology was successful. Of the requirements not met the compensator
complexity is an inherent drawback of the methodology, one that is traded for
compensator performance and relative ease of design. The high lead compen-

sator that resulted is a product of the plant dynamics. Noise might cause an
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actuator to “bounce” between its positive and negative limits. It is recom-
mended that, in an actual implementation limits be placed upon the inner
loop control magnitude to limit the large actuator commands.

The use of such limits on the inner loop actuator was investigated for a
unit impulse disturbance. A nonlinear simulation of the plant, inner loop com-
pensator, and reduced order H,, compensator was constructed for k equal to
1.0. The effects of the impulse disturbance were evaluated for the nominal
system and for the system with limits of £100 on the inner loop compen-
sator signal u;. A comparison of the two simulations is shown in Figure 3.30.

The figure shows that the inner loop limits cause a dramatic reduction in the
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Figure 3.30: Comparison of the Nominal System and the Limited Inner Loop
Control System to a Unit Impulse Disturbance

disturbance attenuation. While the settling time of the system still remains
within 15 seconds. An examination of the inner loop compensator effort for
both the sinusoidal disturbance and reference step simulations shows that the

inner loop compensator effort does not exceed +£100, so these would not be

93



affected by the limits. Therefore, the effects of large control efforts by the in-
ner loop could be handled with nonlinear design techniques such as the limits
used here. More sophisticated approaches could also be used such as limit-
ing the output of each lead-lag in the inner loop compensator independently.
However, the design of such nonlinear “fixes” and their use under a variety of
inputs is beyond the scope of this study. The example given here is intended
to show that the high gain compensator resulting from the methodology can

indeed be implemented.

3.5 Compensator Design B

In this case an inner loop compensator was designed to remove the parametric
uncertainty without specifically attempting to retain the double integrator
characterisic of the plant. Since the benchmark problem has no requirements
on command following, only disturbance rejection at low frequency, this should
not pose a problem. However, the H, design will include an integrator to
facilitate command following and ensure that the DC gain of the closed loop

system T'(s) is equal to one regardless of the value of k.

3.5.1 Constructing the Inner Loop Compensator: De-
sign B
Following on the guidelines given in Section 3.4.2, that is not allowing the

magnitude of the desired plant to exceed that of the actual plant, the desired

plant chosen here has the transfer function

_ (1.414)%(0.6)?
Hd(s) = 77 a1ay (s 1 06
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This has the bode plot shown below in Figure 3.31, which also shows the actual
plant. Note the magnitude of the desired plant is always less than that of the
actual plant.

(=]

Magnitude (dB)
8

3
=8
5
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Figure 3.31: Bode Plots of the Desired Plant, Hy(s), and the actual plant G(s)

This yields an ideal compensator which is shown as a function of frequency
in Figure 3.32. The ideal compensator appears to be a lead network requiring
three or four lead components. After trying several compensators of different
order, a third order numerator design was settled on. While the design objec-
tives were achievable with both third or fourth order numerators, a third order
numerator was chosen in an attempt to reduce the compensator magnitude at
high frequency and limit noise amplification. The poles of the compensator
were iterated upon several times. The intention was to place them at a high
enough frequency so that they do not interfere with the compensator function
in the frequency range of interest; yet roll off the compensator to the extent
possible. This is the reason why the denominator has a higher order than the

numerator. A key advantage of using this methodology is demonstrated here,
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Figure 3.32: Bode Plot of the Ideal Compensator, Kzea(s)

i.e. the ability to choose the compensator structure, order and complexity to
obtain the design goals. The structure of the selected compensator was fixed
to be

(o383 + -+ + )

Kl'nner = .
() = T35 7170035 1 1)

The methodology has built-in flexibility to minimize the difference between
the closed loop transfer function, Tinner and the desired closed loop transfer
function H based on a least squares fit of ag, a;, a3, a3. Thus, using a frequency

vector from 0.1 to 10 rad/sec, yields a compensator of the form

0.9883(3.687s + 1)(1.692s% + 1.2155 + 1)

Kinner(s) = (,023 -+ 1)2(.033 + 1)2

Examining the closed loop poles and their damping ratios and frequencies,
in Table 3.6, shows that the damping has been increased substantially from
the uncompensated plant. Notice as k increases from 0.5 to 2.0 a set of poles

migrates from the real axis towards the imaginary axis. At k equal to 2.0 these
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poles have a damping ratio of only 0.1925 at 12.8 radysec. The decision has
been made to trade off this damping and gain margin for reduced magnitude

of the compensator at high frequencies.

[ k=03 i k=14 i k=2 ]
Poles w ¢ Poles w ¢ Poles w ¢
-0.3879 | .3879 1 -0.3703 | .3703 1 -0.3637 | .3637 1
-.7622-.5303; | .9285 | 0.8209 -.539-.4908] | 0.729 | 0.7394 -.4919-.4818) | .6886 | 0.7144
-.76224-.5303; | .9285 | 0.8209 -.339+.4908) | 0.729 | 0.7394 |} -.4919+.4818j | .6886 | U.T144
-2.394 | 2.394 1 -3.179-7.641j | 9.231 | 0.5611 -2.47-12.39j | 12.83 | 0.1925
-12.07 | 12.07 1 -5.1794+7.641j | 9.231 | 0.5611 -2.47412.5395 | 12.83 | 0.1925
-43.87-18.63j | 47.66 | 0.9204 -44.59-22.46j | 49.93 | 0.8931 -45.51-26.78) 52.8 | 0.8619
-43.874+18.63; | 47.66 | 0.9204 -44.59+422.46j | 49.93 | 0.8931 -45.31426.78; 52.8 | 0.8619
-62.56 | 62.56 1 -65.67 | 65.67 1 -69.36 | 69.36 1

Table 3.6: Closed Loop Poles of T;,ner: Design B

Examining the root locus of Ty,,.,, Figure 3.33, shows that a pole pair
begins real for k equal to 0.5 and moves towards the imaginary axis as k

increases. This is the pole pair referred to above.

30 , —_— —

20 \ ...... S . —

10k i

g Ol ............ ________________ ....... .r

Figure 3.33: Root Locus of the Closed Loop System, Tinner(s) for 0.5 < k < 2.0

The open loop bode plot, shown in Figure 3.34 reveals that the systems

have a wide range of crossover frequencies for varying k. The closed loop bode

97



k=05 =10 k=20
Gain Margin 6.97 3.47 1.72
Phase Margin (deg) | 53.5 45.8 23.7

Table 3.7: Gain and Phase Margin of the Open Loop System, GKinner: De-
sign B
plot in Figure 3.35 indicates that the inner loop compensator has performed
its main function of removing a large part of the effects of the parameter
uncertainty in the frequency range of interest. The reduced damping at 12.8
rad/sec for k equal to 2.0 is rolled off enough so it should not impact the
subsequent H,, design.

Gain and phase margins of the inner loop compensator are slightly worse
than that of design A (see Table 3.4 vs. Table 3.7). However, nominally, they
are reasonable relative to classical controller design theory. Note the declining

gain margin as the pole pair discussed above moves towards the imaginary

axis.

3.5.2 Constructing the H,, Compensator: Design B

For this H, design the standard feedback configuration will also be used as
explained in Sections 2.5 and 3.4.3. The weight W;(s) used here is also subject
to some conditions. First it must be designed to provide a constraint on the
disturbance sensitivity. Secondly, instead of “obscuring” the free integrators of
the plant, a free integrator must be added to assure a zero DC gain. Since the
H, methodology does not accept free integrators, a very slow pole will be used
to approximate the integrator and prevent numerical computation difficulties.

After several iterations the following weights and scalings are found to

provide a compensator which meets the design requirements.

1 0.02p

Wile) = S T Tx109)
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1
Wy(s) = =0.02
2(s) "

W3(s) = %sz

The near optimal H, compensator found had scaling values of

The bode magnitude plots of the inverses of the weights and the sensitivity

specification, W/(s) are shown in Figure 3.36.

I — S —

Magnitude (dB)

BT A o i IW1p®) : .

R W)

-120 R o bt T
102 10+ 100

Frequency (rad/sec)

Figure 3.36: H,, Design Weights and Actual Sensitivity Specification

The compensator obtained is shown in Figure 3.37; it is very similar to the
compensator obtained in design A with the addition of the low frequency pole

approximating an integrator. The state-space realization of the compensator

is given in Appendix B.2.1.
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Figure 3.37: Bode Plot of the H,, Compensator

The compensator provides a stable closed loop system over the full range
of parameter variation. The range of k for which the closed loop system is

stable is

0.21 < k < 3.42.

The closed loop poles are reasonably well damped in the frequency range
of interest for the full range of k. This is illustrated by the root locus in
Figure 3.38; note one pair of the complex poles has decreased damping as k

goes from 1 to 0.5.

3.5.3 Frequency Response of the Compensated Sys-
tem: Design B

The bode plot of the open loop system, G( Ko + Kinner ), is given in Figure 3.39.
As expected, it is very similar to Figure 3.19 for Design A. Interestingly the

magnitude plot crosses over at less than -20 dB/decade.
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Figure 3.38: Root Locus of the Plant with Inner and H,, Compensators for
0.5<k<20
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Figure 3.39: Bode Plot of the Open Loop System G(Kinner + Ko) for k =
0.5, 1.0, 2.0
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The gain and phase margins of the open loop system are shown in Table 3.8.
The margins are slightly degraded from Design A but provide reasonable sta-
bility robustness. The same trends as in Design A are present, though in this

design phase margin continues to increase as k decreases.

k=05 k=10|k=20
Gain Margin 6.99 3.48 1.73
Phase Margin (deg) | 52.9 46.3 23.9

Table 3.8: Gain and Phase Margin of the Open Loop System, G(Knper + Koo ):
Design B

The closed loop bode plot is shown in Figure 3.40 and varies from that in
design A. It has slightly less bandwidth, 0.9 rad/sec versus 2.4 rad/sec, but
does not have the peaking of Design A which contributes to this increased
bandwidth. The closed loop shape for design B is better from a command

following viewpoint.

0 -
g
3
2 -
)
s
e 101

Phase (deg)

sm e P T i b h b d A
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Figure 3.40: Bode Plot of the Closed Loop System T'(s) for k = 0.5, 1.0, 2.0

103



Again the sensitivity transfer function is of great importance and its bode
plot is shown in Figure 3.41. Disturbances are attenuated past 2 rad/sec for
the nominal case (as for Design A) and past 1 rad/sec regardless of the value

of k.

Magnitude (dB)

5 b

4

Figure 3.41: Bode Plot of the Sensitivity Transfer Function S(s) for k =
0.5, 1.0, 2.0

The transfer function from the design disturbance w to z is shown in Fig-
ure 3.42. It appears that Design B should also do a good job in rejecting w,
as w is attenuated over all frequencies.

Finally, it is of interest to check the noise transfer function, N(s). It is
shown in Figure 3.43 and is very similar to that of Design A. This design will
also have poor noise attenuation.

Based on frequency response analysis it appears that the combination of
inner loop and H,, has yielded a compensated system which will successfully

meet most of the design requirements.
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Figure 3.42: Bode Plot of the Transfer Function from w to z for k =
0.5, 1.0, 2.0
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Figure 3.43: Bode Plot of the Transfer Function, N(s), for k = 0.5,1.0,2.0
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3.5.4 Time Response of the Compensated System:
Design B

The time response of this system to a unit impulse disturbance w is shown
in Figure 3.44. Again both the performance variable z and the controls are
presented. The response is very comparable to design A (no surprise based
on the comparative frequency responses). The performance variable z has a
very similar trajectory, meeting the specified requirements for the entire range
of parameter variation. The inner loop control again has a very large initial

response to the disturbance.

03 1000 -
~ ' 3
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Figure 3.44: Closed Loop System Response to a Unit Impulse Disturbance

In general, the time response of Design B is very similar to Design A, except
for the step response. The step response shown in Figure 3.45 has very little
overshoot and rise times of less than four seconds regardless of the value of k.
The command following performance of the system is robust to the parameter

variation.
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As stated above, the remainder of the time response is very similar to
Design A and so it is presented without comment in Figures 3.46 and 3.47.

Overall, the time response of the compensated system meets the require-
ments of Section 3.2 and provides excellent command following performance,

over the entire range of parameter variation.

3.5.5 H, Compensator Order Reduction: Design B

Again the technique of Schur model reduction was applied to the H,. compen-
sator. The resulting reduced order compensator has six states (versus nine)
and its state-space realization is given in Appendix B.2.2. The bode plot of
the reduced order compensator is indistinguishable from that of the full order
compensator. The infinity norm of the difference between the compensators
is equal to 0.023.

The root locus plots of the closed loop with the reduced order compensator
are shown in Figures 3.48 and 3.49. Stability over the full range of parametric
uncertainty is unchanged with the reduced order compensator. Performance
with the reduced order compensator is indistinguishable from that of the full
order compensator. The figures containing the system performance with the

reduced order compensator are shown in Appendix D.

3.5.6 Summary of Design B

The compensator system designed provides excellent performance and sta-
bility robustness to the full range of parameter variation. The compensator
system provides Type 1 system response for the closed loop system and met

the following design objectives.

o The closed loop system is stable over the entire range of parameter vari-

ation. The range of k for which the system is stable is 0.21 < k < 3.42.
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Figure 3.45: Closed Loop System Response to a Unit Step in the Reference
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Figure 3.46: Closed Loop System Response with Measurement Noise to a Unit
Impulse Disturbance
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Figure 3.47: Closed Loop System Response to a Sinusoidal Disturbance

o The system attenuates a unit impulse disturbance to at least 25% of the

input magnitude. The system has a settling time of less than 15 seconds.

This is regardless of the value of k.

o The sinusoidal disturbance is attenuated by more than 50% and is asymp-
totically rejected in less than 20 seconds regardless of the parameter

variation.

o The performance variable response to a step change in the reference has
characteristics of a 4 second rise time and almost no overshoot, regardless

of the parameter variation.

o The system has phase and gain margins of
23.92 < PM <£52.85

1.73<GM <£6.99
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Figure 3.48: Root Locus of the Design B Closed Loop System with the Reduced
Order H, Compensator for 0.5 < k < 2.0 - Poles Near the Origin
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Figure 3.49: Root Locus of the Design B Closed Loop System with the Reduced
Order H,, Compensator for 0.5 < k < 2.0
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for 0.5 <k <2.0.
The following objectives were not fully met.

o The controller effort was large in response to the impulse disturbance

and measurement noise (re: discussion in Sections 3.4.5 and 3.4.7).

e The compensator system is complex, consisting of a four state inner loop

compensator and a six state H, compensator, a total of ten states.

¢ Measurement noise is not attenuated till almost a decade past the closed

loop system bandwidth.

The compensated design met the performance objectives of the problem
using a complex, high bandwidth compensator system. The advantages and

disadvantages are discussed in Section 3.4.7.

3.6 Comparison to Published Results for a
Benchmark Problem for Robust Control

Five papers presented at the 1990 ACC [4, 6, 7, 17, 22] proposed compensators
to meet the requirements of this problem. A comparison with those papers of
the designs presented in this thesis elicits the following conclusions.

All of the papers stabilized the closed loop system over the range of param-
etric variation, 0.5 < k < 2.0, except [4] which was stable for 0.55 < k < 2.0.

The impulse disturbance time response of the designs presented here is
superior to all of the ACC designs except that by Chiang and Safonov [6].
The impulse disturbance response specifications are met by only [6, 7] for the
nominal case and only [6] over the entire range of parameter uncertainty. No

impulse response was presented for [22].
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The only papers which investigated the sinusoidal disturbance were [6, 22],
with the design of Rhee and Speyer [22] designed specifically designed to reject
a sinusoidal disturbance at 0.5 rad/sec. Both designs met the requirements
with [22] completely attenuating the sinusoidal disturbance. Both designs
presented here also meet this requirement and effectively attenuate a sinusoidal
disturbance at any frequency.

The compensator designs presented here are of greater order than any of
the other designs with the exception of [22] which is an 8 state compensator.

Control magnitudes given in this thesis are greater than the control mag-
nitudes of the ACC compensators except for that of Chiang and Safonov [6]
which is a lead network with a high frequency gain of greater than 100 dB.
The problems that apply to the inner loop compensator due to its high gain,
will also apply to Chiang and Safonov’s compensator.

The effects of measurement noise are only investigated by [22]. The noise
model used is ['v where I' is 0.033 and v has unit covariance. This noise does
not appear to show up in the system output and has no significant impact on
the control effort.

The designs presented here have higher gain and phase margins than the
designs which tabulate their margins. All of the compensators except [6] were
nonminimum phase. Both compensators presented here are minimum phase.
This is important for implementation.

Overall the designs presented here compare favorably to the designs pre-
sented at the ACC. Both designs give better performance and stability margins
than most of the designs from the ACC. The designs presented here trade in-
creased complexity, controller effort, and noise rejection for the performance

gained.
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Chapter 4

A MIMO Mass-Spring-Dashpot
Problem

4.1 Introduction

In this chapter the design methodology outlined in Chapter 2 and sucessfully
applied to Wie and Bernstein’s SISO problem (Chapter 3) is applied to a multi-
input multi-output (MIMO) problem with parametric uncertainty. Again the
problem considered is a mass-spring problem, though in this case the problem
contains dashpots and so it is lightly damped. Here there are two inputs and
two outputs, with one set of sensors and actuators colocated and the other
non-colocated. The basic framework of the problem is set up as in Wie and

Berstein’s and similar requirements will be applied.

4.2 The Plant: A MIMO Mass-Spring-Dashpot
(MSD) System

A schematic diagram of the plant can be seen in Figure 4.1 below. Here the

actuators of the plant (the inputs) are forces acting on m,; and m, while the
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plant sensors (the outputs) measure the positions of m; and m;.

Figure 4.1: Schematic Diagram of the MIMO Mass-Spring-Dashpot Plant
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Where the variables are defined as:

m; = mass of body 1

k; = spring constant of spring :

b, = damping factor of dashpot ¢

z; = position of body 1

z, = position of body 2

z3 = position of body 3

z4 = velocity of body 1

z5; = velocity of body 2

z¢ = velocity of body 3

u; = control input (force) acting on body 1

u, = control input (force) acting on body 2

w = plant disturbance (force) acting on body 3
y1 = measured position of body 1

y2 = measured position of body 3

z; = performance variable, position of body 1-
2, = performance variable, position of body 3

v = measurement noise

This problem is taken from [1].
Now for simplicity in handling the problem let

ml_—_m.,=m3=m=1

4

by = by = by = by = b = 0.002.
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Let the nominal value of the spring constants be
kl _ .. = k(; =1

with the parametric uncertainty manifested as a simultaneous variation in the

all of the spring constants such that

and

0.5<k<20.

Obviously, uncertainty in the value of the spring constants could result in
a large number of plant variations. This simultaneous variation is intended for
simplicity in handling the problem. No effort has been made to check whether
this represents a worst or best case in terms of plant variation and uncertainty.
The design specifications may be considered essentially the same as those

in Chapter 3.

4.3 Analysis of the Plant

The nominal plant has the singular value plot shown in Figure 4.3 and clearly
reveals the system has three pairs of lightly damped poles. The system has no
transmission zeros. As k varies the singular value plots at the extreme varia-
tions, k = 0.5 and k = 2.0, are shown in Figures 4.2 and 4.4. A comparison of
the maximum singular values as k varies is shown in Figure 4.5. The changing
value of k affects both DC gain and pole location of the plant. The gain varies
about 10 dB and the poles move about 1.5 rads/sec in frequency.

The nominal poles, natural frequencies, and damping ratios are tabulated

below.
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Figure 4.2: Singular Value Plot of G for k = 0.5
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Figure 4.4: Singular Value Plot of G for k = 2.0
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Figure 4.5: Maximum Singular Value Plot of G for k& = 0.5, 1.0, 2.0
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Pole ¢ w
-0.001+1.0005 | 0.0010 | 1.000
-0.001-1.0005 | 0.0010 | 1.000
-0.001+2.0005 | 0.0010 | 2.000

1 -0.001-2.0007 | 0.0010 | 2.000
-0.003+2.0005 | 0.0015 | 2.000
-0.003-2.0005 | 0.0015 | 2.000

Table 4.1: Poles of the Nominal MIMO MSD System

The locations of the poles are shown as a function of the spring constant,
k, in Figure 4.6 below. Note that varying k only changes the real part of each

pole, the imaginary part remains fixed.

‘
Al | L]

2 i ‘- -1
3 : A b
x -> Nominal Poles: _
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-0.01 -0.008 -0.006 -0.004  -0.002 0
Real

Figure 4.6: Plant Pole Location for 0.5 < k < 2.0

With this in mind an attempt will be made to design the inner loop com-

pensator.
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4.4 Design of the Model-Matching Inner Loop
Compensator

The first step in designing the inner loop compensator is choosing a desired
plant, Hy. To assist in doing this it will be necessary to obtain bode plots
of the individual plant input/ouput channels. These are shown in Figure 4.7
for the nominal plant. Interestingly, channels G5, Gy, and G5, are identical
while G| has a higher DC gain and rolls off more slowly. Notice each transfer
function contains two pairs of lightly-damped poles and no zeros, except for
G1; which has a pair of lightly-damped zeros.

After several iterations a desired plant is chosen such that it mimics the
actual plant but has all of its poles on the real axis. The transfer function
elements of the desired plant were picked by moving the undamped poles of
the nominal plant to the real axis (at the same natural frequency) and choosing
the DC gain so the desired plant element’s magnitude is less than the actual
plant element’s magnitude over all frequencies, as per the SISO inner loop
designs. Except for the 11 channel where the plant has lightly damped zeros
and the desired transfer function omits both those zeros and a lightly damped
pair of poles. The desired plant, Hy, which meets the conditions above has

individual channel transfer functions of

(0.5)(1.4142)?

Z (s + 1.4142)(s + 1.4142)
2o (0.2)(2)°

S e

a7 (0.2)(2)?

(s +1)*(s +2)7
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Figure 4.7: Bode Plots of the Channels of the Nominal Plant
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These transfer functions are shown in Figure 4.8, which compares the magni-
tude plot of each channel of the desired plant with the respective magnitude

plot of each channel of the nominal plant. This illustrates the points discussed

above.
12
50+ T
dbol L ed
db o
-50+ .
-50F -
00k - - e .
-100 " .. Desired Plant * ~ \
— Nominal Plant i -150 b Nominal Plant ;)
102 102 10-2 102
Frequency (rad/sec) Frequency (rad/sec)
— 2
dbo‘i- .}\A : -} dbo‘. ‘ -
150 = Nominaf Plang - & -150 <. Nominal Plant -\
102 102 10-2 102

Frequency (rad/sec) Frequency (rad/sec)

Figure 4.8: Bode Plots Comparing the Channels of the Desired Plant, Hy, to
the Nominal Plant, G

Computing the frequency plots of the ideal compensator, Kijea, (again,
channel by channel) from equation 2.29 yields the results shown in Figure 4.9.
The ideal compensator is similar to the SISO problem in being essentially a
lead network, or here, a set of lead networks. Obviously, this may cause mea-
surement noise problems. In any case it is desirable to have the compensator
design of the lowest order which effectively removes most of the parameter

uncertainty. After several iterations on compensator. order and pole location
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the model matching design method produced the following compensator:

gy D976(2755s + 1)

inner 0.01s +1
g _ —1193(2769s — 1)
inner T 0.01s + 1
go . —L178(2819s 1)
inner 0.01s + 1
gz —0-580(=33.49s + 1)(0.439s? + 0.6598s + 1)

(0.01s + 1)(0.01s + 1)(0.025 + 1)

The actual compensator has less lead than the ideal compensator. Chan-
nels 11,12, and 21 each contain a lead-lag, while channel 22 has three lead-lags.
The design process showed that it is channel 22 which is crucial to the design.
The compensator poles were chosen to give causal compensator realizations
which would allow the desired transfer function Hy be attained, yet reduce the
effects of the large lead networks necessary at high frequencies. As can be seen
from the transfer functions, the poles had to remain at high frequency and the
channel 22 lead network is of large magnitude at frequencies above crossover.
The bode plot of each channel of the actual compensator, K;, .- is shown in
Figure 4.10 and the compensator singular value plot is hsown in Figure 4.11.

When this inner loop compensator is combined with the plant, it yields
the closed loop poles, with respective frequencies w and damping ratios (, as
compiled in Table 4.2 for the standard values of k.

The inner loop compensator provides a closed loop transfer function, Tinner,
which is stable over the entire range of parameter variation. The damping
ratios of the closed loop poles are also substantially improved over those of
the base plant for the full range of parameter variation. The movement of the

closed loop poles as the spring constant varies, is shown in the root locus in
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Figure 4.10: Bode Plots of the Inner Loop Compensator, K;uner, Channels
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L k=0.5 B k=1.0 k=20 1
Poles « I Poles - I3 Pales w ¢
-0.2168 2168 1 -0.5862 5862 i -.4U83-.8373j 9316 1382
-0.5658 .5658 1 -.8103-.7179j 1.083 | 0.7T485 -.-JU834.8373] 9316 .1382
-1.321 1.321 ] -.8103+.7179] 1083 | 0.T483 -1.3135 1.313 1
-1.528-1.438j 2.098 | 0.7282 -1.47-1.089) 1.829 | 0.8036 -1.397-2.299j 2.69 .3194
-1.52841.438) | 2.U98 | 0.7282 -1.47+1.089) 1.829 | 0.8036 -1.39742.299j 2.69 | .3194
-2.518 | 2.518 1 -15.37 | 15.37 1 -12.41-20.36j | 24.01 .5168
-36.12 | 36.12 1 21747 | 1747 1 -12.41420.56j | 24.01 .5168
-97.22 | 97.22 1 -97.22 | 97.22 1 -97.23 | 97.23 1
-104.5-18.04]j 106 | 0.9854 -107.4-23.69j 110 | 0.9763 -111.5-30.47) 115.6 .9646
-104.5418.04) 106 | U.9834 -10U7.4423.69j 110 | 0.9765 -111.5430.47] | 115.6 | .9646

Table 4.2: Poles of the Closed Loop System, T;n.r, k = 0.5, 1.0, 2.0

Figure 4.12. This is the root locus of the poles of Tinper, obtained by varying

the spring constant, k, in the closed loop A matrix, as were those shown for

the benchmark problem.

Figure 4.12: Root Locus of the Closed Loop System, Tipner, for 0.5 < k < 2.0

The next three figures show the open loop singular value plots of the sys-
tem, with the loop broken at the plant output G K;,,.r, for the standard values
of k. Figure 4.13 shows k = 0.5, Figure 4.14 shows k = 1.0 and Figure 4.15

shows k = 2.0. Figure 4.16 compares the maximum singular values of each.
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Similarly, the closed loop, Tinner, singular value plots are contained in Fig-
ure 4.17, Figure 4.18, Figure 4.19 and Figure 4.20. The inner loop compensator
has successfully removed a large amount of the plant variation generated by
the parametric uncertainty, the poles are well damped and the remaining un-
certainty consists of varying DC gain and system bandwidth. Since the DC
gain of Tj,,., still varies with k, the H, compensator will be augmented with
an integrator to eliminate this in the final closed loop transfer function, T.
The system is amenable to stable H., designs over the range of parametric

uncertainty.

4.5 Design of the H Compensator

The design of the H,, compensator begins with the selection of weights. In
this problem, as before, W;(s) will be used to provide not only disturbance
rejection but integrators to provide a DC gain of one in the closed loop system
regardless of the value of k. The integrator, again approximated as a very slow
pole, will also provide zero steady state error to any commanded reference in-
put. Since the closed loop sensitivity of the entire system will differ from that
as constrained by W;(s), as explained in Section 2.5, it must be chosen care-
fully. W3(s) will provide a limit on the closed loop bandwidth of the system,
it is chosen to provide reasonable time response without unduly extending the
closed loop bandwidth. If the closed loop bandwidth were overextended, it
could have negative implications for both performance and stability robust-
ness. Finally, W, will be used to guarantee that the augmented plant, P’,
meets the requirements of the H, methodology.

The weights chosen after some iteration were

1 0.2p O
+0.000001
W (5) = ; 0.20
0 $+0.000001
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Figure 4.20: Closed Loop Maximum Singular Value Plot for k£ = 0.5, 1.0, 2.0
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Where, in the compensator chosen,

These parameters were chosen by fixing «, and, thusly, the closed loop band-
width of the system, and then varying p until the sensitivity function is nearly
minimized in the frequency range below crossover. The bode magnitude plots
of the diagonal elements of the weights are shown in Figure 4.21 along with
the constraint implied on the actual sensitivity function, W/(s).

The singular value plot of the compensator obtained from these weights is
shown in Figure 4.22. The integrators are apparent in the plot of the com-
pensator. The compensator has a large magnitude across the frequency range
of interest (the frequencies around the open loop crossover frequency). The

state-space realization of the compensator is given in Appendix B.3.1.

4.6 Analysis of the Closed Loop System

The closed loop system, T(s) is stable over the entire range of parameter

variation, 0.5 < k < 2.0 and is stable over a range of

0.21 < k < 7.89.
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The movement of the poles with k is illustrated by the root locus in Figure 4.23.
Closed loop damping decreases as k varies from its nominal value. A survey of
the minimum damping ratios and their associated natural frequencies among
the closed loop poles for the three standard values highlights this fact. The
data is presented in the table below, Table 4.3.
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Figure 4.23: Root Locus of the Poles of the Closed Loop System for 0.5 > k >
2.0

k=05|k=10 k=20
Minimum ¢ | 0.2712 | 0.6356 | 0.3839
w 1.086 | 2.165 1.232

Table 4.3: Table of the Minimum Damping Ratio of the Closed Loop Poles

Figure 4.24 shows the effect on the minimum damping ratio of the low
frequency poles of k varying from 0.5 to 2.0. The performance degradation as
k varies will be more pronounced than in the SISO case due to these under-

damped poles at low frequencies.
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Figure 4.24: Minimum Zeta of the Closed Loop System as a Function of k

The gain and phase margins of the closed loop system are presented in
Table 4.4. The system demonstrates good stability margins for the entire

range of parameter uncertainty. Furthermore, it must be remembered that:
e This is a conservative measure of stability (See Section 2.2).

e The optimal values are obtained by taking the co-norm of the sensitivity
function equal to one and substituting it into the definitions for the
gain/phase margins, equations 2.7, 2.8, 2.9.

|Gain Margin = 3
TGain Margin = oo

Phase Margin = 60 degrees
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k=05 k=10 k=20
TGM 5.408 | 3.204 | 2.024
\GM 0.550 | 0.592 | 0.664
PM (deg) | 48.10 | 40.23 | 29.31

Table 4.4: Multivariable Gain and Phase Margins of the Closed Loop System

4.7 Frequency Response of the Compensated
System

The open loop singular value plots of the system with the loop broken at the
plant output are shown in Figures 4.25 to 4.28. The figures show the open
loop singular values for (in descending order) k = 0.5, k = 1.0, k¥ = 2.0 and
the maximum singular values of each superimposed. The regulator open loop
singular value plots are identical to the servo plots presented here and are
shown in Figures 4.29 to 4.32. This implies that stability margins at the plant
input are identical to those at the plant output.

The closed loop singular values are generally shaped well with minimal
peaking for the cases k = 1.0, 2.0. There is more peaking at k¥ = 0.5 which is
not surprising given the low damping ratio of the closed loop poles. The plots,
presented in the same format as the open loop singular values, are shown in
Figures 4.33 to 4.36.

The capability of the compensated system to reject disturbances at the loop
output, as measured by the sensitivity function, is presented in Figures 4.37
to 4.40. The best disturbance rejection occurs when k = 0.5. Though the
disturbance is fairly consistent over the range of k, there is additional peaking
at 20 - 30 rad/sec when k = 2.0. The plant will reject most disturbances over
the range of parametric uncertainty. The disturbance rejection performance
could have been predicted from the stability margins, see Section 2.2.

The transfer function from the specific disturbance specified in the problem
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Figure 4.26: Singular Value Plot of the Open Loop Servo Transfer Function
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Figure 4.27: Singular Value Plot of the Open Loop Servo Transfer Function
for k = 2.0
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Figure 4.29: Singular Value Plot of the Open Loop Regulator Transfer Func-
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Figure 4.30: Singular Value Plot of the Open Loop Regulator Transfer Func-
tion for £k = 1.0
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Figure 4.31: Singular Value Plot of the Open Loop Regulator Transfer Func-

tion for k = 2.0
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Figure 4.34: Singular Value Plot of the Closed Loop Transfer Function for
kE=1.0
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Figure 4.36: Maximum Singular Values of the Closed Loop Transfer Functions
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statement to the performance variable z is considered. Since there is only a
single disturbance input there is only one singular value. This is presented as
a function of frequency in Figure 4.41 which contains the singular values of the
transfer function for the three standard cases of k. The response is attenuated

well, peaking at 0 dB for the case when k is 0.5, otherwise it is always less

than 0 dB.
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Figure 4.41: Singular Values of the Transfer Function from Disturbance to
Output for & = 0.5, 1.0, 2.0

Finally, the transfer function from measurement noise to the performance
variable is considered, N(s), the singular value plots are shown in Figures 4.42
to 4.45. They indicate that measurement noise is amplified in the output,
primarily due to the inner loop compensator channel 22. This effect is worst

for k equal to 1.0, where it extends out to 30 rad/sec.

4.8 Time Response of the Compensated Sys-
tem

The time response of the compensated system is considered for a variety of
disturbances and commands, both with and without noise. Specifically, the

time responses are:

~ e A unit impulse disturbance at time zero.
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Figure 4.43: Singular Value Plot of the Transfer Function, N(s) for k = 1.0
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e A unit impulse disturbance at time zero with measurement noise.
e A constant sinusoidal disturbance.
o Step commands in the references at time zero.

For a unit impulse at time zero the system behaves as shown in the following
several plots. For the cases k = 0.5, 1.0, 2.0 the following plots are given for

each:

1. The performance variable z.
2. The inner loop compensator control signals.
3. The H, compensator control signals.

The plots for k equal to 0.5 are contained in Figure 4.46, for k equal to 1.0
in Figure 4.47, and for k equal to 2.0 in Figure 4.48. For k = 1.0, 2.0 z settles
within 10 seconds. The lower damping when k£ = 0.5 degrades that response
considerably, but it still settles within 15 seconds. As could be expected from
the previous chapter the initial inner loop control effort is quite large in the
second control output. This is due to the large lead network in the 22 channel
of the inner loop compensator. The first inner loop output and the H.. control
effort are of reasonable magnitude.

The response to the impulse disturbance with measurement noise present
in is presented in Figures 4.49 to 4.51 for k equal to 0.5, 1.0, and 2.0. The
noise is considerably amplified by K22 ... This effect can be seen in the output
regardless of the value of k and is not surprising if one considers Figures 4.42
to 4.45.

The response to a sinusoidal input disturbance at a frequency of 0.5 rad/sec
is shown in Figures 4.52 to 4.54 in the standard format. The disturbance is
well attenuated (as expected from Figure 4.41) and asymptotically rejected in

15 seconds or less over the full range of parametric uncertainty.
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Finally, to understand the command following capabilities of the system,
equal and opposite step changes to the references were injected. The results
are presented in Figures 4.55 to 4.57. For the nominal case response is excellent
with a rise time of less than 3 seconds and no overshoot in either output. The
off nominal designs don’t fare as well; for k equal to 0.5 there is an overshoot
of about 70% and a settling time greater than 10 seconds for the position of
mass 1. Mass 3 is better with less than 20% overshoot and a rise time less
than 3 seconds. For k equal to 2.0 there is no overshoot but rise times are at

about 10 seconds for both masses.

4.9 H, Compensator Order Reduction

The H, compensator constructed has 12 states. To reduce the number of
states a square root balanced-truncation algorithm was applied and a 7 state
compensator resulted. The infinity norm of the difference between the com-
pensators is equal to 1.1207. However, the difference in the singular values of
the full and reduced order compensator is shown in Figure 4.58. This differ-
ence is very small over the entire frequency range shown. The full state-space
realization is found in Appendix B.3.2.

The closed loop root locus, obtained by varying k from 0.5 to 2.0, is shown
in Figure 4.59 and Figure 4.60. No loss in stability or performance robustness
occurs with the reduced order compensator. The remainder of the frequency
and time response plots are very similar to those found above for the full order

H,, compensator. They may be found in Appendix E.

4.10 Design Summary

The design methodology was used to design two compensators for a MIMO

mass-spring-damper system with three lightly-damped pole pairs and with
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Figure 4.58: Difference in the Maximum /Minimum Singular Values of the Full
and Reduced Order H,, Compensators

simultaneous uncertainty in the value of the spring constants, k. The resul-
tant compensator consists of a four state inner loop compensator and a seven
state reduced order H,compensator, so the compensator system has twelve

states.The compensated system accomplished the following:

o The closed loop system was stable over the entire range of parameter

variation, 0.5 < k < 2.0 and extended the range of stability to

0.21 < k < 7.89.

e The multivariable stability margins were for the range of parametric
variation:

29.31 < PM <48.13

2.02 <TGM < 5.42
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Figure 4.59: Root Locus of the Closed Loop System with the Reduced Order
H, Compensator for 0.5 < k < 2.0 - Poles Near the Qrigin
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Figure 4.60: Root Locus of the Closed Loop System with the Reduced Order
H,, Compensator for 0.5 < k < 2.0
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0.66 >|GM > 0.55

e Good disturbance rejection characteristics were obtained for the entire
range of parameter variation. The benchmark design problem specifica-

tions (Section 3.2) were met over the entire range of variation.

o Good command following characteristics were obtained for the nominal

case.
The design had the following drawbacks:
o Total compensator order was twice that of the plant (12 states).

e The inner loop compensator had a channel with large amounts of lead,
resulting in noise amplification and large impulse response compensator

effort.
e Command following performance was not robust to parameter variation.

The design methodology was sucessful in creating a design which met most
of the system requirements. The drawbacks involving compensator complexity
and large controller effort have been addressed previously in Section 3.4.7.
The lack of robustness in command following performance is more difficult to
address. It might possibly be improved by a new H, or inner loop design,

though this was not attempted.
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Chapter 5

Conclusions and Directions for

Further Research

5.1 Conclusions

The methodology was shown to be effective in providing compensator designs
which demonstrated performance and stability robustness to parametric un-
certainty. This was shown to be true for both the SISO and MIMO examples.
The methodology was shown to be flexible and relatively easy to use with all
specifications being presented in the frequency domain.

The advantage of the compensator design is an ability to desensitze the H.,
methodology to parametric uncertainty, at least for the case of lightly damped
poles. This is achieved by an inner loop compensator whose advantages are
based on its flexibility.

First, one can minimize the order of the inner loop compensator to that nec-
essary to achieve the desired performance level. Given, that H,, compensators
produce designs with order equal to that of the augmented plant this may be
quite important for implementation. Notice also, a similar model-matching

conpensator could be designed in place of the H,, compensator [18, 20] to fur-
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ther reduce the system complexity. Though there might not be any advantage
versus the reduced order H, compensator.

Another advantage is the ability to constrain elements of the compensator
to account for physical or designer prescribed constraints in the problem. This
was demonsatrated in the first thesis example. For certain types of problems
this could allow inner feedback compensators in which only some of the output
variables are used by the inner loop compensator, resulting in a simpler system.

While not used in these problems, the inner loop compensator can be de-
signed to weigh certain channels of the desired plant over others. For example,
if the plant had only one set of lightly damped poles, which only appeared in
certain channels of that plant, the methodology could be used to damp only
those channels. Then the resulting compensator might not need all of the
output variables, as described above.

The inner loop design method allows designers the ability to easily specify
the desired performance of the closed loop system through the desired plant.
For plants with lightly-damped poles this method was shown to work quite
well. Notice the method was equally straightforward for both SISO and MIMO
systems.

Drawbacks of the compensator designs were their high order, typically twice
that of the plants used in the examples. This seems to be unavoidable and is a
tradeoff for the performance attained. However, given plants in which not all
of the poles are lightly damped or near the real axis, the compensator order
should not continue to increase. For example, given a plant with two sets of
lightly damped poles, plus other plant dynamics, actuator dynamics, etc., it is
not expected that the inner loop compensator order would increase to almost
the plant order.

Another drawback was that for plants with lightly-damped poles and ac-

companying large phase loss the inner loop designs tended to be large lead
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networks. As was shown, such designs are sensitive to measurement noise
causing large control effort. The closed loop system was shown to have the
frequency at which the noise rolled off extended by the inner loop compensator.

Also for the inner loop compensator, the quality of the methodology that
allows its flexibility with regards to compensator order‘, constraints, weights,
etc., its implementation as point-by-point calculations of frequency responses,
prevents it from achieving any guaranteed stability or performance. However,
the calculation of the ideal compensator frequency response provides clues
as to whether a realizable compensator can be achieved which will stabilize
the system. If the ideal compensator does not have a “smooth” shape, it
indicates that a stabilizing compensator will be harder to achieve. Similarly,
the same holds true for the desired plant. A well chosen desired plant which
is achievable should yield a well behaved ideal compensator. Notice that for
all of the examples shown here this was true. A method is suggested in [18]
in which the least-squares problem is modified to find the numerator transfer
function matrix of the Youla parameter. Given a stable denominator transfer
function matrix the resulting compensator would have guaranteed nominal
stability. However, it would be impossible to fix any elements of the structure
of this compensator.

Finally, while there is no guarantee of convergence in the inner loop least-
squares minimization algorithm, for well chosen desired plants the algorithm
tends to converge quickly. If it does not, it is best to try a different desired
plant. Again, some possible improvements are given in [18].

Overall, the methodology was effective and staightforward enough that a
controls engineer with a basic knowledge of MIMO control design could use
it quite easily. While commercialized computer tools that perform the inner
loop design are not currently available, they may be in the future and could

be relatively easily constructed given a basic controls package such as PRO-
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MATLAB. H, computer design tools are readily available and can also be

relatively easily constructed given a Riccati equation solver.

5.2 Directions for Further Research

While the methodology fared well in the examples presented here, a wider
range of plants with parametric uncertainty need to be considered. For ex-
ample, plants with multiple uncertain parameters. In the MIMO example
presented in Chapter 4 the spring constants could be permitted to vary inde-
pendently of each other or the masses could also be permitted to vary. Given
this multiple parameter uncertainty, one must still determine its effect on the
individual transfer function elements of the plant in order to choose a desired
plant.

The use of robustness measures such as the SSV, MSM, etc., which can
measure the effects of real parametric uncertainty need to be considered along-
side the methodology. For exaxﬁple, given a design which has a plant with mul-
tiple uncertain parameters, what is the robustness of a compensator design to
the uncertainty. Since the design methodology presented here does not explic-
itly account for the parametric uncertainty, a method is needed to check the
robustness of the closed loop system for plants with multiple varying param-
eters. The examples presented in this thesis avoided this problem by dealing
with a single parameter variation. Notice that as an example, both of these
concerns could be addressed through Design 3 of the benchmark problem.

As mentioned above certain improvements to the model-matching method
are possible and should be explored. Also, it would be desirable to apply the
methodology to a realistic plant rather than the academic plants considered
here.

It should be remembered that while direct measurements of parametric
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uncertainty are desirable because they reduce the conservativeness of a design,
unstructured uncertainty is always present due to nonlinear dynamics, high
frequency dynamics, etc.

Also design techniques which directly account for parametric uncertainty,

for example [19], need to be evaluated.
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Appendix A

Derivation of Model-Matching

Design Equations

The folowing is a derivation of the result given in 2.4.5 which sets up the
model-matching least squares minimization. Since all of the transfer func-
tion matrices described in this appendix are expressed point-by-point in the
frequency domain, over an approriate frequency range of wnin < w < Whasx
where the transfer function matrices are non-singular, the inverses of any of
the transfer function matrices are always available.

Given a plant, G, and a desired plant, Hy, it is desired to find the feedback
path compensator, K, which minimizes the least squares error, €, between the

closed loop system, H, and Hy. H may be expressed as
H=(I+GK)'G (A.1)

and ¢ is defined as

eSH,-H. (A.2)
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This least squares minimization problem may be expressed as

min || Hy — Hll.

(A.3)

To accomplish the minimization it is desired to place equation A.3 in the form

min |[Y — AK B

(A.4)

To do so it is wished to convert equation A.2 to a form which can be placed

in the minimization problem in equation A.4.

Then starting with equation A.2 the derivation proceeds as follows:

e = Hi—H
= Hy—(I+GK)'G
= (I+GK)''(I+GK)H; -G
= (I+GK)'|GK + (I - GH, ") H,
= (I+GK)'GKH;+ (I +GK)'(I - GH,")H,
= HKH,+(I+GK)"'(Hy;-G)
= HKH,-H+(I+GK)'H,
= HKH,- H+HG'H,
— HKH,- H(I-G'Hy)
= H(G'H,-I)+ HKH,

This is now in the form of equation A.4 with

Y = H(G'Hy-1I)
A = —H
B = H,
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This completes the derivation.
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Appendix B

H~ Compensator State-Space

Realizations
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B.1 H, Compensator State-Space Realizations

for the Benchmark Problem: Design A

B.1.1 State-Space Realization of the H,, Compensator
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B.1.2 State-Space Realization of the Reduced Order

H, Compensator

01639 —1.367  0.1354  —1.196
—~0.1279 1527 —1.283 3.36
.‘k’;! -
—0.2791  5.339 —26.21  9.089
0196 03891 —28.05  4.699
[ —0.1579
02501
Brro =
' ~2.012
1679
Ckro = [-2.21 69.78  —104 1:;&9]

DK;;: = 1]
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B.2 H, Compensator State-Space Realizations

for the Benchmark Problem: Design B

B.2.1 State-Space Realization of the H,, Compensator

(1272 84T  -103 —1.138 0 0 4733 0 0
-81.7  —117 6006  13.18 0 U 3933 0 0
10.3 60.06 —-39.04 —=13.71 0 0 —1384 [§] (8}
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B.2.2 State-Space Realization of the Reduced Order

H., Compensator

T _i152 TeTI OTIT3 —1.195 =339 —g.23 ]
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B.3 H, Compensator State-Space Realizations

for the MIMO MSD Problem

B.3.1 State-Space Realization of the H,, Compensator

AK?O =
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B.3.2 State-Space Realization of the Reduced Order

H,, Compensator
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Appendix C

Benchmark Example: Design A
Reduced Order System Time

and Frequency Response
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Figure C.1: Bode Plot of the H, Compensator
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Appendix D

Benchmark Example: Design B
Reduced Order System Time

and Frequency Response

175



60 ——r———rrrer rrrrrre S— r——rrrr 315

1270
< 225
180
40~ . -_-90
-100+ . Jas
102 10 100 10!
Frequency (rad/sec)
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Appendix E

MIMO Example Reduced
Order System Time and

Frequency Response
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Figure E.4: Singular Value Plot of the Open Loop Servo Transfer Function for

k=2.0

)
>
n
D= 10! 100 10! 102
Frequency (rad/sec)
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k=0.5
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Figure E.30: Closed Loop System Response to a Sinusoidal Disturbance for
k=1.0
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Figure E.31: Closed Loop System Response to a Sinusoidal Disturbance for
k=20
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Figure E.32: Closed Loop System Response to a Reference Step Change for
k=0.5
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Figure E.33: Closed Loop System Response to a Reference Step Change for
k=1.0
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Figure E.34: Closed Loop System Response to a Reference Step Change for
k=20
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