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Abstract

Accurate modeling of the near wake remains a significant problem
in helicopter rotor aerodynamics. Motivated by the inability of present
models to achieve close agreement with experimental near-wake
geometries, an improved representation of the near-wake of a one-
bladed rotor is developed. Although this problem has been addressed
by others, close agreement with experimental wake geometries has not
been achieved.

A major problem in matching experimental results using
filamentary models involves specification of the proper vortex core size
for a curved point vortex. This arbitrary core size is needed to
eliminate the logarithmic induced velocity singularity and solutions
have been shown to vary significantly depending on the chosen value.
The present study uses a continuous vortex sheet rather than discrete
filaments, avoiding the need for a finite core size. The model represents
a one-bladed hovering rotor trailing a continuous vortex sheet. A free-
wake analysis using the Biot-Savart law is then applied to determine
the wake geometry in a fixed plane perpendicular to the initial position
of the blade. The singularity associated with the circulation distribution
at the tip is represented using a self-similar solution developed by
Pullin. Several circulation distributions are studied, including an
elliptical distribution and a distribution typical of a hovering rotor. For
the latter, the intent is to study the character of the vortex roll-up and
to determine if, counter to experimental evidence, a mid-span vortex
occurs as it has using past models.

Results from the current study may be used in conjunction with
discrete models to predict the proper core size to be used. In this
manner, the greater computational efficiency of discrete models may be
retained while obtaining the accuracy of a more rigorous near-wake



representation. This research could also be extended to forward flight
and incorporated in an existing full-wake analysis code as the near-
wake component.
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Nomenclature

d h segment of integration strip which produces a velocity at a point

in space.

I radius vector from dh to a point in space

r radial displacement corresponding to s

R radial displacement of marker corresponding to s

s location where circular integration strips are located

S location along vortex sheet where induced velocity is calculated

z vertical displacement of wake corresponding to s

Z vertical displacement of marker corresponding to s

28 width of linear region

'P rotor azimuthal angle, radians

Fb bound circulation



1. Introduction

1.1 Historical Note

Modeling the aerodynamics of a rotor has always been a difficult

task due to the geometric and aerodynamic complexity of the wake. In

the early 1900's, Kutta and Joukowsky related lift to vorticity in the

flow, providing the fundamental basis for vortex modeling of rotor

wakes. This approach utilizes the Biot-Savart law which allows

determination of the induced velocity at any position in the wake and

modeling of the wake deformation and displacement in unsteady flows.

1.2 Previous Rotor Wake Research

Many different analyses and models evolved using vortex

modeling, including the vortex sheet and filamentary models discussed

below. The most recent development in vortex modeling has been free-

wake analysis, defining the complete wake geometry using the

calculated induced velocities. Free-wake analyses are physically more

correct than previous models and, for that reason, many recent studies

have been focusing on utilizing and optimizing this method of analysis.

Motivated by the inability of existing models to accurately predict

near-wake geometry, this thesis focuses on an improved representation

of the near-wake of a one-bladed rotor (the near wake is defined to

extend from I = 00 to T = 450). Although there are a variety of near

wake analysis programs using filamentary and vortex sheet models, the

need to specify an arbitrary core size limits their general applicability.

An example is an analysis by Miller1 where the near wake is modeled



as a series of semi-infinite vortex elements which are then rolled up

into two or three discrete vortices (before the first blade is

encountered) according to Betz criteria. 2,3  Since the mid-span and root

vortices which result have not been detected in any of the relevant

experimental studies, Miller states that an "exact prediction of the wake

structure" can not be determined from the results, and the roll-up

technique should only be viewed as a "convenient computational

technique to account for the effects of the inboard trailing vorticity". 4

A vortex filament model developed by Brower 5 considers the

entire rotor wake. Brower represents the near wake as straight vortex

segments and includes a correction for viscous core size (causing the

induced velocity to approach zero rather than infinity as the vortex

element is approached). Since Brower uses straight filaments, he adds a

correction factor for self-induced effects, since actual vortex filaments

leaving the blade are curved and will induce a velocity on themselves.

Brower found that the choice of core size had a significant effect on the

induced velocities at nearby points, and that the choice of core size

should be related to the computational mesh size. Most papers written

on filamentary models note difficulties in selecting a proper core size

due to the lack of a physically correct predictive model and an

incomplete understanding of how core size is related to specific flows.

Vortex sheet models for near wake analysis using a free-wake

approach have also been developed. An example is the model

developed by Tanuwidjaja. 6  The near-wake is modeled as a vortex

sheet with tip and root vortices. This method uses the Biot-Savart law

and divides the blade and wake into nodes which define discrete

segments, and sheet elements, which form the vortex sheet. The
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induced velocities, however, are not calculated at these nodes, due to

singularity problems at the discrete sheet elements. Instead, new

locations between the nodes called "centers" are defined. The induced

velocity is then calculated at these centers and linear interpolation is

used to find the velocities at the nodes. Since, however, Tanuwidjaja

uses discrete vortex sheet elements, the arbitrariness that stems from

the need to specify a finite core size is not eliminated.

1.3 Outline of the Present Research

In this study, unlike the iterative analyses by Miller, the model is

given a circulation distribution that is assumed- correct, and it then

calculates the induced velocities and resulting wake geometry by

integrating across the wake using the Biot-Savart law. The induced

velocities in the wake are calculated at sequential increments in time, so

"snap-shots" of the resulting wake geometry are obtained downstream

of the rotor. This process is repeated until an azimuthal angle of 1F=45

degrees is reached. This is a continuous model, therefore no finite core

size (except for the tip vortex) is needed, which eliminates the

arbitrariness in the solution due to core size specification.

As previously stated, the present research considers the near

wake of a one bladed rotor using a free-wake analysis. The entire wake

geometry is not considered, since the intermediate and far wakes are

comparatively well understood (although computationally time

consuming to analyze) 7 . Rather it is the intent to focus on a more

physically correct representation of the near wake, yielding results

which more closely match experimental data. By obtaining a more
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accurate near wake geometry, this program may be utilized in the

following ways.

1. To assist in selecting the appropriate core size to be used in

filamentary models where core size is included as a parameter.

2. To test other wake geometry programs to investigate the accuracy

of their solutions.

3. As the near-wake component in a full-wake analysis code.

Miller states, "It will never be possible to model exactly the

dynamics and aerodynamics of a system as complex as a rotary wing

vehicle. .... To this end the simplest forms of analysis, which retain the

essence of the phenomena involved, are of greatest value during the

crucial stages of design and flight evaluation."8  The difficulty lies in

knowing how to simplify a model while maintaining an acceptable level

of accuracy. While the model outlined in this thesis may be physically

more correct, it may not be practical to efficiently implement in free-

wake codes modeling the entire wake. The model is more

computationally time-consuming and mathematically difficult than

models such as Miller's fast free wake analysis. The best alternative

would be to use the knowledge gained from this research to improve

the results of more simplistic models, thereby achieving good results

while minimizing computational expense.

2. Description of the Model

The present axisymmetric model represents the near wake of a

one bladed rotor as a vortex sheet rather than by a series of discrete

12



filaments. This sheet is composed of 500 integration intervals which

contain the vorticity in the wake. In reality these integration strips

follow helical paths downstream of the rotor. Miller has shown,

however, that the effect of the inclination of these integration intervals

on the induced velocity is negligible. 9  This model is therefore

developed using integration intervals which are planar circles

perpendicular to, and centered about the z-axis (see figure 3.1-1). This

results in an axisymmetric flow pattern where the axial, radial, and

tangential velocity components are independent of I'. Since the circular

integration intervals remain perpendicular to the axis of symmetry as

the wake convects downstream, the tangential component of the

velocity will always be negligible. The purpose of this model is to

investigate how the wake deforms downstream of the rotor blade, and

to develop insight into the question of whether or not a discrete mid-

span vortex is formed. First, a description of the coordinate system is

provided, followed by an explanation of the primary non-dimensional

parameters. The "linear region" concept used to eliminate the

computational singularity in the induced velocity equations is then

described. Next, the exponential stretching technique used to define

integration strips (containing the vorticity in the wake) is discussed

along with the similarity solution developed by Pullin to handle the tip

singularity. Finally, a description of the vortex sheet will be given.

2.1 Coordinate System

The coordinate system for the wake geometry used in this

analysis is three-dimensional, consisting of radial (r), azimuthal (I) and

vertical (z) components, as shown in figure 2.1-1.
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Figure 2.1-1

- r

Z

Basic Coordinate System

The actual wake deformation is viewed in two dimensions in the r-z

plane (as shown in the side view above), producing two-dimensional,

time dependent wake profiles. To designate locations along the profile,

a sheet coordinate, "s", is introduced.

SIDE VIEW

Blade

s Wake

Figure 2.1-2 Definition of s Coordinate

To simplify the form of the equations, it is assumed that the two-

dimensional wake is always viewed from a fixed position ( =00) with
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the blade moving away at a positive angle.

additional angular velocity terms.

This approach eliminates

TOP VIEW

= 45 o

'I=0o

Wake always viewed at
T = 0 in r,z plane

Figure 2.1-3 Top View of Rotor

2.2 Non-Dimensional Parameters

All of the parameters used in the equations are non-

dimensionalized to insure flexibility in running test cases and

generalizing results.

Length

The sheet geometry is parameterized in terms of its arc length s,

non-dimensionalized by the blade radius. The sheet geometry is
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therefore defined by the coordinates r(s) and z(s), which are also non-

dimensionalized by the blade radius.

In the numerical scheme, the marker locations on the sheet where

the velocity is calculated are denoted by uppercase symbols S, R, and Z,

while the locations of the integration strips containing the vorticity are

denoted by lowercase s, r, and z.

marker r-location marker z-location
blade radius = blade radius

Angle

The angle P refers to the azimuthal angle (in radians) about the

axis of rotation extending from -x to x. This angle is shown in Figure

2.1-3.

Time

Time is non-dimensionalized by 0, the rotational speed of the

rotor (i.e. t* = t Qi). As an example, an azimuthal angle of xt/4 radians

corresponds to a non-dimensional time t*=,x/4, or more generally,

At*=A'Y. The near wake is broken into 45 increments, and therefore the

outer time loop in the program moves through 45 one-degree time

steps.

Velocity

The non-dimensional velocity is simply the ratio of the non-

dimensional length and time described above:

16



V* = l*/t* - (blade radius)(t)(G) (Q)(blade radius)

2.3 Definition of Linear Region

The linear region is a specified area on either side of a marker

within which the equations are modified to analytically remove the

singularity that occurs when an integration interval approaches a

marker location.

It is necessary to integrate equations 3.14 and 3.30 over the sheet

length s, since the r and z terms are both functions of s. To facilitate

this integration, r and z terms are linearized with respect to s. This is

accomplished through the following relations:

R-r = KI(S-s)

Z-z = K2(S-s)

dr dr
where K1 = dss=S K2 =ds 's=S

These linear relations are then used to eliminate r and z in the equation,

resulting in an equation dependent only on s. This allows the

singularities in the integral to be analytically removed. Since these

equations (i.e. 3.14, 3.30) can only be defined over small portions of the

wake (because of the linearizations above), the modified form of the

equation is only used when an integration interval is in close proximity

to a marker (in the linear region) and the unmodified original equations

are used elsewhere. The size of the linear region is a variable, and it

17
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will be shown that the wake geometry is independent of the precise

value chosen as long as the linearity assumption for r and s, and z and s

remains valid. For the test cases shown, the lesser of the two distances

from the marker being considered to the markers on either side is

chosen as 8 and the linear region is twice this distance (half on each side

of the marker as shown in figure 2.3-1).

Marker Under
Consideration

SO-1) S(j) S(j+1)

.02 .03

Linear Region

8 = MIN(0.02, 0.03) = 0.02

Slow = S(j) - 8

Shigh= S(j) + 8

width of linear region = 28

Figure 2.3-1 Determination of Linear Region Size

In summary, the linear region represents a specified area about

each marker within which the governing equations are modified to

eliminate the singularity which would otherwise occur as an integration

interval approaches a marker. The only difference between the

18



modified and unmodified equations is the elimination of higher order

terms.

2.4 Exponential Stretching Technique

Layout of Markers

An exponential stretching technique is used to construct the initial

lay-out of the markers (i.e. the locations where induced velocities are

calculated). The stretching technique requires as input the desired

number of markers and the desired distance between the first two and

the last two markers. The routine then exponentially stretches between

the second and the second to last markers. In general, a large distance

between the first two points is specified and a small distance between

the last two points. This results in a low population of markers near the

root and a high density layout at the tip where, due to the tip vortex,

the curvature of the wake is greatest (150 markers are generally used).

The vortex core, which is used as a filament and a marker, is

not located through this technique, but through a method outlined in

section 2.5.

Layout of Integration Strips Containing the Wake Circulation

The layout of the integration strips, unlike the layout for the

markers, is modified at each time step and for each marker. At each

time step, the sheet is broken* into integration intervals to account for

the vorticity in the wake. These intervals need to be denser near the

tip (due to the strong vorticity and roll-up) and near the marker under

consideration (due to the possibility of a singularity point being

approached). To obtain a good distribution, a separate filament

19



distribution is established for each marker as it is considered. This

layout is accomplished by utilizing an exponential stretching routine

twice, once on each side of the marker. An example is pictured and

described below.

x = marker

= integration intervals

S = .3
Input -- • Input

Input I I I Input

I I

Linear
Region

Figure 2.4-1 Filament Distribution

The lay-out of the filaments in region 1 are dictated by specifying

the spacing between the first two and last two integration intervals and

by specifying the number of intervals to be placed in this region (the

filament lay-out in region 3 is obtained in an identical fashion). In the

"linear region" (i.e. region 2), the layout of the filaments is slightly

different. In this region, 6 points are always evenly distributed,

keeping the number of integration strips constant in this area. This

method assures that the number of strips within the linear region

remains constant, or increases or decreases monotonically (see step 4 on

the following page). If the number of integration intervals is allowed to

20



randomly fluctuate, instabilities occur in the wake due to truncation

errors. These truncation errors arise due to the loss of higher-order

terms, which occurs because the equations used in the linear region

have been modified to handle the singularities which arise in this area.

The lay-out of the filaments can be summarized as follows:

1. The linear region variable (8) is added and subtracted from each side

of the marker.

2. The area from the root to the left end of the linear region is stretched,

and integration strips are located.

3. The area from the right end of the linear region to the tip is stretched

and integration strips are located.

4. Six integration strips are located in the linear region, equal distances

apart. At the root and the tip, where the linear region is only one-

sided, 4 integration strips are used.

5. The midpoints between all these locations are then taken, starting

from the root of the blade. These midpoints define the locations of

the integration intervals.

6. This 5 step process is then repeated for each marker, at every time

iteration.

21



2.5 Pullin Similarity Solution

Due to the singular roll-up at the outer edge of the sheet, a

discrete tip vortex forms instantaneously. Applying the Biot-Savart law

directly without accounting for this singularity leads to erroneous

results. One way to resolve this singularity is to use the self-similar

solution developed by Pullin. 10 , 11  Pullin considers a semi-infinite

vortex sheet with F=2alRI1/2 (where R is the location along the blade,

and "a" is a scaling parameter), and develops a self-similar solution

which produces an initial wake geometry and circulation distribution

past a certain matching point (in this case r/R=0.95) at time r=0+. Pullin

derives a similarity solution where:

Zo(F,,) = (at)2/ 3 C(() (1)

and
r

(a 4 /3 tl/ 3 ) (2)

X, X: similarity parameters

a, t: scaling parameters

Zo: dimensional self-similar shape function for

the sheet.

Using Pullin's solution along with initial values for ý and X (obtained by

choosing a matching point along the vortex sheet), the above two

equations can be solved for t and a (the scaling parameters), yielding

the initial circulation distribution and wake geometry beyond r=0.95 for

22



S= 0+. An example is given below for the circulation distribution F(r) =

.02ý1-r, where ýo = -3.24R and 1o=3.6, and s=0.95 where s is the

location along the sheet defined as the matching point.

(1) Substitute F and Z into (1) and (2):

Zo3/2 [(1-S)]3/2
t 3 /2 a (3.24) 3/2 a

(la)

Note: (1-s) is necessary because Pullin has 4=0 at the tip, and the

coordinate system in this thesis is opposite.

3
t = (X3 a4)

(.02 1-(1-s)2) 3

(3.6)3 a4

(2) Solve(la) and (ib) for t and a. In this case t = 0.1373 and a =

0.01396.

(3) Using t and a, the wake geometry and circulation distribution are

defined beyond 95% blade radius by scaling Pullin's solution

accordingly (see figure 2.5-1).

23
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CIRCULATION INPUT FOR ELLIPSE

0.34 0.67 1.01

INIT WAKE INPUT FOR ELLIPSE

0.933 0.967 1.0(

0.0200

0.0133

GAMMA

0.0067

0.0000

INIT WAKE

o o VORTEX POS

18 Jul91 13:24:20
18 Jul 91 13:24:20

18 Jul 91 13:23:21

Figure 2.5-1 Pullin's Solution Applied to an Elliptically Loaded Blade
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(4) Determine the tip strength and location. Pullin gives the total value

of X for the four spirals and the core as 1.342. By dumping this

circulation into the core and re-locating the core (although in this

case the amount the core is moved is negligible), the core strength is

found to be X=1.342 and its location is C = -.308er, ii = .498ez, whose

values can be scaled to F, z and r values.

One problem encountered when using this solution is in step 3

where Pullin's solution is scaled for the appropriate test case. Since

Pullin's wake and circulation distribution were not available in tabular

form, several values were estimated from the plots in references 10 and

11 and then splined. Due to unavoidable errors in transcribing this

data, however, small perturbations would amplify and the wake would

rapidly go unstable. To resolve this problem, Pullin's solution is applied

to a specific case study (in this instance the ellipse), and then the

resulting wake and circulation distributions are fitted with equations.

By using the data from these equations (which contains the Pullin

solution), the singularity due to dF/dr approaching infinity at the blade

tip is eliminated and an initial wake geometry and circulation

distribution are defined.

2.6 Vortex Sheet Model

The basic wake model consists of a continuous vortex sheet with a

discrete tip vortex. The wake is defined by two independent

parameters, R and Z, where markers are placed. These markers are also

the locations where the induced velocities are calculated, and are

25



therefore the points tracked downstream of the rotor blade which

define the wake evolution in time. The number of markers used to

represent the wake is a variable. Two other important parameters used

throughout the analysis, r and z, are variables of integration, and

represent the location of the integration strips containing the vorticity

in the wake. The remaining two sheet geometry parameters are S and

s, both referring to the sheet coordinate. The parameter S is the actual

location of the markers along the sheet, while s is the location of the

integration strips along the sheet. The number of integration strips is

also a variable. These integration strips are modeled as circles from P=-

x to Y=ni as shown in figure 3.1-1. Relating these six parameters:

AS2 = AR2 + AZ2

As2 = Ar2 + Az2

3. Analytical Method

3.1 Application of the Biot-Savart Law

The two-dimensional near-wake geometry is obtained using a

free-wake analysis technique. Using this approach, the wake assumes

an equilibrium (or "force-free") position by moving according to the

induced velocities at each marker location. These velocities are

obtained by applying the Biot-Savart law at each marker and

integrating along the sheet.

The wake is composed of circular integration intervals containing

the circulation in the wake. These intervals are of infinitesimal strength

and create a continuous vortex sheet. They are termed integration
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intervals rather than vortex filaments, since they do not require a finite

core size, as is the case with conventional filamentary models. In this

continuous sheet model, the coordinate s is defined positive outward

along the sheet. The location of the circular integration strips along the

sheet are defined by lower case s, while the locations of the markers,

where the induced velocities are calculated, are defined by S (see figure

3.1-1).

27
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integration sr

Figure 3.1-1

rip marker

Problem Set-Up
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To calculate the induced velocity at any point in the wake due to a

filament of strength F, the Biot-Savart law can be applied as follows: 12

F rdh x I dxV4n 1113 (3.1)

F: strength of the vortex filament.

dh: segment of the filament which induces a velocity at a point in

space.

1: radius vector from dh to any point in space.

Application of the Biot-Savart Law

For a vortex sheet composed of circular integration intervals

initially in the plane of the rotor, this equation becomes (see figure 3.1-

2):

Vi dF 1 dh x ds
ViJ J ds 4 3 dI ds3 (3.2)

29



t

r
A

Figure 3.1-2 Application of Biot-Savart law

Now referring to figures 3.1-1 and 3.1-2 and realizing there is an

additional component of the 1 vector in the z-plane at all times after r=0,

it is clear that:

1 = {R-r cos})r - (r sinP}t + {Z-z}z (3.3)

Since the dh vector in equation 3.2 is tangent to the circular integration

strips (which remain parallel to the rotor plane at all times

downstream), it is only composed of components in the r-t plane. This

vector can be represented as:

dh = (r sin'dP)r - (r cos'dP)t (3.4)
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Therefore, after computing the cross-product dh x 1 and substituting

back into the Biot-Savart law (equation 3.2) the following equations are

obtained:

1S

Va = axial induced velocity = 4I dss

Vr = radial induced velocity = - 4 ds

0

1 s
Vt = tangential induced velocity = -- 4

0

SR cos'-r1/13 dFd s (3.5)

rr cos'(Z-z)
cos(Z dY ds (3.6)

cr sinT(Z-z)
1113 dIsds (3.7)

-X

These equations represent the radial, axial, and tangential induced

velocities calculated at each marker location.

3.2 Axial Velocity Component

As shown above, the equation derived for the axial velocity using

the Biot-Savart law is:

d=JrJ4xVa f ds rf
d sr

R cos(P) - r
Ill3 dl' ds
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13= R 2 - 2Rr cosY + r 2 + (Z-z) 2 }3/2

Now defining F as:

R cos(Y) - r
F= I3Ill3

and substituting Il13 into this expression, F becomes:

R cosy - r
F= [R 2 - 2Rr cosY + r 2 + (Z-z)2]3/2

It is apparent that a numerical singularity is encountered when cosy

approaches 1, and r approaches R (when r=R, z=Z). To resolve this
T2

singularity, cosW=1 - 2 may be substituted into 3.11 to yield the factor

which must be added and subtracted to F so the equation is well-

behaved. Upon completing this substitution, it is apparent that the

factor H (defined below) when used as shown in 3.13, eliminates the

singularity in 3.11.

R-r
H =

[(R-r)2+Rr?2+(Z-z)2]3/2
(3.12)

4Va=j r [F(r,R,)H(r,R,)-H(r,R,)] Jdds + j - rfH(r,R,T)dYds (3.13)

(1) (2) (3)
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In this manner, as cosI approaches 1, and r approaches R, the

numerator and denominator of the first two terms in 3.13 approach

zero at the same rate. The third term in equation 3.13 is now

integrated analytically with respect to TY from -x to x and defined as "A"

where:

ds r(R-r)2xds
A =JH(rR,)d d=(R-r)2

[(R-r) 2 + (Z-z) 2] [(R-r) 2 + (Z-z) 2 + RrX2]1/2

(3.14)

This analytical solution (3.14) now must be integrated over s

numerically. Once again, however, the denominator goes to zero faster

than the numerator as r approaches R (as an integration strip

approaches a marker). The elimination of this singularity is slightly

more complex because the integral is over s, and the relationships

between r and s, and z and s are known only in spline form. To solve

this problem, the r and z terms are linearized with respect to s as

outlined in section 2.3. In this manner, r and z can be represented as

simple linear functions of s, and the integration of equation 3.14 with

respect to s becomes straightforward. This linearization and the

modified form of 3.14 that follows will only be used over the linear

region. At all other locations along the vortex sheet, equation 3.14 will

be integrated numerically in its original form.

The linear relations defined in equation 2.3.1 will now be

substituted into 3.14 for integration over s, resulting in:
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dF

Alin = 2xI ds KI[R-KI(S-s)] ds

C(S-s)[C(S-s) 2 + R 2 t 2 - R K 1(S-s) t 2 ]1/2

where:

dr
K1 ds s=S

dz
2 =ds s=S

Before the integration over s can be completed, however, it is apparent

that an additional term B (below) needs to be added and subtracted

from Alin to avoid the singularity which occurs as s approaches S:

(3.16)
2K Id s

B=-
C(S-s)

Equation 3.15 can now be integrated over s from 0 to smax, and the

third term in equation (3.13) results in:

dr
r''AsI  d-- r(R-r)21L

r Ads = z)2 ] [(Rr)2 +(Z/2 dsds [(R-r)2+(Z-z)2] [(R-r)2+(Z-z)2+Rr(x)2]1/2

outside the linear region and:

3.15 + 3.16 - 3.16 =

34
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dr
ds K1 [R-KI(S-s)]

2c C(S-s)[C(S-s)2 + R2E2 - RKI(S-s)t 2 ]1/2

dr dr2K 2KdFIs ids S-s81
- s ds + C log (3.18)

within the linear region.

In the last term of 3.18, s8 1 refers to the first integration strip

encountered inside the linear region, and s82 refers to the last

integration strip encountered inside the linear region.

When considering a specific marker and stepping through the

integration strips (i.e. integrating along the sheet), 3.17 is used until s

comes within + or - 8 (which defines the linear region- see figure 2.4-1)

of the marker. At this point, 3.18 is used until this linear region is

exited, and then use of 3.17 is resumed.

Now reviewing the first two terms in 3.13 (F-H) there is one more

singularity to be eliminated. This is again resolved by substituting cosT'

= 1- (1/2)T 2 in the numerator and denominator of F (as shown in 3.19)

to yield the additional term needed to eliminate the singular behavior

of equation 3.19.

Ry2
R- - r2 R - r

F-H 2-_

[R2+r2 -2Rr+RrP 2+(Z-z) 2]3/2 - [R2+r2 -2Rr+RrP 2+(Z-z)2]3/2

(3.19)
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The two terms in 3.19 will not cancel unless R'Y 2 /2 is included in the

numerator of the second term. This factor must also be subtracted from

3.19 so the equation remains unchanged. Therefore:

F-H =
R cos(Y) - r

[R 2 - 2Rr cosY + r 2 + (Z-z) 2 ]3 / 2 "

RyF2

R-r- 2
[R 2 + r2 - 2Rr + RrP 2 + (Z-z) 2 ]3 / 2 -

R'y2
2

[R2 + r2 - 2Rr+ RrP 2 + (Z-z) 2] 3 / 2  (3.20)

The first two terms of equation 3.20 will now be renamed F-H'. The

third term of equation 3.20 is integrated analytically over T and

becomes:

r[(R-r) 2 + (Z-z) 2 + Rr(x)2]1/2

log + X2  (R-r)2 +(Z-z)2

2r Rr g Rr

log -X + X+ Rr J (3.21)

All terms in 3.21 will be well-behaved when integrated along the

sheet except the third term which exhibits singular behavior as s

approaches S. This singularity is analytically resolved by using a
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Taylor's Series expansion, which reveals the additional term to be added

and subtracted from this function so it becomes well-behaved.

resulting third term in 3.21 is:

X2 + [(S - s)2
R[R-kl(S-s)]

S+ log I-sR2
2xR2

Because of finite precision arithmetic, (3.22) exhibits noisy

when:

K1(S-s)
< 0.01

It is therefore necessary to do an expansion about 1 to the first
K 1(S-s)

log term in 3.22, which will only be used when R < 0.01. This first

term becomes:

1
2r_ Rr

(3.23)

Defining the total component of axial velocity (including the

additional terms so the equation remains well-behaved over the linear

region):

Va - r (F-H')dT +
4n ds r a+b(x)2
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Elog( + X2 > A*]
I 7b

dF
ds + -•sds s=S

+ (3.18)

where:

-A* = +
A* = log

+ R(S-s)2

R[R-Kl(S-s)] K 1(S-s)
when R < 0.01R

Kl(S-s)
when R 2 0.01R

Outside the linear region, however, this equation simplifies to:

a1
Va = I441c dr {(F-H')dP +

dssr r a+b()2r

1
2r4-b

2x f

where:
a = (R-r)2 + (Z-z)2

b = Rr

Elog (X+ 2 log( 7[+ 2 f ) ds +I 7b 7+b2

rG'(s)(R-r)ds

a[a+bt2]1/2
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(S-s)2

2irR 2 ]ds
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3.3 Radial Velocity Component

The radial velocity component of the induced velocity is derived

in a similar manner. First, from the Biot-Savart law, the general form of

the radial velocity is:

Vr=I df r cosr(Z-z) dO dsVr = - d~s 1113 d ds (3.26)

where J is defined as:

cos' (Z-z)
[R 2 - 2Rr cosW + r 2 + (Z-z)2]3/2 (3.27)

The singularities in J are analytically removed using equations

3.28 and 3.29.

Z-z
[(R-r)2+Rr y 2+(Z-z)2]3/2 (3.28)

4xVr = I dff[J(r,R, P) - K(r,R,,P)]d' + IK(r,R, I) dIP} d s

(1) (2) (3)

(3.29)

The third term in equation 3.29 is now integrated analytically over '

and is found to be:
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dF
ds 2tr(Z-z)

Al =(3.30)[(R-r) 2 + (Z-z) 2 ][(R-r) 2 + (Z-z) 2 + Rr(2]1/2

This equation must now be integrated over s, but singularities are

encountered identical to those in equation 3.14 in the previous section.

This singular behavior is handled in a similar manner, transforming

equation 3.30 into:

Ss K2 R-KI(S-s)} ds 2K

2t fC(S-s)[C(S-s)2 + R2R2 - RKI(S-s)7 2]1/ 2  C(S-s) ds

dr
2Kds 2K2 S-slSlogS-l I (3.31)

C = K12 + K22=1

within the linear region and

drJ ds r2 t(Z-z)
2x f dsz (3.32)

[(R-r) 2 + (Z-z) 2] ([(R-r) 2 + (Z-z) 2 + Rr(nt) 2 ])1/ 2  (3.32)

outside the linear region.

Returning to the first two terms in equation 3.29, J and K, there is

one additional singularity which is removed by adding and subtracting

3.33 to J-K which results in equation 3.34.

40



y%2
(Z-z) 2

[(R-r) 2 + RrP 2 + (Z-z)2]3/2 (3.33)

cos(Y) (Z-z)
-[R2 - 2Rr cosy + r 2 + (Z-z)2]3/2

Y2
(Z-z) - (Z-z) 2

[R 2 + r2 - 2Rr + RrP 2 + (Z-z)2]3/2

(Z-z) 2
[R 2 + r2 - 2Rr + Rr' 2 + (Z-z) 2 ]3/2 (3.34)

The first two terms of 3.34 will now be renamed J-K'. The third term,

denoted Dl, is then integrated analytically to yield:

del x
DI=

b [(R-r)2+del2+b()2] 1 / 2

2b-lb [logi + 2 + log -R+ J 2  (3.35)

The third term in 3.35 exhibits singular behavior identical to the

third term in equation 3.21, and is handled in a similar manner (which

translates into the B* terms in 3.36). The only difference is in the

numerically integrated term which is approximated as zero due to its

symmetry about a marker location.
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the total component of radial

additional terms to eliminate the singularity):

Vr = r (J-K')d + Rr
r4 ds R a+Rr(n)2

1

2RIb

(3.36)

where:

B*=K2(S-s)

(Z-z)log(t + 92 ) ds

(S-s)
2

R[R-Kl(S-s)]

(S-s)2
2tR2

-lo +

+ (3.31)

K 1(S-s)
when < 0.01R

B*=K2(S-s)
KI(S-s)

when R e 0.01R
S-

If, however,

simplifies to:

the program not in the linear region, this equation

dr ((Z-z) ax
r dJ (J-Kbar)dP + z x

L b a + b()2
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dr
a a l(ds r -z

2b4 b b) ds + 2na[a+bx2 ]1/2 ds

where a= (R-r)2 + (Z-z) 2  b= Rr (3.37)

3.4 Tangential Velocity Component

The general form of the tangential induced velocity, developed

using the Biot-Savart Law, is defined as:

Vt f dd r rsinP(Z-z)
V= - J s J l d ds (3.38)

This term has negligible effect on the wake geometry for the following

reasons. The denominator must be small (or the numerator very large)

to obtain a significant component of Vt. Since I (the denominator) is the

distance between the interval of integration and the marker position, I

is only small when T is near -x or x (see figure 3.1-2). When T is near -

x or x, however, sinY is approximately zero, so the tangential induced

velocity is always small and has no significant effect on the wake

geometry and is therefore ignored. This is one of the bases of the

axisymmetry assumption made in this thesis.

3.5 Self-Induced Velocity of the Tip Vortex

Since the tip vortex has a finite strength and is curved, a self-

induced velocity term is included. This self-induced velocity is found to

be:

43



w = In _} (3.39)

where R is equal to the radial location of the vortex and "a" is its core

radius. 13

3.6 Smoothing

Under certain conditions, minor instabilities occur in the wake

beyond 90% radius. If these instabilities are not eliminated, they are

carried into the vortex (as the sheet is stretched) and the vortex roll-up

becomes unstable. For this reason, a smoothing routine was introduced.

This routine, called filter, uses a second order difference scheme to

smooth certain points in the wake.

Filter solves:
d2 r

-t2 fil ds2 + r = r

which smooths ro(s) into r(s). This is done in an identical manner for

z(s). It is therefore evident that if tfil = 0, then r=r0 and there is no

d2,
smoothing, alternatively if tfil approaches infinity, then ds 2 =0 (i.e. r(s)

is linear in s, and the wake sheet is "smoothed" straight).
The degree of smoothing is therefore controlled locally by tfil. Tfil

is set to a specific value (usually between 0.01 and 0.02) if the marker

being considered is in need of smoothing and 0 if no smoothing is

necessary.
Although a general criterion was followed in defining tfil as either

zero or some finite value, modifications were necessary for each test

case as defined below.
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Circular Disk Distribution

For this fundamental test case, which looks at the downwash on a

translating disk, no smoothing was necessary.

Elliptical Circulation Distribution

Since the elliptical distribution is monotonically decreasing,

geometric inflection points in the wake are used to enact the smoothing

routine. The markers in need of smoothing are located by considering

subsequent sets of four points (forming 3 vectors), and multiplying the

cross product of the first and second vectors times the cross product of

the second and third vectors. If this product is found to be negative, an

inflection point has been located and tfil is set to 0.01 for the marker

being considered, otherwise tfil is set to 0.

Miller Distribution

For this distribution there is a natural inflection point in the wake

at approximately 95% radius. 14  To avoid erroneous smoothing in this

area, the smoothing routine used for the elliptical distribution was only

applied from 0.96-1.0 R. In addition, a stronger smoothing parameter

(0.015) was used.

4. An Elliptically Loaded Blade

For an elliptically loaded blade at c=0:

r(r) = .02 1-(r) 2

r->[0,1]; z=0
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Due to the singularity at the tip in the initial circulation

distribution, a tip vortex is instantaneously formed. Pullin's self-similar

solution is applied here, as discussed in Section 2.5. By following the

steps outlined in that section, the scaling parameters a and t are found

to be 0.01396 and 0.1373. These parameters are then used to scale the

outer portion of the circulation distribution and wake geometry

appropriately, while also giving the strength, location and radius of the

tip vortex. The resulting circulation distribution and initial wake

geometry are shown in Figure 2.5-1.

For this classical case, several issues are investigated as the blade

passes through 45 degrees and the wake convects downstream.

(1) effect of smoothing on wake geometry

(2) effect of time-step on wake geometry

(3) effect of linear region size on wake geometry

(4) evolution of the wake from P = 0 to P = 45 degrees

4.1 Effect of Smoothing

As previously stated, the smoothing parameter (tfil) used for this

distribution was 0.01. In Figure 4.1-1, the wake at T=30 degrees is

shown before and after smoothing.
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It is important to note that while all inflections are eliminated, the

curvature of the wake and the extent of vortex roll-up are not changed

significantly. Originally, a smoothing routine was adapted which

smoothed every marker along the sheet, rather than only those near an

inflection point. The result was a significant loss of curvature in the

wake beyond 95% radius along with a large decrease in the diameter of

the vortex.

4.2 Dependence of Wake Solution on Time Step

A Predictor-Corrector difference method was utilized for the time-

step scheme, providing second-order accuracy. The wake was normally

set to convect in one degree increments downstream of the blade. To

validate convergence, however, half degree time steps were also tested

on the elliptical distribution. The resulting wake geometries at various

time steps downstream were compared with wake geometries using one

degree increments. Figure 4.2-1 shows one of these wake comparisons

at 'P=5 degrees. The slight difference seen between the two roll-up's

indicates the coarseness of the time step is borderline.
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4.3 Dependence of Solution on Linear Region Size

The linear region, as explained in Section 2.3, is a region where

the equations for the induced velocity are modified to eliminate

singularities that arise as a variable of integration approaches a marker

location. The difference between the modified and unmodified

equations involves only higher order terms. These terms should have

negligible effect on the resulting induced velocities, and therefore the

solution should be independent of the size of the linear region (as long

as the linear relations in section 2.3 are preserved). Test cases were

run for several linear region sizes, and the resulting wake geometries

confirmed that the solution is in fact independent of linear region size.

Figure 4.3-1 shows a comparison between a constant linear region size

of 8 = 0.003 versus a variable linear region size (depending on marker

location) that was normally used.
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4.4 Calculated Wake Geometry

In Figures 4.4-1, 4.4-2, and 4.4-3 the wake is shown convecting

downstream as the blade moves from 0 to 45 degrees. As expected, the

tip vortex convects downstream slower than the rest of the vortex

sheet. There is a significant roll-up in the near-wake, but the vortex

remains well-behaved (assisted by the smoothing routine). Only the tip

is shown in the following figures since the wake remains relatively flat

inboard.
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If the sheet is allowed to convect further downstream, the extent

of roll-up may lead to instabilities which could be handled using a

dumping technique outlined by Hoeijmakers. 15 Using this approach, the

vortex sheet is only allowed four revolutions, and any vorticity past

that point is fed into the vortex core. The core is then re-located to

preserve the center of vorticity. The amount of roll-up is checked at

each iteration and the process is repeated.

5. Translating Circular Disk

As a check case, a circulation distribution was developed for an

oblate ellipsoid (with minor axis b and major axis a), moving parallel to

its axis of rotation b, in the limit as its minor axis goes to zero. 16 For

this case, an irrotational flow due to a circular disk with radius "a"

results as shown in Figure 5-1. Since the boundary condition states that

no flow can pass through this disk, all particles on the disk must

descend at the same rate as the disk, producing a constant downwash

condition. The intent of this test case is to validate the basic analytic

theory developed in this thesis and its application in the present code.

U
I

a
x

Figure 5-1 Oblate Spheroid Collapsed to Circular Disc

In Batchelor, the velocity potential for this flow is given as:
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2aU
S=D- cosTr

where r and 1 are the elliptical coordinates obtained through the

transformation:

x + ia = (a2-b2) 1/2 sinh(C+il)

For the circular disk, using the coordinate system shown in figure

5-1, it is apparent x and b equal zero while a equals unity. This leaves

the transformation a = sin(iT) , where 0 can be written as:

-2aU
I- (1-02)1/2

The circulation distribution along the plate is simply the change in

velocity potential across the plate giving:

-4aU
1(s) = (1-r2)1/ 2

Using this distribution (see figure 5-2), a flat wake exhibiting

constant downwash should result. Figure 5-3 shows the resulting

downwash distribution for this test case. The circulation distribution

was derived assuming a non-dimensional downwash of 0.02 and the

code accurately reproduces this value.
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Two abnormalities are seen in this plot, one at 80% radius and one

at the tip. The slight increase in accuracy seen at .8 radius is due to a

higher density of integration strips placed outboard of this location. This

is necessary to correctly account for the vorticity in this area where the

extent of curvature in the circulation distribution is significantly

increased. At the tip spikes are seen on the outer 0.02%. These are due
dr

to the inability of the model handle ss approaching infinity at the tip.

6. Typical Hovering Rotor Loading

The circulation distribution shown in figure 6-1 was chosen as the

final test case because there has been considerable debate over the

resulting wake geometry. This circulation distribution was obtained

iteratively by Miller 17 using the entire wake, but has been used in

discrete near-wake analyses to try to understand the resulting wake

behavior. 18  The main point in question is whether or not a mid-span

vortex exists. Full-wake discrete models 19, 20 have shown the formation

of a mid-span vortex, however this contradicts experimental results.

Since the continuous vortex sheet representation of the present

approach is physically more correct, it was hoped that the character of

the wake roll-up would more closely match experimental evidence.

Figures 6-2 through 6-5 show the roll-up of the wake as the blade

advances through 45 degrees.

60



CIRCULATION INPUT

0.0300

00167

GAMMA

0.0033

-0.0100
0.34 0.67 1.01

18 Jul 91 13:37:42

INIT WAKE INPUT

INIT WAKE

VORTEX POS

IIBUTION

18 Jul 91 13:40:29

Figure 6-1 Typical Hovering Rotor Circulation & Wake Distribution
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Figure 6-2 Wake Profile for Typical Hover Circulation, Y = 100

62

-U. I UU

-0.033

Z/R

0.033

0.10(

U. IUU

SPLIND WKE

mVRTX CORE

0MARKERS

-0.050

-0.017

Z/R

0.017

0.050
0.900



WAKE GEOMETRY

TYPICAL HOVERING ROTOR DISTRIBUTION
PSI = 20 DEGREES

0800 0867
RADIUS

0 933

_ SPLIND WKE

w UmVRTX CORE

oD MMARKERS

1 000
18 Jul 91 14:45:30

WAKE GEOMETRY

0.933 0.967
RADIUS

1 000

SPLIND WKE

EVRTX CORE

®MARKERS

18 Jul 91 15:29:29

Figure 6-3 Wake Profile for Typical Hover Circulation, ' = 200
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Figure 6-4 Wake Profile for Typical Hover Circulation, T = 300
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Figure 6-5 Wake Profile for Typical Hover Circulation, I = 450
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It is seen in figure 6-3, that at T=20 degrees an additional vortex

starts to appear. It is induced at approximately 92% blade radius which

corresponds with the peak in circulation shown in figure 6-1

(remember only smooth past 96% radius). This roll-up is opposite to

that seen at the tip as expected, and becomes more pronounced as the

blade convects downstream.

By comparing the elliptical and typical hover circulation

distributions, it appears the the outer portion of the wake for the

typical hover distribution should convect faster than the elliptical case,

and the inner portion slower, which is confirmed by comparing the

resulting wake geometries.

8. Conclusions and Future Recommendations

The program resulting from this research can be utilized to assist

in resolving the arbitrariness of the finite core size in discrete models,

and as the near-wake component of a hovering or forward flight full-

wake code.

First, understanding more completely the physical behavior of the

near-wake may give insight to why current computer models are not

currently matching experimental results.

There seems to be a consensus that representing the wake as a

vortex sheet rather than a series of discrete filaments leads to a more

realistic model, but at the expense of theoretical and computational
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simplicity. Since one methods advantage is the other's weak point, it

seems a study comparing the two models would be helpful in

determining a fairly simplistic but more physically correct model. It

was hoped that a comparison between discrete versus continuous

models could be done in this thesis, but was impossible due to the

unavailability of a hovering, discrete, near-wake code. By creating a

code similar to the one contained herein (but using a discrete model), a

solid analysis could be done. By comparing the results between these

two models, an appropriate core size may become apparent for the

discrete model, making its solution much less arbitrary while keeping

its simplicity in place.

It does not appear however, that doing this alone will result in the

agreement of experimental and computational results, since the more

complex continuous model still revealed a mid-span vortex which has

yet to be documented experimentally. The reason for this occurrence is

still unclear and will possibly only be resolved when viscous terms are

included in the wake analysis.

The other primary use for this code, implementation into hovering

and forward flight full-wake codes, can be accomplished with minimal

changes.

For hovering cases, as outlined in reference 13, the integration

strips are defined as semi-circles from --=0 to IF=- . By reviewing

equations 3.5, 3.6, and 3.7, it is apparent this modification can be

accomplished by simply dividing these equations by 2.
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For forward flight, however, not only the limits of integration over

T changes, but the actual wake geometry changes as well. The upper

limit of T in this case defines the near wake, with the intermediate and

far wakes following. Since the wake geometry is different for forward

flight due to the additional forward flight velocity term, the location of

the integration intervals will have to be modified. This can be

accomplished by appropriately modifying the I vector in equation 3.3

and carrying these modified terms throughout the equations. It should

be emphasized that except for the 1 vector, the overall numerical Biot-

Savart analysis developed in this thesis remains unchanged.

68



1 Miller, R. H., ASimplified Approach to the Free Wake Analysis of a
Hovering Rotor, Vertica, 6, 1982, pp. 89 - 91.

2 Donaldson, C., Snedeker, R.S. and Sullivan, R.D., Calculation of the
Wakes of Three Transport Aircraft in Holding, Take-off and Landing
Configurations, and Comparison with Experimental Measurements,
AFOSR-TR-73-1594, 1973.

3 Rossow, V., On The Inviscid Rolled-Up Structure of Lift Generated
Vortices, Journal of Aircraft, 1973.

4 Miller, R. H., Methods for Rotor Aerodynamic and Dynamic Analysis,
Progress in Aerospace Sciences, 22(2), 1985, p. 124.

5 Brower, M., Free Wake Techniques for Rotor Aerodynamic Analysis,
Volume Ill: Vortex Filament Models, ASRL TR 199-3, Massachusetts
Institute of Technology, 1982.

6 Tanuwidjaja, A., Free Wake Techniques for Rotor Aerodynamic
Analysis, Volume II, Vortex Sheet Models, ASRL-TR-199-2,
Massachusetts Institute of Technology, 1982.

7 Miller, R. H., Methods for Rotor Aerodynamic and Dynamic Analysis,
Progress in Aerospace Sciences, 22(2), 1985, p. 120.

8 Miller, R. H., Methods for Rotor Aerodynamic and Dynamic Analysis,
Progress in Aerospace Sciences, 22(2), 1985, pp. 116.

9 Miller, R.H., Simplified Free Wake Analyses for Rotors., ASRL-TR-
194-3, Massachusetts Institute of Technology, 1981.

10 Pullin, D.I., The Large Scale Structure of Unsteady Self-Similar
Rolled-Up Vortex Sheets, Journal of Fluid Mechanics, 88, 1978, pp. 401-
408.

11 Hoeijmakers, H.W.M., An Approximate Method for Computing Inviscid
Vortex Wake Roll-Up, NLR TR 85149 U18-26, National Aerospace
Laboratory NLR, The Netherlands, 1985.

69



12 Anderson, J. D., Fundamentals of Aerodynamics. New York, McGraw-
Hill Book Company, 1984, pp. 234-241.

13 Roberts, T. W., Computation of Potential Flows With Embedded
Vortex Rings and Applications to Helicopter Rotor Wakes., CFDL-TR-83-
5, Massachusetts Institute of Technology,1983.

14 Miller, R. H., Methods for Rotor Aerodynamic and Dynamic Analysis,
Progress in Aerospace Sciences, 22(2), 1985, p. 123.

15 Hoeijmakers, H.W.M., An Approximate Method for Computing Inviscid
Vortex Wake Roll-Up, NLR TR 85149 U18-26, National Aerospace
Laboratory NLR, The Netherlands, 1985.

16 Batchelor, G.K. An Introduction to Fluid Dynamics. Cambridge
University Press, Cambridge, 1988, pp. 456-458.

17 Miller, R. H., Methods for Rotor Aerodynamic and Dynamic Analysis,
Progress in Aerospace Sciences, 22(2), 1985, p. 123.

18 Miller, R.H., Ellis,S.C. and Dadone, L., The Effects of Wake Migration
During Roll-Up On Blade Airloads, Vertica,13(1), 1989, pp. 3-6.

19 Miller, R. H., Methods for Rotor Aerodynamic and Dynamic Analysis,
Progress in Aerospace Sciences, 22(2), 1985, p. 123.

20 Miller, R.H., Ellis,S.C. and Dadone, L., The Effects of Wake Migration
During Roll-Up On Blade Airloads, Vertica, 13(1), 1989, p.5.

70



Appendix - Computer Programs

71



C ************************VORTEX.F***********************************

c Melinda godwin, september 28,1990

C************NUMBERED EQUATIONS REFERRED TO IN THE COMMENTED
C************SECTIONS CAN BE FOUND IN THESIS.

. . . . . , • .. " " .. • L

I have two things defined as a in this program

but they do not interact.

This program is to calculate the two components of the induced

velocity, Vz and Vr. This will be done using the Biot Savart Law.

The induced velocity will be calculated at various positions

downstream of the blade along the vortex sheet. The resulting

c wake will then be plotted. The sheet is not flat, but from a

c side view is curved and rolls up toward the tip where a tip vortex
c is located.

delrsq(301),

ls(2000),
dgambs(2000),

bz(301),

dgamls(2000),
vindz(301),

lsdan(2000),

gbs(301),

zbr(301),

gbbtbs(2000),

proby3(2000),

pltbs(2000),

vzold(301)

delzsq(301),

bs(301),
x(301),
bzold(301),
vindr(301),

brold(301),

lsdana(2000),

rbs(301),
s(2000),
tbs(2000),

yaxis(2000),

pltbr(2000),

vrold(301),

lr(2000),
gam(301),
dels(301),
br(301),

gb(2000),

lz(2000),
zbs(301),
expls(2000),

probx3(2000),

xaxis(2000),

pltbz(2000),

dimension nper(2),

real Is,
real integ2,

Ir,
integi,

lz, kdphi, ladan, lsdana

ki,

data ilin/1,0/

data isym/1,2/

character * 30 titl(2)
character * 30 pltitl

dimension

&

&a

&

8t&&

&&

&

&

&

&a
a

ilin(2), isym(2)



pi = 4.*atan(1.)

c (pi/4)/50 -.016-1 deg ... t* = t(omega)
c when t*=l, t=time to go one radian, therefore vary t*=O. to pi/4

delta = .01745

TIME=O.

WRITE(*,76)
76 FORMAT(1X,'WHAT IS NSTOP? - 99 if prog stopped')

READ(5,77) NSTOP
77 FORMAT(I2)

write(*,885)

885 format(lx,'WHAT CASE ARE YOU RUNNING? 1-DISK, 2-ELL,3-TYP HOV')
READ(*,886) NCASE

886 FORMAT(I2)
write(*,886) ncase

c tfil is the parameter which controls the strength of the local
c smoothing.

write(*,80)
80 format(Ix,'WHAT IS TFIL?')

READ(*,81) SMINC
81 FORMAT(F10.4)

c
cThe following is for fildis.f

write(*,90)

90 format(ix,'Enter amark: ellip- .9, disk- .8, Typ Hover-.9')

read(5,*) amark

write(*,91) amark

91 format(lx,'amark equals',lx,f0l.4)

write(*,922)

922 format(lx,'Enter vardint:',/,
& 'ellip- .0002, disk- .0002, typical hover- .002')

read(5,*) vardint
write(*,93) vardint

93 format(lx,'vardint equals',lx,f10.4)

write(*,94)

94 format(lx,'****amark and vardint are found in fildis.f')

C******THIS IS MAIN SECTION TO MAKE PROGRAM ABLE TO STOP AND START
C SEE END OF CODE TO SEE WHAT IS WRITTEN TO THESE FILES.

IF(NSTOP.EQ.99) THEN
write(*,854)

854 format(ix,'RESTARTING VORTEX')



open(unit=63, file='wakestore.dat',status='old')
open(unit=64, file='gamma.dat',status='old')
open(unit=65, file='miscstore.dat',status='old')

READ(65,*) NUMBR,TIME,II,RCORE,ZCORE
II=II+1

nbr=numbr
nvortx=numbr+1
if (ncase.eq.1) then

nmark = nbr
else

nmark = nvortex
endif

do 78 i=l,nmark
READ(63,*) BR(I),BZ(I)
if(i.ne.nvortx) then
READ(64,*) GAM(I)
endif

78 continue

close(unit=63)
close(unit=64)
close(unit=65)

ENDIF

IF(NSTOP.EQ.99) GOTO 150

c *****END MOST ADDITIONS TO MAKE PROGRAM ABLE TO STOP AND START

c for translating disk case
if(ncase.eq.1) then

call disk(BR,BZ,BS,BSMAX,GB,TBS,NUM4,NUMBR)
a=1
t=1

endif

c for elliptical distribution case
if(ncase.eq.2) then

write(*,*) ncase
call ellip(BR,BZ,BS,BSMAX,GB,TBS,NUM4,NUMBR,a,t)

endif

c for typical hovering rotor case
if(ncase.eq.3) then
call typhov(BR,BZ,BS,BSMAX,GB,TBS,NUM4,NUMBR,A,T)
endif

write(*,101) bsmax
101 format(1x,'bsmax=',f10.4)



c nbr is number of markers along sheet
nbr=numbr

c nvortx is number of markers along sheet plus tip vortex
nvortx=numbr+i

c splining gamma versus sheet location
CALL SPLIND(GB,GBBTBS,TBS,NUM4,999.,999.)

open(unit=64, file='gamma.dat',status='unknown')

c loop to define gamma at every marker location, the gamma for a
c specific marker will NOT change since the markers are moving
c along a streamline.

do 92 j = 1,nbr
gam(j) = seval(bs(j),gb,gbbtbs,tbs,num4)
write(64,*) gam(j)

92 continue
close(unit=64)

c ******************plotting**************
c call plotting routine for gamma vs marker position

nper(1) = nbr
titl(1) = 'gam vs. bs'
pltitl = '-bs -gam "'
call grinit(5,6,'gam vs bs')
call grklin(ilin,isym,nper,titl,l,bs,gam,pltitl,599)

c ****************end plotting*******************

c now for location of vortex core.

c the location for the core for typical hover and elliptical

c distribution is nearly identical, so approximated as
c that here.

RCORE = .9952

ZCORE = -.007684

c ******************plotting************

c call plotting routine for initial wake geometry
nvortx = numbr + 1
br(nvortx) = .9952
bz(nvortx) = -.007684
nper(1) = nbr
nper(2) = 1
titl(1) = 'init wake'
titl(2) = 'vortex pos'
pltitl = ''br "bz "'
call grinit(5,6,'bz vs br ')
call grklin(ilin,isym,nper,titl,2,br,bz,pltitl,599)

c ****************end plotting*******************



150 continue

nvortx = numbr + 1

NBR = NUMBR

c VORTEX CORE STRENGTH

GAMCOR = -1.342*(a**(4./3.))*(t**(1./3.))

c VORTEX CORE RADIUS

CORAD = .058*((a*t)**(2./3.))

IF(NSTOP.EQ.99) goto 54

c there will be 2 outer main loops in this program where
c ii => loop 15 outer time loop
c jj => loop 2007 outer loop for predictor corrector
c now loops for axial velocity
c j => loop 12 which goes. through marker stations (for vz component)
c k => loop 13 which goes through integration strips (for vz compont)
c iii=> loop 14 which goes through azimuthal stations (for vz compont)
c now loops for radial velocity
c j => loop 121 which goes through marker stations (for vr component)
c k => loop 131 which goes through integration strips (for vr compont)
c iii=> loop 141 which goes through azimuthal stations (for vr compont)

do 15 ii=1,45

54 CONTINUE

DO 2007 JJ = 1,2

write(*,*) ii

c ALREADY FOUND BS'S IN PULLIN SUBROUTINE WHEN II = 1 SO SKIP TO
C 25 CONTINUE

IF (II.EQ.1.and.jj.eq.1) GO TO 25

BS(1) = BR(1)

c THIS NBR NOT NVORTEX CAUSE VORTEX DOESNT HAVE BS, NOT PART OF SHEET
c finding bs locations of markers by using pythag. theorem on br and bz

do 10 i = 2,nbr

delrsq(i) = (br(i) - br(i-1))**2.



delzsq(i) = (bz(i) - bz(i-1))**2.
dels(i) = sqrt(delrsq(i) + delzsq(i))
bs(i) = dels(i) + bs(i-1)

10 continue
BSMAX = BS(NBR)

25 continue

c smooting routine which locally smoothes points
call smooth(br,bz,bs,nbr,bsmax,ii,SMINC)

write(*,1053) bsmax
1053 format(lx,'bsmax after smooth=',f10.4)

c can spline gam and bs cause gam at br = gaem at bs originally
c and gamma stays same at any marker location since
c moving along streamline. (marker locations are tracked by bs.)

call splind(gam,gbs,bs,nbr,999.,999.)
call splind(br,rbs,bs,nbr,999.,999.)
call splind(bz,zbs,bs,nbr,999.,999.)
call splind(bz,zbr,br,nbr,999.,999.)

if(jj.eq.1) then
time = delta

endif

nvortx = nbr + 1

self = 0.0

c if running translating disk case no vortex core
if(ncase.eq.1) then

nmark = nbr
else

nmark = nvortx
endif

do 12 j = 1,nmark

if(j.eq.nvortx) then
br(j) = rcore
bz(j) = zcore
dgambs(j) = gamcor
go to 160

endif

c if not at vortex core get the deriv of gamma wrt bs through
c spline of gamma vs bs.



dgambs(j) = deval(bs(j),gam,gbs,bs,nbr)

c*******lay-out of filaments and definition of danger zone in fildis

CALL FILDIs(bs,bsmax,numbr,expls,xaxis,yaxis,npoin,klm,j,n6r,
& bslow,bshigh,dan,amark,vardint)

160 continue

singf3 = 0.
f3ext = 0.0
fhfunc = 0.
HP = 0.
klm = 0
ikm = 0
MARK = 0
NPT = 0
nflag = 0
analtl = 0.

c n6r due to expls(K+1)
c n6r is number of filaments along sheet
c nvor is number of filaments along sheet plus vortex core filament.

nvor = n6r+1

c For translating disk case do not have vortex core (which is a
c filament and a marker for other cases) therefore no last filament.

if(ncase.eq.1) then
nfilmt = n6r
else

nfilmt = nvor
endif

DO 13 K = 1,nfilmt

SING = 0.0
ALT = 0.0
f3dan = 0.0
f3else = 0.0

c when bs = vortex core and is = vortex core
if(k.eq.nvor.and.j.eq.nvortx) go to 185

c when Is = vortex core need to give location and strength of filament
if(k.eq.nvor) then

Ir(k) = rcore
lz(k) = zcore
his = 1.0
dgamls(k) = gamcor

else



C TAKE MIDPOINT TO OBTAIN LS(K) (WHERE FILAMENTS ARE
C LOCATED), AND USE MIDPOINT METHOD FOR INTEGRATION ALONG SHEET.

LS(K) = (EXPLS(K) + EXPLS(K+1))/2.
HLS = EXPLS(K+I) - EXPLS(K)

dgamls(k) = deval(ls(k),gam,gbs,bs,nbr)
Ir(k) = seval(ls(k),br,rbs,bs,nbr)
lz(k) = seval(ls(k),bz,zbs,bs,nbr)

endif

nn = 72

phil = -pi
phiu = pi

fh = 0.0
hphi = (phiu - phil)/float(nn)

c loop for integration about azimuthal angle.

do 14 iii = 1,nn

c x = azimuthal angle (psi)

x(iii) = phil + (float(iii) - .5)*hphi

onetop = br(j)*cos(x(iii)) - Ir(k)
ptl = br(j)**2 + Ir(k)**2
pt2 = -2.0*br(j)*lr(k)*cos(x(iii)) + (bz(j) - lz(k))**2.
onebot = (ptl + pt2)**1.5
twotop = br(j) - Ir(k) - (.5*br(j)*(x(iii)**2.))
ptla = (br(j) - lr(k))**2. + br(j)*lr(k)*(x(iii)**2)
pt2a = (bz(j) - lz(k))**2
twobot = (ptia + pt2a)**1.5

c this is the integral f-h where h has a bar over it.
fhbar = onetop/onebot - twotop/twobot
fh = fh + fhbar

14 continue

fminh = hphi * fh

c now add in the analytical part that comes from hbar
c that was integrated analytically over psi (eqtn 3.21- not
c including third term which must be handled in linear zone).

a = (br(j) - lr(k))**2. + (bz(j) - lz(k))**2
fl = (pi/lr(k))*(1./((a+br(j)*lr(k)*(-pi)**2)**.5))
f2a = 1./(2*lr(k)*(br(j)*lr(k))**.5)
f2b = alog(pi + ((pi)**2 + a/(br(j)*lr(k)))**.5)
f2 = f2a*f2b



func = fi - f2

FINFHF = (LR(K)*DGAMLS(K)*(FMINH + FUNC))

c now add on eqtns. 3.18 and eqtns. 3.22 and 3.23 when in linear zone
c and their complimentary parts when not in linear zone. These
c equations were integrated analytically over phi but not s.

c bs and ls not defined when j = nvortx, and should never enter
c danger area when j = nvortx since vortex core is not along sheet.

if(k.eq.nvor.or.j.eq.nvortx) goto 167

bslow = bs(j) - dan

if(j.eq.numbr) then
bshigh = bs(j)

else
bshigh = bs(j) + dan

endif

if(ls(k).gt.bslow.and.ls(k).lt.bshigh) then

c ****these lines are for plotting purposes and for two analytical
c ****integrals over s.

klm = klm + I

IF (KLM.EQ.I) THEN
NPT = KLM + LKM

ELSE
NPT = NPT + 1
ENDIF

MARK = 1

c if nflag is never set to one, then you are never inside danger zone
c and you skip over analytical integrals over s.

nflag = 1

lsdan(klm) = ls(k)

c **********end lines pertaining to above ** comment******************

c br(nvortx) and bz(nvortx) will not go into deval cause nbr specified.

ki = deval(bs(j),br,rbs,bs,nbr)
k2 = deval(bs(j),bz,zbs,bs,nbr)



at = (pi**2)*(br(j)**2)

bi = -(pi**2)*br(j)*ki

cl = ki**2 + k2**2

c cl should always be one (sometimes came out to be .9999999, so just
c made 1.0).

if(cl.ne.1) then
cl = 1

endif

bsls = bs(j) - is(k)

***the additional terms that were integrated analytically wrt s, for
***equation 3.18, 3.22 and 3.23, are found after 13 continue.
***They are analti for 3.18 and f3ext for 3.22 and 3.23.

c equation 3.18

chktop = kl*2*pi*dgamls(k)*(br(j)-kl*bsls)

chkbot = cl*bsls*sqrt(al+bl*bsls+cl*(bsls)**2)

chktpa = (-2.*kl*dgambs(j))/(cl*bsls)

ALT = (chktop*bsls-2*kl*dgambs(j)*chkbot)/(bsls*chkbot)

c for equation 3.22

DANCHK = (Ki*BSLS)/BR(J)

IF (DANCHK.GT..O1) THEN

f3dan = (dgamls(k)/(2*(br(j)*lr(k))**.S))*
kalog(abs((-pi+ sqrt((-pi)**2+(bsls**2/(br(j)**2-br(j)*kl*bsls))))

&/((bsls**2)/(2.*(br(j)**2)*pi))))

ELSE

c equation 3.23

f3dan =(dgamls(k)/(2*(br(j)*lr(k))**.5))*

&alog(abs(1/(1-(K1*BSLS/BR(J)))))

ENDIF

c now if not in linear zone do "else" for ALT and f3dan.

else



167 continue

c ***lines for plotting
Ikm = Ikm + 1

IF (MARK.NE.1) THEN
NPT = LKM
ELSE

NPT = NPT + 1
ENDIF

c ***end lines for plotting

c equation 3.17
topa = Ir(k)*dgamls(k)*2.*pi*(br(j) - Ir(k))

a = (br(j) - lr(k))**2 + (bz(j) - lz(k))**2

bota = a*(a + br(j)*lr(k)*((pi)**2.))**.5

SING = TOPA/BOTA

c third term in 3.21

f3ell = (1./(2*lr(k)*(br(j)*lr(k))**.5))
f3e12 = alog(abs((-pi + ((-pi)**2 + a/(br(j)*lr(k)))**.5)))
f3else = (lr(k)*dgamls(k))*f3el1*f3el2

endif

FHFUNC = FHFUNC + HLS*FINFHF

singf3 = singf3 + hls*(f3dan + f3else)

HP = HP + HLS*(SING+ALT)

c 13 is loop over integration strips
13 continue

npoin = lkm + klm

c if never entered linear zone, then do not do analytical integrals
c that go with danger zone.

if(nflag.eq.0) go to 878

c analytical integral coming from linear zone for equation 3.18
ex = bs(j) - isdan(klm)



exi = bs(j)-lsdan(1)

integl = 2*kl*dgambs(j)*alog(abs(exl/ex))

analti = integi

C ANALYTICAL INTEGRAL COMING FROM LINEAR ZONE FOR 3.22 AND 3.23

F3EXT1 = -2*((BS(J) - LSDAN(KLM))*ALOG(ABS(BS(J)-LSDAN(KLM)))
&+ LSDAN(KLM)*(ALOG(ABS((SQRT(2.*PI))*BR(J))) + 1))

F3EXT2 = 2*((BS(J)-LSDAN(1))*ALOG(ABS(BS(J)-LSDAN(1)))
&+ LSDAN(1)*(ALOG(ABS((SQRT(2.*PI))*BR(J))) + 1))

F3EXT = (dgambs(j)/(2*(brj))*br(j))**.S))*(F3EXT1 + F3EXT2)

878 continue
185 continue

c for the induced velocity in z direction

if (j.eq.nvortx) then
C include self induced velocity of vortex core on itself.

C GAMCOR NEEDS A NEGATIVE SO IT CONVECTS DOWN BY MAKING "SELF"
C POSITIVE. GAMCOR BY ITSELF IS A NEGATIVE NUMBER.

c self is velocity core induces on itself.
self = (-gamcor/(4.*pi*br(j)))*(alog(abs((8*br(j))/

& (corad) - (1./4.))))
vindz(j) = ((hp + fhfunc + analti)/(4*pi)) + self

else

vindz(j) = (hp + fhfunc + analti + singf3 + f3ext)/(4.*pi)

endif

c 12 is loop which goes through markers
12 continue

c ***************NOW FOR RADIAL VELOCITY COMPONENT*****************

c start loops for integration for radial component

nvortx = nbr + i



c for translating disk no vortex core, therefore one less marker.
if(ncase.eq.1) then

nmark = nbr
else

nmark = nvortx
endif

c loop through markers
do 121 j = 1,nmark

c define location and strength of core
if(j.eq.nvortx) then

br(j) = rcore
bz(j) = zcore
dgambs(j) = gamcor
go to 175

endif

dgambs(j) = deval(bs(j),gam,gbs,bs,nbr)

c use integration strip distribution from bsmax for integration strip
c distribution for vortex core.

call fildis(bs,bsmax,numbr,expls,xaxis,yaxis,npoin,klm,j,n6r,
& bslow,bshigh,dan,amark,vardint)

175 continue

TPSEX = 0.0
SNGTP5 = 0.0
FKTOT = 0.0
SUMKDP = 0.0
klma = 0
lkma = 0
marki = 0
npt = 0
analt2 = 0.
mflag = 0
e = 0.

c add extra filament to include vortex core
c vortex core is NOT part of sheet

nvor = n6r + 1

c no vortex core for case 1, translating disk
if(ncase.eq.1) then

nfilmt = n6r

else
nfilmt = nvor

endif



c now integrate along sheet by using Midpoint Method, visiting each
c integration interval.

do 131 k =l,nfilmt

ALTA = 0.0
TPSDAN = 0.0
TPSELS = 0.0

KDPHI = 0.0

c when j = nvortx, and k = nvor
if (j.eq.nvortx.and.k.eq.nvor) goto 186

c when k = nvor (at vortex core) define location and strength
if (k.eq.nvor) then

lr(k) = rcore
lz(k) = zcore

dgamls(k) = gamcor
hls = 1.0

else

c must redefine ls for radial velocity because is distribution is
c dependent on each marker location, and therefore gets overwritten
c each time.

is(k) = (expls(k) + expls(k+l))/2.
hls = expls(k+1)-expls(k)
dgamls(k) = deval(ls(k),gam,gbs,bs,nbr)
Ir(k) = seval(ls(k),br,rbs,bs,nbr)
lz(k) = seval(ls(k),bz,zbs,bs,nbr)

endif

delz = bz(j)-lz(k)
PHIL = -PI
PHIU = PI
NN = 72

fk = 0.0
c hphi is distance between integration strips

hphi = (phiu - phil)/float(nn)

do 141 iii = 1,nn

x(iii) = phil + (float(iii) - .5)*hphi

c now do the integration over j-kbar

topi = cos(x(iii))*delz
boti = (br(j)**2 + Ir(k)**2-2.*br(j)*lr(k)*

& cos(x(iii)) + delz**2)**1.5
top2 = delz - (delz*x(iii)**2)/2.
bot2 = ((br(j)-ir(k))**2+br(j)*lr(k)*x(iii)**2 +



delz**2)**1.5

fkbar = topl/botl - top2/bot2

fk = fk + fkbar

141 continue

fkint = hphi*fk

c now add in the analytical part that comes from kbar
c that was integrated analytically over psi (equation 3.35 -
c not including third term which is handled later).

dum = (br(j) - Ir(k))**2 + delz**2

top3 = delz*pi
bot3 = br(j)*lr(k)*(dum+br(j)*lr(k)*(pi)**2)**.5
top4 = delz*(alog(pi+sqrt((pi)**2 + dum/(br(j)*lr(k)))))
bot4 = 2.*br(j)*lr(k)*(br(j)*lr(k))**.5

analkb = top3/bot3 - top4/bot4

fkdone = (ir(k)*dgamls(k)*(fkint +
& analkb))

c now add on 3.31, and third term in 3.35 that were integrated
c analytically over phi, but contained singularities when integrated
c over s, and therefore needed to be dealt with in the linear zone.
c Bs not defined when j=nvortx; and should never be in danger zone
c when at core location since it does not lie along sheet.

if (k.eq.nvor.or.j.eq.nvortx) goto 164

bslowa = bs(j) - dan

bshgha = bs(j) + dan

if(ls(k).gt.bslowa.and.ls(k).lt.bshgha) then

c ***these lines are for plotting and analytical integration that
c ***is necessary for 3.31, and third term in 3.35 when integrated
c ***over linear zone.

klma = klma + I

IF (KLMA.EQ.1) THEN
NPT1 = KLMA + LKMA
ELSE

NPTI = NPT1 + 1
ENDIF

MARKI = 1



mflag = 1
c ***

lsdana(klma) = ls(k)

kl = deval(bs(j),br,rbs,bs,nbr)

k2 = deval(bs(j),bz,zbs,bs,nbr)

al = (pi**2)*(br(j)**2)

bi = -(pi**2)*br(j)*kl

cl = k1**2 + k2**2

if(cl.ne.1) then
cl = 1

endif

bsls = bs(j) - 1s(k)

c the additional analytically integrated terms for 3.31 and the third
c term in 3.35 are found following 131 continue.

c equation 3.31
cktop = k2*2*pi*dgamls(k)*(br(j)-kl*bsls)

ckbot = ci*bsls*sqrt(al+bl*bsls+cl*(bsls)**2)

ALTA = (cktop*bsls-2.*k2*dgambs(j)*ckbot)/(bsls*ckbot)

c third term in 3.35, after it is handled like third term in equation
c 3.21 for axial velocity.

tp5chk = (kl*bsls)/br(j)

if (tp5chk.gt..0l) then

tp5dan = ((bz(j)-lz(k))/br(j))*

&(dgamls(k)/(2*(br(j)*lr(k))**.5))*

kalog(abs((-pi+ sqrt((-pi)**2+(bsls**2/(br(j)**2-br(j)*kl*bsls))))

& /((bsls**2)/(2.*(br(j)**2)*pi))))

else

c when Is(k) really close to bs(j) use singularity fix plus additional
c expansion about 1.

tp5dan = ((bz(j)-lz(k))/br(j))*
&(dgamls(k)/(2*(br(j)*lr(k))**.5))*

&alog(abs(I/(1-(K1*BSLS/BR(J)))))

endif

else

164 continue



c ***lines for plotting
lkma = lkma + 1

IF (MARK1.NE.1) THEN
NPTI = LKMA
ELSE

NPT1 = NPT1 + 1
ENDIF

c ***end lines for plotting

c equation 3.31 when not in linear zone

top6 = Ir(k)*dgamls(k)*2*pi*delz

bot6 = dum*(dum+br(j)*lr(k)*((pi)**2))**.5

kdphi = top6/bot6

c third term in 3.35 when not in linear zone
TPSELI = ((BZ(J)-LZ(K))/BR(J))*

& (1./(2*lr(k)*(br(j)*lr(k))**.5))
TP5EL2 =

& alog(abs((-pi + ((-pi)**2 + dum/(br(j)*lr(k)))**.5)))
TP5ELS = LR(K)*DGAMLS(K)*tpSeli*tp5el2

endif

c now doing midpoint method numerical scheme
fktot = fktot + hls*fkdone

SNGTP5 = SNGTP5 + HLS*(TPSDAN + TPSELS)

sumkdp = sumkdp + hls*(kdphi+alta)

131 continue

c summing up integration intervals inside and outside of linear zone.
npoini = lkma + klma

c if mflag = 0 never entered linear zone and do not do analytical
c integration that comes from this zone.

if(mflag.eq.0) go to 879

c now for analytical terms coming from linear zone for equation 3.31
ex2 = bs(j) - lsdana(klma)
ex3 = bs(j)-lsdana(1)
integ2 = 2.*k2*dgambs(j)*alog(abs(ex3/ex2))
analt2 = integ2



c analytical term stemming from third term in 3.36. Integral
c approximated as zero due to symmetry of graph of equation about
c marker location (graph not perfectly symmetrical
c that's why this is an approximation).

TPSEX = 0.0

879 continue
186 continue

c for the induced velocity in the r direction
c negative sign in next two cases is for change in coordinate

vindr(j) = -(sumkdp+fktot+analt2+SNGTPS+TPSEX)/(4.*pi)

121 continue

c PREDICTOR-CORRECTOR TIME STEP
if(ncase.eq.1) then

nmark = nbr
else

nmark = nvortx
endif

IF(JJ.EQ.1) THEN
DO 911 J=I,NMARK

VZOLD(J) = VINDZ(J)
VROLD(J) = VINDR(J)

911. CONTINUE
ENDIF

IF(JJ.EQ.2) THEN
DO 912 J=I,NMARK

VINDZ(J)= (VZOLD(J) + VINDZ(J))/2.
VINDR(J)= (VROLD(J) + VINDR(J))/2.

912 CONTINUE
ENDIF

C END ADDITION FOR PREDICTOR-CORRECTOR

c now for the distance the particle is moved due to velocity in

c radial direction.
do 909 j = 1,nmark

IF(JJ.EQ.1) THEN
OLDCRE = RCORE
brold(j) = br(j)
ENDIF

br(j) = vindr(j) * time
909 continue



c now for the distance the particle is moved due to velocity in
c axial direction.

DO 999 J = 1,nmark

IF(JJ.EQ.1) THEN
OLDCZE = ZCORE

bzold(j) = bz(j)
ENDIF

bz(j) = vindz(j)*time

999 CONTINUE

C NOW WRITING RESULTS TO FILE INCASE CODE NEEDS TO BE STOPPED AND
C STARTED. ONLY WRITE WHEN JJ=2, CAUSE THAT'S THE SECOND ITERATION
C FOR PREDICTOR- CORRECTOR WHICH IS WHAT IS USED ON NEXT II ITERATION
C FOR LOOP 15.

if(ii.eq.1.and.jj.eq.2) then

open(unit=62, file='wakegeom.out',status='unknown')
endif

if(ii.ne.1.and.jj.eq.2) then
open(unit=62, file='wakegeom.out',status='unknown',

& access='append')
endif

if(jj.eq.2) then
open(unit=63, file='wakestore.dat',status='unknown')
open(unit=65, file='miscstore.dat',status='unknown')
endif

if(jj.eq.2) then
write(62,*) ii
endif

C END SAVING RESULTS

c PUTTING THE MARKERS AT ITS NEW LOCATION

do 957 i = 1,nbr

br(i) = br(i) + brold(i)

bz(i) = bz(i) + bzold(i)

if(jj.eq.2) then

write(62,*) br(i),bz(i)
write(63,*) br(i),bz(i)

endif

957 continue

c PUTTING THE CORE AT ITS NEW LOCATION

rcore = br(nvortx) + OLDCRE
zcore = bz(nvortx) + OLDCZE



br(nvortx) = rcore
bz(nvortx) = zcore

C SAVING RESULTS AGAIN FOR STOP/START ABILITY
if(jj.eq.2) then
write(62,*) br(nvortx),bz(nvortx)
close(unit=62)
write(63,*) br(nvortx),bz(nvortx)
write(65,*) numbr,time,ii,rcore,zcore
close(unit=63)
close(unit=65)
endif

C END SAVING RESULTS

C *********USE THIS PLOTTING FOR DISK CASE BECAUSE
C *********WANT TO SEE RESULTS ON FIRST ITERATION
C *********OF PREDICTOR-CORRECTOR. AT SECOND
C *********ITERATION WILL SCREW-UP DUE TO SPIKES
C *********AT TIP.

c ******************plotting*************
c call plotting routine for vindz vs. bz
c vindz(nbr) = 0.

nper(i) = nmark
titl(1) = 'veloc'
pltitl = '"br "vindz "'
call grinit(5,6,'vindz vs br ')

c call grklin(ilin,isym,nper,titl,1,br,vindz,pltitl,599)

c ******************plotting*********************

c call plotting routine for vindr vs. br
c vindz(nbr) = 0.

nper(1) = nmark
titl(1) = 'veloc'
pltitl = ''br "vindr "'
call grinit(5,6,'vindr vs br ')

c call grklin(ilin,isym,nper,titl,1,br,vindr,pltitl,599)
C***************************************$**********

C 2007 LOOP FOR SECOND ITERATION OF PREDICTOR CORRECTOR
2007 CONTINUE

C WAKE GEOMETRY PLOT AT EACH TIME STEP AFTER CONVERGED
C USING PREDICTOR-CORRECTOR.
c ******************plottng********************

c call plotting routine for br vs. bz
nper(l) = nbr
nper(2) = 1
titl(i) = 'wake disp'
titl(2) = 'vortex pos'
pltitl = ''br "bz ''



call grinit(5,6,'bz vs br ')
c call grklin(ilin,isym,nper,titl,2,br,bz,pltitl,599)
c ****************end plotting******************

15 is outer time
continue

loop

go to 995

write(*,677)
format(lx,'e
write(*,679)
format(Ix,'q
write(*,681)
format(ix,'q
write(*,683)
format(ix,'c

equals zero!!')

equals zero!!')

is positive !!')

is negative !!')

continue

stop
end

FUNCTION DEVAL(SS,X,XS,S,N)
DIMENSION X(1), XS(1), S(1)

C------------------------------------------
C Calculates dX/dS(SS)
C XS array must have been calculated by SPLINE
C WRITTEN BY PROFESSOR MARK DRELA, M.I.T.
C--------------------------------------- -----

ILOW = 1
I = N

C

10 IF(I-ILOW .LE. 1) GO TO 11

IMID = (I+ILOW)/2

IF(SS .LT. S(IMID)) THEN
I = IMID

ELSE

ILOW = IMID

ENDIF

GO TO 10

11 DS = S(I) - S(I-1)

T = (SS - S(I-1)) / DS

c
15

676

677

678

679

680

681

682

683

995



Cxl = DS*XS(I-1) - X(I) + X(I-1)
CX2 = DS*XS(I) - X(I) + X(I-1)
DEVAL = X(I) - X(I-1) + (1.-4.0*T+3.0*T*T)*CX1 + T*(3.0*T-2.)*CX2
DEVAL = DEVAL/DS
RETURN
END ! DEVAL

SUBROUTINE DISK(BR,BZ,BS,BSMAX,GB,TBS,ndisI,NUMBR,a,t)

C!!!!!DONT FORGET TO DIMENSION VARIABLES IN MAIN PROGRAM

DIMENSION DELRSQ(2001), TBS(2001), DELZSQ(2001), DELS(2001),
* GB(2001), BR(2001), BZ(2001), BS(2001),
* gam(100), R(2001), Z(2001), zbs(2000),
* gbbtbs(2001), rbs(2000), s(2000)

DIMENSION NPER(2),ILIN(2),ISYM(2)

DATA ILIN/1,2/
DATA ISYM/1,2/
CHARACTER * 10 TITL(2)
CHARACTER * 30 PLTITL

pi = 4.*atan(1.)

C ********FOR STRAIGHT LINE DISTRIBUTION**********

num = 150
ntotal = num
numbr = 150
do 65 j = 2,ntotal

r(1) = .0053
r(ntotal) = sin((pi/2)*(149.5-1)/(num-1))
r(j) = sin((pi/2)*(j-1)/(num-1))

z(j) = 0.0
65 continue

C **********END STRAIGHT LINE DISTRIBUTION*********

C NOW TURN R AND Z VALUES INTO S VALUES.

bs(1) = r(i)

do 71 i = 2,ntotal

delrsq(i) = (r(i) - r(i-1))**2
delzsq(i) = (z(i)-z(i-1))**2
dels(i) = sqrt(delrsq(i) + delzsq(i))
bs(i) = dels(i) + bs(i-1)

71 continue

smax = bs(ntotal)

write(*,87) bs(ntotal)
87 format(lx,'smax=',f10.7)



CALL SPLIND(Z,ZBS,BS,NTOTAL,999.,999.)
CALL SPLIND(R,RBS,BS,NTOTAL,999.,999.)

c define br(1) = .01 cause otherwise setexp calls br(1) = 0.

c and setexp in vortex cannot deal with this.

bs(1) = .01
bsmax = bs(numbr)

do 66 j=l,numbr

br(j) = seval(bs(j),r,rbs,bs,ntotal)

bz(j) = seval(bs(j),z,zbs,bs,ntotal)

66 continue

C CHANGED NVORTX=NUMBR+1 TO NVORTX=NUMBR FOR CIRCULAR DISK
C SINCE THERE IS NO TIP VORTEX

nvortx = numbr

NPER(1) = numbr
TITL(1) ='INIT WAKE'
PLTITL = ''RADIUS "Z/R "'
CALL GRINIT(S,6,'PLOT OF INITIAL DISK WAKE')
CALL GRKLIN(ILIN,ISYM,NPER,TITL,1,BR,BZ,PLTITL,599)

u = .02
ndisi = numbr
do 27 i = 1,numbr

tbs(i) = sin((pi/2)*(i-1)/(num-1))
gb(i) = (-(4*u)/pi)*sqrt(1.-tbs(i)**2)

27 continue

NPER(1) = ndisl
TITL(1) ='DISK CIRCULATION DISTRIBUTION'
PLTITL = 'TBS "GB "'
CALL GRINIT(5,6,'PLOT OF GB VS S')

c CALL GRKLIN(ILIN,ISYM,NPER,TITL,1,tbs,gb,PLTITL,599)

CALL SPLIND(GB,GBBTBS,tbs,Ndisl,999.,999.)

do 92 j=1,numbr
gam(j) = seval(bs(j),gb,gbbtbs,br,ndisl)

92 continue

NPER(1) = numbr
TITL(1) ='DISK CIRCULATION DISTRIBUTION'
PLTITL = ''BS "GAM "'
CALL GRINIT(5,6,'PLOT OF GAM VS BS')



CALL GRKLIN(ILIN,ISYM,NPER,TITL,I,bs,gam,PLTITL,599)

return
end ! disk
stop
end

The part of this routine that uses Pullin circulation distribution
works except since the points are hand-picked
off a plot, waves in the wake soon come into play. If
I could curve fit the data for the gamma distribution
from .95 out that would be a solution, but cant find
appropriate curve fit. Instead shifted ellipse over
and up (using an equation) to try to closely
represent pullin distribution. Thisworks very well.

SUBROUTINE ELLIP(BR,BZ,BS,BSMAX,GB,TBS,ndisl,NUMBR,a,t)

C!!!!!DONT FORGET TO DIMENSION VARIABLES IN MAIN CODE

DIMENSION DELRSQ(2001),
DELS(2001),
R(2001),
rbs(2000),
zbs(2000),
RR(2001)_

lampul(2001),
GB(2001),
ebz(2000),
P(301),
s(2000),
BZ(2001),

DELZSQ(2001),
yplt(2001),
xplt(2000),
PBS(301),
ZETA(2000),
BS(2001)

gbbtbs(2001),
Z(2001),
yyplt(2000),
TBS(2001),
ETA(2000),

DIMENSION NPER(2),ILIN(2),ISYM(2)
DATA ILIN/1,2/
DATA ISYM/1,2/
CHARACTER * 10 TITL(2)
CHARACTER * 30 PLTITL

real lampul

NUM = 19

ZETA(1) = 64.7997

I jj %.f v~l,



ETA (1) = 0.0

ZETA(2) = 45.0

ETA (2) = 0.0
ZETA(3) = 25.9200

ETA (3) = 0.0

ZETA(4) = 6.48

ETA (4) = 0.0
ZETA(5) = 3.2400

ETA (5) = 0.0

ZETA(6) = 2.0600

ETA (6) = 0.0

ZETA(7) = 1.7250

ETA (7) = .0063

ZETA(8) = 1.4438

ETA (8) = .0125

ZETA(9) = 1.0863

ETA (9) = .0281

ZETA(10) = .8875

ETA (10) = .0438

ZETA(11) = .7125

ETA (11) = .0613

ZETA(12) = .5375

ETA (12) = .08625

ZETA(13) = .3625

ETA (13) = .1375

ZETA(14) = .2250

ETA (14) = .2163
ZETA(15) = .1781

ETA (15) = .2531

ZETA(16) = .1375

ETA (16) = .3

ZETA(17) = .10625

ETA (17) = .3625

ZETA(18) = .09

ETA(18) = .4125

ZETA(19) = .0828

ETA(19) = .475

do 51 i = 1,num

xplt(i) = zeta(i)
yyplt(i) = eta(i)

51 continue

c Now the zeta and eta values above (which are pulled directly
c from Pullin's plots) will be curve-fitted and overwritten
c so instabilities do not occur due to errors in transcribing
c Pullin's data.

intl = ((65-10)/5) + .1

int2 = ((10-3)/.05) + .1

int3 = ((3-1)/.01) + .1
int4 = ((1-.083)/.001) + 1.1
dec2 = intl + int2

dec3 = dec2 + int3



ntotal = intl + int2 + int3 + int4

write(*,*) ntotal
zet = 65

ainc = 0.0
do 61 i = 1,ntotal

zet = zet - ainc
zeta(i) = zet
eta(i) = .04*((1/zeta(i)) - (1./64.7997))

ind = num + i
xplt(ind) = zeta(i)
yyplt(ind) = eta(i)
if(i.le.inti) then

ainc = 5
endif
if(i.gt.intl.and.i.le.dec2) then

ainc = .05
endif
if(i.gt.dec2.and.i.le.dec3) then

ainc = .01
endif
if(i.gt.dec3) then

ainc = .001
endif

61 continue

C PLOT WITH NEW CURVE FIT VALUES WHERE PULLIN ZETA AND ETA HAVE
C ALREADY BEEN OVERWRITTEN IN LOOP 61.

NPER(1) = ntotal
TITL(1) ='PULLIN'
PLTITL = ''ZETA "ETA "'
CALL GRINIT(5,6,'PLOT OF ETA VS ZETA')

c CALL GRKLIN(ILIN,ISYM,NPER,TITL,1,zeta,eta,PLTITL,599)
c

CALL SPLIND(ETA,EBZ,ZETA,Ntotal,999.,999.)

A = .01396
T = .1373
DO 1 I = 1,NTOTAL

c since old coordinate system was zero at tip,
c i.- ..... is necessary.

R(I) = i. - ((A*T)**(2./3.)*ZETA(I))

c negative is because Pullin has z pos upward.

Z(I) = -(A*T)**(2./3.)*ETA(I)

I CONTINUE



C NOW TURN R AND Z VALUES INTO S VALUES.

s(1) = r(1)
do 71 i = 2,ntotal

delrsq(i) = (r(i) - r(i-1))**2

delzsq(i) = (z(i)-z(i-1))**2

dels(i) = sqrt(delrsq(i) + delzsq(i))

s(i) = dels(i) + s(i-1)
71 continue

write(*,87) s(ntotal)
87 format(1x,'smax=',fi0.7)

CALL SPLIND(Z,ZBS,S,NTOTAL,999.,999.)
CALL SPLIND(R,RBS,S,NTOTAL,999.,999.)

c Setext lays-out the markers through an exponential

c stretching technique.

DS1 = .025

DSN = .0005
NUMBR = 150
SMAX = S(NTOTAL)
CALL SETEX2(BS,DSi,DSN,SMAX,NUMBR)

c define br(1) = .01 cause otherwise setexp calls br(1) = 0.
c and setexp in vortex cannot deal with this.

bs(1) = .01

bsmax = bs(numbr)

do 66 j=l,numbr

br(j) = seval(bs(j),r,rbs,s,ntotal)

bz(j) = seval(bs(j),z,zbs,s,ntotal)

66 continue
nvortx = numbr + 1

br(nvortx) = .9952

bz(nvortx) = -.007684

NPER(1) = numbr

nper(2) = I

TITL(1) ='INIT WAKE'

TITL(2) ='CORE LOC'

PLTITL = ''RADIUS "Z/R "'
CALL GRINIT(5,6,'PLOT OF INITIAL PULLIN WAKE')

c CALL GRKLIN(ILIN,ISYM,NPER,TITL,2,br,bz,PLTITL,599)



C NOW FOR THE CIRCULATION DISTRIBUTION THAT IS TAKEN DIRECTLY

C FROM PULLIN'S PLOT (ALL THE LINES COMMENTED OUT)

C THIS IS NEVER USED, BUT OVERWRITTEN

C BY A SOLUTION THAT CLOSELY APPROXIMATES THIS SOLUTION IMMEDIATELY
C FOLLOWING ALL THE COMMENTS.

c NUM2 = 15
c TBS(1) = .9532
c P (1) = .3063
c TBS(2) = .9585
c P (2) = .2878
c TBS(3) = .9629
c P (3) = .2709

c TBS(4) = .9684
c P (4) = .2532
c TBS(5) = .9734

c P.(5) = .2313

c TBS(6) = .9776
c P (6) = .2101

c TBS(7) = .9815

c P (7) = .1930
c TBS(8) = .9847

c P (8) = .1775
c TBS(9) = .9877
c P (9) = .1637

c TBS(IO) = .9903

c P (10) = .1539

c TBS(11) = .9931

c P (11) = .1409

c TBS(12) = .9956

c P (12) = .1311

c TBS(13) = .9977

c P (13) = .1238

c TBS(14) = .9998
c P (14) = .1197

c TBS(15) = 1.0018

c P (15) = .1124

c CALL SPLIND(P,PBS,TBS,NUM2,999.,999.)

c DO 5 I = 1,NUM2

c HA = .70741

c HT = .00271

c if(i.eq.num2) then
c LAMPUL(I) = p(num2)/((HA**(4/3))*(HT**(1/3)))

c else

c endif
c LAMPUL(I) = p(i)/((HA**(4/3))*(HT**(1/3)))

c GB(I) = LAMPUL(I)*(A**(4/3))*(T**(1/3))



c

c xplt(i) = tbs(i)
c yplt(i) = gb(i)

c 5 CONTINUE

c NPER(1) = NUM2
c TITL(1) ='Hoej'
c PLTITL = '~tbs "gb "
c CALL GRINIT(5,6,'for tbs gt .95')
c CALL GRKLIN(ILIN,ISYM,NPER,TITL,1,TBS,gb,PLTITL,599)

c AINC = .01
c NDIS = .95/aINC + .01

c nend = ndis + 1
c NUM3 = Nend + 1
c NUM4 = Nend + NUM2 - 1
c DO 4 I = NUM3,NUM4

c NUM5 = I-NDIS
c GB(I) = GB(NUM5)
c TBS(I) = TBS(NUM5)

c 4 CONTINUE

c rad = -ainc

c ind = nend

c DO 6 I = 1,Nend
c rad = rad + ainc
c tbs(i) = rad
c tbs(1) = 0.

c tbs(nend) = .95
c gb(i) = .02*((1.-tbs(i)**2))**.5
c if(i.le.num2) then
c ind = ind + 1
c tbs(ind) = xplt(i)
c gb(ind) = yplt(i)
c endif

c 6 continue

c npts = nend + num2
c NPER(1) = Npts
c TITL(1) ='actual'
c PLTITL = ''TBS "GB "'
c CALL GRINIT(5,6,'Pullin Circ')
c CALL GRKLIN(ILIN,ISYM,NPER,TITL,1,TBS,GB,PLTITL,599)
C*********ONLY LEAVE NDISI=NUM4, WHEN NOT USING SHIFTED ELLIPSE
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c ndisl = num4

c*********************just use shifted ellipse*********************

c THIS VERY CLOSELY APPROXIMATES PULLIN'S SOLUTION.
ainc = .01
ndis = 1./ainc + 1.01
rad = -ainc
ndisl = ndis + 1

DO 27 I = 1,NDISI
rad = rad + ainc
tbs(i) = rad
tbs(1) = 0.

tbs(ndis) = 1.0

tbs(ndisi) = 1.0018
gb(i) = .02*((1.-(tbs(i)-.01)**2))**.5 - (.02*

& sqrt(1.-(1.0018 - .01)**2)) + .0022

27 continue

CALL SPLIND(GB,GBBTBS,TBS,Ndis,999.,999.)

NPER(1) = Ndisl
TITL(1) = 'Approx Pullin'
PLTITL = 'TBS "GB "'
CALL GRINIT(5,6,'PLOT OF GB VS S')
CALL GRKLIN(ILIN,ISYM,NPER,TITL,1,TBS,GB,PLTITL,599)

c********end shifted ellipse

return
end ! pullin

c stop
c end

SUBROUTINE FILDIS(BS,bsmax,NUMBR,expls,XAXIS,YAXIS,NPOIN,klm,j,
& n6r,bslow,bshigh,dan,amark,vardint)

c Melinda Godwin March 16,1991
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dimension s(2000), expls(2000), yplt(2000), temps(2000),
& bs(301), xplt(2000), xpltl(2000), ypltl(2000),

& xaxis(2000), xplt3(2000),
& yplt3(2000), yaxis(2000)

dimension nper(2),ilin(2),isym(2)
real is
data ilin/0,1/

data isym/1,2/

character * 20 titl(2)
character * 25 pltitl

c ***set-up for linear zone********

NFLAG = 0

c setting del (half linear region size)
danbac = bs(j) - bs(j-1)
danfor = bs(j+1) - bs(j)

if (j.eq.1) then
danbac = 1000

endif

if (j.eq.numbr) then
danfor = 1000

endif

if (danbac.lt.danfor) then
dan = danbac

else
dan = danfor

endif

nxy = numbr - 1
if (j.eq.nxy) then

dan = danfor
nflag = 1
endif

bshigh = bs(j) + dan
bslow = bs(j) - dan

if (j.eq.1) then
bslow = bs(1)
endif

if (j.eq.numbr) then
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bshigh = bs(numbr)
endif

danzne = bshigh - below

c nspac = 5 gives 5 spacings in linear zone, therefore 4 fil

if (j.eq.numbr.or.j.eq.1) then
c use only half the number of integration intervals plus one
c when the linear zone is one sided.
c This puts extra filament at end so linear
c area is treated like all other linear zones.
c

nspac = 3
else

nspac = 6
endif

filspc = danzne/nspac

IF (NFLAG.NE.1) THEN
nfil = 5

ELSE
c For second to last marker need an extra integration interval since
c there is no non-linear zone to right of this marker (there is only
c the linear zone). This extra integration interval is necessary
c so later the midpoint can be taken between the second to last and
c last (now added) integration interval.

NFIL = 6
ENDIF

if (j.eq.numbr.OR.J.EQ.1) then
nfil = 3

endif

c *****************end set-up for linear zone***********

c start set-up for how integration intervals are layed-out to the
c left of the linear zone.

dint = .002

if (j.eq.1) then

nnl=O
goto 299

else
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nnl = (balow/dint) + 1

endif

if (nnl.le.2) then
nnl = 3

endif

if (nnl.le.3) then
dsl = .0005
dsn = .0005

else
dsl = .0005
dsn = .001

endif

smax = bslow

call setex2(s,dsl,dsn,smax,nnl)

do 21 i = 1,nnl
k = nnl-i+l
expls(i) = s(i)
xplt(i) = expls(i)
yplt(i) = 0.

21 continue
expls(1) = 0.
xplt(i) = 0.

299 continue

c end set-up for integration intervals to left of linear zone.

c begin set-up for integration intervals in linear zone.

klm = 0
nnew = nnl + 1
nnewl = nn1 + nfil
if (j.eq.1) then

updat = bslow - filspc
else

updat = bslow
endif

do 23 i = nnew,nnewl
klm = klm + 1
updat = updat + filspc
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expls(i) = updat
xpltl(klm) = expls(i)
ypltl(klm) = 0.0

23 continue

c end set-up for linear zone

c begin set-up for integration intervals to right of linear zone

if (bshigh.ge.bsmax) then
nnr = 0
else

c The following is done to get more integration strips out near the
c tip for markers near the tip because of the high curvature in this
c area. It was necessary for the translating disk case to keep
c accuracy high, but was too computationally time consuming to
c apply to the ellip distrib in full form (because of stretching),
c and not applied to the typical hovering case at all because in this
c case the sheet is stretched even more than for the elliptical case.
c It is important to note that as the sheet stretches bsmax increases
c and since this dictates the number of integration intervals the
c number of integration intervals increases as well (more integ.
c interv. means increase in computational time).
c The values given to amark and vardint can be found in main code.

if(bs(j).gt.amark) then
dint = vardint
endif

if(bs(j).le..9) then
dint = .002
endif

nnr = (bsmax-bshigh)/dint + 1
endif

dint = .002

if (nnr.le.3.and.nnr.ne.0) then
nnr = 4

endif

n5r = nnr + nnl + nfil
nOr = nnr + nnl + nfil - 1
nlpd = nnl + nfil + I

if(nnr.eq.0) goto 160

if (nnr.le.4) then
dsl = (bsmax - bshigh)/5
dsn = dsl

else
dsl = .001
dan = .001

endif
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if(bs(j).gt..8) then
dsl = (bsmax - bshigh)/nnr
dsn = dsl

endif

smax = bsmax-bshigh

call setex2(s,dsl,dsn,smax,nnr)

ind = nn1
do 22 i = nlpd,n5r

m = i-nlpd+1
ind = ind + 1
temps(i) = s(m)
expls(i) = bshigh+temps(i)
xplt(ind) = expls(i)
yplt(ind) = 0.0
xplt3(m) = expls(i)
yplt3(m) = 0.0

22 continue
expls(n5r) = bsmax

160 continue

c end set-up for integration intervals to right of linear zone.

c **************************LOTTING****************************

npoin = nnr + nnl + nfil
do 150 i = 1,npoin

if(i.le.klm) then
xaxis(i) = xpltl(i)
yaxis(i) = ypltl(i)

else
index = i - klm
xaxis(i) = xplt(index)
yaxis(i) = yplt(index)

endif

150 continue

if (bs(j).ge..995.and.bs(j).le..997) then
nx = npoin - klm

nper(1) = klm
nper(2) = nx

titl(1) = 'fildis'
titl(2) = 'fildis'
pltitl = ''expls "0 "'
call grinit(S,6,'exp stretched is')
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call grklin(ilin,isym,nper,titl,2,xaxis,yaxis,pltitl,599)

endif

c **************************************************************

return
end ! fildis

C

SUBROUTINE FILTER(T,Y,N,TFIL)
PARAMETER (NX=1000)

REAL T(N), Y(N), tfil(n)
REAL AA(NX), BB(NX), CC(NX)

C
C WRITTEN BY PROFESSOR MARK DRELA, MIT
C

IF(N.GT.NX) STOP 'FILTER: Array overflow'
C
C

CC(1) = 0.
AA(1) = 1.0
DO 10 I=2, N-1
TFSQ = TFIL(i)**2
DTM = T(I) - T(I-1)
DTP = T(I+1) - T(I)

DT = 0.5*(T(I+I) - T(I-1))

CC(I) = -TFSQ / (DTP*DT)
AA(I) = TFSQ * (1.0/DTP + 1.0/DTM)/DT + 1.0
BB(I) = -TFSQ / (DTM*DT)

10 CONTINUE
BB(N) = 0.

AA(N) = 1.0
C

CALL TRISOL(AA,BB,CC,Y,N)

C
RETURN
END ! FILTER

SUBROUTINE SETEXP(S,DS1,SMAX,NN)

C Sets geometrically stretched array S:
C
C WRITTEN BY PROFESSOR MARK DRELA, M.I.T.
C
C S(i+1) - S(i) = r * ES(i) - S(i-1)]
C

C S (output) array to be set
C DS1 (input) first S increment: S(2) - S(1)
C SMAX (input) final S value: S(NN)
C NN (input) number of points

REAL S(1)
C
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SIGMA = SMAX/DSi

NEX = NN-1

RNEX = FLOAT(NEX)
RNI = 1.0/RNEX

C

C---- solve quadratic for initial geometric ratio guess
AAA = RNEX*(RNEX-1.0)*(RNEX-2.0) / 6.0
BBB = RNEX*(RNEX-1.0) / 2.0
CCC = RNEX - SIGMA

C
DISC = BBB**2 - 4.0*AAA*CCC
DISC = AMAXI( 0.0 , DISC )

C

IF(NEX.LE.1) THEN
STOP 'SETEXP: Cannot fill array. N too small.'
ELSE IF(NEX.EQ.2) THEN
RATIO = -CCC/BBB + 1.0

ELSE
RATIO = (-BBB + SQRT(DISC))/(2.0*AAA) + 1.0
ENDIF

C

IF(RATIO.EQ.1.O) GO TO 11
C
C---- Newton iteration for actual geometric ratio

DO i ITER=1, 100
SIGMAN = (RATIO**NEX - 1.0) / (RATIO - 1.0)
RES = SIGMAN**RNI - SIGMA**RNI
DRESDR = RNI*SIGMAN**RNI

& * (RNEX*RATIO**(NEX-1) - SIGMAN) / (RATIO**NEX - 1.0)
C

DRATIO = -RES/DRESDR
RATIO = RATIO + DRATIO

C

IF(ABS(DRATIO) .LT. 1.OE-5) GO TO 11
C

1 CONTINUE

WRITE(6,*) 'SETEXP: Convergence failed. Continuing anyway ...'
C

C---- set up stretched array using converged geometric ratio
11 S(1) = 0.0

DS = DS1
DO 2 N=2, NN

S(N) = S(N-1) + DS
DS = DS*RATIO

2 CONTINUE
C

RETURN
END ! SETEXP

SUBROUTINE SETEX2(S,DS1,DSN,SMAX,N)
DIMENSION S(N)

C Sets array S stretched so that a prescribed spacing is.....................................................................

C Sets array S stretched so that a prescribed spacing is
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C obtained at each end. The interior spacing is a blend

C of two geometric stretchings "shot" from each end.

C
C WRITTEN BY PROFESSOR MARK DRELA, M.I.T.
C
C S (output) array to be set
C DS1 (input) approximate first S increment: S(2) - S(1)
C DSN (input) approximate last S increment: S(N) - S(N-1)
C SMAX (input) final S value: S(N)
C N (input) number of points

C
PARAMETER (NDIM=2000)
REAL S1(NDIM), SN(NDIM)

C
C---- with bigger FEND, the actual end increments will get closer to DS1 & DSN,
C but the interior spacing might get screwy.

DATA FEND / 0.5 /
C

IF(N.GT.NDIM) STOP 'SETEX2: Array overflow.'
C
C---- calculate spacing arrays each having the prescribed end increment

CALL SETEXP(S1,DSI,SMAX,N)
CALL SETEXP(SN,DSN,SMAX,N)

C
C---- blend spacing arrays with power-function weights

DO 10 I=1, N
IN = N-I+1
SS1 = SI(I)

SSN = SMAX - SN(IN)
C
C------ power function of integer index

WT1 = FLOAT(N-I)**FEND
WTN = FLOAT(I-I)**FEND

C
C------ power function of coordinate
CCC WTI = (1.0 - SSN/SMAX)**FEND
CCC WTN = ( SS1/SMAX)**FEND
C

S(I) = (SS1*WTi + SSN*WTN) / (WT1 + WTN)
10 CONTINUE

C
C---- check for monotonicity

DO 20 I=2, N
IF(S(I) .LE. S(I-1)) THEN
WRITE(6,*) 'SETEX2: Warning. Returned array not monotonic.'
RETURN
ENDIF

20 CONTINUE
C

RETURN

END ! SETEX2

FUNCTION SEVAL(SS,X,XP,S,N)
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REAL X(1),XP(l),S(1)

WRITTEN BY PROFESSOR MARK DRELA, M.I.T.

IF( (SS-S(N)) .GT. 0.1*(S(N)-S(N-1)) .OR.

& (SS-S(l)) .LT. 0.1*(S(1)-S(2)) ) then

write(*,172)

format('seval:outside range')

endif

ILOW = 1
I = N

10 IF(I-ILOW .LE. 1) GO TO 11

IMID = (I+ILOW)/2

IF(SS .LT. S(IMID))
I = IMID

ELSE

ILOW = IMID

ENDIF

GO TO 10

THEN

11 DS = S(I) - S(I-1)

T = (SS-S(I-1)) / DS

CX1 = DS*XP(I-1) - X(I) + X(I-1)

CX2 = DS*XP(I) - X(I) + X(I-1)

SEVAL = T*X(I) + (1.0-T)*X(I-1) +
RETURN

END ! SEVAL

(T-T*T)*((1.0-T)*CXl - T*CX2)

SUBROUTINE SMOOTH(BR,BZ,BS,NBR,bsmax,ii,sminc)

c MELINDA GODWIN

C MAY 23,1991

DIMENSION BR(301), BZ(301), BS(301), DELRSQ(301), DELZSQ(301),
DELS(301). TFIL(2000)

character * 12 titl(3)

character * 16 pltitl

write(*,877) sminc

877 format(ix,'tfil=',f10.4)

if(ii.eq.1) then

write(*,47)
47 format(lx,'INPUT CASE NUMBER, 1-DISK, 2-ELLIP, 3-TYP HOV ROTOR',
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read(5,*) mcase

write(*,48) mcase
48 format(ix,'YOU CHOSE CASE',lx,i2,lx,

& 'ENTER 1 IF TRUE, 2 IF FALSE',/,/)
read(S,*) nchoice

if(nchoice.eq.2) then
write(*,49)

49 format(Ix,'INPUT CASE NUMBER, 1-DISK, 2-ELLIP, 3-TYP HOV ROTOR')
read(S,*) mcase

write(*,50) mcase
50 format(1x,'YOU ARE RUNNING CASE',1X,I2)

endif

endif

nend = nbr-2

do 2003 i = 2,nend

delrl=br(i)-br(i-1)
delzl=bz(i)-bz(i-1)
delr2=br(i+l)-br(i)
delz2=bz(i+l)-bz(i)
delr3=br(i+2)-br(i+1)
delz3=bz(i+2)-bz(i+1)
crossl = delrl*delz2 - delzl*delr2
cross2 = delr2*delz3 - delz2*delr3

flag=crossl*cross2

if (mcase.eq.l.or.mcase.eq.2) then
start = 0.0

else
start = .96

endif

if(flag.lt.0..and.br(i).gt.start) then

tfil(i) = sminc
else

tfil(i)=O.O

endif

if(flag.lt.0.and.i.eq.nend) then
if(sminc.eq.0.) then
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tfil(nend+l)=O.0
tfil(nend+2)=0.0

else
tfil(nend+l)=sminc
tfil(nend+2)=sminc

endif
endif

2003 continue

nolast = nbr

call filter(bs,br,nolast,tfil)
call filter(bs,bz,nolast,tfil)

bs(1) = BR(1)

do 18 i = 2,nbr
delrsq(i) = (br(i) - br(i-1))**2.
delzsq(i) = (bz(i) - bz(i-1))**2.
dels(i) = sqrt(delrsq(i) + delzsq(i))
bs(i) = dels(i) + bs(i-1)

18 continue
BSMAX = BS(NBR)

return
end

SUBROUTINE SPLIND(X,XS,S,N,XS1,XS2)
DIMENSION X(1),XS(1),S(1)
PARAMETER (NMAX=2000)
DIMENSION A(NMAX),B(NMAX),C(NMAX)

C---------------------------------------------------
C WRITTEN BY PROFESSOR MARK DRELA, M.I.T.
C
C Calculates spline coefficients for X(S).
C Specified 1st derivative and/or usual zero 2nd
C derivative end conditions are used.
C To evaluate the spline at some value of S,
C use SEVAL and/or DEVAL.
C
C S independent variable array (input)
C X dependent variable array (input)
C XS dX/dS array (calculated)
C N number of points (input)
C XS1,XS2 endpoint derivatives (input)
C If = 999.0, then usual zero second
C derivative end condition(s) are used
C
C---------------------------------------------------

C
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DO 1 I=2, N-1
DSM = S(I) - S(I-1)
DSP = S(I+1) - S(I)
B(I) = DSP
A(I) = 2.0*(DSM+DSP)
C(I) = DSM
XS(I) = 3.0*((X(I+1)-X(I))*DSM/DSP + (X(I)-X(I-1))*DSP/DSM)

1 CONTINUE
C

IF(XS1.EQ.999.0) THEN
C----- set zero second derivative end condition

A(1) = 2.0

C(1) = 1.0
XS(1) = 3.0*(X(2)-X(1)) / (S(2)-S(1))
else if (xsl.eq.-999.) then
A(1) = 1.0

C(1) = 1.0

XS(1) = 2.0*(X(2)-X(1)) / (S(2)-S(1))
ELSE

C----- set specified first derivative end condition
A(1) = 1.0

C(1) = 0.
XS(1) = XS1
ENDIF

C
IF(XS2.EQ.999.0) THEN
B(N) = 1.0
A(N) = 2.0
XS(N) = 3.0*(X(N)-X(N-1)) / (S(N)-S(N-1))
else if (xs2.eq.-999.0) then
A(N) = 1.0
C(N) = 1.0
XS(N) = 2.0*(X(N)-X(N-1)) / (S(N)-S(N-1))

ELSE
A(N) = 1.0
B(N) = 0.

XS(N) = XS2
ENDIF

C
C---- solve for derivative array XS

CALL TRISOL(A,B,C,XS,N)
C

RETURN
END ! SPLIND

SUBROUTINE TRISOL(A,B,C,D,KK)
DIMENSION A(1),B(1),C(1),D(1)

C-----------------------------------------

C Solves KK long, tri-diagonal system
C
C AC D

C BAC D
C BA. .
C . .C
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BA D

The righthand side D is replaced by I
the solution. A, C are destroyed. I

C-----------------------------------------
C

DO 1 K=2, KK
KM = K-1
C(KM) = C(KM)
D(KM) = D(KM)

A(K) = A(K) -
D(K) = D(K) -

1 CONTINUE

/ A(KM)
/ A(KM)
B(K)*C(KM)

B(K)*D(KM)

D(KK) = D(KK)/A(KK)

DO 2 K=KK-1, 1, -1

D(K) = D(K) - C(K)*D(K+I)
2 CONTINUE

RETURN
END ! TRISOL
SUBROUTINE TYPHOV(BR,BZ,BS,BSMAX,GB,TBS,ndisl,NUMBR,A,T)

c Uses Pullin self-similar solution with typical hover gamma distrib.

C!!!!!DONT FORGET TO DIMENSION VARIABLES IN MAIN PROGRAM

DIMENSION DELRSQ(2001),
ZETA(2000),

P(301),

DELZSQ(2001),

Z(2001),
rbs(2000),
zbs(2000)_

lampul(2001),

ETA(2000),

PBS(301),

DELS(2001),

yplt(2001),
tempbs(2000),

s(2000)

gbbtbs(2001),

BR(2001),

TBS(2001),

GB(2001),

ebz(2000),

tempgb(2000),

yyplt(2000),
BZ(2001),

BS(2001),

R(2001),

xplt(2000),

tgbtbs(2000),

DIMENSION NPER(2),ILIN(2),ISYM(2)
DATA ILIN/1,2/
DATA ISYM/1,2/
CHARACTER * 10 TITL(2)
CHARACTER * 50 PLTITL

real lampul

NUM = 19
ZETA(1) = 64.7997

ETA (I) = 0.0
ZETA(2) = 45.0

ETA (2) = 0.0

ZETA(3) = 25.9200

ETA (3) = 0.0

ZETA(4) = 6.48
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ETA (4) = 0.0

ZETA(S) = 3.2400

ETA (5) = 0.0
ZETA(6) = 2.0600

ETA (6) = 0.0

ZETA(7) = 1.7250

ETA (7) = .0063

ZETA(8) = 1.4438

ETA (8) = .0125

ZETA(9) = 1.0863

ETA (9) = .0281
ZETA(O1) = .8875

ETA (10) = .0438

ZETA(11) = .7125

ETA (11) = .0613

ZETA(12) = .5375

ETA (12) = .08625

ZETA(13) = .3625

ETA (13) = .1375

ZETA(14) = .2250

ETA (14) = .2163

ZETA(15) = .1781

ETA (15) = .2531
ZETA(16) = .1375

ETA (16) = .3

ZETA(17) = .10625

ETA (17) = .3625

zeta(18) = .09

eta(18) = .4125
zeta(19) = .0828

eta(19) = .475

do 51 i = 1,num

xplt(i) = zeta(i)
yyplt(i) = eta(i)

51 continue

c Now the zeta and eta values above (which are pulled directly
c from Pullin's plots) will be curve-fitted and overwritten
c so instabilities do not occur due to errors in transcribing
c Pullin's data.

intl = ((65-10)/5) + .1

int2 = ((10-3)/.05) + .1
int3 = ((3-1)/.01) + .1
int4 = ((1-.083)/.001) + 1.1

dec2 = intl + int2

dec3 = dec2 + int3

ntotal = intl + int2 + int3 + int4

write(*,*) ntotal
zet = 65
ainc = 0.0
do 61 i = 1,ntotal
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zet = zet - ainc
zeta(i) = zet
eta(i) = .04*((1/zeta(i)) - (1./64.7997))
ind = num + i
xplt(ind) = zeta(i)
yyplt(ind) = eta(i)
if(i.le.intl) then

ainc = 5
endif
if(i.gt.intl.and.i.le.dec2) then

ainc = .05

endif
if(i.gt.dec2.and.i.le.dec3) then

ainc = .01
endif
if(i.gt.dec3) then

ainc = .001
endif

61 continue

C PLOT WITH NEW CURVE FIT VALUES WHERE PULLIN ZETA AND ETA HAVE
C ALREADY BEEN OVERWRITTEN IN LOOP 61.

NPER(1) = ntotal

TITL(1) ='PULLIN'
PLTITL = ''ZETA "ETA "'
CALL GRINIT(5,6,'PLOT OF ETA VS ZETA')

c CALL GRKLIN(ILIN,ISYM,NPER,TITL,I,zeta,eta,PLTITL,599)
c

CALL SPLIND(ETA,EBZ,ZETA,Ntotal,999.,999.)

A = .0418
T = .0458
DO 1 I = 1,NTOTAL

c since old coordinate system was zero at tip,

c 1.- ..... is necessary.

R(I) = 1. - ((A*T)**(2./3.)*ZETA(I))

c Negative is because Pullin has z pos upward.

Z(I) = -(A*T)**(2./3.)*ETA(I)

I CONTINUE

C NOW TURN R AND Z VALUES INTO S VALUES.

s(1) = r(1)
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do 71 i = 2,ntotal

delrsq(i) = (r(i) - r(i-1))**2
delzsq(i) = (z(i)-z(i-1))**2
dels(i) = sqrt(delrsq(i) + delzsq(i))
s(i) = dels(i) + s(i-1)

71 continue

write(*,87) s(ntotal)

87 format(1x,'smax=',f10.7)

CALL SPLIND(Z,ZBS,S,NTOTAL,999.,999.)

CALL SPLIND(R,RBS,S,NTOTAL,999.,999.)

c Now s values will be stretched.

DS1 = .025
DSN = .0005
NUMBR = 150
SMAX = S(NTOTAL)
CALL SETEX2(BS,DS1,DSN,SMAX,NUMBR)

c define br(1) = .01 cause otherwise setexp calls br(1) = 0.
c and setexp in vortex cannot deal with this.

bs(i) = .01

bsmax = bs(numbr)
do 66 j=l,numbr

br(j) = seval(bs(j),r,rbs,s,ntotal)
bz(j) = seval(bs(j),z,zbs,s,ntotal)

66 continue

nvortx = numbr + 1
super = 2./3.
scale = (a*t)**super
br(nvortx) = 1.-.308*scale
bz(nvortx) = -.498*scale

NPER(1) = numbr
nper(2) = I
TITL(1) ='INIT WAKE'
TITL(2) ='CORE LOC'
PLTITL = ''RADIUS "Z/R -'

CALL GRINIT(5,6,'INITIAL WAKE FOR PRACTICAL DISTRIBUTION')
c CALL GRKLIN(ILIN,ISYM,NPER,TITL,2,br,bz,PLTITL,599)

C
C NOW FOR THE CIRCULATION DISTRIBUTION EXACTLY FROM PULLIN'S
C SOLUTION.
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NUM2 = 15
TBS(1) = .9532
P (1) = .3063

TBS(2) = .9585
P (2) = .2878
TBS(3) = .9629

P (3) = .2709

TBS(4) = .9684

P (4) = .2532

TBS(5) = .9734

P (5) = .2313

TBS(6) = .9776

P (6) = .2101

TBS(7) = .9815

P (7) = .1930

TBS(8) = .9847

P (8) = .1775

TBS(9) = .9877

P (9) = .1637

TBS(10) = .9903

P (10) = .1539

TBS(11) = .9931

P (11) = .1409

TBS(12) = .9956
P (12) = .1311

TBS(13) = .9977

P (13) = .1238

TBS(14) = .9998

P (14) = .1197

TBS(15) = 1.0018

P (15) = .1124

CALL SPLIND(P,PBS,TBS,NUM2,999.,999.)

DO 5 I = 1,NUM2

HA = .70741
HT = .00271

LAMPUL(I) = p(i)/((HA**(4/3))*(HT**(1/3)))
GB(I) = LAMPUL(I)*(A**(4/3))*(T**(1/3))
xplt(i) = tbs(i)
yplt(i) = gb(i)

5 CONTINUE

NPER(1) = NUM2
TITL(1) ='Hoej'
PLTITL = ''tbs "gb "'
CALL GRINIT(S,6,'for tbs gt .95')

c CALL GRKLIN(ILIN,ISYM,NPER,TITL,1,TBS,gb,PLTITL,599)
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num99 = 9
c This is the part of the circulation distribution < .93, which
c was taken from plots referenced in thesis. Pullin's solution
c is not applied to this. It is only layed-out here so that
c the tip circulation before and after the curve fit can be plotted
c and compared.

tempbs(1) = .1
tempgb(1) = .0
tempbs(2) = .2
tempgb(2) = .0072
tempbs(3) = .3
tempgb(3) = .01
tempbs(4) = .42
tempgb(4) = .012
tempbs(5) = .7
tempgb(5) = .0152
tempbs(6) = .84
tempgb(6) = .018
tempbs(7) = .915
tempgb(7) = .0216
tempbs(8) = .94
tempgb(8) = .0208
tempbs(9) = .95
tempgb(9) = .0188

CALL SPLIND(TEMPGB,TGBTBS,TEMPBS,NUM99,999.,999.)

ainc = .01
disend = .94
NDIS = disend/aINC + .01
nend = ndis + 1
rad = -ainc
ind = nend

DO 662 I = 1,Nend

rad = rad + ainc
tbs(i) = rad
tbs(1) = 0.

tbs(nend) = disend
gb(i) = seval(tbs(i),tempgb,tgbtbs,tempbs,num99)

if(i.le.num2) then
ind = ind+1

tbs(ind) = xplt(i)

gb(ind) = yplt(i)
endif

662 continue
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npts = num2 + nend
NPER(1) = Npts

TITL(1) ='actual pullin solution'
PLTITL = ''tbs "gb -"
CALL GRINIT(5,6,'for tbs gt .95')

L LAC GRKLIN ( ILIN , 
)

C END PULLIN'S EXACT SOLUTION

NOW THE ABOVE CIRCULATION DISTRIBUTION IS APPROXIAMATED
BY AN EQUATION AND OVERWRITTEN TO INSURE SMOOTHNESS IN THE
CIRCULATION DISTRIBUTION.

deltbs = .919

num2 = 8
do 785 i = 1,num2

tbs(i) = deltbs + .01

gb(i) = .022-2.95*(tbs(i)-.929)**2

xplt(i) = tbs(i)

yplt(i) = gb(i)
deltbs = tbs(i)

785 continue

NPER(1) = num2
TITL(1) ='approx soltn'

PLTITL = 'tbs "gb "'

CALL GRINIT(5,6,'for tbs gt .95')

CALL GRKLIN(ILIN,ISYM,NPER,TITL,1,TBS,gb,PLTITL,599)

c This is the part of the circulation distribution < .93, which
c was taken from plots referenced in thesis. Pullin's solution
c is not applied to this.

num99 = 7

tempbs(1) = .1

tempgb(1) = .0

tempbs(2) = .2

tempgb(2) = .0072

tempbs(3) = .3
tempgb(3) = .01

tempbs(4) = .42

tempgb(4) = .012

tempbs(5) = .7

tempgb(5) = .0152
tempbs(6) = .84
tempgb(6) = .018

tempbs(7) = .915
tempgb(7) = .0216

CALL SPLIND(TEMPGB,TGBTBS,TEMPBS,NUM99,999.,999.)
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ainc = .01
rad = -ainc
disend = .92
NDIS = disend/aINC + .01
nend = ndis + 1
ind = nend

DO 6 I = i,Nend

rad = rad + ainc
tbs(i) = rad
tbs(1) = 0.
tbs(nend) = disend
gb(i) = seval(tbs(i),tempgb,tgbtbs,tempbs,num99)

if (i.le.num2) then

ind = ind + I
tbs(ind) = xplt(i)
gb(ind) = yplt(i)
endif

6 continue

ndisl = npts

npts = nend + num2
CALL SPLIND(GB,GBBTBS,TBS,Ndis,999.,999.)
NPER(1) = Npts
TITL(i) ='GAMMA DIS'
PLTITL = ''S "GAMMA "'
CALL GRINIT(5,6,'CIRCULATION DISTRIBUTION VS. SHEET LENGTH')
CALL GRKLIN(ILIN,ISYM,NPER,TITL,1,TBS,GB,PLTITL,599)

return

end ! pullin
c stop
c end
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