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ABSTRACT
The purpose of this thesis is to develop a general discrete

methodology for modeling the dynamics of a mass that moves on the
surface of a flexible structure. This model was motivated by the
Space Station/Mobile Transporter system. A model reduction
approach is developed to make the methodology applicable to large
structural systems. To validate the discrete methodology, continuous
formulations are also developed. Three different systems are
examined: (1) Simply-Supported Beam, (2) Free-Free Beam, and (3)
Free-Free beam with two points of contact between the mass and the
flexible beam. In addition to validating the methodology, parametric
studies were performed to examine how the system's physical
properties affect its dynamics. Selected MATLAB programs are
provided.
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CHAPTER 1

INTRODUCTION

The concept of "Freedom" Space Station divulges a wide range

of dynamics problems. The particular problem considered in this

thesis will help examine how the mobile transporter motion affects

the space station dynamics. In the current space station layout, the

mobile transporter is connected to the main truss of the space station

(see Figure 1). The mobile transporter moves along the length of the

truss on a track carrying payload about the station. Since the sum of

the mass of the mobile transporter and that of the payload it will

carry is potentially comparable to the mass of the entire station, the

inertial effects of the transporter should not be ignored.

The current analysis is motivated by the Space Station-Mobile

Transporter (SS-MT) system. A simplified model of a mass moving

over a flexible guideway is used to resemble the more complicated

SS-MT system. This simplified system may be solved with a

continuous formulation, but obtaining a continuous formulation that

will simulate the complicated system containing the station,

transporter, and shuttle is not feasible. Therefore, while a

continuous analysis provides insight, a more general discrete

formulation is needed to address the large-scale problem at hand.
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The objective is to develop a discrete algorithm that can be

tested against a continuous formulation for the Flexible

Structure/Moving Mass system. Once the validity of this discrete

algorithm is proven, it may be extended to simulate the motion of

the Space Station-Mobile Transporter system.

In both the continuous and the discrete analyses, the guideway

is modeled as a flexible beam. The moving mass is considered to be

a rigid body that moves along the beam's length. The inertial effects

due to the motion of the mass are included in the derivation. For the

discrete system, the flexible beam is divided into finite beam-

elements. Using lumped-parameter and energy-consistent methods,

respectively, the beam's mass and stiffness matrices are obtained.

Then, an invertible operator is used to map the continuous spatial

representation of the moving mass onto the discrete representation

of the flexible structure.

A continuous and discrete formulation is used to examine the

mass connected to the flexible guideway at only one point. This

model does not correspond to the actual Space Station-Mobile

Transporter system but it serves as an appropriate test article. A

continuous formulation is developed to check the results of the

discrete method, and numerical results are presented for a simply-

supported and a free-free flexible beam. Once the validity of the



discrete methodology is established, parametric studies are

performed for both the simply-supported and the free-free beams.

The final step in the analysis is to connect the moving mass to

the flexible beam at two points. This model was chosen to represent

the train/track aspect of the SS-MT system. Since a discrete

methodology was validated, a continuous formulation of this new

system is not necessary. To stay close to the SS-MT system, only the

free-free beam case is examined here. Studies that examine how the

spacing of the two contact points affects the dynamics of the entire

system are presented.

There are four chapters and four Appendices following this

introduction. Chapter 2 examines the relevant work that has been

accomplished in this area. Most previous work concentrates on the

motion of a truck travelling over a flexible bridge or on a train

travelling over a track. The SS-MT dynamics are similar to the

flexible bridge problem except for the rigid body motion that the

inertially-free space station undergoes. Due to the increase in

computer power in recent years, many dynamic simulation programs

were developed. Chapter 2 also examines how well these existing

dynamic codes can handle the specific problem at hand.

Chapter 3 describes the theoretical analysis: Section 3.1

focuses on the continuous formulation and Section 3.2 develops the



discrete formulation. The simply-supported and the free-free beam

are examined here as special cases. Section 3.3 discusses the

discrete, inertially free, multipoint-of-contact system. Each of the

three sections in Chapter 3 starts with a mathematical model of the

system. Then the equation of motion is developed using a Newtonian

method. The equations are made nondimensional and placed into a

reduced set of modal coordinates. The final equations are then cast

in state-space form, which is well suited for numerical computation.

Chapter 4 displays the numerical results, and is divided into

two sections. The first section, Section 4.1, outlines how the

simulations are organized, and discusses the goals that the results are

trying to obtain and the parameters used to develop the simulations.

The second section, Section 4.2, displays and discusses each

simulation that is run. In this section, the simply-supported case is

examined first to compare the accuracy of the discrete and

continuous formulations. Parametric studies are then performed in

order to examine how a change in the system nondimensional

parameters changes the system dynamics. Next, the free-free case is

examined. Once again, the discrete and continuous formulations are

compared to assess the accuracy of the discrete formulation.

Parametric studies are again performed when the accuracy of the

discrete case has been proved. Finally the two-point-of-contact case

is displayed.



Chapter 5 offers conclusions and suggestions for further work;

in particular, extending the discrete formulation presented here to

model the Space Station-Mobile Transporter system. The concept of

connecting the shuttle to the SS-MT system could also be considered,

which would be a logical extension of the work presented in this

thesis.

Appendix A offers a Lagrangian formulation of the continuous

free-free beam, which is used to check the continuous formulation of

the same system derived earlier using Newton's equation of motion.

Appendix B describes the numerical integration process that was

used to obtain the simulation results shown in Chapter 4. The Runge

Kutta integration scheme is described. Appendix C provides

numerical values of the matrices used in evaluating the free-free

beam and expands the spatial derivatives of the shape functions

used in the discrete formulations. Appendix D describes the Matlab

programs that were written to simulate the Flexible

Structure/Moving Mass system. Some selected MATLAB programs

are displayed.



CHAPTER 2

PREVIOUS WORKS

Reaching as far back as the early nineteenth century, scientists

and theorists have been intrigued by the dynamic interaction that

occurs when a load travels over a flexible structure. In the past,

common models of this interactive system have been that of a truck

travelling over a bridge, a train travelling along a track, or a package

moving on a conveyer belt. These systems are similar to the

inertially free Flexible Structure/Moving Mass system that is used

here to resemble the Space Station-Mobile Transporter (SS-MT)

system.

Unlike the other systems mentioned, the Space Station-Mobile

Transporter system is inertially free, and it is geometrically complex.

It is necessary to obtain a discrete representation of the Flexible

Structure/Moving Mass system that can be extended to the Space

Station-Mobile Transporter system. A discrete representation is

necessary in order to accommodate mass and stiffness matrices,

rather than partial differential equations. References [1] and [2]

were the first to address this important concept in a general way.

This thesis is a detailed compilation of the analysis presented in

those two papers, with the exception that Ref. [2] addresses the

problem of a flexible structure moving on a flexible structure.



This chapter introduces other work involving the dynamic

interaction of the moving mass/flexible structure issue. Section 2.1

discusses some related previously released papers. Section 2.2

examines some existing multibody dynamics and finite-element

codes in order to determine their ability to handle the proposed

problem.

2.1 PREVIOUSLY PUBLISHED PAPERS

Three important features are needed to handle the Space

Station-Mobile Transporter system and the dynamics of the Space

Shuttle:

(1) A discrete representation.

(2) The ability to handle very large complex systems.

(3) Computational efficiency.

None of the previously published papers are well suited to

meet all three of these requirements. Most of the previous work

assumes that a continuous model of the flexible structure is available

(Refs. [3]-[7]). References [3]-[6] assume that the beam is simply-

supported. For example, Galerkin's method (Ref. [3]), Inverse Laplace

transform (Ref. [5]), and Fourier series (Ref. [6]) are several of the

analytical techniques discussed. The derived discrete methodology



outlined in Section 3.2 uses the continuous solution presented in Ref.

[5] for its comparison.

Reference [7] presents a continuous formulation that may be

applied to different boundary conditions. This continuous solution,

however, is primarily beneficial when the inertial effects of the

moving mass can be ignored, thus treating the travelling load as a

moving force rather than as a moving mass. The repercussions of

this assumption are disclosed in Chapter 4.

Two papers (Refs. [8] and [9]) present discrete methodologies

capable of solving the moving mass/flexible structure problem.

Reference [8] presents a methodology that is applicable for time-

varying forces. Reference [9] presents a formulation that may be

implemented into a general finite-element code, such as MSC

NASTRAN. This method is valid for any boundary condition.

Lagrange multipliers are used to obtain a linear time-invariant

formulation, which can then be solved using NASTRAN. However, as

explained in Ref. [2], this formulation is generally applicable when

modal reduction is not necessary.

The papers discussed above (Refs. [3]-[9]) present

methodologies that are well suited to study the motion of a heavy

truck or train travelling over a flexible bridge. However, the

methodology presented here is well suited for the complex inertially



free Space Station-Mobile Transporter system. It is a discrete

representation that is independent on the boundary conditions of the

beam. It is well suited for model reduction so can be altered to

include the Space Shuttle's dynamics.

2.2 EXISTING CODES

In the past twenty years, the availability and power of

computers has grown exponentially. Coinciding with the boom in

computer hardware was an increase in computer software

capabilities. Today there are hundreds of software packages

available to handle very diverse tasks.

Among the codes that handle multibody dynamic interactions

are: DISCOS (Ref. [10]), ADAMS (Ref. [11]), and DADS (Ref. [12]).

These codes model the connection between two bodies as either a

prismatic or a rotational joint. As was stated in Ref. [1], however, the

motion of the Mobile Transporter is dependent on the flexible-body

motion of the Space Station. Therefore, the SS-MT system cannot be

modeled using these joints, without making far-reaching

assumptions.

An alternative is to develop a formulation that could be

implemented using an existing finite-element code, such as MSC

NASTRAN (Ref. [13]) or ADINA (Ref. [14]). NASTRAN requires that

10



the equations be cast in a linear time-invariant form. Ref. [9]

presents an effective approach to using NASTRAN for the moving

mass problem in the case of low-order structures. ADINA's strength

lies in other areas.

The discrete formulation presented in Section 3.2 is developed

specifically with the application to large structural systems in mind.
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CHAPTER 3

THEORETICAL ANALYSIS

Chapter 3 discusses the theoretical analysis: Section 3.1

presents the continuous formulation, Section 3.2 presents the

discrete formulation with one point of contact, and Section 3.3

presents a discrete formulation for the multipoint-of-contact system.

Each section is set up in a similar manner. First, a

mathematical model of the system is discussed. Using this model,

equations of motion of the entire system are developed and placed

into a nondimensional form in terms of the beam's modal

coordinates. Then a state space matrix representation is formed so

the formulation is suitable for numerical evaluation.

A general formulation valid for any boundary condition is

presented in each section. Two systems are examined in detail: (1)

the simply-supported beam and (2) the free-free beam.

3.1 CONTINUOUS FORMULATION

In the following sections, the continuous formulation of the SS-

MT system is developed. The results from this formulation are

compared to those obtained by the discrete analysis presented in

Section 3.2.

13



Two different systems are examined here. The first system

system model, shown in Figure 2, represents the inertially fixed

space station with the transporter travelling along its length. This

model represents many physical entities, the most popular example

being a heavy truck travelling over a flexible bridge. The second

system, shown in Figure 3, represents the inertially free space

station with the transporter travelling along its length.

Vm

X

Figure 2. Simply-supported beam with a mass moving along its

length.

Vm

Figure 3. Free-free beam with a mass moving along its length.

14



The dynamics analysis presented is a general methodology

applicable to both systems. In Sections 3.1.5 and 3.1.6, the equations

are made specific to the inertially fixed and the inertially free

systems, respectively.

3.1.1 Mathematical Model

There are several ways to formulate the equations of motion

for the systems depicted in Figures 2 and 3. For an inertially fixed

system, an exact continuous solution using an inverse Laplace

transform may be used (Ref. [5]). For a more general system, an

exact continuous solution is not available.

In this analysis, however, an assumed modes approach, which

accurately gives the deformation while retaining only three modes, is

used to solve the systems shown in the above figures. The assumed

modes approach uses Galerkin's method to determine the beam

deformation due to the motion of the mass. Galerkin's method

assumes that the beam deflection can be approximated by a

superposition of orthogonal mode shapes. The assumption here is

that, using orthogonal modes, the error of the approximation

vanishes as the number of modes retained is increased.

The inertial effects of the moving mass are included in this

analysis. If these effects are ignored, the mobile transporter is

15



modeled as a moving force rather than as a moving mass. If the

mass of the moving object is considered negligible compared to that

of the flexible structure, the inertial effects can be ignored; however,

if the mass of the object is comparable in size to the structure, these

inertial effects should not be ignored.

Several cases of the two approaches for different moving

object/flexible structure mass ratios were studied. The results are

presented in Chapter 4. In the continuous and the discrete

formulations, the flexible structure is modeled as a Bernouille-Euler

beam.

3.1.2 Equations of Motion

The equations of motion for the flexible beam-moving mass

system are derived in three steps:

(1) The partial differential equation describing the motion of

the flexible structure is determined.

(2) The moving mass equation is obtained.

(3) A compatibility condition is invoked to obtain the equation

of motion for the entire system. The compatibility

condition is a direct consequence of Newton's third law. It

states that for every force there is a reactive force equal in

magnitude but opposite in direction. Thus, the force on the

16



beam due to the moving mass is equal to the force created

by the acceleration of the mass but opposite in direction.

Flexible Structure Equation

The fourth-order partial differential equation describing the

motion for a Bernoulli-Euler beam is (Ref. [15]):

p ii(x,t) + EI 4 (x,t)= Fext (,t)
ax 4  (3.1)

The displacement field, u(x,t), describes the motion of the mean

chord of the deformed beam with respect to an inertial reference

frame. This field contains any rigid body translation and rotation as

well as flexible motion of the beam. Since the structure is modeled

as a Bernouille-Euler beam, the mean chord of the beam is assumed

to undergo pure translation as a result of the deformation. Fext is the

vector sum of the external forces applied to the beam. The material

properties of the beam are considered to be homogeneous.

Moving Mass Equation

The equation describing the motion of the moving mass is

considered. This equation is derived using Newton's second law of

mechanics, which states that the force exerted on the mass is

proportional to the absolute acceleration of the mass.

17



mm (2um (Xm (x t ) t )  = Fm (Xm (x,t),t)
St abs (3.2)

where Fm(xm(x,t),t) is the force exerted on the moving mass.

The absolute acceleration of the beam is the acceleration of the

moving mass displacement field, um(xm(x,t),t), with respect to an

inertial reference frame. When differentiating the moving mass's

displacement field, it is important to imagine a reference frame

embedded in the moving mass. Since the mass is moving, the

reference frame is also moving with respect to the inertial frame and

adds its own terms to the acceleration of the mass. In this analysis,

the mass is moving at a constant velocity vm. Therefore, the

absolute acceleration of the moving mass is

2 2 2

um am 2 am 2() - 'm + 2 Vm++ Vm
at 2 t xm axm (3.3)

where the functional dependence of the variables are omitted for

brevity.

As it stands, Eq. (3.3) is written as a function of the moving

mass displacement field, um. To easily formulate the system

equation, it would be helpful to express this equation in terms of the

beam's displacement u. Since the mass is fixed to the beam, it cannot

18



slip and, at any time, the beam and the moving mass have the same

displacement in terms of Fm. This relationship can be expressed

mathematically by using the dirac delta function, which is a

continuous function that depicts the value of a function at discrete

times. Using this, the displacement of the mass is rewritten as a

function of the displacement of the beam:

Um = Um 6(x - Xm) (3.4)

Since the dirac delta function is not a function of time, the

spatial derivatives in Eq. (3.3) are rewritten as

2 2a um a u
- x - xm)

axm ax2  (3.5)

2 2a um a u
-= (x - xm)

axmat ax at (3.6)

Equations (3.5) and (3.6) are substituted into the absolute

acceleration expression for the moving mass. The force equation for

the moving mass then can be written in a form more compatible to

the flexible beam equation:

2 2
mm iK + 2 vm + V2m - (x- Xm)=Fmat ax ax2- (3.7)

19



Compatibility Equation

Newton's third law of dynamics states that for every force

there is a reactive force equal in magnitude but opposite in direction.

Using this law, the compatibility equation between the moving mass

and the flexible beam is determined. The force exerted on the beam

due to the moving mass is equal in magnitude but opposite in

direction to the force defined by Eq. (3.7). The total force exerted on

the beam is the sum of the force due to the moving mass plus any

other external forces acting on the beam:

Fext = .fext - Fm (3.8)

where fext is any arbitrary external force. The external force

applied to the beam varies depending on which environment is being

simulated. The actual value of fext for the two systems studied is

shown in Sections 3.1.5 and 3.1.6. Using Eq. (3.7) the total force

applied to the beam is

2 21asu 2 au
Fext = fext mm ii + 2 vm + Vm (x - xm)

at ax ax2J (3.9)

System Equation

The equation of motion for the entire system is obtained by

using the force expression found in Eq. (3.9) and substituting it into

20



the beam equation (Eq. (3.1)). For clarity, any terms involving the

displacement of the beam are shown on the left-hand side of the

equation even though they appear due to the force exerted by the

moving mass. A fourth-order partial differential equation describing

the total displacement of the beam as a mass moves at a constant

velocity along its length is

a 4 U a 2 21
El + m m  +i 2 vm + vm - (X - Xm) =f ext
Sx 4  at ax JX2 (3.10)

'I he displacement field can contain translations and rotations.

The boundary condition of the beam does not change the form of this

general equation.

Modal Solution

Equation 3.10 must be rewritten into a form more suitable for

numerical computation. For certain systems, this equation can be

solved directly using an inverse Laplace transform. A more general

approach is described here. A linear superposition of orthogonal

modes is used to represent the beam's vibration. The new modal

representation contains a mode shape, 41, which is only dependent

on space, and a modal coordinate, r L, which is only a function of time.

N
u(x,t) = L _ •i(x) (31t)

i=-1 (3.11)

21



where N is the number of modes. As the number of modes

approaches infinity, the modal approximation approaches the exact

displacement of the beam u(x,t). The actual modes used depend on

the system being analyzed. The mode shapes used for the simply-

supported and free-free beam systems are shown in Sections 3.1.5

and 3.1.6, respectively.

It is not feasible to use an infinite amount of modes to model

the displacement. Different variations of the assumed modes

approach that drive the error of the approximation to zero for a

small amount of modes have been developed. One of these methods

is known as Galerkin's method, which uses the orthogonal property

of the modes to drive the error to zero.

Equation (3.11) is used to substitute the modal coordinate l7i(t)

for the natural coordinate u(x,t); this substitution is used in Eq.

(3.10). This new equation can be integrated since the mode shapes Oi

are not a function of time. Before the integration takes place, the

new equation is premultiplied by the transpose of the mode shapes

0j(t). Since the modes are orthogonal, this step reduces the error of

the approximation. The resulting integral equation is
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N I I El # 4i + P #i qi dx +

i=1 (3.12)

where

fn = 1 jfext d
L o (3.13)

The roman numeral superscript indicates a spatial derivative of the

appropriate order. A special relationship involving the dirac delta

function was used in obtaining the above equation

f f (x) (x - Xm) d = f (xm)
(3.14)

Nondimensional Integrals

The mode shapes are only a function of space; therefore, the

integral in Eq. (3.12) can be determined either analytically or

numerically. To condense the equation into a more readable form,

two nondimensional integrals are defined (Eqs. (3.15), (3.16)). The

values of Il and 12 for the simply-supported beam are found in

Section 3.1.5. The values of the free-free beam are listed in

Appendix C.
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L
Ii (iJ) = JL dx

LJ 

d

L
12 (ij) L' *100" o dx

(3.15)

(3.16)

Equation (3.12) is rewritten using the definitions in Eqs. (3.15)

and (3.16).

p'L II (ij) 7i + E1 2 ()0ri +
i=1 L 3

MMm 0i i 5 i ( + 2 vm O 7;i+Vm i 7li) x. =fnext;
i=l 1

j= 1, 2, ... N

(3.17)

Equation (3.17) represents n first-order differential equations

describing the total modal displacement of the system. Next, Eq.

(3.17) must be put into a nondimensional form.
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Nondimensional Equations of Motion

A general procedure for placing the equations of motion into a

nondimensional form is presented. First, the reference parameters

for each variable in the equation must be defined. Then, each

variable is divided by the appropriate reference parameter. The

reference parameters for the mass, time, and length variables are:

Mass -- pL (3.18)

Time -_ L
vm (3.19)

Displacement - L (3.20)

The mass terms are made nondimensional by the beam's mass. The

time reference parameter is the time required for the moving mass

to travel the beam's length. The beam's length is used as the

reference parameter for displacement.

For clarity, nondimensional parameters are defined below and

appear after the terms are divided by their respective reference

parameters.

ii = o i tr i L
vm (3.21)
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mm
#m = mm

pL (3.22)

- E

pv 2 L2

L
L

(3.23)

(3.24)

fl•ext t 2= f7iext
pL fi trpL2 pv2m

where tr = L
where mt, is the reference time defined above. The parameters

represent the frequency, mass, stiffness, time, and external force of

the system, respectively. In the following equations, an over-script

o is used to represent a derivative with respect to the

nondimensional time parameter r, i.e.,

a tra La
- r t t vmat (3.26)

Using the nondimensional procedure outlined previously, Eq.

(3.17) is made nondimensional:

(I (l (id) °rl i + 112 (ij)l +
i= 1

+ m•J 2 bi i + 2 rlii+ ri x=1 = f
i=l

j=1, 2,9...N

(3.27)
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Equation (3.27) describes the displacement of the modal coordinate

due to the motion of a moving mass and an externally applied force.

Next, this equation must be rewritten in a form suitable for

numerical simulation.

3.1.4 State Space Representation

The system depicted in Eq. (3.27) is described using a state-

determined mathematical model. In this type of model, the system

is described by a set of ordinary differential equations in terms of

state variables (Ref. [16]). The future of all the variables associated

with the system is predicted from the previous time history of the

state variables. The only information needed about the system is the

initial condition of the state variables and the equations defining the

future time history of these variables.

To obtain a state space representation, an nth-order

differential equation must be transformed into n first-order

differential equations. Equation (3.27) is already in the required

form. Next, an arbitrary set of state variables are chosen. For this

model, the modal displacements and their associated velocities are

chosen as the state variables: the displacements are chosen since

they are the desired output, and the velocities are chosen so the
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matrices take on a familiar form. The two sets of state variables are

combined into one state vector

x = tlN..z 0l 7N... ? (3.28)

In a state-determined formulation, the time derivative of the

state vector is a function of the state variables

o
x = F(x) (3.29)

Equations (3.28) and (3.29) show that the acceleration at any point

can be expressed as a function of the velocity and displacement at

that point. Once the accelerations are known, the velocities and

displacements are obtained by numerically integrating the system

equation of motion forward in time.

Matrix Representation

For easy evaluation, Eq. (3.27) is placed into a matrix

representation describing the states of the system. The equation is

first rewritten so that it follows the standard matrix equation

describing a dynamical system

M +C+Kq= F (3.30)
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where M, C, K, and F represent the mass, damping, stiffness, and

force matrices, respectively. 47 is the vector containing the modal

displacements

n=[ 71 ..- rN ] (3.31)

The definition of the state vector is used to place Eq. (3.30) into the

form of Eq. (3.29). The final result is an equation that can be

integrated to obtain the modal displacements and the modal

velocities:

o 0 E 0X= X+

- M'1K - M'C M' 1F (3.32)

where E is the identity matrix.

Additional terms representing structural damping are added to

the damping matrix. It is easier to represent structural damping in

modal coordinates rather than natural coordinates; therefore, the

additional terms are already in modal form. Any off-diagonal modal

terms are assumed to be negligible so the only extra terms appear on

the diagonal. From Ref. [15], modal damping takes the form

[Co,i = 2 , I (i,i) 2 ii) (3.33)
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where 2Di is the nondimensional frequency of the beam. The beam's

frequency depends on its boundary condition. The natural

frequencies for the two systems examined are shown in Sections

3.1.5 and 3.1.6.

The mass, stiffness, and damping matrices all contain a

constant and a time-varying component. The form of the force

matrix depends on the type of external force applied to the system.

The constant matrix is diagonal and represents the dynamics of the

flexible beam without any moving mass. The time-varying matrix is

fully populated and comes directly from the inertial effects of the

moving mass. The combination of both matrices forms the total

mass, stiffness, and damping matrices that are fully populated and

time-varying. The constant matrices have the subscript o and the

time-varying matrices have the subscript var. The total matrices are

the sum of the two:

M = Mo + Mvar (3.34)

C= Co+ Cvar (3.35)

K = Ko + Kvar (3.36)

First, the constant mass and stiffness matrices are determined.

The constant modal damping matrix was defined by Eq. (3.33). Even
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though the actual values of the integrals have not been shown, the

mode shapes used are orthogonal, ensuring the corresponding

matrices will be diagonal.

[Mo]ii = 11(i,i) (3.37)

[Ko]iji = 1 2(ii) (3.38)

Next, the time-varying matrices are shown. Note that in the

following matrices the mode shapes and their derivatives are

evaluated at the position of the moving mass, xm. Since xm depends

on time, the values of the matrices also vary with time.

[Mvar]ijj= Am 1i j (3.39)

[Cvarij = 2 /m 0i O (3.40)

[Kvar]ij =  m l Oij (3.41)

As stated previously, the vector containing the external forces

may or may not be time varying, depending on the actual value of

the external force applied. In symbolic terms, the force vector is

F= (3.42)

[PifN J (3.42)
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The matrices shown in the Eqs. (3.37), (3.38), (3.39), (3.40),

(3.41), and (3.42) are used in Eq. (3.32). The resulting expression is

then numerically integrated to obtain the modal displacements and

velocities at every point in time. Using Eq. (3.11) the modal

displacements are transformed into the desired natural

displacements.

To reiterate, the analysis presented so far has been for the

general flexible beam/moving mass system. Two systems are

examined in detail using numerical methods: the inertially fixed

system, which is modeled using a simply-supported beam, and

inertially free system, which is modeled using a free-free beam.

Both systems are explained in greater detail in Sections 3.1.5 and

3.1.6, respectively.

3.1.5 Applications to a Simply-Supported Beam

The simply-supported system shown in Figure 2 represents

many different physical systems. The most common physical system

associated with this model is a truck traveling over a flexible bridge.

The simply-supported beam model is used in this analysis to check

the discrete methodology. One advantage of using this model is the

availability of previously published results. Another advantage of

simulating this system is the simplicity of the mode shapes. The
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nondimensional integrals can be calculated by hand; therefore, the

numerical code used to simulate the system is easily checked when

the simply-supported modes are used.

The modes of a simply-supported beam are (Ref. [17])

oi (x) = sini ix
L (3.43)

These modes are orthogonal but not orthonormal. The corresponding

nondimensional frequencies of the beam are

vm (3.44)

which are used in Eq. (3.33) to determine the constant component of

the nondimensional damping matrix.

Once the mode shapes are known, the values of the

nondimensional frequencies are determined. For the mode shapes

shown in Eq. (3.43), the integrals are determined analytically:

I (i,i) = 1
2 (3.45)

12 (ii) i
2 (3.46)
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The mode shapes shown in Eq. (3.43) are also used to develop

the matrices given by Eqs. (3.33)-(3.41). Since the mode shapes for

this system are simple sine waves, the matrices can easily be put

into their symbolic form:

Am sin rz sin N7z

-+
2

Am sin Nittrsin N7rZ

(3.47)

pmNsinitr cosNxr

pm sinNzr coszyr 2
+/ImNsin NIz cos NIZ

(3.48)
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sym
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1 7 4 .
2 N 22sixSinN

x2 sinlr sinxr

.L(N i7rA-
-92sin Nr' sin .. 2

N 2 x2sinNa•svinNr -x

(3.49)

It is easy to see the constant and time-varying components of

these matrices. It is also apparent that only the total mass matrix

and the constant components of the damping and stiffness matrices

are symmetric. For more complex systems it is harder to write these

matrices in their symbolic form.

The simply-supported beam is used to model an inertially fixed

space station. To correctly model this environment, a gravitational

field is imposed on the system. The external force applied to the

beam is the gravitational force of the moving mass, fext = -mm g 6(x -

xm). Since the mass is moving, this force varies with time. Using

Eqs. (3.13) and (3.14), the force vector used for this simulation is

EPg sin (3.50)

L g Sin NzT j (3.50)
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where gXg is a nondimensional parameter for the gravitational force

applied to the beam:.

mm g 2 mm g
-92tr-

pL2 P V (3.51)

The results of this simulation are presented in Chapter 4.

3.1.6 Applications to a Free-Free Beam

The free-free system, shown in Figure 3, may represent a

crude model of the space station-mobile transporter system as it

orbits around earth. The transporter is connected to the space

station at one point. Therefore, this model depicts the transporter as

a wheel travelling over the truss, rather than as a train travelling on

a track. The train/track aspect of the mobile transporter is examined

in Section 3.3.

The model used to describe the inertially free system is a free-

free flexible beam with the rigid transporter travelling along its

length. The modes of a free-free beam are (Ref. [17])
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02 =x - 1/2

Ci = cos fi x+ cosh Pi x - oi (sin fi x + sinh fi x1

(3.52)

3 si<N

where

(3.53)

The first mode corresponds to rigid body translation. The

second mode corresponds to rigid body rotation. The next N+2 modes

are the flexible modes of the free-free beam. All the mode shapes

are nondimensional, orthogonal, and orthonormal. The values for Pi

and ai for the first three flexible modes are located in Appendix C.

The corresponding nondimensional frequencies of the free-free

beam are

I = 2 (3.54)

which, for this system, are the frequencies used when forming the

constant modal damping matrix.
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For the free-free beam system, the nondimensional integrals

are not determined analytically. Instead, Il and 12 are determined

by numerical integration. A fourth-order Runge Kutta integration

scheme (detailed in Appendix B) is used, which is the same

integration scheme used to integrate the equations of motion.

The constant matrices are formed using the nondimensional

integrals and the nondimensional frequencies. The time-varying

matrices are formed using the mode shapes given in Eq. (3.52) at the

appropriate value of r. There is nothing gained by writing out the

specific matrices in their symbolic form for this system. The

constant mass, stiffness, and damping matrices for the first three

flexible modes are available in Appendix C.

Since this system is designed to model an inertially free

system, there is no gravitational field present. An initial vibration or

an external force is needed to excite the system. For this simulation,

an initial vibration was used rather than an external force. When the

SS-MT system is attached to the shuttle system it is possible for the

first mode to be excited due to the attitude control system of the

shuttle. To create an initial excitation the left and right tip

deformations were set equal to .02L with the contributions from the

first mode only. The moving mass was then released onto the beam

as it was vibrating. The results are presented in Chapter 4.
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3.2 DISCRETE FORMULATION

Section 3.2 develops the discrete formulation of the SS-MT

system that was analyzed in Section 3.1. The results obtained from

this derivation are compared to the results obtained by the

continuous formulation derived in Section 3.1. As before, two

different systems are examined. The first system model, shown in

Figure 2, represents a moving mass traveling along an inertially fixed

structure. The second system, shown in Figure 3, represents the

mass moving over an inertially free structure such as the space

station.

A general methodology is presented for analyzing any system.

In Sections 3.2.5 and 3.2.6 the methodology is made specific for the

two systems described above.

3.2.1 Mathematical Model

In this formulation, the continuous systems of the previous

sections will be placed into a discrete representation. As stated

previously, a Bernouille-Euler beam is used to model the flexible

structure. Discrete mass and stiffness matrices are determined for

the flexible beam. The deflection of the beam and all the external

forces applied to the beam are made discrete by introducing an
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invertible operator that distributes the effects of the moving mass

over the appropriate discrete elements.

First, the discrete equation of motion for the flexible structure

is developed by creating discrete mass and stiffness matrices using

either finite-element or lumped-parameter methods. These matrices

represent the physical properties of the flexible structure. The goal

is to discretize the load exerted on the beam due to the moving mass

so it can be used with the already existing property matrices. To

achieve this, a vector is formed that distributes the continuous forces

along the beam's discrete points. A vector is created using two

different finite-element shape functions: linear and cubic, which are

compared in Chapter 4. Using the equivalent forces, the discrete

equation is formed. To coincide with the continuous formulation, the

discrete equation is formed in terms of modal coordinates. This

equation is then made nondimensional and placed into state space

domain. The results for the simply-supported and the free-free

beam are shown in Chapter 4.

3.1.2 Equations of Motion

The discrete matrices that represent the mass and stiffness of

the beam are determined and are used to write the general matrix

equation of motion for a beam. This equation is the same one shown

in Eq. (3.30) but is rewritten here for convenience
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M q'+Cq+Kq=F (3.55)

where M, C, K, and F represent the mass, damping, stiffness, and

force matrices, respectively. When this equation was used in Section

3.1, the matrices used represented the physical properties of the

modes used to describe the motion. In the above equation, the

matrices represent the discrete properties of the different beam

elements used to model the beam. Even though the two equations

have the same form, they represent two different systems.

First, the discrete mass and stiffness matrices are formed. A

discrete matrix for the damping is not developed in this subsection;

however, a modal damping matrix is introduced in Section 3.2.4. The

discrete stiffness matrix is developed using finite-element (or

energy-consistent) techniques. Two different discrete mass matrices

are formed. One matrix, developed from finite-element techniques,

is used when it is important to keep the rotational inertias of the

beam elements. The other mass matrix, formed using a lumped

parameter model, is used when only the translational degrees of

freedom of the beam elements are required.

Next, a vector is developed that weights the continuous force

due to the mass over the discrete beam elements. This vector is also

used to discretize the deflection due to the moving mass. By
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combining the discrete property matrices and the discrete forces due

to the moving mass, the discrete equation of motion for the system is

formed.

Mass Matrix

The mass matrix for the beam is derived using both a lumped-

parameter analysis and the energy-consistent finite-element method.

When the linear shape function is used, the rotational degrees of

freedom are statically condensed out of the mass and stiffness

matrices; therefore, a lumped-parameter model is easily used. When

the cubic shape function is used, each element's rotational degrees of

freedom are needed; therefore, the mass matrix will be developed

using the finite-element method.

Lumped-Parameter Model. The lumped-parameter method

is appropriate only when the beam's material properties are

homogeneous. In this particular analysis, this requirement is met;

therefore, the model is valid. First, the beam is broken up into n

finite elements. Then the mass of each element is distributed

between the two neighboring nodes. In the case of the lumped-

parameter model, the mass contribution at each node is half the mass

of each element. The mass of each element is

me = ple (3.56)
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where le is the length of each element and is defined as

e n(3.57)

Since the material properties are continuous throughout the beam,

the total mass at each node is the sum of the contributions from the

two neighboring elements. The total mass at each node is

mi = L me + L me
2 2 2_in

= me (3.58)

Since the first and last nodes only feel the effects of one finite

element, the mass contribution at those nodes is half the mass

contribution at the inner nodes.

Each node has a corresponding translation and rotation. Since

the rotational inertias of each beam element are so small, the

rotational degree of freedom can be eliminated from the stiffness

matrix by using static condensation.

When the linear shape function is used to distribute the force,

only the translations at each node are important. Therefore, the

mass matrix should only contain the translational degrees of

freedom, which is accomplished fairly easily in a lumped-parameter

mass matrix. The lumped mass matrix is diagonal with every other
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row, starting with the first row, corresponding to the translational

degrees. The other rows correspond to the rotational inertias of each

node. Since this will not be included in the mass matrix, the

rotational inertias have not been shown. The final translational mass

matrix has n+1 degrees of freedom and is in the following form

Mt = 0 mi 0 n+1
0 0

n+1 (3.59)

This matrix is constant and discrete.

Finite-Element Model. The matrix shown in Eq. (3.59) is

used with the linear shape function. However, when the cubic shape

function is used it is necessary to have access to both the

translational and rotational degrees of freedom. It is possible to

simply add the rotational inertias of the elements into the lumped-

parameter model shown above. Instead, however, an energy-

consistent mass matrix is developed. The finite-element approach is

used to show another way to obtain a discrete mass matrix and is

also used for the stiffness matrix. Each element of the finite-

element mass matrix is (Ref. [15])

L

m! - s1 sj dx
(3.60)
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where si is a finite-element trial function. To correctly model a beam

element, Hermites cubics are chosen for the trial functions because

they have a continuous spatial second derivative (Ref. [15]). A trial

function is needed for the deflection and the slope at each end of the

element. Therefore, four trial functions for each element are needed.

The four cubics are shown below.

ie)l le) (3.61)

s2=I -2x.(&+
le le)lle)l (3.62)

S le 3 le (3.63)

S4  I +
Flel) le) (3.64)

To determine the mass matrix for one element, the above trial

functions are substituted into Eq. (3.60). This expression is then

integrated to obtain the elemental mass matrix. The mass matrix is

partitoned into four different matrices

m= mele [m m12]
420 Lm 21  m2 2  (3.65)

where me and le are the mass and length of each element,

respectively. The four matrices are
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156 22 le
22 le 4 12 (3.66)

M 54 -13 le
m12 =

13 le -3 le (3.67)

21 54 13 le

-13 le -3 le(3.68)

E156 -22 1e
m22 =

-22 le 4 Ie (3.69)

Next, the elemental mass matrices are combined to form the final

global mass matrix. At this point all the degrees of freedom,

translational and rotational, are present. Since the inner nodes

connect two consecutive elements, the elemental mass matrices

overlap. Therefore, the final global mass matrix is

m= me
420n

ml l m1 2  0 0 0

m21 ml1 + mn22 2 M12  0 0
0 . . ". 0

0 0 '. m11 + m22  m1 2

0 0 0 m 2 1 m2 2

(3.70)
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Stiffness Matrix

The stiffness matrix is developed using finite-element

techniques. When the linear shape function is used, only the

translations at each node are required. Therefore, the rotational

degrees of freedom are statically condensed out. The global stiffness

matrix is developed the same way as the energy-consistent mass

matrix. Using the finite-element method, the elemental stiffness

matrix is determined by (Ref. [15])

L
ds1 ds

(3.71)

Once again the cubics shown in Eqs. (3.61)-(3.64) are substituted into

Eq. (3.71). After integration, the elemental stiffness matrix is

obtained and, like the mass matrix, is also partitoned into four

different matrices:

k = (EI)e [k II k1 2
le k2 1  k2 2 (3.72)

where (EI)e is the elemental bending stiffness. The four matrices are

k 2 61e (3.73)
61e 4l1 J (3.73)
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k12 = [-12
-61e

k21 =  -12

61e

k22 
=  1

_-61e

61e
21,2

-61e

216e2

-61e
41,2

(3.74)

(3.75)

(3.76)

Next, the element stiffness matrices are combined to form the global

stiffness matrix. At this point all the degrees of freedom,

translational and rotational, are present. Since the inner nodes

connect two consecutive elements, the stiffness matrices overlap.

Therefore, the final global stiffness matrix is

k - (EI)e
e

0

k12

S+ k 2 2

kil + k22

kll + k22

k21

When the linear shape function is used, Eq. (3.77) is altered to

condense out the rotational degrees of freedom. This reduced

stiffness matrix is used in conjunction with the mass matrix shown in

Eq. (3.59). For the cubic shape function, the matrix, as it stands in Eq.

(3.77), is used with the similar mass matrix shown in Eq. (3.70) that

contains both the translational and rotational degrees of freedom.
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The global stiffness matrix of Eq. (3.76) can again be partitoned

into four separate matrices, ktt, ktr, krt, and ktt. The subscripts

indicate either translational or rotational degrees of freedom. The

partitoned stiffness matrix is

13e krt krr (3.78)

As stated previously, the rotational degrees of freedom are

eliminated when using the linear shape function. The rotational

degrees of freedom are statically condensed out. This is achieved by

using the static matrix equation in Eq. (3.79):

Sktt kr v
krt krr 0 0 (3.79)

where v is a generic translational coordinate and 0 is a generic

rotational coordinate. Solving for 0 in terms of the translation, v, the

reduced stiffness matrix becomes

Kt = ktt - ktr krTr krt (3.80)

Eq. (3.79) is a square matrix that is constant and has (n+1) degrees of

freedom. When the rotational degrees are not eliminated, the

stiffness and the matching mass matrix has (2n + 2) degrees of

freedom.
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Beam Equation

Using the mass and stiffness matrices defined above the beam

equation of motion is determined as

Mq + K q = Ft  (3.81)

where M and K are generic discrete matrices representing the

appropriate mass and stiffness matrices, depending on which case is

being examined. The nodal displacements, contained in the q vector,

represent the displacement at each node for the different elements.

The nodal displacements, q, should not be confused with the modal

displacements, 77, discussed in Section 3.1.2. The total discrete force

vector, Ft, is a combination of any external forces applied to the beam

and the inertial effects of the moving mass. This force vector is the

discrete form of the vector Ft. It correctly weights the effects of the

moving mass onto the nodes of the beam. It is made discrete by

using the discretization vector defined below.

Discretization Vector

In order to weight the effects of the continuous force between

two discrete nodes, an invertible operator, called the discretization

vector because it places the continuous forces into a discrete form
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suitable for Eq. (3.81), is developed. For any arbitrary time the

discretization vector weights the effects of the moving mass. Since

the mass is moving along the the beam, the vector must change with

time to reflect this motion. Finite-element shape functions are used

to distribute the forces. Two different shape functions are examined

below. The first function, which is based on a linear interpolation,

only looks at the translation at each node. The second function,

which is of cubic order, takes into account the translation and

rotation at both nodes. The difference between the two approaches

is examined at length in Chapter 4.

The two shape functions are developed in the same manner. A

weighting function is used to locate the position of the moving mass

with respect to the two appropriate nodes. The weighting function is

defined as

xm -xi
xi+; - xi (3.82)

The weighting function, ý, depends on the distance between two

neighboring nodes, xi and xi+j. Note that xi is defined as the nodal

position that is either directly at or to the immediate left of the

moving mass. As soon as the point mass passes the xi node location

it is considered to be at the xi+ position. The other variable, xm, has

previously been defined as the location of the moving mass.
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The weighting function E in Eq. (3.82) is the discrete version of

the continuous dirac delta function. The continuous function places

the mass at a specific point, whereas ý weights the force between two

neighboring nodes.

To simplify the numerical evaluation of 4, xi is written in a

suitable style for numerical evaluation. Two relationships are

needed to accomplish this. First, as stated previously, the mass is

considered to move at a constant speed; therefore, the position of the

mass at an arbitrary time is always known. Next, it is assumed that

the finite elements are of equal length. Using these facts, the

distance between the two elements can be expressed as a function of

the total beam length. These two relationships are shown

symbolically as

Xm = vmt (3.83)

xi+l - Xi = Ln (3.84)

Using the above two relationships, weighting function 4 is rewritten

as

= (vmt -x _) (
L (3.85)

where xi is numerically calculated from
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xi = int nLvmt)Ax
L= I (3.86)

The int () function truncates and retains only the integer portion of a

real number argument. Note that if the ith node was defined as the

node immediately to the right of the mass, then the position of xi

would be rounded up rather than truncated down as shown in Eq.

(3.86).

Equations (3.85) and (3.86) are used to numerically evaluate

the weighting function . The first operator is linear with respect to

the weighting function c.

V1 = (1 - ) Vi + Vi+ l (3.87)

where the following vectors are defined as

V r = 0, 0, ... , 0, 1,0, 0,..., 0 (3.88)

0 O.. (i+1)'%, I0 x,)

i+ '3 ? P P 0(3.89)

where f is the degree of freedom for the particular system being

analyzed. When the above vectors premultiply the vector of nodal

displacements, velocities, or accelerations, they will locate the ith and

(i+l)th values, respectively. In this method there are only
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translational degrees of freedom; therefore, only one value at each

node is required. In the cubic shape function, however, it is

necessary to capture two values at each node.

When 4 is equal to zero, all the effects of the moving mass are

placed at the ith node. When is equal to one, all the effects are

placed at the ith+1 node. For values between zero and one, the

effects are appropriately weighted between the two nodes.

The form of the linear interpolation function is easily

determined without much computation. However, when the

translations and the rotations at each node must be considered, the

function's form is not easily seen. Therefore, the cubic shape

function is developed in a more theoretical manner.

Cubic Shape Function Definition

As in the linear case, the cubic shape function is depicted as a

function of 4 but for the cubic function, the coefficients are defined in

terms of 4, 2, and 43. Also, in this case, there are two displacements

at each node - translation and rotation. The values of each node can

be thought of as the boundary conditions for the shape functions.

When there are only two boundary conditions to be satisfied, a linear

function will suffice. To satisfy four boundary conditions, however, a

cubic function is required.
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Since there are four values that need to be captured (two at

each node), four V vectors are needed, Vi, Vi+l, Vi+2, and Vi+3. The

first and third vectors capture the translation at the ith and (i+1)th

nodes, respectively. The second and fourth vectors capture the

rotation at the same respective nodes. Using these four vectors, the

cubic shape function is determined using the standard finite-element

method for determining shape functions, outlined below.

In determining the cubic shape function, it is necessary to

develop four trial functions that will multiply the four vectors

described above (Ref. [18]):

V3 = Ti Vi + Ti+1 Vi+1 + Ti+2 Vi+2 + Ti+3 Vi+3  (3.90)

Each trial function has the cubic form

Ti = ai + bi + ci 2 + d 3  (3.91)

The constants for each trial function are obtained by employing the

four appropriate boundary conditions for each function (displayed in

Table 1).
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Table 1. Boundary Conditions used in Determining Cubic Trial

Functions.

Trial Function = 0 = 1

Ti Ti = le Tgi = 0 Ti = O Ti = O

Ti+1 Ti+1 = 0 Tgi+l = le Ti+1= 0 Tgi+ = 0

Ti+2 Ti+2 = 0 Tgi+2 = 0 Ti+2 = le Tgi+2 = 0

Ti+3 Ti+3 = 0 Tji+3 = 0 Ti+3 = 0 T4i+3 = le

In Table 1 the subscript ý indicates a derivative with respect to e. A

similar table for the linear shape function could have been

developed. However, in the linear shape function example it is

trivial to develop the two trial functions.

Using these conditions the four shape functions are determined.

It is found that the appropriate trial functions are the Hermite's

cubics described in Eqs. (3.61)-(3.64). Substituting these trial

functions into Eq. (3.90) leads to the final cubic shaping vector

V3 =(I -3 ý2 + 2 ý3 )Vi +(4 -2 42 + 43)L Vj~jn2
+(3 42Z -2 43) Vil2 + (- 42 + g3)L Vi+3nI (3.92)
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For the general discrete derivation of the final equations, a generic

discretization vector V is employed. This V vector represents either

VI or V3, depending on which interpolation function is used.

Load Modeling

The force exerted on the beam is broken up into two

components: the first encompasses any external force that is applied

to the beam, and the second is the force exerted on the beam due to

the inertial effects of the moving mass. The total force is the sum of

both components.

Ft = Fext + Fm (3.93)

Force Due to the Inertial Effects of the Moving Mass.

The force due to the inertial effects of the moving mass is equal to

the force created by the acceleration of the moving mass but it is

opposite in direction. As seen in Section 3.1, the force is proportional

to the absolute acceleration of the moving mass. This acceleration,

however, is now given in terms of the discrete displacement field of

the moving mass, qm.

Fm (Xm(,t),t) =- mm 2m )t)

0t2 abs (3.94)

57



where Fm is the moving mass's discrete force vector. Equation (3.94)

is the discrete counterpart of Eq. (3.2). In the following derivation,

the functional dependence of the variables are omitted for brevity.

The absolute acceleration of the discrete displacement field qm,

must be determined. In order to do this, a relationship is needed

between the beam's displacement field and the moving mass'

displacement field. In essence, a discrete counterpart of Eq. (3.4) is

needed, which is accomplished by using the discretization vectors

defined above. For a general methodology, the generic shape

function V is used. The relationship between qm and q is defined as

qm = VT q (3.95)

Using Eq. (3.95), the absolute acceleration of the moving mass

is written in terms of the beam's displacement. When determining

the absolute derivatives, it is important to specify the variables of

which V and q are a function. For simplicity it is assumed that V is a

function of 4 only and 4 is independently a function of time. The

beam's displacement field q, is only a function of time. Using these

conventions and the definition of an absolute acceleration

determined in Section 3.1, Eq. (3.94) becomes

Fm = - mmV[VT q+22 VT ( q +V c + V4 ) q (3.96)

58



In this system, the mass is assumed to move at a constant velocity;

therefore, ' is equal to zero. Using the definition of 4 shown in Eq.

(3.85), its derivative with respect to time is

=vm n
L (3.97)

Using Eq. (3.19), the above equation is rewritten as

T (3.98)

where r was previously defined as the time required for the mass to

move over the entire beam length. Written in this form, it becomes

apparent that represents a first-order discrete spatial derivative.

For the duration of the general derivation, the spatial derivatives, VT

and Vg4,are kept in their symbolic form. The actual values of both

quantities for the linear and the cubic shape functions can be found

in Appendix C.

When using the linear shape function, the last term in Eq.

(3.96) is zero. This term represents the force exerted on the beam

when the mass moves over the beam's curvature. By examining the

continuous case, it is apparent that this term adds a substantial force

to the beam. Therefore, an impulse force is added to correctly model

this force that results from the difference in slope of two neighboring

elements (see Figure 4 and Section 3.2.5).
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When the higher-order, cubic shape function is used, the last

term in Eq. (3.95) is not zero and the force from the beam's

curvature appears without having to add an impulse force.

The inertial force due to the moving mass is now in a discrete

form. The next challenge is to distribute the total force applied to

the beam between appropriate nodes. Using Eqs. (3.93), (3.95,) and

(3.98), the total force applied to the beam is

T -T n TFt = Fext - mm[VT q + 2 Vq + 44 q] (3.99)

External Force. The external force applied to the beam is

different for the two systems that are examined. For this derivation

the external force is kept in its symbolic form.

The total force is distributed between the appropriate nodes of

the beam, which, in this analysis, is accomplished by using the same

finite-element shape functions described in detail in the beginning of

this section. Using these shape functions, the total discrete force is

distributed to the appropriate nodes as

Ft = V Ft (3.100)

Using Eq. (3.99) this force becomes
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Ft = VFt - m q +2 VV + V V4 q (3.101)

Equation (3.101) is the discrete form of the force shown in Eq. (3.9).

System Equation of Motion

The entire discrete equation of motion for the system is

obtained by substituting Eq. (3.101) into Eq. (3.99) resulting in Eq.

(3.102) below. As in the continuous case, the terms involving the

beam's deflection q, are shown on the left-hand side of the equation,

even though they appear due to the inertial effects of the moving

mass.

M m + m T)q + 2 mm T. V V (q+K+m )V V q = - V Fextt (3.102)

Equation (3.102) is already in matrix form, unlike its continuous

counterpart shown in Eq. (3.10), and is dimensional and in terms of

the physical discrete beam coordinate q. Since the boundary

conditions of the beam have not yet been specified, the above

equation is valid for either the simply-supported or the free-free

beam.

61



3.2.3 Nondimensional Equations of Motion

Unlike the equations in Section 3.1, Eq. (3.102) first is made

nondimensional and then is transformed into the beam's modal

coordinates. For the discrete analysis, it is easier to perform modal

reduction once the equation is in nondimensional form. Even though

Eq. (3.102) is a matrix equation, the same general procedure is used

to place the equation into a nondimensional form. A matrix is

considered nondimensional if each of its elements are

nondimensional. Therefore, each element is divided by the

appropriate reference parameter, defined in Section 3.1

When a common variable appears throughout an entire matrix,

it can be extracted and placed in front of the matrix. This technique

is used to define nondimensional mass and stiffness matrices.

Referring to Eqs. (3.65) and (3.72), the new nondimensional matrices

are

pL (3.103)

3~
K=L K

El (3.104)

In a similar manner, the vectors containing the nodal

accelerations, velocities, and displacements are made nondimensional

by dividing each of their elements by the appropriate reference
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parameters. Again, some variables can be extracted and placed in

front of the vectors. Since all the variables are in front of the

matrices, they are treated as scalars. These are combined to form

the familiar nondimensional parameters defined in Eqs. (3.21)-(3.24).

Using the new matrices, vectors, and nondimensional parameters

previously defined, Eq. (3.102) in nondimensional form becomes

M9+ m)q + 2 pm n VV4q + K m nV q - V(3.105 )

where

= Fex t2 = Fex

p L3  p vL (3.106)

is a new nondimensional force parameter representing a generic

nondimensional external force. Equation (3.105) next is transformed

into modal coordinates, making it easier to place into state space

domain.

Modal Solution

Equation (3.105) is now transformed from the discrete physical

beam nodal coordinates, q, to the beam's modal coordinates. At this

point, the actual boundary conditions of the beam become integral.

The equation, as it stands, is valid for any boundary condition;

however, depending on the modes used, the equation is made
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specific for the boundary condition being examined. The exact

equations for the simply-supported and the free-free systems are

shown in Sections 3.2.5 and 3.2.6, respectively.

In Section 3.1, a modal transformation was explained for the

continuous formulation. The form for the discrete formulation is the

same. Instead of defining a continuous mode shape 0i(x), a discrete

modal matrix 0, is defined. The actual modal coordinate ri, is the

same whether it is defined by the continuous mode shape and the

beam's continuous displacement field u, or by the discrete modal

matrix and the beam's discrete displacement field q.

q= V71 (3.107)

A description of some characteristics of the modal matrix

follows. The actual transformation from physical coordinates to

modal coordinates is completed. The resulting equation is

nondimensional, is in modal coordinates, and is easily placed into

state space domain.

Modal Matrix

The transformation from generalized coordinates to modal

coordinates for the continuous formulation was shown in Eq. (3.11).

A similar transformation, shown in Eq. (3.107), is valid for
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nondimensional vectors. The mode shapes used are in the form of a

modal matrix and, like the mode shapes already used, this modal

matrix does not have any dimensions. Unlike the scalar operation

shown in Eq. (3.11), Eq. (3.107) represents a matrix equation. The

modal matrix consists of the eigenvectors of the simplified system

Mq+Kq=0 (3.108)

Equation (3.108) describes the discrete motion of the flexible

beam without the moving mass. The number of modes present

corresponds to the number of the system's degrees of freedom.

Transformation of Eq. (3.105)

Using the substitution shown in Eq. (3.107), Eq. (3.103) is

transformed into modal coordinates. A discrete version of Galerkin's

method, outlined in Section 3.1, is used. The resulting equation is

premultiplied by the transpose of the the modal matrix to reduce the

modal reduction error. This process is the matrix equivalent of using

the continuous mode orthogonality to drive the error of the

approximation to zero. For clarity, a definition of certain

relationships follows.

65



First, the modal matrix 0 is orthogonal with respect to the mass

matrix, and is also mass normalized. This state leads to the following

two definitions:

T4T M = E (3.109)

SK = A (3.110)

E has previously been defined in the nomenclature. A is the

nondimensional matrix of eigenvalues corresponding to the system

shown in Eq. (3.108). The A matrix is different depending on the

boundary condition being examined. The dimension of the modal

matrix is equivalent to the system's degree of freedom. For example,

a free-free beam that is divided into ten equal beam elements has

twenty degrees of freedom. It is not numerically efficient to retain

all of these modes; therefore, before doing any numerical evaluation,

the modal matrix and the corresponding eigenvalue matrix are

reduced to retain a small number of nodes. In the actual numerical

analysis, three flexible modes are retained. The reduced matrices

are identified by a subscript r.

Second, the following relationships are defined for the

weighting vectors with the reduced modal matrix.

V, - VO r (3.111)
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Vt= V· Or (3.112)

T T
Vn4 - Vý4 Or (3.113)

Third, the modal damping matrix is developed. Since the

modal decomposition of the discrete system is equivalent to the

modes used for the continuous system, the modal damping matrix is

the same. The damping due to the motion of the beam is assumed to

be diagonal where the elements are defined by Eq. (3.32). The modal

damping matrix is rewritten below for convenience.

C,=2C(1AA)/ /2(3.114)

The matrix of Eq. (3.114) is defined in terms of the reduced matrix

containing the eigenvalues defined in Eq. (3.110).

Using the nondimensional modal coordinate Ti, and the

relationships defined in Eqs. (3.109)-(3.114), the nondimensional

equation in modal coordinates becomes

(E +ymVjV)7oT + (2 (A Ar)'1 2 +2  n n V, V, T)

+ ( Ar + lim n2 V,, V,) 71= - f V (3.115)
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Equation (3.115) is the discrete counterpart of Eq. (3.27). It is

a nondimensional matrix equation rather than a continuous integral

equation like that shown in Section 3.1. Though Eq. (3.114) is a

matrix equation, it is not in the typical state space form easiest for

numerical evaluation.

3.2.4 State Space Representation

Even with a matrix equation, the first step in forming a state

space representation is choosing the state variables. Once the state

vector is formed, Eq. (3.115) is transformed into the state space

domain.

State Vector

Two states variables are defined for the continuous system: the

modal displacements and the velocities. Since the discrete analysis is

already in matrix form, the state vector is written as the combination

of two vectors

x[= o] (3.116)

There is a difference between the number of elements used to model

the beam n, and the number of modes retained to model the

displacement of the beam N. The modal vectors have N elements,
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whereas the q vector contains n values. Usually only three flexible

modes are retained, whereas there might be 100 beam elements

used to capture the beam's physical displacement.

Matrix Representation

The mass, stiffness, damping, and force matrices that are used

to describe the system's states are determined. Similar to the

matrices obtained for the continuous formulation, the following

matrices are a combination of a constant matrix and a time-varying

matrix. The time-varying components are a function of the

discretizations vector V.

Mu TM = E + m V VVT  (3.117)

C = 2 (AAr)11 2 + 2 m n Vt V7  (3.118)

K= A•Ar+pmn 2 Vf Vfl (3.119)

It is interesting to see the similarities between the matrices

shown here and the matrices shown in Eqs. (3.34)-(3.41) The

matrices in Eqs. (3.117)-(3.119) are the discrete counterparts of the

previously shown matrices. The constant components of Eqs.

(3.117)-(3.119) are the standard mass, damping, and stiffness

matrices obtained when developing a finite-element model of a
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flexible beam. The time-varying components actually model the

dynamics associated with the moving mass.

The matrix representing the total discrete modal force applied

to the beam must be formed. The actual force applied depends on

the physical system being modeled. For example, if the beam is

considered to be simply-supported, then a gravitational field is

included as part of the environment. However, when the free-free

beam is examined, no gravitational field is included to correctly

model the space environment. Sections 3.2.5 and 3.2.6 examine the

discrete force matrix for each system in detail.

The mass, damping, stiffness, and force matrices are used in Eq.

(3.32) to solve for the modal displacements and the modal velocities.

Using Eq. (3.107), the nodal displacements and velocities are

obtained.

This concludes the derivation of the general discrete

formulation. Sections 3.2.5 and 3.2.6 examine two specific systems.

Section 3.2.5 analyzes the inertially fixed system, which is modeled

using a simply-supported beam. Section 3.2.6 examines the

inertially free system, which is modeled as a free-free beam. The

results for each model are presented in Chapter 4, which compares

them to the results obtained from the continuous formulation of

Section 3.1.
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3.2.5 Applications to a Simply-Supported Beam

Unlike the continuous formulation examined in Section 3.1.6,

the discrete formulation for the simply-supported beam is no easier

to formulate than the free-free beam. The simply-supported beam is

examined and presented first so that its discrete methodology can be

validated against well-known results. The inertially fixed system is

also used to determine which shape function, linear or cubic,

accurately models the beam with the smallest number of finite

elements.

Simply-Supported Beam using the Linear Shape

Function

For a simply-supported beam modeled with n finite elements

there are 2n degrees of freedom; there are n - 1 translational

degrees of freedom and n + 1 rotational degrees of freedom. As

stated earlier, the linear shape function only uses the beam's

translational degrees of freedom; therefore, each element's rotational

degrees of freedom can be ignored. The reduced mass and stiffness

matrices are derived from the mass and stiffness matrices shown in

Eqs. (3.59) and (3.77). Since the beam is simply-supported, the first

and last nodes are constrained to zero translation, leading to a mass

and stiffness matrix with n - 1 degrees of freedom.
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Because the shape function is linear, its second spatial

derivative is zero. However, as shown in Figure 4, there is a

difference in slope between the two neighboring finite elements.

1

i.

Figure 4. Difference in slope of two neighboring finite elements.

This difference in slope leads to an important component of the

inertial force created due to the motion of the mass, which, for the

linear shape function, is not present. To account for this inertial

force, which is proportional to the beam's curvature, an artificial

impulse force is added to the equation. In order to model this force,

an impulse force is calculated as soon as the mass moves to the next

element. Using the value of the resulting force, an equivalent

constant force defined in Eq. (3.120) is applied over the entire

element.

ye=f y At
fye Ate

Ate (3.120)
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where Ate is the time required for the mass to travel over one

element. The actual impulse force, fyAT, is defined as

fy At = mm vm ZL B q
L (3.121)

The vector B, defined in Eq. (3.122), is a central finite-difference

operator that acts on the two V vectors, which determine the

translations at each node.

B= (Vf. I - 2 V + Vi,+1  (3.122)

Using Eqs. (3.120), (3.121), and (3.122), the final equivalent force

vector due to the beam's curvature is

fye = mm B q (3.123)('r-Y P(3.123)

This force is added to the force term shown in Eq. (3.96).

Comparing Eq. (3.123) with the term that appears in Eq. (3.99)
T

it seems that the vector B is the linear equivalent of Vii. However, B

is actually the second-order finite-difference approximation to the

second spatial derivative of the V vector.
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Simply-Supported Beam using the Cubic Shape

Function

When the cubic shape function is used, the component of the

inertial force due to the beam's curvature results from the second

derivative of the V vector. For the simply-supported beam depicted

in Figure 2, the cubic shape function V3, has 2n elements. These 2n

elements correspond to the 2n degrees of freedom of the simply-

supported case when the rotational inertias are included.

Modal Matrix for the Simply-Supported Beam

The modal matrix is evaluated by finding the eigenstructure of

the simplified system depicted in Eq. (3.108). The dynamics are

dictated by the mass and stiffness matrices. For a simply-supported

beam, the matrices are reduced to eliminate the constrained degrees

of freedom. The beam's boundary conditions specify that the

translations at each end are zero. To address this condition, the first

and last rows and columns of the matrices are eliminated.

For the linear shape function, the mass and stiffness matrices

contain only translations, which represents an n - 1 degree-of-

freedom system. The reduced mass and stiffness matrices are

variations of the matrices defined by Eqs. (3.59) and (3.77).
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The cubic shape function requires that both the translation and

the rotations are present. Therefore, the reduced matrices come

from the matrices shown in Eqs. (3.70) and (3.77). Note that if the

system is cantilevered, it is not possible to statically condense out the

rotational degrees of freedom because they must be present in order

to be eliminated to satisfy the boundary conditions.

When modeling the simply-supported environment it is

essential to include a gravitational field, the only external force

applied to the beam. The gravitational force is proportional to the

moving mass. The discrete nondimensional form of this force is

VFext = - gV (3.124)

where pg is the nondimensional gravitational parameter defined by

Eq. (3.50). This external force matrix is the same matrix F, used in

Eq. (3.32).

3.2.6 Applications to a Free-Free Beam

There are three differences between the formulation of the

free-free beam depicted in Figure 3 and the simply-supported beam

evaluated in Section 3.2.5:
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(1) The degree of freedom.

(2) The modes used.

(3) The external force.

It has been shown that the cubic shape function is more

efficient than the linear interpolation function when using the

simply-supported beam. Therefore, in analyzing the free-free beam,

only the cubic shape function will be used. Consequently, the mass

and stiffness matrices are variations of Eqs. (3.70) and (3.77). The

boundary conditions of a free-free beam state that the shear and

moment at each end must be zero. These conditions do not constrain

any degree of freedom. Therefore, the free-free beam and,

correspondingly, the mass and stiffness matrices have 2n+2 degrees

of freedom.

These mass and stiffness matrices are used in forming the

system's mode shapes and eigenvalues. Before reduction, the modal

matrix and the matrix of eigenvalues contains 2n+2 elements. The

first two modes correspond to rigid body rotation and translation and

have zero frequency. The other 2n modes represent the beam's

flexible motion.

The free-free beam is used to model an inertially free system.

In the space environment there is no gravitational field. If there is

no external force applied to the beam their would be no response
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from the motion of the mass, unless an initial disturbance is used.

The details of this vibration were outlined previously in Section

3.1.6.

3.3 DISCRETE FORMULATION FOR THE FREE-FREE

BEAM WITH MULTIPOINT OF CONTACT

In the analysis thus far, the model has been a flexible beam

with a rigid body attached at one contact point to the beam.. In both

the continuous and discrete formulations, a free-free beam and a

simply-supported beam were examined. The simply-supported

beam model is used as a testing board for the discrete method

outlined. The inertially free system is used to try and model the

space environment of the Space Station-Mobile Transporter;

however, it still only models the mass as a wheel moving over the

beam rather than as the more realistic train moving along a track.

The next system analyzed, a free-free beam with multipoint of

contact, is used to consider the train/track aspect of the SS-MT

system.

3.3.1 Mathematical Model

The mathematical model used here, as before, is essentially the

inertially free flexible beam with a mass moving at a constant speed
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along its length. For this analysis, however, the mass is attached at

two points of contact (see Figure 5).

vm

$9IZZE I I

LI

Figure 5. Mass attached at two-points of contact.

This final model attempts to represent the physical aspect of the

mobile transporter as a train rather than simply a wheel as

presented in Sections 3.1 and 3.2. The validity of the discrete

methodology for this model is shown in Chapter 4, using the

formulations developed in Sections 3.1 and 3.2.

For the train/track model, only a discrete formulation is

considered. When the two points of contact become infinitely close,

the equations developed in this section should converge to the

discrete equations for the one-point-of-contact case. This is proven

to be true in Chapter 4. Therefore, since this method converges to a

method that is already proven to be valid, there is no need to

compare the results obtained from the following formulation with

those of a continuous formulation.
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In Chapter 4, only an inertially free system is examined with

two points of contact. In the following section a general derivation is

developed. For the applications to the free-free beam see Section

3.2.6.

The only difference between the discrete system examined in

Section 3.2 and the system analyzed here is the manner in which the

inertial force due to the moving mass is applied to the beam.

Because there are now two points of contact, there are

correspondingly two continuous forces due to the mass acting on the

beam. Both forces must be made discrete and must be incorporated

into the beam's equation of motion.

As in Section 3.2, the analysis starts by discretizing the load

applied to the beam. This new load is then incorporated into the

beam's equation of motion to obtain the equation of motion for the

entire system. This equation is made nondimensional and placed

into state space form for numerical computation.

3.3.2 Equations of Motion

The equation of motion for the train/track system depicted in

Figure 5 is obtained with a series of steps. First, the discrete

equation representing the displacement of the flexible beam is

determined. Next, the force due to the moving mass is examined.
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Using compatibility, these equations are combined to form the

system's equation of motion. Because this system is very similar to

that depicted in Section 3.2, the following formulation is abridged to

avoid repetition.

Beam Equation

The discrete equation of motion for a flexible beam, shown

earlier in Eq. (3.81), is rewritten here for convenience.

M q + Kq = Ft (3.125)

where, for an inertially free system, the mass and stiffness matrices

are defined by Eqs. (3.70) and (3.77), respectively. Ft is the total

discrete force vector and is a combination of the external forces

applied to the beam and the inertial effects of the moving mass. Ft is

the discrete form of Ft. As stated in Section 3.2.7, there are no

external forces applied to the free-free beam. Therefore, without the

loss of generality, the total force applied to the beam is only due to

the inertial effects of the moving mass.

Load Modeling

The total load exerted on the beam due to the moving mass is

the sum of the forces exerted by the two points of contact
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Ft =.fel +.fc2

The total load applied to the beam, due to the inertial effects of

the moving mass, is the same as in the one-point-of-contact case.

However, the load is now divided between the two points of contact.

For simplicity, each point is assumed to carry half of the total load;

therefore, the magnitude of the force at each contact point is half as

great as the force exerted at the one contact point in Section 3.2. The

force contribution from one of the contact points is

fcl = -mM 4•m
2 (3.127)

where qml is the discrete displacement of the first contact point.

The load at the second point of contact is determined in a similar

fashion. Substituting the actual values for the load contributions into

Eq. (3.126), the load exerted on the beam due to the moving mass

becomes

Ft ( mm d2 mm Im _2 _m2

2 &2 abs 2 t 2 jabs (3.128)

Discretization Vectors

The force shown in Eq. (3.128) must be placed into a discrete

form. In the derivation it is assumed that the distance between the
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two contact points is a multiple of the elemental length of the finite

beam elements:

A=jle (3.129)

where j is any integer between 0 and n. This assumption simply

makes the bookkeeping a lot easier.

The cubic shape function outlined in Section 3.2.2 is used to

distribute the forces. The location of the first point of contact, xl, is

determined. From this location, the position of the second point, x2,

is determined by knowing the speed of the moving mass and the

spacing between the two points of contact.

Because the two locations are dependent on each other, it is

only necessary to follow one of the points; xl has been chosen to

locate the position of the mass. The force contribution from this

point is discretized using the shape function shown in Eq. (3.92) and

rewritten here:

V3 = ( -3 ý2 +2 43) Vi + ( -2 ý2 + 43)L y1VIn

+(3 2 - 2 '3) Vi+2 + (- 2 + .3) L Vi+3 (3.130)n (3.130)

The load contribution due to the second point of contact is

discretized using a shape function of the same form but with

82



different nodes that are determined by using the relationship

between the two points of contact. If i represents the location of the

first point xl, then i' represents the location of the second point x2.

The relationship between i and i' is

i' = i - 2j (3.131)

Next, the weighting vectors for the second point of contact are

formed. The new vectors are denoted by a prime and are formed

using i' rather than i.

V' = , , ,0, 1, O, , ... , O (3.132)

Using these new V' vectors, an equivalent cubic shape vector for the

second point of contact is determined.

V'3= (1- 3 2 + 3) V'i+( -22 + 43)L vizn

+(3 2 -2 3) 1V'i+2  (-2 3) V +3(3.133)

The equations in Section 3.2 were derived using a generic

shape function V. The new shape function developed here, V3', has

the same basic format as V. Therefore, the discrete development

that was shown in Section 3.2 is valid for the new vector V3'. The

equations that will be developed, however, are different because the

force applied to the beam now has two components rather than one.
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In the following formulation, a generic V' is used to represent

the new shaping function. Though a cubic shape function was

developed (Eq. (3.133)) and is used in the numerical evaluation, the

following methodology is valid for any order shape function.

Some relationships are defined between the displacements of

the contact points, the shaping functions, and the beams

displacement field.

qml = VT q (3.134)

qm = V'T q (3.135)

Using Eqs. (3.134) and (3.135), the absolute accelerations of the

two points of contact are determined and substituted into Eq. (3.128).

The resulting force is inserted into Eq. (3.100), resulting in the

discrete force vector that is applied to the appropriate nodes of the

flexible beam:

•t= " (v VT A +2( V4 T +(fvv[T q)
SFr V V T  q + 2 V) V V4 + ( - V" V'T q

2(v' VTq +2() V' q4+( v' v' 4) (3.136)

where V'g and V ' represent the derivatives with respect to ý of the

new shape function. For the duration of this derivation, V'ý and V'4
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are shown in their symbolic form; their actual values are available in

Appendix C. Now that the force due to the moving mass has been

placed in a discrete form, it can be inserted into the discrete equation

of the flexible beam.

System Equation of Motion

The discrete equation of motion for the system is obtained by

combining Eqs. (3.136) and (3.125). As in the previous cases, the

terms involving the beam deflection q, are shown on the left-hand

side of the equation even though they appear due to the moving

mass.

M+ (V VT +V' V 'T))i+2mr nV( V +V'V'[)q
2 2 T

+(g+ V(~r (V Vý4 + V' V' q= (3.137)
2 jq (3.137)

Equation (3.137) represents a discrete equation of motion in physical

coordinates. When the two points of contact are infinitely close to

each other, Eq. (3.135) is equivalent to Eq. (3.105). This equation

must be placed into a nondimensional form in terms of the beam's

modal coordinates.
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Nondimensional Equations of Motion

Noticing the similarities between Eqs. (3.105) and (3.137), it is

trivial to place the latter equation into nondimensional modal form

(see Sections 3.2.3). Therefore, to avoid repetition the derivation is

not repeated here. The nondimensional form in modal coordinates of

Eq. (3.135) is

E + m2 (V, Vn4 + V', V'n7 +
(2 4 AA,Y' 2 + 2 Lmn (V1 V + V' 4)

+ ., A, + ý'm n2 V( V,, 4 + V'J V 7'{ " = 02  (V v?4 V' v (3.138)

where the V'r1 vectors are found using the relationships outlined in

Eqs. (3.111)-(3.112) for the new shape function.

Equation (3.136) is the multipoint-of-contact counterpart of Eq.

(3.115); it is in matrix form but not in state space domain. Equation

(3.135) is placed into the state space form in preparation for

numerical computation.

3.3.4 State Space Representation

The only differences between Eq. (3.136) and (3.115) are the

additional terms to the time-varying mass, damping, and stiffness
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matrices due to the second point of contact. The procedure for

transforming Eq. (3.138) into state space domain is equivalent to that

outlined in Section 3.2.4.

State Vector

The two states of the system are chosen as the modal

displacements and velocities. The state vector is equivalent to the

one presented in Eq. (3.116). Because a discrete analysis is already in

matrix form, the state vector is rewritten in a slightly different

manner than in the case of when the variables were scalars. This

was first shown in Eq. (3.116) and is rewritten here:

= (3.139)

Matrix Representation

The matrices representing the system are a combination of a

constant matrix and a matrix that varies with time. The constant

matrices represent the dynamics of the flexible structure. Since the

flexible structure modeled in this analysis is equivalent to that

modeled in Section 3.2, the constant matrices are identical to those

outlined previously. The matrices dependent on time model the

dynamic interaction of the moving mass with the flexible structure.

This interaction is the difference between the case in Section 3.2 and
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this case. The total matrices used to formulate this system in the

form shown in Eq. (3.32) are

M=E+ m , (V +V'• V•)
2 (3.138)

C = 2 (nAr 2 + 2 mm n V, V • , + V ', V "'2 (3.139)

K = Ar + mm n2 V VVT + T V' V'~
2 (3.140)

The above matrix definitions are valid for any boundary

conditions. For the numerical evaluation of this system, only the

free-free beam is examined. For the alterations needed to

specifically examine a free-free beam, see Section 3.2.6.
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CHAPTER 4

RESULTS

Chapter 4 presents the results obtained using the analysis

outlined in Chapter 3. Section 4.1 describes the layout of the results

as well as the parameters used to create them. Section 4.2 displays

and discusses the results.

4.1 RESULTS ORGANIZATION

Section 4.1 describes the organization of Section 4.2, which

displays the results obtained from the different formulations of

Chapter 3. Three different formulations were developed in Chapter

3:

(1) Continuous.

(2) Discrete - one point of contact.

(3) Discrete - multipoint of contact.

In addition to these three different formulations, two specific

systems were examined:

(1) Simply-supported beam.

(2) Free-free beam.

To ease the complexity of the next section it is important to

understand how the simulations are organized, what they are trying

89



to accomplish, and what parameters are used to create them. To aid

in this understanding, Section 4.1 is divided into two subsections.

Section 4.1.1 discusses the goals of Chapter 4 and the way they are

obtained. Section 4.1.2 examines the nondimensional parameters

used to set up the simulations. For a description and listing of the

computer codes used to perform the simulations, see Appendix D.

4.1.1 Goals of Chapter 4

Chapter 4 has three main goals:

(1) Validate the discrete formulation for the one- and

multipoint-of-contact cases with a simply-supported and

a free-free beam.

(2) Determine which shape function, cubic or linear, best

models the system's displacement.

(3) Perform several informative parametric studies. These

studies show the effects of the nondimensional

parameters, developed in Chapter 3, on the system's

dynamics.

Section 4.2 contains fifteen pages of plots. Each page displays

either two, four, or eight plots, depending on the specific study being

run. Figures 6 through 11 represent the simply-supported system.

Figures 6, 7, 8, 10, and 11 represent time history of the

nondimensional midspan deflection. Figure 9 presents a profile of
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the entire beam for different values of nondimensional time. The

displacements shown in Figure 9 are also nondimensional. For the

simply-supported beam all the displacements are made

nondimenisonal by us, the static deflection of the beam.

Figures 12 through 20 display results for the free-free system.

For each study performed there are two sets of plots. The first plots,

Figures 12, 15, 17, and 19, display the time history of the

nondimesional deflection at the beam's left tip. The second plots,

Figures 13, 16, 18, and 20, display the time history of the

nondimensional deflection at the beam's right tip. Figure 14 presents

a profile of the entire beam's nondimensional deflection. First, the

organization for the simply-supported beam is explained; then, the

free-free system is discussed.

Simply-Supported Beam

The first study performed for the simply-supported beam

determines the shape function that best models the beam's

displacement while using the least amount of finite beam-elements.

To accomplish this, a comparison using a different number of beam

elements was made between a continuous formulation and both the

linear and cubic shape functions. The results presented in Section

4.2.1 illustrate that the cubic shape function is better suited to model
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the displacement; therefore, in the following discrete simulations

only the cubic shape function is used.

The second study compares the discrete and continuous

formulations for different values of the speed parameter a (see Eq.

(4.5)). This study effectively validates the discrete formulation for

the simply-supported beam. Consequently, the following simulations

are performed for the discrete cubic formulation only.

The third study presents snapshots that show the profile of the

entire beam for different time frames. The first set of snapshots

models the beam as the mass is moving along the beam. The second

set examines the beam in free vibration, after the mass has left the

beam.

Finally, a parametric study is performed for the simply-

supported system, which examines the result of including the inertial

effects of the mass versus simply modeling it as a moving force.

First, different runs are completed for a specific mass ratio with

different speed parameters. Then, the speed parameter is specified

and the value of the mass ratio is varied.

Section 4.2 contains the results outlined. They provide the

information needed to reach the three goals set for the simply-

supported system. The same basic tests outlined above, with the
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same parameters, were completed for the free-free system. This

compatibility facilitates the comparison of the two separate systems.

Free-Free Beam

The discrete methodology for the free-free, one-point-of-

contact system is validated. To accomplish this, a comparison is

made between the discrete formulation presented in Section 3.2 and

the continuous formulation presented in Section 3.1, for various

speed parameters. Based on the results of the simply-supported

beam, only the cubic shape function is used. The speed parameters

for the free-free beam (see Eq. (4.6)) are set to closely resemble

those of the simulations performed for the simply-supported beam.

Unlike the simply-supported plots, however, for the free-free beam

all displacements are made nondimensional by the length of the

beam.

Studies using the discrete formulation are also performed.

First, snapshots of the beam are displayed for different time frames,

as outlined for the simply-supported beam. The first set of curves

models the beam with the mass travelling along its length; the

second set of curves displays the beam in free vibration without the

mass.
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The next set of plots explore the results of ignoring the inertial

effects of the mass. If the inertial effects are ignored in the simply-

supported beam, the mass still creates a gravitational force on the

beam. When there is no gravity, no gravitational force is applied.

Therefore, the two formulations compared in this study are:

(1) With the moving mass.

(2) Without the moving mass.

The next study examines when it becomes important to include

the inertial effects of the moving mass by varying the mass ratio for

one speed parameter. Once again, the values of the parameters used

are the same as those used for the simply-supported beam.

The final curves examines the multipoint-of-contact

formulation. Different contact spacing simulations were compared,

again using the same speed parameters that were used for the

simply-supported beam. It is important to show that as the contact

spacing approaches zero, the simulations approach the one-point-of-

contact case. It is also interesting to see how the speed parameter

alters the effects of the contact spacing.

The above-mentioned curves help to achieve the goals that the

simply-supported system could not obtain. Using the results from

both the simply-supported and the free-free systems, the best shape
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function is determined, the discrete methodology is completely

validated, and important parametric studies are performed.

In the following simulations, the continuous formulation that

was outlined in Section 3.1 is used for the validation of the discrete

formulation. As an added assurance, an exact formulation developed

by Kurihara and Shimogo (Ref. [5]) for the simply-supported beam

was compared to the discrete simulation. The results obtained

completely agreed with those obtained using the formulation

detailed in Section 3.2.

4.1.2 Parameter Discussion

Each system is described by a stiffness parameter and the mass

ratio between the structure and the moving mass. For both the

simply-supported and the free-free systems, the stiffness of the

system is represented by the nondimensional parameter a, and the

mass ratio is represented by pim. The external load for the simply-

supported system is characterized by jpg. There is no external load

applied to the free-free system. Before specifying the values of

these parameters, it is important to define the speed parameter that

was discussed in Section 4.1.1.
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Speed Parameter

A convenient way

mass system is to define

to describe the flexible-structure/moving-

a speed parameter a.

a Tp _ Tpvm

2 tr 2L (4.1)

where Tp is the fundamental period of the system and tr - was

previously defined as the time required for the mass to travel the

beam's length. To gain a more physical understanding of this

parameter, a relationship between the fundamental period and the

natural frequency of the beam is:

T p-2(
So (4.2)

which gives

a= Irvm
e 1L (4.3)

where ol is the beam's fundamental natural frequency.

Because a depends on both the speed of the moving mass and

the frequency of the system, there are two different ways to look at

the meaning of a. A low a represents either a system in which the
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mass travels at a very slow speed or a very stiff system. Conversely,

a high a represents either a system where the mass travels at very

high speeds or a flexible system. The actual physics of the system

are the same regardless of how the speed parameteris interpreted.

In this analysis, a is referred to as the speed parameter and

consequently is used to describe the relative speed of the moving

mass.

The nondimensional natural frequencies of the simply-

supported and the free-free beams can be expressed in terms of the

nondimensional stiffness parameter:

ls = x2  (4.4)

2 1,= 22.4 UL (4.5)

where 01s and 21f represent the natural frequency of the simply-

supported and the free-free beams, respectively.

Using Eqs. (4.3) and (4.4), a unique relationship is determined

between the speed and stiffness parameters for the simply-

supported and the free-free systems. The two speed parameters, as

and af, one for each specific system, are defined as
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1
x (4.6)

af =
22.4 T (4.7)

Using Eqs. (4.6) and (4.7), the nondimensional stiffness parameter X,

is specified to achieve different speed parameters. Table 2 outlines

the speed parameters used and the resulting value of X for both

beams. Either the speed parameter a, or the stiffness parameter X,

can be used to identify a specific case, because of the unique

relationship between the two parameters.

Remaining Parameters for the Simulations

In addition to the speed parameter a (or stiffness parameter A),

there are three other parameters of interest to the simulation:

(1) The mass ratio, #m.

(2) The load parameter, pg.

(3) The contact point spacing, s.

The mass ratio parameter #m, is defined the same for both the

simply-supported and the free-free systems. The load parameter Mpg,

is used only for the simply-supported system, and is not really an

independent parameter, as will be seen. The contact point spacing

parameter s, is used only for the free-free system with multipoint of

contact.
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Table 2. Stiffness and Speed Parameters Used in Simulations.

Simply-Sup orted Beam Free-Free Beam

as _k a_ _ _k

0.01 1013.72 0.1 1.967

0.2 2.53 0.2 0.492

0.3 1.12 0.3 0.219

0.4 0.633 0.4 0.123

0.6 0.281 0.6 0.055

0.8 0.158 0.8 0.031

1.0 0.101 1.0 0.019

1.2 0.070 1.2 0.014

1.4 0.051 1.4 0.010

1.6 0.039 1.6 0.007

2.0 0.025 2.0 0.005

3.0 0.011 3.0 0.002

4.0 0.006 4.0 0.001
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As defined previously, #m represents the ratio of the moving

mass to the flexible structure. This ratio is varied only in one set of

simulations for each system (see Figures 11, 17, and 18). The

purpose of varying jim is to determine the lowest mass ratio

permissible to treat the mass as a moving force rather than as a

moving mass. The value of the mass ratios vary from 0.01 to 2.0 and

are indicated in the legends of the appropriate curves. For the

remaining curves, the mass ratio is kept at a value of 0.5; therefore,

the moving mass is half as massive as the flexible structure. To

model the mass as a moving force, the mass ratio is set to 0.

In Section 3.1.5, a nondimensional load parameter, ig, was

developed to characterize the load applied to the system due to the

gravitational force of the moving mass. The definition of pg is

rewritten from Eq. (3.51) as,

mmg

p vM (3.51)

This load parameter in Eq. (3.30) would lead to nondimenisonal

deflections ulL in the beam. For the simply-supported beam, it is

more convenient to express the deflections in reference to the

maximum static deflection of the beam us. For the load mmg acting

at the midspan, the maximum static deflection occurs at the midspan

and is given as
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mm gL 3

U s =
48 El (4.8)

Hence, to provide the nondimensional deflections ulus rather than

ulL would require one to pick the new load parameter Mg in Eqs.

(3.30) and (3.50) as

mm g
L mg2 48 APg L PV 2  mm g L2  =48

/L 48 El (4.9)

Using Eq. (4.9), the value of the load parameter gry is directly

specified for the appropriate value of A or a specified in Table 2, or

Eq. (4.6).

The final parameter to be explained is s, the contact spacing

parameter:

S=
100 (4.10)

where j is any integer. The parameter s represents the percentage of

beam length by which the two points are separated. For example, if

s is set equal to zero, only one point of contact is achieved. For s

equal to 0.02, the two points are separated by a distance that is 2

percent of the beam length.
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Four different values of s were compared for different speed

parameters:

s = 0.000

s = 0.005

s = 0.010

s = 0.020

The parameters needed to describe the system have now been

thoroughly explained. However, there are two more parameters that

do not define the physical property of the system but do appear in

Section 4.2. First, the simulations were run in terms of the

nondimensional time parameter r and were run up to a value of r. = 2

As a reminder, when r is equal to one, the mass has travelled over

the entire beam length. Second, the parameter n defines the number

of finite beam elements used. In Figure 6, n is varied. For the

remaining discrete simulations, 40 beam elements are used. Finally,

in the simulations, three flexible modes were retained.

4.2 RESULTS DISCUSSION

Section 4.2 presents the results for both the simply-supported

and the free-free systems. Each graph is discussed as it appears in

the text.
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The results that were outlined in Section 4.1 and their

significance follow. Section 4.2 contains two subsections, Section

4.2.1 discusses the simply-supported system, and Section 4.2.2

expounds on the free-free system. The organization of each section

was developed in the previous section.

4.2.1 Results for the Simply-Supported Beam

The plots are in terms of the nondimensional deflections ulus,

and the nondimensional time parameter z = vmt/L.

Figure 6

Figure 6 compares the discrete formulation with both a cubic

and a linear shape function and with the continuous formulation.

Each curve was simulated for a equal to 1.0.

These curves are used to determine the shape function that

accurately models the displacement with the least number of

elements. Figure 6 (a) shows that for as little as 10 finite beam

elements, the cubic shape function is almost identical to the

continuous formulation. Therefore, for the rest of the discrete

simulations the cubic shape function is used. It is also important to

note that for sixty finite elements, almost no difference is seen in the

three curves portrayed.
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Figure 6. Discrete vs continuous for ac = 1.0, u.m = 0.5.
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Figure 7

Figure 7 compares the discrete and continuous formulations for

different speed parameters. These curves provide two useful pieces

of information: they validate the discrete methodology for different

speed parameters and they show the effect of varying the speed

parameter.

For each plot in Figure 7, the discrete and continuous

formulations are almost identical. Figure 7 proves the validity of the

discrete methodology for the simply-supported system. The plots

were run up to a value of z = 2 in order to check the formulation

when the mass is on the beam, and the free vibration when the mass

leaves the beam.

The speed parameters chosen to model the system range from

a very slow-speed system of 0.01 to a high-speed system of 1.4.

Figure 7(a), a = 0.01, represents a system where the mass is

travelling at a very slow speed. In this case, the beam sees the mass

as a static force. The speed parameter is increased until a =1.4. By

scanning the deflections as the speed parameter is increased, the

effects of a on the system dynamics becomes obvious.

For values of a less than 1, the maximum effects of the moving

mass occur while the mass is still on the beam. Even for slow speeds,
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i.e., a = 0.2, the motion of the mass affects the system dynamics, as

indicated by the vibration that occurs even after the mass has left

the beam. The largest deflection is detected when a = 0.6 (Figure

6(d)). For higher values of a, the damping terms due to the inertial

effects decrease the midspan deflection.

For speed parameters greater than one, the maximum effects of

the moving mass occur after the mass has already left the beam.

Figure 8

Figure 8 displays the midspan deflection of the system for very

large values of a. These a values represent the speeds that may be

seen by a high-speed ground transport vehicle. As a is increased,

the beam does not see the effect of the moving mass until values

near v. = 1.5 It is suspected that as the speed parameter gets

extremely large, the mass will have very little effect on the beam.

This trend can be seen in Figures 8(a) through 8(d), especially in

Figures 8(c) and 8(d).
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Figure 8. Very large values of a, u.m = 0.5.
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Figure 9

Figure 9 displays two sets of curves. Each curve represents a

profile of the entire beam at different time frames. For a speed

parameter of 0.6, Figure 9(a) displays how the beam's deflection

changes as the mass travels along its length. The maximum

deflection occurs near z = 1. Figure 9(b) simply shows the beam in

free vibration after the mass has left the beam. As shown in Figure

8, for a = 0.6, no higher frequencies are present in the beam's

vibration.

Figure 10

Figure 10 represents the first set of curves in a parametric

study that examines the effects of the mass ratio parameter. In

Figure 10, the mass ratio is set equal to 0.5, four different speed

parameters are used, and two different formulations are displayed.

The solid line represents the formulation where the inertial effects of

the mass are included. The dotted line shows the deflection when

the mass is treated as a moving force.

For the static case, a = 0.01 (Figure 10(a)), no difference is

detected between the two formulations. For the other speed

parameters in Figures 10 (b)-10 (d), however, a large difference in

the two curves can be seen. The added inertial effects increase

109



SIMPLY-SUPPORTED BEAM

0 .25 .5 .75

X/L

(b)

0 .25 .5 .75

X/l

Figure 9. Snapshot of beam with ac = 0.6, um = 0.5.
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the effective force of the moving mass and consequently increase the

maximum deflection of the midspan displacement.

Figure 11

Figure 10 examined the difference between a moving mass and

a moving force formulation for a um of 0.5. For all the speeds except

the static case of a = 0.01 there is a difference in the two

formulations. In Figure 11, however, the speed parameter is kept

constant, a = 0.3, but the mass ratio pUm, is varied.

This study determines when it is permissible to treat the

travelling load as a moving force rather than as a moving mass. For

a mass ratio as small as 0.01, there is a difference between the two

curves. A significant difference, however, is not seen until the ratio

reaches 0.05. The curves diverge as r approaches 1.

In Figures 11(a) through 11(d), the mass ratio is still fairly

insignificant (less than or equal to 0.1). Because the inertial effects

add damping as well as an additional stiffness for small values of Pm,

the deflection shown by the moving mass simulation is smaller than

the deflection predicted by the moving force simulation. But, as can

be seen in Figure 10(e) to 10(h), for larger values of pm the

deflection predicted by the the moving mass formulation is larger

than the deflection predicted by the moving force simulation.
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For small mass ratios, the moving force assumption could be

treated as a conservative prediction. However, for an accurate

solution, the inertial effects should be included in the derivation.

4.2.2 Results for a Free-Free Beam Results

Each study that follows, except for Figure 14, contains two

figures, one for each beam tip. The two corresponding figures are

discussed simultaneously. The plots are in terms of the

nondimensioal deflections ulL, and the nondimensional time

parameter r = vmt/L.

Figures 12 and 13

Figures 12 and 13 compare the discrete (cubic) formulation and

the continuous formulation for different speed parameters. In every

simulation the formulations are identical. These curves successfully

validate the discrete methodology for the free-free system.

Unlike Figure 6, the smallest speed parameter, a = 0.1, displays

the largest amount of high-frequency vibration. To understand this

phenomenon it is important to remember that the free-free beam

was given an initial vibration prior to the release of the moving

mass. Therefore, in reality, Figures 12(a) and 13(a) display that for
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the smaller speed parameters, the moving mass does not affect the

system dynamics. As the speed parameter increases, the beam's

deflection is increased but the beam's initial vibration is damped out.

Figure 14

Figure 14 is the free-free system equivalent of Figure 9. The

beam's profile for different time frames is displayed. Once again,

Figure 14(a) represents the beam as the mass travels along its length

and shows how the beam is vibrating due to the initial kick it

received prior to the presence of the moving mass. The top curve, T =

1.0, shows less vibration than the other intermediate curves. Figure

14(b) displays the free vibration of the beam after the mass has left.

Since the beam is inertially free there is an absolute vertical motion

of the entire beam. Figure 14(b) also displays an oscillatory motion

of the beam.

Figures 15 and 16

Figures 15 and 16 compare the simulations with the moving

mass to the simulations without the moving mass. The comparison

uses a mass ratio of lim = 0.5 and different speed parameters. The

simulations show a large discrepancy between the two formulations.

Without the inertial effects, the beam is unaware that a mass is
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travelling across its length and acts like it is in free vibration. As a

result, there is no rigid body translation or rotation.

Figures 17 and 18

Figures 17 and 18 determine when it is permissible to ignore

the inertial effects that cause the discrepancy in Figures 15 and 16.

The two systems, with moving mass and without moving mass, are

compared with a constant speed parameter, a = 0.3, and varying

mass ratios.

Similar to Figure 10, a small difference is detected even for a

mass ratio as small as 0.01. It is not until #m = 0.05, however, that

the difference between the two formulations becomes significant. It

is interesting to note that the difference between the two

formulations is more dominant at the beam's left tip. The right tip

deflections, predicted by the two deflections, are similar until a mass

ratio is increased to 0.1.

Based on these simulations, it is not apparent that a moving

mass assumption may be construed as a conservative approach for

the free-free system. As concluded for Figure 10, to obtain accurate

results, all inertial effects of the moving mass should be included.
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Figures 19 and 20

Figures 18 and 19 focus on the formulation developed in

Section 3.3, Discrete Formulation for Free-Free Beam with Multipoint

of Contact. First, the curves are used to validate the multipoint-of-

contact formulation. Second, the effect of the speed parameter on

the multipoint-of-contact simulations is examined.

For each speed parameter, simulations are compared for

different values of s, the contact spacing parameter defined in Eq.

(4.9). The spacing between the two points of contact decreases as s

decreases. In both Figures 19 and 20, as the value of s decreased,

the curves approach the one-point-of-contact simulation, s=O. This

trend is expected and consequently validates the multipoint-of-

contact formulation derived in Section 3.3. As expected, for small-

speed systems, the predicted deflections increase as the separation

between the two points increases.

Figures 19 and 20 display another trend: as the speed

parameter is increased, the separation between the two points of

contact has little effect on the system dynamics. Also, the right tip

sees more variation than the left tip, which can be contributed to the

extra time that a part of the mass is present on the beam due to the

additional point of contact. The right tip sees this effect more

significantly because the mass travels left to right across the beam.
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CHAPTER 5

CONCLUSIONS

Chapter 5 discusses the important topics and conclusions

presented in this thesis. The three different systems used to develop

the methodology are examined, and conclusions reached for each

system are discussed. Also presented in Chapter 5 is an overview of

the different steps taken to develop the discrete formulation.

Finally, Chapter 5 contains suggestions for future research.

5.1 SYSTEM MODELS

The primary goal of this research was to develop a

methodology that may be used for modeling the inertially free Space

Station-Mobile Transporter system using a discrete methodology. In

order to validate the discrete formulation, a continuous formulation

was developed. Three different systems were used

(1) Inertially fixed system (simply-supported beam).

(2) Inertially free system (free-free beam) with one point of

contact.

(3) Inertially free system (free-free beam) with multipoint

of contact.

Each system was progressively more accurate in creating a

model that resembles the SS-MT system.
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5.1.1 System (1): Inertially Fixed System (Simply-

Supported Beam)

The inertially fixed system was modeled as a simply-supported

beam and developed for methodology verification purposes. The

inertially fixed model used in this analysis is the same model that

would be used for a heavy load travelling over a bridge. Therefore,

many papers are available that provide a simulation of this simply-

supported system. The results could consequently be verified by

mere comparison with previously published results.

The simplicity of the simply-supported modes enables easy

formulation of the equations of motion. Not only are the equations

easily formulated, but they can be fully expanded to display certain

properties of the system (i.e., symmetry). Also, for a specific time,

the mass, stiffness, damping, and force matrices can be determined

by hand calculations, which provides a fast check for the computer

code.

In addition to method verification, the effects of the

nondimensional parameters representing the moving mass speed and

the moving mass/flexible structure mass ratio were also examined.

The dynamics of the simply-supported system can be easily

interpreted by the results of the simulation; the situation is a bit
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more involved for the free-free system. Thus, the simply-supported

system helped to develop a firm understanding of the moving

mass/flexible beam system and, once understood, the formulations

can be extended for more advanced problems.

5.1.2 System (2): Inertially Free System (Free-Free

Beam) with One Point of Contact

The SS-MT system is designed to orbit around the earth.

Therefore, to eventually model that physical system, a free-free

system would be needed. In this formulation a free-free beam is

used to represent an inertially free system. When the mass was

attached to the beam at only one point of contact, the method was

validated by comparing continuous and discrete formulations.

Similar to the simply-supported system, the effects of the

nondimensional parameters, which alter the physical properties of

the system, were examined.

The inertially free system with one point of contact

successfully validates the discrete methodology that was developed.

This system was also used to develop an understanding of how the

nondimensional parameters affect the dynamics of the free-free

system.

129



5.1.3 System (3): Inertially Free System (Free-Free

Beam) with Two Points of Contact

The iteration to the inertially free one-point-of-contact system

increased the complexity of the system but captured the train/track

aspect of the SS-MT system. In the final formulation, the mass is

attached at two points to the flexible structure.

A continuous formulation was not used to validate the discrete

approach for this system. Instead, the discrete one-point-of-contact

case was employed. A comparison was made between the two-

point-of-contact and the one-point-of-contact simulations for

different contact point spacing. As the spacing between the two

points approached zero, the two-point-of-contact simulation

approached the one-point-of-contact simulation. Because the

multipoint-of-contact case approaches a simulation that has already

been proved, this provides credence to the discrete methodology for

the multipoint-of-contact system.

5.2 CONCLUSIONS

Using the three models described above, the discrete

methodology was developed and used to simulate the dynamics of a

mass moving over a flexible inertially free and inertially fixed

system. The method was successfully validated for each system. An
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extensive parametric study was then performed and provides

substantial insight in understanding this class of moving-mass

problems.

Six steps were taken to develop the discrete methodology:

(1) Develop the discrete equation for the flexible structure.

(2) Develop the discrete equation for the moving mass.

(3) Using compatibility and finite-element shape functions,

combine the two discrete equations into a discrete system

equation of motion.

(4) Place the system equation into a nondimensional form.

(5) Perform a modal reduction on the entire system.

(6) Place the nondimensional discrete system modal equation

into a state space formulation for easy computational

evaluation.

In Chapter 3, each of these steps was discussed in great detail

for the three stages of the model. The thrust of the research focuses

on performing steps (2) and (3) with great accuracy and efficiency.

The continuous formulations that were developed for method

verification were derived in an identical manner.

The analysis presented in this thesis develops a discrete

methodology that will form the basis for formulating the SS-MT

simulation. The simplified system examined here, an inertially free
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(or fixed) beam with a mass travelling along its length, is also solved

using a continuous formulation for methodology validation.

The method presented here is specifically designed with the

SS-MT system in mind. This analysis formulated the dynamics of the

Flexible Structure/Moving Mass system into a discrete form that is

conducive to efficient computational analysis. The discrete

formulation, which is in terms of nondimensional parameters that

describe the necessary physical properties of the system, was placed

in a form suitable for numerical integration. Modal reduction was

used for computational feasibility.

5.3 SUGGESTED FUTURE RESEARCH

Using the methodology presented here, a simulation of the

Space Station-Mobile Transporter can be developed. Since the

dynamics of the system may be cast in a discrete representation that

would be suitable for modal reduction, the approach can be

employed in the case of large dynamical systems: SS-MT-Space

Shuttle. Because these systems will interact, the presented approach

can be used to develop a simulation for dynamic interaction studies.

For example, one possible scenario could be to examine the

stability of the entire system when the mobile transporter is

travelling along the space station while the shuttle is activating its
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attitude control system. The interaction between the Space Shuttle's

dynamics, the attitude control system, and the SS-MT dynamics is

just an example of the potential use of the approach developed in

this thesis.
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NOMENCLATURE

NOMENCLATURE FOR CHAPTERS 1 THROUGH 5

B: Discrete second derivative operator

C : Damping matrix of the entire system

Co : Constant damping matrix

Cvar : Time-varying damping matrix

E Identity matrix

El : Bending stiffness of the beam

(EI)e: Elemental bending stiffness

F : Force matrix of the entire system

Fext : Sum of all continuous forces acting on beam

Fext : Discrete external force vector

Fm Continuous force acting on the moving mass

Fm : Discrete force acting on the moving mass

Ft : Total force acting on the beam

Ft : Total discrete force acting on the beam

fc 1 Force due to first point of contact between moving

mass and the beam

fc2 : Force due to the second point of contact between

moving mass and beam

fext : Continuous external force applied to beam

ftlext: Modal external force applied to beam

fy e : Equivalent impulse force
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li : Nondimensional integral where i = 1, 2, 3 and 4

i Location of first point of contact

i' Location of second point of contact

K Stiffness matrix of the entire system

K Beam's stiffness matrix

K Nondimensional stiffness matrix of beam

Ko Constant stiffness matrix

Kvar : Time-varying stiffness matrix

k Global stiffness matrix with translational and

rotational degrees of freedom

Kt Finite-element stiffness matrix with only translational

degrees of freedom

L Length of beam

le : Length of each beam element

M Mass matrix for the entire system

M : Mass matrix of the beam

M : Nondimensional mass matrix of the beam

Mo Constant mass matrix

Mt Lumped mass matrix with only translational degrees

of freedom

Mvar: Time-varying mass matrix

m Finite-element mass matrix with translational and

rotational degrees of freedom

me Mass of each beam element

mi Mass contribution of each node
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mm Mass of moving load

N Number of modes used to approximate the

deformation

n Number of elements used to model the beam

q Beam's discrete displacement field

q Nondimensional discrete displacement field

qm Discrete mass displacement field

qm 1 : Discrete displacement field for first point of contact

qm 2 : Discrete displacement field for second point of contact

s Contact point spacing in percent of beam length

Ti : Trial function for cubic shape function where i =

1, 2, 3,and 4

Tp Fundamental period of the beam

u(x,t): Continuous displacement field of beam with respect to

an inertial reference frame

ui : Finite-element trial functions i = 1, 2, 3, and 4

um  : Displacement field of moving mass with respect to an

inertial reference frame um = Um(xm(t),t)

Us Maximum static deflection of the simply-supported

beam

V Generic shape function

Vi Discretization vector i = 1, 2, 3, and 4

V'i : Discretization vector for the second point of contact

V1  : Modal form of V

VI : Linear shape function
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V3 Cubic shape function

V'3 Cubic shape function for the second point of contact

V4 : Derivative of V with respect to 4

V4 : Second derivative of V with respect to 4

Vt7q : Modal form of V4

V,44 : Modal form of V44

vm Relative velocity of the moving mass

x State vector

xi : Position of the ith beam element

xm(t): Position along the beam of the moving load

Greek Letters

a Speed parameter

af Speed parameter for the free-free beam

as Speed parameter for the simply-supported beam

jti : Parameter used for the ith mode shape of a free-free

beam

6() Dirac delta function

A Distance between the two points of contact

Ate Time required for the mass totravel over one finite

beam element

A : Nondimensional stiffness parameter

A Diagonal matrix of eigenvalues

Ar Reduced diagonal matrix of eigenvalues
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: Vector of nondimensional modal displacements

ili(t) : Modal displacement of the ith mode

ri (t) Nondimensional modal displacement of the ith mode

: Modal matrix

r : Reduced modal matrix

4i(x) : Mode shape of the ith mode

do
dx

d2
d " : dx2

d44

'v : dX4

p Mass per unit length of the beam

ai : Parameter used for the ith mode shape of a free free

beam

z : Nondimensional time parameter

jyg : Nondimensional gravitational load parameter

fi : Nondimensional force parameter

/q • Nondimensional discrete force parameter

Ajm Nondimensional mass parameter

92i : Nondimensional frequency of the ith mode

Dif : Nondimensional frequency of the ith mode for the

free-free beam

Dis : Nondimensional frequency of the ith mode for the

simply-supported beam

owi : Dimensional frequency of the ith mode
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o1 : Natural frequency of the beam

C : Damping Ratio (= .01)

NOMENCLATURE FOR APPENDICES

Ic : Total mass moment of inertial of the system

1, Lagrangian

Mt Mass of the beam and the moving mass system

p(x,t) : Vector locating deformed .position of beam with

respect

to the undeformed position

Pm Vector locating deformed position of moving mass

with respect to the undeformed position

Pm = Pm(xm(x,t),t)

r(t) Vector representing the translation of the embedded

body reference frame with respect to the inertial

reference frame.

Sc Total static imbalance of the system

T Total kinetic energy

Tb Kinetic energy of the beam

Tm Kinetic energy of the moving mass

Vb : Potential energy of the beam

vb Absolute Velocity of the beam

Vc : Absolute Velocity of the moving mass
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vm Velocity of moving mass with respect to the embedded

reference frame

w(x,t): Vector representing the total displacement of the

beam with respect to the embedded reference frame

wm Vector representing the total displacement of the mass

with respect to the embedded reference frame

wm = wm(xm(x,t),t)

80 Angle representing rigid rotation between the

embedded body frame and the inertial reference

frame

•o Skew angular velocity of the embedded frame with

respect to the inertial reference frame

0-0 0
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APPENDIX A

LAGRANGE FORMULATION

OF CONTINUOUS FREE-FREE BEAM

Appendix A formulates the continuous equation of motion for

the free-free beam using a Lagrangian approach. The continuous

formulation used to numerically simulate the motion of the free-free

system presented in Section 3.1 developed the equations using a

Newtonian approach.

A Lagrangian formulation uses an energy approach whereas a

Newtonian formulation uses force balance. If the individual forces of

the system are known, it is easy to develop the equations using

Newton's Laws of Motion. However, if the forces are difficult to

identify, it is much harder to correctly develop the equations using a

Newtonian approach. A Lagrangian formulation, on the other hand,

uses the energy of the system. It is more difficult to formulate the

equations but, if no algebraic errors are made, the equations are

guaranteed to be correct. For this reason, for complex problems a

Lagrangian formulation is developed to check the results obtained by

the Newtonian method.

Appendix A is organized in the same manner as the individual

sections of Chapter 3. First, the equation of motion is derived. Next,

the equation is made nondimensional and placed into a
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nondimensional form. This equation is then transformed from an

equation in terms of the beam's natural coordinates, to an equation

in terms of the beam's modal coordinates. Finally, a state space

formulation is developed for this derivation.

A.1 MATHEMATICAL MODEL

For this formulation a different model is used for the free-free

system (See Figure A-1). A reference frame is embedded at the

beam's endpoints. With respect to this reference frame, the beam is

simply supported at both ends. The reference frame is considered to

undergo rigid body translation and rotation with respect to an

inertial reference frame.

In Chapter 3, the beam was able to move in any direction with

respect to the inertial reference frame. There is no "body frame"

embedded in the flexible structure. In that analysis the two rigid

body motions fall naturally from the modal analysis and are not

considered separately. That formulation is easier and more exact for

numerical computations; however, the derivation developed here

provides a good check for the equations because it is more thorough

and less error prone.
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Y pm x

Embedded Reference
Frame

X

Inertial Reference Frame

Figure A-1. Model used for Lagrangian Formulation.

A. 2 EQUATIONS OF MOTION

The governing equations of motion are derived using basic

energy principles. The kinetic and potential energy of the entire

system is developed. These expressions are substituted into

relations developed using Hamilton's principle. The resulting

equations are known as Lagrange's equation.

To formulate the equations, the Lagrangian of the system, L, is

used. The Lagrangian is the difference between the system's kinetic

and potential energies. Calculus of variations is used to determine a

function such that the integral of the Lagrangian takes on a minimum

value (Ref. [19]). The resulting formulation is known as Hamilton's

principle and is represented in symbolic form as
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t2

8 L dt = O
I d(A.1)

Energy of the System

In order to obtain the system's Lagrangian, both the kinetic

and potential energy of the system must be determined. The

system's kinetic energy is the sum of the beam's kinetic energy and

the moving mass' kinetic energy:

T = Tb + Tm (A.2)

In determining the beam's kinetic energy, the flexible beam is

considered to consist of an infinite number of beam elements. The

moving mass is viewed as a rigid body.

Tb =  p Vb Vb
(A.3)

Tm = 1 mm VT Vc
2 (A.4)

In order to combine Eqs. (A.3) and (A.4) into a common kinetic

energy expression, the velocity of the moving mass is rewritten using
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the special property of the dirac delta function shown in Eq. (3.14).

The velocity of the moving mass is expressed as

vc (xm, t) = vb (x, t) 8(x - Xm) dX
J (A.5)

Note, as discussed previously, this expression's validity is due to the

fact that at xm the moving mass is firmly attached to the beam,

ensuring equivalent velocities. Using the above relation, the total

system's kinetic energy is reformulated as

L
T= l (P vT Vb m b (X - Xm))dx

(A.6)

where the dependence on the independent values are omitted for

brevity.

Because the beam's position vector is expressed in a reference

frame that is moving with respect to the inertial reference frame, the

inertial derivative contains two variables. The first variable reflects

how the beam's position changes in time with respect to the

embedded reference frame. The second value determines how the

motion of this embedded frame changes with time with respect to

the inertial frame. The expression for vb is
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Vb a• + ai(r + p)
at (A.7)

where the two vectors r and p are defined as

r: Vector locating the origin of the embedded

reference frame with respect to the inertial

reference frame. r = [rx ry rz]T

p: Vector locating the beam's deformed position

with respect to the undeformed position.

It is expressed with respect to the embedded

reference frame. p = [x w O]T

There are other vectors necessary to form the kinetic and

potential energy expressions. They are:

0:. Angle representing the rigid rotation of the

embedded reference frame about the inertial

reference frame.

pm: Vector locating the moving mass' deformed position

with respect to the undeformed position.

It is expressed with respect to the embedded

reference frame. pm = [Xm wm O]T

Using these vectors and Eq. (A.7) the velocity expressions in

the x and y directions for the beam are:
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(Vb)x = x - o w (A.8)

(vb)y = y + w + Ox (A.9)

Since the reference frame embedded in the moving mass is

moving, the velocity of the moving mass takes on a different form.

It is expressed as

(Vc)x = ix - Owm + Vm (A.10)

aWm
(vc +axm (A.11)

where vm is the speed of the mass relative to the beam. Eqs. (A.10)

and (A.11) represent the moving mass velocity that would be

obtained using Eq. (A.5).

Next, the system's potential energy is defined. The system

being examined is in a gravity-free environment. Thus, the only

potential energy of the system is the strain energy due to the beam's

deformation:
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I2\2

V b= EIl dx
ax 21

(A.12)

where El is the effective bending stiffness of the beam. Note that the

beam's material properties are assumed to be homogeneous. The

potential and kinetic energies are used to form the Lagrangian, which

is used in Hamilton's Principle.

Hamilton's Principle

Once the system's potential and kinetic energy are known, it is

trivial (but tedious) to apply Hamilton's principle. First, the

Lagrangian of the system is formed. Substituting Eqs. (A.6) and

(A.12) into the Lagrangian expression yields Eq. (A.13):

2( 22
L= L p vb vb + mm VT v

b v ( x - x m) - El dx

So (A. 13)

Equation (A.13) is substituted into Eq. (A.1). The variation of L

is taken with respect to each of its dependent variables. In this

system, L is a function of eight variables:

L= ~ix, ry, y, ,0, w, , WIm, m,x..) (A.14)
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where (') and (), represent derivatives with respect to time and

spatial position, respectively. The r and w vectors have been

previously defined. The other variables are:

It is necessary to take the first variation of L with respect to

each of the variables shown in Eq. (A.14. In symbolic terms Eq. (A.1)

becomes

DT DT aT T aT .T 8[ix + 8ry + [ 8y + 80 +[ S] dt +
f r arIy ar.y -ao

aT aT aVbft2 a 1 m + " Wx,, + L-Sw dt = 0

t1 (A.15)

where the actual expressions for the kinetic and potential energy,

Eqs. (A.6) and (A.12), have been omitted for clarity. It is desirable to

have Eq. (A.14) in a form where the only variations are of the actual

variables, not their respective derivatives. This form is:

t ) rx+ 8)ry + )w + ( ]) 8 =] dt = 0

1 (A.16)

To obtain the form outlined in Eq. (A.16), each term in Eq.

(A.14) is integrated by parts. This type of integration separates two
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functions. One function becomes a differential and the other is

integrated upon. The form of this type of integration is:

u dv = uv - v du
(A.17)

The function chosen to be u takes on a differential form in the new

integral. The function chosen to be dv is in its integrated form, v, for

the new integral. The term in front of the new integral is evaluated

at the endpoints of the integral.

This type of integration is performed on the terms in Eq.

(A.15). The variation is chosen to be the dv function and the

corresponding differential is the u function. The terms that are

evaluated at the endpoints of the integral are the beam's boundary

conditions. After the integration by parts, the equation is in the

"strong form" (Ref. [18]).

The first term of Eq. (A.15) is used as an example

1:2 f3t- rxi dt = I Srxt

S1x r dt
(A.18)
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Once the terms are in the appropriate form, the additive

property of integration is used to rewrite the integral, resulting in:

t2 t2 t2 t2

() rx + () ry + ()806+ 0()6w =0
1 j 16 += (A.19)

These four integrals are separated to obtain four equations of motion.

Final Equations of Motion

For Eq. (A.19) to be true, each integral must vanish

independently. To have each integral vanish for any arbitrary time

period, the actual integrands of each integral must respectively go to

zero. This leads to four equations.

The four equations are obtained by following three steps. First,

the actual kinetic and potential energies outlined in Eqs. (A.6), (A.7),

(A.8), (A.9), (A.11), and (A.12) are used in Eq. (A.15). The resulting

expression is integrated (by parts) to obtain the form shown in Eq.

(A.16). The additive property of this integration is used to separate

the result into the four equations of motion, shown in Eqs. (A.20)-

(A.23):

(mm + pL) ix = 0 (A.20)
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(mm + pL)y + L2 + m xM +2mmvm+2

2 dw 2 W L
(mm + mmvm- + 2 mmVm-w- + pi dx=0

Ox dt dx@ x (A.21)

+ mm xm I y + m, x 0 + 2 mm vm xm 0 +
2 

L

mM Xm W + mm xm vm d + 2 mm xmvm w + p x w d = 2ox @t Ox x (A.22)

pL y + (pL2+ mm xm) + 2 mm Vm 0 +

2 2 4

mmW +mmv 2 m vm +pw+EI -0
2 t d @dx 4  (A.23)

Equations (A.20) and (A.21) represent Newton's second law in

the horizontal and vertical direction, respectively. Equation (A.22)

states that the sum of the moments around the origin of the

embedded reference frame is zero. Equation (A.23) is the partial

differential equation describing w(t), the lateral vibration of the

beam. These equations could have been written directly using

Newton's Law of motion (see Section 3.1); however, it is important to

account for all of the forces. The energy approach might be more

time-consuming than if Newton's Law were immediately applied, but

if done carefully it assures that all forces acting on the system have

been represented correctly.
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Equations (A.21) through (A.23) are next placed into the

beam's modal coordinates. In this form it will be easier to compare

the terms obtained in this derivation and the ones obtained during

Section 3.1. Section 3.1 was derived for any boundary condition.

This analysis is specific to the free-free beam.

Modal Solution

The beam's total deflection must be determined. The total

deflection is the vector sum of the rigid body motions and the

flexible motions of the beam. The horizontal motion of the system,

Eq. (A.20), is decoupled from the other three motions, thereby not

playing a role in the total deflection. The other three equations are

completely coupled.

A linear superposition of modes is used to solve the three

coupled equations, Eqs. (A.21), (A.22), and (A.23). As in Chapter 3,

Galerkin's method is used to reduce the error of the approximation.

However, unlike the lone partial differential equation shown in Eq.

(3.10), there are two ordinary differential equations and one partial

differential equation. A modal substitution for the beam's vibration

is used in all three equations, but Galerkin's method is only applied

to the partial differential equation.
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The substitution shown in Eq. (3.11) is used for the beam's

lateral vibration, w(x,t). The modes chosen must reflect the beam's

lateral vibration only and not the total displacement as was modeled

in Chapter 3. After the modes are chosen, the three equations are

transformed into modal coordinates and Galerkin's method is used

where applicable.

Modes Used

The modes used are those of a simply-supported beam. This

may seem incorrect since the beam itself is considered to be

inertially free. However, this derivation was formulated so that the

beam is simply supported with respect to the embedded reference

frame and the embedded frame undergoes the rigid body motion

with respect to the inertial frame. Therefore, the choice of simply-

supported modes for the vibration of the beam is justified. The

modes for the simply-supported beam are shown again for

convenience.

Oi (x) = sin i x
L (A.24)

These modes are nondimensional and orthogonal; however, it is

noted once again that they are not orthonormal. Using these modes,

Eqs. (A.21), (A.22), and (A.23) become
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(mm + pL) ry +(pL2 mmxm + 2 mm vm + +p ii Ji dx +2 i=1
N

+mm ; (i ii + 2 vm i ii + v2 i ri@x. =
i= 1 (A.25)

L2 +m pL3 + m x0 + 2 mm Vm xm
2 3

+P I JL x Oi dx
i=1

N

+ Xmm xm O ii + 2 xmVm 4i ji + xm v 2Mni Ri i@x. = 0
i= 1 (A.26)

N N

J j El 0 Ri + p ry + p x + p i i dxf=1 i=1

+ mm ry +x, 0 + 2 vm (A.27)

+ mm ~Ji i iii + 2 vm 0' 'i + v 20i i @x =O 0

Equations (A.25), (A.26), and (A.27) represent the motion of

the inertially free flexible beam with a mass moving along its length.

The equations are in terms of the modal coordinates but are still in

dimensional form. Therefore, the next step is to make them

nondimensional.
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Some nondimensional integrals are needed to place the

equations into a nondimensional form. Two of the nondimensional

integrals were already defined in Eqs. (3.15) and (3.16). They are

rewritten below for convenience.

I (iJ) L Oj O dx
L 0J (A.28)

12 (ij) = L 3  Vj dx(A.29)
(A.29)

The two other integrals needed are actually just special cases of

Eqs. (A.28) and (A.29) that incorporate the rigid body modes. Since

these motions are not accounted for in the mode shapes, as in

Chapter 3, the integrals must be defined separately. They are

I (i) = / *L i dx
(A.30)

L

14 W 1. X 0i dx
L 2 (A.31)

Equation (A.29) represents the rigid body translation and Eq. (A.31)

is the rigid body rotation (i.e., 4j = 1 and Oj = x, respectively). The

values of the Il and 12, for the simply-supported mode shapes, were
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found in Eqs. (3.45) and (3.47). These values, together with 13 and 14,

are

li(i,i)= 1L
2 (A.32)

12(i0i)
2 (A.33)

13 (i)= 1 - cos ix
i r (A.34)

14 (i)= COS i x
i xc (A.35)

For convenience the following variables are defined

Mt = pL + mm (A.36)

2pL2Sc -L + mm xm
2 (A.37)

Ic pL  + mm x2
3 (A.38)

where Mt is the mass of the beam and the moving mass, Sc is the

total static imbalance, and Ic is the entire mass moment of inertia.

Using the above identities and the four nondimensional integrals, the

three equations of motion are rewritten in a further condensed form:
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N

Mtiy + Sc 0 + 2 mm Vm 0+ pL I3 (i) ii
i=1

N

+ mm ( iiii+2 mT i 2 +V i vlJ@ x. = 0
i= 1 (A.39)

N

Sc i'y + Ic 0 + 2 mm xm Vm 0 + pL2  4 I 4(i) ij
i=1

N

+ mm xm (iiii+ 2 vm i + v2mi i@ .= 0O
i= 1 (A.40)

(L 13 + mm Oj, .) •', + pL2 4() + mm Xm Qj0.) 6.+
N N

2 mm Vm j 0 + pL , Il(ij) ij+ EL I2(ij) 7j
i=1 L 3 i=1

+ mm j (0i ili + 2 vm fi Ri + V ,2 i r7i x.0mmpi= 1 +@(A.41)

It is important to note that the equations, as they stand, are

valid for any mode shape used. The mode shapes should satisfy both

the geometric and force boundary conditions.

This analysis uses modes shapes for a simply-supported beam,

i.e., sine modes. With respect to the embedded frame, the beam is

simply-supported; therefore, the modes do satisfy the geometric

boundary conditions. They do not, however, satisfy the force
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boundary conditions for the actual free-floating beam. Using the

simply-supported modes, there is a shear force at the ends of the

beam. For a free-floating beam there are no moments or shears at

the endpoints. The natural frequencies of the above modal system,

with the rigid motions constrained, resemble the natural frequencies

of a free-free beam, but the shapes of the sine modes do not

accurately model the motion of the actual beam. It is better to use

the free-free mode shapes of the beam as in Chapter 3, which satisfy

all boundary conditions at the ends.

For these reasons, the above derivation is not used to

numerically determine the beam's total deflection due to the motion

of the moving mass. Even though this derivation is not used to

compute the actual results, it is presented as a check to the

derivation of Chapter 3.

A.3 NONDIMENSIONAL EQUATIONS OF MOTION

Equations (A.39), (A.40), and (A.41) are placed into a standard

nondimensional form using the procedure outlined in Chapter 3. The

same nondimensional parameters that were defined in Eqs. (3.21)-

(3.24) appear. This derivation is specific to the inertially free

system; therefore, there is no external force applied to the beam.

Since the mode shapes used are sine waves, the respective

165



derivatives are easy to evaluate and have

final three nondimensional equations are:

(1+m)ry+ + m 0 + 2 +2

ir 71 i + 2 in cos i7T ri -4

N

, 13(i) 00i
i=1

(i42 sin iiZ Wi =0
(A.42)

Soo
+ Ptm Fy + + ym r2 0

N

+ 2 .m rO+ 2,
i=1

+ Izm I sin int•7 i + 2 in cos iZ 77i
i= 1

- (i) 2 sin i '•-i = 0

ono

(13(i) + um sin jrx) Y y + (14•) m sin jMf ) 0
0 N

+ 2 #m sin jit O+ 0
i=1

N
o__

Il(ij) y + Z , 12 (ij) i'+
i=1

ym sin jxtz ( sin
i=1

o0o

inz ; + 2 in cos
o

in' m- (i)2 sin ibr r-i

These three equations are the nondimensional counterparts

Eqs. (A.39), (A.40), and (A.41) and correspond to the expanded

version of Eq. (3.27) Equations (A.42) and (A.43) correspond to the

rigid body translation and rotation, respectively, and Eq.

corresponds to the flexible modes. Equation (A.44) along with ry = 0,
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14 (i) o1i

(A.43)

for j=l,..,N

(A.44)

(A.44)

also been included. The

N

+ / m I sin
i=l

,,



0 = 0 corresponds to the simply-supported beam case developed in

Chapter 3.

Though these equations will not be used for numerical analysis,

they are still placed into a state space form because it is easier to see

the similarities and differences between the derivation presented

here and the one reviewed in Chapter 3.

A.4 STATE SPACE REPRESENTATON

The three equations above, Eqs. (A.42), (A.43), and (A.44), are a

coupled set of N first-order equations. The three equations are

combined into one matrix equation that is dependent on the system

states. In a state-determined system, all information needed about

the system is summarized in a finite set of variables. First, the state

variables are placed into a state vector. Using this vector, a matrix

representation of the system is obtained.

State Vector

The following two vectors are defined.

xl = ry 0 71 ... 7N ) (A.45)

x2 = o o (A4)
ry 0 711 ... 7N (A.46)
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The state vector x, is a combination of xl and x2

x= lx2 (A.47)

As stated previously, this state vector contains all the relevant

information about the system.

Matrix Representation

Using the state vector of Eq. (A.47), the mass, damping, and

stiffness matrices are derived. As indicated earlier, there is no

external force applied to the beam; therefore, there is no external

force matrix. The mass matrix is the only symmetric matrix. All the

matrices are time varying.

For easy comparison to the earlier analysis, each matrix is

divided into four different matrices. Three of the matrices have

contributions from the rigid body modes. The fourth matrix contains

contributions from the flexible modes only. These last matrices are

identical to the matrices shown in Eqs. (3.47), (3.48), and (3.49).
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The mass matrix is:

M = MI
SM2 T

2+Nx 2+N
(A.48)

where the three matrices are defined as

M[

13(1)
+ p.m sin Z

14(1)
+ p#m sin S Z

13 (N)
+ Jim sin N7z

14(N)
+ Pm tzsin Nztr

I (N,1) +
pm sinfr sinNzT

I (NN) +
Pm sinNIrr sinN'Z

(A.51)
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M 2
M4

1+/.m L + pm

L+Pm L+ mr2
2 3

2x2

(A.49)

M2 = 2xN

(A.50)

M4 =

pm sinz sinlzA

sym

NxN



and stiffness matrices are

Cl

C3

C2

C4
and K= K13

K3

where

Cl 0 2 inm 1
0 2 #m' J

2 jLm sin rtr

2 Lmr x sin t7r

2 #m Nx sin NNr

2 #mn Nx sin Nrr

2 #m sin 7rr

2 ltm sin Nzr

2 xN
(A.55)
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K2

K4 (A.52)

2x2
(A.53)

C2=[ Nx2

C3

(A.54)

Similarly, the damping



2 MmuSnfinl7cCOSss

+2Cx

2/Im2nsiflN7 cosFzr

2timNrSifz'cosN7r~ r

2#jmNxNsinN1zcosNar
+2Cx

AI11 (N,N) 12 (N,N)

where modal damping has been added to the fourth damping matrix.

The stiffness matrices are

-pMm (,)2 sinz'r

-pMm (7fsinir'r

-. Lm(Nn)2 fsinNng

(A.58)

2xN

(A.59)
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C4 = NxN

(A.56)

KI = 0
0 0.

2x2

K2

(A.57)

Nx2

0 0

K3 .::
-0



K4=

A 12(1,1)- A, 12(N,1)-
mlr2sinKllr sin •rt !lm(Nizsinrr sinNrz

A 12(1 ,N)- A 12(NN)-
Itmr2sinN•z sinfrz um(N1rfsinN7rT sinNfr

N x 2 (A.60)

These matrices form the mass, stiffness, and damping matrices

that may be used to simulate the motion of the moving mass system.

The values of II, 12, 13, and 14 for the simply-supported case are

given by Eqs. (A.32)-(A.35). In order to obtain the total deflection,

the rigid body motions must be added to the beam's flexible

deformation. This analysis functioned well as a check for the

Newtonian method and for that reason has been included here. This

formulation was not used for any numerical evaluation.
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APPENDIX B

RUNGE KUTTA INTEGRATION SCHEME

SThe most important and significant problems in engineering

are formulated in mathematical terms as a function that satisfies an

equation containing the derivatives of the unknown function (Ref.

[20]). Such an equation is termed an ordinary differential equation.

The theory of differential equations dates back to the seventeenth

century with the beginnings of calculus (Ref. 121]). Solutions for

different types of differential equations were derived by such great

mathematicians as Newton, the Bernoulli brothers, and Euler. The

French mathematicians, Lagrange and Laplace, also made great

contributions toward the solutions of ordinary differential equations

(Ref. [20]).

However, there are still a number of ordinary differential

equations for which no analytical solution has been found. Instead,

numerical integration is used to solve for the function satisfying the

ordinary differential equation.

Before computers were invented, numerical integration was

hand-calculated. The most well known numerical integration scheme

is Euler's method, which can be derived by forming a Taylor Series

expansion of the ordinary differential equation. For example,

consider:
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x = (x,t)

This ordinary differential equation is the type that must be solved to

simulate the motion of the flexible-beam/moving-mass system.

A Taylor series expansion of Eq. (B.1) leads to

Xk+ 1 = Xk + Fk At + H.O.T (B.2)

where the subscript indicates the time level:

xk: x at time t

xzr. : x at time t + At

Fk: Function evaluated at xk and t

Equation (B.2) is rearranged to obtain the forward Euler

method of numerical integration.

Fk = Xk+1 - Xk

(B.3)

Because only first-order terms are retained, this method is termed

first-order accurate. The title "Nth-order accurate" implies that the

accuracy is proportional to the nth order of the time step, Atn.

Using hand calculations, Eq. (B.3) can be iterated. Because it is
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first-order accurate, however, many iterations are needed to

converge the method to the correct answer. Therefore, throughout

the ages, more advanced numerical integration schemes have been

developed. These new methods are more complicated and tend to

have a higher order of accuracy.

It would not be practical to employ these more advanced

methods by hand; but, using a computer they can be implemented

very easily. As computing power increased, more and more

numerical integration schemes were developed. Three of these

methods are discussed: the step-by-step, the predictor corrector, and

the alternating direction implicit methods.

The step-by-step method examines the function at

intermediate time steps. These intermediate values are weighted

and combined to obtain the appropriate answer. The accuracy of the

step-by-step method increases as the number of intermediate steps

used increases. Methods of this type are known as explicit schemes

because they use the value at a previous time frame to determine

the value at the current time.

Conversely, an implicit scheme uses the value at the current

time to predict the value at a future time. The combination of an

implicit and an explicit scheme is used to form a predictor-corrector

method. An implicit scheme is used to predict the future value and
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then an explicit scheme is used to correct this predicted value (Ref.

[22]).

The alternating-direction implicit schemes are variations on the

finite-element method. Unlike the first two methods, this scheme

works best on a mesh of elements rather than on a string of nodal

points. This type of numerical integration is only practical for two-

dimensional (or three) problems. For half of the time step, a sweep

is made in one direction, i.e., x; for the second half of the time step, a

sweep is made in the other direction, i.e., y (Ref. [22]).

As well as the three categories discussed here, there are dozens

of numerical integration schemes. These three were chosen to

provide an overview of the different integration methods available.

However, to simulate the motion of the flexible-beam/moving-mass

system, a step-by-step integration scheme, a Runge Kutta integration

scheme, was chosen.

Four intermediate steps were used so the scheme would be

fourth-order accurate. The fourth-order Runge Kutta integration

scheme for the type of ordinary differential equation shown in Eq.

(B.1) is (Ref. [19]):

x k+1 -Xk + l(bl + 2b2 + 2b 3 + b4)
6 (B.4)
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where

bl = At Fk(xk, tk) (B.5)

b2 = At Fk Xk + bi , tk + IAt)1 2 2I (B.6)

b3 = At Fk Xk + b2 , tk + At (B.7)
\ 2 2 I (B.7)

b4 = At Fk (xk + b2 , tk + At) (B.8)

This integration scheme was also used to numerically integrate

the nondimensional integrals for the free-free mode shapes. The

values were then used to formulate the constant mass, damping, and

stiffness matrices, the values of which are shown in Appendix C.

For numerical stability, the time step used in the integrations

was smaller than one tenth of the shortest period for each system. If

there are many modes retained, the shortest period can become very

small. For computational efficiency only the first three flexible

modes were retained for each system.
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APPENDIX C

NUMERICAL VALUES

For clarity, the spatial derivatives of the shape functions, linear

and cubic, used in the discrete formulation were kept in their

symbolic form. The constant mass, damping, and stiffness matrices

were also left in an unexpanded form because the nondimensional

integrals needed to form these matrices were only obtained as

numerical values as a result of a numerical integration scheme. This

appendix presents the numerical values of these matrices and

develops the appropriate derivatives of the shape functions with

respect to the weighting function ý.

C.1 NUMERICAL VALUES FOR THE CONSTANT MATRICES

The mode shapes used to model the free-free beam consisted

of trigonometric and hyperbolic trigonometric functions. Due to the

complexity of these mode shapes, the values of the nondimensional

integrals needed to form the constant mass, damping, and stiffness

matrices were determined by using the Runge Kutta integration

scheme outlined in Appendix B.

As a refresher, the mode shapes used to model the free-free

beam are rewritten:
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(C.1)

02=x- 1/2 (C.2)

bi = cos f3ix+ cosh Fix - ai (sin fi x+ sinh Fix- 3 < i <N (C.3)

where, as before

L (C.4)

The numerical values of the parameters Pi and ai are shown in

Table C-1 for the first three flexible modes (Ref. [17]).

Table C-1. Numerical Values of Parameters used for

Free-Free Mode Shapes.

The mode shapes defined by the parameters in Table C-1 were

substituted into equations defining the nondimensional integrals, Eqs.

(3.15) and (3.16). The numerical integration scheme was then used

to determine the value of these integrals.

18A

Mode Number pt at

1 4.730004074 0.98250221

2 7.85320462 1.00077731

3 10.99560783 0.99996645

01 = I



The integrals are needed to form the constant matrices that

define the dynamics of the flexible structure. The symbolic form of

the matrices were given by Eqs. (3.33), (3.37), and (3.38). They are

rewritten here for convenience

[Mo]i,i = llii)

[Co]i,i = 2 C ý/ I (i,i) 12 (i) (C.6)

[Ko]ioi = A 2(i,i) (C.7)

The numerical values for the constant mass, damping, and

stiffness matrices are shown for the first five modes. These modes

correspond to rigid body translation, rigid body rotation, and the first

three flexible modes, respectively. The matrices are:

[Mo] =

1/12

1 (C.8)

[Co] = 2 C' I 22.373

61.672

120.903-
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[Ko] =A.
0

500.56

3804.53

14,617.63
(C.10)

The time-varying components, due to the dynamics of the

moving mass, are added to these matrices. The resulting matrices

are used to simulate the motion of the entire system.

C.2 THE SPATIAL DERIVATIVES OF THE SHAPE FUNCTIONS

In the discrete formulation detailed in Section 3.2, the spatial

derivatives of the shape functions were kept in their symbolic form.

In this appendix, the required derivatives are obtained. Both shape

functions, linear and cubic, are examined. The spatial derivatives are

with respect to the weighting function ý, which was defined by Eq.

(3.85). Both the first and second spatial derivatives are evaluated.

Linear Shape Function

The linear shape function was defined by Eq. (3.87) and is

rewritten here for convenience:
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V1 = (1 - ý) Vi + ý Vi+l (C.11)

where Vi and Vi+l are constant vectors that select the appropriate

nodal values.

The first spatial derivative, with respect to c, of Vi is

Vl 1 - Vi+1 - Vi (C.12)

Because V1 is linear with respect to the weighting function, the

second spatial derivative is zero. In the formulation, an impulse

force was used to artificially add the effects of the missing

derivative. To obtain a non-zero second derivative, a cubic shape

function was formed.

Cubic Shape Function

The cubic shape function was defined in Eq. (3.92) and is

rewritten here for convenience:

V3=(1 -3 2 + 2ý3) Vi+(5 -2 2 +3)l Vi+1

+(3 42 -2 3) Vi+2 + (2 V i+ 3  (C.13)

where the Vi+2 and the Vi+3 vectors are constant vectors that serve a

similar purpose to Vi and Vi+l.
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The first and second spatial derivatives of Eq. (C.13) are

V3e = (-6 + 6 2) Vi + (1 - 4 + 3 2)1 Vi+l

+(6• 6 2) Vi+2+(2ý+ 3 ý2) 1-Vi 3+v- -gi+ 3  (C.14)

V3 = (-6 + 12 ) V + (-4 + 6 ) Vi+1
+(6 - 12 4) Vi+2 + (2 + 6 4) Vi+3 (C.15)

As shown by Eq. (C.15), the second derivative of V3 is not only

continuous but linear with respect to 4.
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APPENDIX D

DESCRIPTION OF COMPUTER CODE

Appendix D presents a general description of the computer

code written to simulate the motion of the flexible-beam/moving-

mass system. Five different systems were simulated: continuous-

fixed, continuous-free, discrete-fixed, discrete-free, and discrete-

multipoint-of-contact. Each simulation follows the same general

format: the general procedure used in creating the simulations is

explained, the differences between the systems examined are

discussed, and as an example, a listing of the code written to simulate

the discrete free system is presented.

The code was written using PRO-MATLAB (Ref. [23]), which is a

product of The MathWorks, Inc. MATLAB is a high-performance

interactive software package. It is designed for scientific and

engineering numeric computation. In MATLAB, the problem

solutions are expressed almost exactly as they are written

mathematically. The simplicity of programming in PRO-MATLAB is

having a matrix defined as a basic data element that does not require

dimensioning (Ref. [23]). The simulations were performed on a

UNIX-based SUN SPARCstation 2.

The purpose of the code was to numerically integrate the

dynamic equations describing the motion of the flexible-
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beam/moving-mass system. The parameters needed to describe the

physical properties of the system are A, 1m, and Mg, all of which were

described in detail in Chapter 3. The values of these parameters

used in the simulations were listed in Chapter 4.

A flowchart for the program is shown in Figure D-1. The

required inputs are: the initial state vector xo, the initial time to, the

final time tf, and the nondimensional parameters. The desired

output is the time history of the beam's displacement.

The constant components of the mass, damping, stiffness, and

force matrices are determined. Because these are independent of

time, they can be calculated outside of the numerical integration

loop. After these constant matrices are known, a subroutine that

performs the fourth-order Runge Kutta integration scheme is called,

which, in turn, calls a dynamic subroutine to set up the matrix

equation describing the system's dynamics.

The dynamic subroutine first formulates the time-varying

components of the matrices. These components are then added to

the constant matrices that were developed earlier. The total mass,

damping, stiffness,- and force matrices are combined into the form

shown in Eq. (3.32).
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o = Initial time
f = Final time

Figure D-1. Flow chart for numerical simulations.
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The output of this dynamic subroutine is the derivative of the

state vector x. This vector is sent back to the Runge Kutta integration

routine for numerical integration. This process, Runge Kutta-

dynamic-Runge Kutta, is repeated until the entire time history of the

state vector x is known. Since a fourth-order Runge Kutta integration

scheme is used, the dynamic subroutine is called four times for each

time step.

The state vector contains the time history of the modal

displacements and velocities. The modal displacements are

transformed to the natural coordinates of the beam using Eq. (3.11).

The final result is the time history of the beam's displacement.

The procedure outlined by the flowchart shown in Figure D-1

represents the general format of the code. The following paragraphs

discuss the variations used to formulate each system.

D.1 CONTINUOUS FORMULATIONS

The two continuous formulations differ only by the mode

shapes used to describe the beam's deformation. This difference

effects the constant mass, damping, and stiffness matrices as these

matrices are functions of the nondimensional integrals and the

nondimensional frequencies, which themselves are a function of the

mode shapes.
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For the simply-supported beam, the frequencies and the

nondimensional integrals are determined analytically. In the code,

they appear in their symbolic form. For the free-free beam, the

nondimensional frequencies are inputed by hand according to the

values dictated in Table C-1. The nondimenisonal integrals are

evaluated using a Runge Kutta integration scheme.

Once these matrices are developed, the two continuous

formulations are almost identical and both follow the general

procedure described above.

D.2 DISCRETE FORMULATIONS

The discrete formulations are a little more involved. First, the

finite element mass and stiffness matrices are determined. Using

these matrices, the mode shapes and the nondimensional frequencies

of the system are determined. If the beam is free-free, the matrices

are not altered before the eigenvalue decomposition. For the simply-

supported beam, the boundary conditions at the endpoints must be

implemented before the eigenvalue decomposition can take place.

These mode shapes and frequencies are next truncated to

contain only the number of modes used in the simulation. These
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truncated values are used to form the constant discrete stiffness and

damping matrices.

To formulate the time-varying components, it is necessary to

develop the shaping functions, which are evaluated at every time

step. A different subroutine was written for the both the linear and

the cubic shape functions. Unlike the linear shaping function, the

cubic shaping function is also altered if there is more than one point

of contact.

The shape functions are used to formulate the time-varying

components of the matrices. Once the matrices are known, the same

procedure outlined above is followed.

D.3 LISTING OF CODES

A listing of the code used to solve the discrete free single point

of contact system is presented. The cubic shape function is used to

model the displacements
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function [q,t] = mload(n,m,us,ug,um)

% This function will simulate the motion

% of the beam due to the moving load.

% The inputs to the system are

% n = number of finite elements

% m = number of modes retatined

% us = nondimensional stiffness parameter

% ug = nondimensional load parameter

% um = nondimensional mass ratio

% It will first set up all the system

% properties.

% Then it will use this property to

% create all the variables that are

% not dependent on time.

% It will next call integrate which will

% numerically integrate the state vector

% In order to do this the initial state

% vector must be set up

%
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% After the numerical integration of

% the state vector, the modes will be transformed

% to the physical non-dimensional deflection

% at the midspan of the beam.

% Set up the variables that are not dependent on time

% Compute the eigenvalues, discrete m and k matrices

[phi,w,k,mt] = pinnedf3(n);

% Normalize the eigevector wrt to m

phin = normeig(phi,mt,n);

% Reduce to the number of modes retained

[phir,wr] = reduce3(phin,w,n,m);

% Caluculate constant compontents of K and C

[c,kr] = stiffdamp(wr,m,us);

% Now set up variables needed for integrate
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% Time

tO = 0.0;

tf = 0.010;

delt := .001;

% Inital state vector

[lam,sig] = coef(1);

qO = qint(lam,sig,n);

x0 = xint(phir,q0);

j=l+m;

while j < 2*m + 1

x0(j,1) = 0.0;

j=j+1;

end

% Call integrate

[tt,x] = integrate(t0,tf,delt,xO,n,m,um,ug,phir,c,kr);

% Next do a transformation back to

% physical coordinates

193



% Call trans

x=x';

qq = trans(phir,x,m);

skip = 10;

i=l;

m=l;

[n,j] = size(tt);

while i < j+l

q(:,m) = qq(:,i);

t(m) = tt(i);

i=i+skip;

m=m+1;

end
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function [x,y,kk,mm] = pinned3f(n)

% This function will calculate

% the mass and stiffness matrices

% for the free free beam.

% It will also calculate the eigenvalues and eignevectors

% of the pinned - pinned

% The program is broken up into two parts

% Part one sets up the global mass matrix

% and the global stiffness matrix

% Part two sets up the eigenvalue problem and solves

% for the natural frequencies of the beam. The boundary

% conditions (if there are any) would also taken care of in this part.

% INPUTS

% n represents the number of elements to be used

% OUTPUTS

% y represents the matrix of eigenvvalues that represent
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% the frequencies of the beam

% x represents the matrix of eigenvectors that will

% will be used as the shape functions during modal

% analysis

% But First .....

% Certain variables are declared

% LENGTH OF BEAM

1=1.0;

% DENSITY OF BEAM

p=l;

% MODULUS OF ELASTICITY

e=l;

% WIDTH OF BEAM

w=1;

% DEPTH OF BEAM

d= 1;
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% AREA MOMENT OF INERTIA OF BEAM

im= 1;

% The length of one element is

le = 1/n;

% PART ONE

kll = [12 6*le

6*le 4*le^2];

k12 = [-12 6*le

-6*le 2*le^2];

k21 = [-12 -6*le

6*le 2*leA2];

k22 =: [12 -6*le

-6*le 4*1eA2];

mll = [156 22*le

22*1e 4*leA2];

m12 = [54 -13*le

13*le -3*1e^2];

m21 = [54 13*le

-13*le -3*1e^2];
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m22 = [156

-22*"1e 4*l"e^2];

% Assemble the global stiffness matrix and mass matrix

k(1:2,1:2)=k1 1;

k(2*n+1:2*n+2,2*n+1:2*n+2)=k22;

k(2*n+1:2*n+2,2*n-1 :2*n)=k21;

k(1:2,3:4)=k12;

m(1:2,1:2)=ml 1;

m(2*n+1:2*n+2,2*n+1:2*n+2)=m22;

m(2*n+1:2*n+2,2*n- 1:2*n)=m21;

m(1:2,3:4)=m12;

i=2;

while i <= ((2*n)/2)

k(2*i- 1:2*i,2*i-3:2*i-2)=k21;

k(2*i-1:2*i,2*i- 1:2*i)=kl 1 +k22;

k(2*i-1:2*i,2*i+ 1:2*i+2)=kl2;

m(2*i- 1:2*i,2*i-3:2*i-2)=m21;

m(2*i-1:2"i,2"i-1:2*i)=m11+m22;

m(2*i-1:2*i,2*i+1:2*i+2)=m 12;

i=i+1;
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end

kk=e*im*k/leA3;

mm = (m*le)/420;

% PART TWO

% Next do an eigenvalue decomposition

[xx,y] = eig(kk,mm);

y = diag(y);

% Next diagonalize the eigenvector matrix

po xx( n

plo = xx(:,2*n+2);

p2o = xx(:,2*n+2);

alpha = 1/sqrt(plo'*mm*plo);

pin == alpha*plo;

p2n = p2o - (p2o'*mm*pln)*pln;

x = [xx(:,1:2*n) p1n p2n];
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function phin = normeig(phi,mt,n)

% This function will normalize the

% eigenvector matrix so

% phi'*mt*phi = I

i=l;

while i < 2*n+3

alpha = sqrt(phi(:,i).'*mt*phi(:,i));

phin(:,i) = phi(:,i)./alpha;

i=i+l;

end
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function [phir,yr] = reduce3(phi,y,n,m)

% This function will reduce the

% matrix of eigenvectors to the

% number of modes that are

% actually wanted in the simulation

% versus the number of degrees of

% freedom in the model

% The inputs are

% phi = the normalized matrix of eigenvectol

% y = the eigenvalues

% n = number of elements used

% m = number of modes wanted

% The output is

% phir = the normalizes and reduced eigenv

% yr = the reduced eigenvalue matrix

rs

ector matrix

diff =: 2*n-m+3;

phir=phi(:,diff:2 *n+2);

yr=y(diff:2 *n+2);
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function [c,kr] = stiffdamp(yr,m,us)

% This function will return

% the stiffness and damping

% matrices to be used in the

% state vector.

% Its inputs are

% yr = the reduced eigenvalue

% matrix

% m = the number of reduced

% modes

% us = nondimensional stiffness parameter

j=1;

chi = 0.01;

while j < m + 1

c(j,j) = 2*chi*sqrt(yr(j)*us);

kr(j,j) = yr(j)*us;

j=j+1;

end
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function [tout,xout] =

integrate(tO,tf, delt,x0,n,m,um,ug,phir,c,kr)

% This function will numerically integrate

% the state vector to simulate the motion

% of the model

% The inputs are

% tO = inital time

% tf = final time

% xO = inital state vector

% delt = delta t

% All the rest are

% model parameters which have

% previosly been defined

% The output is

% tout = the column vector containing all the times used

% xout = the final state vector

% First initialize and set the tolerance

flag==(tf-t0)/delt;

flag2 = 2*m;

xout = zeros(flag,flag2);
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tout = zeros(1,flag);

xout(1,1:flag2) = xO';

tout(l) = tO;

xk = xO;

t = tO;

tol = .le-06;

% Next set up the loop

count=2;

while t < tf

xd1 = eqn3(t,xk,n,m,um,ug,phir,c,kr);

bl = delt*xdl;

tt = t + delt*0.5;

xt = xk + 0.5*bl;

xd2 = eqn3(tt,xt,n,m,um,ug,phir,c,kr);

b2 = delt*xd2;

xt = xk + 0.5*b2;
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xd3 = eqn3(tt,xt,n,m,um,ug,phir,c,kr);

b3 = delt*xd3;

tt = t + delt;

xt = xk + b3;

xd4 = eqn3(tt,xt,n,m,um,ug,phir,c,kr);

b4 = delt*xd4;

x = xk + (1/6)*(bl + 2*b2 + 2*b3 + b4);

% Set up output vectors

t = t+delt;

xout(count,l:flag2) = x';

tout(count) = t;

count = count +1;

% Get ready for next iteration

xk = x;

end
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function xd = eqn3(t,x,n,m,um,ug,phir,c,kr)

% This function is called by

% integrate

% It sets up the state vector and its derivatives

% The inputs are

% t = time

% x = state vector at time t

% The rest of parameters have been defined previously.

% First set up the load matrices

% which are dependent on time

if t >=1.0

um = 0.0;

ug = 0.0;

end

% Call loadf3

[v,vd,vdd] = loadf3(t,n);

[d,e] = size(v);

if d == 1
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v=v';

end

[g,h] = size(vd);

if g ==1

vd=vd';

end

% Call loadn3

[vn,vdn,vddn] = loadn3(v,vd,vdd,phir,t);

% Next set up the mass, stiffness, damping and force matrices

ma = mass(m,um,vn,t);

da = damp(c,um,vn,vdn);

ka = stiff(kr,um,vn,vddn);

% fa = force(n,ug,t,phir);

% Set up the state vector

% Without r and theta, Simply Supported Case
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%mn = ma(3:2+m,3:2+m);

%dn = da(3:2+m,3:2+m);

%kn = ka(3:2+m,3:2+m);

%fn = fa(3:2+m,1);

%xd(3:2+m,:) = x(5+m:2*(2+m),:);

%xd(5+m:2*(2+m),:) = inv(mn)*(fn - kn*x(3:2+m,:) - dn*xd(3:2+m,:));

% With r and theta, Free-Free Case

xd(l:m,:) = x(l+m:2*m,:);

% With Forcing term

%xd(l+m:2*m,:) = inv(ma)*(fa - ka*x(l:m,:) - da*xd(l:m,:));

%Without Forcing term

xd(l+m:2*m,:) = inv(ma)*(- ka*x(1:m,:) - da*xd(1:m,:));
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function [v,vd,vdd] = loadf3(t,n)

% This function will

% v, vd, vdd, which

% load on the neigbor

% function of time sil

% The inputs are

% t is time

% n is number ol

% for the modeli

% The outputs are

% v cubic weighti

% vd first derivativ

% vdd second deriv

% Evaluate i, and alp

% All of which are a

% time

i = fix(t*n) + 1;

alpha = (t*n - i + 1);

return the vectors

weights the effect of the moving

ing nodes. It is a

nce the load is moving

elements used

ng

ng function

e of v

ative of v

ha

function of
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% Set up a dummy array of zeros

S= er)

vl = zeros(1,2*n+2);

v2 = zeros(1,2*n+2);

v3 = zeros(1,2*n+2);

v4 = zeros(1,2*n+2);

% Determine v for n less than the

% number of elements

if i < n+1

v1(1,2*i-1) = 1;

v2(1,2*i) = 1;

v3(1,2*i+1) = 1;

v4(1,2*i+2) = 1;

end

% Correct last value of

% v2 when appriopriate

if i == n+l

vl(1,2*i-1) = 1;

v2(1,2*i) = 1;

end
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va = (1-3*alphaA2 + 2*alphaA3)*vl + (alpha - 2*alphaA2 +

alpha^3)*(1/n)*v2;

vb = (3*alpha^2 - 2*alphaA3)*v3 + (-alphaA2 + alphaA3)*(l/n)*v4;

v = va + vb;

vc -= (-6*alpha + 6*alphaA2)*vl + (1-4*alpha+3*alphaA2)*(1/n)*v2;

ve = (6*alpha - 6*alphaA2)*v3 + (-2*alpha + 3*alphaA2)*(1/n)*v4;

vd = (vc + ve)*n;

vce = (-6 + 12*alpha)*vl + (-4+6*alpha)*(1/n)*v2;

vccc = (6 - 12*alpha)*v3 + (-2 + 6*alpha)*(1/n)*v4;

vdd = (vcc + vccc)*(nA2);

v = v';

vd = vd';

vdd = vdd';
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function [vn,vdn,vddn] = loadn(v,vd,vdd,phir,t)

This function will calculate

vn = phir'*v

vdn = phir'*vd

vddn = phir'*vdd

% phir has already been reduced to the appropriate

% amount of modes desired.

vn = phir'*v;

vdn = vd'*phir;

vddn = vdd'*phir;
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function ma = mass(m,um,vn,t)

% This function will calculate the m

% The inputs are

% m = number of modes used

% um = non dimensional mass pai

% vn = load vector

% t = non dimensional time

ma = eye(m,m) + um*vn*vn';

ass matrix

ameter
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function da = damp(c,um,vn,vdn)

% This function will calculate the

% damping matrix

% The inputs are

% c = diagonal structual damping matrix

% um = non dimensional mass parameter

% vn = load vector

% vdn = derivative of load vector

da = c + 2*um*vn*vdn;
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function ka = stiff(kr,um,vn,vddn);

% This function will calculate the stiffess

% matrix

% Its inputs are

% kr = constant component of k

% um = mass ratio

% load vectors vn and vddn

fy = um*vn*vddn;

ka = kr + fy;
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function x = trans(phir,xx,m)

% This function will transform the

% modal displacements into natural

% displacements

x = phir*xx(1:m,:);

/1
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