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Abstract

Signal processing methods are developed to estimate the three dimensional structure
of a specimen from images obtained with a light microscope equipped with Nomarski
Differential Interference Contrast (DIC) optics. Physical processes underlying image
formation are modelled as a linear system that converts refractive index to light
intensity. These processes include diffraction by a finite aperture and differential
interference.

Methods for empirically determining the signal processing properties of a DIC
microscope are developed. Images of a polystyrene microsphere are used to estimate
the three-dimensional impulse response (point spread function) of the microscope.
Noise and other degradations of measured images are also characterized. l\1easured
signal processing properties of the microscope are shown to differ in significant ways
from the theory.

Three-dimensional intensity patterns are obtained from optical sections, i.e. from
images taken at a sequence of focal planes. However, images from a DIC microscope
are difficult to interpret; the intensity patterns exhibit a shadowing effect and are
blurred. Deconvolution methods are developed to estimate the underlying structure
of the specimen and thereby simplify interpretation. These methods are applied to
the tectorial membrane (a structure in the inner ear) of the alligator lizard.

Thesis Supervisor: Dennis M. Freeman
Title: Research Scientist
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Chapter 1

Introduction

Background
The tectorial membrane (TM) is an inner ear structure that may have an important
role in the micromechanics of hearing. Primary sensory receptors in hearing are hair
bundles located in the inner ear. The tectorial membrane is a transparent, gelatinous
structure that comes in direct contact with hair bundles. This location suggests
the TM may have an important role in the mechanics of hair bundle displacement.
However, because the properties of the TM are not well understood, its role is not
well known.

Studying the properties of the TM is difficult. The first complication arises from
the goal of studying the TM in its normal chemical environment. Any changes in the
chemical environment may cause a change the the TM's structure[19, 4]. The second
complicating factor is the transparency of the TM. Staining and serial sectioning are
often used to study transparent biological tissues. This method would certainly allow
observations of the TM's transparent structure, but it would not maintain the TM's
normal chemical environment. Scanning electron microscopy techniques can also be
used for viewing transparent specimens. However, the specimen is typically prepared
by dehydration and coated with a conductive material. This preparation does not
meet the goal of maintaining the TM's normal chemical environment.

Optics
There are several advantages of using light microscopy when studying biological spec-
imens. The use of a light microscope allows observations of a specimen while it is
immersed in a solution that simulates its normal chemical environment. Also, trans-
mission light microscopy optically sections transparent specimens. Optical sectioning
is best understood by an analogy to physical sectioning. When we physically section
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a specimen, we cut it into slices and view each slice individually. We observe struc-
tures in three dimensions, one plane at a time. Similarly, optical sectioning refers to
viewing only the in-focus plane through a microscope. When the focus is changed
by adjusting the microscope's focus-control knob, we view a different plane through
the specimen. The light through a specimen in a transmission light microscope is
focused onto one plane at a time, imaging each "section" of the specimen individu-
ally without cutting the specimen into physical sections. Therefore, the microscope
can be thought of as a three dimensional (3D) imaging device which translates a 3D
specimen into a 3D distribution of intensity.

The optical sectioning property of the microscope is not perfect. Diffraction blurs
information from neighboring planes into the in-focus plane. Diffraction also causes
blurring within the in-focus plane.

Interference methods such as Nomarski Differential Interference Contrast (DIC )
Microscopy can be employed to facilitate viewing transparent specimens under a
light microscope. DIC optics split light rays into two rays that pass through the
specimen at adjacent locations. Phase differences between rays are translated into
intensities. Therefore, the intensity from a DIC microscope is a function of refractive
index gradients in the specimen.

Signal Processing
In the past the microscope has been used primarily for qualitative studies. Recently,
with the use of computers and video cameras, the microscope can be used as a quanti-
tative measurement device; light intensity from the specimen is digitally recorded on
a computer. The goal of this project is to relate measurements of the 3D distribution
of intensity to the properties of the specimen. To take advantage of well-developed
signal-processing methods, we interpret the specimen and its corresponding intensity
measurements as three-dimensional (3D) signals. The 3D specimen signal is converted
by a system (the DIC microscope) to a 3D intensity signal. By modelling the physical
processes of diffraction and interference as linear system transformations, we charac-
terize the effect of the system. We use signal processing methods to determine an
estimate of the specimen based on observations of the intensities. Specifically, Weiner
deconvolution is performed. The Weiner deconvolution filter inverts the effect of the
system at spatial frequencies where the signal-to-noise power in the measurement is
high.

The first test of the methods involve simulated microscope images of spherical
objects. We then show results for spherical objects imaged with our microscope.
Finally, we show applications of these methods to the tectorial membrane (TM).
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Chapter 2

Signal Processing Model of the
Microscope

To quantitatively analyze the images obtained from our microscope we first investigate
the physical principles leading to the image formation. We introduce signal processing
transformations to model these principles and combine these transformations to form
a signal processing model of a DIC microscope.

2.1 Diffraction Point Spread Function
We first consider the microscope image produced by an object of infinitesimal size,
i.e. a point source. Ideally, the image of this point source would simply be a point.
In this ideal imaging system, even objects separated by infinitesimal distances would
be resolved. Of course, this is not the case in practice. The optical elements in a
microscope have finite apertures that cause diffraction. This finite aperture diffraction
blurs the image of a point source. We refer to this blurred image of a point source as
the diffraction point spread function (PSF) of the microscope.

Compound microscopes consist of a complex collection of lenses and apertures.
A theoretical computation of the effective diffraction PSF should take into account
the contribution from each optical component. However, the objective lens is usually
the greatest source of blurring and the effects of other sources are generally small in
comparison [10]. Thus we model the diffraction PSF of the microscope by that of
a single lens that focuses the light from a specimen. Even with the reduction to a
single lens, there are several effects to be considered. The light distribution at the
focus is affected not only by the extent of the aperture, but also by lens imperfections
such as astigmatism, coma, chromatic aberrations and spherical aberrations. Modern
microscope optics are generally well corrected and the finite aperture of the objective
lens is usually the limiting factor. When this is the case, we say the microscope image
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is diffraction limited. The problem then reduces to examining the theoretical point
spread function resulting when light incident on an aperture converges to a focal
point.

It is convenient to use principles of Fourier optics in order to understand this
aperture problem. With some approximations (See [8]), diffraction causes the light
distribution in the focal plane of the lens to be the Fourier transform of the incident
light on the lens. If the lens has infinite extent and the incident light is a uniform
plane wave, the light in the focal plane will be a single point. This is equivalent
to saying that the Fourier transform of a constant is an impulse function. However
since no lens is infinite in extent, the resulting light distribution will be the Fourier
transform of the aperture. For the case of a circular aperture, the light amplitude
in the focal plane is a Bessel function. The intensity of this light in the focal plane
is the familiar Airy pattern [10]. Because the finite aperture causes one point to be
blurred into an Airy pattern in the focal plane, the resolution of an imaging system
such as the microscope is fundamentally limited.

In addition to blurring a point into an Airy disk in the focal plane, diffraction
also causes blurring into planes above and below the focal plane. We can characterize
the three dimensional light distribution around the focus of a lens by evaluating the
Huygens-Fresnel diffraction integral (See [3]). The three dimensional distribution
of the light intensity around the focus is the diffraction PSF. Define a reference
coordinate frame so that the x-y plane is parallel to the microscope stage and z is
parallel to the microscope's optical axis. The origin is located at the focus. Let IX,
IY, and IZ denote the position coordinates in this reference frame. The finite aperture
diffraction PSF ha(,X, IY, IZ) can be expressed [3] as

(2.1 )

where Un( U, v) is the Lommel function and u, v can be determined from IX, IY' and
IZ uSIng

and

( )

227r a
U = T 7 IZ

_ 27r (a) V 2 2V - T 7 IX +,Y .

(2.2)

(2.3)

The symbol a is the aperture radius, f is the distance from the aperture to the focus,
A is the wavelength, and 10is the intensity at the focal point. The Lommel function
can be evaluated as

(2.4)
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Figure 2-1: The theoretical diffraction point spread function ha( IX, IY,'Yz)' Equa-
tion 2.1 has been evaluated for a = 3.5 mm and f = 4.6 mm, which are typical values
for a Zeiss WL microscope with a 0.75 NA, 1.6 mm working distance, 40X objective.
The left panel shows the resulting dependence of intensity on distance along x in the
plane of the stage. This dependence is the same along any line in this plane that
passes through the origin, i.e. the PSF is cylindrically symmetric. The right panel
shows the dependence on distance along the optical axis (z).

where In( v) represents a Bessel function of the first kind.
Figure 2-1 illustrates the PSF of Equation 2.1 evaluated for parameters appro-

priate for a long working distance (1.6mm), water immersion objective (Zeiss 40X,
NA = 0.75) . Notice that the PSF is not spherically symmetric; blurring along the
optical axis is much greater than blurring perpendicular to the optical axis. The
PSF is cylindrically symmetric about the optical axis. Furthermore, there is a mirror
symmetry about the plane IZ = O.

This three dimensional PSF complicates quantitative interpretation of microscope
images. Consider that even a simple spherical specimen appears as a blurred ellipsoid.
To interpret this blurred ellipsoid as a sphere, one must explicitly account for the three
dimensional PSF.
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2.2 Operating Principles of DIe Microscopy
Many biological tissues are transparent and therefore difficult to study with ordinary
optical methods. However, interference methods can be employed to convert differ-
ences in refractive index that are present in the specimen into differences in intensities.
Nomarski Differential Interference Contrast (DIC ) microscopy is one such interfer-
ence method. This section provides the background necessary for a quantitative
understanding of DIC . Further details about the operation of the DIC microscope
are available elsewhere [12, 16, 15, 6, 9].

In DIC microscopy the incoming light is split into two coherent waves. Rays from
these waves are separated by a small distance in the plane of the microscope stage.
After passing through the specimen the two waves are recombined. The waves then
interfere so that the resulting intensity is a function of the phase difference between the
waves. Therefore differences in the index of refraction between two neighboring points
in the specimen will produce a difference in the intensity. It is in this manner that
DIC enhances the visibility of the edges of a transparent specimen. To accomplish
the task of ray splitting and interference a DIC microscope must be equipped with
special optics. In a compound microscope, light from a condenser passes through
the specimen and is focused by an objective to form an image. The optical train
of a DIC microscope includes additional components both before the condenser and
after the objective. As illustrated in Figure 2-3, these components include a pair of
polarizers and a pair of prisms. The ray splitting and recombination is the function
of the prisms, and creating conditions necessary for interference is the function of
the polarizers. We first describe the physical principles necessary to understand each
components' role in ray splitting, recombination and interference. We then use these
principles to trace the path and phase of light as it passes through each element of
the microscope.

2.2.1 Physical Principles

Birefringence

To understand how a ray is split by a prism in a DIC microscope, the property of
birefringence must be examined. In a uniaxial birefringent crystal, relations between
the electric field vector E and the electric displacement vector D depend on direction.
For a uniaxial birefringent crystal, D = filE if E is parallel to the crystal axis and D =
f.lE if E is perpendicular to the crystal axis. As a result of this anisotropy, an incident
wave causes two waves to propagate inside the crystal 1. The refractive indices and the
phase velocities for each of the waves are different. These waves are usually referred to

IThis result and the properties of the two waves can be derived using Maxwell's equations (See
[3]).
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as the o-wave and e-wave. Because of the permittivity direction dependence, the speed
and refractive index of one these waves (e-wave) is dependent on the propagation
direction with respect to the crystal axis. To understand the operating principles of
DIC , the case in which the propagation direction is perpendicular to the crystal axis
is important. For this special case, the function of a uniaxial crystal is especially
simple. If E is parallel to the crystal axis, the phase velocity is vII and the refractive
index is nil' However, if E is perpendicular to the crystal axis, the phase velocity is
v1. and the refractive index is n 1. •

The Wollaston Prism

A Wollaston prism is constructed from two uniaxial birefringent crystals cut at an
angle a and cemented together (Figure 2-2). It is convenient to discuss the prism in
a coordinate system with basis vectors s, t, and z aligned with the crystal axes. In a
DIC microscope this coordinate system is rotated 45° counterclockwise about z with
respect to the reference coordinate system which has the basis vectors x, Y, and z.
That is, the prism coordinate axes s, t, and z, are related to the reference coordinate
axes x, Y, and z as follows

[S] 1[ J2 J2 O][X]
: = 2 -;(2 v: ~ ;.

The prism causes light that is originally traveling in the z direction to be refracted
about the t axis. However the amount of refraction depends on the orientation of the
electric field vector. If the electric field vector of the incident ray is in the s direction,
then the refractive index changes from nil to n1. as the ray passes between the two
crystals. However, if the electric field vector of the incident ray is in the t direction,
then the index of refraction changes from n1. to nil as the ray passes between the two
crystals. Additional refraction occurs as the rays exit the Wollaston prism.

If the electric field vector of the incident ray had components in both the sand
t directions, the net effect of the Wollaston prism is to split the ray into two rays
propagating in slightly different directions (Figure 2-3). The angular separation of
the rays is typically on the order of 0.001 radians [16]. Because the effective index of
refraction is different for each ray, the rays also differ in phase as they exit the prism.

Light through a DIe microscope passes through two Wollaston prisms:2 the com-
pensator prism, which precedes the condenser in the optical train; and the slider
prism, which follows the objective. The two prisms of a DIe microscope are oriented
so that spatial differences in phase introduced by the first prism are canceled by the
second prism. This cancellation is referred to as phase compensation (Figure 2-4).

2The DIC microscope uses a slightly different configuration called a modified Wollaston prism.
We ignore this distinction since it is not essential for understanding DIC .
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Figure 2-2: The Wollaston Prism. Cs and Ct represent uniaxial birefringent crystals
with crystal axes in the sand t directions respectively. Each crystal is wedge-shaped;
the angle 0: of the wedge is very small, but is exaggerated here for clarity. Light
passes through the Wollaston prism in the direction of z which corresponds to the
microscope's optical axis.
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Analyzer

Slider Prism

Condenser
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Entering Light

Figure 2-3: Light path through the elements of a DIC microscope. The path of a
single ray of light is illustrated as it passes through a DIC microscope. The entering
light ray passes through the polarizer and strikes the first Wollaston prism, which is
called the compensator prism. This prism splits the single entering ray into two rays
that pass through different parts of the condenser, specimen, and objective. These
two rays are recombined into a single ray by the second Wollaston prism, which is
called the slider prism. The ray then passes through a second polarizer, called the
analyzer, and emerges from the microscope.
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Figure 2-4: Phase compensation in a DIC microscope. This figure illustrates one light
ray that is parallel to, but a distance L from the optical axis of the microscope. Its
path through Cs in the slider prism is shorter than its path through Ct. However,
the reverse is true in the compensator prism. Thus phase differences resulting from
path length differences are canceled. For clarity, ray splitting (shown in Figure 2-3)
is not illustrated in this figure.
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Figure 2-5: Effect of translating the slider prism. This figure illustrates one light ray
similar to the one shown in Figure 2-4. Translation ~s of the slider prism shortens the
path through the Cs part of the slider prism by ~d and lengthens the path through
the Ct part of this prism.
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If the slider prism of a DIC microscope is translated in the s direction, spatial
differences in phase delay are still canceled (Figure 2-5). However, a spatially uniform
phase delay is introduced to all rays. In general, translations that increase the phase
delay of rays whose electric field vectors are in the t direction decrease the phase delay
of rays with electric field vectors in the s direction. A control on the microscope allows
the user to translate the slider prism. The resulting difference in phase is called phase
bias.

Because the slider prism is oriented opposite to the compensator prism, the two
rays that exit the compensator prism are recombined by the slider prism as shown in
Figure 2-3.

Interference

When light passes through a transparent specimen, its intensity is not attenuated.
However, a phase delay is introduced due to the refractive index difference of the
specimen and the surrounding media. Because light detectors (either camera or hu-
man eye) are only sensitive to light intensity, phase differences go undetected with
ordinary light microscopes.

Interference methods are employed to convert phase delays to amplitude differ-
ences. The general concept of these methods is to allow two rays to pass through
different parts of a specimen. After passing through the specimen, the rays have a
relative phase difference proportional to the refractive index differences in the spec-
imen. These phase shifted light rays are recombined so that the resultant intensity
will depend on the phase difference. For instance, if they are 1800 out of phase, the
resultant intensity will be zero and the light is said to destructively interfere. If they
are in phase they will interfere constructively for a maximum intensity. Phase differ-
ences between these values result in a range of intensities between the minimum and
maXImum.

In order for an interference method to work, the two interfering rays must be
coherent. If they are incoherent, their phase differences are random and therefore
cannot be used to indicate refractive index differences in the specimen. Sources
of illumination used for light microscopes (e.g. halogen lamps, xenon arcs, etc.)
produce light that is only weakly coherent. Such light can be understood as having
components with electric field vectors in all directions (e.g. randomly polarized), with
each component incoherent with all others.

Polarization is used in a DIC microscope to introduce the coherence necessary
for an interference system. The first polarizer eliminates components of the entering
light with electric fields oriented in all directions except one. If the orientation of a
polarizer is set 450 relative to s, i.e. the y direction, then light emerging from the
polarizer can be expressed as components in the sand t directions that are not only
equal in magnitude but also coherent with each other.
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The sand t components of the polarized light are refracted differently by the
compensator Wollaston prism and pass through different parts of the specimen. The
sand t components therefore accumulate different phase delays as they pass through
different parts of the specimen. When the components are recombined by the slider
prism, they are no longer in phase with each other. Instead of being equal at all
instants of time, the sand t components are periodically bigger and smaller than each
other. The original linearly polarized light is now elliptically polarized. The analyzer
passes light with only one polarization and thereby converts phase differences between
sand t components into amplitude modulation.

2.2.2 Light Through the DIe Microscope
We now describe the path and phase of light as it passes through each microscope
element. We decompose the light ray into component A with electric field vector EA
in the t direction and component B with ED in the s-z plane. The phase differences
between components A and B along the light path are found and Table 2.1 summarizes
the results.

Consider a light ray that is entering a DIC microscope parallel to the optical axis
of the microscope, as shown schematically in Figure 2-4. Components A and B of
the entering light are incoherent. Phase relations between EA and ED are random
(Table 2.1 top line). The first optical element is the polarizer which is set so that the
polarization direction of the emerging light is 45° with respect to the axes of both
prism crystals, i.e. the y direction. After passing through the polarizer the electric
field components EA and ED are coherent and equal in phase and magnitude;

(2.5)

(2.6)

and
Eo = IEole-iePo, (2.7)

and where lEal and cPo are constants. The random phase difference between EA and
ED before polarization is changed to a zero phase difference (See Table 2.1).

Figure 2-4 shows the path of light through the compensator prism. The prism
causes a nonuniform phase difference between components A and B because the prism
is asymmetric. Specifically from Figure 2-4, we see that the ray travels a distance
d1 in Cs and d2 in Ct. This means that the electric field components after passing
through the compensator prism are

(2.8)

(2.9)
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~ Optical Element I
llluminator random phase variations

Polarizer 0

Cs dI(kll - k1.)

Ct dI(kll - k1.) + d2(k1. - kll)

Condenser dI(kll - k1.) + d2(k1. - kll)

Specimen dI(kll - k1.) + d2(k1. - kll) +
<f;(Is, It) - <f;(IS - So, It)

Objective dI(kll - k1.Y+ d2(k1. - kll) +
<f;(IS'lt) - <f;(IS - SO,lt)

dI(kll - k1.) + d2(k1. - kll) +
Ct <f;(IS, It) - <f;(IS - So, It) +

(dl - Dt.d)(k1. - kll)

dI(k1. - kll) + d2(kll - k1.) +
dI(kll - k1.) + d2(k1. - kll) +

Cs
<f;(IS' It) - <f;(IS - So, It) +
+2Dt.d(kll - k1.)
= <f;(IS' It) - <f;(IS - So, It)
+ 2Dt.d(kll - k1.)

Analyzer <f;(IS' It) - <f;(IS - SO, It) +
2Dt.d(kll - k1.)

Table 2.1: This table tracks changes in the relative phase of EA and En as light passes
through the optical elements of the microscope. Note that kll = wnll/ C, k1. = wn1./ C,

and ifJ(Is, It) is the phase associated with light traveling through the specimen as
described by Equation 2.12.
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where
k wnll
1/=-'c

k _ wn.1..
.1..---,

c

(2.10)

(2.11 )

s' is a unit vector in the s-z plane perpendicular to the propagation direction of the
B component, w is the radian frequency of the light, and c is the speed of light in a
vacuum.

Because the refractive indices of components A and B are different in the prisms,
the components refract differently and split. Figure 2-4 does not explicitly show the
ray splitting by the compensator prism, because we assume this splitting is very small.
Figure 2-3 shows this splitting effect by greatly exaggerating the angular difference
between the rays as they emerge from the compensator prism. Typically the angular
separation is 0.001 radians [16].

The condenser focuses light rays that are angularly separated onto points that are
laterally separated along s in the specimen plane. This lateral separation, or shear,
is typically on the order of 1 Jim [16].

Consider the phase accumulated as the light passed through the specimen. We
assume a thin transparent specimen with refractive index nsC"Ys"d. Light traversal
through the specimen results in a phase delay 4J( Is, It) given by

(2.12)

where D is the specimen thickness. Using this phase delay term, we may now char-
acterize the electric field of A and B just after passing through the specimen as3

(2.13)

and
(2.14)

where So is the lateral displacement or shear of the rays in the specimen plane and
s" is a unit vector in the s-z plane perpendicular to the propagation direction of the
B component. Note that the magnitude IEol does not change since we have assumed
that the specimen is transparent.

The rays then pass through the objective. We assume that the condenser and
objective pair operate such that a ray, exiting the compensator prism a distance L

31n these equations and in subsequent equations we ignore phase terms that arise as the rays pass
between optical elements. These phase terms are common to both the A and B components and
therefore do not affect phase differences between the components. Later in this section, we show
that only phase differences are important.
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to the left of the microscope optical axis, passes through approximately the center of
the specimen plane and enters the slider prism a distance L to the right of the optical
axis as shown in Figure 2-4. That is, we illustrate the case of unity magnification in
Figure 2-4. (Similar results hold for other magnifications with appropriate modifica-
tions of the prisms.) Because the two prisms are inverted, the ray travels a distance
dl in Ct of the slider prism and d2 in Cs of this prism. The slider prism introduces
a phase delay to component A of kl.d2 + klldl and a phase delay of kl.dl + klld2 to
component B. The total phase due to traveling through both prisms is the same for
component A and B and is given by

(2.15)

This arrangement of the two prisms causes a phase compensation such that all rays
emerging from the slider prism have the same phase in the absence of a specimen.

Translation of the slider prism (Figure 2-5) introduces additional phase terms. If
the slider is translated by ~s, then the path through Cs is lengthened by ~d and the
path through Ct is shortened by ~d where

~d = ~s tan a. (2.16)

The total phase introduced by the two prisms is (dl + d2 - ~d)kll + (dl + d2 + ~d)kl.
for the A component and (dl + d2 + ~d)kll + (dl + d2 - ~d)kl. for the B component.
These phases are no longer equal; they differ by a phase bias

(2.17)

As Table 2.1 indicates, the phase difference between EA and EB after the slider prism
is due only to the specimen and 4>b.

The A and B components are recombined by the slider prism to form a single ray
(Figure 2-3). The electric field vector of this ray can be written as

E = EB + EA = Eoei(4)lI(,s''-Yt}+4>b)s + Eot, (2.18)

where
(2.19)

The next optical element is another polarizer called the analyzer. Let an represent
the angle between the polarization direction p of the analyzer and s. Then the electric
field vector for light leaving the analyzer is

E = (Eoei(4>lI(,s"t}+4>b) cos an + Eo sin an) p. (2.20)

The final component is a detector, either the human eye or a camera. Light detectors
are sensitive to light intensity

(2.21 )
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(2.22)

where the angle brackets denote temporal averaging over a time that is long compared
to the coherence time of the light and short compared to the characteristic response
time for the detector. Substituting for E,

i( Is, It) =< ~(Eoej(4>~(ls"t)+4>b) cos an + Eo sin an)
X (E*e-j(4>~(ls,'t)+4>b) cos a + E* sin a ) >o non ,

which reduces to

where

(2.23)

(2.24)

The first polarizer in the microscope made components A and B coherent. If
components A and B were incoherent their phases would vary randomly and the
term cos( 4>s + 4>b) would average to zero over time.

Typically the polarization directions of the polarizer and analyzer are orthogonal.
For this crossed polarizer configuration, an = 1350

,

(2.25)

or

(2.26)

This equation shows that a DIe microscope produces an image whose intensities
are a nonlinear function of phase gradients introduced by the specimen.
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(2.27)

Plate 2.1: Simulated DIC images of a thin transparent disk. The top panel illustrates
the disk with a diameter of 19 pm. The bottom panel illustrates DIC images (calcu-
lated using Equation 2.26 with So equal to 2/3 pm ) with three different positions of
the slider prism: f/yb = 0 (left), 90° (middle), and 1800 (right). Each image is scaled so
that the maximum intensity appears white and the minimum intensity appears dark.

2.3 Quantitative Interpretation of DIe Images
Quantitative interpretation of DIC images can be difficult for several reasons. One
reason is that the mapping between object (specimen) and image is not unique.
One can obtain several different images (by adjusting the slider prism) with the
same object. Also the same image can be obtained with several different objects.
Another difficulty in interpretation arises because the images often give a false three
dimensional impression.

First we show that different images of the same object can be produced by varying
the slider prism position. To illustrate this, we present two examples. In the first
example, we simulate images from a thin transparent disk in the plane of the stage.
Let rand D represent the radius and the thickness of the disk respectively. Let ns

represent the refractive index of the disk. For simplicity we let the refractive index
of the disk's surroundings equal zero. The disk is represented by the phase

wD
f/y(IX',Y) = -ns

c

if IX 2 + IY 2 < r2 and zero otherwise.
Plate 2.1 and Figure 2-6 illustrate f/y( IX, IY) and the simulated DIC images of this

disk (effects of blurring have been ignored). Only the edges of the object can be seen
in the DIC images. The appearance of the edges depends on their orientation with
respect to the axis of shear and the positions of the slider.

As a second example we show images (not simulated) of a polystyrene microsphere
taken at two different slider prism positions. Plate 2.2 illustrates these images. In
the top image, one edge appears bright and the other appears dark as compared to
the background. The other image of the same microsphere exhibits edges that are
equally bright compared to the background. By changing the prism position, we
have significantly changed the image. In fact, the two images of Plate 2.2 appear to
represent structurally different objects.

vVe have illustrated how one object can produce several different images, and we
now consider how a given image can represent several different objects. There are
at least three different ways to alter the object without altering the image. First,
the image intensity described by Equation 2.26 is a function of phase differences.

23



Plate 2.1

24



~.~enc
Q.).......c

1

o Q Q

,"1",111,111'

-~-

-40 0 40

'Yx ( IJ,m )

t!I t!I

-40 0 40

'Yx ( Jlm )
Figure 2-6: Simulated DIC images of a thin transparent disk. These plots illustrate
change of intensity along a horizontal line through the center (,y = 0) shown in
Plate 2.1. Each plot shows results for the same object (the thin transparent disk) but
for a different value of q;b: 0 (left), 90° (center), and 180° (right).

Plate 2.2: DIC images of a polystyrene microsphere taken at two different slider prism
positions. The top image corresponds to q;b = 0 and the bottom image corresponds
to q;b closer to 90°.

This means that the disk images illustrated in Plate 2.1 remain the same if the
refractive index of the disk and its surroundings are changed identically. Also the
phase differences must be in the direction of shear. Therefore the image of an object
whose refractive index gradients are exactly perpendicular to the shear direction is
the same as the image of a region with no object. Finally, note that Equation 2.26
is periodic with a period of 27r. Thus the image of an object remains the same if the
phase introduced by the object changes by an integer multiple of 271".

Another important reason that DIC images are difficult to interpret is the presence
of a shadow effect (lower middle panel of Plate 2.1). This shadow effect gives the
viewer a false three dimensional impression. That is, the appearance of a shadow
in the image gives a visual cue for interpreting the object's thickness. However,
this shadow effect is not a function of object thickness. Instead, as Equation 2.26
indicates, it is a function of the shear distance, the object's refractive index, and the
slider prism position.

Interpreting DIC images is not only difficult for humans, but also for machines.
Consider the problem of reconstructing three dimensional shape from a series of
DIC images. One simple approach is to find edges in each image, construct a three
dimensional representation by stacking the contours, and then connect corresponding
contours with surface elements. Although this scheme works for many kinds of images,
DIC images pose a problem. Figure 2-7 shows that edges found in a DIC image may
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Figure 2-7: Edges in a DIC Image. The dark lines in this image are edges determined
by a Laplacian-based edge detector (See [13]) for the simulated DIC images in Fig-
ure 2.1. This edge detector computes an estimate of V2( IX, lY) and the zero crossings
of this function are interpreted as edge points.

or may not correspond to edges of the object. Thus DIC images require additional
processing.
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2.4 Estimating Phase from DIe Images
The relation between phase and intensity is generally nonlinear (Figure 2-8). Fur-
thermore the relation is not generally invertible; one cannot uniquely determine phase
from intensity. However, if the range of phases never exceeds 1800 (Figure 2-8, case
2), then the phase at every point is uniquely determined by the intensity at that
point.

If the range exceeds 1800
, the phase is not uniquely determined by the intensity.

However, it may be possible to incorporate other information to recover phase. For
example, if the spatial frequency content of the image is sufficiently limited, the phase
correlation between nearby points can be used to "unwrap" that phase function. One
can also incorporate information from multiple images. For example, one could record
images of the same object with two different values of ~b. If the two values differed
by 900 one could uniquely determine phase for a 3600 range (Figure 2-8, case 3).

2.5 DIe Point Spread Function
The index of refraction of many biological tissues (specifically the Tl\1) differs little
from that of water. For a sufficiently narrow range with ~b = 900 (Figure 2-8, case 1),
Equation 2.26 can be approximated by the first two terms of a Taylor series expansion.
Then there is a linear relationship between i( IX, IY) and ~s( IX, IY) that is given by

(2.28)

Therefore, the DIe image is a linear transformation of phase and can be character-
ized by a linear transfer function. If we consider only intensity variations from io'

Equation 2.28 can be written as

(2.29)

or as a convolution,
(2.30)

(2.32)

where
hd(lx,IY) = 8(lx'IY) - 8(lx - SX,IY - Sy), (2.31)

and Sx and Sy are the components of the shear along x and y respectively.
VVecan extend the thin specimen approximation by assuming that the total phase

difference between the ray components passing through a thick specimen is primarily
due to the phase difference at the focal plane. That is,

hd( IX, IY, IZ) = 8( IX, IY) - 8( Ix - Sx, IY - sy) for IZ = 0,
= 0 otherwise.
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2.6 Microscope Model

Recall from Section 2.1 that blurring due to finite apertures in the microscope and
camera optics can be characterized by the PSF haC/x, IY, IZ). Therefore, we can
account for both the effects of finite aperture diffraction and DIC optics by combining
ha( IX, IY, IZ) and hd( IX, IY' IZ). Equation 2.30 becomes

(2.33)

The functions hd and ha can be combined into one point spread function,

(2.34)

This leads to the important result that a DIC microscope can be characterized by
a PSF which includes the effect of DIC differentiation as well as the finite aperture
diffraction. Therefore a three dimensional deconvolution can recover fjJ( IX, IY) from
i( IX, IY, IZ)' which can then be used to estimate n( IX' IY, IZ) based on Equation 2.27.
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Chapter 3

Measuring the Signal Processing
Properties of a Microscope

In this chapter, we develop methods to characterize the signal processing properties
of our microscope in terms of the model developed in Chapter 2. The measurement
hardware includes a video camera and stepper motors that allow the microscope
to be monitored and controlled from a personal computer. Both the point spread
function of the microscope and the noise in the measurement system are empirically
determined. The results are compared to theoretical predictions.

3.1 Methods
Figure 3-1 illustrates the main components of our measurement system: the micro-
scope, video camera, stepper motor, and a personal computer equipped with a video
digitizer (frame grabber). This measurement system is connected via a computer net-
work to a graphics workstation (DecStation 5000, Digital Equipment Corp.), where
all digital signal processing is implemented.

3.1.1 Sampling the Intensity Distribution

We wish to measure the output light intensity of the microscope, i( IX, IY, IZ). This
intensity occupies a volume of continuous space and the measurement requires sam-
pling this volume. In the x-y plane the intensity is sampled by the camera and video
digitizer. We refer to the intensity samples in a single plane as an image. For our
system, the spacing between the discrete intensity values in x and y is

(3.1 )
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VIDEO CAMERA

PERSONAL COMPUTER
with FRAME GRABBER

MICROSCOPE /)

~

STEPPER MOTOR

Figure 3-1: The measurement system. The microscope is a Zeiss Standard WL with
a 40X, 1.6mm working distance, 0.75 NA (numerical aperture), water immersion
objective. The microscope is equipped with Nomarski DIC optics, a 2X optivar and
a 0.7X optical coupler (Diagnostics Instruments). A Hamamatsu Newvicon (2400)
video camera is coupled to the microscope. The output of the camera is converted
to a numerical format by an 8 bit video digitizer (Data Translation DT2862) and
recorded on a personal computer (IBM PC/AT clone). The computer controls the
fine focus of the microscope via a stepper motor (Sigma Series 17). One step of the
motor translates the stage of the microscope by 1/4 pm along the optical axis.
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In order to record the three dimensional intensity we must not only sample in the
x-y plane but also along z. To sample along z, images are recorded at discrete focal
positions along the optical axis. The position along the optical axis is controlled by
a stepper motor attached to the fine focus knob and driven by the PC. The spacing
of these positions along z is

Tz ~ IJ-lm.

Each sample is referred to as a voxel (volume element).

3.1.2 Representation of Intensity

(3.2)

Intensities are converted to a sequence of integers by the camera and video digitizer.
We represent this transformation by

(3.3)
where i(gxTx,gyTy,gzTz) is the intensity of the light at a particular point in the image,
gx, gy, gz are integer indices, and im[gx, gy, gz] is an integer. The function Q[.] maps its
argument to the nearest integer value between 0 and 255. The scaling constants a and
b are determined by the camera, the analog-to-digital converter, and by uncalibrated
offset and gain knobs on the video amplifier.

We assume the output light intensity of a microscope is related to the phase
introduced by the specimen through a linear system (see Section 2.6) described by

(3.4)

where k1 and k2 are constants. Combining Equation 3.4 and 3.3,

where

and
d = ak2 + b.

Therefore the measured intensity is a quantized linear function of phase.

3.1.3 Slider Wollaston Prism Position

(3.6)

(3.7)

For precise control of the slider prism position, we have attached a stepper motor to
the adjustment screw of the prism. Four hundred steps of the stepper motor turns
the adjustment screw through one turn. The full range of possible prism positions
corresponds to 3500 steps. To calibrate slider prism position in terms of rPb' we
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measured the intensity for the entire range of possible prism positions. In the absence
of a specimen the expected relation (See Section 2.2.2 between 4Jb and intensity is

(3.8)

The measured intensity as a function of slider prism adjustment screw turns for
the entire range of possible prism positions is shown in Figure 3-2. Notice that the
range is less than one period. If we could sweep through an entire period of 4Jb by
turning the adjustment screw, then we could easily calibrate the relation between
cPb and slider prism position. The zero point for 4Jb would correspond to the slider
position with minimum output intensity and each turn of the slider away from the
zero point would correspond to 4Jb = 27r radians divided by the number of turns in a
period.

Given sufficiently accurate measurements over a smaller range, we can still esti-
mate the relation using a fitting procedure. The errors in the fit will be large if the
range is small. Although the data shown in Figure 3-2 does not cover a complete pe-
riod of the function in Equation 3.8, additional information for a fit can be obtained
by adjusting the polarizers so that they are parallel. The expected intensity with
parallel polarizers is

(3.9)
Our fitting procedure minimizes the mean square error obtained for both crossed
and parallel polarizers. With the polarizers crossed, we measure intensity im as a
function of stepper motor position T and compute the mean squared error ei from
the expected relation given in Equation 3.8,

We also measure intensities with parallel polarizers and compute

e" = ~L L L(im[g",gy]- PI(l + COS(P2T + P3)) + P4)2.
T gx gy

(3.10)

(3.11)

We use an interactive method to find the values of PI, P2, P3, and P4 that minimize
the sum of ei and e". Data from both crossed and parallel polarizers are shown
in Figure 3-3. Results from the fitting procedure are shown in Figure 3-4. The
parameters P2 and P3 are fixed for a given microscope; they relate T to 4Jb. The
parameters PI and P4 depend on the illumination and the camera gain and offset.

The full range of slider prism positions corresponds to 8.75 turns of the adjustment
screw (3500 motor steps). We can use P2 and P3 to convert this range to a range of
4Jb,

(3.12)
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Figure 3-2: Effect of slider prism position on intensity. The microscope was set
up to image an apparently empty volume in the specimen. Polarizers were crossed.
Intensities were measured as a function of slider prism position and averaged over a
100 X 100 region. The stepper motor was advanced 10 steps between measurements,
giving a resolution of 40 measurements per turn.
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Figure 3-3: Interaction of slider prism and polarizer. The bottom curve shows the
effect of slider prism position on intensity when the polarizers are crossed (same data
as Figure 3-2). The top curve shows similarly measured data for parallel polarizers.
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Figure 3-4: The measured and fitted data. The solid bold line shows the measured
intensity points as a function of turns of the slider prism adjustment screw. The
dashed lines show the results of the least mean square fit. The top panel illustrates
the data from crossed polarizers and the relation of Equation 3.8. The bottom panel
shows the data from parallel polarizers and the relation of Equation 3.9. The mean
square error was 0.2 for the fitted parameters PI = 62.31, P2 = 0.000507, P3 = -1.10,
and P4 = 36.98.
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This means that we cannot achieve the operating position of <Pb = 900
• The operating

point with the largest dynamic range in the linear region (See Section 2.5) is <Pb = 1200
•

To determine if it was important to measure intensities in both the crossed and
parallel configurations, we repeated the fitting procedure using just the crossed con-
figuration data. We obtained a good fit (i.e. small e3.J, but the answer was wrong.
Specifically, if P2 = 0.0034, P3 = 2.38, PI = 35.71 and P4 = 36.98, then ei is equal
to 0.15. However, eO is equal to 1168. Therefore, using both the crossed and parallel
data in the fitting procedure was crucial.

3.1.4 Object Preparation
Objects to be imaged by the microscope were constructed by embedding microscopic
polystyrene microspheres (Polysciences). In early trials we used a gelatin embedding
procedure. Two types of gelatin were used, food grade (I(nox, unflavored) and re-
search grade (Electron Microscopy Sciences) with a total bacteria count of 1000/ gram.
Three grams of gelatin were mixed with 90 mL H20 and heated until the gelatin dis-
solved. The microspheres were dispersed in water (2.5% by weight) by the vendor.
Three JiL of this dispersion were mixed with the gelatin/H20 and the mixture was
cooled to room temperature. One hundred JiL of 10% gluteraldehyde was added. A
drop of the resulting mixture was placed on a glass slide with a coverslip. The slide
was refrigerated overnight to set.

A commercially available product was used in later trials. This product is a water
soluble mounting medium called Mount Quick (Electron Microscopy Sciences). Three
J1L of the microsphere dispersion was evaporated on a glass slide. The evaporated
microspheres were mixed with Mount Quick, covered with a coverslip and allowed to
set.

The two embedding methods gave similar results, but the latter method is prefer-
able for two reasons. First, the method is easier. Second, bacteria were noticeable in
the gelatin slides after storage for several weeks, even though they were stored at 40

c.
Slides were prepared using microspheres with four different diameters (0.24, 2.0,

2.8, 4.6 Jim)l. Regions within a slide that contain no microspheres were used in some
tests. Such a region is referred to as an apparently empty volume.

3.2 Measurements of Noise
To characterize noise in our measurement system, we recorded 100 images of an
apparently empty volume. Two types of degradations are clear from the results.

1Microspheres with diameters of 0.15 Jlm were also embedded; however, they were barely visible
in our microscope.
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First, repeated measurements differ from each other. These differences suggest the
presence of additive noise. Second, systematic patterns were apparent in the image
that resulted when 100 images of an apparently empty volume were averaged. These
patterns in the mean suggest the presence of stationary background degradations.

3.2.1 Noise Variance
Additive noise can result from many sources. Examples include shot noise that is
implicit in the quantum nature of light and thermal noise that is introduced in the
camera and video amplifiers. We estimated statistical properties of additive noise in
our system by repeating measurements of an apparently empty volume 100 times. The
volume contained 21x21 x21 voxels. We computed the temporal variance a; [gx, gy, gz]
for each voxel. The average value of a;[gx, gy, gz] over the voxels was 22, corresponding
to a temporal standard deviation of 4.7 which we use as an estimate of the standard
deviation an of the additive noise process. Variations in at [gx , gy, gz] with gx, gy, and
gz were small. The standard deviation of at [gx, gy, gz] across the volume was 0.3. We
can interpret at [gx , gy, gz] in terms of the dynamic range of the measured intensities.
Since this range is 0-255, the noise standard deviation is 1.85% of the dynamic range
for this particular configuration of illumination, camera gain, and camera offset.

3.2.2 Noise Correlation
Measuring noise correlation is important because it gives us information about the
noise characteristics in our system. This information affects the signal processing
methods used to reduce noise. We expect that there is negligible correlation between
noise samples in time and along z. We therefore concentrate on the spatial correlations
along x and y. Noise correlations can be quantified in terms of the autocorrelation
function

(3.13)

where nm[kx, ky] is the measured noise in a focal plane. The Fourier transform of
R[gx, gy] is the power spectrum Pn[wx, wy]. We can estimate Pn[wx, wy] from the
measured noise and compute an estimate of R[gx,gy]. The noise was measured by
sampling the focal plane intensity from an apparently empty volume. This measure-
ment was repeated 100 times and averaged. The difference of the averaged mea-
surement and the unaveraged measurement is the noise measurement (without the
mean). To estimate the noise power spectrum from this noise measurement we used
periodogram averaging (See [13]). This method requires subdividing the image into
smaller segments and averaging the periodograms from these segments. Periodogram
averaging reduces the variance of the estimate by the number of segments averaged.
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Intensity measurements for 96 x 96 samples were subdivided into nine 32 x 32 seg-
ments. For each segment, the periodogram estimate PN[Wx, wy] of the noise power
was computed as follows:

(3.14)

where N[wx, wy] is the discrete Fourier transform of the noise segment, and 1024 is
the number of samples in each segment. The resulting periodogram estimates for
each segment were averaged together to obtain the estimated noise power spectrum
PN[wx, wy]. By taking~the inverse discrete Fourier transform of P~[wx, wy] we ob-
tained an estimate for the noise autocorrelation R[gx, gy]. The estimate is shown in
Figure 3-5. If the noise is white, its discrete correlation function is given by

(3.15)

where O"~ is the constant noise power, and 8[gx,9y) is the unit sample defined as

8[ ] _ {I if gx = gy = 0,
gx, gy - 0 otherwise.

Notice that the estimated autocorrelation in Figure 3-5 deviates most significantly
from the unit sample along x. Specifically, the autocorrelation value 2/3 /-lm away
from the origin (2 discrete samples) along x is 10% of the peak value. However along
y the value 2/3 /-lm from the origin is 2.4% of the peak value. Since the video signal
is generated by a scanning electron beam along x, we expect that there may be some
correlation between samples that are adjacent along x. This is the reason that the
correlation looks least like a unit sample along x. Yet because the peak value is
located at the origin and is significantly larger than all the other values, this function
is similar to a scaled unit sample. Therefore, to simplify analysis, we approximate
the system noise as white noise.

The peak value in the autocorrelation is also an estimate of the noise power O"~.
For our measurement, the peak was 21, corresponding to an estimate of O"n equal to
4.58. This compares well with our previous estimate of 4.7, obtained by computing
the average temporal variance of voxels.

3.2.3 Noise Mean

Effects of averaging repeated measurements of intensity are illustrated in Plate 3.1,
Plate 3.2, and Figure 3-6. Let ,Bm [gx, gy, gz] denote the average of Jill intensities mea-
sured for each voxel in an apparently empty volume. Row A illustrates ,Bm[gx, gy, gz]
for At = 1 and Row B illustrates ,Bm[gx, 9y, 9z] for M = 100. Row A of Plate 3.1 shows
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Figure 3-5: Noise autocorrelation estimate R[gx, gy] obtained from taking the inverse
discrete Fourier transform of PN[wx, wy], the noise power spectrum estimate. The
left plot shows R[gx,O] and the right shows R[O, gy]. The autocorrelation estimate is
32 x 32 samples and the sample spacing in both x and y is 1/3 /-lm.

apparently random intensities. Row B is similar; the effects of averaging are not ob-
vious. Row A of Plate 3.2 also shows random intensities, but there is a suggestion of
correlations along z. Row B of this plate shows much smaller random variations and
striking lines along z. We quantify spatial variation in these results by computing
the spatial standard deviation av of fJm[gx,gy,gz]. For M = 1, av = 8.11; and for
the M = 100, av = 6.67. If the measurements resulted from a zero-mean additive
white noise process, then averaging M = 100 measurements would have reduced av

by a factor of 10. Our results show considerably smaller reduction, leading to the
conclusion that the process is not zero-mean.

Single Focus Background Subtraction

Patterns remain in our measured images even after averaging. Although measured in
an apparently empty volume, these patterns will degrade all measurelnents. There-
fore, we develop a method for estimate these patterns so that they can be removed
from measurements. Measurements of fJm[gx, gy, gz] allow us to isolate these patterns
and test background estimation schemes.

Background patterns arise from many sources. Camera imperfections, such as
dust on the face of the camera, cause patterns that are invariant in z. An example of
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Plate 3.1: Measurements ,Bm[9x, 9y, 9z] of intensity in an apparently empty volume:
images parallel to the plane of the microscope stage. Intensities were measured for
21 x 21 x 21 voxels, with sampling periods in x, Y, and z of 1/3, 1/3, and 1 pm
respectively. The rows in this figure illustrate noise reduction methods. Each row
shows 5 x-y images, at 9z = -10 (left), -6, -2, 2, 6 (right). In each image, 9x and 9y
vary from -9 to 9. For the purposes of illustration each x-y image (and subsequent
images) was enlarged in x and y using bilinear interpolation (see [13]). Intensities
are scaled so that largest value in each row appears as white and the smallest value
appears as black. This emphasizes patterns within the row. To aid in comparisons
between rows, we provide the mid value «maximum + minimum)/2) and the range
(maximum - minimum) of the data. A: No averaging (mid, range = 166, 60). For
each value of 9z, a single frame from the video camera is shown. B: Averaging 100
repeated measurements (mid, range = 162.2, 45). For each value of 9z, 100 successive
frames of data were collected and the average is shown. C: Single focus background
subtraction (mid, range = -1.5, 49). For each value of 9z, a single frame from the
video camera was recorded. The frame at 9z = -10 was taken as the background
frame, and subtracted from all the images. D: Averaging and single focus background
subtraction (mid, range = -2.4, 7.99). For each value of 9z, 100 successive frames
of data were collected and the average was stored. The averaged image at 9z = -10
was taken as the background frame, and subtracted from all the averaged images. E:
Linear background subtraction, averaging, and single focus background subtraction
(mid, range = 0, 5.4). For each value of 9z, 100 successive frames of data were
collected and the average was stored. For each 9x and 9y, a line was fit through the
averaged intensities along 9z. The collection of these lines comprised the background
volume, which was subtracted from the averaged volume.

Plate 3.2: Measurements,Bm [9x, 9y, 9z] of intensity in an apparently empty volume:
images in planes perpendicular to the microscope stage. This plate illustrates the
same data shown in Plate 3.1 but from a different view. The images are perpendicular
to the x axis and illustrate planes in z-y. We refer to this as the z-y view. Each row
shows 5 z-y images, at 9x = -10 (left), -6, -2, 2, 6 (right). In each image, 9y and 9z
vary from -9 to 9.
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Figure 3-6: Measurements ,Bm[gx, gy, gz] of intensity in an apparently empty volume:
plots of intensity. The left panels show variations in intensity along x for gy = gz =
o. The right panels show variations in intensity along z for gx = gy = o. These plots
illustrate the same data shown in Plates 3.1 and 3.2.
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this type of pattern is the black stripe seen in the top of the leftmost image in Row A
of Plate 3.2. Such patterns are easily removed. In practice, one moves the focus of
the microscope so that all structures in the specimen are so blurred that they are no
longer visible. The resulting image still contains patterns that remain constant across
z. This image is called a background image and is subtracted from all other images.
We refer to this method as "single focus background subtraction" .

Single focus background subtraction is illustrated in Row C of Plate 3.1, Plate 3.2,
and Figure 3-6. Notice that the black stripe on the top of the leftmost image in Row A
of Plate 3.2 has been removed. The spatial standard deviation av of the resulting
volume is 6.64.

The combination of single focus background subtraction and averaging can be
seen in Row D of Plate 3.1, Plate 3.2, and Figure 3-6. The spatial standard deviation
av for this volume is 1.43. Therefore, this combined processing significantly decreased
the overall intensity variations in our measurements. However this spatial standard
deviation is still much greater than would be expected if the degradations were pro-
duced by zero-mean additive white noise. Because temporal variabilities suggest that
an is on the order of 4.7 (see Section 3.2.1), averaging 100 measurements would result
in a spatial standard deviation of 0.47.

Background Estimation

Single focus background subtraction cannot remove all background patterns. For
example, dust on any optical element that moves when the focus is changed will
cause patterns that change with focus.

The most apparent pattern after single focus background subtraction with aver-
aging (Row D in Plates 3.1 and 3.2) is a systematic intensity variation in z. This light
variation may be due to the configuration of our microscope that causes the condenser
to move as we move the stage to change focus. This movement causes a departure
from the correct Koehler illumination configuration [10]. These trends are illustrated
in Figure 3-7. These trends introduce systematic low-frequency degradations into all
our measurements.

Compare the x-y views (Plate 3.1) and z-y views (Plate 3.2) for the measure-
ments in Row D. The variations with z appear systematic and generally linear, and
the variations in the x-y plane appear neither systematic nor linear. These observa-
tions suggest a background estimation scheme in which intensity variations in z are
represented by linear fits for each gx-gy pair. \Ve refer to subtracting this estimated
background as "linear background subtraction." Results of this processing scheme
are shown in Row E of Plate 3.1, Plate 3.2, and Figure 3-6. The spatial standard
deviation av that remains after this processing is equal to 0.66. This value of av is
now closer to 0.47, the value we expect to be left after averaging.
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Figure 3-7: Measured background intensity ,Bm[gx, gy, gz] after averaging and single
focus background subtraction. The figure illustrates intensities along z for 4 different
gx-gy pairs (i.e. intensities along horizontal lines in Row D of Plate 3.2).
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Plate 3.3: Measurements hm[gx, gy, gz] of the PSF: images parallel to the plane of
the microscope stage. Intensities were measured for 51 x51 x24 voxels, with sampling
periods in x, Y, and z of 1/3, 1/3, and 1 /-Lm respectively. The rows in this plate
illustrate noise reduction methods. Each row shows 5 x-y images, at 9z = -2 (left),
-1, 0, 1, 2 (right). In each image, 9x and 9y vary from -9 to 9. A: No averaging.
B: Averaging 100 repeated measurements. C: Single focus background subtraction
(background frame is at 9z = -12). D: Averaging and single focus background sub-
traction. E: Linear background subtraction, averaging, and single focus background
subtraction.

Plate 3.4: Measurements hm[gx, 9y, 9z] of the PSF: z-y views. This plate illustrates
z-y views of the data shown in Plate 3.3.

3.3 Point Spread Function Measurement
To characterize the relation between object and measured image, we measure the
microscope's point spread function (PSF). By definition, a PSF is the three dimen-
sional intensity pattern that results from a point source. We approximate the point
source by a polystyrene microsphere with diameter 0.24 /-Lm. We refer to the resulting
intensity pattern as hm[gx, 9y, gz]. Measurements of hm[gx, gy, 9z] are shown in Row A
of Plate 3.3, Plate 3.4, and Figure 3-8. Ideally, the only intensity variation in the
data should be due to the presence of the 0.24 /-lm microsphere. However, there are
significant intensity variations throughout each image, even though the microsphere
occupies only a small space in the center of each image. We apply methods developed
in the previous section to minimize the effects of this noise.

To quantify the effect of each method, we define a signal to noise ratio equal
to the square of the peak-to-peak amplitude of the measured PSF divided by the
corresponding spatial variance a~ estimated in the previous section.2

Row A of Plate 3.3, Plate 3.4, and Figure 3-8 illustrates unaveraged measurements.
The maximum intensity of the PSF is 218 and the minimum is 96. Row A of Plate 3.1,
Plate 3.2, and Figure 3-6 illustrates unaveraged measurements of ,Bm[gx, 9y, gz]' for
which av is equal to 8.1. The signal to noise ratio for Row A is therefore (218 -
96)2/8.12, which is equal to 23.5 dB.

Row B of Plate 3.3, Plate 3.4, and Figure 3-8 shows the average of 100 repeated
measurements of the PSF. The peak-to-peak amplitude of this average is 119. Row B
of Plate 3.1, Plate 3.2, and Figure 3-6 illustrates the average of 100 repeated mea-
surements of ,Bm[9x,9y,gz]' The corresponding av was 6.67, resulting in a signal to

2Note that in order to make this ratio useful, the gain, offset, and microscope illumination were
set identically when hm[gx,gy,gz] and ,Bm[gx,gy,gz] were measured.
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noise ratio equal to 25 dB.
Row C shows the PSF measurement after single focus background subtraction.

This processing successfully removed background patterns that were independent of
focus. For example, there is a black spot in the lower right corner of each image in
Row A of Plate 3.3. This spot remained after averaging (Row B) but disappeared
with single focus background subtraction (Row C). Nevertheless, the signal to noise
ratio did not change significantly. The peak-to-peak amplitude in Row C is 127. The
corresponding (Jv is 6.64, resulting in a signal to noise ratio equal to 25.5 dB.

Row D of Plate 3.3, Plate 3.4, and Figure 3-8 shows the PSF measurement after
both averaging and single focus background subtraction. Intensity variations not due
to the PSF are barely visible in Row D. Details of the PSF that were obscured by
noise are now more apparent. For the gz = -2 (left) column, the original image
(Row A) seems to contain only noise, while Row D clearly shows information about
the PSF. A second example of details that are more apparent in Row D can be seen
in Plate 3.4. Faint diagonal lines that are part of the PSF can be seen in Row D more
clearly than in Rows A, B, or C. The peak to peak amplitude of the PSF is 121, and
corresponding (Jv is 1.43. Therefore the signal to noise ratio is 38.5 dB.

To implement linear background subtraction for hm[gx, gy, gz]' a line through z is
estimated for each gx and gy using the voxels in the first 5 (gz = -10 through -5)
and the last 5 images (gz = 5 through 10). These planes are used because they con-
tain little PSF information, i.e. they represent the background surrounding the PSF.
Row E of of Plate 3.3, Plate 3.4, and Figure 3-8 shows hm[gx, gy, gz] after processing
by linear background subtraction, averaging, and single focus background subtrac-
tion. The peak-to-peak value of the processed hm[gx, gy, gz] is 120 and corresponding
(Jv is 0.66. The resulting signal to noise ratio is 45 dB.

Without averaging or background subtraction, the signal to noise ratio was 23.5
dB. After processing, the signal to noise ratio was 45 dB. Thus our noise processing
methods improved signal to noise ratio by more than an order of magnitude.

In subsequent sections we use the measurement in Row E to represent the micro-
scope's PSF. Row E is actually the intensity pattern that results from transillumina-
tion of a microsphere with 0.24 /lm diameter. This approximates a point source if and
only if the volume occupied by the PSF is large compared to that of the microsphere.
The diameter of the measured PSF (Figure 3-6, Row E) is about 1.66 /-Lm (5 sam-
ples). This diameter is large compared to the 0.24 /lm diameter of the microsphere,
indicating that the point approximation is adequate.

We have found that the PSF of our microscope can be measured with the system
described. These measurements are degraded by noise. We've characterized this noise
as additive white noise and background degradations. Processing steps were identified
(averaging, single focus background subtraction, linear background subtraction) that
improve the quality of the PSF measurement.
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Plate 3.5: The theoretical and measured PSF. The top row (A) shows the x-y plane
view of the measured PSF. Row B shows the theoretical PSF had[gx,gy,gz] calculated
with the aperture radius = 1.5, focal length = 4.6, and shear distance equal to 1/3
Jim in x and 1/3 Jim in y. The sampling period for both is Tx = Ty = 1/3 Jim, Tz =
1 Jim.

3.4 Comparison of Theoretical and Measured
PSF

In this section we compare had[gx, gy, gz]' the theoretical PSF developed in Chapter 2,
with hm[gx,gy,gz], the measured PSF. The sampled theoretical PSF was obtained by
discrete convolution of a sampled version of ha(,x, IY' IZ) (Equation 2.1) with a sam-
pled version of hd( IX, IY, IZ) (Equation 2.32 with Sx = Sy = 1/3 Jim). The sampling
period was Tx = Ty = 1/3 Jim, and Tz = 1 Jim. When had[gx, gy, gz] is evaluated using
parameters for our microscope, its volume is much smaller than that of the mea-
sured PSF. Therefore, we reevaluated had[gx,gy,gz] using a smaller aperture radius,
1.5 mm. This increases the volume of the theoretical PSF and simplifies comparing
the shapes of the theoretical and measured PSFs in the x-y plane (Plates 3.5 and
3.6). Qualitatively, the measured and theoretical PSFs are similar. Both show simi-
lar dependence on shear direction (Plate 3.5) and radii in the x-y planes are similar.
However there are differences. First, the theoretical PSF is symmetric about gz= 0
but the measured PSF switches from primarily bright above focus to primarily dark
below focus. Second, the extent along z for the theoretical PSF (Plate 3.6) greatly
exceeds that for the measured PSF. This mismatch could be reduced by increasing
the aperture radius used to compute the theoretical PSF. However, such an increase
causes considerable mismatch in the x-y plane.

Differences in measured and theoretical PSFs have been noted in the literature
[18, 11]. These differences could result because of inadequacies of our models for
finite aperture diffraction [7] and DIC. Alternatively, these differences could arise
from physical mechanisms that are ignored in the theory, such as lens aberrations,
incorrect tube length, defocusing, and incorrect cover slip thickness. A true theoretical
PSF calculation is quite complicated and may even be impossible since the exact lens
specifications of the microscope are usually proprietary [18]. For this reason image
processing on real microscope images will be accomplished using the measured PSF.
The theoretical PSF derived with an aperture radius of 1.5 mm will be used only for
creating simulations.
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Plate 3.6: The theoretical and measured PSF. This plate illustrates the same PSF
as Plate 3.5 from a different view. The top row (A) shows the z-y plane view of the
measured PSF. Row B shows the theoretical PSF had[gx, gy, gz].
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Chapter 4

Deconvolution

4.1 Method
In this chapter, we develop a signal processing method to estimate the refractive index
of a transparent specimen from images obtained from a compound microscope with
DIC optics. For the purposes of developing the signal processing method we assume
that the measurements can be modeled as

This relation is derived from Equation 3.5 by removing the constant background,
neglecting the effects of quantization and including the noise term n(gxTx, gyTy, gzTz).
Since <jJ(gxTx, gyTy, gzTz) is proportional to the refractive index in the specimen, we
express the measured intensity as

(4.2)

where o[gx, gy, gz] represents the normalized refractive index in the sampled region.
We refer to o[gx, gy, gz] as the object (or specimen) in our signal processing model. Our
goal is to obtain an estimate o[gx, gy, gz] of the object o[gx, gy, gz] based on observations
of im[gx, gy, gz].

Consider the discrete Fourier transform [13] of Equation 4.2,

If there is no noise, then O[wx,wy,wz] can be recovered from Im[wx,wy,wz] by multi-
plication with an inverse filter H-1 [wx, Wy, wz] that satisfies

(4.4)

57



This direct deconvolution has limitations. For example, H-1 [wx, Wy, wz] is not de-
fined at frequencies where H[wx, Wy, wz] is zero. The presence of noise creates fur-
ther difficulties, especially at frequencies where IN[wx, Wy, wz] I is large compared to
IO[wx, Wy, wz]H[wx, Wy, wz]l. If H-1 [wx, Wy, wz] is large at such frequencies, multiply-
ing 1m[wx,wy,wz] by H-1 [wx, Wy, wz] will accentuate the noise.

4.1.1 Weiner Deconvolution

Weiner filtering provides the optimal least mean square estimate of a stationary signal
contaminated by additive gaussian noise. Let

(4.5)

so that
1m[wx, Wy, wz] = S[wx, Wy, wz] + N[wx, Wy, wz]. (4.6)

The vVeiner filter W[wx, Wy, wz] used to estimate S(wx, wy, wz] from 1m [wx, Wy, wz] is
given by

(4.7)

where

and
PN[wx, Wy, wz] ex N[wx, wy, wz]N*[wx, wy, wz].

Ps[wx, wy, wz] can be written as

(4.8)

(4.9)

(4.10)

Therefore when the Weiner filter and the inverse filter H-l [wx, Wy, wz] are combined,
the resulting filter D[wx, Wy, wz] is given by (See [13])

D[]
Po [wx, wy, wz]H*[wx, wy, wz]

wx,wy,wz = [ ] [ ] [ ] [ ] (4.11)Po wx, wy, Wz H Wx, wy, wz }1* Wx, wy, Wz + PN WX, wy, Wz

or

D[]
H*[wx, wy, wz]

wx, wy, Wz = [ ] [ ] [ ]/ [ ],H Wx, wy, WZ H* wX, wy, Wz + PN WX, Wy, Wz Po Wx, Wy, Wz
(4.12)

where Po [wx,wy,wz] is the power spectrum of the object that is to be estimated.
Unfortunately, it is not generally possible to measure Po [wx,wy,wz]. In practice,
the noise to signal ratio in the denominator of this equation is often assumed to be
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(4.13)

constant. Because this assumption simplifies analysis and has been found to yield
useful deconvolution [1, 2], we shall make this assumption. Substituting the constant
1] into the deconvolution filter, we obtain the approximate deconvolution filter

[ ]
H*[wx, wy, wz]

Da Wx, Wy, Wz == IH[ ] 12 •
Wx, Wy, Wz + 1]

When 1] is small compared to IH[wx, Wy, WZ] 1
2,

and when 1] is large compared to IH( Wx, Wy, WZ] 1
2,

D [ ]
H*[wx, Wy, wz]

a Wx,Wy,Wz ~ •
1]

(4.14)

(4.15)

At frequencies where the signal to noise ratio is expected to be large, the Weiner
deconvolution filter looks like the direct inverse filter. When the signal to noise ratio
is low, the deconvolution filter is small so noise is not amplified.

4.1.2 Application of Weiner Deconvolution to Nomarski
DIe Images

The special form of the PSF for a microscope equipped with Nomarski optics has im-
portant implications for Weiner deconvolution. In order to explore these implications,
we shall first examine mathematical models of the effects of differential interference
contrast and of the finite aperture of the microscope. In Section 2.6 we found that
the theoretical PSF had( IX'/y, IZ) of a Nomarski microscope can be expressed as

(4.16)

The blurring due to the finite apertures of the optical elements is represented by
ha( IX, IY, IZ). The general form of ha( IX, IY, IZ) is given in Equation 2.1. We evaluated
this relation using an aperture radius of 1.5 mm and a focal length of 4.6 mm 1. The
directional differentiation due to the Nomarski optics is represented by hd( IX, IY, IZ)
given in Equation 2.32, evaluated with Sx == Sy == 1/3 pID.

We seek a discrete representation of Equation 4.16. To that end, haC/x, IY' IZ)
and hd( IX, IY, IZ) are sampled to generate

(4.17)

1Although our microscope has an aperture of 3.5 mm radius, we found that evaluation of the
relation with a 1.5 mm radius gave results that were closer to the measured PSF (See Section 3.4).
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Plate 4.1: Frequency domain representation of the PSF of a microscope equipped with
Nomarski optics. Row A illustrates the magnitude of Ha[wx, Wy, wz] (Equation 2.1
with a = 1.5 mm and f = 4.6 mm) which represents the effect of blurring due to finite
aperture. Row B illustrates the magnitude of Hd[wx, Wy, wz] (Equation 2.32 with Sx
= Sy = 1/3 J.lm ), which represents the effects of Nomarski DIC. Row C illustrates the
magnitude of Had[Wx, Wy, wz] (Equation 4.19), which represents the combined effects
of Ha and Hd• The frequency representations were obtained by performing a 643 3D
FFT [17] of sampled versions of ha, hd, and had. The sampling period was Tx = Ty

= 1/3 J.lm and Tz = 1J.lm. In each row, black corresponds to the smallest magnitude
in the row (0) and white corresponds to the largest magnitude: 337.1 (Row A), 2
(Row B), and 48.6 (Row C).

and
hd[9x, 9y, 9z] = hd(gxTx, 9yTy, 9zTz),

where Tx = Ty = 1/3 J.lm, and Tz = 1J.lm.
The discrete Fourier transform of Equation 4.16 is

(4.18)

(4.19)

The Fourier transform of a PSF is referred to as a transfer function. We first consider
the transfer function Ha[wx, wy, wz] due to finite aperture diffraction. The magnitude
of Ha[wx, wy, 0] is illustrated in Row A of Plate 4.1 and Figure 4-1. Notice that this
transfer function is a low pass filter. As noted in Section 2.1 this transfer function is
cylindrically symmetric, and the blurring in z is more significant than in x and y.

Next consider Hd[wx, Wy, wz] the part of the transfer function that is due to No-
marski optics. With Sx = Sy = Tx = Ty, the discrete M point Fourier transform of
hd[gx, 9y, gz] is

(4.20)

Row B of Plate 4.1 and Figure 4-1 illustrate IHd[wx, wy, 0]1 for M = 64. We see that
at low frequencies, this frequency response is that of a directional high pass filter.

Plate 4.1 and Figure 4-1 illustrate IHad[Wx, wy, 0] I. Along the shear direction
IHad[wx, wy, 0] I decreases to zero for both high and low frequencies, it is a bandpass
filter. Orthogonal to the shear direction, IHad[Wx, wy, 0] I is zero.

To understand the special issues that affect Weiner deconvolution of DIC images,
we compare this problem to the deconvolution of images that are simply blurred by
diffraction. The primary goal in the latter case is to amplify high frequencies that are
attenuated by blurring. In DIC, we want to do this same deblurring, but we also want
to reconstruct low frequencies that were lost due to Nomarski DIC differentiation. In
both cases, object information at high frequencies cannot be reconstructed because
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Figure 4-1: Frequency domain representation of the PSF of a microscope equipped
with Nomarski optics. These rows illustrate IlIa [wx, Wy, 0]1 (Row A), IHd[wx, Wy, 0]1
(Row B), and IHad[wx, Wy, 0]I (Row C) as a function of Ws with Wz = 0 (left), and Wt

(right) with Wz = O. The index Ws is used to denote the discrete frequencies along
the shear direction sand Wt denotes the discrete frequencies orthogonal to s. The
frequency samples along sand t are separated by V2 27r/64 radians.
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Plate 4.2: The spherical object and simulated microscope images. Each row illus-
trates five images orthogonal to z: with gz = -6 (left), -3, 0, 3, 6. Each image
shows intensity variations for gx from -19 to 19 and gy from -19 to 19. Row A
shows o[gx,gy,gz], samples of the spherical object defined in Equation 4.21. Row B
illustrates the simulated microscope images or equivalently the simulated discrete
intensity i[gx,gy,gz]. This simulation was constructed by convolving the discretized
spherical object o[gx,gy,gz] with the theoretical PSF had[gx, gy, gz] (Equation 2.32 eval-
uated with an objective aperture of 1.5 mm, an objective focal length of 4.6 mm and
a shear distance Sx = Sy = 1/3 pm.) Gaussian white noise with variance equal to
0.01 was added.

Plate 4.3: The spherical object and simulated microscope images: y-z views. This
plate shows y-z views of the same data shown in Plate 4.2.

Ha[wx, Wy, wz] is close to zero. In DIC gradients perpendicular to the shear direction
cannot be reconstructed either.

Examination of Had[wx, Wy, 0] also indicates potential problems with DIC decon-
volution based on measured PSFs. Measured PSFs are expected to be small at both
high and low frequencies. Where the PSF is small, the measurement is particularly
sensitive to measurement noise. Low frequency degradation (such as nonuniformities
in the microscope illumination system) that would not normally be a problem can
have large effects.

4.2 Deconvolving Simulated Microscope lInages
To test these image processing methods, we have used simulated microscope images.
Images are simulated using Equation 4.2 with h[gx, gy, gz] equal to the theoretical
had[9x, gy, 9z] and n[gx, gy, gz] obtained from a Gaussian white noise generator. Simu-
lations give us the benefit of a priori knowledge of the object o[gx,gy,gz]. This provides
a reference for comparison with the deconvolution results. In addition, the simula-
tions allow us to isolate degradations so that we can clearly see their effect. Through
these tests, we hope to determine the fundamental limits of the methods and how
known degradations affect these limits.

To test the deconvolution method, we applied it to simulated images of a sphere.
The sphere is defined on a volume of 41 X 41 X 41 voxels, as

o[gx,9y,gz] = 1 if(Tx9x)2 + (Tygy)2 + (Tzgz)2 < R2

= 0 otherwise,
(4.21 )

where Tx= Ty= 1/3 pm, Tz= 1 pm, and R = 3/2 pm. The simulated images were
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Figure 4-2: The spherical object and simulated microscope images: intensity plots.
This figure illustrates the same object and simulated images shown in Plates 4.2 and
4.3. Row A illustrates refractive index of the spherical object along a line through the
origin and parallel to s (left), t (middle) and z (right). Row B illustrates intensities
in the simulated images along these axes. All parameters are as in Plate 4.2.
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Figure 4-3: Power Spectrum of the spherical object. This figure illustrates the power
spectrum Po [wx, wy, wz] along Wx with wy = Wz = O. The power spectrun1 was
computed using Equation 4.22 for the spherical test object defined in Equation 4.21.

Plate 4.4: Deconvolution of simulated sphere images contaminated by noise with
a~ = 0.01. Each row illustrates five images orthogonal to z: with gz = -4 (left), -2,
0, 2,4. Each image shows intensity variations for gx from -19 to 19 and gy frOln -19
to 19. A: Spherical test object. B: Results of deconvolution by Equation 4.12. C:
Results of deconvolution by Equation 4.13 with 1] = 0.04. D: Results of deconvolution
by Equation 4.13 with 1] = 0.4. E: Results of deconvolution by Equation 4.13 with
1] = 4. The FFT size used in the deconvolution was 643. The deconvolution was
implemented using a 643 FFT.

Plate 4.5: Deconvolution of sin1ulated sphere images contaminated by noise with
a; = 0.01: z-y views. This plate shows z-y views for the saIne data shown in
Plate 4.4.
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Figure 4-4: Deconvolution of simulated sphere images contaminated by noise with
O"~ = 0.01: intensity plots. This figure shows results for the same data shown in
Plates 4.4 and 4.5. The rows illustrate deconvolution results (refractive index) along
a line through the origin and parallel to s (left), t (middle) and z (right).
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obtained by convolving samples of a sphere with the theoretical PSF had[gx, gy, gz]
(Plates 3.5 and 3.6) and adding Gaussian white noise with variance (J' = 0.01. This
value was chosen so that the ratio of peak-to-peak signal intensity (17 for the simulated
sphere) to noise intensity was 45 dB, similar to that measured in Chapter 2.

Because the power spectrum of the object is known, we use the Weiner decon-
volution filter D[gx, gy, gz] defined in Equation 4.12 to estimate the object from the
simulated images. To obtain the object power spectrum, we can use a periodogram
estimate [13]

D [ ] IO(wx, wy, wz]1
2

( )
£0 Wx, wy, Wz = M' 4.22

where O[wx,wy,wz] is the spherical test object (Equation 4.21) and M=643 is the
number of points in the discrete Fourier transform. The resulting spectrum is shown
in Figure 4-3. The noise power is equal to the variance of the added noise,

(4.23)

The result of convolving the Weiner deconvolution filter

(4.24)

with the simulated images is shown in Row B of Plate 4.4, Plate 4.5, and Figure 4-4.
The results appear to have sufficient noise reduction. Also the effect of Nomarski
differentiation (a prominent dark and white peak along s in Row B of Plate 4.2 and
Figure 4-2) has been removed. Therefore the results can be easily interpreted as a
sphere of higher refractive index than the background.

Although the estimated objects in Row B are blurred compared to the originals
in Row A they are much less blurred than the simulated images (Compare Row B
of Plates 4.2 and 4.4 with Plates 4.3 and 4.5. The reason that the deblurring is not
perfect is that frequencies where the transfer function is small could not be recon-
structed. From the plots of Row B Figure 4-4, it is clear that the blur remaining after
deconvolution is most significant along z. Because the PSF blurs more along z, this
is the direction that the reconstruction will be poorest.

The deconvolution was performed with the approximate deconvolution filter
Da[wx, Wy, wz] defined in Equation 4.13. The value of 'TJ should be chosen to ap-
proximate the ratio of power in the noise to power in the signal. The power in the
noise is 0.01. The power in the signal varies from 0 to 0.05 (Figure 4-3). vVe chose 'TJ

to be 0.01 divided by half the maximum power in the signal,

'TJ = 0.01/0.025 = 0.4. (4.25)

We want to determine the effect of overestimating and underestimating the value rJ.
To do this, we repeat the deconvolution with 'TJ ten times larger and ten times smaller
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than our original estimate, i.e. TJ = 0.04 and TJ = 4 respectively. Rows C through E
of Plate 4.4, Plate 4.4, and Figure 4-4 illustrate the deconvolutions corresponding to
TJ = 0.04, 0.4 and 4.

From the results of Plate 4.4, Plate 4.5, and Figure 4-4 we can draw several con-
clusions. First, when TJ is too low (Row C), noise dominates the result. Conversely,
when TJ is too large (Row E), high frequency information is not reconstructed suffi-
ciently, i.e. the results are too blurred. When a reasonable value of TJ is used (Row D),
the approximate deconvolution results are comparable to the deconvolution results of
(Row B).

Although the results of Row B and Row D similar, there are differences that illus-
trate limitations of the constant approximation. Notice that noise is still apparent in
Row D of Figure 4-4. If TJ is increased to reduce this noise (Row E), the results become
blurred before the noise power is as small as that seen in Row B. Another difference
between Row B and Row D is a dip in the center of the reconstructed sphere (most
noticeable in Figure 4-4) of Row D. This dip indicates that the deconvolution filter is
overemphasizing high frequencies. This results because the constant approximation
underestimates the noise to signal ratio at high frequencies.

4.3 Deconvolving Microscope Images of Test Ob-
jects

We also tested our image processing methods using measured intensities from test
objects with known structure. The test objects were transparent polystyrene mi-
crospheres (Polyscience) with diameters of 2.0, 2.8, and 4.6 11m. The deconvolution
filters were based on measurements of the microscope's PSF (Chapter 3, Section 3.3)
and measurements of the noise in the system (Chapter 3, Section 3.2). Because the
power spectrum of the object was known a priori, this information could have been
used to implement the ideal Weiner filter given in Equation 4.12. However, our goal
was to evaluate how well the image processing methods would work if no information
about the object were available. We therefore implemented only the approximate
deconvolution filter given in Equation 4.13. Three different values of the constant TJ
are illustrated for every set of measured data.

It was not always possible to measure the test objects and PSF without altering the
illumination system for the microscope and the gain and offset controls for the camera.
Therefore, the deconvolution results are proportional to the index of refraction of the
test object, but the constant of proportionality is not known. We report such results
as normalized refractive index.

Results for the 2.0 11mmicrosphere (Plate 4.6, Plate 4.7, and Figure 4-5) and for
the 2.8 11mmicrosphere (Plate 4.8, Plate 4.9, and Figure 4-6) are generally similar.
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Plate 4.6: Deconvolution of 2.0 f-lm microsphere images. Intensities from a 2 /lm
microsphere (51 X 51 X 61 voxels) were measured as described in Chapter 3 (i.e.
with linear background subtraction and averaging) and are illustrated in Row A.
The DC value was subtracted. The data were windowed with a three dimensional
Hamming window [13] and deconvolved using Equation 4.13 with a measured PSF
(Chapter 3). Results are shown for three different values of 1]: 10 (Row B), 1000
(Row C), and 10000 (Row D). Each row illustrates five images orthogonal to z: with
gz == -2 (left), -1, 0, 1,2. Each image shows intensity variations for gx from -19 to
19 and gy from -19 to 19.

Plate 4.7: Deconvolution of 2.0 f-lm microsphere images: y-z views. This plate shows
y-z views of the same data shown in Plate 4.6.

We make comments about results for the 2.0 f-lm microsphere, but similar comments
equally apply for results for the 2.8 J1m microsphere.

The measured images exhibit the shadowing effect that is typical of Nomarski
images. For example, the center image of Row A in Plate 4.6 is black in the lower
left region and white in the upper right. This shadowing effect is greatly reduced by
deconvolution. The center images in Rows B, C, and D in Plate 4.6 are nearly radially
symmetric. Only the second images in Rows C and D show obvious asymmetries.

Deconvolution simplifies interpretation of the images in terms of index of refrac-
tion. The microspheres are known to be regions of high refractive index surrounded by
the lower refractive index of the medium. This interpretation in clear from Rows B,
C, and D in Plate 4.6 and much less apparent from the measured images in Row A.

Blurring along the optical axis of the microscope is reduced by deconvolution. The
measured data in the center image of Row A in Plate 4.7 has greater extent in the z
direction than that of any of the corresponding results after deconvolution.

Both the measured images in Plate 4.7 and the results after deconvolution contain
diagonal lines drawn from the center of the microsphere. These diagonals in the z-y
plane can also be seen in x-y images. They appear as open circles in the last images in
Rows B, C, and D of Plate 4.7 and as larger circles for larger values of gz (not shown).
Thus, these artifacts would fall on the surface of an elliptic cone if viewed in three
dimensions. Because similar patterns are apparent in the simulated images of a 3 /lm
microsphere (Plates 4.2 and 4.3), they result from the three dimensional structure
of the PSF. These patterns in the simulated images were removed by ideal Weiner
filtering (Row B of Plates 4.4 and 4.5) and are greatly diminished by the approximate
Weiner filtering illustrated in Rows C, D, and E. The fact that these patterns in
the measured images of Plate 4.7 are not removed by deconvolution suggests that
the measured PSF may not have accurately represented all of the three dimensional
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Figure 4-5: Deconvolution of 2.0 /-lm microsphere: plots. This figure shows intensity
plots for the same data shown in Plates 4.6 and 4.7. The left panels show intensities
along s for gt=gz=O. The center panels show intensities along t for gs=gz=O. The
right panels show intensities along z for gs=gt=O.
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Plate 4.8: Deconvolution of 2.8 pm microsphere images. Intensities from a 2.8 pm
microsphere (51 x 51 x 39 voxels) were measured as described in Chapter 3 (i.e. with
linear background subtraction and averaging) and are illustrated in Row A. The DC
value was subtracted. The data were windowed with a three dimensional Hamming
window [13] and deconvolved using Equation 4.13 with a measured PSF (Chapter 3).
Results are shown for three different values of "I: 10 (Row B), 1000 (Row C), and
10000 (Row D). Each row illustrates five images orthogonal to z: with 9z = -2 (left),
-1, 0, 1, 2. Each image shows intensity variations for 9x from -19 to 19 and 9y from
-19 to 19. The deconvolution was implemented using a 643 FFT.

Plate 4.9: Deconvolution of 2.8 pm microsphere images: z-y views. This plate shows
z-y views of the same data shown in Plate 4.8.

structure of the microscope's PSF.
Increasing "I had two effects on the deconvolutions shown in Plate 4.6, Plate 4.7,

and Figure 4-5: it decreased the noise power in the background and blurred the
reconstructed image. Blurring is most easily seen as decreases in the slopes of edges
in Figure 4-5. Ideally, deconvolution would reconstruct an abrupt change in refractive
index and the plots in Figure 4-5 would show rectangular pulses; the edges would
have infinite slopes. Slopes in the reconstructions are greatest for the smallest value
of "I. For small values of "I, the deconvolution filter acts like an inverse filter for higher
frequencies. In effect, "I defines a cutoff frequency above which the deconvolution filter
ceases to look like the inverse filter. That cutoff frequency decreases as "I increases
and less high frequency information can be reconstructed. We see this as a decrease
in slope in Figure 4-5 as "I increases. Similar effects were observed for deconvolution
of simulated images (Figure 4-4).

The normalized refractive index resulting from deconvolution depends on "I. The
maximum value decreases with increasing "I (Figure 4-5). In order to accurately
estimate refractive index, it is important to accurately estimate "I.

Results Jor the 4.6 pm microsphere (Plate 4.10, Plate 4.11, and Figure 4-7) are
qualitatively different from results for the 2.0 or 2.8 pm microsphere. In general the
deconvolutions did not work as well as they did for the 2.0 and 2.8 pm microspheres.
Results for 9z = 0 in Plate 4.10 can readily be interpreted as a circular region whose
refractive index is greater than that of the background. Results for 9z = - 2 suggest
the implausible presence of regions with index less than that of the background.

A black halo surrounds the white circular region in the results for 9z =0 in
Plate 4.10. This halo is also present but less prominent in the 2.0 pm and 2.8
pm microsphere deconvolutions. The black halo can also be seen as negative dips
in Figure 4-7. Ideally the transition from the background to the microsphere region
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Figure 4-6: Deconvolution of 2.8 pm microsphere: plots. This figure shows intensity
plots for the same data shown in Plates 4.8 and 4.9. The left panels show intensities
along s for gt=gz=O. The center panels show intensities along t for gs=gz=O. The
right panels show intensities along z for gs=gt=O.
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Plate 4.10: Deconvolution of 4.6 p,m microsphere images. Intensities from a 4.6 p,m
microsphere (61 x 61 x 61 voxels) were measured as described in Chapter 3 (i.e. with
linear background subtraction and averaging) and are illustrated in Row A. The DC
value was subtracted. The data were windowed with a three dimensional Hamming
window [13] and deconvolved using Equation 4.13 with a measured PSF (Chapter 3).
Results are shown for three different values of TJ: 10 (Row B), 1000 (Row C), and
10000 (Row D). Each row illustrates five images orthogonal to z: with gz = -2 (left),
-1, 0, 1, 2. Each image shows intensity variations for gx from -19 to 19 and gy from
-19 to 19. The deconvolution was implemented using a 643 FFT.

Plate 4.11: Deconvolution of 4.6 p,m microsphere images: y-z views. This plate shows
y-z views of the same data shown in Plate 4.10.

would be appear as a step function in the plots. The dips result because high spatial
frequencies are not reconstructed.

The original images of the 4.6 p.m microsphere (Row A) are somewhat different
from those for the 2.0 and 2.8 p,m microspheres. For the smaller microspheres, the
brightest and darkest intensities differed equally from the mean. However, for the
4.6 p,m microsphere, the brightest intensity differed more from the mean. This may
indicate that phase differences between sheared rays were too large for the linear
approximation on which the model is based (See Section 2.6). If this were the case,
nonlinear methods may be required for the reconstruction.

4.4 Applications to the TM
We applied these methods to the tectorial membrane of an alligator lizard (Gerrhono-
tus multicarinatus). We show the results of a two data segments. The first segment
is a tectorial membrane hole. This data was taken from a fixed alligator lizard TM
mounted on a glass slide. The hole is shown in Row A of Plate 4.12, Plate 4.13 and
Figure 4-8. The structure in the images in Row A of Plate 4.12 has an ambiguous
interpretation. It gives the impression of an indentation of a defineable thickness, or
it can also be interpreted as a circular protrusion of defineable thickness. In fact the
apparent thickness is a function of the shear distance, not of the specimen's thickness
(See Section 2.3). The deconvolution results are in Rows B, C, and D. The ambiguity
of interpretation is removed by the deconvolution. The deconvolved images can easily
be interpreted as a hole with refractive index lower than the background. As with
the microsphere deconvolutions, increasing TJ reduced noise at the expense of high
frequency reconstruction.
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Figure 4-7: Deconvolution of 4.6 pm microsphere: plots. This figure shows intensity
plots for the same data shown in Plates 4.10 and 4.11. The left panels show intensities
along s for gt=gz=O. The center panels show intensities along t for gs=gz=O. The
right panels show intensities along z for gs=gt=O.
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Plate 4.12: Images of a TM hole and its deconvolution. The sampled volume (51 X

51 X 39 voxels) of a TM hole was processed by subtracting the DC value and by win-
dowing with a three dimensional Hamming window [13]. The data were deconvolved
using a measured PSF (processed as described in Chapter 3) and the deconvolution
filter in Equation 4.13 with 1] = 10 (Row B), 1000 (Row C), 10000 (Row D). The rows
illustrate five images along z with gz = -2(left),-1,0,1,2. Each image shows variations
in gx from -19 to 19 and gy from -19 to 19.

Plate 4.13: Images of a TM hole and its deconvolution. This plate illustrates the
same TM and deconvolution as Plate 4.12 with a view of z -y planes.

The z-y images in Plate 4.13 explicitly show that the reconstruction of refractive
index works only in the shear direction. Notice that the values of z below and above
the hole in the deconvolution results do not have the same intensity as the interior
of the hole. We expect that they should because the regions have the same refractive
index. Because the DC value of the transfer function and the inverse filter are zero,
the values along the shear direction are reconstructed so as to preserve a zero average
value. Intensities in x-y planes both above and below the hole are near zero after
background subtraction. They remain near zero after the deconvolution. This is the
reason the intensity within the hole does not match that above the hole. This problem
can be resolved by deconvolving the data from the entire TM so that its boundaries
are within the sampled volume. We can then use the information that the background
volume has the same refractive index to recover the DC values in the shear direction.
This processing step has not been included in the deconvolution results shown and
remains a goal for future work.

A DIC image of an alligator lizard TM is shown in Plate 4.14. A subvolume
from the alligator lizard TM was deconvolved. One plane of this volume is shown
before and after deconvolution in Plate 4.15. The deconvolved TM makes certain
structural characteristics apparent. For instance, the original TM image has the
problem of ambiguity in structural interpretation of holes. That is, the holes look like
indentations or protrusions of a certain thickness. The deconvolved version resolves
that ambiguity; the holes clearly appear to be regions of lower refractive index. Also
small protrusions of higher refractive index are more apparent in the upper part of
the hole in the deconvolved result. Another small hole in the center of the image of
lower refractive index is visible in the deconvolved image. This feature is difficult to
identify in the original image.

Results in this section show that these image processing methods are valuable for
studying DIC images of the tectorial membrane and suggest that they are generally
applicable.
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Figure 4-8: A TM hole and its deconvolution. This figure illustrates the same T~1
and deconvolution as Plate 4.12 as plots of intensity along s (left), t (middle) and z
(right). The data are deconvolved using a measured PSF (processed as described in
Chapter 3) and the deconvolution filter in Equation 4.13 with TJ = 10 (Row B), 1000
(Row C), 10000 (Row D).
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Plate 4.14: A DIC image of the TM of an alligator lizard for one x-y plane. The TM
was isolated from the cochlear duct and immersed in an artificial endolymph solution
(concentrations in 10-3 molar: 1(+ 171, Na+ 2, Ca2+ 0.02, Dextrose 3, HEPES buffer
5) to mimic its native environment[5].
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Plate 4.14
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Plate 4.15: Images of a TM and its deconvolution. The subvolume (128 x 128 x 50)
of an isolated TM shown in Plate 4.14 was processed by subtracting the DC value.
It was deconvolved using a measured PSF (processed as described in Chapter 3) and
the deconvolution filter in Equation 4.13 with 1] = 1000 The top image shows one x-y
image of the subvolume. The bottom image shows the deconvolution results. The
deconvolution was performed with 1283 FFTs.
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Chapter 5

Discussion

We illustrated a method for three-dimensional reconstruction of an object based on
DIC microscope images. A signal processing model of the DIC microscope was de-
veloped. Parameters of this model for our microscope were measured. Deconvolution
based on this model was used to reconstruct 3D objects. The methods were tested
on simulated and measured data. We were able to reconstruct normalized refractive
index gradients in the shear direction. In general, the reconstructed results were a
better representation of the object's physical structure than the original images.

For the deconvolution tests, small microspheres were reconstructed more accu-
rately than large spheres. This inaccuracy may be a result of the model assumption
that the specimen only phase-shifts light that passes through. In fact, this light is
refracted and scattered. The microspheres act as lenses, focusing light to a point.
The larger microspheres refract more light and therefore cause greater inaccuracies.

There are several aspects of this project which need further developing. First
the validity of the model needs to be examined. The theoretical PSF and measured
PSF differ (see Section 3.4). This suggests deficiencies in our model. Currently, we
use a measured PSF to construct the deconvolution filter. If the model were made
more accurate, an analytical PSF could be used in the deconvolution. Deconvolution
results would then be less sensitive to measurement degradations.

If a measured PSF is essential to the method, the measurement could be further
optimized. We have not attempted to determine the minimum amount of processing
necessary to obtain an accurate PSF measurement. Each PSF measuren1ent is av-
eraged (lOOx) and background subtracted (see Chapter 3). The PSF measurement
is repeated before collecting data on a given day to compensate for slight changes
in the microscope configuration. This procedure is time-consuming and could be
unnecessarily conservative.

For the deconvolution described in Chapter 4, future work includes developing a
better estimate of noise to signal ratio. We currently use a constant approximation. In
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the test with simulated microscope images we've identified noticeable effects of using
this suboptimal estimate. Consequently, improving the estimate may significantly
improve the results.

Throughout Chapter 4, we report our results in terms of normalized refractive in-
dex. We are currently implementing a calibration scheme based on mapping phase to
intensity using the calibrated slider Wollaston prism (see Section 3.1.3). This calibra-
tion removes the effects of gain and offset that vary with microscope illumination and
camera gain/offset settings. This calibration allows us to obtain repeatable numeri-
cal results. It shows promising progress toward the goal of interpreting the results in
terms of the absolute refractive index.
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