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ABSTRACT

The destabilizing force responsible for rotordynamic instability in a shrouded turbine
has been measured experimentally and determined theoretically. The experiments were
done in a closed loop, freon based facility where the turbine rotor was capable of being
statically displaced up to 0.457 mm (18 mils) from its concentric rotating position. The
turbine was operated at its design speed of 3440 rpm and at two off design speeds of
2408 rpm and 3784 rpm where the mass flow rate and inlet stagnation pressure was
kept constant at 3.15 kg/s and 2.21 atm respectively. At these three speeds
measurements of the forces in the direction of displacement (a restoring force) and
perpendicular to the direction of displacement (potentially destabilizing force) were
achieved by using a system of strain gauges mounted in the rotor's shaft directly below
the rotor. These forces were also measured by analyzing the pressure distribution
around the outer circumference of the shroud. The data from strain gauge
measurements were repeatable and for operation at design with eccentricities varying
from -0.381 mm (-15 mils) to +0.381 mm (+15 mils) the magnitude of the destabilizing
force was found to be linear with magnitudes from -5.56 N (-1.25 1bf) to 15.57 N (3.50
1bf). The destabilizing forces calculated from pressure measurements for operation at
design were found to be smaller than strain gauge results, which was expected, due to
not accounting for the contribution from the aerodynamic effects (The Alford Force).

The theoretical model is based on the work of Kostyuk, Iwatsubo and Millsaps and is
an attempt to model the shroud of this turbine. This model is one-dimensional in the
circumferential direction and is coupled to the axial mass flow rate. A linear
perturbation approximation with harmonic solutions is used to arrive at a system of two
algebraic equations with two unknowns. The solution predicts the pressure and
velocity nonuniformity within the cavity of the shroud. The model is extended to
include the effect of inlet and exit pressure and velocity nonuniformities. This allows
one to analyze the effect these nonuniformities have on the model's prediction of the
pressure and velocity perturbation in the cavity. It was found that the inlet and exit
nonuniformities have a large effect on the model's predictions by increasing the
magnitude of both the restoring force and the destabilizing force.

The results of both experiment and theory were compared and it was found that the
model still under predicts the experimentally measured forces. However, the inclusion
of the model's dependence on inlet and exit pressure and velocity nonuniformities have
brought the model's predictions of the forces to within 37% of experiment compared to
220% before the inclusion of these nonuniformities. It was proven that the discrepancy
between theory and experiment are not due to the nonlinear effects. A fourth order
Runge-Kutta numerical solution to the time independent (non-whirling, statically
offset) nonlinear system of ordinary differential equations was completed. The
nonlinear results are very close to those results obtained from the linearized solution.

Thesis Supervisor:  Dr. Manuel Martinez-Sanchez
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background & Motivation

The literature contains many cases of severe vibration problems in rotating
machinery. One such case is that of the Space Shuttle Main Engine (SSME) High
Pressure Fuel Turbopump (HPFTP) and the SSME High Pressure Oxidizer Turbopump
(HPOTP) where unexpected severe vibration problems were encountered during initial
testing. The severity of the vibration problems was reduced after six months of
redesign at an average cost of half a million dollars a day.[4,10] From the point of view
of both time and money it is clear that a better understanding of vibration in rotating
components and a more comprehensive theory of rotordynamic instability is needed.

The term rotor whirl is used to describe a certain type of vibration inherent in
the initial tests of the SSME HPFTP and HPOTP. Generally, whirl is used to describe a
satelliting lateral (transverse) deflection of a rotating shaft. This deflection can trace
out elliptical orbits and in ideal cases circular orbits. Other deflections are possible,
such as longitudinal (axial) and torsional (angular), however, these type of vibrations
will not be discussed or investigated in this work. An ideal turbomachine has its
centerline matched with the axis of rotation and the result is the absence of whirl for all
speeds. In reality turbomachines operate with some amount of whirl since they are less
than ideal and operate in less than ideal conditions When rotor whirl continues to grow
in amplitude the machine is said to be unstable. The forces that develop which promote
rotor whirl are termed destabilizing forces and the reinforcing interaction of the forces

with the whirl is called rotordynamic instability.
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The problem of severe vibration in the Space Shuttle's Main Engine components
should further be discussed in order to build a foundation for the rest of this
thesis.[4,10] The HPFTP was designed to run at 37,000 rpm between the second and
third critical speeds (critical speeds are discussed in detail in section 1.2.1). During
initial tests, as the HPFTP was being spooled up to design speed, a nonsynchronous
rotor whirll was noticed at a shaft speed of 19,000 rpm. As the rotational speed was
increased accelerometer saturation was noticed at a shaft speed of 22,000 rpm where
the vibration amplitude was severe enough to stop testing. In the case of the HPOTP
whose design speed is at 30,400 rpm and produces 22,000 kW (29,000 hp), the whirl
began to develop at a shaft speed of twice the critical frequency and the whirl itself was
at the critical frequency. Therefore, both these turbopumps had vibration problems
which, before the design changes, rendered them inoperable. The case study of the
SSME HPFTP and HPOTP is meant to place due emphasis on the need to understand
destabilizing forces and rotordynamic instability. This thesis concentrates on the
experimental measurement of the destabilizing forces and the theoretical model of
rotordynamic instability for a shrouded? turbine. The use of a shrouded turbine is an
attempt to model the turbine in the SSME HPOTP.

Rotational shaft speeds of 30,000 rpm are quite high and it is important to
understand why turbomachines need to be designed to withstand such high rotational
speeds. The need for a compact size and hence, low weight is essential to aerospace
applications. It is known that power is proportional to the square of the dimensions and
to the cube of velocity, therefore, a compact size with high power output is obtained by
increasing the rotational shaft speed. Section 1.2 explains why high shaft rotational

speeds tend to destabilize rotating components.

11f one is unfamiliar with the meaning of synchronous and nonsynchronous whirl one may read section
1.2.2 at this time.

2For those who are unfamiliar with what is meant by a shroud, one may refer to Figure 2.4 and Figure
2.5. The shroud is a band with radial sealing knives which fits over the tips of the rotor blades in order to
prevent leakage flows over their tips from the pressure side of the blade fo the suction side of the blade.
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The next section contains a discussion of critical frequencies and rotor whirl,
followed by an explanation of the difference between forced vibration and self-excited
vibration. The chapter concludes with a formulation of a model to aid in a discussion
of rotordynamic instability. The following chapters present the experimental facility
where the shrouded turbine resides and where the destabilizing forces are measured.
The results of those experiments are presented and explained. Following the
experimental investigation, a theoretical model of the shroud turbine is developed. This
theoretical model attempts to explain how the fluid dynamics and geometry interact
within the shroud to produce instability. This thesis ends with a comparison of the

experimental data to the results obtained from the theoretical model.

1.2 Terminology of Rotordynamic Instability

Before a model is developed, certain terms related to rotordynamic instabilities
are reviewed. In this section, critical frequencies are reviewed, rotor whirl is defined

and the difference between forced and self-excited vibrations is explained.

1.2.1 Critical Frequencies

An unbalanced rotating disk shown in Figure 1.1 is used to illustrate and explain
critical frequencies.[5,10] In this simplified case gravity is neglected and the shaft is
taken to be massless. First, this disk is said to have the center of gravity located a
distance, e, from the center of the shaft. This eccentricity is represented by the distance
between points S (shaft center) and G (gravity center) in the A-A cross section view in
Figure 1.1. The eccentric center of gravity creates a rotating centrifugal force equal to

mo’e where m is the mass of the disk and @ is the constant frequency. This rotating
unbalance deflects the shaft and the shaft deflection is the distance r, between points B

(bearing center) and S in Figure 1.1 A-A cross section view. This deflection adds to the
centrifugal force and the total centrifugal force is mw’(r, +e).
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Shaft deflection is dependent on the bending stiffness of the shaft. Due to

bending, a restoring force is present which acts in the direction opposite to the

centrifugal force. If the bending stiffness of the shaft is given by K, and the deflection

is r;, then the restoring force is given by K, r,. Equating these forces one obtains

equation (1.1).

Kr,=ma’(r,+e) (1.1)

An unbalance, such as the eccentric center of gravity, creates a vibration in the plane of
the disk and the amplitude of the vibration depends on the angular speed (rotational
shaft speed) of the disk. These vibrations are largest at the natural frequency of the
system, that is, where the angular frequency, @, equals the natural frequency, @,.
Operation of a rotating system at its natural frequency can lead to large vibrations and

possible destruction of the shaft and its components.

The angular speed at which @ = , is termed the critical speed.
Mathematically the critical speed is found in terms of the bending stiffness of the shaft

and its mass. This is done by first solving equation (1.1) for the shaft deflection.

wz
rp=—t (1.2)

It can be seen from equation (1.2) that the deflection is infinite when K, = m®?,
therefore, the critical frequency is given by equation (1.3).

0,=0,= LY (1.3)
m

In order to gain insight into the relationship between the shaft angular frequency and its
critical speed, equation (1. 2) is rearranged and equation (1.3) is substituted into that

new equation and equation (1.4) results:
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@ 2
() (1.4)

1-(2)

It is seen in equation (1.4) that if a shaft increases its angular speed from below the

critical speed to above the critical speed the deflection changes sign and decreases in
magnitude. To explain this more precisely one is referred once again to Figure 1.1
where the cross section of the unbalanced rotating disk is shown and the deflection
magnitude versus the angular frequency is illustrated. For an angular frequency below
the critical frequency, the gravity center, G, is the furthest point from the bearing
center. As the angular speed is increased above the critical speed the gravity center, G,
reverses its relative position. This causes the gravity center, G, and the bearing center,

B, to converge and for the vibration magnitude to decrease as is illustrated by the

deflection vs. frequency graph. For very slow rotations r,= BS is practically zero, for
rotation at the critical speed r,= BS is infinite and for very fast rotational speeds the
center of gravity, G, is at the bearing center (r,= BS = ¢). Notice that for this final case
the maximum amplitude of vibration is the eccentricity of the center of gravity. Itis
observed that at very large rotational speeds the center of gravity does not move, for if
it did move the inertia force would become very large.

The model that is presented above is an extremely simplified model of a rotating
system. It is meant to illustrate how a shaft responds to an unbalance and in particular
at what angular speeds will the worst vibrations be expected. In a "real" system other
factors exist such as the fact that the shaft is not limited to vibrations in the plane of the
rotating mass and the shaft may contain more than one mass with any number of
supports. The shaft and bearings interact, and the rotating components can be operating

in various fluids with a wide range of viscous properties. These interactions can
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provide damping which may be positive or negative.3 The components of the system
may also be subject to both steady and unsteady loads.

As one can see the problem of determining the systems properties becomes
quite complex and impossible to solve when one takes into account all the variables.
Estimates of the actual critical speeds are used, however, it must be emphasized that
such a complex system has an infinite number of critical speeds. Most engineers and
researchers only concern themselves with estimating the first two or three critical
speeds. These estimates are usually obtained by creating a model of the system which
only accounts for some of the variables, therefore, the system begins to resemble the
simplified model presented above. The better the model, the more accurate the
estimates and the more difficult the model is to solve.

The first couple of critical frequencies are very important to estimate since the
operating point of a machine will tend to lie between these critical frequencies and,
thus, will have to be brought through those potentially damaging speeds. When
components are designed they must provide enough damping such that the machine is
able to operate with very small levels of whirl at its designated speeds. Also, enough
damping must be provided such that the machine is able to operate below or be brought
through any of the critical speeds without having a destructive outcome. The severe
amplitudes associated with operation at the critical speeds does not occur at once, it
takes some time to build. Therefore, a machine is usually able to be brought through

the critical speeds without any damage whatsoever.

1.2.2 Whirl
Some amount of whirl is always present in rotating machinery.[10] It is when

the whirl becomes excessive and is able to violate the clearances within the machinery

3Dr¥l friction and oil whip are two causes of self-excited vibrations which can occur in rotating
mac ltll}erylalzl% may be thought of as having negative damping. Self-excited vibration will be explained
in section 1.2.3.
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that this is of major concern. The simplified example presented in the previous section
is a little narrow or misleading when thinking about what types of whirl can occur. The
example given concentrates on a forced vibration to place emphasis on critical
frequencies, however, such an example is insufficient when one wishes to explain the
types of whirl which occur in rotating machinery. In pure simplified forced vibration
(as shown in the previous section) the whirl is synchronous. A synchronous whirl
means that the frequency or whirl, £, is equal to the frequency of rotation, @ (2 = ).
Two other classes of whirl are also possible and they are termed
subsynchronous, when €2 < @, and supersynchronous, when 2 > @. The whirling
motion is either in the forward or backward direction. It is possible for several different
whirls to be present at the same time. As mentioned in section 1.1, the SSME
turbopumps suffered from subsynchronous whirl which was locked to the natural
frequency of the system. In order to understand how this type of whirl is possible self-

excited vibrations are discussed. Sections 1.2.3 and 1.3 expand on these ideas.

1.2.3 Forced vs. Self Excited Vibration

The definitions of the two types of vibrations will be reviewed and then it will
be shown that self-excited vibration is pertinent to the matter at hand. Both forced and
self excited vibrations can cause rotordynamic instability.

It is explained in section 1.2.1 that forced vibration in rotating machinery occurs
due to some type of unbalance and the resulting whirl is always synchronous.
However, an unbalance is not the only means of producing a forced vibration. A forced
vibration may also be caused by a force which occurs once per turn, like a rub, or a
concentrated acrodynamic force fixed to the casing. The amplitude of this type of whirl
is largest at the critical frequencies of the system and "the sustaining alternating force
exists independently of the motion and persists even when the vibratory motion is

stopped” [5]. Forced whirl is always in the forward direction.
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Self-excited vibration is sustained through the extraction of energy from some
outside source due to the whirl. It is important to understand this concept which is
reiterated in the following way: "the alternating force that sustains the motion is created
or controlled by the motion itself; when the motion stops the alternating force
disappears.”[5] The flutter of an aircraft wing is a perfect example of self-excited
vibration. Flutter is not noticed until a certain velocity is achieved. As the fluid
velocity with respect to the wing is increased the flutter amplitude grows. It is not until
the motion of the fluid is stopped or goes below a certain velocity that the vibration
stops. Another way of looking at self excited vibration is in the case that is of
importance in this thesis, namely the fluid effects contributing to the whirl of a
shrouded turbine rotor. The whirling motion is extracting energy from the passing fluid
in such a way as to increase the rotor's whirl amplitude. Remember that in the case
study of the SSME HPOTP the whirl began to develop at a shaft speed of twice the
critical frequency and the whirl itself was at the critical frequency. This is a perfect
example of self-excited vibration and subsynchronous whirl.

Whirling at the critical frequency of the system is expected in the case of a self-
excited system. Self-excited vibration has no forcing function and is simply
represented by a homogeneous equation. It is known that in a one-dimensional free
vibration with zero damping the frequency of vibration is the natural frequency of the
system. Taking this one step further, when one adds damping (positive or negative) to
the one-degree of freedom system, the damping force lowers the natural frequency, but
not by much.4 In most practical cases the difference between the natural frequency of
a damped system and that of an undamped system is negligible. This statement leads
one to support the claim that self-excited vibration is considered to occur at the

(undamped) critical frequency of the system [5].

4In the 2-dimensional case it is the cross damping and direct stiffness which affect the frequency. This
will be shown in section 1.3.
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Mathematically, self-excited vibration has no forcing function and in a one
dimensional vibration it is viewed as a free vibration with negative damping. The
negative damping is destabilizing. When a two dimensional vibration is considered the
destabilizing mechanisms are more complex and generally involve negative direct
damping and positive cross stiffness.5

Self-excited vibration may not occur until a certain rotational speed is reached.
This speed is termed OSI (Onset Speed of Instability). Above OSI, the instability
mechanism is first noticed. However, different types of self-excited vibrations have
different "onset” mechanisms, and some have none. For the case of the shrouded
turbine the shroud-driven and aerodynamic instabilities are present at all speeds,
therefore, there is no OSI (or OSI is at a speed of zero). The instability present in the
shrouded turbine increases with shaft power and at some power level it is able to
overcome machine damping at which point the machine is in danger of destruction.

In order to compare and summarize these two type of vibration problems in a
single frame one is now referred to Figure 1.2. The vertical axis is the vibration
amplitude while the horizontal axis shows the rotational speed. In the discussion
above, the amplitude of forced vibration reaches its maximum at the critical frequency,
where rotational speed (@) is equal to the critical frequency (®@,). As the shafts
rotational speed is increased above the critical frequency the vibration amplitude
decreases. The effects of self-excited vibration are always present in the shrouded
turbine, however, do not become severe until high power levels are reached. Figure 1.2
shows that the amplitude of vibration due to the self-excited force grows as the shaft
rotational speed is increased. This is the reason why during initial tests of the HPFTP
the effects of the self-excited vibration where not noticed until high rotational speeds of
19,000 rpm were reached. One should now understand the importance of

distinguishing between the two types of vibrations. It should also be clear why the need

5The 2-dimensional case of instability will further be discussed in section 1.3.
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to understand self-excited vibration is pertinent when investigating vibration problems
such as those that were present in the initial tests of the SSME HPOTP and the SSME
HPFTP.

1.3 Rotordynamic Instability Model

A two degree-of-freedom model is developed to explain the lateral motion of a
rotating disk immersed in a fluid. This is a simplified model which attempts to explain
the lateral destabilizing motions which are observed in turbomachines.® Of course, as
in all simplified models not all the variables are taken into account, however, the
pertinent information is included and stability criteria are extracted.

Figure 1.3 illustrates the model used. The shaft is massless and has a stiffness
of K. One end of the shaft is fixed while the other is free to move in the vertical
direction. Itis assumed that all the mass is concentrated within a thin disk of mass m
and that this disk is limited in it's movement to the X-Y plane. There is a force due to
the disk's position and is given by equation (1.5).

P Ks+Kxx ny X Ls
s K K.+K, |y (1.3)

»

The stiffness variables K ,, K_, K

yx?

and K » arise from the fluid interaction with the

rotating mass. Both K, and K are termed the direct stiffness because they relate a

displacement in one direction to a force in that same direction. The other two
stiffnesses, K, and K ,, are called cross stiffnesses because they relate a displacement
in one direction to a force perpendicular to that direction. The presence of these cross

stiffness terms affect the model's stability. In the physical sense one can predict why

these cross stiffness can be destabilizing. Since K, and K, relate a displacement to a

force perpendicular to that displacement this tangential force will tend to promote whirl

6In particular we wish to model the SSME HPOTP. This will be further discussed in the Experimental
sections located in Chapters 2 and 3.
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and destabilize the rotating components if the tangential force and the whirl are in the
same direction. If the whirl is in the opposite direction to the tangential force, the cross
stiffness terms tend to stabilize the whirl.

Since the thin disk is free to whirl it also has velocity in the X-Y plane,
therefore, the fluid has damping effects on the rotating components and the force due to

the disk's velocity is given by equation (1.6).

e 1
D——ny ny j’ (.6)

The direct damping terms (C,, and C,)) relate the disk's velocity in one direction to a

force in that same direction, while the cross damping terms (C, and C,) relate the

disk's velocity in one direction to a forces perpendicular to that velocity. The terms
which are important for stability analysis are discussed once the solution is derived.
The same type of argument as presented for the derivation of the forces due to
stiffness and damping can be applied to inertial effects and higher order terms,
however, for simplicity only the direct added mass inertial terms are used. Applying
Newton's Second Law to the stiffness, damping, and inertial forces, one obtains the

following system of differential equations.
m+M,_ 0 ¥ [C. C,Ix] [K,+K, K, |x] =
.t Tt =0 (1.7)
0 m+M |5| |C, C, |y K, K.+K |y
Equation (1.7) is a homogeneous equation. The solution to this equation brings insight
into the stability of the model and reinforces the predictions of stability presented
above.
In order to solve equation (1.7), first the circular symmetry of the problem is

taken into account, from which one obtains the following simplifications: [ ] =[],

and [ ] =~[ ],.. Next, one assumes a complex displacement vector for the solution.

This complex displacement vector is given by equation (1.9).[15]
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z=x+iy =7z 1.9)

If |K ,,| << K, and Q|C,.,.| << K, the frequency and amplitude of the displacement vector

will be given by A in equation (1.10). The amplitude is the real part of the eigenvalue
while the frequency is the imaginary part of the eigenvalue.
K C

X

2K, (m+M,,) ) 2(m +xan)

K K C
+i| f—+ o= + -]
[ \/m+MJDt Z\IKs(m"'Mu) 2(m+Mxx)J

There are a few things to notice about equation (1.10). First, if the second and third

A=

+

(1.10)

terms of the imaginary part of equation (1.10) are small compared to the first term, then

the whirl occurs at nearly the natural frequency of the system. This is discussed above’.

Xy

t ,
24K, (m+M,,) e

Next, notice that one of the roots might be unstable due to the +

If this cross stiffness-induced term interacts with the direct damping-induced term,

- -——C’“——, resulting in a positive eigenvalue, the system is unstable. Once again,
2(m+M,)

the instability that might arise due to cross stiffness is anticipated, since cross stiffness
creates a cross force which when it acts in the direction of the whirl it tends to
destabilize the rotating disk. Lastly, it is the direct damping term, C,,, not the cross
damping term, C,, which affects the stability of the system. It is only the frequency of

the system that is slightly changed due to cross damping.

1.4 The Destabilizing Forces

TRemember that the whirl in the SSME HPOTP and HPFTP occurred at first critical frequency (natural
frequency) of the system. Also, remember that it was stated previously that whirl due to self-excited
vibrations usually occurs at the critical frequency of the system. (See sections 1.2.1-1.2.3)
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In section 1.3 the rotordynamic stability model is derived by assuming forces
due to the shaft's stiffness, the fluid's stiffness and the fluid's damping. These forces act
on the disk because of the eccentricity of the system. From these components, stability
criteria are derived. However, a physical reason why these forces exist has not been
given. In this section a brief explanation of the physical mechanisms that give rise to
these forces is explained and, thus, aids in the understanding of the reasons for certain

measurements undertaken in the experimental facility (chapter 2).

1.4.1 Nonuniformity in Circumferential Pressure

In its concentric position the pressure distribution around the circumference of
the shrouded rotor is uniform, both within the seal and upstream and downstream of the
rotor. As the rotor is moved eccentric this azimuthal uniform pressure distribution is
replace by a nonuniform distribution of pressure. As is shown by experiment, this
nonuniformity is present within the shroud, upstream of the rotor and downstream of
the rotor. It is the nonuniformity in pressure within the cavity of the shroud (between
the knives of the shroud) that gives rise to a net force placed on the rotor. This force is
calculated via equations (1.11) and (1.12).

Fy=-R,[" [ P(6,x,1)Cosbuxde (1.11)
Fr==R,[."[ P(8,x.1)Sindxd6 (1.12)

where F), is the normal force or the force in the direction of displacement, F; is the

tangential force of the force perpendicular to the direction of displacement, P(6,x,?) is

the pressure distribution, / is the length of the land (distance between the shroud's knife
edges) and R, is the radius of the seal. Figure 1.4 illustrates the shrouded rotor

eccentrically positioned within the casing along with the resulting forces due to the

nonuniform pressure distribution. The pressure distribution in the axial direction is
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uniform between the sealing knives, therefore, equation (1.11) and (1.12) may be
simplified to:

Fy =~R[ P(6,1)Cos6d6 (1.13)

Fy =~RI[_P(6,1)Sin6d6 (1.14)

Throughout this work the normal force is sometimes be referred to as the direct
force, F,, and the tangential force is sometimes be referred to as the cross force, F,.
The direct and cross forces are a special case of the normal and tangential forces. The
direct and cross force terminology is used in this experimental work since the turbine is
statically displaced (whirl is zero).8 A statically displaced turbine allows one to map
the forces directly to an inertial frame (lab reference frame), therefore, the forces are no
longer function of whirl and time. Because of this, equations (1.13) and (1.14) are

further simplified to:

F,=F, =-R][ P(6)Cos6ds (1.15)

F,=F, =R P(6)Sin6de (1.16)

y

As can be seen by the above equations, if the pressure nonuniformity within the
cavity of the shroud is known the direct and cross forces can be computed. The
experiments explained in chapter 2 measure this pressure distribution within this cavity.

In chapter 4, the theoretical approach to determining this nonuniform pressure is
shown. However, in order to calculate this asymmetric pressure distribution within the
shroud, using a theoretical approach, the magnitude and phase of the nonuniform
pressure upstream and downstream of the shrouded rotor must be known. For a simple

seal-land geometry, with no turbine blades, this pressure can be calculated theoretically.

;Thﬁ.%tgtically displaced turbine experiments will further be explained in chapter 2 (Experimental
acility).
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[17] However, no simple theory exists for a shroud in the presence of the eccentric
turbine. Experiments are used to determine these upstream and downstream pressure
nonuniformities. The theory is then used incorporating these measured values. The
result of the theoretical calculation gives the pressure distribution, P(8,t), within the
land of the shroud. Equations (1.13) and (1.14) are then used to find the normal and
tangential forces. If the theory is run with the shrouded rotor statically displaced then
equations (1.15) and (1.16) are used to find the direct and cross forces.

1.4.2 The Alford Effect

The azimuthal nonuniformity in pressure is one of two contributions to the
existence of normal (direct) and tangential (cross) forces. The second contribution is
due to the Alford effect.[1]

A turbomachine which is operating in an eccentric position has a variation in
blade tip clearances around the circumference of the rotor. Alford theorized that when
a turbomachine is operating in this state the blades which are closer to the casing are
operating locally more efficiently than those blades which have a larger tip clearance.
Since, the blade forces vary approximately with the efficiency those blades which are
closer to the casing have a heavier loading than those which are further from the casing.
This variation in blade forces, when integrated around the circumference of the rotor
yields a net force which acts both in the direction of the rotors displacement (normal
force) and tangential to that displacement (tangential force). Figure 1.5 illustrates this
concept in schematic form. As is seen in the figure a large blade force exists and when
this force acts in the direction of rotor whirl the system is unstable.

Note that Figure 1.5 illustrates this effect with an unshrouded turbine, however,
this effect is also present in a shrouded turbine. The Alford force arises whenever there
is blade tip leakage, however, this leakage is reduced in the shrouded turbine because of

the shroud. Therefore, the reduction of blade tip leakage causes the shrouded turbine to
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exhibit a smaller Alford effect than that which exists in an unshrouded turbine. Also,
the Alford force in a shrouded turbine is small compared to the forces developed from
the pressure nonuniformity, however, this Alford effect is still not negligible.

One result of Alford's efforts is a widely used nondimensional variable which
describes the magnitude of the normal (direct) and tangential (cross) forces developed
due to eccentric rotation. Since our experimental turbine is prevented from whirling
these forces will be referred to as direct and cross forces. The forces are the summation

of the two effects, the pressure effect and the Alford effect. This Alford factor

nondimensionalizes these force by the torque developed, T),,the mean radius of the
rotor, R, the blade height, B, and the eccentricity, e. This is shown by equations

(1.17) and (1.18).

2(5 R B,
4
= 1.17
B; T, (1.17)
F
e
= 1.18
b=t 118

Chapter 3 incorporates these nondimensional variables when presenting the

. : . F F
experimental results. The bracketed terms in the above equations, —* and —, are
e e

simply the slopes of the linear curve fits through the data point on a plot of direct &
cross force vs. eccentricity.
Once again, the total direct and total cross force are the summations of the

forces contributed by both the pressure effect and the Alford effect.

1.5 Objective
The primary objective of this work is to measure the direct and cross forces on a

shrouded turbine (Chapter 2 and 3). These forces are determined by a direct



measurement via a rotating dynamometer. They are also determined by a second
method which requires the measurement of the pressure distribution around the
circumference of the rotor (pressure effect) and the measurement of the velocities
circumferential around the exit of the rotor (Alford effect). Through these
measurements the direct and cross forces are determined.

The final objective is to expand upon a theoretical model (Chapters 4 and 5).
This model is an extension of the work of several authors [12, 9, 16,17], most recently
Millsaps [16,17]). The contribution presented in this work consists of the incorporation
of nonzero upstream and downstream nonuniformities, and of their effect on the
pressure within the cavity of the shroud. The results of these calculations are compared
to those measured experimentally. The development of a good theoretical model is
essential. From a good working model designers of these turbomachines gain
knowledge of the proper geometry and operating conditions such to minimize pressure

nonuniformities in order to minimize the resulting destabilizing forces .
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Figure 1.1: Representation of rotor whirl due to a mass unbalance of a
weightless vertical shaft without damping.[5,10]

36



VIBRATION
AMPLITUDE

FORCED SELF-EXCITED
T —
=N ROTATIONAL SPEED

Figure 1.2: Graph of Vibration Amplitude vs. Rotational Speed Illustrating
the Differences Between Forced and Self-Excited Vibrations.
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Figure 1.3: Two Degree-of-Freedom Model Used to Derive the Equations
to Explain the Lateral Motion of a Rotating Disk Immersed in a
Fluid.
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Figure 1.4: Pressure Effect Coordinate System and the Pressure
Nonuniformity.
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Figure 1.5: Alford Force Destabilizing Mechanism.[8]
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Chapter 2

Experimental Facility

2.1 Preliminaries

An experimental facility was designed by Jery, Qiu, Martinez-Sanchez and
Greitzer to study destabilizing forces and the associated flow conditions for concentric
and statically offset eccentric turbine rotors.[11] Loose constructed the facility and
performed initial tests on an unshrouded turbine.[13] Song continued tests on the
unshrouded turbine for various geometric configurations.[15] The final investigation
into destabilizing forces undertaken within this facility are the static tests performed
with a shrouded turbine. This thesis concentrates on the experimentation performed
using the shrouded turbine. The experimental facility is reviewed, the modification
made to the turbine's rotor is explained and the series of tests performed are outlined
within this chapter.

At this point it is important to understand that only static experimentation can
be undertaken in this facility. This means that the turbine's rotor can only be offset
statically. Therefore, the stiffness terms are the only terms that are found. Higher order
terms involving velocities, accelerations, etc. can only be measured if the shaft were set
free to whirl in a controlled environment. This type of facility exists, however, it was
designed to measure rotordynamic instabilities in seals (shrouds) alone. [17] Millsaps
found that fluid damping (direct damping terms: C_ and C,,) is always positive,
therefore, it is the magnitude of the cross stiffness terms compared to the direct
damping terms which will determine the systems stability (refer to equation (1.10)). As

mentioned above, the stiffness is what is found using this experimental facility.
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The pressure effect and the Alford effect both create destabilizing forces. This
experimental facility is designed to measure that total destabilizing force, the force only
due to the pressure effect and the force only due to the Alford effect. The experimental
and theoretical work done on the rotordynamic instability of seals by Millsaps and the
experimental work of Loose and Song involving destabilizing forces in an unshrouded
turbine are both very important foundations for this thesis. The experimental work
explained here involves both a seal of similar geometry to that used in Millsaps
experiments and a modified version of the turbine used in the unshrouded experiments
performed by Loose and Song. This work will show how the direct and cross forces

are measured experimentally and, in later chapters, calculated theoretically.

2.2 The Layout of the Experimental Facility

The experimental facility is a closed loop facility where air or Freon 12 may be
used as the working fluid. All the tests carried out within this work are done with freon
as the working fluid. It will become clear why freon was chosen in section 2.2.1
Turbine Test Section.

First, however, an overview of the facility is presented and please note that one
may refer to the following references if additional information is needed: [11,13,14,15].
Figures 2.1 and 2.2 [13] show the front view of the facility and the side view of the
facility respectively. Upon viewing Figure 2.1 one notices that the fluid travels around
the loop in a counterclockwise direction. A 100 hp electric motor and compressor
assembly (located at 2 in Figure 2.1 or at 1 and 2 respectively in Figure 2.2) provide the
energy to the fluid and a heat exchanger (located at 3 in Figures 2.1 & 2.2) removes any
excess heat added to the fluid by the compressor. Within the loop one will find flow
straighteners, and a Venturi meter whose locations may be seen in the figures. The test

section which contains the stator and rotor along with a battery of testing instruments is
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located at 1 in Figure 2.1 and at 6 in Figure 2.2. Its associated exhaust plenum is
located just below within the test stand.

The fluid transmits energy to the rotor and this energy must be damped in order
to control the rotational speed. Also, for calibration purposes the rotor needs to be
rotated without the use of a fluid. The damping is provided by a DC generator-resistor
network and for calibration purposes the rotor is powered by a DC motor. The DC
motor and the DC generator are combined within one unit which is located at 14 in
Figure 2.2. The excitation field of this motor/generator can be varied to control the
turbine speed. Along with the control of the rotational speed, the mass flow rate of the
loop must be controlled. This is done with the use of the throttle valve located at 7 in
Figure 2.1 and also with the use of a bypass loop and its associated servo driven valve
located at 4 and 5 respectively in Figure 2.1.

The above information is of a general nature and should provide one with
enough background on how the loop is organized and on the main areas where control
is needed. The following subsections go into greater detail about what is discussed
above. In particular, section 2.2.1 describes the stator-rotor assembly, the
modifications made for shrouded turbine tests and the actual test conditions that are

used to provide a realistic test environment.

2.2.1 Turbine Test Section

It is important to understand that the primary objective of this facility is to
measure the direct and cross forces that act on the rotor when the rotor is offset from its
concentric rotation. The test turbine developed for this facility and used in the
unshrouded turbine tests is a 1:1 replica of the SSME HPFTP (first stage only). For the
work presented here, this turbine's rotor is modified to incorporate a sealing shroud.

The discussion begins with an explanation of the stator-rotor stage and the
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modifications made to that stage for shrouded tests. This section concludes with the
incorporation of that stage within the test section area.

Figure 2.3 shows a machine drawing of the unshrouded turbine's test rotor.
Since, this rotor is a 1:1 replica of the SSME HPFTP's rotor the geometric ratios and
flow angles are preserved, therefore, the flow and work coefficients are the same as in
the SSME HPFTP's rotor. Both the test turbine and the actual SSME HPFTP turbine
have low Mach numbers (M<0.5). Freon is used as the working fluid in order to
achieve realistic Reynolds numbers within the testing environment. The SSME HPFTP
operates in the turbulent region at a Reynolds number of 5.6x100. Therefore, it is
important to be in the turbulent region when performing these test because operation
below the turbulent regime would introduce difficulties in predicting how factors such
as blade aspect ratio and solidity affect performance.[13] Using Freon in the test
facility produces a Reynolds number of 9x103 which is above the laminar-turbulent
transition region. Basically, the use of Freon allows testing to be performed within a
reasonably sized closed loop facility where flow conditions are realistically matched to
existing aerospace applications. |

For the tests presented in this work the unshrouded turbine shown in Figure 2.3
is modified with a full shroud band fitted with two sealing bands. In the interest of
brevity the entire shroud band-sealing band combination is simply referred to as a
shroud in this thesis. The entire shroud is shown in Figure 2.4 and a cross section view
is shown in figure 2.5. The band is designed with a 2/1000 inch (2 mils) interference
and is shrunk-fit over the blades. The blades were previously cut and ground to the
required height (reduced by 30%) in order to accommodate the shroud. Note that the
shroud length is such as to cover exactly the blade tip axial chord. The tensile stress
developed in the shroud due to the shrink-fit is 2x1011 N/m2, well within the strength
of stainless steel. It is also verified by calculation that the additional bending stress due

to the slight straightening tendency of the band between blades is negligibly small.
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This is because of the large number of blades, which makes the bowing between blades
very slight. Centrifugal effects can at most add the equivalent of 0.5/1000 inch (0.5
mil) to the band radius. Therefore, even if centrifugal growth of the rest of the disk is
ignored, the fit should remain tight, which it did. No significant differential thermal
effects are expected.

The sealing band angles and tip thicknesses are similar to those used by

(o]
Millsaps in his seals rig.[17] The ratio lTaan 6

distance between knife edges and 6 is the nominal gap. This ratio is important because

is approximately 2.0, where / is the

it provides information on how much fluid escapes directly over the second sealing
knife due to the jet created by the first sealing knife. If the ratio is to small, then most
of the fluid entering the seal escapes via the jet created by the first sealing knife and
there is no sealing effect.

The stator and shrouded rotor are located within the test section at locations 13
and 9 respectively as shown in Figure 2.6.[15] Further upstream, however, the flow
first enters the test section area where it encounters the honeycomb flow straightener
and wire screen (1 & 2 respectively in Figure 2.6). The dome of the stator assembly
and the stator blades are next as the flow travels vertically downward through the test
section. At 0.295 inches after the trailing edge of the stator the flow begins travel
through the shrouded rotor. Since the casing is left smooth and hence the shroud is not
recessed, the turbine is not as efficient! as when the rotor was unshrouded2. On the
other hand, this configuration is very similar to the configuration presented in Millsaps
work which allows for cross comparisons. [17]. The outer casing, identified by the
number 12 in figure 2.6, is highly instrumented with velocity probes, static pressure

taps and thermocouple gages. This casing has the ability to rotate such that the

1The operating point (mass flow rate & rotational speed for largest efficiency) is shown below.
2See the work of Loose and Song, references [13] & [15] respectively.
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instrumentation may be used throughout the circumference of the test section. Further
discussion of the instrument locations is discussed below.

Upon leaving the rotor the flow travels through the remaining part of the upper
test section. The rotating dynamometer (location shown by 14 in Figure 2.6) is located
in this area within the shaft assembly. The forces acting upon the rotor are directly
measured by this rotating dynamometer and this device is explained in greater detail
below.

The flow enters the lower part of the test section next. This area contains the
means to offset the rotor from its concentric position. Turbine-offsetting rods,
identified by the number 16 in Figure 2.6, are used to displace the rotor statically in a
linear direction either to the left or the right. This displacement is considered the X-
direction within this report and the forces in this direction are called direct or normal
forces. The Y-direction is perpendicular into and out of the plane of the paper and the
forces associated with this direction are called cross or tangential forces.3 In order to
secure the eccentric position of the shaft and rotor at a given eccentricity stainless steel
shims are inserted at location 11 in figure 2.6 and the bolts identified by the number 15
are tightened. Concentric tests and eccentric tests with an eccentricity up to the
nominal gap of 29/1000 inch (29 mils) are possible. For safety reasons and to preserve
the experimental facilities integrity, eccentricities are limited to a maximum of 18 mils.

The flow exits the test section into an exhaust plenum. In the exhaust plenum
one can locate the optical encoder identified by 18 in Figure 2.6. This encoder broke
well before any shrouded testing began. The encoder was an essential device which
locked the sampling of forces by the dynamometer and its related equipment to 32
times every revolution no matter what the speed. A second method was developed in
order to overcome the problem of the broken encoder. This method uses a 32 tooth

gear mounted on the bottom section of the shaft with a proximeter probe facing the

3Remember, the presence of a cross force will be destabilizing if the cross force is in the direction of
whirl. These are static experiments, whirl is inhibited, however, cross forces are measured.
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teeth of the gear. The proximeter provides electrical signals identifying the passing of
each gear tooth which provides a triggering mechanism similar to that of the optical
encoder. Circuits were developed in order to take these electrical pulses and convert
them to the method compatible with the existing equipment and software. This new
method is not as reliable as the optical encoder and before the reliability problem was
identified and solved this new method gave mysterious results which cost nearly a year
of lost time. Further discussion of the reliability of this new triggering system is

provided when the data reduction procedures are discussed.

2.2.2 Upper Turbine Test Section: Stator-Rotor Geometry

This facility is built with the capability to vary stator and rotor blade spacing
along with the capability to vary the amount of gap between hubs of the stator and
rotor. The geometrical variables are quite important, so much so, that Song devoted
much of his work into investigating the variation of these parameters. Figure 2.7
presents these variables through a schematic diagram of the upper turbine test section.
The variable d is the distance from the trailing edge of the stator blade to the mid-span
of the leading edge of the rotor blade. The rotor-stator axial spacing is d=0.295 inches.
The mid-span chord length, c, of the rotor blade is 0.870 inches. The rotor blade height
is designated, B,,, and has a value of 0.652 inches. The blade height does not include
any section of the shroud, which is shown as a black strip in Figure 2.7. The hub-to-
hub distance between stator and rotor is d'=0.005 inches (5 mils). This distance can be
easily changed by the insertion of spacers. In this work, a spacer of thickness 0.120
inches is used and in Figure 2.7 is represented by a black box attached to the stator.
Once again the nominal gap is given by g, and is 0.029 inches (29 mils).

The configuration of the axial gap in this shrouded turbine is the same as two of
the configurations that were completed by Song in his unshrouded tests, namely,

d'=0.57% and d=33.9% which are given as percent of chord.[15] The stator in these
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shrouded tests is the same stator used in the Song's unshrouded turbine tests. This
stator has an exit angle of ap = 70°. In the unshrouded case it is fairly easy to calculate
inlet conditions at the rotor because of the un-obscured flow field. Therefore, at this
point the reader should be made aware of some of the difficulties that the shroud
creates when one wishes to determine flow conditions at the rotor and at the shroud
entrance. The flow reaches the seal region directly from the stator exit, leaving the
stator with an angle to the axial direction of o2 = 70°, and the tangential velocity at the

seal inlet is (c,) _ Tan70°. Notice that, because of contraction, (c,) . <(c,),,,- In

addition, the presence of the unrecessed shroud acts as an obstacle to the flow and
further reduces ¢, near the outer casing. Thus, some care must be exercised in
estimating the tangential velocity at the shroud inlet. These estimates of tangential

velocity are discussed further when the shroud theory is presented.

2.2.3 The Flow Loop

For all the test presented in this work Freon-12 is used as the working fluid. In
order to pressurize the loop with the freon all the air must first be evacuated from the
loop using a vacuum pump. Then the loop is pressurized with the freon by using
standard holding canisters of pressurized freon. For all the tests, the loop was either
brought to a stagnation pressure of 1.24 atm or 2.21 atm. The loop is capable of a
maximum absolute pressure of 2.36 atm (34.7 psia). One should note that all the air
can not be evacuated from the loop. The vacuum pump can bring the pressure within
the loop down to 0.028 atm. If the vacuum pump is used before each run to evacuate
the loop and then the freon is added to the loop, approximately 1% of the fluid is air
when the loop is running at its design condition of 2.21 atm. In the tests it is assumed
that the loop is pressurized with 100% Freon, therefore, the error in density may be

calculated using equation 2.1.[13]
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The equation is derived from the ideal gas relations, where Y is the mole fraction and
M is the molecular weight. For 1% air within the loop the density is overestimated by
0.77%. This has a negligible effect on the results. A more comprehensive treatment of
the specifics of the experimentation and the results will be covered in the next chapter
and it is seen section 3.1.3 that the air content within the loop was probably larger than
the 1% discussed here.

The Freon is circulated throughout the loop by a 90 hp (67 kW) compressor
driven by a General Electric 100 hp (75 kW) AC motor (see Figure 2.2). The
compressor imparts energy to the freon and causes the Freon temperature in the loop to
rise. The turbine absorbs approximately (15 kW), therefore, the heat exchanger is rated
at 177,430 btu/hr (52 kW).

The mass flow rate is measured by a B I F Plastic Insert Venturi Tube, whose
location within the loop can be seen at 8 in Figure 2.1. Throttle valves and a by-pass
loop control the mass flow rate. The throttle valves are hand operated and are sufficient
to control the mass flow rate for unshrouded turbine experimentation. However,
shrouded turbine experimentation requires the use of the by-pass loop because the hand
operated throttle valves prove to be insufficient to control the mass flow rate accurately.
The flow through the by-pass loop is controlled by a servo driven butterfly valve and
this loop allows a fraction of the flow that exits the heat exchanger to directly return to
the compressor, thereby by-passing the turbine test section. This by-pass scheme may
be followed in Figure 2.1.

The unshrouded turbine (investigated by Song) has an optimal efficiency of
79% at a mass flow rate of 4.48 kg/s for a wheel speed of 3440 rpm. Because of the
reduced blade height, down from 0.941 in (23.9 mm) for the unshrouded turbine to
0.652 in (16.6 mm) for the shrouded turbine, with the wheel speed and the average
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pressure remaining the same as in the unshrouded turbine the flow rate for best
efficiency, theoretically should be reduced by approximately the same factor, to
4.48x(16.3/23.9) = 3.06 kg/s. A series of tests were conducted to verify this and to
select the nominal conditions for the experimental tests into these destabilizing forces.
A design operating point was found by varying the mass flow rate at turbine rotor
speeds of 2000, 2408, 3000, 3440, and 3784 rpm and recording torque, pressure and
temperature measurements in order to calculate the total-to-static efficiency. The result
is shown in Figure 2.8. Figure 2.8 is a graph of efficiency vs. the mass flow rate for the
speed of 3440 RPM, which was determined to be the speed where the optimal
efficiency lies. It can be seen from Figure 2.8 that the flow rate which yields the
highest efficiency is m=3.15 kg/s. These tests were conducted at 2.2 atm mean
pressure and they yielded results close to the simple estimate presented previously. It
was decided, in analogy to the other configurations, to conduct static force
measurements at the pressure of 2.2 atm, at the flow rate of 3.15 kg/s and at
0=0.70,, ®=1.0w, and at ® =1.1w,. Since the shroud is not recessed, the
efficiency of the shrouded turbine is somewhat degraded from that of the unshrouded
turbine, 7, = 74% for the shrouded compared to 177, = 79% for the unshrouded [15].
The pressure ratios for 3440 RPM are shown in Figure 2.9 and are somewhat lower in

this shrouded turbine, due to smaller flow acceleration in the stator.

2.2.4 The Transmission and Power Absorption System

The turbine operating point was discussed in the previous section which
required one to have the knowledge of the complete operation of this facility.
However, the process of controlling the speed of the turbine has not yet been explained
completely. Therefore, in this section, a complete explanation of the transmission and

power absorption system is given.
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Once again, the transmission and power absorption system are shown in Figure
2.2 atlocation 14. This system is responsible for the absorption of the power created
by the turbine as well as powering the turbine when the compressor is shut down. Two
Hewlett Packard DC power supplies are used to provide power to the field and
armature in the DC motor/generator. When the system is operating such as to absorb
power only the motor's field has electricity supplied to it. The electrical energy created
is then dissipated through a mesh of resistors. The resistors are cooled by air which is
forced through the resistive network by the means of the M.I.T. Gas Turbine Lab steam
ejector. During calibration and diagnostics the transmission and power absorption
system is used as a motor and the turbine is rotated without the need of the compressor.
Here both DC power supplies are used and they supply electricity to both the field and
armature in the DC motor. Through these power supplies one is able to control the
speed of the turbine for any type of test.

As mentioned in section 2.2.1 the turbine's rotor and upper shaft are displaced
eccentrically in these experiments. In order to accommodate these displacements
flexible couplings are used to connect the upper shaft to the intermediate shaft and the
intermediate shaft to the lower shaft. These coupling and their locations may be seen in
Figure 2.6 at locations 17 and 24. Along with special couplings to accommodate the
shaft eccentricity a double faced seal was used at the point where the shaft exits the
exhaust plenum (location 20 in figure 2.6). This seal is able to operate in both vacuum
and pressure situations. The lower shaft of the turbine assembly is connected to the DC
motor/generator through a belt and sprocket arrangement as shown schematically at
locations 12 and 13 in Figure 2.2.

Details on the names and model numbers of the equipment used in the facility

may be found in the work presented by Loose.

2.3 A Summary of the Design Parameters
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Here the shrouded turbine's design parameters are reviewed and compared to
the unshrouded turbine's and the SSME HPFTP turbine's design parameters. This is
neatly accomplished through the use of a table. Table 2.1 lists and compares all the

relevant design parameters of the three turbines .

2.4 Instrumentation

As mentioned previously, the destabilizing forces on an eccentrically rotating
rotor may be measured and determined using two different methods. The first method
is to directly measure the forces acting on the rotor through a series of strain gauges
mounted directly below the rotor in the rotor's shaft. This device is called a rotating
dynamometer and is explained in subsection 2.4.1. The second method, which gives
only the pressure-derived part of the forces, is less direct than the first and involves the
measurement of the static pressure distributions before, within and after the rotor's
shroud. After integrating the circumferential static pressure distribution within the
shroud using equations (1.15) and (1.16) one obtains the partial forces acting on the
rotor. Nonuniformity in the circumferential pressure distribution creates the
destabilizing forces and is the most important effect in the shrouded turbine. This
effect dominant in the work done by Millsaps.[17] The instrumentation used in
measuring the pressures in the test section and the location of this instrumentation is
reviewed in subsection 2.4.2. The remaining force contribution is due to the Alford
effect as described in section 1.4.2. This effect is determined through the measurement
of the flow's circumferential velocity distribution before and after the rotor. Once
again, the Alford effect is a blade tip clearance effect and because of the shroud this
effect is reduced, but not negligible. The measurements of the flow velocity and the
location of these probes are described in subsection 2.4.2. Blade tip clearance effects
are dominant in the unshrouded turbine as is shown in the work of Loose and

Song.[13,15] The summation of the forces due to the pressure effect and the Alford
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Table 2.1: Design Parameters for the SSME HPFTP Turbine, Unshrouded
Turbine and the Shrouded Turbine.

SSME Unshrouded Shrouded
HPFTP Turbine in Turbine in
M.LT. M.IT.
— Test Facility | Test Facilitz
Flow coefficient, ¢ 0.58 0.58 0.58
Work coefficient, W 1.508 1.508 1.508
Stator exit angle 70° 70° 70°
Relative rotor inlet angle 43.9° 43.9° 43,9°
Rotor exit angle 60° 60° 60°
Absolute exit angle l| -3.1° -3.1° -3.1°
Degree of reaction 0.216 0.216 0.216
Rotor mean radius, cm (in) 12.88 (5.07) | 12.88(5.07) | 12.53 (4.93)
Number of rotor blades 63 63 63
Rotor blade height, cm (in) 2.17 (0.854) | 2.17 (0.854) | 1.66 (0.652)
Rotor blade chord, cm (in) 2.21(0.870) | 2.21(0.870) | 2.21(0.870)
Design rotation rate, rpm 34,560 3440 3440
Axial flow velocity, m/s (in/s) 262 (10,300) 26 (1020) 11 (433.1)
Mass flow rate, kg/s (slug/s) 71.8 (4.92) 4.48 (0.307) 3.15(0.216)
Inlet pressure, kPa (psi) 34,950 (5069) | 223.9 (32.5) 223.9 (32.5)
Inlet temperature, K (°F) 1053 (1436) 300 (80) 300 (80)
Pressure ratio 1.192 1.231 1.138
Efficiency 0.821 0.79 0.74
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effect should equal that measured directly by the rotating dynamometer. Lastly, the

data acquisition system is briefly reviewed in subsection 2.4.3.

2.4.1 Rotating Dynamometer

The rotating dynamometer is located directly below the rotor and can be seen at
location 14 in Figure 2.6. Four equally spaced stainless steel square posts which run
parallel to the rotors axis at a radius of 0.053 m (2.1 in) make up the structure of this
dynamometer. Nine strain gauge sets are mounted on each post. The posts are 0.005 m
(0.2 in) on the side and 0.0254 m (1.0 in) in length. Figure 2.10 shows the orientation
of the these strain gauges on the stainless steel posts. These thirty-six strain gauges are
wired such as to create nine sets of full wheatstone bridges which are sensitive to all
components of force and moment. The wiring of these gauges is shown in schematic
form in Figure 2.11 and this figure also illustrates which bridge is sensitive to which
component of force and moment.[13]

The dynamometer rotates with the rotor since it is part of the shaft, therefore,
the forces measured by these bridges must be converted from the rotating frame to an
inertial reference frame. The procedure of converting the forces from the rotating
frame to the inertial frame is explained in the next chapter where the actual
experimentation is discussed and the experimental results are given. Note that since the
bridges are rotating with the shaft the necessary wiring is also rotating. A slip ring
assembly (location 23 in Figure 2.6) is used to transfer the signals from the rotating
elements to the stationary amplifiers and data acquisition system. For details on the
materials and amplifiers used one may consult the work of Loose.[13]

The dynamometer was calibrated by Loose and Song.[13,15] The calibration
procedures yield a six-by-six calibration matrix, which is the slope of the voltage
output of each bridge for each of the six components of force and moment. The effects

of eccentricity and load showed that the bridge output was linear, therefore, the
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calibration matrix is used in a linear algebraic expression in order to determine actual
force from voltage. The output voltages of six bridges and the inverse of the calibration
matrix associated with those six bridges are multiplied and result is a six component

force vector. This is illustrated by equation 2.2:
F=[BJ7, 2)

where f is the six component force vector, [B] is the inverse of the calibration matrix
and V, is the six component voltage vector. Once again, this force vector is in the
rotating frame and must be converted to the lab reference frame. This procedure is
explained in the next chapter. A detailed explanation of the calibration procedures and
techniques are given by Loose.[13]

The dynamometer was used in order to determine the lateral and torsional
natural frequencies of the rotor-shaft assembly. It was found that the lateral natural
frequencies of the system were at 105 Hz (1002.7 rpm) and 580 Hz (5538.6 rpm). All
experimental tests were done between these two natural frequencies. It was also

determined that the torsional natural frequency of the system occurs at 18 Hz (171.9

Tpm)

2.4.2 Test Section Instrumentation

The test section which was described in sections 2.2.1 and 2.2.2 is heavily
instrumented with proximity probes, wall pressure taps, velocity probes and
thermocouples. In order to gain the greatest use of these instruments the casing of the
test section can rotate so that a particular probe may be used at different circumferential
locations. Combinations of these instruments are located at ten different axial locations
and at several circumferential locations at a particular axial location. The eleven axial
locations are numbered from 0 to 10 and each number's position in the test section is

shown if Figure 2.12. In order to better understand what type of instrumentation is
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located circumferentially at each axial location one is referred to Figure 2.13 which is
modified from [15]. The top half of the figure shows the location of the eleven axial
positions with respect to the stator and rotor. The bottom half of this figure shows the
circumferential location and the type of probe at each of the eleven axial locations.

A Pitot static probe is located at station 0. This location is far upstream and
mainly provides information about the loop total pressure and temperature. Station 1 is
also far upstream while station 9 is far downstream. Both these stations have identical
circumferential characteristics meaning that at each of these stations there reside two
wall static ports 180° apart and two 3-hole velocity probes with thermocouples. The 3-
hole velocity probes can measure both static and total pressure along with the
temperature and the yaw angle of the flow. The purpose of these stations is to identify
whether pressure and velocity non-uniformities exist far upstream and far downstream.
Closer to the leading edge of the stator and to the trailing edge of the rotor one finds
stations 2 and 8 respectively. Both these stations contain two 5-hole velocity probes
each while only station 8 is instrumented with wall static ports. The 5-hole velocity
probes can measure all that the 3-hole velocity probes measure along with the pitch
angle of the flow. Once again, these stations are used to determine the degree of non-
uniformity that exists in the flow at the entrance and exit of this turbine stage. Stations
3 and 4 are at the entrance to the stator and rotor respectively. These stations are
composed solely of wall static pressure taps used to determine the extent of the pressure
non-uniformity at these locations. One should note that the stator is attached to the
outer rotatable casing, therefore, the stator rotates with the casing. In order to obtain a
circumferential distribution of pressure between stator blades, five static pressure taps
are equally spaced within the region between two stator blades. Stations 5 and 7 are
close to the first and second seal knives respectively and contain two static wall
pressure taps each which are 180° apart. The most important location within this rig for

pressure measurements is location 6. This location is within the cavity of the shroud
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and the non-uniformity in pressure associated with this location* gives rise to the
destabilizing forces which this experimental facility was built to investigate. Eight
static wall pressure ports are located at this axial location. Two proximity probes are
also located here, however, they are of importance in unshrouded turbine tests rather
than in these shrouded turbine tests. Station 10 is very far down stream and is not used
in the experimental work presented here.

In order to read in all the information provided by the vast array of pressure
measurements a 48 channel double Scanivalve system was used. The details of the
calibration of all the for mentioned probes, and the calibration and detailed

instrumentation of the Scanivalve system is provided by Loose and Song.[13,15]

2.4.3 Data Acquisition

Three analog-to-digital (A/D) converter systems connected to one IBM PC-AT
are used to acquire and log all the data. Figure 2.14 is a flow chart representing the
instruments used, the A/D systems incorporated and the IBM computer.

The voltage signals obtained from the bridges in the rotating dynamometer are
first sent to conditioning amplifiers and then to a LeCroy sampling data logger.
Ultimately the IBM PC obtains, logs and saves the data. The data logger is capable of
handling 32 individual inputs at a sampling rate of 5 kHz with a 12 bit resolution. For a
usual run, the sampling data logger is set to sample the bridge voltages 32 times per
revolutions for 256 revolutions. The trigger informationS was initially provided by an
optical encoder, however, this device broke (as mentioned previously) and a 32 tooth
gear and proximity system was devised instead. The problem with this new system is
that it misfires at times and instead of providing a constant 32 signals per revolution it

provides any number from 1 to 68. The data reduction software, which takes the raw

41t will be seen in chapter 4 that the non-uniformity in Pressure at the entrance and at the exit of the rotor
stage also contributes to the direction and magnitude of the destabilizing force.

5The trigger tells the sampling device when to sample a signal.
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voltage signals and ultimately provides the steady inertial forces, assumed a constant 32
samples per revolution. Therefore, a misfire would alter the angle at which the forces
would be projected onto the inertial frameS. This caused the results to have excessive
scatter and in many cases prove meaningless. This problem was not immediately
identified because a misfire would occur very rarely, most of the time it was once out
of 256 revolutions and the existing software did not contain means of identifying such a
problem. Once the problem was found the revolutions which contained samples other
than 32 per revolutions were discarded. The capability of re-reducing the raw data
without the troublesome revolutions existed because each run's raw data was saved. In
order to re-reduce the runs and obtain the correct results the reduction software was re-
written such that it counts the number of samples per revolutions and eliminates the
revolutions which contain a number of samples other than 32. A complete explanation
of the data reduction procedure is provided in Chapter 3 where the experimental results
are presented.

Most of the pressure measurements are accomplished via the double scanivalve
system. This system is then connected to a Scanivalve Digital Interface Unit (SDIU)
where a two channel A/D exists and an internal memory system resides. The SDIU
also controls the sampling of the pressures done by the double scanivalve system. The
IBM PC ultimately receives the sampled pressure readings through an IEEE-488 output
connection located at the rear of the SDIU.

The final A/D system converts the analog signals provided by the
thermocouples, the Venturi system, the inlet pressure probe, and the lower torque
bridge to digital signals read by the IBM PC. This A/D system is an interface card
developed by Omega Engineering and plugs into the IBM computer. This card is
operated through software provided by the company.

6The data reduction procedures and software is explained in Chapter 3 Experimental Results.
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Figure 2.1: Front View of Experimental Facility. (1) Turbine Test Section,
(2) 100 hp Electric Motor & Compressor, (3) Heat Exchanger,
(4) By-Pass Loop, (5) Servo Driven Valve, (6) Throttle Valve,
(7) Throttle Valve, (8) Venturi Meter, (9) Flow Straighteners,
(10) 90° Bend with Flow Straightener, (11) Vibration Isolator,
(12) Flexible Shaft Coupling, (13) Exhaust Plenum, (14) Vibration
Isolator, (15) Test Stand [13]
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Figure 2.2: Side View of Experimental Facility. (1) 100 hp Electric Motor,
(2) Compressor, (3) Heat Exchanger, (4) Flow Straightener,
(5) Vibration Isolator, (6) Test Section, (7) Exhaust Plenum,
(8) Test Stand, (9) Slipping Assembly, (10) Vibration Absorbing
Mounts, (11) Flexible Shaft Coupling, (12) Drive Belt, (13) Pulley
Sprocket, (14) DC Motor/Generator [13]
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Figure 2.3: Machine Drawing of Turbine Test Rotor [13]
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(1) Flow straightener

(2) Screen

(3) Main loop piping

(4) Flange

(5) Flexible insert

(6) Liner

(7) Snubber bearing

(8) Snubber support

(9) Test turbine

(10) Flow-smoothing shield
(11) Shims

(12) Rotatable casing

(13) Stator blades

(14) Rotating dynamometer
(15) Bolts to secure shaft
(16) Turbine-offsetting rods
(17) Upper flex joint

(18) Optical encoder

(19) Intermediate shaft

(20) Double-acting seal
(21) Flexible insert

(22) Pivoting bearing

(23) Slip ring assembly
(24) Lower flex joint

Figure 2.6: Schematic of the Turbine Test Section [15]
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Figure 2.10: Schematic of the Rotating Dynamometer Showing the Four
Stainless Steel Posts Which Contain the 36 Strain Gages. Each
Post is Instrumented with 9 Strain gages: Four at Quarter Length,
One at Mid Length and Four at Three-Quarter Length. Forces and
Moments are Defined as Acting on the Rotor at the Rotor End of
the Dynamometer.[13]
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Figure 2.11:

The wiring arrangement of the 36 semi-conductor strain gauges
into the nine Wheatstone bridges. The excitation voltages are
given by E1 through E9 and the bridge output voltages are given
by V1 through V9. The sensitivity of each bridge is given in the
oval below each bridge output voltage symbol.[13]
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Chapter 3

Experimental Results

3.1 Rotating Dynamometer Results

In this section the data reduction procedures to convert the raw voltages,
provided by the rotating dynamometer, to forces in the inertial frame are explained.

The series of tests are outlined followed by the results of those tests.

3.1.1 Reduction of the Raw Data

As mentioned in section 2.4.3 (Data Acquisition), 32 voltage samples of each of
the nine Wheatstone bridges are taken per revolution for 256 revolutions by the LeCroy
data acquisition system. This results in 8196 voltage readings per bridge for a single
run at a given mass flow rate, rotational speed and eccentricity. In addition to reading
the voltage output generated by the bridges, once per revolution signals created by a
magnetic pickup! are also sampled. Other measuring devices are also connected to the
LeCroy data acquisition system, however, those devices are used mostly for calibration
purposes and are not required to be discussed here. After each run the raw voltage
readings are transferred from the LeCroy to the IBM PC. These readings are then
placed on 5.25 inch floppy disks and also converted to 3.5 inch floppy disks for
permanent storage and for reduction on a Macintosh computer. A reduction routine
was written for the Macintosh computer by Soomyung Yoo and later modified by the

author. The modification checks weather each revolution contains exactly 32 samples.

1A magnetic pickup provides a large positive spike when a metal object is ching its sensor and
then in%medialt)ely sgges negative ags tg(e) metal gbject sses the sens{)r. A gr%l?ali(l)ametajg piece was inserted

on the lower shaft such that the magnetic pickup would sense this piece once per revolution.
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If a revolution has more than or less than 32 samples that revolution is discarded.
Before this reduction routine existed the IBM-PC and its related software were used for
reduction, however, this system took orders of magnitude longer to reduce any given
set of data.

The reduction routine written for the Macintosh first reads in the raw voltage
readings which were originally saved on the IBM PC. Because an IBM was used to
save the raw data the Macintosh program must first convert the numbers into a format
that it can understand. Once these voltage readings are converted to a Macintosh
format they are then stored in a 8196 by 10 array . Only the information from the nine
wheatstone bridges and the magnetic pickup is stored in the array. The array contains
a total of 8196 samples per bridge for each of the nine bridges and also 8196 samples
from the once per revolution signal. Following the creation of this array the once per
revolution signals are checked to determine whether a misfire has occurred for any of
the 256 revolutions. The number of samples between the voltage spikes created by this
magnetic pickup is one's guide in determining which of the revolutions are bad. If the
number of samples in a revolution is larger or smaller than 32 a misfire has occurred an
that entire revolution is discarded. The associated Wheatstone bridge voltage signals
for that revolution are also eliminated. Once the bad revolutions are discarded, the
remaining revolutions are averaged and the result of this averaging gives 32 six
component vectors. The 32 vectors contain the average bridge readings for each of the
32 sample locations in a revolution. The vector has six entries because only six of the
nine bridges are needed to determine the six components, namely the three components
of force and the three components of moment. These 32 six component vectors are
then multiplied by the calibration matrix as explained in section 2.4.1 (Rotating
Dynamometer). The result of this linear algebraic multiplication are 32 six component
vectors containing both forces and moments. Each of these vectors is the instantaneous

force or moment at one of the 32 circumferential locations.
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Our interests lie in the direct (X-axis or normal) and cross (Y-axis or tangential)
forces, therefore, only two components of the six component vector are used. These
forces must be converted from the rotating frame to the fixed frame and Figure 3.1 is
referred to in order to aid in this discussion. In Figure 3.1 e is the eccentricity of the
rotor, ¢ is the angle to the X-axis at time ¢ = 0 at which time sampling begins, F7(0) &
F2(0) are the forces at the first sample location (¢ = 0), yis the angle at time # after the
initial sample and F(f) & F2(t) are the respective forces. The positive X-axis is to the
left and this corresponds to moving the shaft eccentrically to the left as one looks down
onto the test facility from above. The positive Y-axis points up which corresponds to
the axis pointing towards the power absorption system when one looks down into the
test section from above. Equations (3.1) and (3.2) are used to convert the forces from

the rotating frame to the fixed or inertial frame.
F,(y)=F\Cos(y - §) + F,Sin(y — ¢) G.D)

F,(y) = F,Sin(y - ¢) - F,Cos(y ~ 9) (3.2)

Once converted to the inertial frame 32 forces per revolution in both the X and Y
directions result. These forces in each direction are then averaged over all the
revolutions to obtain the final fixed reference frame direct (normal) and cross
(tangential) force.

The direct and cross force obtained from the above procedure are for one test
run. The turbine is set at an eccentric location, the mass flow is adjusted to the design
flow rate and the turbine is operated at a steady speed. This reduction routine is
repeated for every test run performed and the following section describes the battery of

test completed using the rotating dynamometer to find these forces.

3.1.2 Test Series
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It has been determined in section 2.2.3 (The Flow Loop) that the design speed
and mass flow rate are 3440 rpm and 3.15 kg/s respectively. Thus, the testing is
centered about this design condition. The three speeds investigated are 2408 rpm
0.7w,), 3440 rpm (1.0 @) and 3784 rpm (1.1@,)). These speeds are identical to the
three speeds investigated in the unshrouded turbine tests performed by Song.[15] 6
eccentric positions and the concentric position are tested for each of these speeds. The
eccentric positions investigated are for turbine rotor displacements of -15, -10, -4, +4,
+10, +15 mils (thousands of an inch) where positive indicates a displacement in the
positive X-direction as indicated in Figure 3.1. Three independent test runs are taken at
each speed and each eccentricity. Therefore, a test series consists of 63 individual test
runs. For example, three independent test runs are taken at 2408 rpm at an eccentricity
of -15 mils. An entire test series is completed in one day.

Four test series were completed for the shrouded turbine. Two of the series
were done at 1.24 atm mean loop pressure and the other two series were completed at
2.21 mean loop pressure. Originally, the reason for completing four test series was that
the results had excessive scatter and were, in many cases, meaningless. Therefore, it
was determined that the experimentation must be continued aggressively in order to
find the cause of the bad results. As has been explained above, the problem was found
and corrected, and the four series of tests completed were all salvaged and proved to be

very repeatable. The results of these tests are now presented.

3.1.3 Rotating Dynamometer Results

To illustrate the results each test series is divided into three figures. One figure
for each of the three speeds (2408 rpm {0.7 w, }, 3440 rpm {1.0®, } and 3784 rpm
{1.1w,}). On each figure the direct (normal) and the cross (tangential) forces (Ibf) at a
given speed are plotted vs. eccentricity (mils). Through these data points a least square

linear curve fit was performed. Above each figure one finds the legend which contains
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the linear fit equations and the goodness of fit. The test series number and the mean
loop pressure are given in the title of each figure. A negative direct force, F,,is a
restoring force. For a positive eccentricity, following the convention given in Figure
3.1, a negative direct force acts in the direction opposite to the displacement (towards
the concentric position). A positive cross force, F, act in the direction of rotation
following the convention given in Figure 3.1.

Figures 3.2 through 3.13 contain all the results of the rotating dynamometer
tests and Table 3.1 gives greater detail on the conditions of each test series at a given

speed.

Table 3.1: Test Conditions and Measured Torque for Dynamometer Tests

1 1.1 2.21 322 17.32
2 0.7 1.25 1.75 13.87
2 1.0 1.24 1.70 9.76
2 1.1 1.24 1.78 9.99
3 0.7 2.21 3.16 23.36
3 1.0 2.21 3.19 18.27
3 1.1 2.21 3.14 16.89
4 0.7 1.24 1.74 13.77
4 1.0 1.24 1.75 10.69
4 1.1 1.24 1.75 9.79
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The figures are organized such that each successive group of four figures is at one

speed and the first two figures of each group are tests performed at a mean loop

pressure of 2.21 atm and the second two figures of each group are tests performed at a

mean loop pressure of 1.24 atm. All these figures show that the results are very

repeatable within each test series at a given speed. Remember, that each point on the

graph contains three runs and if only one point is seen it is because the results
on top of one another.

F
The slope of the linear curve fits, LY and -
e

e

lie right

, are shown in Table 3.2. Note

that each of these slopes are adjusted to 2.21 atm. This means that for the runs

performed at 1.24 atm, those runs were multiplied by 2.21 and divided by 1.24. Since

the experiments are done statically the slopes give the direct and cross stiffnesses.

Table 3.2: Slopes of Linear Curve Fits in 1bf/mil. Adjusted to 2.21 atm.

Test
Series

Slopex

Slopey

Slopey

Slopey

Slopex

Slopey

0202 | -0147 | 0158 | -0143 | o151

2 0139 | 0200 | 0147 | 0168 | -0150 | o0.158

3 0136 | 019 | 0144 | 0167 | -0147 | o156

4 0136 | 0195 | 0140 | 0151 | 0142 | o015
Average|l 0136 | 0199 | 0144 | o161 | 0145 | o014
pax | 379 3.6% 5.0% 11.3% 5.3% 4.6%

As can be seen, an average of each row is given at the bottom of the table. It

was stated previously that the results are very repeatable within one day's or test series

experimentation, however, the repeatability is a little worse when one compares the
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results from test series to test series. In Table 3.2 the bottom row presents the worst
difference between test series at a given speed. This was calculated by taking the
difference between the largest and smallest slopes and then dividing by the smaller
slope. It can be seen that for all but one column the maximum difference between runs
is 5.3%. Because of the cross force of test series 4 at design speed this column has a
maximum error of 11.3%. If that one case is eliminated the error falls to 6.3%. An
error of approximately 5% is reasonable and expected since between test series the loop
was not always fully evacuated2. The freon from previous runs was left within the loop
and as days passed between runs a small amount of air was expected to leak in. Instead
of evacuating the entire loop and repressurizing, this alternate procedure was used in
order to save Freon. The project ran out of funding and the small amounts of Freon left
had to suffice for the rest of the experimentation.

The slopes of the linear curve fits are also used to calculate the Alford
coefficients, B, and 8,. These coefficients are given by equations (1.17) and (1.18) in
section 1.4.2. In order to calculate these coefficients the blade height of B,=16.6 mm
(0.652 in) and the mean radius of R =125 mm (4.932 in) 3 are needed along with the

torque values for each test series which are given in Table 3.1. The results are tabulated
in Table 3.3.

These Alford coefficients may be directly compared to those obtained from the
work of Song.[15] His experimental work utilized this same turbine, however, without
the shroud. The rotors blades were longer since in order to incorporate a shroud the
rotor blades had to be clipped. With the shroud the Alford coefficients are
approximately 50% larger than those measured in the experimental facility utilizing the
unshrouded turbine. Once again a maximum difference for each test series at a given

speed is calculated. As one would expect, the difference increases from the differences

2For a fully evacuated loop which is then pressurized with freon has a density error of approximately
0.77%. (See Section 2.2.3]; However, this ideal method could not be used because of budget constraints.

ZyOtﬁrglaé_ the mean radius is taken from the hub to the tip of the blade, not to the tip of the knife edge on
e shrou
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presented in Table 3.2 because the non-dimensionalization contains a torque
measurement which introduces further errors. The errors for the off-design cases are no
larger than 7.4%, however, the design case has errors of 15.0% and 21.4% for the direct
and cross Alford coefficients respectively. Most of this large error is due to test series 4
as was the case in the pervious discussion about the slopes. If the values from this
series were eliminated the maximum difference would become a little more reasonable

at 8.4% and 15.2% for both the cross and direct Alford coefficients respectively.

Table 3.3: Alford Coefficients from the Dynamometer Tests

3 4.16 6.11 -5.64 6.53 -6.22 6.61
4 -3.98 5.69 -5.26 5.69 -5.82 6.25
Average| -4.06 5.94 -5.63 6.28 -6.00 6.37
g;’; 4.5% 7.4% 150% | 21.4% 6.9% 5.8%

For comparison with the results presented by Millsaps [17], Table 3.4 takes the
non-adjusted linear curve fits from Figures 3.2 through 3.13 and creates the stiffness

coefficients. The stiffness coefficients are given by the following equation:

Bl
E ==t/ _

= 3.3
=> =R (-7) G

F x
Where —2’1 is the slope of the line, & is the nominal gap, / is the length of the land,

R, is the mean radius and ( D;i— p,,) is the pressure difference across the rotor. These
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values can be compared to those obtained from the seals rig, except that here K <0 is

a restoring force, whereas in Millsaps work the opposite convention is used. Note also
that these contain both, the pressure effect and the blade (work loss) effects where as

Millsaps facility concentrated on the shroud alone (the pressure effect).

Table 3.4: Stiffness Coefficients from the Dynamometer Tests

4 -0.469 0.670 -0.436 0.472 -0.434 0.466

Average| -0.441 0.646 -0.430 0.479 -0.437 0.464

3.2 Wall Tap Static Pressure Results (The Pressure Effect)
In this section the data reduction procedures used to obtain the static pressure at
various circumferential locations for 6 axial locations is explained. The series of tests

is then outlined followed by the results of those tests.

3.2.1 Reduction of the Raw Data

In order to calculate the direct and cross forces the nonuniformity in pressure at
axial location 6 is measured?. Axial locations 4, 5, 7, 8 and 9 are also measured and the
results and importance of those tests is also discussed below. As mentioned in section
2.4.2 the wall tap pressure is measured with the aid of a double scanivalve system

which is controlled by an IBM PC-AT Computer. The measurements taken by this

4I_f one is unfamiliar with the numbering of the axial locations please review section 2.4.2 and refer to
Figures 2.12 and 2.13.
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scanivalve system are also stored on the PC. Each time the scanivalve system samples
the wall tap pressures, it samples the pressure at all the wall tap locations throughout
the test section. However, for the tests presented here only the wall tap pressure
readings at axial locations 4 through 9 are fully reduced. A program written by Song
for the Macintosh computer is used to reduce this data. For each sampling the program
reads in the pressure values for all the circumferential locations at the six axial
locations of interest and then takes the eight circumferential readings at station 6 and
averages them for use as a reference point. This reference pressure is then subtracted
from each of the wall tap pressure measurements taken at each of the six axial
locations. The resulting pressures are stored in an array such that measurements taken
at a particular circumferential and axial location for the concentric operation of the
shrouded turbine are subtracted from the results of the eccentric operation. Before the
results of these tests are presented the following section explains the series of tests that

were accomplished.

3.2.2 Test Series

The wall tap pressure experiments were done at the design speed (3440 rpm)
and at the design mass flow rate (3.15 kg/s). Two cases are investigated; the first is the
concentric rotation of the turbine and the second is the eccentric rotation. The
eccentricity was set to +18 mils. A sample run consists of setting the turbine either
concentrically or eccentically, bringing the turbine to its design condition and then
triggering the scanivalve system to read all the wall tap pressure ports. Once a sample
run is completed the casing is rotated such that the wall tap pressure ports may read the
pressures at a different circumferential location. Six circumferential locations are
investigated. These same six circumferential locations are measured seven times at
identical operating conditions. This will show the repeatability of the data. Therefore,

a test series consists of operating the shrouded turbine at its design condition while
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taking wall tap pressure measurements seven times at each of the six circumferential
locations for both the concentric and eccentric rotor positionsS. Two test series are
reviewed in this work, both at a mean loop pressure of 2.21 atm, however, each test
series is done on a different day. The results of these test are presented in the next

section.

3.2.3 Wall Tap Pressure Results

In the experimental facility the shrouded turbine is displaced statically in what is
defined as the X-direction. As was seen in previous figures, when the test facility is
viewed from below (downstream) as in Figure 2.13 the positive X-direction points to
the right and the Y-direction points upward, however, when the facility is viewed from
above (upstream) as in Figure 3.1 the positive X-direction points to the left and the Y-
direction is unchanged. In order to define the circumferential positions Figure 3.14 is
referred to and it presents the facility coordinates as viewed from the top (upstream).
At the minimum gap or at a positive displacement the circumferential position is
6 =0°. Itis shown below that at station 6 (within the shroud seal cavity) the minimum
pressure occurs at 6 =127° and the maximum pressure occurs at 8 =307° in the
direction of rotation. With the pressure skewed in this manner one does expect a
forward-whirling cross force, and as one knows there is one because of the
dynamometer results. There would be a zero cross force only if the minimum pressure
occurred at 8 =180° and the maximum at @ = 0° or vice versa.

The graphs of the pressure perturbation around the circumference of the inner
casing at the six axial locations are all presented in a similar manner. The Y-axis is the
difference in pressure between the concentric and eccentric runs for a given station.

The units are in psid. The X-axis is the circumferential position as defined in the

5The actual reason why seven trials are performed is because the velocity probes used to calculated the
Alford effect move radially at each of the circumferential locations. Therefore, at each of the
circumferential locations seven different radial measurements of the velocity are performed. The
Scanivalve not only acquires wall tap pressure measurements but velocity information also. Section 3.3
explains this further.
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previous paragraph using Figure 3.14. All the figures except those used to show the
activity at station 8 have a curve defined by equation (3.4) fitted through the data points

for a given trial.

AP =ml +m28in(8)+ m3Cos(6) 3.4)

Each trial has it own curve and the trial and its respective curve are represented in a
legend above each graph. The sinusoidal curve fits at station 6 along with equations
(1.15) and (1.16) are used to calculate the direct and cross forces. The averages of the
magnitude and phase of the curve fits at stations 4 and 9 are used as inputs for the
analytical model which is derived in chapter 4 and is applied in chapter 5.

Figures 3.15 through 3.28 contain all the results of the wall tap pressure tests

and Table 3.5 gives additional information on the test conditions for each test series.

Table 3.5: Test Conditions and Measured Torque for Wall Tap Pressure Tests

TestSeries | ofw, | P@m) | (ke To(N-m)
1 1.0 2.21 3.19 18.21
2 1.0 2.21 3.14 18.48

Figures 3.15 through 3.26 are organized such that each page contains two figure each at
the same station but one for test series 1 and the other for test series 2. Figure 3.27 for
test series 1, and 3.28 for test series 2, are different from all the rest of the wall tap
pressure figures in that they plot stations 4,5,6,7, and 9 on one graph for comparison.
The repeatability in the results increases as one goes from station 4 to station 6 and then
decreases dramatically at station 8 and then once again increases at station 9. Stations 6

and 7 are very repeatable when analyzed from both a trial to trial and a test series to test

series point of view.
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The pressure tap holes at station 4 are before the seal. One notices a
perturbation in pressure at station 4 and this is seen in Figure 3.15 for test series 1 and
in Figure 3.16 for test series 2. Once again, the magnitude and phase of these
perturbations are used as an input for the theoretical model. It is shown in chapter 5
that the theory is sensitive to both pressure and velocity perturbations at the inlet to the
shroud. Itis also shown, that the theory predicts an increase in the cross force with
these measured inlet perturbations as compared to no inlet perturbations whatsoever.
Therefore, perturbations in pressure and velocity exist at the inlet and they do have an
effect on the final theoretical result.® The pressure tap holes at station 5 are
approximately over the first seal knife edge, which is at a location where static
pressures are rapidly changing. This makes their interpretation difficult. Figure 3.17
and 3.18 show these results for test series 1 and 2 respectively. However, the pattern is
still very similar to those observed for the unshrouded cases.[15]

Stations 6 and 7 are both inside the cavity of the shroud, 6 being near its center
and 7 near its exit. The corresponding wall pressures are shown in Figures 3.19 and
3.20 for station 6 and Figures 3.21 and 3.22 for station 7. These show identical
nonuniformity patterns, and each station's phase and magnitude are shown on one
figure for better comparison. Figures 3.27 (test series 1) and 3.28 (test series 2) show
the comparisons between stations 4,5,6,7 and 9 for trial 1. Compared to the
distributions seen in these locations with no shroud [15], one notices a large increase in
amplitude, by about a factor of two, and also a phase shift away from the region of
maximum gap and towards the 90° location. This shift has the effect of further
increasing the contribution of these pressure forces to the forward-whirling cross force
component F, .

Stations 8 and 9 are at the exit of the shroud. A recirculation region exist at the

immediate exit of the shroud (station 8) because the shroud is in the flow field and acts

6See Chapter 5.
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as a blunt body. This causes the wall tap pressure measurements at station 8 to be
extremely noisy and unable to yield significant results. The results of station 8 for trials
1 and 2 are shown in Figures 3.23 and 3.24 respectively. However, station 9 is not as
noisy as station 8 and this station shows the sinusoidal pattern, therefore,. a magnitude
and phase can be extracted. Figures 3.25 and 3.26 show the results at station 9 for test
series 1 and 2 respectively. From the curve fits through the seven trial points for both
test series at station 9 an average of the magnitude and phase of the perturbation in
pressure is used as an input to the theory in order to calculate the direct and cross
forces. As in the case of the perturbation in pressure at the inlet to the seal, the
perturbation in pressure at the exit has an effect on increasing the cross force in the
theoretical calculations.

The total forces due to the gland pressure distribution can be calculated using
equations (1.15), (1.16) and (3.4). The values for m1, m2 and m3 at station 6 for both
test series 1 and 2 are listed in Appendix A. An average of these values for each test

series is taken. The length of the land, /, is 13.63 mm (0.537 in) and the radius is R, =

135 mm (5.297 in). For non-dimensionalization (Equations (1.17) & (1.18)), the torque
is given in Table 3.5, the blade height, B, is 16.6 mm (0.652 in), the mean radius, R,

is 125 mm (4.932 in) and the eccentricity ¢ = 0.46 mm (18 mil). The results of these
calculations are listed in Table 3.6 on the following page.

3.3 Velocity Probe Results (The Alford Effect)

In order to find the magnitude of the Alford effect the test section is
instrumented with velocity probes, as described in section 2.4.2. Ata given
circumferential location these probes traverse radially to measure stator inlet and rotor
exit velocities along the span of the turbine blades. Seven radial samples of velocities
are taken at a given circumferential location. Wall tap pressure measurements are taken

at the same time velocity measurements are taken, therefore, there are seven wall tap
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Table 3.6: Results of Wall Tap Pressure Measurements

F F k k B, B,

x Yy XX xy
Test N (bf) N (1bf) 1bf/mil 1bf/mil - -
Series

Average | -7.987 11.642 | -0.0998 0.145 - 3.95 5.75
(-1.795) | (2.617)
lgff}{- 7.58% 5.66% 7.58% 5.66% 5.85% 4.08%

pressure samples at a given circumferential position’ and the test series for these
velocity measurements are the same as in the wall tap pressure section.

A problem with velocity measurements in this shrouded turbine facility is that
the turbine's shroud in not recessed and the velocity probes at the rotor's exit can only
radially span approximately 25% of the turbine hub to casing distance closest to the
wall. Most of this distance is occupied by the shroud, therefore, these probes are in the
shroud's wake. As one might deduce, this gives unpredictable results.

The velocity measurements at station 8 yielded scattered results with no
particular pattern. However, the survey at station 9, further downstream, did give valid
results, and is shown in Figure 3.29. Here a 5-hole probe was used, which could not be
inserted past the radial limit described above. Therefore, three readings (circle, square
and diamond) are all at the radial limit closest to the hub and the last three readings (x,
triangle and +) are at different radial locations closest to the casing. These last three
depths (nearest the casing) are in the direct wake of the shroud, but since this station is

three chord lengths downstream of the rotor, the wake is probably sufficiently diffused.

7See section 3.2
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The lack of coincidence at the identical radial locations (circle, square and diamond)
gives a measure of the data scatter. The under turning shown in Figure 3.29 is, in fact,
greater than that seen in the unshrouded cases (see Song). A value of the direct and
cross force cannot be determined from the existing velocity measurements because not
enough information is known at other radial locations in order to make a good

approximation of these values.
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Figure 3.1: Data Reduction and Experimental Facility Coordinates. (View
From Upstream) [13]
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Figure 3.14: Angular Convention and Location of Minimum and Maximum
Pressure as Measured at Station 6. (View from Upstream)
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the First Seal Knife. P=2.21 atm, Eccentricity = 18 mils = 0.46

—o—Triall —¢— Tral3 - -+ -Tdal5 — §— Tral?7
—& Tral2 - x- -Trial4 —a -Trial 6
0.2

0.15 %\ y ’{ a
R /
0.1 \ g a
\ ;

T 005 \ ’

A \

va /

o
< 0 yid
t 4
N ,
-0.05 \i -
NS i
';\“ﬂb.;‘/‘, N
0.1 5 g
015 45 9% 135 180 225 270 315 360
)
Figure 3.18: Test Series 2, Wall Tap Pressure Distribution at Station 5, Over

the First Seal Knife. P=2.21 atm, Eccentricity = 18 mils = 0.46
mm.,

96



—o—Trall —o0— Trial3 - + -Trial5 — 8- Tral7
—g Tdal2 - %X--Tral4 —a -Tral6

0.4 /j__ _H\

03

0.2

AP_ psid

0.2 /

03 \ i/

04
0

45 90 135 180 225 270 315 360

0
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Figure 3.20: Test Series 2. Wall Tap Pressure Distribution in the Center of the
Shroud Labyrinth Seal. Station 6, P=2.21 atm, Eccentricity = 18
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Figure 3.21: Test Series 1. Wall Tap Pressure Distribution at Station 7, Near
the Exit of the Shroud Seal, However, Still Within the Shroud
Cavity. P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.22: Test Series 2. Wall Tap Pressure Distribution at Station 7, Near
the Exit of the Shroud Seal, However, Still Within the Shroud
Cavity. P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.23: Test Series 1. Wall Tap Pressure Distribution at Station 8, at the
Exit of the Shroud Seal (Past the Second Sealing Knife
Downstream). P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.24: Test Series 2. Wall Tap Pressure Distribution at Station 8, at the
Exit of the Shroud Seal (Past the Second Sealing Knife
Downstream). P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.25: Test Series 1. Wall Tap Pressure Distribution at Station 9. Exit of
the Shroud Seal and Past Station 8. (Past Second Sealing Knife
Downstream). P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.26: Test Series 2. Wall Tap Pressure Distribution at Station 9. Exit of
the Shroud Seal and Past Station 8. (Past Second Sealing Knife
Downstream). P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.27: Test Series 1. Wall Tap Pressure Distribution at Stations 4,5,6,7
and 9. Trial 1 Data for the Five Stations Plotted for Cross
Comparison. P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.28: Test Series 2. Wall Tap Pressure Distribution at Stations 4,5,6,7
and 9. Trial 1 Data for the Five Stations Plotted for Cross
Comparison. P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Chapter 4

The Analytical Model

4.1 Kostyuk-Iwatsubo-Millsaps Model

To completely model the flow through a rotating, whirling shroud as accurately
as possible the full Navier-Stokes equations should be used. However, a closed form
analytical solution of these equations is impossible. A numerical solution would be
extremely expensive since the model would be required to perform parametric studies.
Therefore, in this chapter a simplified model is developed which incorporates the
dominant flow conditions and pertinent geometric parameters. Through this simplified
analytical model physical insight is easier obtained than through more comprehensive
treatments. Note that this model assumes flow only through the shrouded region and
the flow through the rotor is ignored. Therefore, this model predicts the pressure
nonuniformity within the cavity of the shroud but says nothing about the Alford effect
caused by the variation of blade forces around the circumference of the rotor blades.
The results of this theoretical model are compared directly to the wall tap pressure
results.

The model is based on the work of Kostyuk [12], Iwatsubo[9] and Millsaps
[16,17]. Kostyuk's lumped parameter model simplifies the governing equations such
that the flow in the axial direction is coupled to the one dimensional continuity and
momentum equations in the circumferential direction. Since the fluid variations around
the annular cavity is what gives rise to the asymmetric pressure distribution the state
variables within the land of the shroud are a function of angle and time only and the

average value of all state variables is used at each section. Iwatsubo's model took
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Kostyuk's model one step further and generalized it for area variations within the land
due to the shaft's whirling motion. Millsaps' model took Iwatsubo's model and
expanded it to include a contraction coefficient and a "carry-over factor” to better
explain the flow over the sealing knives. In Millsaps' Doctoral work, he also included
upstream nonuniformity, which was calculated by an extension of the same type of
modeling used in the gland. Since, Millsaps work deals only with a shroud without any
rotor blading, he was able to solve for these upstream nonuniformities. However, the
shroud in this work has different and more difficult inlet conditions to model due to the
rotor. Therefore, instead of solving for the inlet nonuniformities these inlet (as well as
outlet) conditions will be taken from experimental results. The expansion incorporated
here, therefore, has the ability to accept input for the magnitude and phase of the
pressure nonuniformity upstream and downstream of the shrouded rotor. It will be
shown that the magnitude and phase of these pressure nonuniformities greatly affects
the solution for the pressure nonuniformity within the shroud cavity. Please note that,
Millsaps Ph.D thesis [17] was the foundation and guide used in presenting the

expanded theoretical work located in this chapter.

4.2 Derivation of the Governing Equations

The governing equations for a shroud containing two sealing knives which
surround a cavity (gland) are derived in this section. The assumptions presented in the
previous section along with the following nine assumptions provide a foundation for
building the set of governing equations. Most of these assumptions are the same as that
presented by Millsaps [17] and those which are the same are written as he presents
them.

1) The inlet total pressure, temperature and swirl velocity are prescribed
along with the downstream pressure.

2) The working fluid is and ideal gas and is calorically perfect.
P =pRT
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dh=C,dT
3) The flow through the seal is adiabatic.

4) Small changes within the seal gland in the azimuthal direction are
assumed to occur isentropically.

5) The seal moves as a rigid body. There is no elastic deformation.

6) The seal moves in a whirling motion parallel to the rotation axis of
the machine. There is no tilting.

T) The acoustic resonant frequency of the seal cavity is much greater than

the whirling frequency: 2 << @, = T—”Z?

§

8) The viscous shear stresses exerted on the fluid inside the gland, by
both rotor and stator, follow a Darcy friction law.

T=$ApV,
where 7 is the shear stress, A the friction factor, p the density and

V.., is the relative velocity between the average fluid core flow and
the nearest solid surface.

9) The reduced frequency, based on seal pitch, axial through flow velocity

and whirling frequency, is much less than one.

The next step in deriving the governing equations is to define the geometry and
the variables that act within this geometry. Figure 4.1 is a cutaway section of the
shroud and shows the cylindrical coordinate system used along with the pertinent flow
quantities. The pressure and velocity upstream of the rotor is a function of
circumference and time and is given by P, and V, respectively. Between the sealing
knives one has the cavity or, as its been called in the previous chapters, the gland. In
the gland the unknown pressure, P, density, p, and velocity, V, are functions of

azimuth and time. The solution to the governing equations gives this pressure and

velocity distribution. The nonuniform exit pressure is given by P, and the temperature

is assumed to be constant everywhere, therefore, it has no subscripts and is given by T...

The rotational frequency of the shaft is given by .
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Figure 4.2 incorporates the flow conditions into the entire system, defines the
geometry of the system and illustrates the motion of the shroud with respect to fixed
coordinates. First, the side view of the shroud illustrates the mass flow rate per unit
circumferential length into, g,, and out of, g,, the cavity of the shroud. The radius of
the shroud from the center line to the tip of the sealing knives is given by R, and the
seal clearances into and of the shroud are given by &, and &, respectively. The axial
view illustrates the kinematics of the system. Once again, the shaft frequency is given
by @ while the whirl angular frequency is £2. This whirling motion amplitude is
described by r.

The mass influx into the seal chamber is derived first. The description of the
flow rate is at the minimum area at the inlet which is over the first sealing knife. If one

assumes constant density and velocity across this incoming jet equation (4.1) results:
m=pAw (4.1)

The density, p,, is taken to be the density at the first sealing knife contraction. In order
to find this density in terms of the densities at the inlet and within the cavity of the
shroud an average of these later two densities is taken. This method approximates the
fully compressible relations and a maximum of a three percent error in the mass flow
rate is incurred using this method. The axial velocity is given by w,. Since this mass
flow rate is described at the jet location the area A, is an effective area. This effective
area is defined as the actual area multiplied by a contraction coefficient, C,. The ratio
of the minimum area of the jet to the area at the sealing knife is this contraction
coefficient. Therefore, this mass flow rate over the inlet sealing knife may now be

represented as a mass flow rate per unit circumferential area in the following form:

¢, =p6,C.w, 4.2)
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The existence of C, in equation (4.2) is a simplification from a more complicated
expression of the axial mass flow rate into the cavity of the shroud. The contraction
coefficient is replaced with the flow coefficient, i, for the axial flow rate at the exit of
the seal. This flow coefficient contains more information than the contraction
coefficient in that it takes into account the magnitude of the impinging jet that is
created by the first seal knife. The flow coefficient, u is defined as the ratio of the
actual flow through a seal divided by the ideal mass flow. The contraction coefficient
multiplied by a kinetic energy carry-over factor, 3, gives the flow coefficient as shown

by the following equation.
p=Cp 4.3)

The first sealing knife has no carry over effect, therefore, the flow coefficient and the
contraction coefficient are the same (or B8 = 1). The kinetic energy carry-over factor
has a value other than one at the second sealing knife because of the impinging jet
created by the first sealing knife. From experiment, it has been determined that the
contraction coefficient has a value of 0.650. For further discussion of the contraction
coefficient and its dependence on geometry please see Appendix B in Millsaps doctoral
work [17].

The next step is to represent the axial flow rate and the average density in terms
of the pressure at the inlet to the shroud, the pressure within the cavity of the shroud
and the temperature of the system. To accomplish the first task one may apply
Bernoulli's equation along a stream line from the inlet to the shroud into the cavity of
the shroud. Using the stagnation pressure at the inlet, the static pressure in the cavity

and then solving this equation for the axial velocity one obtains equation (4.4).

w, = _zﬂii_’fl 4.4
h
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The density of the fluid over the first sealing knife is taken as the average of the
densities before the seal and within the cavity of the seal. Taking this average and
applying the ideal gas equation (4.5) results.

pitp _P+P
o2 2RT

4.5)

Equations (4.4) and (4.5) are substituted into equation (4.2) in order to derive

the equation governing the influx of mass into the seal.

o 3
4= Jer (P - F) 46)

Notice that the flow coefficient is used instead of the contraction coefficient and that

4> 0,, P, and P are all function of angle and time. The mass efflux is derived in the

same manner as the mass influx and is given by equation (4.7).

g, =228 (p - p2) @7

VRT °

In this case, g,, 6,, P and P, are functions of angle and time. Also, the flow
coefficient U1, is not constant as it was in the mass influx equation. As mentioned
above there is a carry-over effect due to the jet produced by the first sealing knife. This
jet could be dissipated if the distance between sealing knives, /, is large compared to the
sealing clearance, 6. However, the seal used in the experiments in this work and in
Millsaps work have a relatively small /, therefore, the flow coefficient is a function of
the kinetic energy carry-over factor.

Since the flow coefficient depends on the carry-over factor, a means of
determining this carry over factor is now shown. Millsaps [17] used an empirical
relation created by Varmes in order to find this carry-over factor. This empirical

relation is used here and is given by the following two equations.
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1

B= o (4.8)
8.52
@ = L4723 “9)

The effective pitch, /,, is the distance the fluid must travel from one knife edge to the
other, thus, this distance depends on the inlet swirl:

l

I = prver (4.10)

where ¢; is the inlet swirl. From these expressions one notices that the carry-over
factor, thus, the flow coefficient is at its minimum where the eccentric rotating
shrouded rotor has its minimum gap. At the maximum gap the flow coefficient attains
its maximum. This effect generates the direct force. Therefore, it is important to see
how sensitive the carry-over factor is to an eccentric position of the shrouded rotor.

This sensitivity is given by

x=-C, 9% 4.11)
ar r=0

where r is the radial (eccentric) displacement. The seal clearance is simply a linear
function of the radial displacement and equations (4.8), (4.9) and (4.10) are used in

conjunction with (4.11) in order to obtain this sensitivity.

u 2
x=-cca—5| —8'52Cc’{1- 8.2 ][—17+7.23] (4.12)

o 267 | k+7.23| L6

Note that the asterisk denotes the concentric rotation of the rotor where the clearance is
uniform around the circumference. This sensitivity multiplied by the radial

displacement (magnitude of eccentricity) gives the change in the flow coefficient.
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Therefore, the flow coefficient at the second knife is approximated by the centered

value of the flow coefficient minus the change in the flow coefficient.
Uy = U, —Kr 4.13)

Since small perturbations are investigated this approximation is sufficient.

This concludes the introduction to the equations describing the flow in the axial
direction, now the continuity and momentum equations in the circumferential direction
are presented and coupled to this axial flow. A control volume showing a differential
location with all the pertinent mass fluxes is shown in Figure 4.3. The increase in mass
within this control volume is balanced with the net mass inflow and the convection
along the seal. Equation (4.14) gives this continuity equation.

olpi(n+8)] 1 Jpvi(h+s))]
ot R 00

5

q,—-q =0 4.14)

Figure 4.4 shows the differential control volume which represents all the forces
considered. Applying Newton's second law to these forces the momentum equation in

the circumferential direction coupled to the momentum equation in the axial direction

is derived.
dlpVi(h+6,)] 1 Ipv*(h+4)] Ih 9P
» e 5 +q2V—q1V,.+rsl—r,(l+2h)+E%—0 (4.15)

s s

The Darcy friction law is used to relate the shear stresses to the tangential
velocity, V, of the fluid within the cavity. The shear at the casing is denoted with a

subscript "s" while the shear at the rotor is denoted with a subscript "r". The casing

sees a fluid velocity of V while the rotor sees a fluid velocity of (V - @R,), therefore,

the equations for these shear stresses are given by the following two equations.

T, =1pAVIV|=§pA,Vsgn(V) (4.16)
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7, =1pA,(V - &R,V - oR)| = pA,(V - wR,)’ sgn(@R, - V) @.17)

r

Blasius’ formula for a one dimensional flow in a hydrodynamically smooth duct is used

to calculate the friction factors, A, and 4,.
A, =0.3164 Re,*% (4.18)

A, =0.3164 R, 4.19)

In order to determine the friction factors the Reynolds numbers must be determined.

These Reynolds numbers are given by the following two equations.

Re; ='ﬁ} (4.20)
Re = (_wkvL)D_h' 421

Notice that the diameter is the hydraulic diameter, D,, which is given by four times the

cross sectional area divided by the wetted perimeter:

4i(h +8,)

=) 4.22
" 20+2(h+6) (4.22)

The final set of equations presented, before a solution technique is shown, are
the equations which describe the orbiting motion of the shrouded rotor. From Figure

4.2 one notices that there are two seal clearances, (J, and J,), and their magnitude

varies around the circumference of the shroud. For a rotor which is exhibiting an
eccentric amplitude r with a circular whirl at a whirl angular velocity of £2 the

following two equations completely describe its motion.
8, =08, —Fcos(6-Qt) 4.23)

8,=8, —Fcos(0—-Qt) (4.24)
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Variables with asterisks will always denote the concentric (non whirling) conditions.

4.3 Solution to the Governing Equations

The following section describes a linear perturbation technique to solve the
system of equations derived above. Such a technique is used because one is interested
in the effect a small amplitude eccentric rotation has on the stability of such a system.
More comprehensive and, therefore, complicated nonlinear techniques may be used to
solve these equations, however, the nonlinear terms (products of perturbations) are
small and also limit cycle behavior is not of interest in this work. The linear
perturbation technique gives complete results since it is capable of describing how the
flow and geometric parameters interact to produce a nonuniform pressure perturbation
around the circumference of the shroud. Ultimately these results are compared to those
obtained from the wall tap pressure readings presented in chapter 3.

The linear perturbation solution to the above derived equations are divided into
three parts. The solution begins with a zeroth order solution, that is, solving the
equations with the rotor centered (concentric position). The second part involves
perturbing the variables from their unperturbed concentric positions with small
amplitude perturbations. The nonlinear terms are then discarded. The last part
involves assuming harmonic solutions for the perturbations. This results in two
algebraic equations with two unknowns, the pressure nonuniformity and the velocity
nonuniformity around the circumference of the shroud. From the pressure

nonuniformity the normal and tangential forces are obtained.

4.3.1 Zeroth Order Solution
As mentioned above, the zeroth order solution gives the rotor centered solution

to the derived equations. All the variables are independent of time and space, therefore,
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all spatial and temporal derivatives are dropped. These variable are denoted with an

asterisk *. To begin with the continuity equation (4.14) becomes
@ —q =0 (4.25)

The shear equations (4.16) and (4.17) are substituted into the momentum equation
(4.15) and then the zeroth order simplification is undertaken which results in equation
(4.26).

%[ﬂ,slv’z - 4,1+ 20V - @R |+ V" - gV} =0 (4.26)
The steady state flow rate, ¢, is found from equations (4.6) and (4.7) and is
given by

q' = Q; = q; 1”1 [ P'z P*z] 2“2 [ P*z P*z]‘% ( 4‘27)

Equation (4.27) is then used in conjunction with equation (4.25) in order to
obtain the zeroth order pressure in the cavity of the shroud. Solving for P* one obtains

the following equation:

. [87 *2R-2+5*2 2p7 i
[T o

The zeroth order density within the cavity is simply:

P
= — 4.
P =Rr (429)

The final step in this subsection is to calculate V*. The momentum equation
along with an iteration procedure is used to find this velocity. An iteration procedure is

used because the shear terms within the momentum equation depend on V" in a non

elementary manner. The known inlet swirl velocity, V;, is used as an initial guess.
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Then ,A, and A, are calculated from equations (4.18) through (4.21). The momentum

equation, equation (4.26), is then rearranged into a quadratic in V".

—[M -2 (1+2h)]V*2+[q +—=(I+2h)oR, ]V
(4.30)
[qv +E2e (l+2h)w2R2] 0

At this point all the variables in equation (4.30) are known and, therefore, one is able to
solve for V°. The value calculated is compared to the original guess and if the

following test holds then V" is determined.

V.-V

nl "~ Va

<& (4.31)

Using this iteration procedure, the code took approximately 5 iterations to converge to

4 decimal points.

4.3.2 Linear Perturbation Approximation
A perturbation expansion about the centered rotor solution is shown in this
section. The state variables are expressed as the zeroth order solution plus a small

amplitude perturbation, as follows:
P=P' +P 4.32)

The small amplitude perturbation is given by P where this perturbation is also written

as a relative perturbation times the steady state solution.

P=P0,)=P" +P=P'(1+£(6,0))=P" + &P (4.33)
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The relative perturbation, &, is dependent on the zeroth order quantities. Similarly, the
above procedure may be applied to all other zeroth order variables discussed in the

previous section.

P,=P +P,=P/(1+&) (4.34)
V=V, +V,=V/(1+7,) (4.35)
V=V'+V=V'(1+n) (4.36)
P,=P,+B,=P)(1+&) 4.37)
4=q +4=4,(1+¢) (4.38)
©=6+5=q(1+) (4.39)
p=p +p=p'(1+¢) (4.40)

Notice that the inlet pressure and velocity and the exit pressure are taken to be
nonuniform. This nonuniformity is found in the experimental results as described and
illustrated in chapter 3. In the next chapter, where the results of this theory are
presented, the nonuniformity measured by experiment at the inlet and the outlet of the
shroud is used as inputs for the theoretical solution. The nonuniformity within the
cavity, P(6,t), can then be found.

The next step is to express the axial mass flow rates, ¢, and g, as functions of
steady state flow and pressure terms along with perturbations in pressure only. This is
accomplished by dividing equations (4.6) and (4.7) by (4.27) and then performing a
Taylor series expansion in &; and & for the first equation and then performing another
Taylor series expansion in & and &, for the second equation. By taking only the zeroth
and first terms and eliminating all higher order terms one is able to simplify the mass

flow rate equations to

5 P?-Pp P?-p”

t {

. 6 P? P
4,=9q = I:l‘é v ) +¢ - ] (4.41)
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Ol e P P 4.42
q2 q 52“2[ §P*2_P:2 gaP*z_P:z (' )
The density within the shroud cavity can be expressed as the steady state
density and the pressure perturbation by using the adiabatic isentropic relationship.

- 5)
=p'l1+=2 443
p P(+y (4.43)

In order to obtain the linearized continuity equation, equations (4.33) through
(4.43) are substituted into the complete continuity equation presented above (equation
(4.14)). The higher order terms which are products of perturbations are eliminated
because they are much smaller than the first order terms. The result of this

manipulation give the linearized continuity equation.

L35, ph3E 1] . .35 o pV'IhIE
P R[” PV et a6

f1 1 «x | P P
Y-+ | = 4.44
s mpilmmmrf o

J, P? %
-4 ligip:z_Paz +§o Ptz_P:z]=0

The linearized momentum equation is obtained in the same fashion. The
perturbation equations are substituted into the momentum equation (equation (4.15))
and all higher order terms are eliminated. The zeroth order momentum equation

(equation (4.26)) is also called upon to further simplify the resulting linearized

momentum equation:

lehan 96, leha§ pRTz(h+6)a§
ot

o y o R 20

§

+p V'l
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2,, 0N |+ 0,00 on pV:hdE
s[Zlehao+leae+lehae 9

J V'P? vV, p? |, vip? V'P?
" [P’Z [ ]5 - [5" PP S P} (449

+§;[/uv 2 -4, (1+2m) (V" - azR,)z]éj +q'V'n-q'Vin,

V’ V' vk
AV =4 (1+2h)V" - &R, n+q (———, -— Jr=0
[ A )( ] 6 6, W,

The result is a linear system of partial differential equations in both pressure, P, and
velocity, V, with periodic boundary conditions. The following section will describe a
technique to reduce equations (4.44) and (4.45) to a system of complex linear algebraic

equations.

4.3.3 Harmonic Solutions

The variation in gap, r, is the non-homogeneous term in the continuity and
momentum equations and is assumed to consist of a first harmonic of the azimuth angle
measured from a whirling reference, ¥ = 8 — Qt. The perturbation in pressure at the
inlet, &;, within the cavity, & and at the exit, £, of the shroud and the perturbation in
velocity at the inlet, 7,, and within the cavity, 7, are assumed to follow the same
functional dependence as the variation in gap and consist solely of a first harmonic. As
mentioned above, the magnitude and phase of the inlet and exit terms are obtained from
experimental results while the pressure and velocity non-uniformities within the cavity
are the two unknowns in these two equations. Complex exponential notation is used to
express these harmonic solutions (real parts being understood to be extracted). The

variation in gap is expressed as

r=fe' ¢ (4.46)
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the perturbation in pressure at the inlet within the cavity and at the exit are given by

& =8 (4.47)
£ = EeO (4.48)
£, =0 (4.49)

and the perturbation in velocity at the inlet and within the cavity are respectively,

n; = e (4.50)
n= e » (4.51)

The partial derivatives of equations (4.23), (4.47) through (4.49) and (4.51) with

respect to angle and time are
_a__sl— 5, i(8=0n)
= ife 4.52)
?a_(jl_ = i Qi@ (4.53)
35- £ (8-t
%i _if 4.54
2 -
%%L —-i0 Ei ) (4.55)
35 £ i(8-Q1)
9% _ 4,
20 =% 0
dE . 26
95 _ _i0Fsi0- 4.
- iQke 4.57)
35 £ i(6-0)
—29 = 4.
26 = 5e 0
3§; -0 éa £i6-2) (4.59)
oM _ . ie-mm
- ifie (4.60)
_%1 = —iQfje e 4.61)

All the pertinent equations are then substituted into the linearized continuity and
momentum equations (equations (4.44) and (4.45)) and the complex exponential

(phasor) is eliminated. After rearranging and placing the unknown terms, é and 7] on
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the left side of the equation and the forcing terms, f, , f,,, f); and 7, on the right side of

the equation one obtains the following from the continuity equation:

J] P? P? ‘Ih(V* 1z Vi | .
{q I:P:z _p? + P —P:zjl-'-p‘)’ (E-Q}}g'*'{p R l}ﬂ=
(4.62)

gx {1 1 AP N O O I 5 P’
{u +q(‘S 5)“”(& Q}}H{q[}ﬂ .2€+ .Z_P?éo]}

and the momentum equation becomes:

J VIP? V'p*? p 21
{q [ P2 _p” + P P:2]+8—y[}.slv'2 _A,(1+2h)(wlg -V ) ]}g

fezfp-oeme
y R8 RS

—A,(1+2h)V" - @R, )] + p‘v‘zh[ 2}: - .Q]i}ﬁ (4.63)

§

q:VnK . Vt V.J ( t
={——+q +p' VIl —-Qi
{ H, (52 o R
doen .V, P‘2 2 V ‘P 2
+{q [Vz ni PQ 5 02 6 :l}
The above equations can be represented in matrix form.

[Am+iBu A, +iB, ]H C +zD [El] a6

+{q‘V' +2

A, +iB,, A ,+iB,, C +iD, E,

The solution to (4.64) gives the magnitude and phase of the pressure and velocity
perturbation within the cavity of the shroud. However, before this theoretical model is

used, equations (4.62) and (4.63) are nondimensionalized.
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4.4 Nondimensionalization

Greater physical insight is gained from nondimensionalizing equations (4.62)
and (4.63). Millsaps [17] has done an extensive parametric study on the effects of
varying these nondimensional coefficients, therefore, in the interest of completeness the
nondimensionalization is presented in this work. Also, the work which is presented in
chapter 5 is an extension of Millsaps work. The extension includes a study on the
effect the pressure and velocity nonuniformities upstream and the pressure
nonuniformity downstream have on the theoretical predictions of the pressure and
velocity perturbations within the cavity of the shroud. Also, the next chapter contains
the results of this theory using the geometry and flow conditions present in the
experimental facility!. First, however, the nondimensional equations are presented in

this section.

4.4.1 Scaling Quantities

The steady flow rate, g, is the logical parameter to use in order to normalize

the continuity equation. Itis a little harder to find an optimum parameter that can be

used to normalize velocities. The are many choices such as @R,, w;, V;,and V'. The
problem with @R, is that it leads to a singularity when the shaft speed is zero. When
all is said and done, it appears that V" is the best choice for scaling forces over the
widest range of conditions. Also, the least set of redundant nondimensional parameters

is given by V".

4.4.2 Nondimensional Parameters
The continuity equation when nondimensionalized by ¢" and the momentum
equation when nondimensionalized by V" yields three categories of nondimensional

parameters. The first category contains the geometrical ratios, the second category

1As described in Chapters 2 and 3.
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contains the velocity ratios while the last category are the ratios of dynamic quantities.

The geometric ratios are defined as follows:

qeg o=@ D= mel k=% 1ol wey
1 1 s 2 s

The first parameter of equation (4.65) is €, and is simply the normalized eccentricity.
The convergence or divergence of the seal is given by &. When a=1 this condition
states that the gaps over the seal knives are equal as in the case of the shroud that is
used in the experiments as presented in chapters 2 and 3. The following parameter, D,
normalizes the mean gap by the seal depth and, therefore, describes the ratio of the
change in the local sealing gap to the shrouded rotor cross sectional area. The height of
the sealing strip normalized by the radius of the seal is given by H. The next

nondimensional parameter is K and it is analogous to o when o<1 and basically

behaves as K ~ % —1. K the gap is smaller at the exit of the shroud this parameter

describes the reduction in mass efflux from the shroud. The last parameter is L and it
is simply the ratio of the seal width to the seal radius. Both H and L are basic
geometric ratios, however, they play an important part in that they contribute to the
frictional shear forces within the shroud.

There are two kinematic parameters to discuss, the nondimensional shaft speed

and the nondimensional whirling speed. They are both given in equation (4.66).

OR
= ,s W = __.s_ 466
v v (4.66)

The spin rate of the shaft and the whirl rate of the shaft are compared to the swirling
velocity of the fluid via the above equations. Values of S less than one indicate that the
fluid in the cavity is swirling at a greater speed than the shaft is rotating, therefore, the
shroud tends to slow the fluid. The dominant parameter for discussing dynamic

destabilizing forces is W. Even though the experimental facility is static, dynamic
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terms are still discussed from the theoretical viewpoint. Once the dynamic theoretical
model is derived it can always be simplified to predict the static case as in the
experimental facility. These type of simplifications are discussed further within this
chapter and the following chapter. Once the nondimensional equations are presented in
section 4.4.3 one may notice that the group V,(1- W) is found within these equations.
This term indicates the relative gland swirl seen by an observer rotating in the whirling
frame of the rotor at a frequency of £2. This quantity describes whether the swirling
fluid in the cavity overtakes or is overtaken by the traveling waves. If W=1 there is no
relative gland swirl and from symmetry there is no cross force2.

The final category of parameters to discuss involves the dynamic ratios. These

ratios are given in equation (4.67).

‘ p*Vta; V.t
o="— r=1-— 4.67
ﬂl 16,0 RT p VR q |4 “en

The nondimensional flow rate is given by A and by using equations (4.27) and (4.29)

one is able to rewrite A in the following form:

., P 2 3
i ]

By substituting equation (4.28) into equation (4.68) and simplifying, one may now

show that A is actually a measure of the axial pressure gradient from inlet to exit.

b
_|_m-1
A (’#)2 » (4.69)

The ratio of the inlet pressure to the exit pressure is given by x,.

2This is only true in the absence of frictional effects. See Millsaps [17] chapter 3 for further discussion
on these effects.

122



The next parameter, 0, is called the swirl parameter and it basically compares
the circumferential velocity to the axial velocity. The final dynamic parameter is I” |
which compares the inlet velocity to the velocity that exists in the shroud cavity. The
degree to which viscous shear forces alter the swirl velocity as the fluid travels from the
inlet into the cavity is conveyed by this parameter. For the inviscid case, shear forces

are absent, therefore, I" should equal zero.
4.4.3 Nondimensional Equations
Nondimensionalizing the continuity and momentum equations by ¢* and ¢'V"

respectively and grouping terms as described above one obtains the nondimensional

continuity equation (4.70),
{[[%Z_f)z + (21‘-)2] + [-giy(l - W)]i}é + {%Li}ﬁ
(4.70)
= {[K + (-é - 1)} +[oL(1- W)]i}sl + {[1 + Gﬂé + [(%—%T - 1]5,,}
and the nondimensional momentum equation (4.71).
{( sz )2 . (1;21“) : ;H [,1 -3 (1 + —)(s 1 ] [—?(1 ~W)+ —AZGZ? D]i}é
o2l (10205 + Zp-wia
= {[K + (-;7 - 1)] +I'+[oL(1- W)]i}e1
+ {[1 ~ i+ [(1 r)(1+( ) )]5 + [(jﬁf) - 1] }

(4.71)
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In order to obtain the more compact convective form of the momentum equation (4.72),

the continuity equation (4.70) is subtracted from the momentum equation (4.71).

-r oL | 2H 2 L Ll
{zr*mﬁs 41+ 2Js- ]*[m]}é

oL [ 2H oL A A
+{1 + DH _ls - 1,(1 + —z—)(l - S)] + —b-[l - W]z}n 4.72)

crosfo-m [

Equations (4.70) and (4.72) form the system of equations used to determine the

pressure and velocity perturbations within the cavity of the shroud. Chapter 5 explains
the computer code that solves this system of equations and the studies that were

performed using this code.

4.5 Interpretation of Solutions

Once again, the solution to equations (4.70) and (4. 72) give the pressure, é,
and velocity, 7], perturbations within the cavity of the shroud. These perturbations are
complex constants and contain both magnitude and phase information. They are
represented in the complex plane and this is illustrated by referring to Figure 4.5 and to

equations (4.73) and (4.74) for the pressure and velocity representation respectively.

E=& +iE, (4.73)
fi=fi, +ifl,, (4.74)

Amplitude of the pressure and velocity is simply given by

g=[&+&] @75)
Al =42 + 2]} (4.76)
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The phase angles y, and y, shown in Figure 4.5 respectively give the angular

location ahead of the minimum gap where the maximum value of pressure and velocity

occur.
y, =Tan™ S 4.77)
L ém .
¥, =Tan™ '}’— (4.78)
L IR

As one might expect the above phase angles are defined over an interval from
—7 to 1 where Tan™ is multi-valued. Therefore, the sign of these phase angles are

chosen as follows:

.f,m, f, >0=> Ve W, >0 4.79)
E i Tlin <0 = ¥, ¥, <0 (4.80)

The sign of the phase angles can be used to tell whether the calculated
distribution of both pressure and velocity nonuniformity tend to destabilize a whirling
rotor. However, as is seen in the previous chapters, nonuniformity in the pressure
distribution is not the only mechanism that can trigger rotordynamic instability.
Another mechanism, as was mentioned previously, is the Alford effect. Therefore,
rather than having to deal with the incomplete stability information provided by the
pressure and velocity perturbations, the rotordynamic forces due to these perturbations
are determined. A method of calculating the rotordynamic forces from the determined
perturbations is shown in the next section. These forces then may be combined with
the forces determined from the other mechanisms to ultimately determine a systems

stability.

4.6 Rotordynamic Forces
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The rotordynamic forces are found by integrating all stresses over the shroud's
land. This calculation is similar to the integration shown by equations (1.11) and (1.12)
when calculating normal and tangential forces from the pressure nonuniformity around
the circumference of the shrouded rotor. The first item to note is that only the first
harmonic perturbations contributes to the net rotordynamic forces because of
orthogonality. Second, as one might expect, the forces are due to two types of stresses,
the normal stress due to pressure and the shear stress due to friction. The normal stress
is calculated via the pressure perturbation while the shear stress is calculated via the
velocity perturbation and the forces resulting from these two stresses are calculated via

equations (4.81) and (4.82) respectively.

Fprure = | EP"dA 4.81)

Fopew = [ 211‘1%1/*2(1,4 4.82)

Millsaps [17] has shown that the force due to the shear stress is much smaller
than the force due to the normal stress, therefore, only the pressure forces will be
calculated. As is shown in chapter 1, the force due to the pressure perturbation is
decomposed into normal and tangential components. Once again the normal force, F,,
is the component of force acting in the direction of instantaneous minimum gap
(positive is destabilizing) and the tangential force, F;, is the component of force acting
perpendicular to that minimum gap (positive in the forward whirling direction). Note
that the system is allowed to whirl, therefore, as described in chapter 1, the normal and
tangential forces are functions of whirl frequency, Q. Equations (4.83) and (4.84)
gives these normal and tangential forces and show that they can be expressed in terms
of the amplitude and phase information determined from the theoretical solution.

2 27 Al .
Fy = Fy(@) = =R} P(y)Cosyay = —RI[ "[E[P"Cos(y - w,)aw
(4.83)
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A

=—mR JE|P"Cosy, = -nRIP'R(E)

Equation (4.84) is derived in a similar fashion.

F, = —nRsllélP'Sinwg = —mR IP' Im(€) 4.84)

In order to compare the forces obtained from the theoretical solution to that of
the experiment the whirl frequency is set to zero. This gives a static displacement and
the normal and tangential forces that result from the calculations are static and may be
termed the direct and cross force. The computer code that performs the above
theoretical calculations and the values of each of the pertinent inputs to this code are
described in the chapter 5. The direct and cross force theoretical results for the
geometry of the experimental shrouded turbine are also given in following chapter.
Chapter 5 also contains a study on the sensitivity of the analytical model to the inlet
and exit pressure and velocity perturbations. Chapter 6 compares the results of the

theoretical model predictions to those experimentally determined.
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Figure 4.1:
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Section View of the Shroud Ilustrating the Coordinates and Flow
Parameters. [16,17]
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the Kinematic, Geometric and Flow Parameters Used in the
Theoretical Model. [16,17]
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Chapter 5

Application of the Analytical Model

5.1 Model Parameters and Their Values

The perturbation in pressure within the cavity of the shroud is obtained by the
solution of the two by two system of linear equations which are derived in chapter 4.
As mentioned previously, these equations require certain flow and geometric quantities
to be known along with certain inlet and exit perturbations. Sections 5.1.1. and 5.1.2
explain the values given to the flow and geometric variables respectively. These values
are such that the shroud depicted by this analytical model is similar to the shroud which
exists in the experimental facility. Section 5.1.3 describes the computer code used to
solve the system of equations which are derived in the previous chapter. Studies of the
effect the inlet and exit conditions have on the theoretically predicted direct and cross
forces are illustrated in section 5.2. This chapter ends with the results of applying the
model to the test conditions that exist in the experimental facility. Chapter 6 compares

the results of the experimental study with the theoretical results.

5.1.1 Flow Conditions

To calculate the pressure perturbation within the shroud's cavity the following
input flow parameters are determined: the inlet and exit pressures along with their
perturbations, the temperature, and the inlet tangential flow velocity along with its
perturbation. The experimental facility design flow conditions are used for these
values, however, not all the inputs are direct measurements from the facility since the

facility does not contain means to measure certain properties. Therefore, certain
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calculations are performed. The shroud's inlet pressure is basically the pressure after
the stator. However, a modification is made to account for the stagnation of the axial
momentum component against the first sealing strip, i.e., adding to the static pressure
the dynamic head 4 p,ii>. Since the tangential component 4 p, (V,.)2 is preserved, the
correction is relatively small. It is, however, noticeable because the rotor pressure drop
in this low reaction turbine is itself small. The next step is to understand how to obtain
the inlet tangential velocity, which is found by first determining the axial velocity, U,_,
at the exit of the stator. The axial velocity used here is determined theoretically taking
into account the blockage caused by the shroud band. First, as mentioned above, the

axial velocity component of the fluid exiting the stator stagnates at the sealing strip,
however, the tangential component, V,, is preserved and has the same value as at the
exit of the stator. The axial velocity component, U,_, at the exit of the stator is
determined in order to calculate this tangential velocity component. The axial velocity
is first found as if there is no blockage and then the blockage is taken into account.

In order to model this blockage it is found that the flow in the cross plane is de-
coupled from the axial flow. This allows one to model the flow within the test section
as a flow within a channel. Upstream the channel has a width of H, (representing the
height of the stator blades) and downstream the channel has a height of B,
(representing the height of the rotor blades). The change in height is accomplished
through a step (representing the blockage by the seal). At the corner of the step is a

sink (representing the leakage through the seal). One can assume that the channel has a
very slight taper such that infinitely upstream the channel converges (the width, H,,

goes to zero, H, — 0, far upstream). Also, the same is said for the downstream channel
width, where infinitely downstream the channel converges (the width, B,,, goes to zero,
B, — 0, far downstream). This procedure gives a closed polygon which is then
mapped to a half-plane via the Schwarz-Christoffel formula. Applying the

transformation along with the flow conditions that exist in this type of channel one
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obtains equation (5.1) which is the ratio of the axial velocity at the exit of the stator

with blockage to the axial velocity at the exit of the stator without blockage.

_ges__—__l_(1+”._‘l_) (5.1)
Uy, P u—a
where,
-1
p=qf (5.2)
u—a
and
H 2
=| == 5.3
a (BHJ (5.3)

The axial velocity without blockage is given by U,

Oes

while the axial velocity with
blockage is given by U,,. The variable u is the fraction of the entire mass flow which
escapes over the knives of the shroud (sink) and a is simply the ratio squared of the
channel widths. The variable u is the stator trailing edge velocity near the upper wall in
the half-plane and p is defined by equation (5.2). Both u and p can not be found
without the aid of an additional equation. Equation (5.4) gives the value of p.

4 2l D)o L g L
Hs-n_[Tanh (p) 1/ETanh (P‘/‘_’):l 5.4

Equation (5.4) comes from the derivation of the above equations. The distance from
the trailing edge of the stator to the mean radius of the leading edge of the rotor is given
by d. All the values of the variables are known in equation (5.4) except for p. An
iteration scheme is used to solve for p and once p is found then the ratio of the axial
velocities can be determined. Equation (5.2) then can be used to find « if one desires.

The geometry found in this shrouded turbine test facility is as follows:

d =7.493 mm =0.295 in
H; =23.48 mm =0.9245 in

B, =16.6 mm =0.654 in
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Therefore, the value of a is 2.061 and from iterating equation (5.4) one obtains 1.421
for the value of p. Assuming that the mass flow rate into the sink (over the knives of
the shroud) is very small compared to the mass flow rate through the channel i.e.,

U <<1, one obtains 0.7039 for the ratio of the axial velocity with blockage to the axial

velocity without blockage.

£-=0.7039

£

The exit pressure is found using the pressure drop across the stage as measured by the
wall tap pressure ports. After performing the steps outlined above one obtains the

following for the input flow conditions:

P; =223.9kPa = 32.46 psi
P. =201.0 kPa = 29.16 psi
T =291°K =64 °F
Vi =29.7 m/s = 97.4 fi/s

The values used for the magnitude and phase of the inlet velocity and pressure
perturbations and the magnitude and phase of the exit pressure perturbation are
discussed in section 5.2. This later section describes the model's behavior to these
perturbations. Therefore, presenting the inlet and exit perturbations used to calculate
the final value of the direct and cross forces is left until a better understanding of these

perturbations is obtained in section 5.2.

5.1.2 Geometric Inputs

The model needs certain geometric properties of the shroud. The first of these
properties needed for input is the radius of the shroud. The radius is taken from the
centerline to the flat outer area of the shroud (the land region). The length of this land

region is the second input. The vertical height of the sealing knives is also specified.
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The next two inputs are the nominal gaps at the entrance and at the exit of the shroud.
These gaps are the distance between the tips of the knives to the inner casing of the
facility. The eccentricity of the rotor is the next input followed by the frequency of the
shaft rotation. The whirl rate is the last input. The whirl is set to zero for all the
analytical tests because this theory is attempting to model the static experimental
facility that is described in chapters 2 and 3.1 The values given to the above geometric

quantities are exactly those which exist in the experimental facility and are listed below.

R, =0.1345 m = 5.296 in

[ =0.01363 m=0.537 in
h =0.00549 m=0.216 in
8, =48, =0.000737 m =0.029 in
F =e =0.000457 m =0.018 in
@ =360 rad/s
£ =0.0 rad/s

5.1.3 The Computer Code

The solution to the model's system of equations is done via a FORTRAN code.
This code is located in Appendix B and when used to simulate Millsaps tests it is
capable of reproducing his results exactly.[17] First, the code reads in all of the flow
and geometric properties from an input file. The magnitude and phase of the inlet and
exit pressure and velocity perturbations are specified in the code. The phase of the inlet
velocity perturbation is taken at the location of the minimum value of the inlet pressure
or 180° out of phase with the phase of the inlet pressure perturbation. From Bernoulli's

equation

J2‘/7;"/:2 + P:" = %pi[v: (1 +1; )]2 + P: (1 + Ez) 5.5

IThis theory is capable of dynamic results by simply inputting a whirl frequency other than zero.
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it is found that the magnitude of the velocity perturbation is given by:

Iﬁi|=;’{,’§—2léi| (56)

8

Substituting the values for P;, p; and V; one finds that the magnitude of the velocity
perturbation is -8.3975 times that of the pressure perturbation.

A

i, =-8.3975¢, .7)

The magnitude and phase of the inlet and exit pressure perturbations are found from the
experimental data. A complete discussion of these perturbations is given in section 5.2.
Zeroth order quantities are calculated next and then the iteration scheme to determine
the unperturbed swirl velocity in the cavity is performed. The resulting quantities are
nondimensionalized as described in section 4.4. These nondimensional quantities for

the operation of the turbine at its design speed are

g =0.6201 a =1.0000 D =0.1342
H =0.04081 L=0.1013 K =0.2020

S=1641 W=0.0 4 =0.3408
o =0.9425 I'=-0.005498

The code then sets the coefficients for the nondimensional equations (4.70) and
(4.72) and then Cramer's rule is used to solve these equations for the pressure and
velocity perturbations within the shroud's cavity. The normal and tangential forces are
calculated via equations (4.83) and (4.84). Since the whirl is zero, these forces are
referred to as the direct and cross forces. Repeat loops ("DO" loops) are set such as to
repeat the code for various inlet and exit velocity and pressure perturbations in order to

gain an understanding of how these perturbations affect the final solution.
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5.2 Study of the Model's Sensitivity to Inlet & Exit Perturbations

In section 5.2.1, the effect the magnitude and phase of the inlet and exit
perturbations have on the model's solution is presented. Section 5.2.2 calls upon what
is learned in section 5.2.1 and what is shown in section 3.2 in order to set the correct
inlet and exit perturbations such as to model the conditions that exist in the
experimental facility. The values of the direct force and cross force at the design

condition are then predicted by this theory.

5.2.1 The Study

The code is set to output the direct and cross forces to two respective output
files for the extent of the study. The repeat loops in the code are set such as to begin
calculations with zero magnitude for both the inlet and exit perturbations. There are
three nested loops. The outermost loop simply controls whether the inlet perturbation
or exit perturbation is investigated. If the effect of the magnitude and phase of the inlet
perturbation is under investigation then the magnitude of the exit perturbation is set to
zero and vice versa. The middle loop varies the magnitude of the perturbation which is
under investigation. Magnitudes are varied from 0.0 to 0.005 in 0.001 increments. The
innermost loop increments the phase through sixteen angles from zero degrees to 360
degrees in 22.5 degree increments (0°, 22.5°, 45°,...,360°). For magnitudes of zero a
change in phase does not effect the final results. This study shows how the direct force
and cross force are affected by inlet and exit perturbations for any phase and for a wide
range of magnitudes.

The results of this study are plotted in Figures 5.1 through 5.4. Each figure is a

plot of either the direct or cross force versus the phase and contains six curves for each
of the six magnitudes mentioned previously. As one might expect, the phase of a

particular perturbation which has the largest effect on the direct force gives no effect on
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the cross force (i.e. for the inlet nonuniformity this occurs at 26° & 206° and for the exit
nonuniformity this occurs at 9° & 189°) and vice versa.

Figures 5.1 and 5.2 show the effect the inlet pressure and velocity perturbations
have on the direct and cross forces. Note that in these two figures the exit perturbation
is set to zero so that the effect of the inlet nonuniformities may be analyzed without any
other effects occurring at the same time. The phase of the inlet pressure perturbation as
determined from experiment is found in Figures 3.15 and 3.16. The experimental work
shows a phase of 337.5° whose location on the theoretical graphs is illustrated by the
vertical line in both Figures 5.1 and 5.2. The magnitudes of the direct force
(F, =-7.987N) and the cross force (F, =11.642N) obtained via the pressure effect
experimental work is illustrated by a horizontal line in the respective figures. It is seen
from these two figures that the existence of the pressure nonuniformity at the inlet of
the shrouded turbine at a phase of 337.5° acts to increase the direct force in the negative
direction (restoring) and acts to increase the cross force in the positive direction
(destabilizing). This is an extremely important result because previous theoretical
calculations, which under-predicted experimental results by 200%, ignored inlet and
exit nonuniformities. The inclusion of these nonuniformities improves predictions.

The nonuniformity at the exit of the shroud also plays a very large role in
altering the prediction of the direct and cross forces. Figures 5.3 and 5.4 are a graph of
the direct and cross force vs. phase for six magnitudes of the exit pressure perturbation.
As in the case of the inlet nonuniformity, when analyzing the exit perturbations and
there effect on the forces the inlet perturbation is set to zero. Finding the actual phase
of the exit perturbation as it exists in the experimental facility is a little more difficult
than in the previous case. The wall tap pressure readings at station 8 (Figures 3.23 and
3.24), which is at the exit of the shroud, are not repeatable. The wake region behind the
shroud is probably responsible for this scatter since experimentation at station 8 with

the unshrouded turbine show repeatable results and the nonuniformity pattern present at
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the other five stations are clearly visible at this station.[15] Experimentally the phase at
station 4 is shown to be 337.5°, the phase at station 7 is shown to be 304.5° and the
phase at station 9 is shown to be 267.2°. Figures 3.27 and 3.28 show this progression
and indicate that as the flow travels from the inlet of the shroud to the exit of the shroud
the phase of the pressure and velocity nonuniformity rotates. Therefore, station 8,
which is at the immediate exit of the shroud, should have a phase somewhere in
between that of station 7's phase and station's 9 phase. Figure 5.3 and 5.4 indicate this
region with a bold box. Basically, as is seen in Figure 5.3, the direct force is very
sensitive to the value of the phase within this region. However, the cross force (Figure
5.4) is near the maximum effect, therefore, the sensitivity to a change in phase is very
small.

The above explanation along with the four figures show that the model must
incorporate inlet and exit perturbations as they have a large effect on the model's

prediction of both the direct and cross forces.

5.2.2 Simulating the Experimental Facility

The flow and geometric conditions used in the study above are those that exist
in the experimental facility. However, the exact values for the inlet and exit
perturbations have yet to be defined. One may already understand what values are used
for these parameters, however, they are formally defined in this section.

The inlet phase for the pressure perturbation is 337.5° as is mentioned in section

5.2.2. The magnitude of this perturbation is found from Figures 3.15 and 3.16 (which

gives P, — P; = 0.1 psid) and the absolute concentric pressure at station 4 (which gives

P,." = 30.67 psi). Equation (5.2) illustrates how this magnitude is calculated.

|=Bi=P (5.2)
The value of this magnitude is lé,.l =0.003260.
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An interpolation is used to find the exit conditions. It is mentioned in section
5.2.1 that the phase of the exit pressure perturbation is somewhere between 304.5° and
267.2°. The distance between station 7 and station 8 is 0.75 inches and the distance
between station 8 and station 9 is 1.275 inches. Using a linear interpolation one can
obtain a reasonable phase for that which may exist at station 8. From this calculation, a
phase of 290.7° is taken for the pressure perturbation at station 8, the exit of the shroud.
The same reasoning is applied to finding the magnitude of this nonuniformity. The
value of P—P" at station 7 is 0.3425 psid and the value of P —P" at station 9 is 0.06
psid. The average value of the absolute concentric pressure is P, = 28.16 psi.

Applying the interpolation scheme and equation (5.3),

P,-P

60 P:

(5.3)

one obtains lé"l =(0.008251 for the magnitude of the exit pressure perturbation. Figures

5.5 and 5.6 illustrate this probable phase region at the exit of the shroud. These figures
are similar to the previous four figures that were used in the study, however, the new
figures concentrate on the phase region between 265° and 305° and for exit perturbation
magnitudes of 0.002131 (Station 9) to 0.012164 (Station 7). There is one other
important change in Figures 5.5 and 5.6. The inlet pressure and velocity perturbations
are not zero. These nonuniformities are set to the actual inlet conditions that exist in
the experimental facility and which are defined in the previous paragraph. These
figures are meant to illustrate the extent to which the exit perturbations may alter the
results. With wall tap pressure experimental results having values of F, =-7.987N for
the direct force and F, =11.642N for the cross force these figures show that the model

has potential in almost exactly predicting the direct and cross forces. However, as

£ |=0.008251 and the

actual phase is taken to be 290.7°. These values cause the model's results to fall short

previously mentioned the actual exit magnitude is taken as

of the wall tap pressure results as is illustrated in chapter 6.
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The following summarizes the inlet and exit nonuniformity conditions.

y, =331.5° [€/=0.003260

W, =290.7° IE,, =0.008251

These numbers are used in a modified version of the previously explained computer
code to arrive at a final value for the direct and cross forces for both the design and off-
design conditions. These results are compared in chapter 6 to the experimentally

determined results of chapter 3.

5.3 Theoretical Results

The experimental work determines the input parameters to the model. These
values for the design condition are listed in the previous sections of this chapter. The
model is also tested for the off design conditions, 0.7@,, and 1.1w,,. The off design
dynamometer tests provide the flow information for these tests, however, the values for
the inlet and exit perturbations are taken from the design results, since certain off design
flow conditions are not available. The flow conditions are listed in Table 5.1; notice

that the design values are identical to those presented in section 5.1.1.

Table 5.1: Flow Conditions for the Three Cases

0} P i. P : T V:
PN kPa kPa °’K m/s
D si) si) F) (ft/s)
0.7 224.0 201.1 291 29.9
(32.49) (29.17) (64) (98.0)

1.0 223.9 201.0 291 29.7
(32.47) (29.16) (64) (97.4)

1.1 223.9 201.1 292 29.9
(32.47) (29.17) (66) (98.0)
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Table 5.2 lists the results from applying the analytical model via the FORTRAN

code with all the above flow, geometric and nonuniformity information.

Table 5.2: Direct and Cross Forces Determined by the Model

—a_)— F x F.V

@p N (Ibf) N (1bf)
0.7 -7.383 (-1.660) | 8.836 (1.986)
1.0 -7.372 (-1.657) | 8.486 (1.908)
1.1 -7.380 (-1.659) | 8.390 (1.886)

These forces are nondimensionalized by equations (1.17) and (1.18). Once again, the

mean radius is R, = 125 mm (4.932 in) and the blade height is B,, = 16.6 mm (0.652

in). The eccentricity has been set to e = 0.457 mm (18 mils). The torque values are
listed in Table 5.3 and next to these torque values are the results of the

nondimensionalization.

Table 5.3: Model's Torque and Direct & Cross Coefficients

0.7 23.52 (208.2) -2.75 341

1.0 18.35 (162.4) -3.65 4.20
1.1 17.11 (151.4) -3.78 4.45

Chapter 6 compares all the results presented in this chapter with those presented
in Chapter 3.

5.4 Final Notes

144



It is interesting to understand how the direct force, F,, comes about. For the
case in which the inlet and outlet seal effective gaps, 8, & 6,, are identical (as are the
geometrical gaps in our seal) and in the absence of a carryover effect one would predict
nearly zero direct force. It is only the allowance for variations of the carryover
coefficient that introduces direct forces of the correct order of magnitude, as shown in
Tables 5.2 and 5.3.

Regarding the cross-force F, the usual Alford mechanism must be still active,
although in reduced form, in this shrouded turbine. Indeed, as long as a fraction of the
surviving flow can escape through the seal gap without doing work, the Alford
mechanism remains in place. Once again, this can be explained by the fact that there
will be less work lost in the regions where the gap is reduced by the offset, and vice

versa
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Chapter 6

Comparison of Results

6.1 Dynamometer, Wall Tap Pressure & Analytical Results

In Table 6.1 and 6.2 the average experimental results from Tables 3.3
(dynamometer results), Table 3.6 (wall tap pressure results) and the theoretical results
are compared. Table 6.1 compares the direct force coefficients while Table 6.2
compares the cross force coefficients. The first column of each table lists the speed, the
second column lists the dynamometer results, the third column contains the wall tap

pressure results and the last column presents the results from the analytical model.

Table 6.1: Direct Force Coefficients Compared

Table 6.2: Cross Force Coefficients Compared

~ B, B, B,
Dynamometer W.T.P. Theog
0.7 5.94 - 341
1.0 6.28 5.75 4.20
1.1 6.37 - 4.45
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The agreement between the dynamometer measured direct force and the wall tap
pressure determined direct force is not good. Also, it is believed that the absence of the
Alford effect in the wall tap pressure measurements is not the cause of this discrepancy.
Song has successfully measured the aerodynamic forces (The Alford Effect) in the
facility for the unshrouded turbine and has found that the direct force contribution by
these forces is very small.[21] The theoretical models developed by Martinez and Yoo
to explain the Alford effect show no contribution to the direct force.[15] However, the
agreement between the wall tap pressure results and the analytical model is very good.
There is, however, one other item which one should note. Millsaps found that the direct
force is sensitive to many parameters and a slight change in one of those parameters can
alter the direct force dramatically.[17] The sensitivity of the direct force to certain
parameters is also shown in chapter 5 of this work. Figure 5.3 shows that for the
magnitudes investigated an error in the knowledge of the phase of 10° at the exit of the
shroud can alter the predicted direct force up to 0.6 N.

It is fortunate, however, that the direct force is not the result which is of most
importance in this work. The cross force is the destabilizing force and from its
measurement one may obtain the stiffness terms responsible for instability as is shown
in equation (1.10). Once again, Table 6.2 compares the cross force coefficients. It is
seen in this table that the cross force determined from the wall tap pressure
measurements slightly under predicts the cross force as measured by the dynamometer.
However, one expects the wall tap pressure results to under predict the cross force
because the aerodynamic forces (The Alford Effect) are not taken into account in these
wall tap pressure results. Similarly, the Alford effect is not taken into account in the
theory. This analytical model simply predicts the pressure perturbation within the
cavity of the shroud and says nothing about the aerodynamic forces. At this point the

only discrepancy worth noting, is that the theoretical cross force result should match
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wall tap pressure results exactly. The error may be do to a wrong choice of the exit
phase and magnitude when specifying the input parameters for the theoretical results. It

is shown in Figure 5.6 that the cross force may have magnitudes of up to 10.25 N which

gives a cross force coefficient of §, =5.07. This may be compared to the wall tap

pressure result of 8, =5.75. Therefore, the refinement of the theory shown in this

work has strong potential of being a good predictor of the pressure perturbation within
the cavity of a shroud.

Before anything else is said, the effect of the aerodynamic forces (The Alford
Effect) are added to the wall tap pressure results and the theoretical results in the

following section.

6.2 Adjustment of Results for Work Loss

Work loss specifies the amount of work the machine foregoes due to leakage
over the tips of the blades. This is the Alford effect. As mentioned in section 1.4.2, the
Alford effect is minimal in a shrouded turbine compared to an unshrouded turbine
because tip leakage is reduced by the shroud. A theory has been developed by Martinez
and Yoo to estimate these Alford forces.[15] Only the results of this theory are
presented in this work and one should refer to reference [15] for a complete
explanation.

In reference [15] chapter 9, the simplest version of the theory is applicable for
this shrouded turbine. In this theory [ref. 15, Section 9.2] the fluid which escapes
through the gap at the blade tips is taken to do no work at all. This is inappropriate for
unshrouded blades, and is corrected in Sec. 9.3 of reference [15], but it fits exactly the
condition in a turbine with a shroud of the type that is in this work. The only

modification is the inclusion of a factor 7 in the final S, result, to account for the

fact that the flow rate through a 2-strip seal is 71_2- of that through a single gap with the

same pressure differential.
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The results of applying this scheme to the cross force results are shown in Table
6.3. Note, as mentioned above, that this simple form of the work loss theory predicts

zero direct force.

Table 6.3: Comparison of the Cross Force Coefficients with the Inclusion of
the Work Loss Terms in the W.T.P. and Theory Results

P ﬂy ﬁy 'By ﬁy
Work Loss Dynamometer W.T.P. Theory

The agreement between the dynamometer measured cross force and the modified wall
tap pressure results is excellent. The theoretical results have been brought closer to the
measured dynamometer results and if a larger magnitude of the exit pressure
perturbation exists than is actually assumed, the agreement between the theory and the

dynamometer results become even better.

6.3 Magnitude of Nonlinear Terms in the Analytical Model

As is seen in the previous two sections there is a discrepancy between the
analytical model results and the experiment results. In this section the nonlinear system
of governing differential equations (equations (4.14) and (4.15)) are first reorganized
and then solved numerically to see whether the exclusion of the nonlinear terms in the
analytical model affects the results.

First, since the static case is of interest, the terms in the governing differential
equations containing temporal derivatives are dropped. This results in the following

system of ordinary differential equations:
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1 pVi(h+9)

1 d[pV’I(h+5)] I(h+8) 0P
— 2h =0 6.2
R ) +q,V-qV,+1l-7,(+2h)+—-+ ] 6.2)
The density gradient is given by:
dp 1 0P
ol Al 6.
6 a’adb 63)

Equation (6.3) is then substituted into equations (6.1) and (6.2). The convective form
of the momentum equation is then obtained by taking equation (6.2) and subtracting V
times equation (6.1). The resulting equations can be neatly expressed in matrix form as

is shown in equation (6.4).
|4 dP
e8| T P || TPVE - g +q, 6.4
% [1 pV]Le] [ ql(V V) 0+ 7,(I+2h) ©4)

Solving this system for both £ and 4; via Cramer's rule one obtains the following two

equations.

| ds
. V["—P -4, +‘I1:| [~a.(v-V,)- 1+ 7,(1+2h)]

R"" a6
4o ik +5) [___1} ©)
R |
2[—q1 (V-v,)- 11+1(l+2h)]—[ LpVQ—q2+ql]
v _g LR do (6.6)
do l(h+6)[ 1]
R |

The above two ordinary differential equations are required to satisfy the following

periodic boundary conditions.
P(8)=P(B+27m) 6.7)
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V(@) =V(0+2r) (6.8)

In general boundary value problems are harder to solve numerically than initial
value problems. In order to solve this system of ordinary differential equations with the
periodic boundary conditions a shooting method is desired. A "pure" shooting
technique (section 16.1 in reference [19]) was attempted, however, this technique
proved to be unstable for these equations and their respective periodic boundary
conditions. Therefore, a routine is used which assumes thousands of combinations of
guesses for the velocity and pressure boundary conditions. The velocity guesses range
from 27.0 m/s to 32.0 m/s in 0.1 m/s intervals and the pressure guesses range from
212438 Pa to 217438 Pa in 1 Pa intervals. These guesses are used to solve the ordinary
differential equations via a fourth order Runge-Kutta initial value integration routine for
one hundred points around the circumference. Once again, the technique proves to be
unstable and very sensitive to the guesses for both the velocity and pressure at the
boundaries. However, with a lot of patience and much manipulation it is found that the
swirl velocity at the boundary (6 = 0,2x) is approximately 29.0 m/s and the pressure at
the boundary (€ = 0,2 ) is approximately 212570 Pa. Equations (6.7) and (6.8) are
not satisfied perfectly with these values for the boundary conditions, however, the
boundary value at 8 = 0 compared to the boundary value at 8 = 27 are within 1% of
each other.

The result of this code predicts a maximum value of pressure at 287° with a
maximum pressure perturbation of 950 Pa (0.138 psi). This is the case for a zero
perturbation in pressure and velocity at the inlet and at the exit (£, =0,7, =0,&, =0) of
the shroud. This case is easier to solve and provides the information needed to see
whether nonlinear effects are present. The nonlinear results, with zero inlet and exit
perturbations, can be compared to the linearized model with the same inlet and exit

conditions. It is found that the nonlinear model under predicts the magnitude of the
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pressure perturbation compared to the experimentally found pressure perturbation by
2.4 times. This is very close to the linearized model, which for zero inlet and exit
nonuniformities, under predicts the magnitude of the pressure perturbation compared to
the experimentally found pressure perturbation by 2.2 times. The small discrepancy
between the linear and nonlinear models may be attributed to the small error in picking
the appropriate boundary conditions in the nonlinear model and the model's sensitivity
to these boundary conditions.

This small numerical experiment shows that the discrepancy between the
theoretical model and the experimental results is not due to the exclusion of the

nonlinear terms in the analytical model.

6.4 Final Comments

The dynamometer results are very repeatable for tests taken on the same day
with repeatability getting slightly worse when dynamometer test results from different
days are compared. However, the dynamometer results should be used as the standard
for comparison between all other types of measurements and analytical calculations.
The sensitive behavior of the direct force is shown in this work which reinforces the
trends illustrated by the direct force in Millsaps [17] work. The wall tap pressure
measurements give excellent cross force results and the theoretical model has once
again been improved. This model showed that the direct force may be sensitive to the
phase of the exit pressure perturbation. However, even with the improvements the
model still under-predicts the experimental results and the exclusion of the nonlinear
terms in the analytical model are not the cause of the discrepancy.

The final chapter lists the conclusions of this work and then gives a list of

recommendations to aid in future research in this field and on the experimental facility.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions
1) Forces measured in the shrouded turbine are larger than the forces measured in the

unshrouded turbine by approximately a factor of two.

2) The nonuniformity in the pressure in the cavity of the shroud produces a direct and
cross force which are both smaller in magnitude than those measured with the
dynamometer. The discrepancy in the direct force can not be explained and is not due
to the absence of the aerodynamic forces (The Alford Effect) in these measurements.
The small discrepancy in the cross force is explained by the aerodynamic forces and
once this Alford force is taken into account the agreement between the dynamometer

cross force and the pressure and aerodynamic forces is very good.

3) The discrepancy between the dynamometer and wall tap pressure results prove the

existence of the Alford force.

4) Compared to the unshrouded turbine in the shrouded turbine the Alford effect is

smaller and the pressure effect is larger.
5) A nonuniformity in pressure and velocity exists at the inlet to the shroud.

6) A nonuniformity in pressure exist at the exit to the shroud.
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7) The analytical model predicts that the inlet and exit nonuniformities have a large
effect on the prediction of the magnitude of the pressure and velocity perturbation

within the cavity of the shroud.

8) The direct force is sensitive to the phase of the exit pressure perturbation which

may be one of the causes for erratic results when these direct forces are considered.

9) The discrepancy between the theoretical model and the experimental results is not

due to the exclusion of the nonlinear terms in the analytical model.

7.2 Recommendations
This section contains recommended procedures in operating the facility, needed

facility changes, further experimental work and further theoretical work.

1) To test whether density changes are responsible for the decrease in repeatability
two test series at 2.21 atm should be repeated, however, making sure that the loop is
completely (following the procedure explained in section 2.2.3) evacuated before

pressurizing with freon.

2) Immediately following the use of the LeCroy, for sampling the forces via the
dynamometer, one should obtain the pressure readings from the Scanivalve system.
From the Scanivalve readings one may obtain all the absolute pressure levels in the test

section. These pressure levels are useful for the reduction of the data.

3) A study of off the shelf velocity probes should be done such that a probe can be
found which has its measuring ports at the tip. This would allow one to measure the
rotor exit velocity at practically all radial locations in order to calculate the

aerodynamic forces (The Alford Effect). The probes which are in the facility at this

time contain measuring ports which are too far down the length of the probe, therefore,
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a complete rotor exit velocity profile can not be taken. Thus, the Alford effect can not

be measured.

4) Wall tap pressure experiments should be carried out at the off design conditions.
5) An extension of the analytical model should be developed which is able to predict
the inlet and exit pressure and velocity nonuniformities, rather than having these

nonuniformities as inputs and relying on the experimental results for these

perturbations.
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Appendix A

Wall Tap Pressure
Curve Fit Equations

This appendix contains the sinusoidal curve fit parameters for the curve fit
equations that are used in Figures 3.15, 3.16. 3.19 and 3.20. These figures are at
stations 4 and 6 and include test series 1 and 2 along with the seven trials in each test

series. The following page begins the list of the parameters.
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Station 4 Test Series 1

RADIAL 1
y = m1 + m2*sin(m0)+m3*cos(m0)
Value Error
ml 0.066401500565 0.00677601
m2 -0.038259355726 0.010164
m3 0.086998041981 0.010164
Chisq  0.0049587413352 NA
R 0.96518015239 NA
RADIAL 2
y = ml + m2*sin(m0)+m3*cos(m0)
ue Error
m] 0.066333667335 0.00579096
m2 -0.035934634083 0.00868644
m3 0.087263231679 0.00868644
Chisq  0.0036218075745 NA
R 0.97363441075 NA
RADIAL 3
y = ml + m2*sin(m0)+m3*cos(m0)
Value Error
ml 0.071956750462 0.00655253
m2 -0.038645973786 0.00982879
m3 0.090545943507 0.00982879
Chisq  0.0046370483711 NA
R 0.96933540411 NA
RADIAL 4
y = m1 + m2*sin(m0)+m3*cos(m0)
ue or
ml 0.069286999836 0.00686588
m2 -0.038322895104 0.0102988
m3 0.088737534213 0.0102988
Chisq  0.0050911542555 NA
R 0.96534583776 NA
RADIAL 5
y = m1 + m2*sin(m0)+m3*cos(m0)
Value Error
ml 0.070085584652 0.00696835
m2 -0.045219639481 0.0104525
m3 0.092768089917 0.0104525
Chisq  0.0052442476538 NA
R 0.96900442368 NA
RADIAL 6
y = ml + m2*sin(m0)+m3*cos(m0)
Value Error
ml 0.065157417596 0.00803705
m2 -0.037340503527 0.0120556
m3 0.09044046313 0.0120556
Chisq  0.0069761656928 NA
R 0.95418997869 NA
RADIAL 7
y = ml + m2*sin(m0)+m3*cos(m0)
ue Error
ml 0.061654252001 0.00708557
m2 -0.037260933432 0.0106284
m3 0.092276163351 0.0106284
Chisq  0.0054221769911 NA

R 0.96488918602 NA



Station 4 Test Series 2

RADIAL 1
y = m1 + m2*sin(m0)+m3*cos(m0)

Value or
ml 0.077851415651 0.00723814
m2 -0.041022524091 0.0108572
m3 0.095611594626 0.0108572
Chisq  0.0056581925443 NA
R 0.96665968951 NA
RADIAL 2
y = ml + m2*sin(m0)+m3*cos(m0)

ue Error

ml 0.079255834576 0.00850171
m2 -0.036732730586 0.0127526
m3 0.095085458404 0.0127526
Chisq  0.0078061386915 NA
R 0.95247191186 NA
RADIAL 3
y = m1 + m2*sin(m0)+m3*cos(m0)

Value Error
m}l 0.07814916658 0.00770427
m2 -0.038245869532 0.0115564
m3 0.095953878957 0.0115564
Chisq  0.0064104254226 NA
R 0.96160279997 NA
RADIAL 4
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.071070500766 0.00438758
m2 -0.037763884014 0.00658138
m3 0.094838005356 0.00658138
Chisq  0.0020790959134 NA
R 0.98674110375 NA
RADIAL 5
y = m1 + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.076761583594 0.00583502
m2 -0.039862289999 0.00875254
m3 0.093387272987 0.00875254
Chisq 0.0036771312248 NA
R 0.97687301782 NA
RADIAL 6
y = m1 + m2*sin(m0)+m3*cos(m0)

ue Error

ml 0.063260833112 0.00632668
m2 -0.03882069933 0.00949002
m3 0.094443811718 0.00949002
Chisq  0.0043229034169 NA
R 0.97313399696 NA
RADIAL 7
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.066427583574 0.00725601
m2 -0.039345755693 0.010884
m3 0.094821005023 0.010884
Chisq  0.0056861630563 NA
R 0.96549555845 NA



Station 6 Test Series 1

RADIAL 1
y = ml + m2*sin(m0)+m3*cos(m0)

Value or
ml 0.0052439160655 0.00637628
m2 -0.28655615642 0.00956443
m3 0.19209718521 0.00956443
Chisq  0.0043909562225 NA
R 0.99765833905 NA
RADIAL 2
y = m1 + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0049678326283 0.0061482
m2 -0.2832591349 0.0092223
m3 0.1947989452 0.0092223
Chisq  0.0040824390968 NA
R 0.99781189102 NA
RADIAL 3
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0032215854163 0.00602702
m2 -0.28611418271 0.00904053
m3 0.19349100431 0.00904053
Chisq  0.003923096201 NA
R 0.99791365497 NA
RADIAL 4
y = m1 + m2*sin(m0)+m3*cos(m0)

alue Error

ml 0.0056012505676 0.00566726
m2 -0.2834479329 0.0085009
m3 0.19612647699 0.0085009
Chisq  0.003468731347 NA
R 0.99815063583 NA
RADIAL 5
y = m1 + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0022679204121 0.00658226
m2 -0.28068144572 0.00987339
m3 0.19135147195 0.00987339
Chisq  0.0046792220602 NA
R 0.99743105375 NA
RADIAL 6
y = m1 + m2*sin(m0)+m3*cos(m0)

alue Error

ml 0.0046054190035 0.00535761
m2 -0.28333071003 0.00803642
m3 0.1948554208 0.00803642
Chisq  0.0031000343607 NA
R 0.99833801139 NA
RADIAL 7
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0033339168885 0.00641963
m2 -0.29027940231 0.00962944
m3 0.19241950508 0.00962944
Chisq  0.0044508556836 NA
R 0.99766844662 NA
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Station 6 Test Series 2

RADIAL 1
y = ml + m2*sin(m0)+m3*cos(m0)
Value Error
ml 0.0048079170908 0.00638731
m?2 -0.30494211417 0.00958096
m3 0.20886487587 0.0095 8096
Chisq  0.0044061497613
R 0.99795586793 NA

RADIAL 2
y=ml + m2*sm(m0)+m3*cos(m0)
Value Error
ml 0.0058634166305 0.00576125
m2 -0.29735488158 0.00864188
m3 0.21352802591 0. 00864188
Chisq  0.0035847386041
R 0.99831027644 NA

RADIAL 3
y = ml + m2*sin(m0)+m3*cos(m0)
Value or
ml 0.0059544174011 0.00607056
m2 -0.30407540192 0.00910584
m3 0.20738646881 0.00910584

Chisq  0.0039799810815 NA
R 0.99813680812 NA
RADIAL 4
y=ml+ m2*sm(m0)+m3*cos(m0)
Value Error
ml 0. 0053289175655 0.00640483

m2 -0.29910308035 0.00960724
m3 0.2117697228  0.00960724

Chisq  0.0044303555008 NA
R 0.99791520516 NA
RADIAL 5
y = ml + m2*sin(m0)+m3*cos(m0)
ue or
ml 0.0049705831334 0.00651777

m2 -0.30163465344 0.00977665
m3 0.20264225504  0.00977665
Chisq  0.0045879773416 NA
R 0.99779470712 NA

RADIAL 6
y =ml + m2*sin(mQ0)+m3*cos(m0)
Value Error
ml 0.0049149974569 0.00590507
m2 -0.29675641288 0.00885761
m3 0.20954916493 0.00885761
Chisq  0.0037659475505 NA
R 0.99819537436 NA

RADIAL 7
y = m1 + m2*sin(m0)+m3*cos(m0)
Value Error
ml 0.0036860803764 0.00642483
m2 -0.30264707492 0.00963725
m3 0.20399215644 0.00963725
Chisq  0.0044580773379 NA
R 0.99787617802 NA



Appendix B

Computer Code for the
Analytical Model

The FORTRAN computer code used for the parametric study of the effect the
inlet and exit perturbations have on the pressure perturbations within the cavity of the

shroud and on the resulting direct and cross forces is listed in this appendix.

TARAS A. PALCZYNSKI JR.
DEVELOPED WITH THE HELP OF
KNOX T. MILLSAPS JR.

SHROUD THEORY FORTRAN CODE

IMPLICIT REAL*4 ﬁA-H)

IMPLICIT REAL*4 (O-W)

REAL*4 Y(20,20),YPHI(20,20),PI

REAL*4 EIMAG(20),ETAIMA I'-gz?\}'EOMAGgO&I

REAL*4 FN(20,20),FT(20,20),FNND(20,20),FTND(20,20)
COMPLEX X(2,2),EHAT,ETAHAT,Z(2),IMG,IMGG,DET
COMPLEX EO,EIETAI

COMPLEX C1,C2,C3,C4,C5,C6
OPEN(UNIT=10,FILE="GEOMETRY DATA',STATUS="0LD")
OPENéUNIT=1 1,FILE='FLOW DATA',STATUS='0OLD'
OPEN(UNIT=12,FILE="SEAL SOLUTION',STATUS='"NEW)
OPEN(UNIT=13,FILE='ETA PLOT',STATUS="NEW'
OPEN(UNIT=14,FILE='ETA PHI PLOT',STATUS='NEW'
OPEN(UNIT=15,FILE='FORCE NORMAL',STATUS='NEW'
OPEN(UNIT=16,FILE="FORCE TANGENTIAL',STATUS='"NEW')
OPEN(UNIT=17,FILE='FT 3-D',STATUS="NEW)

NCNT=17
NCNV=6
IMGG=CMPLX(0.0,1.0)
Pl = 4.0°ATAN(1.0)

DO 25K=1,2

DO 35 L=1,NCNV
EIMAG(L)=0.0
ETAIMAG(L)=0.0
EOMAG(L)=0.0
DO 45 M=1,NCNT
FN(M.L) = 0.0
FT(M,L) = 0.0

45  CONTINUE

(oleolelele)
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CONTINUE

EIMAG(1)=0.00585
ETAIM 31 )=0.046235
EOMAG(1)=0.0065

DO 15 J=1,NCNV
DO 5 I=1,NCNT

RADD = 2.0*FLOAT(I-1)*P/FLOAT(NCNT-1)

IF(K.EQ.1) THEN

El = EIMAG(J)*COS(RADD)+EIMAG(J)*SIN(RADD)*IMGG

ETAI = -ETAIMAG(J)*COS(RADD)-ETAIMAG(J)*SIN(RADD)*IMGG
£Gsiensn

IF(K.EQ.2) THEN

EO = EOMAG(J)*COS(RADD)+EOMAG(J)*SIN(RADD)*IMGG
El = (0.0,0.0

ETAI = (0.0,0.0)

END IF

WR'TE(Q,*) ul =u,"u J =“,J," K =“,K

SET ALL CONSTANTS

UNIVERSAL GAS CONSTANT & RATIO OF SPECIFIC HEATS FOR FREON
RFREON = 68.7587

GAMMA = 1.12

UNIVERSAL GAS CONSTANT & RATIO OF SPECIFIC HEATS FOR AIR
RFREON = 287.04

GAMMA = 1.4

CALL SETGEOM(RS,RL,H,DELST1,DELST2,R,OMGS,OMGW)

CALL SETFLOW(PIST,POST,TEMP,VIST)

CALL SETREST(DELST1,RL,H,CC,DH,RNURO,RMU1ST,RMU2ST)
CALL FINDK(DELST1,RL,RK)

ZEROTH ORDER SOLUTION

A = DELST1*DELST1*RMU1ST*RMU1ST*PIST*PIST

B = DELST2*DELST2'*RMU2ST*RMU2ST*POST*POST

C = DELST1*DELST1*RMU1ST*RMU1ST

D = DELST2*DELST2*RMU2ST*RMU2ST

PST = SQRT((A+B)/(C+D))

ROST = PST/(RFREON*TEMP)

Q1ST = DELST1*RMU1ST*SQRT(PIST*PIST-PST*PST)/SQRT(RFREON*TEMP)
8§§I‘»_T =QI'.1)§_IE_ST2*RMU2ST*SQRT PST*PST-POST*POST)/SQRT(RFREON*TEMP)
RNU = RNURO/ROST

WRITE(12,*) "THE DIMENSIONAL VARIABLES"

WRITE(12,") 'RS=',RS,’ RL="RL,' H=',H,' DH=',DH

WRITE(12,") 'DELST1=",DELST1,' DELST2=',DELST2

WRITE(12,*) 'RMU1ST=',RMU1ST,'RMU2ST='RMU2ST

WRITE§12,*g 'R=",R,' OMGS=',OMGS,' OMGW=',OMGW

WRITE(12,*) 'PIST=",PIST,' POST=',POST,' VIST='"VIST

WRITE(12,*) 'PST=',PST,' ROST=',ROST,' Q1ST=",Q1ST, Q2ST=",Q2ST
WRITE(12,”) 'RNURO=",RNURO,"' RNU=',RNU

ITERATE TO FIND SWIRL IN GLAND

VST = VIST
CONTINUE
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CALL LAMDAS(VST,DH,RNU,RLAMS)
CALL LAMDAR(VST,DH,RNU,OMGS, RS,RLAMR)

VSTl = VST

A = (ROST/8.0 *(HLAMS*RL-RLAMR*(RL+2.0*H§)

B = (QST+ROST*RLAMR*OMGS*RS*(RL+2.0*H)/4.0)

C = -(QST*VIST+ROST*RLAMR*OMGS*OMGS*RS*RS*(RL+2.0*H)/8.0)
VST = &SQRTéB“Z-&O*A‘C)-B)/(2.0*A)

ERROR = ABS(VST-VSTI)

WRITE(9,") 'VST="VST,' ERROR=',ERROR
IF(ERROR.LT.0.0001) GOTO 20

GOTO 10

CONTINUE

WRITE(12,")

WRITE(12,*)'A=",A; B="B,' C='C
WRITE(12.*) 'VST="VST' ERROR=",ERROR
WRITE(12,*)

SET ALL NON-DIMENSIONAL PARAMETERS
EPS1 = R/DELST1

ALPHA = DELST2/DELST{

CAPD = DELST1/H

CAPH = H/RS

CAPL = RL/RS

CAPK = RK*DELST1/RMU2ST

CAPS = OMGS*RS/VST

CAPW = OMGW*RS/VST

DELQ = QST/(DELST1*RMU1ST*ROST*SQRT(RFREON*TEMP))
SIG = ROST*VST*DELST1/QST

CGAM = 1.0 - (VISTVST)

WRITE(12,*)

WRITE(12,*) "THE NON-DIMENSIONAL VARIABLES"
WRITE(12.*) "EPS1="EPS1," ALPHA="ALPHA,” CAPD=",CAPD
WRITE(12,*) "CAPH=",CAPH,” CAPL=",CAPL," CAPK=",CAPK
WRITE(12,*} "CAPS=".CAPS," CAPW="CAPW," DELQ=",DELQ
WRITE(12,*} "SIG="SIG," CGAM=",CGAM

WRITE(12.*

SET MATRIX COEFFICIENTS FOR SOLUTION
IMG=CMPLX(0.0,-1.0)

xg 1)=((ALPHA*RMU2ST)/(DELQ*RMU1 ST)?**2+(1 .0/DELQ)**2+
((SIG*CAPL)/(CAPD*GAMMA))*(1.0-CAPW)*IMG
X(1,2)=SIG*CAPL*IMG/CAPD

X(2,1)= EIG*CAPL&/&B.O‘GAMMA*CAPD*CAPH )*(RLAMS-RLAMR*(1.0+
2.0°CAPH/CAPL)*(CAPS-1.0)*(CAPS-1.0))+(CAPL*IMG)/(DELQ*DELQ*
SIG*RMU1ST*RMU1ST*CAPD)-(CGAM/(DELQ*DELQ))

X(2,2)=1 .0+(SIG'CAPL/§4.0*CAPD*CAPW)G*}RLAMS—RLAM R*(1.0+2.0*
CAPH/CAPL)*(1.0-CAPS))+(SIG*CAPL'IMG/CAPD)*(1.0-CAPW)
Z(1)=((CAPK+((1.0/ALPHA)-1.0))+(SIG*CAPL*IMG*(1.0-CAPW)))*EPS1
+(((ALPHA*RMU2ST)/(DELQ*RMU1ST))**2-1.0)*EO+
(1.0+(1.0/DELQ)**2)*E
Z(2)=CGAM*EPS1+(1.0-CGAM)*ETAI-CGAM*(1.0+(1.0/DELQ)**2)*El
CALL SOLMAT(X,Z, EHAT,ETAHAT,DET)

USE EQUATION TO GET EHAT PAGE 73 MILLSAPS 516
Ci= s1 .0/ALPHA-1.0)+CAPK+SIG*CAPL*(1.0-CAPW)*IM
C2 = 1.0+(SIG*CAPL/(4.0"CAPD*CAPH))*(RLAMS-RLAMR*(1.0+2.0"

& CAPH/CAPL)*(1.0-CAPS))+SIG*CAPL*(1.0-CAPW)*IMG/CAPD

C3 = SIG*CAPL*IMG*CGAM/CAPD
C4 = 1.0/(DELQ**2)+((ALPHA*RMU2ST)/(DELQ*RMU1ST))**2+(SIG*CAPL/

& GAMMA*CAPD)*(1.0-CAPW)*IMG

C5 = SIG*CAPL*IMG/CAPD
C6 = (SIG*CAPL/(8.0'GAMMA*CAPD*CAPH))*(RLAMS-RLAMR*(1.0+2.0*
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C & CAPH/CAPL)*((CAPS-1.0)"" g) CGAM/(DELQ*DELQ)+CAPL*IMG/((DELQ**2)
C & *SIG'RMUIST'RMU1ST*CAPD)
Cc EHAT = (C1*C2-C3)*EPS1/(C4*C2-C5*C6)

EHATR=REAL(EHAT)
EHATI=AIMAG(EHAT)
PHEHAT=ATAN2(EHATI,EHATR})

SET SIGNS OF THE PHASE ANGLE SUCH THAT:
EHATI>0 THEN PHEHAT>0
EHATI<0 THEN PHEHAT<0
IF(EHATI.GT.0.0) THEN
IF(PHEHAT.LT.0.0) PHEHAT=-1.0"PHEHAT
END IF
IF(EHATI.LT.0.0) THEN
END IF IF(PHEHAT.GT.0.0) PHEHAT=-1.0"PHEHAT

WRITE(12, *)

WRITE(12,") 'EHAT=',EHAT

WRITE 12,* 'MAGNITUDE OF EHAT =',CABS(EHAT)
WRITE(12,*) 'PHI EHAT =',PHEHAT

WRITE( 12* 'ETAHAT ETAHAT

WRITE 12* 'DET = DET

WRITE(12,*

V{1 =CABS(EHAT
YPHI(1,J)=PHEHAT*(360.0/(2.0*PI))

FN(I,J)=-1.0‘P I*RS*RL*CABS(EHAT *PST*COS(PHEHAT)
FT(l,J)=-1.0°PI"RS"RL*CABS(EHAT &*PST‘SIN(II_’HEHAT)
FNND(1,J)=-1.0*PI*CABS(EHAT)*COS(PHEHA
FTND(l,J)=-1 O*PI*CABS(EHAT)"SIN(PHEHAT)

ANGLE = (RADD)*360.0/(2.0*P1)

WRITE§9 *) CABS(ETAI),",, CABS(EHAT

WRITE(13,") CABS(ETAI).'", CABS(EHA

WRITE(14.*) CABS(ETAI), " PHEHAT*(360.0/(2.0*Pl))
WRlTE 15, g CABS(El),',,ANGLE,',",-1.0*P

& *RS*HL*CA S(EHA *PST*COS(PHEHAT),,,EI,',',ETAI
WRITE(16,* CABS(EI),',' ANGLE,"',-1.0*Pl

& *RS*RL*CABS(EHAT)*PST*SIN(PHEHAT),",El',,ETAI

CONTINUE

EIMAG(J+1 EIMAG%+O .001
ETAIMAG(J+1)=8.3975"EIMAG(J+1)
EOMAG +1) EOMAG(J)+0 001

15 CONTINUE

WRITE(15,*) 'ANGLE,’,(EIMAG(J),",',J=1,NCNV)
WRITE(16,*) 'ANGLE,",(EIMAG(J),".".J=1NCNV)
DO 6 I=1,NCNT
RADD = 2.0*FLOAT(I-1)*PI/FLOAT(NCNT-1)
ANGLE = (RADD)*360.0/(2.0*PI)
WRITE(15,") ANGLE,",(FN(1J).",.J=1,NCNV)
WRITE(16,*) ANGLE."".(FT(1.J),"" J=1.NCNV)

6 CONTINUE

EOMAG(1)=0.0
25 CONTINUE

END
Cc GEOMETRY OF SEAL

(olele]

an 0000000
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SUBROUTINE SETGEOM(RS,RL,H,DELST1,DELST2,R,OMGS,OMGW)
REAL*4 RS,RL,H,DELST1,DELST2,R,OMGS,OMGW

READ(10,") RS,RL,H,DELST1,DELST2,R,OMGS,OMGW

ZLm

FLOW DATA

SUBROUTINE SETFLOW(PIST,POST,TEMP,VIST)
REAL*4 PIST,POST,TEMP,VIST

READ(11,*) PIST,POST,TEMP VIST

RETURN

END

REMAINING VARIABLES
SUBROUTINE SETREST(DELST1,RL,H,CC,DH,RNURO,RMU1ST,RMU2S
REAL*4 DELST1,RL,RLE,H,CC DH,RNURO,RMU1ST,RMU2ST ALPHA, BETA
CONTRACTION COEFFICIENT & MU1, MU2

CC =0.65

RMU1ST = CC

RLE=RL/0.342020143326

ALPHA = 8.52/((RLE/DELST1) + 7.23)

BETA = 1.0/SQRT(1.0 - ALPHA)

RMU2ST = CC*BETA

HYDRALIC DIAMETER

DH = 4.0*(H+DELST1)*RL/ 2.0*g-|+DELST1)+2.0*FIL)

ABSOLUTE VISCOSITY OF FREON

RNURO = 0.0000127

ABSOLUTE VISCOSITY OF AIR

RNURO = 0.0000173

RETURN

END

CALCULATE SENSITIVITY
SUBROUTINE FINDK(DELST1,RL,RK
REAL*4 DELST1,RL,RLE,RK,A,B,C,C
CC=0.65

A = 8.52*CC*RL/(2.0*(DELST1**2))

B = 8.52/((RL/DELST1)+7.23)

C = RL/DELST1+7.23

RK = A/(((SQRT(1.0-B))**3)"C*C)
WRITE(12'*) Wiededede e de e de o e e e e de et de ke b ek o de e de e e de e gk de e e ok e e e e e de e e ey
WRITE“Z,*) "THE SENSITIVITY K=',RK
e

FINDS DARCY FRICTION FACTOR FOR THE WALL

SUBROUTINE LAMDAS(VST,DH,RNU,RLAMS)

REAL*4 VST,DH,RNU,RLAMS, RES,SGN1

SGN1=SIGN(1.0,VST)

RES = ABS(VST*DH/RNU)

RLAMS = SGN1*0.3164/SQRT(SQRT(RES))

WRITE(12,%) 'SGN1=",SGN1,' VST="VST, RES=',RES,' RLAMS=",RLAMS

FIND DARCY FRICITION FACTOR FOR THE ROTOR

SUBROUTINE LAMDAR&/ST,DH,HNU,OMGS,HS,RLAMR)

REAL"4 VST,DH,RNU,OMGS,RS,RLAMR,VREL,RER
VREL=OMGS*RS-VST

SGN2=SIGN(1.0,VREL)

RER=ABS(VREL*DH/RNU)

RLAMR = SGN2"0.3164/SQRT(SQRT(RER))

\AVE_'I_B% 12,*) 'SGN2=',SGN2,' VST='VST,' RER=",RER,' RLAMR=',RLAMR
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END

SOLVES A 2X2 COMPLEX MATRIX

SUBROUTINE SOLMAT(X,Z,EHAT,ETAHAT,DET)
COMPLEX X(2,2).Z(2), EHAT ETAHAT

EHAT= 2( X(2, 2)/X(1 2)-Z2))/(X 1 AVX(2,2)/X(1,2)-X(2,1))
ETAHAT=(Z(1)-X(1, 1)*EHA VX,

DET—XU 1)*x 2.2)X(1,2)*X(2,1)

RETUR

END
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