
EXPERIMENTAL
ROTORDYNAMIC

AND THEORETICAL INVESTIGATION OF
INSTABILITY IN A SHROUDED TURBINE

by

Taras Andrew Palczynski Jr.

The Cooper
B.S. Mechanical Engineering

Union for the Advancement of Science and Art, 1990

Submitted to the Department of Aeronautics and Astronautics

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 1992

© Massachusetts Institute of Technology, 1992. All rights reserved.

Signature of Author
'Department of Aeronxgfics and Kstronautics

August 13, 1992

Certified by

Accepted by

I ' Professor Manuel Martinez-Sanchez
Associate Professor of Aeronautics and Astronautics

I Thesis Supervisor

-.. .... , .

MASSACHUSETTS INSTITUTE
OF TECHNOIOGY

(SEP 22 1992
UBRARIES

- . ProfessffW'idl . Wachman
Chairman, Departmental Graduate Committee



EXPERIMENTAL AND THEORETICAL INVESTIGATION OF
ROTORDYNAMIC INSTABILITY IN A SHROUDED TURBINE

by
Taras Andrew Palczynski Jr.

Submitted to the Department of Aeronautics and Astronautics on
August 13, 1992 in PartialFulfidlment of the Requirements for the Degree of

Master of Science at the Massachusetts Institute of Technology

ABSTRACT

The destabilizing force responsible for rotordynamic instability in a shrouded turbine
has been measured experimentally and determined theoretically. The experiments were
done in a closed loop, freon based facility where the turbine rotor was capable of being
statically displaced up to 0.457 mm (18 mils) from its concentric rotating position. The
turbine was operated at its design speed of 3440 rpm and at two off design speeds of
2408 rpm and 3784 rpm where the mass flow rate and inlet stagnation pressure was
kept constant at 3.15 kg/s and 2.21 atm respectively. At these three speeds
measurements of the forces in the direction of displacement (a restoring force) and
perpendicular to the direction of displacement (potentially destabilizing force) were
achieved by using a system of strain gauges mounted in the rotor's shaft directly below
the rotor. These forces were also measured by analyzing the pressure distribution
around the outer circumference of the shroud. The data from strain gauge
measurements were repeatable and for operation at design with eccentricities varying
from -0.381 mm (-15 mils) to +0.381 mm (+15 mils) the magnitude of the destabilizing
force was found to be linear with magnitudes from -5.56 N (-1.25 lbf) to 15.57 N (3.50
lbf). The destabilizing forces calculated from pressure measurements for operation at
design were found to be smaller than strain gauge results, which was expected, due to
not accounting for the contribution from the aerodynamic effects (The Alford Force).

The theoretical model is based on the work of Kostyuk, Iwatsubo and Millsaps and is
an attempt to model the shroud of this turbine. This model is one-dimensional in the
circumferential direction and is coupled to the axial mass flow rate. A linear
perturbation approximation with harmonic solutions is used to arrive at a system of two
algebraic equations with two unknowns. The solution predicts the pressure and
velocity nonuniformity within the cavity of the shroud. The model is extended to
include the effect of inlet and exit pressure and velocity nonuniformities. This allows
one to analyze the effect these nonuniformities have on the model's prediction of the
pressure and velocity perturbation in the cavity. It was found that the inlet and exit
nonuniformities have a large effect on the model's predictions by increasing the
magnitude of both the restoring force and the destabilizing force.

The results of both experiment and theory were compared and it was found that the
model still under predicts the experimentally measured forces. However, the inclusion
of the model's dependence on inlet and exit pressure and velocity nonuniformities have
brought the model's predictions of the forces to within 37% of experiment compared to
220% before the inclusion of these nonuniformities. It was proven that the discrepancy
between theory and experiment are not due to the nonlinear effects. A fourth order
Runge-Kutta numerical solution to the time independent (non-whirling, statically
offset) nonlinear system of ordinary differential equations was completed. The
nonlinear results are very close to those results obtained from the linearized solution.

Thesis Supervisor: Dr. Manuel Martinez-Sanchez
Title: Associate Professor of Aeronautics and Astronautics
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A,
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BH

c
C
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CXr

Cxy

Cyx,

CY

d

d'

D

Dh

e
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Square of the ratio of stator blade height to the rotor
blade height
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Calibration matrix

Rotor Blade height
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Axial flow velocity
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Vertical height of the sealing knives
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Analogous to a where K - -- 1but K is actually
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Shaft stiffness
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K,°

K....
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1

'a
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N

N

N

N

N

N
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N/m

N/m

N/m

N/m

N/m

N/m

m

m

ue

ue
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m

rhA
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m2

m3

Mair

Mfreon

M,

MYY

p

Pi

P

PO
q,

q2

r

Td

R

R,

Re;

Description

Seal width to seal radius

Mass of shrouded rotor disk

Mass flow rate

DC offset for the pressure sinusoidal curve fit equation

Magnitude of the sine component for the pressure
sinusoidal curve fit equation

Magnitude of the cosine component for the pressure
sinusoidal curve fit equation

Molecular weight of air

Molecular weight of freon

Apparent Mass

Apparent Mass

Variable in Schwarz-Christoffel transformation

Nonuniform stagnation pressure at the inlet to the
shroud

Nonuniform static pressure in the cavity of the shroud
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Mass flow rate per unit circumferential length into the
shroud's cavity

Mass flow rate per unit circumferential length out of the
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Amplitude of the whirling motion (radial displacement
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Amplitude of shaft deflection

Gas constant for freon

Mean radius (distance from the center line to the mean
rotor blade height)

Radius of the shroud, distance from center line to outer
radius of the land (NOT the knife tips)

Reynolds number at the casing

Units

kg

kg/s

psid
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kg/kmol

kg/kmol

kg

kg

Pa

Pa

Pa
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S
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Vi

V
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ai

a2
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fly
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Xfreon

81
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Reynolds number at the rotor

Spin rate of seal to swirling fluid velocity in gland

Temperature before, within and after the shroud

Torque measured in experimental facility

Stators trailing edge velocity near the upper wall in the
half plane (Schwarz-Christofell transformation)

Velocity at the inlet to the shroud

Axial velocity at the exit of the stator

Axial velocity at the exit of the stator that would exist
if there were no blockage by the shroud

Nonuniform fluid tangential velocity at the inlet to the
shroud

Nonuniform fluid tangential velocity in the cavity of
the shroud

Six component voltage vector

Axial velocity over sealing knife

Whirling spin rate to swirling fluid velocity in gland

Convergence or divergence of seal

Inlet swirl into the rotor

Stator exit angle

Carry-over factor

Alford force coefficient describing the direct force

Alford force coefficient describing the cross force

Mole fraction of air

Mole fraction of freon

Instantaneous sealing gap

Sealing clearance between inlet knife and casing

Sealing clearance between outlet knife and casing

Units

"K

N-m

m/s

m/s

m/s

m/s
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m/s

volts

m/s

rad

rad

m

m
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Variable
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l7i

71

Ctl

P2A1
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p

pi

Tr

TS

Description

Tolerance to test convergence of V*

Normalized eccentricity

Circumferential location of first dynamometer sample

Empirical relation variable

Ratio of specific heats

Velocity perturbation around the circumference of the
rotor at the inlet to the shroud

Velocity perturbation around the circumference of the
rotor within the shroud cavity

Sensitivity of the carry-over factor to radial
displacement

Eigenvalues of the rotordynamic system of equations

Friction factor at rotor

Friction factor at stator
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Chapter 1

Introduction

1.1 Background & Motivation

The literature contains many cases of severe vibration problems in rotating

machinery. One such case is that of the Space Shuttle Main Engine (SSME) High

Pressure Fuel Turbopump (HPFTP) and the SSME High Pressure Oxidizer Turbopump

(HPOTP) where unexpected severe vibration problems were encountered during initial

testing. The severity of the vibration problems was reduced after six months of

redesign at an average cost of half a million dollars a day.[4,10] From the point of view

of both time and money it is clear that a better understanding of vibration in rotating

components and a more comprehensive theory of rotordynamic instability is needed.

The term rotor whirl is used to describe a certain type of vibration inherent in

the initial tests of the SSME HPFTP and HPOTP. Generally, whirl is used to describe a

satelliting lateral (transverse) deflection of a rotating shaft. This deflection can trace

out elliptical orbits and in ideal cases circular orbits. Other deflections are possible,

such as longitudinal (axial) and torsional (angular), however, these type of vibrations

will not be discussed or investigated in this work. An ideal turbomachine has its

centerline matched with the axis of rotation and the result is the absence of whirl for all

speeds. In reality turbomachines operate with some amount of whirl since they are less

than ideal and operate in less than ideal conditions When rotor whirl continues to grow

in amplitude the machine is said to be unstable. The forces that develop which promote

rotor whirl are termed destabilizing forces and the reinforcing interaction of the forces

with the whirl is called rotordynamic instability.



The problem of severe vibration in the Space Shuttle's Main Engine components

should further be discussed in order to build a foundation for the rest of this

thesis.[4,10] The HPFTP was designed to run at 37,000 rpm between the second and

third critical speeds (critical speeds are discussed in detail in section 1.2.1). During

initial tests, as the HPFTP was being spooled up to design speed, a nonsynchronous

rotor whirl 1 was noticed at a shaft speed of 19,000 rpm. As the rotational speed was

increased accelerometer saturation was noticed at a shaft speed of 22,000 rpm where

the vibration amplitude was severe enough to stop testing. In the case of the HPOTP

whose design speed is at 30,400 rpm and produces 22,000 kW (29,000 hp), the whirl

began to develop at a shaft speed of twice the critical frequency and the whirl itself was

at the critical frequency. Therefore, both these turbopumps had vibration problems

which, before the design changes, rendered them inoperable. The case study of the

SSME HPFTP and HPOTP is meant to place due emphasis on the need to understand

destabilizing forces and rotordynamic instability. This thesis concentrates on the

experimental measurement of the destabilizing forces and the theoretical model of

rotordynamic instability for a shrouded2 turbine. The use of a shrouded turbine is an

attempt to model the turbine in the SSME HPOTP.

Rotational shaft speeds of 30,000 rpm are quite high and it is important to

understand why turbomachines need to be designed to withstand such high rotational

speeds. The need for a compact size and hence, low weight is essential to aerospace

applications. It is known that power is proportional to the square of the dimensions and

to the cube of velocity, therefore, a compact size with high power output is obtained by

increasing the rotational shaft speed. Section 1.2 explains why high shaft rotational

speeds tend to destabilize rotating components.

lIf one is unfamiliar with the meaning of synchronous and nonsynchronous whirl one may read section
1.2.2 at this time.
2For those who are unfamiliar with what is meant by a shroud, one may refer to Figure 2.4 and Figure
2.5. The shroud is a band with radial sealing knives which fits over the tips of the rotor blades in order to
prevent leakage flows over their tips from the pressure side of the blade to the suction side of the blade.



The next section contains a discussion of critical frequencies and rotor whirl,

followed by an explanation of the difference between forced vibration and self-excited

vibration. The chapter concludes with a formulation of a model to aid in a discussion

of rotordynamic instability. The following chapters present the experimental facility

where the shrouded turbine resides and where the destabilizing forces are measured.

The results of those experiments are presented and explained. Following the

experimental investigation, a theoretical model of the shroud turbine is developed. This

theoretical model attempts to explain how the fluid dynamics and geometry interact

within the shroud to produce instability. This thesis ends with a comparison of the

experimental data to the results obtained from the theoretical model.

1.2 Terminology of Rotordynamic Instability

Before a model is developed, certain terms related to rotordynamic instabilities

are reviewed. In this section, critical frequencies are reviewed, rotor whirl is defined

and the difference between forced and self-excited vibrations is explained.

1.2.1 Critical Frequencies

An unbalanced rotating disk shown in Figure 1.1 is used to illustrate and explain

critical frequencies.[5,10] In this simplified case gravity is neglected and the shaft is

taken to be massless. First, this disk is said to have the center of gravity located a

distance, e, from the center of the shaft. This eccentricity is represented by the distance

between points S (shaft center) and G (gravity center) in the A-A cross section view in

Figure 1.1. The eccentric center of gravity creates a rotating centrifugal force equal to

mw 2e where m is the mass of the disk and cois the constant frequency. This rotating

unbalance deflects the shaft and the shaft deflection is the distance rd between points B

(bearing center) and S in Figure 1.1 A-A cross section view. This deflection adds to the

centrifugal force and the total centrifugal force is m 2 (rd + e).



Shaft deflection is dependent on the bending stiffness of the shaft. Due to

bending, a restoring force is present which acts in the direction opposite to the

centrifugal force. If the bending stiffness of the shaft is given by K, and the deflection

is rd , then the restoring force is given by Krd. Equating these forces one obtains

equation (1.1).

K,rd =mo2(rd+e) (1.1)

An unbalance, such as the eccentric center of gravity, creates a vibration in the plane of

the disk and the amplitude of the vibration depends on the angular speed (rotational

shaft speed) of the disk. These vibrations are largest at the natural frequency of the

system, that is, where the angular frequency, c, equals the natural frequency, co,.

Operation of a rotating system at its natural frequency can lead to large vibrations and

possible destruction of the shaft and its components.

The angular speed at which co = ow, is termed the critical speed.

Mathematically the critical speed is found in terms of the bending stiffness of the shaft

and its mass. This is done by first solving equation (1.1) for the shaft deflection.

m2eMdC2e2 (1.2)
TK -mw

It can be seen from equation (1.2) that the deflection is infinite when K, = mW2,

therefore, the critical frequency is given by equation (1.3).

o, = ) = K (1.3)
m

In order to gain insight into the relationship between the shaft angular frequency and its

critical speed, equation (1. 2) is rearranged and equation (1.3) is substituted into that

new equation and equation (1.4) results:



rd =e ( 2 (1.4)

It is seen in equation (1.4) that if a shaft increases its angular speed from below the

critical speed to above the critical speed the deflection changes sign and decreases in

magnitude. To explain this more precisely one is referred once again to Figure 1.1

where the cross section of the unbalanced rotating disk is shown and the deflection

magnitude versus the angular frequency is illustrated. For an angular frequency below

the critical frequency, the gravity center, G, is the furthest point from the bearing

center. As the angular speed is increased above the critical speed the gravity center, G,

reverses its relative position. This causes the gravity center, G, and the bearing center,

B, to converge and for the vibration magnitude to decrease as is illustrated by the

deflection vs. frequency graph. For very slow rotations rd= BS is practically zero, for

rotation at the critical speed rd= BS is infinite and for very fast rotational speeds the

center of gravity, G, is at the bearing center (rd= BS = e). Notice that for this final case

the maximum amplitude of vibration is the eccentricity of the center of gravity. It is

observed that at very large rotational speeds the center of gravity does not move, for if

it did move the inertia force would become very large.

The model that is presented above is an extremely simplified model of a rotating

system. It is meant to illustrate how a shaft responds to an unbalance and in particular

at what angular speeds will the worst vibrations be expected. In a "real" system other

factors exist such as the fact that the shaft is not limited to vibrations in the plane of the

rotating mass and the shaft may contain more than one mass with any number of

supports. The shaft and bearings interact, and the rotating components can be operating

in various fluids with a wide range of viscous properties. These interactions can



provide damping which may be positive or negative.3 The components of the system

may also be subject to both steady and unsteady loads.

As one can see the problem of determining the systems properties becomes

quite complex and impossible to solve when one takes into account all the variables.

Estimates of the actual critical speeds are used, however, it must be emphasized that

such a complex system has an infinite number of critical speeds. Most engineers and

researchers only concern themselves with estimating the first two or three critical

speeds. These estimates are usually obtained by creating a model of the system which

only accounts for some of the variables, therefore, the system begins to resemble the

simplified model presented above. The better the model, the more accurate the

estimates and the more difficult the model is to solve.

The first couple of critical frequencies are very important to estimate since the

operating point of a machine will tend to lie between these critical frequencies and,

thus, will have to be brought through those potentially damaging speeds. When

components are designed they must provide enough damping such that the machine is

able to operate with very small levels of whirl at its designated speeds. Also, enough

damping must be provided such that the machine is able to operate below or be brought

through any of the critical speeds without having a destructive outcome. The severe

amplitudes associated with operation at the critical speeds does not occur at once, it

takes some time to build. Therefore, a machine is usually able to be brought through

the critical speeds without any damage whatsoever.

1.2.2 Whirl

Some amount of whirl is always present in rotating machinery.[10] It is when

the whirl becomes excessive and is able to violate the clearances within the machinery

3Dry friction and oil whip are two causes of self-excited vibrations which can occur in rotating
machinery and may be thought of as having negative damping. Self-excited vibration will be explained
in section 1.2.3.



that this is of major concern. The simplified example presented in the previous section

is a little narrow or misleading when thinking about what types of whirl can occur. The

example given concentrates on a forced vibration to place emphasis on critical

frequencies, however, such an example is insufficient when one wishes to explain the

types of whirl which occur in rotating machinery. In pure simplified forced vibration

(as shown in the previous section) the whirl is synchronous. A synchronous whirl

means that the frequency or whirl, Q2, is equal to the frequency of rotation, co (2 = (o).

Two other classes of whirl are also possible and they are termed

subsynchronous, when 2 < co, and supersynchronous, when 0 > co. The whirling

motion is either in the forward or backward direction. It is possible for several different

whirls to be present at the same time. As mentioned in section 1.1, the SSME

turbopumps suffered from subsynchronous whirl which was locked to the natural

frequency of the system. In order to understand how this type of whirl is possible self-

excited vibrations are discussed. Sections 1.2.3 and 1.3 expand on these ideas.

1.2.3 Forced vs. Self Excited Vibration

The definitions of the two types of vibrations will be reviewed and then it will

be shown that self-excited vibration is pertinent to the matter at hand. Both forced and

self excited vibrations can cause rotordynamic instability.

It is explained in section 1.2.1 that forced vibration in rotating machinery occurs

due to some type of unbalance and the resulting whirl is always synchronous.

However, an unbalance is not the only means of producing a forced vibration. A forced

vibration may also be caused by a force which occurs once per turn, like a rub, or a

concentrated aerodynamic force fixed to the casing. The amplitude of this type of whirl

is largest at the critical frequencies of the system and "the sustaining alternating force

exists independently of the motion and persists even when the vibratory motion is

stopped" [5]. Forced whirl is always in the forward direction.



Self-excited vibration is sustained through the extraction of energy from some

outside source due to the whirl. It is important to understand this concept which is

reiterated in the following way: "the alternating force that sustains the motion is created

or controlled by the motion itself; when the motion stops the alternating force

disappears."[5] The flutter of an aircraft wing is a perfect example of self-excited

vibration. Flutter is not noticed until a certain velocity is achieved. As the fluid

velocity with respect to the wing is increased the flutter amplitude grows. It is not until

the motion of the fluid is stopped or goes below a certain velocity that the vibration

stops. Another way of looking at self excited vibration is in the case that is of

importance in this thesis, namely the fluid effects contributing to the whirl of a

shrouded turbine rotor. The whirling motion is extracting energy from the passing fluid

in such a way as to increase the rotor's whirl amplitude. Remember that in the case

study of the SSME HPOTP the whirl began to develop at a shaft speed of twice the

critical frequency and the whirl itself was at the critical frequency. This is a perfect

example of self-excited vibration and subsynchronous whirl.

Whirling at the critical frequency of the system is expected in the case of a self-

excited system. Self-excited vibration has no forcing function and is simply

represented by a homogeneous equation. It is known that in a one-dimensional free

vibration with zero damping the frequency of vibration is the natural frequency of the

system. Taking this one step further, when one adds damping (positive or negative) to

the one-degree of freedom system, the damping force lowers the natural frequency, but

not by much.4 In most practical cases the difference between the natural frequency of

a damped system and that of an undamped system is negligible. This statement leads

one to support the claim that self-excited vibration is considered to occur at the

(undamped) critical frequency of the system [5].

4In the 2-dimensional case it is the cross damping and direct stiffness which affect the frequency. This
will be shown in section 1.3.



Mathematically, self-excited vibration has no forcing function and in a one

dimensional vibration it is viewed as a free vibration with negative damping. The

negative damping is destabilizing. When a two dimensional vibration is considered the

destabilizing mechanisms are more complex and generally involve negative direct

damping and positive cross stiffness. 5

Self-excited vibration may not occur until a certain rotational speed is reached.

This speed is termed OSI (Onset Speed of Instability). Above OSI, the instability

mechanism is first noticed. However, different types of self-excited vibrations have

different "onset" mechanisms, and some have none. For the case of the shrouded

turbine the shroud-driven and aerodynamic instabilities are present at all speeds,

therefore, there is no OSI (or OSI is at a speed of zero). The instability present in the

shrouded turbine increases with shaft power and at some power level it is able to

overcome machine damping at which point the machine is in danger of destruction.

In order to compare and summarize these two type of vibration problems in a

single frame one is now referred to Figure 1.2. The vertical axis is the vibration

amplitude while the horizontal axis shows the rotational speed. In the discussion

above, the amplitude of forced vibration reaches its maximum at the critical frequency,

where rotational speed (w) is equal to the critical frequency (o,). As the shafts

rotational speed is increased above the critical frequency the vibration amplitude

decreases. The effects of self-excited vibration are always present in the shrouded

turbine, however, do not become severe until high power levels are reached. Figure 1.2

shows that the amplitude of vibration due to the self-excited force grows as the shaft

rotational speed is increased. This is the reason why during initial tests of the HPFTP

the effects of the self-excited vibration where not noticed until high rotational speeds of

19,000 rpm were reached. One should now understand the importance of

distinguishing between the two types of vibrations. It should also be clear why the need

5The 2-dimensional case of instability will further be discussed in section 1.3.



to understand self-excited vibration is pertinent when investigating vibration problems

such as those that were present in the initial tests of the SSME HPOTP and the SSME

HPFTP.

1.3 Rotordynamic Instability Model

A two degree-of-freedom model is developed to explain the lateral motion of a

rotating disk immersed in a fluid. This is a simplified model which attempts to explain

the lateral destabilizing motions which are observed in turbomachines. 6 Of course, as

in all simplified models not all the variables are taken into account, however, the

pertinent information is included and stability criteria are extracted.

Figure 1.3 illustrates the model used. The shaft is massless and has a stiffness

of Ks. One end of the shaft is fixed while the other is free to move in the vertical

direction. It is assumed that all the mass is concentrated within a thin disk of mass m

and that this disk is limited in it's movement to the X-Y plane. There is a force due to

the disk's position and is given by equation (1.5).

Ks+K, K, xy
F = -[ Kx K+KyjJY (1.5)

The stiffness variables K, K,, K,, K and KY, arise from the fluid interaction with the

rotating mass. Both K,, and KY are termed the direct stiffness because they relate a

displacement in one direction to a force in that same direction. The other two

stiffnesses, K1y and Kyx, are called cross stiffnesses because they relate a displacement

in one direction to a force perpendicular to that direction. The presence of these cross

stiffness terms affect the model's stability. In the physical sense one can predict why

these cross stiffness can be destabilizing. Since K,Y and Kyx relate a displacement to a

force perpendicular to that displacement this tangential force will tend to promote whirl

6In particular we wish to model the SSME HPOTP. This will be further discussed in the Experimental
sections located in Chapters 2 and 3.



and destabilize the rotating components if the tangential force and the whirl are in the

same direction. If the whirl is in the opposite direction to the tangential force, the cross

stiffness terms tend to stabilize the whirl.

Since the thin disk is free to whirl it also has velocity in the X-Y plane,

therefore, the fluid has damping effects on the rotating components and the force due to

the disk's velocity is given by equation (1.6).

-FD cjC JLP (1.6)

The direct damping terms (C, and C,) relate the disk's velocity in one direction to a

force in that same direction, while the cross damping terms (C, and Cy,) relate the

disk's velocity in one direction to a forces perpendicular to that velocity. The terms

which are important for stability analysis are discussed once the solution is derived.

The same type of argument as presented for the derivation of the forces due to

stiffness and damping can be applied to inertial effects and higher order terms,

however, for simplicity only the direct added mass inertial terms are used. Applying

Newton's Second Law to the stiffness, damping, and inertial forces, one obtains the

following system of differential equations.

m +M mO ][C K,+K, Kxy][x] (1.7
0o m + M y C, CJ•J Ky K, + K, y

Equation (1.7) is a homogeneous equation. The solution to this equation brings insight

into the stability of the model and reinforces the predictions of stability presented

above.

In order to solve equation (1.7), first the circular symmetry of the problem is

taken into account, from which one obtains the following simplifications: [ ] = [ 1,
and [ ],, = -[ ],. Next, one assumes a complex displacement vector for the solution.

This complex displacement vector is given by equation (1.9).[15]



z = x + iy = e ' (1.9)

If KI << K, and jCj «<< K, the frequency and amplitude of the displacement vector

will be given by A in equation (1.10). The amplitude is the real part of the eigenvalue

while the frequency is the imaginary part of the eigenvalue.

K C_
21K,(m+M,) 2(m + M)

(1.10)

mi +M, 22Ks(m+Mxx) 2(m+MXM)J

There are a few things to notice about equation (1.10). First, if the second and third

terms of the imaginary part of equation (1.10) are small compared to the first term, then

the whirl occurs at nearly the natural frequency of the system. This is discussed above7.
K

Next, notice that one of the roots might be unstable due to the + . term.
2jK,(m+M,,)

If this cross stiffness-induced term interacts with the direct damping-induced term,

.C= , resulting in a positive eigenvalue, the system is unstable. Once again,
2(m + M,)

the instability that might arise due to cross stiffness is anticipated, since cross stiffness

creates a cross force which when it acts in the direction of the whirl it tends to

destabilize the rotating disk. Lastly, it is the direct damping term, C,, not the cross

damping term, C,, which affects the stability of the system. It is only the frequency of

the system that is slightly changed due to cross damping.

1.4 The Destabilizing Forces

7Remember that the whirl in the SSME HPOTP and HPFTP occurred at first critical frequency (natural
frequency) of the system. Also, remember that it was stated previously that whirl due to self-excited
vibrations usually occurs at the critical frequency of the system. (See sections 1.2.1-1.2.3)



In section 1.3 the rotordynamic stability model is derived by assuming forces

due to the shaft's stiffness, the fluid's stiffness and the fluid's damping. These forces act

on the disk because of the eccentricity of the system. From these components, stability

criteria are derived. However, a physical reason why these forces exist has not been

given. In this section a brief explanation of the physical mechanisms that give rise to

these forces is explained and, thus, aids in the understanding of the reasons for certain

measurements undertaken in the experimental facility (chapter 2).

1.4.1 Nonuniformity in Circumferential Pressure

In its concentric position the pressure distribution around the circumference of

the shrouded rotor is uniform, both within the seal and upstream and downstream of the

rotor. As the rotor is moved eccentric this azimuthal uniform pressure distribution is

replace by a nonuniform distribution of pressure. As is shown by experiment, this

nonuniformity is present within the shroud, upstream of the rotor and downstream of

the rotor. It is the nonuniformity in pressure within the cavity of the shroud (between

the knives of the shroud) that gives rise to a net force placed on the rotor. This force is

calculated via equations (1.11) and (1.12).

F, = -R, s IP(O,x,t)Cos odxd (1.11)

F, = -RJ ° JP(O,x,t)SinOdxdO (1.12)

where FN is the normal force or the force in the direction of displacement, FT is the

tangential force of the force perpendicular to the direction of displacement, P(O,x,t) is

the pressure distribution, 1 is the length of the land (distance between the shroud's knife

edges) and R, is the radius of the seal. Figure 1.4 illustrates the shrouded rotor

eccentrically positioned within the casing along with the resulting forces due to the

nonuniform pressure distribution. The pressure distribution in the axial direction is



uniform between the sealing knives, therefore, equation (1.11) and (1.12) may be

simplified to:

FN = -R,lJ2P(O,t)CosOdO (1.13)

F, = -R,lbP(O,t)SinOdO (1.14)

Throughout this work the normal force is sometimes be referred to as the direct

force, Fx, and the tangential force is sometimes be referred to as the cross force, F,.

The direct and cross forces are a special case of the normal and tangential forces. The

direct and cross force terminology is used in this experimental work since the turbine is

statically displaced (whirl is zero).8 A statically displaced turbine allows one to map

the forces directly to an inertial frame (lab reference frame), therefore, the forces are no

longer function of whirl and time. Because of this, equations (1.13) and (1.14) are

further simplified to:

2x
F= F, = -R, l P(O)CosOdO (1.15)

2x
F=F,= = -Rl P(O)SinOdO (1.16)

As can be seen by the above equations, if the pressure nonuniformity within the

cavity of the shroud is known the direct and cross forces can be computed. The

experiments explained in chapter 2 measure this pressure distribution within this cavity.

In chapter 4, the theoretical approach to determining this nonuniform pressure is

shown. However, in order to calculate this asymmetric pressure distribution within the

shroud, using a theoretical approach, the magnitude and phase of the nonuniform

pressure upstream and downstream of the shrouded rotor must be known. For a simple

seal-land geometry, with no turbine blades, this pressure can be calculated theoretically.

8The statically displaced turbine experiments will further be explained in chapter 2 (Experimental
Facility).



[17] However, no simple theory exists for a shroud in the presence of the eccentric

turbine. Experiments are used to determine these upstream and downstream pressure

nonuniformities. The theory is then used incorporating these measured values. The

result of the theoretical calculation gives the pressure distribution, P(O,t), within the

land of the shroud. Equations (1.13) and (1.14) are then used to find the normal and

tangential forces. If the theory is run with the shrouded rotor statically displaced then

equations (1.15) and (1.16) are used to find the direct and cross forces.

1.4.2 The Alford Effect

The azimuthal nonuniformity in pressure is one of two contributions to the

existence of normal (direct) and tangential (cross) forces. The second contribution is

due to the Alford effect.[1]

A turbomachine which is operating in an eccentric position has a variation in

blade tip clearances around the circumference of the rotor. Alford theorized that when

a turbomachine is operating in this state the blades which are closer to the casing are

operating locally more efficiently than those blades which have a larger tip clearance.

Since, the blade forces vary approximately with the efficiency those blades which are

closer to the casing have a heavier loading than those which are further from the casing.

This variation in blade forces, when integrated around the circumference of the rotor

yields a net force which acts both in the direction of the rotors displacement (normal

force) and tangential to that displacement (tangential force). Figure 1.5 illustrates this

concept in schematic form. As is seen in the figure a large blade force exists and when

this force acts in the direction of rotor whirl the system is unstable.

Note that Figure 1.5 illustrates this effect with an unshrouded turbine, however,

this effect is also present in a shrouded turbine. The Alford force arises whenever there

is blade tip leakage, however, this leakage is reduced in the shrouded turbine because of

the shroud. Therefore, the reduction of blade tip leakage causes the shrouded turbine to



exhibit a smaller Alford effect than that which exists in an unshrouded turbine. Also,

the Alford force in a shrouded turbine is small compared to the forces developed from

the pressure nonuniformity, however, this Alford effect is still not negligible.

One result of Alford's efforts is a widely used nondimensional variable which

describes the magnitude of the normal (direct) and tangential (cross) forces developed

due to eccentric rotation. Since our experimental turbine is prevented from whirling

these forces will be referred to as direct and cross forces. The forces are the summation

of the two effects, the pressure effect and the Alford effect. This Alford factor

nondimensionalizes these force by the torque developed, TQ,the mean radius of the

rotor, R., the blade height, B,, and the eccentricity, e. This is shown by equations

(1.17) and (1.18).

2(fi)R.B.

fpx = (1.17)

(ly = eR(1.18)

Chapter 3 incorporates these nondimensional variables when presenting the

experimental results. The bracketed terms in the above equations, Fand F, are
e e

simply the slopes of the linear curve fits through the data point on a plot of direct &

cross force vs. eccentricity.

Once again, the total direct and total cross force are the summations of the

forces contributed by both the pressure effect and the Alford effect.

1.5 Objective

The primary objective of this work is to measure the direct and cross forces on a

shrouded turbine (Chapter 2 and 3). These forces are determined by a direct



measurement via a rotating dynamometer. They are also determined by a second

method which requires the measurement of the pressure distribution around the

circumference of the rotor (pressure effect) and the measurement of the velocities

circumferential around the exit of the rotor (Alford effect). Through these

measurements the direct and cross forces are determined.

The final objective is to expand upon a theoretical model (Chapters 4 and 5).

This model is an extension of the work of several authors [12, 9, 16,17], most recently

Millsaps [16,17]. The contribution presented in this work consists of the incorporation

of nonzero upstream and downstream nonuniformities, and of their effect on the

pressure within the cavity of the shroud. The results of these calculations are compared

to those measured experimentally. The development of a good theoretical model is

essential. From a good working model designers of these turbomachines gain

knowledge of the proper geometry and operating conditions such to minimize pressure

nonuniformities in order to minimize the resulting destabilizing forces .
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Figure 1.4: Pressure Effect Coordinate System and the Pressure
Nonuniformity.
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Figure 1.5: Alford Force Destabilizing Mechanism.[8]
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Chapter 2

Experimental Facility

2.1 Preliminaries

An experimental facility was designed by Jery, Qiu, Martinez-Sanchez and

Greitzer to study destabilizing forces and the associated flow conditions for concentric

and statically offset eccentric turbine rotors.[ 11] Loose constructed the facility and

performed initial tests on an unshrouded turbine.[13] Song continued tests on the

unshrouded turbine for various geometric configurations.[15] The final investigation

into destabilizing forces undertaken within this facility are the static tests performed

with a shrouded turbine. This thesis concentrates on the experimentation performed

using the shrouded turbine. The experimental facility is reviewed, the modification

made to the turbine's rotor is explained and the series of tests performed are outlined

within this chapter.

At this point it is important to understand that only static experimentation can

be undertaken in this facility. This means that the turbine's rotor can only be offset

statically. Therefore, the stiffness terms are the only terms that are found. Higher order

terms involving velocities, accelerations, etc. can only be measured if the shaft were set

free to whirl in a controlled environment. This type of facility exists, however, it was

designed to measure rotordynamic instabilities in seals (shrouds) alone. [17] Millsaps

found that fluid damping (direct damping terms: C,, and C,) is always positive,

therefore, it is the magnitude of the cross stiffness terms compared to the direct

damping terms which will determine the systems stability (refer to equation (1.10)). As

mentioned above, the stiffness is what is found using this experimental facility.



The pressure effect and the Alford effect both create destabilizing forces. This

experimental facility is designed to measure that total destabilizing force, the force only

due to the pressure effect and the force only due to the Alford effect. The experimental

and theoretical work done on the rotordynamic instability of seals by Millsaps and the

experimental work of Loose and Song involving destabilizing forces in an unshrouded

turbine are both very important foundations for this thesis. The experimental work

explained here involves both a seal of similar geometry to that used in Millsaps

experiments and a modified version of the turbine used in the unshrouded experiments

performed by Loose and Song. This work will show how the direct and cross forces

are measured experimentally and, in later chapters, calculated theoretically.

2.2 The Layout of the Experimental Facility

The experimental facility is a closed loop facility where air or Freon 12 may be

used as the working fluid. All the tests carried out within this work are done with freon

as the working fluid. It will become clear why freon was chosen in section 2.2.1

Turbine Test Section.

First, however, an overview of the facility is presented and please note that one

may refer to the following references if additional information is needed: [11,13,14,15].

Figures 2.1 and 2.2 [13] show the front view of the facility and the side view of the

facility respectively. Upon viewing Figure 2.1 one notices that the fluid travels around

the loop in a counterclockwise direction. A 100 hp electric motor and compressor

assembly (located at 2 in Figure 2.1 or at 1 and 2 respectively in Figure 2.2) provide the

energy to the fluid and a heat exchanger (located at 3 in Figures 2.1 & 2.2) removes any

excess heat added to the fluid by the compressor. Within the loop one will find flow

straighteners, and a Venturi meter whose locations may be seen in the figures. The test

section which contains the stator and rotor along with a battery of testing instruments is



located at 1 in Figure 2.1 and at 6 in Figure 2.2. Its associated exhaust plenum is

located just below within the test stand.

The fluid transmits energy to the rotor and this energy must be damped in order

to control the rotational speed. Also, for calibration purposes the rotor needs to be

rotated without the use of a fluid. The damping is provided by a DC generator-resistor

network and for calibration purposes the rotor is powered by a DC motor. The DC

motor and the DC generator are combined within one unit which is located at 14 in

Figure 2.2. The excitation field of this motor/generator can be varied to control the

turbine speed. Along with the control of the rotational speed, the mass flow rate of the

loop must be controlled. This is done with the use of the throttle valve located at 7 in

Figure 2.1 and also with the use of a bypass loop and its associated servo driven valve

located at 4 and 5 respectively in Figure 2.1.

The above information is of a general nature and should provide one with

enough background on how the loop is organized and on the main areas where control

is needed. The following subsections go into greater detail about what is discussed

above. In particular, section 2.2.1 describes the stator-rotor assembly, the

modifications made for shrouded turbine tests and the actual test conditions that are

used to provide a realistic test environment.

2.2.1 Turbine Test Section

It is important to understand that the primary objective of this facility is to

measure the direct and cross forces that act on the rotor when the rotor is offset from its

concentric rotation. The test turbine developed for this facility and used in the

unshrouded turbine tests is a 1:1 replica of the SSME HPFTP (first stage only). For the

work presented here, this turbine's rotor is modified to incorporate a sealing shroud.

The discussion begins with an explanation of the stator-rotor stage and the



modifications made to that stage for shrouded tests. This section concludes with the

incorporation of that stage within the test section area.

Figure 2.3 shows a machine drawing of the unshrouded turbine's test rotor.

Since, this rotor is a 1:1 replica of the SSME HPFTP's rotor the geometric ratios and

flow angles are preserved, therefore, the flow and work coefficients are the same as in

the SSME HPFTP's rotor. Both the test turbine and the actual SSME HPFTP turbine

have low Mach numbers (M<0.5). Freon is used as the working fluid in order to

achieve realistic Reynolds numbers within the testing environment. The SSME HPFTP

operates in the turbulent region at a Reynolds number of 5.6x106. Therefore, it is

important to be in the turbulent region when performing these test because operation

below the turbulent regime would introduce difficulties in predicting how factors such

as blade aspect ratio and solidity affect performance.[13] Using Freon in the test

facility produces a Reynolds number of 9x10 5 which is above the laminar-turbulent

transition region. Basically, the use of Freon allows testing to be performed within a

reasonably sized closed loop facility where flow conditions are realistically matched to

existing aerospace applications.

For the tests presented in this work the unshrouded turbine shown in Figure 2.3

is modified with a full shroud band fitted with two sealing bands. In the interest of

brevity the entire shroud band-sealing band combination is simply referred to as a

shroud in this thesis. The entire shroud is shown in Figure 2.4 and a cross section view

is shown in figure 2.5. The band is designed with a 2/1000 inch (2 mils) interference

and is shrunk-fit over the blades. The blades were previously cut and ground to the

required height (reduced by 30%) in order to accommodate the shroud. Note that the

shroud length is such as to cover exactly the blade tip axial chord. The tensile stress

developed in the shroud due to the shrink-fit is 2x10 11 N/m2, well within the strength

of stainless steel. It is also verified by calculation that the additional bending stress due

to the slight straightening tendency of the band between blades is negligibly small.



This is because of the large number of blades, which makes the bowing between blades

very slight. Centrifugal effects can at most add the equivalent of 0.5/1000 inch (0.5

mil) to the band radius. Therefore, even if centrifugal growth of the rest of the disk is

ignored, the fit should remain tight, which it did. No significant differential thermal

effects are expected.

The sealing band angles and tip thicknesses are similar to those used by
ITan60

Millsaps in his seals rig.[17] The ratio is approximately 2.0, where I is the

distance between knife edges and 6 is the nominal gap. This ratio is important because

it provides information on how much fluid escapes directly over the second sealing

knife due to the jet created by the first sealing knife. If the ratio is to small, then most

of the fluid entering the seal escapes via the jet created by the first sealing knife and

there is no sealing effect.

The stator and shrouded rotor are located within the test section at locations 13

and 9 respectively as shown in Figure 2.6.[15] Further upstream, however, the flow

first enters the test section area where it encounters the honeycomb flow straightener

and wire screen (1 & 2 respectively in Figure 2.6). The dome of the stator assembly

and the stator blades are next as the flow travels vertically downward through the test

section. At 0.295 inches after the trailing edge of the stator the flow begins travel

through the shrouded rotor. Since the casing is left smooth and hence the shroud is not

recessed, the turbine is not as efficient1 as when the rotor was unshrouded 2. On the

other hand, this configuration is very similar to the configuration presented in Millsaps

work which allows for cross comparisons. [17]. The outer casing, identified by the

number 12 in figure 2.6, is highly instrumented with velocity probes, static pressure

taps and thermocouple gages. This casing has the ability to rotate such that the

IThe operating point (mass flow rate & rotational speed for largest efficiency) is shown below.2See the work of Loose and Song, references [13] & [15] respectively.



instrumentation may be used throughout the circumference of the test section. Further

discussion of the instrument locations is discussed below.

Upon leaving the rotor the flow travels through the remaining part of the upper

test section. The rotating dynamometer (location shown by 14 in Figure 2.6) is located

in this area within the shaft assembly. The forces acting upon the rotor are directly

measured by this rotating dynamometer and this device is explained in greater detail

below.

The flow enters the lower part of the test section next. This area contains the

means to offset the rotor from its concentric position. Turbine-offsetting rods,

identified by the number 16 in Figure 2.6, are used to displace the rotor statically in a

linear direction either to the left or the right. This displacement is considered the X-

direction within this report and the forces in this direction are called direct or normal

forces. The Y-direction is perpendicular into and out of the plane of the paper and the

forces associated with this direction are called cross or tangential forces.3 In order to

secure the eccentric position of the shaft and rotor at a given eccentricity stainless steel

shims are inserted at location 11 in figure 2.6 and the bolts identified by the number 15

are tightened. Concentric tests and eccentric tests with an eccentricity up to the

nominal gap of 29/1000 inch (29 mils) are possible. For safety reasons and to preserve

the experimental facilities integrity, eccentricities are limited to a maximum of 18 mils.

The flow exits the test section into an exhaust plenum. In the exhaust plenum

one can locate the optical encoder identified by 18 in Figure 2.6. This encoder broke

well before any shrouded testing began. The encoder was an essential device which

locked the sampling of forces by the dynamometer and its related equipment to 32

times every revolution no matter what the speed. A second method was developed in

order to overcome the problem of the broken encoder. This method uses a 32 tooth

gear mounted on the bottom section of the shaft with a proximeter probe facing the

3Remember, the presence of a cross force will be destabilizing if the cross force is in the direction of
whirl. These are static experiments, whirl is inhibited, however, cross forces are measured.



teeth of the gear. The proximeter provides electrical signals identifying the passing of

each gear tooth which provides a triggering mechanism similar to that of the optical

encoder. Circuits were developed in order to take these electrical pulses and convert

them to the method compatible with the existing equipment and software. This new

method is not as reliable as the optical encoder and before the reliability problem was

identified and solved this new method gave mysterious results which cost nearly a year

of lost time. Further discussion of the reliability of this new triggering system is

provided when the data reduction procedures are discussed.

2.2.2 Upper Turbine Test Section: Stator-Rotor Geometry

This facility is built with the capability to vary stator and rotor blade spacing

along with the capability to vary the amount of gap between hubs of the stator and

rotor. The geometrical variables are quite important, so much so, that Song devoted

much of his work into investigating the variation of these parameters. Figure 2.7

presents these variables through a schematic diagram of the upper turbine test section.

The variable d is the distance from the trailing edge of the stator blade to the mid-span

of the leading edge of the rotor blade. The rotor-stator axial spacing is d=0.295 inches.

The mid-span chord length, c, of the rotor blade is 0.870 inches. The rotor blade height

is designated, B,, and has a value of 0.652 inches. The blade height does not include

any section of the shroud, which is shown as a black strip in Figure 2.7. The hub-to-

hub distance between stator and rotor is d'=0.005 inches (5 mils). This distance can be

easily changed by the insertion of spacers. In this work, a spacer of thickness 0.120

inches is used and in Figure 2.7 is represented by a black box attached to the stator.

Once again the nominal gap is given by 8, and is 0.029 inches (29 mils).

The configuration of the axial gap in this shrouded turbine is the same as two of

the configurations that were completed by Song in his unshrouded tests, namely,

d'=0.57% and d=33.9% which are given as percent of chord.[15] The stator in these



shrouded tests is the same stator used in the Song's unshrouded turbine tests. This

stator has an exit angle of o2 = 70*. In the unshrouded case it is fairly easy to calculate

inlet conditions at the rotor because of the un-obscured flow field. Therefore, at this

point the reader should be made aware of some of the difficulties that the shroud

creates when one wishes to determine flow conditions at the rotor and at the shroud

entrance. The flow reaches the seal region directly from the stator exit, leaving the

stator with an angle to the axial direction of a2 = 70", and the tangential velocity at the

seal inlet is (c ,) 0oTan700. Notice that, because of contraction, (c,),,or < (c ,)rot. In

addition, the presence of the unrecessed shroud acts as an obstacle to the flow and

further reduces cx near the outer casing. Thus, some care must be exercised in

estimating the tangential velocity at the shroud inlet. These estimates of tangential

velocity are discussed further when the shroud theory is presented.

2.2.3 The Flow Loop

For all the test presented in this work Freon-12 is used as the working fluid. In

order to pressurize the loop with the freon all the air must first be evacuated from the

loop using a vacuum pump. Then the loop is pressurized with the freon by using

standard holding canisters of pressurized freon. For all the tests, the loop was either

brought to a stagnation pressure of 1.24 atm or 2.21 atm. The loop is capable of a

maximum absolute pressure of 2.36 atm (34.7 psia). One should note that all the air

can not be evacuated from the loop. The vacuum pump can bring the pressure within

the loop down to 0.028 atm. If the vacuum pump is used before each run to evacuate

the loop and then the freon is added to the loop, approximately 1% of the fluid is air

when the loop is running at its design condition of 2.21 atm. In the tests it is assumed

that the loop is pressurized with 100% Freon, therefore, the error in density may be

calculated using equation 2.1.[13]



%error = Zai,Mair + (XFreo, - 1)Mreon 100 (2.1)
air Mair + XFreonMFreon

The equation is derived from the ideal gas relations, where X is the mole fraction and

M is the molecular weight. For 1% air within the loop the density is overestimated by

0.77%. This has a negligible effect on the results. A more comprehensive treatment of

the specifics of the experimentation and the results will be covered in the next chapter

and it is seen section 3.1.3 that the air content within the loop was probably larger than

the 1% discussed here.

The Freon is circulated throughout the loop by a 90 hp (67 kW) compressor

driven by a General Electric 100 hp (75 kW) AC motor (see Figure 2.2). The

compressor imparts energy to the freon and causes the Freon temperature in the loop to

rise. The turbine absorbs approximately (15 kW), therefore, the heat exchanger is rated

at 177,430 btu/hr (52 kW).

The mass flow rate is measured by a B I F Plastic Insert Venturi Tube, whose

location within the loop can be seen at 8 in Figure 2.1. Throttle valves and a by-pass

loop control the mass flow rate. The throttle valves are hand operated and are sufficient

to control the mass flow rate for unshrouded turbine experimentation. However,

shrouded turbine experimentation requires the use of the by-pass loop because the hand

operated throttle valves prove to be insufficient to control the mass flow rate accurately.

The flow through the by-pass loop is controlled by a servo driven butterfly valve and

this loop allows a fraction of the flow that exits the heat exchanger to directly return to

the compressor, thereby by-passing the turbine test section. This by-pass scheme may

be followed in Figure 2.1.

The unshrouded turbine (investigated by Song) has an optimal efficiency of

79% at a mass flow rate of 4.48 kg/s for a wheel speed of 3440 rpm. Because of the

reduced blade height, down from 0.941 in (23.9 mm) for the unshrouded turbine to

0.652 in (16.6 mm) for the shrouded turbine, with the wheel speed and the average



pressure remaining the same as in the unshrouded turbine the flow rate for best

efficiency, theoretically should be reduced by approximately the same factor, to

4.48x(16.3/23.9) = 3.06 kg/s. A series of tests were conducted to verify this and to

select the nominal conditions for the experimental tests into these destabilizing forces.

A design operating point was found by varying the mass flow rate at turbine rotor

speeds of 2000, 2408, 3000, 3440, and 3784 rpm and recording torque, pressure and

temperature measurements in order to calculate the total-to-static efficiency. The result

is shown in Figure 2.8. Figure 2.8 is a graph of efficiency vs. the mass flow rate for the

speed of 3440 RPM, which was determined to be the speed where the optimal

efficiency lies. It can be seen from Figure 2.8 that the flow rate which yields the

highest efficiency is fi=3.15 kg/s. These tests were conducted at 2.2 atm mean

pressure and they yielded results close to the simple estimate presented previously. It

was decided, in analogy to the other configurations, to conduct static force

measurements at the pressure of 2.2 atm, at the flow rate of 3.15 kg/s and at

w = 0. 7 D1, o = 1.0" D, and at o = 1.lw,. Since the shroud is not recessed, the

efficiency of the shrouded turbine is somewhat degraded from that of the unshrouded

turbine, 7,, = 74% for the shrouded compared to 17, = 79% for the unshrouded [15].

The pressure ratios for 3440 RPM are shown in Figure 2.9 and are somewhat lower in

this shrouded turbine, due to smaller flow acceleration in the stator.

2.2.4 The Transmission and Power Absorption System

The turbine operating point was discussed in the previous section which

required one to have the knowledge of the complete operation of this facility.

However, the process of controlling the speed of the turbine has not yet been explained

completely. Therefore, in this section, a complete explanation of the transmission and

power absorption system is given.



Once again, the transmission and power absorption system are shown in Figure

2.2 at location 14. This system is responsible for the absorption of the power created

by the turbine as well as powering the turbine when the compressor is shut down. Two

Hewlett Packard DC power supplies are used to provide power to the field and

armature in the DC motor/generator. When the system is operating such as to absorb

power only the motor's field has electricity supplied to it. The electrical energy created

is then dissipated through a mesh of resistors. The resistors are cooled by air which is

forced through the resistive network by the means of the M.I.T. Gas Turbine Lab steam

ejector. During calibration and diagnostics the transmission and power absorption

system is used as a motor and the turbine is rotated without the need of the compressor.

Here both DC power supplies are used and they supply electricity to both the field and

armature in the DC motor. Through these power supplies one is able to control the

speed of the turbine for any type of test.

As mentioned in section 2.2.1 the turbine's rotor and upper shaft are displaced

eccentrically in these experiments. In order to accommodate these displacements

flexible couplings are used to connect the upper shaft to the intermediate shaft and the

intermediate shaft to the lower shaft. These coupling and their locations may be seen in

Figure 2.6 at locations 17 and 24. Along with special couplings to accommodate the

shaft eccentricity a double faced seal was used at the point where the shaft exits the

exhaust plenum (location 20 in figure 2.6). This seal is able to operate in both vacuum

and pressure situations. The lower shaft of the turbine assembly is connected to the DC

motor/generator through a belt and sprocket arrangement as shown schematically at

locations 12 and 13 in Figure 2.2.

Details on the names and model numbers of the equipment used in the facility

may be found in the work presented by Loose.

2.3 A Summary of the Design Parameters



Here the shrouded turbine's design parameters are reviewed and compared to

the unshrouded turbine's and the SSME HPFTP turbine's design parameters. This is

neatly accomplished through the use of a table. Table 2.1 lists and compares all the

relevant design parameters of the three turbines .

2.4 Instrumentation

As mentioned previously, the destabilizing forces on an eccentrically rotating

rotor may be measured and determined using two different methods. The first method

is to directly measure the forces acting on the rotor through a series of strain gauges

mounted directly below the rotor in the rotor's shaft. This device is called a rotating

dynamometer and is explained in subsection 2.4.1. The second method, which gives

only the pressure-derived part of the forces, is less direct than the first and involves the

measurement of the static pressure distributions before, within and after the rotor's

shroud. After integrating the circumferential static pressure distribution within the

shroud using equations (1.15) and (1.16) one obtains the partial forces acting on the

rotor. Nonuniformity in the circumferential pressure distribution creates the

destabilizing forces and is the most important effect in the shrouded turbine. This

effect dominant in the work done by Millsaps.[17] The instrumentation used in

measuring the pressures in the test section and the location of this instrumentation is

reviewed in subsection 2.4.2. The remaining force contribution is due to the Alford

effect as described in section 1.4.2. This effect is determined through the measurement

of the flow's circumferential velocity distribution before and after the rotor. Once

again, the Alford effect is a blade tip clearance effect and because of the shroud this

effect is reduced, but not negligible. The measurements of the flow velocity and the

location of these probes are described in subsection 2.4.2. Blade tip clearance effects

are dominant in the unshrouded turbine as is shown in the work of Loose and

Song.[13,15] The summation of the forces due to the pressure effect and the Alford



Table 2.1: Design Parameters for the SSME HPFTP Turbine, Unshrouded
Turbine and the Shrouded Turbine.

SSME Unshrouded Shrouded

HPFTP Turbine in Turbine in

M.I.T. M.I.T.

Test Facility Test Facility

Flow coefficient, 4 0.58 0.58 0.58

Work coefficient, N 1.508 1.508 1.508

Stator exit angle 700 700 700

Relative rotor inlet angle 43.90 43.90 43.90

Rotor exit angle 600 600 600

Absolute exit angle -3.1" -3.10 -3.10

Degree of reaction 0.216 0.216 0.216

Rotor mean radius, cm (in) 12.88 (5.07) 12.88 (5.07) 12.53 (4.93)

Number of rotor blades 63 63 63

Rotor blade height, cm (in) 2.17 (0.854) 2.17 (0.854) 1.66 (0.652)

Rotor blade chord, cm (in) 2.21 (0.870) 2.21 (0.870) 2.21 (0.870)

Design rotation rate, rpm 34,560 3440 3440

Axial flow velocity, nm/s (in/s) 262 (10,300) 26 (1020) 11 (433.1)

Mass flow rate, kg/s (slug/s) 71.8 (4.92) 4.48 (0.307) 3.15 (0.216)

Inlet pressure, kPa (psi) 34,950 (5069) 223.9 (32.5) 223.9 (32.5)

Inlet temperature, K (OF) 1053 (1436) 300 (80) 300 (80)

Pressure ratio 1.192 1.231 1.138

Efficiency 0.821 0.79 0.74



effect should equal that measured directly by the rotating dynamometer. Lastly, the

data acquisition system is briefly reviewed in subsection 2.4.3.

2.4.1 Rotating Dynamometer

The rotating dynamometer is located directly below the rotor and can be seen at

location 14 in Figure 2.6. Four equally spaced stainless steel square posts which run

parallel to the rotors axis at a radius of 0.053 m (2.1 in) make up the structure of this

dynamometer. Nine strain gauge sets are mounted on each post. The posts are 0.005 m

(0.2 in) on the side and 0.0254 m (1.0 in) in length. Figure 2.10 shows the orientation

of the these strain gauges on the stainless steel posts. These thirty-six strain gauges are

wired such as to create nine sets of full wheatstone bridges which are sensitive to all

components of force and moment. The wiring of these gauges is shown in schematic

form in Figure 2.11 and this figure also illustrates which bridge is sensitive to which

component of force and moment.[13]

The dynamometer rotates with the rotor since it is part of the shaft, therefore,

the forces measured by these bridges must be converted from the rotating frame to an

inertial reference frame. The procedure of converting the forces from the rotating

frame to the inertial frame is explained in the next chapter where the actual

experimentation is discussed and the experimental results are given. Note that since the

bridges are rotating with the shaft the necessary wiring is also rotating. A slip ring

assembly (location 23 in Figure 2.6) is used to transfer the signals from the rotating

elements to the stationary amplifiers and data acquisition system. For details on the

materials and amplifiers used one may consult the work of Loose.[13]

The dynamometer was calibrated by Loose and Song.[13,15] The calibration

procedures yield a six-by-six calibration matrix, which is the slope of the voltage

output of each bridge for each of the six components of force and moment. The effects

of eccentricity and load showed that the bridge output was linear, therefore, the



calibration matrix is used in a linear algebraic expression in order to determine actual

force from voltage. The output voltages of six bridges and the inverse of the calibration

matrix associated with those six bridges are multiplied and result is a six component

force vector. This is illustrated by equation 2.2:

S= [B], (2.2)

where f is the six component force vector, [B] is the inverse of the calibration matrix

and V, is the six component voltage vector. Once again, this force vector is in the

rotating frame and must be converted to the lab reference frame. This procedure is

explained in the next chapter. A detailed explanation of the calibration procedures and

techniques are given by Loose.[13]

The dynamometer was used in order to determine the lateral and torsional

natural frequencies of the rotor-shaft assembly. It was found that the lateral natural

frequencies of the system were at 105 Hz (1002.7 rpm) and 580 Hz (5538.6 rpm). All

experimental tests were done between these two natural frequencies. It was also

determined that the torsional natural frequency of the system occurs at 18 Hz (171.9

rpm)

2.4.2 Test Section Instrumentation

The test section which was described in sections 2.2.1 and 2.2.2 is heavily

instrumented with proximity probes, wall pressure taps, velocity probes and

thermocouples. In order to gain the greatest use of these instruments the casing of the

test section can rotate so that a particular probe may be used at different circumferential

locations. Combinations of these instruments are located at ten different axial locations

and at several circumferential locations at a particular axial location. The eleven axial

locations are numbered from 0 to 10 and each number's position in the test section is

shown if Figure 2.12. In order to better understand what type of instrumentation is



located circumferentially at each axial location one is referred to Figure 2.13 which is

modified from [15]. The top half of the figure shows the location of the eleven axial

positions with respect to the stator and rotor. The bottom half of this figure shows the

circumferential location and the type of probe at each of the eleven axial locations.

A Pitot static probe is located at station 0. This location is far upstream and

mainly provides information about the loop total pressure and temperature. Station 1 is

also far upstream while station 9 is far downstream. Both these stations have identical

circumferential characteristics meaning that at each of these stations there reside two

wall static ports 180" apart and two 3-hole velocity probes with thermocouples. The 3-

hole velocity probes can measure both static and total pressure along with the

temperature and the yaw angle of the flow. The purpose of these stations is to identify

whether pressure and velocity non-uniformities exist far upstream and far downstream.

Closer to the leading edge of the stator and to the trailing edge of the rotor one finds

stations 2 and 8 respectively. Both these stations contain two 5-hole velocity probes

each while only station 8 is instrumented with wall static ports. The 5-hole velocity

probes can measure all that the 3-hole velocity probes measure along with the pitch

angle of the flow. Once again, these stations are used to determine the degree of non-

uniformity that exists in the flow at the entrance and exit of this turbine stage. Stations

3 and 4 are at the entrance to the stator and rotor respectively. These stations are

composed solely of wall static pressure taps used to determine the extent of the pressure

non-uniformity at these locations. One should note that the stator is attached to the

outer rotatable casing, therefore, the stator rotates with the casing. In order to obtain a

circumferential distribution of pressure between stator blades, five static pressure taps

are equally spaced within the region between two stator blades. Stations 5 and 7 are

close to the first and second seal knives respectively and contain two static wall

pressure taps each which are 180" apart. The most important location within this rig for

pressure measurements is location 6. This location is within the cavity of the shroud



and the non-uniformity in pressure associated with this location4 gives rise to the

destabilizing forces which this experimental facility was built to investigate. Eight

static wall pressure ports are located at this axial location. Two proximity probes are

also located here, however, they are of importance in unshrouded turbine tests rather

than in these shrouded turbine tests. Station 10 is very far down stream and is not used

in the experimental work presented here.

In order to read in all the information provided by the vast array of pressure

measurements a 48 channel double Scanivalve system was used. The details of the

calibration of all the for mentioned probes, and the calibration and detailed

instrumentation of the Scanivalve system is provided by Loose and Song.[13,15]

2.4.3 Data Acquisition

Three analog-to-digital (A/D) converter systems connected to one IBM PC-AT

are used to acquire and log all the data. Figure 2.14 is a flow chart representing the

instruments used, the A/D systems incorporated and the IBM computer.

The voltage signals obtained from the bridges in the rotating dynamometer are

first sent to conditioning amplifiers and then to a LeCroy sampling data logger.

Ultimately the IBM PC obtains, logs and saves the data. The data logger is capable of

handling 32 individual inputs at a sampling rate of 5 kHz with a 12 bit resolution. For a

usual run, the sampling data logger is set to sample the bridge voltages 32 times per

revolutions for 256 revolutions. The trigger information 5 was initially provided by an

optical encoder, however, this device broke (as mentioned previously) and a 32 tooth

gear and proximity system was devised instead. The problem with this new system is

that it misfires at times and instead of providing a constant 32 signals per revolution it

provides any number from 1 to 68. The data reduction software, which takes the raw

4It will be seen in chapter 4 that the non-uniformity in pressure at the entrance and at the exit of the rotor
stage also contributes to the direction and magnitude of the destabilizing force.
5The trigger tells the sampling device when to sample a signal.



voltage signals and ultimately provides the steady inertial forces, assumed a constant 32

samples per revolution. Therefore, a misfire would alter the angle at which the forces

would be projected onto the inertial frame6. This caused the results to have excessive

scatter and in many cases prove meaningless. This problem was not immediately

identified because a misfire would occur very rarely, most of the time it was once out

of 256 revolutions and the existing software did not contain means of identifying such a

problem. Once the problem was found the revolutions which contained samples other

than 32 per revolutions were discarded. The capability of re-reducing the raw data

without the troublesome revolutions existed because each run's raw data was saved. In

order to re-reduce the runs and obtain the correct results the reduction software was re-

written such that it counts the number of samples per revolutions and eliminates the

revolutions which contain a number of samples other than 32. A complete explanation

of the data reduction procedure is provided in Chapter 3 where the experimental results

are presented.

Most of the pressure measurements are accomplished via the double scanivalve

system. This system is then connected to a Scanivalve Digital Interface Unit (SDIU)

where a two channel A/D exists and an internal memory system resides. The SDIU

also controls the sampling of the pressures done by the double scanivalve system. The

IBM PC ultimately receives the sampled pressure readings through an IEEE-488 output

connection located at the rear of the SDIU.

The final A/D system converts the analog signals provided by the

thermocouples, the Venturi system, the inlet pressure probe, and the lower torque

bridge to digital signals read by the IBM PC. This A/D system is an interface card

developed by Omega Engineering and plugs into the IBM computer. This card is

operated through software provided by the company.

6The data reduction procedures and software is explained in Chapter 3 Experimental Results.



Front View of Experimental Facility. (1) Turbine Test Section,
(2) 100 hp Electric Motor & Compressor, (3) Heat Exchanger,
(4) By-Pass Loop, (5) Servo Driven Valve, (6) Throttle Valve,
(7) Throttle Valve, (8) Venturi Meter, (9) Flow Straighteners,
(10) 90* Bend with Flow Straightener, (11) Vibration Isolator,
(12) Flexible Shaft Coupling, (13) Exhaust Plenum, (14) Vibration
Isolator, (15) Test Stand [13]

Figure 2.1:



Figure 2.2: Side View of Experimental Facility. (1) 100 hp Electric Motor,
(2) Compressor, (3) Heat Exchanger, (4) Flow Straightener,
(5) Vibration Isolator, (6) Test Section, (7) Exhaust Plenum,
(8) Test Stand, (9) Slipping Assembly, (10) Vibration Absorbing
Mounts, (11) Flexible Shaft Coupling, (12) Drive Belt, (13) Pulley
Sprocket, (14) DC Motor/Generator [13]
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(1) Flow straightener
(2) Screen
(3) Main loop piping
(4) Flange
(5) Flexible insert
(6) Liner
(7) Snubber bearing
(8) Snubber support
(9) Test turbine
(10) Flow-smoothing shield
(11) Shims
(12) Rotatable casing
(13) Stator blades
(14) Rotating dynamometer
(15) Bolts to secure shaft
(16) Turbine-offsetting rods
(17) Upper flex joint
(18) Optical encoder
(19) Intermediate shaft
(20) Double-acting seal
(21) Flexible insert
(22) Pivoting bearing
(23) Slip ring assembly
(24) Lower flex joint

Figure 2.6: Schematic of the Turbine Test Section [15]
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Figure 2.8: Total-to-Static efficiency vs. mass flow rate at optimal speed of
3440 rpm.
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Figure 2.9: Pressure ratio vs. mass flow rate at Optimal speed of 3440 rpm.
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SEnd

Shaft
Axis

M1

Figure 2.10: Schematic of the Rotating Dynamometer Showing the Four
Stainless Steel Posts Which Contain the 36 Strain Gages. Each
Post is Instrumented with 9 Strain gages: Four at Quarter Length,
One at Mid Length and Four at Three-Quarter Length. Forces and
Moments are Defined as Acting on the Rotor at the Rotor End of
the Dynamometer.[ 13]



Figure 2.11: The wiring arrangement of the 36 semi-conductor strain gauges
into the nine Wheatstone bridges. The excitation voltages are
given by El through E9 and the bridge output voltages are given
by V1 through V9. The sensitivity of each bridge is given in the
oval below each bridge output voltage symbol.[13]



see below
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Figure 2.12: Axial Instrument Station Locations [13]
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Figure 2.14: Flow Chart of the Data Acquisition Scheme [13]
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Chapter 3

Experimental Results

3.1 Rotating Dynamometer Results

In this section the data reduction procedures to convert the raw voltages,

provided by the rotating dynamometer, to forces in the inertial frame are explained.

The series of tests are outlined followed by the results of those tests.

3.1.1 Reduction of the Raw Data

As mentioned in section 2.4.3 (Data Acquisition), 32 voltage samples of each of

the nine Wheatstone bridges are taken per revolution for 256 revolutions by the LeCroy

data acquisition system. This results in 8196 voltage readings per bridge for a single

run at a given mass flow rate, rotational speed and eccentricity. In addition to reading

the voltage output generated by the bridges, once per revolution signals created by a

magnetic pickup1 are also sampled. Other measuring devices are also connected to the

LeCroy data acquisition system, however, those devices are used mostly for calibration

purposes and are not required to be discussed here. After each run the raw voltage

readings are transferred from the LeCroy to the IBM PC. These readings are then

placed on 5.25 inch floppy disks and also converted to 3.5 inch floppy disks for

permanent storage and for reduction on a Macintosh computer. A reduction routine

was written for the Macintosh computer by Soomyung Yoo and later modified by the

author. The modification checks weather each revolution contains exactly 32 samples.

1A magnetic pickup provides a large positive spike when a metal object is approaching its sensor and
then immediately spikes negative as the metal object passes the sensor. A small metal piece was inserted
on the lower shaft such that the magnetic pickup would sense this piece once per revolution.



If a revolution has more than or less than 32 samples that revolution is discarded.

Before this reduction routine existed the IBM-PC and its related software were used for

reduction, however, this system took orders of magnitude longer to reduce any given

set of data.

The reduction routine written for the Macintosh first reads in the raw voltage

readings which were originally saved on the IBM PC. Because an IBM was used to

save the raw data the Macintosh program must first convert the numbers into a format

that it can understand. Once these voltage readings are converted to a Macintosh

format they are then stored in a 8196 by 10 array .Only the information from the nine

wheatstone bridges and the magnetic pickup is stored in the array. The array contains

a total of 8196 samples per bridge for each of the nine bridges and also 8196 samples

from the once per revolution signal. Following the creation of this array the once per

revolution signals are checked to determine whether a misfire has occurred for any of

the 256 revolutions. The number of samples between the voltage spikes created by this

magnetic pickup is one's guide in determining which of the revolutions are bad. If the

number of samples in a revolution is larger or smaller than 32 a misfire has occurred an

that entire revolution is discarded. The associated Wheatstone bridge voltage signals

for that revolution are also eliminated. Once the bad revolutions are discarded, the

remaining revolutions are averaged and the result of this averaging gives 32 six

component vectors. The 32 vectors contain the average bridge readings for each of the

32 sample locations in a revolution. The vector has six entries because only six of the

nine bridges are needed to determine the six components, namely the three components

of force and the three components of moment. These 32 six component vectors are

then multiplied by the calibration matrix as explained in section 2.4.1 (Rotating

Dynamometer). The result of this linear algebraic multiplication are 32 six component

vectors containing both forces and moments. Each of these vectors is the instantaneous

force or moment at one of the 32 circumferential locations.



Our interests lie in the direct (X-axis or normal) and cross (Y-axis or tangential)

forces, therefore, only two components of the six component vector are used. These

forces must be converted from the rotating frame to the fixed frame and Figure 3.1 is

referred to in order to aid in this discussion. In Figure 3.1 e is the eccentricity of the

rotor, # is the angle to the X-axis at time t = 0 at which time sampling begins, FI(0) &

F2(0) are the forces at the first sample location (t = 0), V/is the angle at time t after the

initial sample and Fl(t) & F2(t) are the respective forces. The positive X-axis is to the

left and this corresponds to moving the shaft eccentrically to the left as one looks down

onto the test facility from above. The positive Y-axis points up which corresponds to

the axis pointing towards the power absorption system when one looks down into the

test section from above. Equations (3.1) and (3.2) are used to convert the forces from

the rotating frame to the fixed or inertial frame.

F,(V)= FCos(y - )+ F2Sin(w - ) (3.1)

F, (W) = FSin(V - 0) - FCos(y - ) (3.2)

Once converted to the inertial frame 32 forces per revolution in both the X and Y

directions result. These forces in each direction are then averaged over all the

revolutions to obtain the final fixed reference frame direct (normal) and cross

(tangential) force.

The direct and cross force obtained from the above procedure are for one test

run. The turbine is set at an eccentric location, the mass flow is adjusted to the design

flow rate and the turbine is operated at a steady speed. This reduction routine is

repeated for every test run performed and the following section describes the battery of

test completed using the rotating dynamometer to find these forces.

3.1.2 Test Series



It has been determined in section 2.2.3 (The Flow Loop) that the design speed

and mass flow rate are 3440 rpm and 3.15 kg/s respectively. Thus, the testing is

centered about this design condition. The three speeds investigated are 2408 rpm

(0.7 co), 3440 rpm (1.0 oW) and 3784 rpm (1.1 oD). These speeds are identical to the

three speeds investigated in the unshrouded turbine tests performed by Song.[15] 6

eccentric positions and the concentric position are tested for each of these speeds. The

eccentric positions investigated are for turbine rotor displacements of -15, -10, -4, +4,

+10, +15 mils (thousands of an inch) where positive indicates a displacement in the

positive X-direction as indicated in Figure 3.1. Three independent test runs are taken at

each speed and each eccentricity. Therefore, a test series consists of 63 individual test

runs. For example, three independent test runs are taken at 2408 rpm at an eccentricity

of -15 mils. An entire test series is completed in one day.

Four test series were completed for the shrouded turbine. Two of the series

were done at 1.24 atm mean loop pressure and the other two series were completed at

2.21 mean loop pressure. Originally, the reason for completing four test series was that

the results had excessive scatter and were, in many cases, meaningless. Therefore, it

was determined that the experimentation must be continued aggressively in order to

find the cause of the bad results. As has been explained above, the problem was found

and corrected, and the four series of tests completed were all salvaged and proved to be

very repeatable. The results of these tests are now presented.

3.1.3 Rotating Dynamometer Results

To illustrate the results each test series is divided into three figures. One figure

for each of the three speeds (2408 rpm {0.7 o, }, 3440 rpm { 1.0CD } and 3784 rpm

{ 1.1 D }). On each figure the direct (normal) and the cross (tangential) forces (lbf) at a

given speed are plotted vs. eccentricity (mils). Through these data points a least square

linear curve fit was performed. Above each figure one finds the legend which contains



the linear fit equations and the goodness of fit. The test series number and the mean

loop pressure are given in the title of each figure. A negative direct force, F , is a

restoring force. For a positive eccentricity, following the convention given in Figure

3.1, a negative direct force acts in the direction opposite to the displacement (towards

the concentric position). A positive cross force, FY, act in the direction of rotation

following the convention given in Figure 3.1.

Figures 3.2 through 3.13 contain all the results of the rotating dynamometer

tests and Table 3.1 gives greater detail on the conditions of each test series at a given

speed.

Table 3.1: Test Conditions and Measured Torque for Dynamometer Tests

Test Series o/o)D Po (atm) Ih(k s) TQ(N m)

1 0.7 2.21 3.22 23.68

1 1.0 2.21 3.20 18.84

1 1.1 2.21 3.22 17.32

2 0.7 1.25 1.75 13.87

2 1.0 1.24 1.70 9.76

2 1.1 1.24 1.78 9.99

3 0.7 2.21 3.16 23.36

3 1.0 2.21 3.19 18.27

3 1.1 2.21 3.14 16.89

4 0.7 1.24 1.74 13.77

4 1.0 1.24 1.75 10.69

4 1.1 1.24 1.75 9.79



The figures are organized such that each successive group of four figures is at one
speed and the first two figures of each group are tests performed at a mean loop
pressure of 2.21 atm and the second two figures of each group are tests performed at a
mean loop pressure of 1.24 atm. All these figures show that the results are very
repeatable within each test series at a given speed. Remember, that each point on the
graph contains three runs and if only one point is seen it is because the results lie right
on top of one another.

The slope of the linear curve fits, F  and , are shown in Table 3.2. Notee e
that each of these slopes are adjusted to 2.21 atm. This means that for the runs
performed at 1.24 atm, those runs were multiplied by 2.21 and divided by 1.24. Since
the experiments are done statically the slopes give the direct and cross stiffnesses.

Table 3.2: Slopes of Linear Curve Fits in lhf/mil Ad-usted

Test
Series

1

2

3

4

Average

Max.
Diff.

Slopex

km)

-= 0.7

-0.134

-0.139

-0.136

-0.136

-0.136

3.7%

Slopey

kx

0 = 0.7

0.202

0.201

0.199

0.195

0.199

3.6%

Slopex

ka

= 1.0
(o

-0.147

-0.147

-0.144

-0.140

-0.144

5.0%

Slopey
1-

a)

"D

0.158

0.168

0.167

0.151

0.161

11.3%

Slopex

= 1.1
a)

Slopey
1_

=1.1

WD

-0.143

-0.150

-0.147

-0.142

-0.145

5.3%
5.3%

WO1

0.151

0.158

0.156

0.152

0.154

4.6%
4.6%

As can be seen, an average of each row is given at the bottom of the table. It
was stated previously that the results are very repeatable within one day's or test series
experimentation, however, the repeatability is a little worse when one compares the
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results from test series to test series. In Table 3.2 the bottom row presents the worst

difference between test series at a given speed. This was calculated by taking the

difference between the largest and smallest slopes and then dividing by the smaller

slope. It can be seen that for all but one column the maximum difference between runs

is 5.3%. Because of the cross force of test series 4 at design speed this column has a

maximum error of 11.3%. If that one case is eliminated the error falls to 6.3%. An

error of approximately 5% is reasonable and expected since between test series the loop

was not always fully evacuated2. The freon from previous runs was left within the loop

and as days passed between runs a small amount of air was expected to leak in. Instead

of evacuating the entire loop and repressurizing, this alternate procedure was used in

order to save Freon. The project ran out of funding and the small amounts of Freon left

had to suffice for the rest of the experimentation.

The slopes of the linear curve fits are also used to calculate the Alford

coefficients, #x and fly. These coefficients are given by equations (1.17) and (1.18) in

section 1.4.2. In order to calculate these coefficients the blade height of BH= 16.6 mm

(0.652 in) and the mean radius of Rm=125 mm (4.932 in) 3 are needed along with the

torque values for each test series which are given in Table 3.1. The results are tabulated

in Table 3.3.

These Alford coefficients may be directly compared to those obtained from the

work of Song.[15] His experimental work utilized this same turbine, however, without

the shroud. The rotors blades were longer since in order to incorporate a shroud the

rotor blades had to be clipped. With the shroud the Alford coefficients are

approximately 50% larger than those measured in the experimental facility utilizing the

unshrouded turbine. Once again a maximum difference for each test series at a given

speed is calculated. As one would expect, the difference increases from the differences

2For a fully evacuated loop which is then pressurized with freon has a density error of approximately
0.77%. (See Section 2.2.3) However, this ideal method could not be used because of buidget constraints.
3Note that the mean radius is taken from the hub to the tip of the blade, not to the tip of the knife edge on
the shroud.



presented in Table 3.2 because the non-dimensionalization contains a torque

measurement which introduces further errors. The errors for the off-design cases are no

larger than 7.4%, however, the design case has errors of 15.0% and 21.4% for the direct

and cross Alford coefficients respectively. Most of this large error is due to test series 4

as was the case in the pervious discussion about the slopes. If the values from this

series were eliminated the maximum difference would become a little more reasonable

at 8.4% and 15.2% for both the cross and direct Alford coefficients respectively.

Table 3.3: Alford Coefficients from the Dynamometer Tests

Test o w o fo C)
Series - = 0.7 -= 0.7 - = 1.0 - = 1.0 - 1.1 - 1.1

OD C O D WD Do D CO

1 -4.05 6.10 -5.58 6.00 -5.92 6.25

2 -4.05 5.88 -6.05 6.91 -6.04 6.36

3 -4.16 6.11 -5.64 6.53 -6.22 6.61

4 -3.98 5.69 -5.26 5.69 -5.82 6.25

Average -4.06 5.94 -5.63 6.28 -6.00 6.37

Max. 4.5% 7.4% 15.0% 21.4% 6.9% 5.8%
Diff.

For comparison with the results presented by Millsaps [17], Table 3.4 takes the

non-adjusted linear curve fits from Figures 3.2 through 3.13 and creates the stiffness

coefficients. The stiffness coefficients are given by the following equation:

K = R(PiP) (3.3)"Y IR,(p, -p.)

Where x' is the slope of the line, '* is the nominal gap, I is the length of the land,
e

Rm is the mean radius and (pi - po) is the pressure difference across the rotor. These



values can be compared to those obtained from the seals rig, except that here K, < 0 is

a restoring force, whereas in Millsaps work the opposite convention is used. Note also

that these contain both, the pressure effect and the blade (work loss) effects where as

Millsaps facility concentrated on the shroud alone (the pressure effect).

Table 3.4: Stiffness Coefficients from the Dynamometer Tests

Kxr KxY K K K Kxy
Test o0 O 0 )

Series - 0.7 - 0.7 -= 1.0 -= 1.0 - = 1.1 - = 1.1
-( 0D O D D D =O

1 -0.440 0.662 -0.437 0.470 -0.401 0.424

2 -0.448 0.649 -0.412 0.471 -0.479 0.504

3 -0.410 0.602 -0.435 0.504 -0.435 0.462

4 -0.469 0.670 -0.436 0.472 -0.434 0.466

Average -0.441 0.646 -0.430 0.479 -0.437 0.464

3.2 Wall Tap Static Pressure Results (The Pressure Effect)

In this section the data reduction procedures used to obtain the static pressure at

various circumferential locations for 6 axial locations is explained. The series of tests

is then outlined followed by the results of those tests.

3.2.1 Reduction of the Raw Data

In order to calculate the direct and cross forces the nonuniformity in pressure at

axial location 6 is measured4. Axial locations 4, 5, 7, 8 and 9 are also measured and the

results and importance of those tests is also discussed below. As mentioned in section

2.4.2 the wall tap pressure is measured with the aid of a double scanivalve system

which is controlled by an IBM PC-AT Computer. The measurements taken by this

4If one is unfamiliar with the numbering of the axial locations please review section 2.4.2 and refer to
Figures 2.12 and 2.13.



scanivalve system are also stored on the PC. Each time the scanivalve system samples

the wall tap pressures, it samples the pressure at all the wall tap locations throughout

the test section. However, for the tests presented here only the wall tap pressure

readings at axial locations 4 through 9 are fully reduced. A program written by Song

for the Macintosh computer is used to reduce this data. For each sampling the program

reads in the pressure values for all the circumferential locations at the six axial

locations of interest and then takes the eight circumferential readings at station 6 and

averages them for use as a reference point. This reference pressure is then subtracted

from each of the wall tap pressure measurements taken at each of the six axial

locations. The resulting pressures are stored in an array such that measurements taken

at a particular circumferential and axial location for the concentric operation of the

shrouded turbine are subtracted from the results of the eccentric operation. Before the

results of these tests are presented the following section explains the series of tests that

were accomplished.

3.2.2 Test Series

The wall tap pressure experiments were done at the design speed (3440 rpm)

and at the design mass flow rate (3.15 kg/s). Two cases are investigated; the first is the

concentric rotation of the turbine and the second is the eccentric rotation. The

eccentricity was set to +18 mils. A sample run consists of setting the turbine either

concentrically or eccentically, bringing the turbine to its design condition and then

triggering the scanivalve system to read all the wall tap pressure ports. Once a sample

run is completed the casing is rotated such that the wall tap pressure ports may read the

pressures at a different circumferential location. Six circumferential locations are

investigated. These same six circumferential locations are measured seven times at

identical operating conditions. This will show the repeatability of the data. Therefore,

a test series consists of operating the shrouded turbine at its design condition while



taking wall tap pressure measurements seven times at each of the six circumferential

locations for both the concentric and eccentric rotor positions5. Two test series are

reviewed in this work, both at a mean loop pressure of 2.21 atm, however, each test

series is done on a different day. The results of these test are presented in the next

section.

3.2.3 Wall Tap Pressure Results

In the experimental facility the shrouded turbine is displaced statically in what is

defined as the X-direction. As was seen in previous figures, when the test facility is

viewed from below (downstream) as in Figure 2.13 the positive X-direction points to

the right and the Y-direction points upward, however, when the facility is viewed from

above (upstream) as in Figure 3.1 the positive X-direction points to the left and the Y-

direction is unchanged. In order to define the circumferential positions Figure 3.14 is

referred to and it presents the facility coordinates as viewed from the top (upstream).

At the minimum gap or at a positive displacement the circumferential position is

0 = 00. It is shown below that at station 6 (within the shroud seal cavity) the minimum

pressure occurs at 0 = 1270 and the maximum pressure occurs at 0 = 3070 in the

direction of rotation. With the pressure skewed in this manner one does expect a

forward-whirling cross force, and as one knows there is one because of the

dynamometer results. There would be a zero cross force only if the minimum pressure

occurred at 0 = 1800 and the maximum at 0 = 00 or vice versa.

The graphs of the pressure perturbation around the circumference of the inner

casing at the six axial locations are all presented in a similar manner. The Y-axis is the

difference in pressure between the concentric and eccentric runs for a given station.

The units are in psid. The X-axis is the circumferential position as defined in the

5The actual reason why seven trials are performed is because the velocity probes used to calculated the
Alford effect move radially at each of the circumferential locations. Therefore, at each of the
circumferential locations seven different radial measurements of the velocity are performed. The
Scanivalve not only acquires wall tap pressure measurements but velocity information also. Section 3.3
explains this further.



previous paragraph using Figure 3.14. All the figures except those used to show the

activity at station 8 have a curve defined by equation (3.4) fitted through the data points

for a given trial.

AP = ml + m2Sin(O) + m3Cos(O) (3.4)

Each trial has it own curve and the trial and its respective curve are represented in a

legend above each graph. The sinusoidal curve fits at station 6 along with equations

(1.15) and (1.16) are used to calculate the direct and cross forces. The averages of the

magnitude and phase of the curve fits at stations 4 and 9 are used as inputs for the

analytical model which is derived in chapter 4 and is applied in chapter 5.

Figures 3.15 through 3.28 contain all the results of the wall tap pressure tests

and Table 3.5 gives additional information on the test conditions for each test series.

Table 3.5: Test Conditions and Measured Tor ue for Wall Tap Pressure Tests

Test Series /o,)D Po (atm) mh (kgs) T, (N.m)

1 1.0 2.21 3.19 18.21

2 1.0 2.21 3.14 18.48

Figures 3.15 through 3.26 are organized such that each page contains two figure each at

the same station but one for test series 1 and the other for test series 2. Figure 3.27 for

test series 1, and 3.28 for test series 2, are different from all the rest of the wall tap

pressure figures in that they plot stations 4,5,6,7, and 9 on one graph for comparison.

The repeatability in the results increases as one goes from station 4 to station 6 and then

decreases dramatically at station 8 and then once again increases at station 9. Stations 6

and 7 are very repeatable when analyzed from both a trial to trial and a test series to test

series point of view.



The pressure tap holes at station 4 are before the seal. One notices a

perturbation in pressure at station 4 and this is seen in Figure 3.15 for test series 1 and

in Figure 3.16 for test series 2. Once again, the magnitude and phase of these

perturbations are used as an input for the theoretical model. It is shown in chapter 5

that the theory is sensitive to both pressure and velocity perturbations at the inlet to the

shroud. It is also shown, that the theory predicts an increase in the cross force with

these measured inlet perturbations as compared to no inlet perturbations whatsoever.

Therefore, perturbations in pressure and velocity exist at the inlet and they do have an

effect on the final theoretical result.6 The pressure tap holes at station 5 are

approximately over the first seal knife edge, which is at a location where static

pressures are rapidly changing. This makes their interpretation difficult. Figure 3.17

and 3.18 show these results for test series 1 and 2 respectively. However, the pattern is

still very similar to those observed for the unshrouded cases.[15]

Stations 6 and 7 are both inside the cavity of the shroud, 6 being near its center

and 7 near its exit. The corresponding wall pressures are shown in Figures 3.19 and

3.20 for station 6 and Figures 3.21 and 3.22 for station 7. These show identical

nonuniformity patterns, and each station's phase and magnitude are shown on one

figure for better comparison. Figures 3.27 (test series 1) and 3.28 (test series 2) show

the comparisons between stations 4,5,6,7 and 9 for trial 1. Compared to the

distributions seen in these locations with no shroud [15], one notices a large increase in

amplitude, by about a factor of two, and also a phase shift away from the region of

maximum gap and towards the 90* location. This shift has the effect of further

increasing the contribution of these pressure forces to the forward-whirling cross force

component F,.

Stations 8 and 9 are at the exit of the shroud. A recirculation region exist at the

immediate exit of the shroud (station 8) because the shroud is in the flow field and acts

6See Chapter 5.



as a blunt body. This causes the wall tap pressure measurements at station 8 to be

extremely noisy and unable to yield significant results. The results of station 8 for trials

1 and 2 are shown in Figures 3.23 and 3.24 respectively. However, station 9 is not as

noisy as station 8 and this station shows the sinusoidal pattern, therefore,. a magnitude

and phase can be extracted. Figures 3.25 and 3.26 show the results at station 9 for test

series 1 and 2 respectively. From the curve fits through the seven trial points for both

test series at station 9 an average of the magnitude and phase of the perturbation in

pressure is used as an input to the theory in order to calculate the direct and cross

forces. As in the case of the perturbation in pressure at the inlet to the seal, the

perturbation in pressure at the exit has an effect on increasing the cross force in the

theoretical calculations.

The total forces due to the gland pressure distribution can be calculated using

equations (1.15), (1.16) and (3.4). The values for ml, m2 and m3 at station 6 for both

test series 1 and 2 are listed in Appendix A. An average of these values for each test

series is taken. The length of the land, 1, is 13.63 mm (0.537 in) and the radius is R, =

135 mm (5.297 in). For non-dimensionalization (Equations (1.17) & (1.18)), the torque

is given in Table 3.5, the blade height, B, is 16.6 mm (0.652 in), the mean radius, R.

is 125 mm (4.932 in) and the eccentricity e = 0.46 mm (18 mil). The results of these

calculations are listed in Table 3.6 on the following page.

3.3 Velocity Probe Results (The Alford Effect)

In order to find the magnitude of the Alford effect the test section is

instrumented with velocity probes, as described in section 2.4.2. At a given

circumferential location these probes traverse radially to measure stator inlet and rotor

exit velocities along the span of the turbine blades. Seven radial samples of velocities

are taken at a given circumferential location. Wall tap pressure measurements are taken

at the same time velocity measurements are taken, therefore, there are seven wall tap



Table 3.6: Results of Wall Tap Pressure Measurements

Fx  FY kx k fix P P
Test N (lbf) N (lbf) lbf/mil lbf/mil - -

Series
C) O )(0 0) (O (O

= 1.0 = 1.0 = 1.0 =1.0 = 1.0 = 1.0
(A )Do o (No (D)D c O)D

1 -7.695 11.321 -0.0961 0.141 -3.84 5.63
(-1.730) (2.545)

2 -8.278 11.962 -0.103 0.149 -4.06 5.86
(-1.861) (2.689)

Average -7.987 11.642 -0.0998 0.145 - 3.95 5.75
(-1.795) (2.617)

Max. 7.58% 5.66% 7.58% 5.66% 5.85% 4.08%
Diff.

pressure samples at a given circumferential position7 and the test series for these

velocity measurements are the same as in the wall tap pressure section.

A problem with velocity measurements in this shrouded turbine facility is that

the turbine's shroud in not recessed and the velocity probes at the rotor's exit can only

radially span approximately 25% of the turbine hub to casing distance closest to the

wall. Most of this distance is occupied by the shroud, therefore, these probes are in the

shroud's wake. As one might deduce, this gives unpredictable results.

The velocity measurements at station 8 yielded scattered results with no

particular pattern. However, the survey at station 9, further downstream, did give valid

results, and is shown in Figure 3.29. Here a 5-hole probe was used, which could not be

inserted past the radial limit described above. Therefore, three readings (circle, square

and diamond) are all at the radial limit closest to the hub and the last three readings (x,

triangle and +) are at different radial locations closest to the casing. These last three

depths (nearest the casing) are in the direct wake of the shroud, but since this station is

three chord lengths downstream of the rotor, the wake is probably sufficiently diffused.

7See section 3.2



The lack of coincidence at the identical radial locations (circle, square and diamond)

gives a measure of the data scatter. The under turning shown in Figure 3.29 is, in fact,

greater than that seen in the unshrouded cases (see Song). A value of the direct and

cross force cannot be determined from the existing velocity measurements because not

enough information is known at other radial locations in order to make a good

approximation of these values.



Figure 3.1: Data Reduction and Experimental Facility Coordinates. (View
From Upstream) [13]
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-e-- Direct Force, Fx - y = -0.13477 + -0.1339x R= 0.99728

- -- Cross Force, Fy - - y = 1.1429 + 0.20166x R= 0.99972
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Figure 3.2: Test Series 1, PO=2.21 atm. Off-design Speed at 2408 rpm
(w = 0.70D).

--- Direct Force, Fx y = 0.13124 + -0.1357x R= 0.99865

- -- Cross Force, Fy - - y = 1.4486 + 0.19922x R= 0.99962
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Figure 3.3: Test Series 3, PO=2.21 atm. Off-design Speed at 2408 rpm
(o = 0.7 oD).
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-- Direct Force, Fx - y = 0.042223 + -0.078437x R= 0.99868

- a - Cross Force, Fy - - y = 0.6944 + 0.1138x R= 0.99956
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Figure 3.4: Test Series 2, P0=1.25 atm. Off-design Speed at 2408 rpm
(o = 0. 7 o)D).

-o-- Direct Force, Fx y = 0.1237 + -0.076552x R= 0.99839

- a- Cross Force, Fy - - y = 0.73401 + 0.10941x R= 0.99848
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Figure 3.5: Test Series 4, P0=1.24 atm. Off-design Speed at 2408 rpm
(o = O.7 )D ).
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-- Direct Force, Fx y = 0.082891 + -0.14689x R= 0.99916

- a- Cross Force, Fy - - y = 1.0455 + 0.15783x R= 0.99949
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---- Direct Force, Fx
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Figure 3.10: Test Series 1, P0=2.21 atm. Off-Design Speed at 3784 rpm
(0 = 1.1WD).

-- e--- Direct Force, Fx - y = 0.095679 + -0.14665x R= 0.99953

- a- Cross Force, Fy - - y = 1.2188 + 0.15593x R= 0.99963
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Figure 3.11: Test Series 3, P0=2.21 atm. Off-Design Speed at 3784 rpm
(( = 1.10)).
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--- Direct Force, Fx

- c- Cross Force, Fy

y = 0.018915 + -0.084228x R= 0.99946
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Figure 3.12: Test Series 2, P0=1.24 atm. Off-Design Speed at 3784 rpm
(( = l.l10).

-e-- Direct Force, Fx - y = 0.10322 + -0.079491x R= 0.99867
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Figure 3.13: Test Series 4, P0=1.24 atm. Off-Design Speed at 3784 rpm
(co = 1.1D).
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IVdA ruressure,
At 0=304.50

Figure 3.14: Angular Convention and Location of Minimum and Maximum
Pressure as Measured at Station 6. (View from Upstream)
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Test Series 1, Wall Tap Pressure Distribution at Station 4,
Between Stator and Rotor at the Entrance to the Shroud. P=2.21
atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.16: Test Series 2, Wall Tap Pressure Distribution at Station 4,

Between Stator and Rotor, at the Entrance to the Shroud. P=2.21
atm, Eccentricity = 18 mils = 0.46 mm.
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Test Series 1, Wall Tap Pressure Distribution at Station 5, Over
the First Seal Knife. P=2.21 atm, Eccentricity = 18 mils = 0.46
mm.
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Figure 3.18: Test Series 2, Wall Tap Pressure Distribution at Station 5, Over

the First Seal Knife. P=2.21 atm, Eccentricity = 18 mils = 0.46
mm.
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Figure 3.20:
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Test Series 1. Wall Tap Pressure Distribution in the Center of the
Shroud Labyrinth Seal. Station 6, P=2.21 atm, Eccentricity = 18
mils = 0.46 mm.
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Test Series 2. Wall Tap Pressure Distribution in the Center of the
Shroud Labyrinth Seal. Station 6, P=2.21 atm, Eccentricity = 18
mils = 0.46 mm.
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Test Series 1. Wall Tap Pressure Distribution at Station 7, Near
the Exit of the Shroud Seal, However, Still Within the Shroud
Cavity. P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.22: Test Series 2. Wall Tap Pressure Distribution at Station 7, Near

the Exit of the Shroud Seal, However, Still Within the Shroud
Cavity. P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.23: Test Series 1. Wall Tap Pressure Distribution at Station 8, at the

Exit of the Shroud Seal (Past the Second Sealing Knife
Downstream). P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.24: Test Series 2. Wall Tap Pressure Distribution at Station 8, at the

Exit of the Shroud Seal (Past the Second Sealing Knife
Downstream). P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.25: Test Series 1. Wall Tap Pressure Distribution at Station 9. Exit of

the Shroud Seal and Past Station 8. (Past Second Sealing Knife
Downstream). P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Figure 3.26: Test Series 2. Wall Tap Pressure Distribution at Station 9. Exit of

the Shroud Seal and Past Station 8. (Past Second Sealing Knife
Downstream). P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Test Series 1. Wall Tap Pressure Distribution at Stations 4,5,6,7
and 9. Trial 1 Data for the Five Stations Plotted for Cross
Comparison. P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Test Series 2. Wall Tap Pressure Distribution at Stations 4,5,6,7
and 9. Trial 1 Data for the Five Stations Plotted for Cross
Comparison. P=2.21 atm, Eccentricity = 18 mils = 0.46 mm.
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Diamond Data Points are all Nearest the Core at r/H=0.76. The
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Wall in the Wake of the Shroud. Test Series 2.
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Chapter 4

The Analytical Model

4.1 Kostyuk-Iwatsubo-Millsaps Model

To completely model the flow through a rotating, whirling shroud as accurately

as possible the full Navier-Stokes equations should be used. However, a closed form

analytical solution of these equations is impossible. A numerical solution would be

extremely expensive since the model would be required to perform parametric studies.

Therefore, in this chapter a simplified model is developed which incorporates the

dominant flow conditions and pertinent geometric parameters. Through this simplified

analytical model physical insight is easier obtained than through more comprehensive

treatments. Note that this model assumes flow only through the shrouded region and

the flow through the rotor is ignored. Therefore, this model predicts the pressure

nonuniformity within the cavity of the shroud but says nothing about the Alford effect

caused by the variation of blade forces around the circumference of the rotor blades.

The results of this theoretical model are compared directly to the wall tap pressure

results.

The model is based on the work of Kostyuk [12], Iwatsubo[9] and Millsaps

[16,17]. Kostyuk's lumped parameter model simplifies the governing equations such

that the flow in the axial direction is coupled to the one dimensional continuity and

momentum equations in the circumferential direction. Since the fluid variations around

the annular cavity is what gives rise to the asymmetric pressure distribution the state

variables within the land of the shroud are a function of angle and time only and the

average value of all state variables is used at each section. Iwatsubo's model took
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Kostyuk's model one step further and generalized it for area variations within the land

due to the shaft's whirling motion. Millsaps' model took Iwatsubo's model and

expanded it to include a contraction coefficient and a "carry-over factor" to better

explain the flow over the sealing knives. In Millsaps' Doctoral work, he also included

upstream nonuniformity, which was calculated by an extension of the same type of

modeling used in the gland. Since, Millsaps work deals only with a shroud without any

rotor blading, he was able to solve for these upstream nonuniformities. However, the

shroud in this work has different and more difficult inlet conditions to model due to the

rotor. Therefore, instead of solving for the inlet nonuniformities these inlet (as well as

outlet) conditions will be taken from experimental results. The expansion incorporated

here, therefore, has the ability to accept input for the magnitude and phase of the

pressure nonuniformity upstream and downstream of the shrouded rotor. It will be

shown that the magnitude and phase of these pressure nonuniformities greatly affects

the solution for the pressure nonuniformity within the shroud cavity. Please note that,

Millsaps Ph.D thesis [17] was the foundation and guide used in presenting the

expanded theoretical work located in this chapter.

4.2 Derivation of the Governing Equations

The governing equations for a shroud containing two sealing knives which

surround a cavity (gland) are derived in this section. The assumptions presented in the

previous section along with the following nine assumptions provide a foundation for

building the set of governing equations. Most of these assumptions are the same as that

presented by Millsaps [17] and those which are the same are written as he presents

them.

1) The inlet total pressure, temperature and swirl velocity are prescribed
along with the downstream pressure.

2) The working fluid is and ideal gas and is calorically perfect.
P = pRT
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dh = CdT

3) The flow through the seal is adiabatic.

4) Small changes within the seal gland in the azimuthal direction are
assumed to occur isentropically.

5) The seal moves as a rigid body. There is no elastic deformation.

6) The seal moves in a whirling motion parallel to the rotation axis of
the machine. There is no tilting.

7) The acoustic resonant frequency of the seal cavity is much greater than

the whirling frequency: 2 << wa 2;yRT

8) The viscous shear stresses exerted on the fluid inside the gland, by
both rotor and stator, follow a Darcy friction law.

T;tPV,•ti

where r is the shear stress, A the friction factor, p the density and
Vre, is the relative velocity between the average fluid core flow and
the nearest solid surface.

9) The reduced frequency, based on seal pitch, axial through flow velocity
and whirling frequency, is much less than one.

The next step in deriving the governing equations is to define the geometry and

the variables that act within this geometry. Figure 4.1 is a cutaway section of the

shroud and shows the cylindrical coordinate system used along with the pertinent flow

quantities. The pressure and velocity upstream of the rotor is a function of

circumference and time and is given by P, and Vi respectively. Between the sealing

knives one has the cavity or, as its been called in the previous chapters, the gland. In

the gland the unknown pressure, P, density, p, and velocity, V, are functions of

azimuth and time. The solution to the governing equations gives this pressure and

velocity distribution. The nonuniform exit pressure is given by Po and the temperature

is assumed to be constant everywhere, therefore, it has no subscripts and is given by T..

The rotational frequency of the shaft is given by w.
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Figure 4.2 incorporates the flow conditions into the entire system, defines the

geometry of the system and illustrates the motion of the shroud with respect to fixed

coordinates. First, the side view of the shroud illustrates the mass flow rate per unit

circumferential length into, q,, and out of, q2, the cavity of the shroud. The radius of

the shroud from the center line to the tip of the sealing knives is given by R, and the

seal clearances into and of the shroud are given by 83 and 82 respectively. The axial

view illustrates the kinematics of the system. Once again, the shaft frequency is given

by wo while the whirl angular frequency is £. This whirling motion amplitude is

described by r.

The mass influx into the seal chamber is derived first. The description of the

flow rate is at the minimum area at the inlet which is over the first sealing knife. If one

assumes constant density and velocity across this incoming jet equation (4.1) results:

th = P1Aw, (4.1)

The density, P, is taken to be the density at the first sealing knife contraction. In order

to find this density in terms of the densities at the inlet and within the cavity of the

shroud an average of these later two densities is taken. This method approximates the

fully compressible relations and a maximum of a three percent error in the mass flow

rate is incurred using this method. The axial velocity is given by w,. Since this mass

flow rate is described at the jet location the area A1 is an effective area. This effective

area is defined as the actual area multiplied by a contraction coefficient, C,. The ratio

of the minimum area of the jet to the area at the sealing knife is this contraction

coefficient. Therefore, this mass flow rate over the inlet sealing knife may now be

represented as a mass flow rate per unit circumferential area in the following form:

q. = p, l8 Ccw (4.2)
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The existence of C, in equation (4.2) is a simplification from a more complicated

expression of the axial mass flow rate into the cavity of the shroud. The contraction

coefficient is replaced with the flow coefficient, p, for the axial flow rate at the exit of

the seal. This flow coefficient contains more information than the contraction

coefficient in that it takes into account the magnitude of the impinging jet that is

created by the first seal knife. The flow coefficient, p is defined as the ratio of the

actual flow through a seal divided by the ideal mass flow. The contraction coefficient

multiplied by a kinetic energy carry-over factor, P, gives the flow coefficient as shown

by the following equation.

U =Ccf# (4.3)

The first sealing knife has no carry over effect, therefore, the flow coefficient and the

contraction coefficient are the same (or/ = 1). The kinetic energy carry-over factor

has a value other than one at the second sealing knife because of the impinging jet

created by the first sealing knife. From experiment, it has been determined that the

contraction coefficient has a value of 0.650. For further discussion of the contraction

coefficient and its dependence on geometry please see Appendix B in Millsaps doctoral

work [17].

The next step is to represent the axial flow rate and the average density in terms

of the pressure at the inlet to the shroud, the pressure within the cavity of the shroud

and the temperature of the system. To accomplish the first task one may apply

Bernoulli's equation along a stream line from the inlet to the shroud into the cavity of

the shroud. Using the stagnation pressure at the inlet, the static pressure in the cavity

and then solving this equation for the axial velocity one obtains equation (4.4).

2(P - P)(4.4)
A(
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The density of the fluid over the first sealing knife is taken as the average of the

densities before the seal and within the cavity of the seal. Taking this average and

applying the ideal gas equation (4.5) results.

P = P +P (4.5)
2 2RT

Equations (4.4) and (4.5) are substituted into equation (4.2) in order to derive

the equation governing the influx of mass into the seal.

q, = NF _p2)1 (4.6)

Notice that the flow coefficient is used instead of the contraction coefficient and that

qi, 81, Pi and P are all function of angle and time. The mass efflux is derived in the

same manner as the mass influx and is given by equation (4.7).

q2 = VR(P 2 - Po2) (4.7)

In this case, q2, 82, P and Po are functions of angle and time. Also, the flow

coefficient P 2 is not constant as it was in the mass influx equation. As mentioned

above there is a carry-over effect due to the jet produced by the first sealing knife. This

jet could be dissipated if the distance between sealing knives, 1, is large compared to the

sealing clearance, 8. However, the seal used in the experiments in this work and in

Millsaps work have a relatively small 1, therefore, the flow coefficient is a function of

the kinetic energy carry-over factor.

Since the flow coefficient depends on the carry-over factor, a means of

determining this carry over factor is now shown. Millsaps [17] used an empirical

relation created by Vannrmes in order to find this carry-over factor. This empirical

relation is used here and is given by the following two equations.
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fl (= (4.8)

8.52 (49)0• = •,(4.9)
+7.23

The effective pitch, 1,, is the distance the fluid must travel from one knife edge to the

other, thus, this distance depends on the inlet swirl:

1
1 = 1 (4.10)cos(a,)

where a, is the inlet swirl. From these expressions one notices that the carry-over

factor, thus, the flow coefficient is at its minimum where the eccentric rotating

shrouded rotor has its minimum gap. At the maximum gap the flow coefficient attains

its maximum. This effect generates the direct force. Therefore, it is important to see

how sensitive the carry-over factor is to an eccentric position of the shrouded rotor.

This sensitivity is given by

S=-c I fr=o (4.11)S= co -dr r=o

where r is the radial (eccentric) displacement. The seal clearance is simply a linear

function of the radial displacement and equations (4.8), (4.9) and (4.10) are used in

conjunction with (4.11) in order to obtain this sensitivity.

dfi 8.52Cel 8.52 -41 -2r = -C 2 1[ +23 +7.23 (4.12)
C dr r=o I+ 7.23I

Note that the asterisk denotes the concentric rotation of the rotor where the clearance is

uniform around the circumference. This sensitivity multiplied by the radial

displacement (magnitude of eccentricity) gives the change in the flow coefficient.
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Therefore, the flow coefficient at the second knife is approximated by the centered

value of the flow coefficient minus the change in the flow coefficient.

Y, =P2 - Kr (4.13)

Since small perturbations are investigated this approximation is sufficient.

This concludes the introduction to the equations describing the flow in the axial

direction, now the continuity and momentum equations in the circumferential direction

are presented and coupled to this axial flow. A control volume showing a differential

location with all the pertinent mass fluxes is shown in Figure 4.3. The increase in mass

within this control volume is balanced with the net mass inflow and the convection

along the seal. Equation (4.14) gives this continuity equation.
8[p~h+I)1 8[pVl(h + 1)]

[pl(h+ 1)] + d[Vl(h+ )] +q2-q =0 (4.14)

dt Rs A

Figure 4.4 shows the differential control volume which represents all the forces

considered. Applying Newton's second law to these forces the momentum equation in

the circumferential direction coupled to the momentum equation in the axial direction

is derived.

d[pVI(h+ 8I)] 1 d[pV21(h+ )] q2VqV +t- ( + 2h)+ h dP 0 (4.15)
++ q2 V - q,V5 + gl - ;(l +2h) + -- 0 (4.15)

dt Rs  O RS 0

The Darcy friction law is used to relate the shear stresses to the tangential

velocity, V, of the fluid within the cavity. The shear at the casing is denoted with a

subscript "s" while the shear at the rotor is denoted with a subscript "r". The casing

sees a fluid velocity of V while the rotor sees a fluid velocity of (V - woR,), therefore,

the equations for these shear stresses are given by the following two equations.

s = +pAVIVI= lpAV 2sgn(V) (4.16)
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,r = fpA,( - ,)jv - coR, = -•p(r(V -MR,)2 sgn(oR, - V)

Blasius'formula for a one dimensional flow in a hydrodynamically smooth duct is used

to calculate the friction factors, A, and Ir.

.,= 0.3164"Re,-.2 (4.18)

A•r = 0.3164Re*-0.25  (4.19)

In order to determine the friction factors the Reynolds numbers must be determined.

These Reynolds numbers are given by the following two equations.

Re, =VDh (4.20)
V

(eR -- V)
Re (= - V)Dh (4.21)

V

Notice that the diameter is the hydraulic diameter, D., which is given by four times the

cross sectional area divided by the wetted perimeter:

Dh = 41(h+3 1)(4.22)
21+2(h+ 31)

The final set of equations presented, before a solution technique is shown, are

the equations which describe the orbiting motion of the shrouded rotor. From Figure

4.2 one notices that there are two seal clearances, (61 and 82), and their magnitude

varies around the circumference of the shroud. For a rotor which is exhibiting an

eccentric amplitude r with a circular whirl at a whirl angular velocity of 0 the

following two equations completely describe its motion.

8 = 8 - P cos(O - D2t) (4.23)

2 =2 - cos(O - 2t) (4.24)
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Variables with asterisks will always denote the concentric (non whirling) conditions.

4.3 Solution to the Governing Equations

The following section describes a linear perturbation technique to solve the

system of equations derived above. Such a technique is used because one is interested

in the effect a small amplitude eccentric rotation has on the stability of such a system.

More comprehensive and, therefore, complicated nonlinear techniques may be used to

solve these equations, however, the nonlinear terms (products of perturbations) are

small and also limit cycle behavior is not of interest in this work. The linear

perturbation technique gives complete results since it is capable of describing how the

flow and geometric parameters interact to produce a nonuniform pressure perturbation

around the circumference of the shroud. Ultimately these results are compared to those

obtained from the wall tap pressure readings presented in chapter 3.

The linear perturbation solution to the above derived equations are divided into

three parts. The solution begins with a zeroth order solution, that is, solving the

equations with the rotor centered (concentric position). The second part involves

perturbing the variables from their unperturbed concentric positions with small

amplitude perturbations. The nonlinear terms are then discarded. The last part

involves assuming harmonic solutions for the perturbations. This results in two

algebraic equations with two unknowns, the pressure nonuniformity and the velocity

nonuniformity around the circumference of the shroud. From the pressure

nonuniformity the normal and tangential forces are obtained.

4.3.1 Zeroth Order Solution

As mentioned above, the zeroth order solution gives the rotor centered solution

to the derived equations. All the variables are independent of time and space, therefore,
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all spatial and temporal derivatives are dropped. These variable are denoted with an

asterisk *. To begin with the continuity equation (4.14) becomes

q2 -q =0 (4.25)

The shear equations (4.16) and (4.17) are substituted into the momentum equation

(4.15) and then the zeroth order simplification is undertaken which results in equation

(4.26).

A,lV*2 - ),(l + 2h)(V* - o)R,) 2] + q2V* -q V = 0 (4.26)

The steady state flow rate, q', is found from equations (4.6) and (4.7) and is

given by

q' =q_=q2= _P2 - P*2 = 2,2[*2 _ p2 (4.27)

Equation (4.27) is then used in conjunction with equation (4.25) in order to

obtain the zeroth order pressure in the cavity of the shroud. Solving for P* one obtains

the following equation:

Y,,i'+ 052 1+

P = 63*2_*22 + 62 ; 2 J2 (4.28)

The zeroth order density within the cavity is simply:

p*

p* = (4.29)
RT

The final step in this subsection is to calculate V*. The momentum equation

along with an iteration procedure is used to find this velocity. An iteration procedure is

used because the shear terms within the momentum equation depend on V* in a non

elementary manner. The known inlet swirl velocity, Vi, is used as an initial guess.
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Then A, and ,r are calculated from equations (4.18) through (4.21). The momentum

equation, equation (4.26), is then rearranged into a quadratic in V'.

A '•,1-A•,(l + 2h)]V*2 + q*-+ *4r (l + 2h)oR,1V*

(4.30)

- q'V* + (1+ 2h) s2Rj =0

At this point all the variables in equation (4.30) are known and, therefore, one is able to

solve for V*. The value calculated is compared to the original guess and if the

following test holds then V* is determined.

v+, -V:t< e (4.31)

Using this iteration procedure, the code took approximately 5 iterations to converge to

4 decimal points.

4.3.2 Linear Perturbation Approximation

A perturbation expansion about the centered rotor solution is shown in this

section. The state variables are expressed as the zeroth order solution plus a small

amplitude perturbation, as follows:

P = P* + (4.32)

The small amplitude perturbation is given by Pwhere this perturbation is also written

as a relative perturbation times the steady state solution.

P = P(O,t) = P*' + 15 = P*(1 + (O6,t)) = P* + 4P (4.33)
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The relative perturbation, ý, is dependent on the zeroth order quantities. Similarly, the

above procedure may be applied to all other zeroth order variables discussed in the

previous section.

P, = Pi*+P= Pi*(1+,) (4.34)

V, = V; + V, = V,*(1+ ,q) (4.35)

V = V'+ 1 = V*(1+ 17) (4.36)

Po =P.+P. = P:(1 + o) (4.37)

q, =q q+4 1 = q*(1+ ) (4.38)

q2 = q + 42 = q (1+ '2) (4.39)

p = p* + P = p'(1 + g) (4.40)

Notice that the inlet pressure and velocity and the exit pressure are taken to be

nonuniform. This nonuniformity is found in the experimental results as described and

illustrated in chapter 3. In the next chapter, where the results of this theory are

presented, the nonuniformity measured by experiment at the inlet and the outlet of the

shroud is used as inputs for the theoretical solution. The nonuniformity within the

cavity, P(O,t), can then be found.

The next step is to express the axial mass flow rates, q, and q2 as functions of

steady state flow and pressure terms along with perturbations in pressure only. This is

accomplished by dividing equations (4.6) and (4.7) by (4.27) and then performing a

Taylor series expansion in j and ý for the first equation and then performing another

Taylor series expansion in ý and o for the second equation. By taking only the zeroth

and first terms and eliminating all higher order terms one is able to simplify the mass

flow rate equations to

q = q 6 1 - P12P(q I = q 1- 2 p*2• Pi*2 P,*2 (4.41)IL-£ £ J
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q2 = q* 2 1+_+_ -P *2 1(4.42)
q 2*q 2 * PI _p* p* 2 - 40o_* .

The density within the shroud cavity can be expressed as the steady state

density and the pressure perturbation by using the adiabatic isentropic relationship.

p =p*(1+1) (4.43)

In order to obtain the linearized continuity equation, equations (4.33) through

(4.43) are substituted into the complete continuity equation presented above (equation

(4.14)). The higher order terms which are products of perturbations are eliminated

because they are much smaller than the first order terms. The result of this

manipulation give the linearized continuity equation.
Sd8, p*lh d 1 dV B

1  VIh pVlh 1
pl5+ a+- pV*I I+p V* lh-

t St R, 1 O9do y dO

(1 1 rIC *[ P P*2
r+ • q p*2- 2 pi*2 *•2  (4.44)

(TI p2 /1o Pi

- q*[ P + ' o pPp] =0q Pý - P*2 oP*2 -PO*2 I

The linearized momentum equation is obtained in the same fashion. The

perturbation equations are substituted into the momentum equation (equation (4.15))

and all higher order terms are eliminated. The zeroth order momentum equation

(equation (4.26)) is also called upon to further simplify the resulting linearized

momentum equation:

P.Vlh d * * als, +_p*V'lh I + p*RTI(h+ 81) 4V*lh+p tV + R dO
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+-{2p*V*2h +p*V*2jI+p*V*lh + p*V*21h

RJOjO q9r~ 0 2 JOV VP - V-Pq V'PV'P
*2P0*2 *2 -P*2 /Pi*2 -*2 oP *2 *2_4.45

+ P[,IV*2- Qr(l + 2h)(V* - MR,) 2 ] +q*V*'7 - q*V.rit

1V *- A(+ 2h)(V M - ]n++q qV iV - VIr =_0

The result is a linear system of partial differential equations in both pressure, P, and

velocity, V, with periodic boundary conditions. The following section will describe a

technique to reduce equations (4.44) and (4.45) to a system of complex linear algebraic

equations.

4.3.3 Harmonic Solutions

The variation in gap, r, is the non-homogeneous term in the continuity and

momentum equations and is assumed to consist of a first harmonic of the azimuth angle

measured from a whirling reference, Vl = 9- 2t. The perturbation in pressure at the

inlet, E,, within the cavity, ý and at the exit, 4, of the shroud and the perturbation in

velocity at the inlet, ,, and within the cavity, q, are assumed to follow the same

functional dependence as the variation in gap and consist solely of a first harmonic. As

mentioned above, the magnitude and phase of the inlet and exit terms are obtained from

experimental results while the pressure and velocity non-uniformities within the cavity

are the two unknowns in these two equations. Complex exponential notation is used to

express these harmonic solutions (real parts being understood to be extracted). The

variation in gap is expressed as

r = rPe(-n) (4.46)
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the perturbation in pressure at the inlet within the cavity and at the exit are given by

i= eie i - a )  (4.47)

= ýei(e- )  (4.48)

o = oei e- a )  (4.49)

and the perturbation in velocity at the inlet and within the cavity are respectively,

ili = ,ei<e- a )  (4.50)

7 = ei(O- a) (4.51)

The partial derivatives of equations (4.23), (4.47) through (4.49) and (4.51) with

respect to angle and time are

7= -ireit - )  (4.52)Oo

o3 = if2ea )  (4.53)
dt

-= iiAe i(s - a )  (4.54)

dt

-•= i ee, (4.56)

do

dtdo = i ei0 e-ao (4.58)

dq _dt = -iS240e ea(4.59)
- = -=e(4.60)

.= -iDie-a) (4.61)Ot

All the pertinent equations are then substituted into the linearized continuity and

momentum equations (equations (4.44) and (4.45)) and the complex exponential

(phasor) is eliminated. After rearranging and placing the unknown terms, and ^ on
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the left side of the equation and the forcing terms, , o, ft and r^, on the right side of

the equation one obtains the following from the continuity equation:

q +2 + +

1 J ·1*

Vs

+h V{* 2 p
P -+ q+

i~i* -q' *2*24

V*lh i.•

Rs
(4.62)

SP*
2 

A]]

+p*2 -p;2 ' 0jj

and the momentum equation becomes:

{q*[Vi*2_+ +*p*22 ]+ lV - XAr(l+2h)(coR, - V*)
-P ' *2 - p*o2 8y

p*V'lhI
+

V*
R-s

p*RT(h+ )
Rs

(4.63)

+{q*[V,7i + p*-* 2
+ * 2 _ *

POp J

The above equations can be represented in matrix form.

[ A,,, + iB,,,
A,1 + iB2,1

A,2 + iB,2  1C +iD l E
A4,2 + iB2,2 C2 + iD2 r E2

(4.64)

The solution to (4.64) gives the magnitude and phase of the pressure and velocity

perturbation within the cavity of the shroud. However, before this theoretical model is

used, equations (4.62) and (4.63) are nondimensionalized.
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4.4 Nondimensionalization

Greater physical insight is gained from nondimensionalizing equations (4.62)

and (4.63). Millsaps [17] has done an extensive parametric study on the effects of

varying these nondimensional coefficients, therefore, in the interest of completeness the

nondimensionalization is presented in this work. Also, the work which is presented in

chapter 5 is an extension of Millsaps work. The extension includes a study on the

effect the pressure and velocity nonuniformities upstream and the pressure

nonuniformity downstream have on the theoretical predictions of the pressure and

velocity perturbations within the cavity of the shroud. Also, the next chapter contains

the results of this theory using the geometry and flow conditions present in the

experimental facility1. First, however, the nondimensional equations are presented in

this section.

4.4.1 Scaling Quantities

The steady flow rate, q*, is the logical parameter to use in order to normalize

the continuity equation. It is a little harder to find an optimum parameter that can be

used to normalize velocities. The are many choices such as woR., w1, Vi, and V*. The

problem with ai, is that it leads to a singularity when the shaft speed is zero. When

all is said and done, it appears that V* is the best choice for scaling forces over the

widest range of conditions. Also, the least set of redundant nondimensional parameters

is given by V*.

4.4.2 Nondimensional Parameters

The continuity equation when nondimensionalized by q* and the momentum

equation when nondimensionalized by V* yields three categories of nondimensional

parameters. The first category contains the geometrical ratios, the second category
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contains the velocity ratios while the last category are the ratios of dynamic quantities.

The geometric ratios are defined as follows:

5* 5* h ,cS' 1e=- a=- D=- H=- K=4 L=- (4.65)
1 h R, 2 R,

The first parameter of equation (4.65) is e, and is simply the normalized eccentricity.

The convergence or divergence of the seal is given by a. When a=1 this condition

states that the gaps over the seal knives are equal as in the case of the shroud that is

used in the experiments as presented in chapters 2 and 3. The following parameter, D,

normalizes the mean gap by the seal depth and, therefore, describes the ratio of the

change in the local sealing gap to the shrouded rotor cross sectional area. The height of

the sealing strip normalized by the radius of the seal is given by H. The next

nondimensional parameter is K and it is analogous to a when a<1 and basically
1

behaves as K -~ -- 1. If the gap is smaller at the exit of the shroud this parameter
a

describes the reduction in mass efflux from the shroud. The last parameter is L and it

is simply the ratio of the seal width to the seal radius. Both H and L are basic

geometric ratios, however, they play an important part in that they contribute to the

frictional shear forces within the shroud.

There are two kinematic parameters to discuss, the nondimensional shaft speed

and the nondimensional whirling speed. They are both given in equation (4.66).

S = oR W = M(4.66)
V* V*

The spin rate of the shaft and the whirl rate of the shaft are compared to the swirling

velocity of the fluid via the above equations. Values of S less than one indicate that the

fluid in the cavity is swirling at a greater speed than the shaft is rotating, therefore, the

shroud tends to slow the fluid. The dominant parameter for discussing dynamic

destabilizing forces is W. Even though the experimental facility is static, dynamic
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terms are still discussed from the theoretical viewpoint. Once the dynamic theoretical

model is derived it can always be simplified to predict the static case as in the

experimental facility. These type of simplifications are discussed further within this

chapter and the following chapter. Once the nondimensional equations are presented in

section 4.4.3 one may notice that the group Vi(1- W) is found within these equations.

This term indicates the relative gland swirl seen by an observer rotating in the whirling

frame of the rotor at a frequency of £2. This quantity describes whether the swirling

fluid in the cavity overtakes or is overtaken by the traveling waves. If W=1 there is no

relative gland swirl and from symmetry there is no cross force 2.

The final category of parameters to discuss involves the dynamic ratios. These

ratios are given in equation (4.67).

= q p'V*'3 V
Aq= •" - q = 1 - (4.67)

#*8S*p*4RiTq*V

The nondimensional flow rate is given by A and by using equations (4.27) and (4.29)

one is able to rewrite A in the following form:A q2
q• -==- =  -1 (4.68)

By substituting equation (4.28) into equation (4.68) and simplifying, one may now

show that A is actually a measure of the axial pressure gradient from inlet to exit.

A = r s (4.69)+1

The ratio of the inlet pressure to the exit pressure is given by 7,.

2This is only true in the absence of frictional effects. See Millsaps [17] chapter 3 for further discussion
on these effects.

122



The next parameter, a, is called the swirl parameter and it basically compares

the circumferential velocity to the axial velocity. The final dynamic parameter is F

which compares the inlet velocity to the velocity that exists in the shroud cavity. The

degree to which viscous shear forces alter the swirl velocity as the fluid travels from the

inlet into the cavity is conveyed by this parameter. For the inviscid case, shear forces

are absent, therefore, F should equal zero.

4.4.3 Nondimensional Equations

Nondimensionalizing the continuity and momentum equations by q* and q'V*

respectively and grouping terms as described above one obtains the nondimensional

continuity equation (4.70),

ap +-,+-(I1- W) + 17Apj A Dy

(4.70)

= K+ -1)] + [aCL(1- W)]iJei + [1+ +[C + 1).

and the nondimensional momentum equation (4.71).

p )2 (1 - F) 1)2]H TL L/ + +~-+ -•,(1 +H )(S-1) (1-W)+
AM*, A 2 87D H "L D y A 2 *2 D

+ 1+ A-- LL , - r(l + )(1 - 1S)] + aL 2- W]i L

(4.71)

= K + ]- + F + [aL(1 - W)]i e(

+ [1 - ]+ [(1tl( - F) 1 + ()2]21
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In order to obtain the more compact convective form of the momentum equation (4.72),

the continuity equation (4.70) is subtracted from the momentum equation (4.71).

[A-A '( 2 H )L{ + 8,JHfA r l+ 1+ )(S - )2][ 2 * }}A'87DH S L A2a1* D
1+- A, -,(1+2--)(1-_S)]+-.E[1- Wi (4.72)+ +4DH[A A L D Wl1

( (4.72)

= Te +0 [1 -r] ;- 1 + 2

Equations (4.70) and (4.72) form the system of equations used to determine the

pressure and velocity perturbations within the cavity of the shroud. Chapter 5 explains

the computer code that solves this system of equations and the studies that were

performed using this code.

4.5 Interpretation of Solutions

Once again, the solution to equations (4.70) and (4. 72) give the pressure, 5,

and velocity, 1, perturbations within the cavity of the shroud. These perturbations are

complex constants and contain both magnitude and phase information. They are

represented in the complex plane and this is illustrated by referring to Figure 4.5 and to

equations (4.73) and (4.74) for the pressure and velocity representation respectively.

= 4 + i ,l (4.73)

= A + i ,m (4.74)

Amplitude of the pressure and velocity is simply given by

I 4= [+ J (4.75)

IM]= + (4.76)
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The phase angles yf, and V,7 shown in Figure 4.5 respectively give the angular

location ahead of the minimum gap where the maximum value of pressure and velocity

occur.

lyt= Tan- (4.77)

A 1
yV= Tan-i[1 7 (4.78)

As one might expect the above phase angles are defined over an interval from

-7r to 7r where Tan-1 is multi-valued. Therefore, the sign of these phase angles are

chosen as follows:

I"m, '17M >0 =/I4,V•,1 >0 (4.79)
IM,, 7m < 0 =f 4, V, < 0 (4.80)

The sign of the phase angles can be used to tell whether the calculated

distribution of both pressure and velocity nonuniformity tend to destabilize a whirling

rotor. However, as is seen in the previous chapters, nonuniformity in the pressure

distribution is not the only mechanism that can trigger rotordynamic instability.

Another mechanism, as was mentioned previously, is the Alford effect. Therefore,

rather than having to deal with the incomplete stability information provided by the

pressure and velocity perturbations, the rotordynamic forces due to these perturbations

are determined. A method of calculating the rotordynamic forces from the determined

perturbations is shown in the next section. These forces then may be combined with

the forces determined from the other mechanisms to ultimately determine a systems

stability.

4.6 Rotordynamic Forces
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The rotordynamic forces are found by integrating all stresses over the shroud's

land. This calculation is similar to the integration shown by equations (1.11) and (1.12)

when calculating normal and tangential forces from the pressure nonuniformity around

the circumference of the shrouded rotor. The first item to note is that only the first

harmonic perturbations contributes to the net rotordynamic forces because of

orthogonality. Second, as one might expect, the forces are due to two types of stresses,

the normal stress due to pressure and the shear stress due to friction. The normal stress

is calculated via the pressure perturbation while the shear stress is calculated via the

velocity perturbation and the forces resulting from these two stresses are calculated via

equations (4.81) and (4.82) respectively.

Fpressure = fP*dA (4.81)

FShef, = J21PV*2dA (4.82)

Millsaps [17] has shown that the force due to the shear stress is much smaller

than the force due to the normal stress, therefore, only the pressure forces will be

calculated. As is shown in chapter 1, the force due to the pressure perturbation is

decomposed into normal and tangential components. Once again the normal force, FN,

is the component of force acting in the direction of instantaneous minimum gap

(positive is destabilizing) and the tangential force, FT, is the component of force acting

perpendicular to that minimum gap (positive in the forward whirling direction). Note

that the system is allowed to whirl, therefore, as described in chapter 1, the normal and

tangential forces are functions of whirl frequency, .D. Equations (4.83) and (4.84)

gives these normal and tangential forces and show that they can be expressed in terms

of the amplitude and phase information determined from the theoretical solution.

FN = FN(2) = -R.1jP(y)CosVdy = -Rl IoiIPkCos(V,- V)dy
(4.83)
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= -7Rl P*Cos yr = -,RP*59t(4)

Equation (4.84) is derived in a similar fashion.

FT = ~7Rs , P*Sin, = ~-RIP*Im(Q) (4.84)

In order to compare the forces obtained from the theoretical solution to that of

the experiment the whirl frequency is set to zero. This gives a static displacement and

the normal and tangential forces that result from the calculations are static and may be

termed the direct and cross force. The computer code that performs the above

theoretical calculations and the values of each of the pertinent inputs to this code are

described in the chapter 5. The direct and cross force theoretical results for the

geometry of the experimental shrouded turbine are also given in following chapter.

Chapter 5 also contains a study on the sensitivity of the analytical model to the inlet

and exit pressure and velocity perturbations. Chapter 6 compares the results of the

theoretical model predictions to those experimentally determined.
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Figure 4.1: Section View of the Shroud Illustrating the Coordinates and Flow
Parameters. [16,17]
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Axial View Side View

Axial View and Side View of the Shrouded Turbine Illustrating
the Kinematic, Geometric and Flow Parameters Used in the
Theoretical Model. [16,17]
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Figure 4.2:
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Control Volume for the Derivation of the
[16,17]

Continuity Equation.

130

Figure 4.3:



Control Volume for the Derivation
[16,17]

0

Y
of the Momentum Equation.
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Figure 4.4:



al

al

Figure 4.5: Complex Plane Representation of the Complex Amplitude of the
Pressure and Velocity Perturbations. [16,17]
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Chapter 5

Application of the Analytical Model

5.1 Model Parameters and Their Values

The perturbation in pressure within the cavity of the shroud is obtained by the

solution of the two by two system of linear equations which are derived in chapter 4.

As mentioned previously, these equations require certain flow and geometric quantities

to be known along with certain inlet and exit perturbations. Sections 5.1.1. and 5.1.2

explain the values given to the flow and geometric variables respectively. These values

are such that the shroud depicted by this analytical model is similar to the shroud which

exists in the experimental facility. Section 5.1.3 describes the computer code used to

solve the system of equations which are derived in the previous chapter. Studies of the

effect the inlet and exit conditions have on the theoretically predicted direct and cross

forces are illustrated in section 5.2. This chapter ends with the results of applying the

model to the test conditions that exist in the experimental facility. Chapter 6 compares

the results of the experimental study with the theoretical results.

5.1.1 Flow Conditions

To calculate the pressure perturbation within the shroud's cavity the following

input flow parameters are determined: the inlet and exit pressures along with their

perturbations, the temperature, and the inlet tangential flow velocity along with its

perturbation. The experimental facility design flow conditions are used for these

values, however, not all the inputs are direct measurements from the facility since the

facility does not contain means to measure certain properties. Therefore, certain
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calculations are performed. The shroud's inlet pressure is basically the pressure after

the stator. However, a modification is made to account for the stagnation of the axial

momentum component against the first sealing strip, i.e., adding to the static pressure

the dynamic head ½pfig. Since the tangential component .p,(V,) is preserved, the

correction is relatively small. It is, however, noticeable because the rotor pressure drop

in this low reaction turbine is itself small. The next step is to understand how to obtain

the inlet tangential velocity, which is found by first determining the axial velocity, U,s

at the exit of the stator. The axial velocity used here is determined theoretically taking

into account the blockage caused by the shroud band. First, as mentioned above, the

axial velocity component of the fluid exiting the stator stagnates at the sealing strip,

however, the tangential component, Vi, is preserved and has the same value as at the

exit of the stator. The axial velocity component, U,, at the exit of the stator is

determined in order to calculate this tangential velocity component. The axial velocity

is first found as if there is no blockage and then the blockage is taken into account.

In order to model this blockage it is found that the flow in the cross plane is de-

coupled from the axial flow. This allows one to model the flow within the test section

as a flow within a channel. Upstream the channel has a width of H, (representing the

height of the stator blades) and downstream the channel has a height of B,,

(representing the height of the rotor blades). The change in height is accomplished

through a step (representing the blockage by the seal). At the corner of the step is a

sink (representing the leakage through the seal). One can assume that the channel has a

very slight taper such that infinitely upstream the channel converges (the width, H,,

goes to zero, H, -+ 0, far upstream). Also, the same is said for the downstream channel

width, where infinitely downstream the channel converges (the width, BH, goes to zero,

BH - 0, far downstream). This procedure gives a closed polygon which is then

mapped to a half-plane via the Schwarz-Christoffel formula. Applying the

transformation along with the flow conditions that exist in this type of channel one
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obtains equation (5.1) which is the ratio of the axial velocity at the exit of the stator

with blockage to the axial velocity at the exit of the stator without blockage.

U__1 ( ua)Ue ll+ p a (5.1)
UOes P u-aa

where,

P= u-i (5.2)
u-a

and

a = (H' (5.3)

The axial velocity without blockage is given by U0.e, while the axial velocity with

blockage is given by Ues. The variable y is the fraction of the entire mass flow which

escapes over the knives of the shroud (sink) and a is simply the ratio squared of the

channel widths. The variable u is the stator trailing edge velocity near the upper wall in

the half-plane andp is defined by equation (5.2). Both u and p can not be found

without the aid of an additional equation. Equation (5.4) gives the value of p.

-= {Tanh-l - ITanh-1 ((5.4)

Equation (5.4) comes from the derivation of the above equations. The distance from

the trailing edge of the stator to the mean radius of the leading edge of the rotor is given

by d. All the values of the variables are known in equation (5.4) except for p. An

iteration scheme is used to solve for p and once p is found then the ratio of the axial

velocities can be determined. Equation (5.2) then can be used to find u if one desires.

The geometry found in this shrouded turbine test facility is as follows:

d = 7.493 mm = 0.295 in

H, = 23.48 mm = 0.9245 in

BH = 16.6 mm = 0.654 in
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Therefore, the value of a is 2.061 and from iterating equation (5.4) one obtains 1.421

for the value of p. Assuming that the mass flow rate into the sink (over the knives of

the shroud) is very small compared to the mass flow rate through the channel i.e.,

p << 1, one obtains 0.7039 for the ratio of the axial velocity with blockage to the axial

velocity without blockage.

U" = 0.7039
U~es

The exit pressure is found using the pressure drop across the stage as measured by the

wall tap pressure ports. After performing the steps outlined above one obtains the

following for the input flow conditions:

P, = 223.9 kPa = 32.46 psi

P, = 201.0 kPa = 29.16 psi

T = 291 °K = 64 *F

V = 29.7 m/s = 97.4 ft/s

The values used for the magnitude and phase of the inlet velocity and pressure

perturbations and the magnitude and phase of the exit pressure perturbation are

discussed in section 5.2. This later section describes the model's behavior to these

perturbations. Therefore, presenting the inlet and exit perturbations used to calculate

the final value of the direct and cross forces is left until a better understanding of these

perturbations is obtained in section 5.2.

5.1.2 Geometric Inputs

The model needs certain geometric properties of the shroud. The first of these

properties needed for input is the radius of the shroud. The radius is taken from the

centerline to the flat outer area of the shroud (the land region). The length of this land

region is the second input. The vertical height of the sealing knives is also specified.
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The next two inputs are the nominal gaps at the entrance and at the exit of the shroud.

These gaps are the distance between the tips of the knives to the inner casing of the

facility. The eccentricity of the rotor is the next input followed by the frequency of the

shaft rotation. The whirl rate is the last input. The whirl is set to zero for all the

analytical tests because this theory is attempting to model the static experimental

facility that is described in chapters 2 and 3.1 The values given to the above geometric

quantities are exactly those which exist in the experimental facility and are listed below.

R, = 0.1345 m = 5.296 in

I = 0.01363 m = 0.537 in

h = 0.00549 m = 0.216 in

1 = 3 = 0.000737 m = 0.029 in

r =e =0.000457 m =0.018 in

to = 360 rad/s

£2 = 0.0 rad/s

5.1.3 The Computer Code

The solution to the model's system of equations is done via a FORTRAN code.

This code is located in Appendix B and when used to simulate Millsaps tests it is

capable of reproducing his results exactly.[17] First, the code reads in all of the flow

and geometric properties from an input file. The magnitude and phase of the inlet and

exit pressure and velocity perturbations are specified in the code. The phase of the inlet

velocity perturbation is taken at the location of the minimum value of the inlet pressure

or 180 ° out of phase with the phase of the inlet pressure perturbation. From Bernoulli's

equation

.IpiAv7 + Pi = Vi(1+ II))2 + +Pi (+(5.5)

IThis theory is capable of dynamic results by simply inputting a whirl frequency other than zero.
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it is found that the magnitude of the velocity perturbation is given by:

-,l P," "'
OilIV= 21l, (5.6)

Substituting the values for Pi., pi and V1 one finds that the magnitude of the velocity

perturbation is -8.3975 times that of the pressure perturbation.

S= -8.3975 (5.7)

The magnitude and phase of the inlet and exit pressure perturbations are found from the

experimental data. A complete discussion of these perturbations is given in section 5.2.

Zeroth order quantities are calculated next and then the iteration scheme to determine

the unperturbed swirl velocity in the cavity is performed. The resulting quantities are

nondimensionalized as described in section 4.4. These nondimensional quantities for

the operation of the turbine at its design speed are

el = 0.6201 al= 1.0000 D= 0.1342

H = 0.04081 L = 0.1013 K = 0.2020

S= 1.641 W=0.0 A =0.3408

a= 0.9425 F= -0.005498

The code then sets the coefficients for the nondimensional equations (4.70) and

(4.72) and then Cramer's rule is used to solve these equations for the pressure and

velocity perturbations within the shroud's cavity. The normal and tangential forces are

calculated via equations (4.83) and (4.84). Since the whirl is zero, these forces are

referred to as the direct and cross forces. Repeat loops ("DO" loops) are set such as to

repeat the code for various inlet and exit velocity and pressure perturbations in order to

gain an understanding of how these perturbations affect the final solution.
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5.2 Study of the Model's Sensitivity to Inlet & Exit Perturbations

In section 5.2.1, the effect the magnitude and phase of the inlet and exit

perturbations have on the model's solution is presented. Section 5.2.2 calls upon what

is learned in section 5.2.1 and what is shown in section 3.2 in order to set the correct

inlet and exit perturbations such as to model the conditions that exist in the

experimental facility. The values of the direct force and cross force at the design

condition are then predicted by this theory.

5.2.1 The Study

The code is set to output the direct and cross forces to two respective output

files for the extent of the study. The repeat loops in the code are set such as to begin

calculations with zero magnitude for both the inlet and exit perturbations. There are

three nested loops. The outermost loop simply controls whether the inlet perturbation

or exit perturbation is investigated. If the effect of the magnitude and phase of the inlet

perturbation is under investigation then the magnitude of the exit perturbation is set to

zero and vice versa. The middle loop varies the magnitude of the perturbation which is

under investigation. Magnitudes are varied from 0.0 to 0.005 in 0.001 increments. The

innermost loop increments the phase through sixteen angles from zero degrees to 360

degrees in 22.5 degree increments (0, 22.50, 45°,...,360"). For magnitudes of zero a

change in phase does not effect the final results. This study shows how the direct force

and cross force are affected by inlet and exit perturbations for any phase and for a wide

range of magnitudes.

The results of this study are plotted in Figures 5.1 through 5.4. Each figure is a

plot of either the direct or cross force versus the phase and contains six curves for each

of the six magnitudes mentioned previously. As one might expect, the phase of a

particular perturbation which has the largest effect on the direct force gives no effect on
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the cross force (i.e. for the inlet nonuniformity this occurs at 26* & 2060 and for the exit

nonuniformity this occurs at 9" & 189") and vice versa.

Figures 5.1 and 5.2 show the effect the inlet pressure and velocity perturbations

have on the direct and cross forces. Note that in these two figures the exit perturbation

is set to zero so that the effect of the inlet nonuniformities may be analyzed without any

other effects occurring at the same time. The phase of the inlet pressure perturbation as

determined from experiment is found in Figures 3.15 and 3.16. The experimental work

shows a phase of 337.5" whose location on the theoretical graphs is illustrated by the

vertical line in both Figures 5.1 and 5.2. The magnitudes of the direct force

(F, = -7.987N) and the cross force (F, = 11.642N) obtained via the pressure effect

experimental work is illustrated by a horizontal line in the respective figures. It is seen

from these two figures that the existence of the pressure nonuniformity at the inlet of

the shrouded turbine at a phase of 337.5" acts to increase the direct force in the negative

direction (restoring) and acts to increase the cross force in the positive direction

(destabilizing). This is an extremely important result because previous theoretical

calculations, which under-predicted experimental results by 200%, ignored inlet and

exit nonuniformities. The inclusion of these nonuniformities improves predictions.

The nonuniformity at the exit of the shroud also plays a very large role in

altering the prediction of the direct and cross forces. Figures 5.3 and 5.4 are a graph of

the direct and cross force vs. phase for six magnitudes of the exit pressure perturbation.

As in the case of the inlet nonuniformity, when analyzing the exit perturbations and

there effect on the forces the inlet perturbation is set to zero. Finding the actual phase

of the exit perturbation as it exists in the experimental facility is a little more difficult

than in the previous case. The wall tap pressure readings at station 8 (Figures 3.23 and

3.24), which is at the exit of the shroud, are not repeatable. The wake region behind the

shroud is probably responsible for this scatter since experimentation at station 8 with

the unshrouded turbine show repeatable results and the nonuniformity pattern present at
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the other five stations are clearly visible at this station.[15] Experimentally the phase at

station 4 is shown to be 337.5", the phase at station 7 is shown to be 304.5* and the

phase at station 9 is shown to be 267.2*. Figures 3.27 and 3.28 show this progression

and indicate that as the flow travels from the inlet of the shroud to the exit of the shroud

the phase of the pressure and velocity nonuniformity rotates. Therefore, station 8,

which is at the immediate exit of the shroud, should have a phase somewhere in

between that of station 7's phase and station's 9 phase. Figure 5.3 and 5.4 indicate this

region with a bold box. Basically, as is seen in Figure 5.3, the direct force is very

sensitive to the value of the phase within this region. However, the cross force (Figure

5.4) is near the maximum effect, therefore, the sensitivity to a change in phase is very

small.

The above explanation along with the four figures show that the model must

incorporate inlet and exit perturbations as they have a large effect on the model's

prediction of both the direct and cross forces.

5.2.2 Simulating the Experimental Facility

The flow and geometric conditions used in the study above are those that exist

in the experimental facility. However, the exact values for the inlet and exit

perturbations have yet to be defined. One may already understand what values are used

for these parameters, however, they are formally defined in this section.

The inlet phase for the pressure perturbation is 337.5* as is mentioned in section

5.2.2. The magnitude of this perturbation is found from Figures 3.15 and 3.16 (which

gives Pi - Pi = 0.1 psid) and the absolute concentric pressure at station 4 (which gives

Pi = 30.67 psi). Equation (5.2) illustrates how this magnitude is calculated.

I --I -- (5.2)
Pi

The value of this magnitude is , = 0.003260.
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An interpolation is used to find the exit conditions. It is mentioned in section

5.2.1 that the phase of the exit pressure perturbation is somewhere between 304.50 and

267.20. The distance between station 7 and station 8 is 0.75 inches and the distance

between station 8 and station 9 is 1.275 inches. Using a linear interpolation one can

obtain a reasonable phase for that which may exist at station 8. From this calculation, a

phase of 290.7* is taken for the pressure perturbation at station 8, the exit of the shroud.

The same reasoning is applied to finding the magnitude of this nonuniformity. The

value of P - P* at station 7 is 0.3425 psid and the value of P - P* at station 9 is 0.06

psid. The average value of the absolute concentric pressure is Po = 28.16 psi.

Applying the interpolation scheme and equation (5.3),

= O -Po (5.3)POP
one obtains = 0.008251 for the magnitude of the exit pressure perturbation. Figures

5.5 and 5.6 illustrate this probable phase region at the exit of the shroud. These figures

are similar to the previous four figures that were used in the study, however, the new

figures concentrate on the phase region between 265* and 3050 and for exit perturbation

magnitudes of 0.002131 (Station 9) to 0.012164 (Station 7). There is one other

important change in Figures 5.5 and 5.6. The inlet pressure and velocity perturbations

are not zero. These nonuniformities are set to the actual inlet conditions that exist in

the experimental facility and which are defined in the previous paragraph. These

figures are meant to illustrate the extent to which the exit perturbations may alter the

results. With wall tap pressure experimental results having values of Fx = -7.987N for

the direct force and F, = 11.642N for the cross force these figures show that the model

has potential in almost exactly predicting the direct and cross forces. However, as

previously mentioned the actual exit magnitude is taken as 10 = 0.008251 and the

actual phase is taken to be 290.7". These values cause the model's results to fall short

of the wall tap pressure results as is illustrated in chapter 6.
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The following summarizes the inlet and exit nonuniformity conditions.

vi, =337.50

wy =290.70

= -0.003260
So-0.008251

These numbers are used in a modified version of the previously explained computer

code to arrive at a final value for the direct and cross forces for both the design and off-

design conditions. These results are compared in chapter 6 to the experimentally

determined results of chapter 3.

5.3 Theoretical Results

The experimental work determines the input parameters to the model. These

values for the design condition are listed in the previous sections of this chapter. The

model is also tested for the off design conditions, 0.70), and 1.1 oD. The off design

dynamometer tests provide the flow information for these tests, however, the values for

the inlet and exit perturbations are taken from the design results, since certain off design

flow conditions are not available. The flow conditions are listed in Table 5.1; notice

that the design values are identical to those presented in section 5.1.1.

Table 5.1: Flow Conditions for the Three Cases

0) Pi* P0  T Vi*
kPa kPa K mn/s
(psi) (psi) ('F) (ft/s)

0.7 224.0 201.1 291 29.9
(32.49) (29.17) (64) (98.0)

1.0 223.9 201.0 291 29.7
(32.47) (29.16) (64) (97.4)

1.1 223.9 201.1 292 29.9
L --__ (32.47) (29.17) (66) (98.0)
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Table 5.2 lists the results from applying the analytical model via the FORTRAN

code with all the above flow, geometric and nonuniformity information.

Table 5.2: Direct and Cross Forces Determined by the Model
co 

xAF~F F

CODN (lbf) N (lbf)

0.7 -7.383 (-1.660) 8.836 (1.986)

1.0 -7.372 (-1.657) 8.486 (1.908)

1.1 -7.380 (-1.659) 8.390 (1.886)

These forces are nondimensionalized by equations (1.17) and (1.18). Once again, the

mean radius is R. = 125 mm (4.932 in) and the blade height is BH = 16.6 mm (0.652

in). The eccentricity has been set to e = 0.457 mm (18 mils). The torque values are

listed in Table 5.3 and next to these torque values are the results of the

nondimensionalization.

Table 5.3: Model's Torque and Direct & Cross Coefficients
0TfiA

CD N-m (lbf-in)

0.7 23.52 (208.2) -2.75 3.41

1.0 18.35 (162.4) -3.65 4.20

1.1 17.11 (151.4) -3.78 4.45

Chapter 6 compares all the results presented in this chapter with those presented

in Chapter 3.

5.4 Final Notes
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It is interesting to understand how the direct force, Fx , comes about. For the

case in which the inlet and outlet seal effective gaps, 8 & 3 , are identical (as are the

geometrical gaps in our seal) and in the absence of a carryover effect one would predict

nearly zero direct force. It is only the allowance for variations of the carryover

coefficient that introduces direct forces of the correct order of magnitude, as shown in

Tables 5.2 and 5.3.

Regarding the cross-force F,, the usual Alford mechanism must be still active,

although in reduced form, in this shrouded turbine. Indeed, as long as a fraction of the

surviving flow can escape through the seal gap without doing work, the Alford

mechanism remains in place. Once again, this can be explained by the fact that there

will be less work lost in the regions where the gap is reduced by the offset, and vice

versa
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Chapter 6

Comparison of Results

6.1 Dynamometer, Wall Tap Pressure & Analytical Results

In Table 6.1 and 6.2 the average experimental results from Tables 3.3

(dynamometer results), Table 3.6 (wall tap pressure results) and the theoretical results

are compared. Table 6.1 compares the direct force coefficients while Table 6.2

compares the cross force coefficients. The first column of each table lists the speed, the

second column lists the dynamometer results, the third column contains the wall tap

pressure results and the last column presents the results from the analytical model.

Table 6. 1: Direct Force Coefficients Compared

_ o j Dynamometer W.T.P. Theory

0.7 -4.06 - -2.75

1.0 -5.63 -3.95 -3.65

1.1 -6.00 - -3.78

Table 6.2: Cross Force Coefficients Compared

W)fly f ly
(oODDynamometer W.T.P. Theory

0.7 5.94 - 3.41

1.0 6.28 5.75 4.20

1.1 6.37 - 4.45
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The agreement between the dynamometer measured direct force and the wall tap

pressure determined direct force is not good. Also, it is believed that the absence of the

Alford effect in the wall tap pressure measurements is not the cause of this discrepancy.

Song has successfully measured the aerodynamic forces (The Alford Effect) in the

facility for the unshrouded turbine and has found that the direct force contribution by

these forces is very small.[21] The theoretical models developed by Martinez and Yoo

to explain the Alford effect show no contribution to the direct force.[15] However, the

agreement between the wall tap pressure results and the analytical model is very good.

There is, however, one other item which one should note. Millsaps found that the direct

force is sensitive to many parameters and a slight change in one of those parameters can

alter the direct force dramatically.[17] The sensitivity of the direct force to certain

parameters is also shown in chapter 5 of this work. Figure 5.3 shows that for the

magnitudes investigated an error in the knowledge of the phase of 10" at the exit of the

shroud can alter the predicted direct force up to 0.6 N.

It is fortunate, however, that the direct force is not the result which is of most

importance in this work. The cross force is the destabilizing force and from its

measurement one may obtain the stiffness terms responsible for instability as is shown

in equation (1.10). Once again, Table 6.2 compares the cross force coefficients. It is

seen in this table that the cross force determined from the wall tap pressure

measurements slightly under predicts the cross force as measured by the dynamometer.

However, one expects the wall tap pressure results to under predict the cross force

because the aerodynamic forces (The Alford Effect) are not taken into account in these

wall tap pressure results. Similarly, the Alford effect is not taken into account in the

theory. This analytical model simply predicts the pressure perturbation within the

cavity of the shroud and says nothing about the aerodynamic forces. At this point the

only discrepancy worth noting, is that the theoretical cross force result should match
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wall tap pressure results exactly. The error may be do to a wrong choice of the exit

phase and magnitude when specifying the input parameters for the theoretical results. It

is shown in Figure 5.6 that the cross force may have magnitudes of up to 10.25 N which

gives a cross force coefficient of fly = 5.07. This may be compared to the wall tap

pressure result of fly = 5.75. Therefore, the refinement of the theory shown in this

work has strong potential of being a good predictor of the pressure perturbation within

the cavity of a shroud.

Before anything else is said, the effect of the aerodynamic forces (The Alford

Effect) are added to the wall tap pressure results and the theoretical results in the

following section.

6.2 Adjustment of Results for Work Loss

Work loss specifies the amount of work the machine foregoes due to leakage

over the tips of the blades. This is the Alford effect. As mentioned in section 1.4.2, the

Alford effect is minimal in a shrouded turbine compared to an unshrouded turbine

because tip leakage is reduced by the shroud. A theory has been developed by Martinez

and Yoo to estimate these Alford forces.[15] Only the results of this theory are

presented in this work and one should refer to reference [15] for a complete

explanation.

In reference [15] chapter 9, the simplest version of the theory is applicable for

this shrouded turbine. In this theory [ref. 15, Section 9.2] the fluid which escapes

through the gap at the blade tips is taken to do no work at all. This is inappropriate for

unshrouded blades, and is corrected in Sec. 9.3 of reference [15], but it fits exactly the

condition in a turbine with a shroud of the type that is in this work. The only
1

modification is the inclusion of a factor1 in the final 1y result, to account for the

1
fact that the flow rate through a 2-strip seal isI of that through a single gap with the

same pressure differential.
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The results of applying this scheme to the cross force results are shown in Table

6.3. Note, as mentioned above, that this simple form of the work loss theory predicts

zero direct force.

Table 6.3: Comparison of the Cross Force Coefficients" with the Inclusion of
the Work Loss Terms in the W.T.P. and Theory Results

COfly fly fly flyCO Work Loss Dynamometer W.T.P. Theory
+Work Loss +Work Loss

0.7 0.76 5.94 -4.17

1.0 0.85 6.28 6.60 5.05

1.1 0.92 6.37 -_5.37

The agreement between the dynamometer measured cross force and the modified wall

tap pressure results is excellent. The theoretical results have been brought closer to the

measured dynamometer results and if a larger magnitude of the exit pressure

perturbation exists than is actually assumed, the agreement between the theory and the

dynamometer results become even better.

6.3 Magnitude of Nonlinear Terms in the Analytical Model

As is seen in the previous two sections there is a discrepancy between the

analytical model results and the experiment results. In this section the nonlinear system

of governing differential equations (equations (4.14) and (4.15)) are first reorganized

and then solved numerically to see whether the exclusion of the nonlinear terms in the

analytical model affects the results.

First, since the static case is of interest, the terms in the governing differential

equations containing temporal derivatives are dropped. This results in the following

system of ordinary differential equations:
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I d[pVl(h+ )] 2-q=(6.1)
Rs Ae

1 d[pV 2I(h+3)] +q2V qlV(h++3))dP =0 (6.2)
+ao +q2V -qV, + ;1 - 'C(l +2h)+ R= dORs A0 Rs A

The density gradient is given by:

dp 1 dP (6.3)
0 a.2 O

Equation (6.3) is then substituted into equations (6.1) and (6.2). The convective form

of the momentum equation is then obtained by taking equation (6.2) and subtracting V

times equation (6.1). The resulting equations can be neatly expressed in matrix form as

is shown in equation (6.4).

M1h dP= - pV d- q+q 1
0+5)a P dO R dO(6.4)

R 1IpV & -q(V - Vi) - gl+ 4r(lQ+ 2h)

Solving this system for both d and via Cramer's rule one obtains the following two

equations.

1[ l d8 lrv]'2'

V 1-pV d3_- q2 + q, -[-q,(V -V,)- sl + Tr(l + 2h)]
-dP (6.5)

dO 1(h+3) Vd

V [I dS 1-2[-q 1(V- Vj) - Tl+ rQ(l +2h) -- pV -q 2 +q 1dV a R, dO (6.6)
v2 (6.6)dO l(h +) [V2 ]

p1 Rs a.

The above two ordinary differential equations are required to satisfy the following

periodic boundary conditions.

P(O) = P(O+ 2 7r) (6.7)
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V() = V(9+2r)

In general boundary value problems are harder to solve numerically than initial

value problems. In order to solve this system of ordinary differential equations with the

periodic boundary conditions a shooting method is desired. A "pure" shooting

technique (section 16.1 in reference [19]) was attempted, however, this technique

proved to be unstable for these equations and their respective periodic boundary

conditions. Therefore, a routine is used which assumes thousands of combinations of

guesses for the velocity and pressure boundary conditions. The velocity guesses range

from 27.0 m/s to 32.0 m/s in 0.1 mn/s intervals and the pressure guesses range from

212438 Pa to 217438 Pa in 1 Pa intervals. These guesses are used to solve the ordinary

differential equations via a fourth order Runge-Kutta initial value integration routine for

one hundred points around the circumference. Once again, the technique proves to be

unstable and very sensitive to the guesses for both the velocity and pressure at the

boundaries. However, with a lot of patience and much manipulation it is found that the

swirl velocity at the boundary (0 = 0,2r) is approximately 29.0 rn/s and the pressure at

the boundary (0 = 0,27r) is approximately 212570 Pa. Equations (6.7) and (6.8) are

not satisfied perfectly with these values for the boundary conditions, however, the

boundary value at 0 = 0 compared to the boundary value at 0 = 2 r are within 1% of

each other.

The result of this code predicts a maximum value of pressure at 287* with a

maximum pressure perturbation of 950 Pa (0.138 psi). This is the case for a zero

perturbation in pressure and velocity at the inlet and at the exit (ý, = 0, ij, = 0, ,o = 0) of

the shroud. This case is easier to solve and provides the information needed to see

whether nonlinear effects are present. The nonlinear results, with zero inlet and exit

perturbations, can be compared to the linearized model with the same inlet and exit

conditions. It is found that the nonlinear model under predicts the magnitude of the
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pressure perturbation compared to the experimentally found pressure perturbation by

2.4 times. This is very close to the linearized model, which for zero inlet and exit

nonuniformities, under predicts the magnitude of the pressure perturbation compared to

the experimentally found pressure perturbation by 2.2 times. The small discrepancy

between the linear and nonlinear models may be attributed to the small error in picking

the appropriate boundary conditions in the nonlinear model and the model's sensitivity

to these boundary conditions.

This small numerical experiment shows that the discrepancy between the

theoretical model and the experimental results is not due to the exclusion of the

nonlinear terms in the analytical model.

6.4 Final Comments

The dynamometer results are very repeatable for tests taken on the same day

with repeatability getting slightly worse when dynamometer test results from different

days are compared. However, the dynamometer results should be used as the standard

for comparison between all other types of measurements and analytical calculations.

The sensitive behavior of the direct force is shown in this work which reinforces the

trends illustrated by the direct force in Millsaps [17] work. The wall tap pressure

measurements give excellent cross force results and the theoretical model has once

again been improved. This model showed that the direct force may be sensitive to the

phase of the exit pressure perturbation. However, even with the improvements the

model still under-predicts the experimental results and the exclusion of the nonlinear

terms in the analytical model are not the cause of the discrepancy.

The final chapter lists the conclusions of this work and then gives a list of

recommendations to aid in future research in this field and on the experimental facility.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

1) Forces measured in the shrouded turbine are larger than the forces measured in the

unshrouded turbine by approximately a factor of two.

2) The nonuniformity in the pressure in the cavity of the shroud produces a direct and

cross force which are both smaller in magnitude than those measured with the

dynamometer. The discrepancy in the direct force can not be explained and is not due

to the absence of the aerodynamic forces (The Afford Effect) in these measurements.

The small discrepancy in the cross force is explained by the aerodynamic forces and

once this Alford force is taken into account the agreement between the dynamometer

cross force and the pressure and aerodynamic forces is very good.

3) The discrepancy between the dynamometer and wall tap pressure results prove the

existence of the Alford force.

4) Compared to the unshrouded turbine in the shrouded turbine the Alford effect is

smaller and the pressure effect is larger.

5) A nonuniformity in pressure and velocity exists at the inlet to the shroud.

6) A nonuniformity in pressure exist at the exit to the shroud.
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7) The analytical model predicts that the inlet and exit nonuniformities have a large

effect on the prediction of the magnitude of the pressure and velocity perturbation

within the cavity of the shroud.

8) The direct force is sensitive to the phase of the exit pressure perturbation which

may be one of the causes for erratic results when these direct forces are considered.

9) The discrepancy between the theoretical model and the experimental results is not

due to the exclusion of the nonlinear terms in the analytical model.

7.2 Recommendations

This section contains recommended procedures in operating the facility, needed

facility changes, further experimental work and further theoretical work.

1) To test whether density changes are responsible for the decrease in repeatability

two test series at 2.21 atm should be repeated, however, making sure that the loop is

completely (following the procedure explained in section 2.2.3) evacuated before

pressurizing with freon.

2) Immediately following the use of the LeCroy, for sampling the forces via the

dynamometer, one should obtain the pressure readings from the Scanivalve system.

From the Scanivalve readings one may obtain all the absolute pressure levels in the test

section. These pressure levels are useful for the reduction of the data.

3) A study of off the shelf velocity probes should be done such that a probe can be

found which has its measuring ports at the tip. This would allow one to measure the

rotor exit velocity at practically all radial locations in order to calculate the

aerodynamic forces (The Alford Effect). The probes which are in the facility at this

time contain measuring ports which are too far down the length of the probe, therefore,

157



a complete rotor exit velocity profile can not be taken. Thus, the Alford effect can not

be measured.

4) Wall tap pressure experiments should be carried out at the off design conditions.

5) An extension of the analytical model should be developed which is able to predict

the inlet and exit pressure and velocity nonuniformities, rather than having these

nonuniformities as inputs and relying on the experimental results for these

perturbations.
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Appendix A

Wall Tap Pressure
Curve Fit Equations

This appendix contains the sinusoidal curve fit parameters for the curve fit

equations that are used in Figures 3.15, 3.16. 3.19 and 3.20. These figures are at

stations 4 and 6 and include test series 1 and 2 along with the seven trials in each test

series. The following page begins the list of the parameters.
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Station 4 Test Series 1

RADIAL 1
y = ml + m2*sin(m0)+m3*cos(m0)

Value Eror
ml 0.066401500565 0.00677601
m2 -0.038259355726 0.010164
m3 0.086998041981 0.010164
Chisq 0.0049587413352 NA
R 0.96518015239 NA

RADIAL 2
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.066333667335 0.00579096
m2 -0.035934634083 0.00868644
m3 0.087263231679 0.00868644
Chisq 0.0036218075745 NA
R 0.97363441075 NA

RADIAL 3
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.071956750462 0.00655253
m2 -0.038645973786 0.00982879
m3 0.090545943507 0.00982879
Chisq 0.0046370483711 NA
R 0.96933540411 NA

RADIAL 4
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.069286999836 0.00686588
m2 -0.038322895104 0.0102988
m3 0.088737534213 0.0102988
Chisq 0.0050911542555 NA
R 0.96534583776 NA

RADIAL 5
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.070085584652 0.00696835
m2 -0.045219639481 0.0104525
m3 0.092768089917 0.0104525
Chisq 0.0052442476538 NA
R 0.96900442368 NA

RADIAL 6
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.065157417596 0.00803705
m2 -0.037340503527 0.0120556
m3 0.09044046313 0.0120556
Chisq 0.0069761656928 NA
R 0.95418997869 NA

RADIAL 7
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.061654252001 0.00708557
m2 -0.037260933432 0.0106284
m3 0.092276163351 0.0106284
Chisq 0.0054221769911 NA
R 0.96488918602 NA
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Station 4 Test Series 2

RADIAL 1
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.077851415651 0.00723814
m2 -0.041022524091 0.0108572
m3 0.095611594626 0.0108572
Chisq 0.0056581925443 NA
R 0.96665968951 NA

RADIAL 2
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.079255834576 0.00850171
m2 -0.036732730586 0.0127526
m3 0.095085458404 0.0127526
Chisq 0.0078061386915 NA
R 0.95247191186 NA

RADIAL 3
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.07814916658 0.00770427
m2 -0.038245869532 0.0115564
m3 0.095953878957 0.0115564
Chisq 0.0064104254226 NA
R 0.96160279997 NA

RADIAL 4
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.071070500766 0.00438758
m2 -0.037763884014 0.00658138
m3 0.094838005356 0.00658138
Chisq 0.0020790959134 NA
R 0.98674110375 NA

RADIAL 5
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.076761583594 0.00583502
m2 -0.039862289999 0.00875254
m3 0.093387272987 0.00875254
Chisq 0.0036771312248 NA
R 0.97687301782 NA

RADIAL 6
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.063260833112 0.00632668
m2 -0.03882069933 0.00949002
m3 0.094443811718 0.00949002
Chisq 0.0043229034169 NA
R 0.97313399696 NA

RADIAL 7
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.066427583574 0.00725601
m2 -0.039345755693 0.010884
m3 0.094821005023 0.010884
Chisq 0.0056861630563 NA
R 0.96549555845 NA
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Station 6 Test Series 1

RADIAL 1
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0052439160655 0.00637628
m2 -0.28655615642 0.00956443
m3 0.19209718521 0.00956443
Chisq 0.0043909562225 NA
R 0.99765833905 NA

RADIAL 2
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0049678326283 0.0061482
m2 -0.2832591349 0.0092223
m3 0.1947989452 0.0092223
Chisq 0.0040824390968 NA
R 0.99781189102 NA

RADIAL 3
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0032215854163 0.00602702
m2 -0.28611418271 0.00904053
m3 0.19349100431 0.00904053
Chisq 0.003923096201 NA
R 0.99791365497 NA

RADIAL 4
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
mIl 0.0056012505676 0.00566726
m2 -0.2834479329 0.0085009
m3 0.19612647699 0.0085009
Chisq 0.003468731347 NA
R 0.99815063583 NA

RADIAL 5
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0022679204121 0.00658226
m2 -0.28068144572 0.00987339
m3 0.19135147195 0.00987339
Chisq 0.0046792220602 NA
R 0.99743105375 NA

RADIAL 6
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0046054190035 0.00535761
m2 -0.28333071003 0.00803642
m3 0.1948554208 0.00803642
Chisq 0.0031000343607 NA
R 0.99833801139 NA

RADIAL 7
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0033339168885 0.00641963
m2 -0.29027940231 0.00962944
m3 0.19241950508 0.00962944
Chisq 0.0044508556836 NA
R 0.99766844662 NA
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Station 6 Test Series 2

RADIAL 1
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0048079170908 0.00638731
m2 -0.30494211417 0.00958096
m3 0.20886487587 0.00958096
Chisq 0.0044061497613 NA
R 0.99795586793 NA

RADIAL 2
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0058634166305 0.00576125
m2 -0.29735488158 0.00864188
m3 0.21352802591 0.00864188
Chisq 0.0035847386041 NA
R 0.99831027644 NA

RADIAL 3
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0059544174011 0.00607056
m2 -0.30407540192 0.00910584
m3 0.20738646881 0.00910584
Chisq 0.0039799810815 NA
R 0.99813680812 NA

RADIAL 4
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0053289175655 0.00640483
m2 -0.29910308035 0.00960724
m3 0.2117697228 0.00960724
Chisq 0.0044303555008 NA
R 0.99791520516 NA

RADIAL 5
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0049705831334 0.00651777
m2 -0.30163465344 0.00977665
m3 0.20264225504 0.00977665
Chisq 0.0045879773416 NA
R 0.99779470712 NA

RADIAL 6
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0049149974569 0.00590507
m2 -0.29675641288 0.00885761
m3 0.20954916493 0.00885761
Chisq 0.0037659475505 NA
R 0.99819537436 NA

RADIAL 7
y = ml + m2*sin(m0)+m3*cos(m0)

Value Error
ml 0.0036860803764 0.00642483
m2 -0.30264707492 0.00963725
m3 0.20399215644 0.00963725
Chisq 0.0044580773379 NA
R 0.99787617802 NA
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Appendix B

Computer Code for the
Analytical Model

The FORTRAN computer code used for the parametric study of the effect the

inlet and exit perturbations have on the pressure perturbations within the cavity of the

shroud and on the resulting direct and cross forces is listed in this appendix.

C TARAS A. PALCZYNSKI JR.
C DEVELOPED WITH THE HELP OF
C KNOX T. MILLSAPS JR.
C
C SHROUD THEORY FORTRAN CODE

IMPLICIT REAL*4 (A-H)
IMPLICIT REAL*4 (O-W)
REAL*4 Y(20,20),YPHI(20,20),PI
REAL*4 EIMAG(20),ETAIMAG(20),EOMAG(20)
REAL*4 FN(20,20),FT(20,20),FNND(20,20),FTND(20,20)
COMPLEX X(2,2),EHAT,ETAHAT,Z(2),IMG,IMGG,DET
COMPLEX EO,EI,ETAI
COMPLEX C1,C2,C3,C4,C5,C6
OPEN(UNIT=10,FILE='GEOMETRY DATA',STATUS='OLD')
OPEN(UNIT= 1 ,FILE='FLOW DATA',STATUS='OLD')
OPEN(UNIT=12,FILE='SEAL SOLUTION',STATUS='NEW)
OPEN(UNIT=13,FILE='ETA PLOT',STATUS='NEW)
OPEN(UNIT=14,FILE='ETA PHI PLOT',STATUS='NEW)
OPEN(UNIT=15,FILE='FORCE NORMAL',STATUS='NEW')
OPEN(UNIT=16,FILE='FORCE TANGENTIAL',STATUS='NEW')
OPEN(UNIT=17,FILE='FT 3-D',STATUS='NEW ')

NCNT=17
NCNV=6
IMGG=CMPLX(0.0,1.0)
PI = 4.0*ATAN(1.0)

DO 25 K=1,2

DO 35 L=1,NCNV
EIMAG(L)=0.0
ETAIMAG(L)=0.0
EOMAG(L)=0.0
DO 45 M=1,NCNT
FN(M,L) = 0.0
FT(M,L) = 0.0

45 CONTINUE
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35 CONTINUE

C EIMAG(1)=0.00585
C ETAIMAG(1)=0.046235
C EOMAG(1)=0.0065

DO 15 J=1,NCNV
DO 5 I=1,NCNT

RADD = 2.0*FLOAT(I-1 )*PI/FLOAT(NCNT-1)

IF(K.EQ.1) THEN
El = EIMAG(J)*COS(RADD)+EIMAG(J)*SIN(RADD)*IMGG
ETAI = -ETAIMAG(J)*COS(RADD)-ETAIMAG(J)*SIN(RADD)*IMGG
EO = (0.0,0.0)
END IF

IF(K.EQ.2) THEN
EO = EOMAG(J)*COS(RADD)+EOMAG(J)*SIN(RADD)*IMGG
El = (0.0,0.0)
ETAI = (0.0,0.0)
END IF

WRITE(9,*) "I =",1," J =",J," K =",K

C
C SET ALL CONSTANTS
C
C UNIVERSAL GAS CONSTANT & RATIO OF SPECIFIC HEATS FOR FREON

RFREON = 68.7587
GAMMA= 1.12

C UNIVERSAL GAS CONSTANT & RATIO OF SPECIFIC HEATS FOR AIR
C RFREON = 287.04
C GAMMA = 1.4

CALL SETGEOM(RS,RL,H,DELST1,DELST2,R,OMGS,OMGW)
CALL SETFLOW(PIST,POST,TEMP,VIST)

CALL SETREST(DELST1,RL,H,CC,DH,RNURO,RMU1 ST,RMU2ST)
CALL FINDK(DELST1,RL,RK)

C ZEROTH ORDER SOLUTION
A= DELSTI*DELST1*RMU1ST*RMU1ST*PIST*PIST
B = DELST2*DELST2*RMU2ST*RMU2STPOST*POST
C = DELST1*DELST1*RMU1ST*RMU1ST
D = DELST2*DELST2*RMU2ST*RMU2ST
PST = SQRT((A+B)/(C+D))
ROST= PST/(RFREON*TEMP)
Q1ST = DELST1*RMU 1STSQRT(PISTrPIST-PSrPST)/SQRT(RFREON*TEMP)
Q2ST= DELST2*RMU2ST*SQRT(PST*PST-POSTrPOST)/SQRT(RFREON*TEMP)
QST = Q1ST
RNU = RNURO/ROST

WRITE(12,*) "THE DIMENSIONAL VARIABLES"
WRITE(12,*) 'RS=',RS,' RL=',RL,' H=',H,' DH=',DH
WRITE(12,*) 'DELST1=',DELST1I,' DELST2=',DELST2
WRITE(12,*) 'RMU1ST=',RMUI1ST,'RMU2ST=',RMU2ST
WRITE(12,*) 'R=',R,' OMGS=',OMGS,' OMGW=',OMGW
WRITE(12,*) 'PIST=',PIST,' POST=',POST,' VIST=',VIST
WRITE(12,*) 'PST=',PST,' ROST=',ROST,' Q1ST=',Q1ST,' Q2ST=',Q2ST
WRITE(12,*) 'RNURO=',RNURO,' RNU=',RNU

C ITERATE TO FIND SWIRL IN GLAND
VST= VIST

10 CONTINUE
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CALL LAMDAS(VST,DH,RNU,RLAMS)
CALL LAMDAR(VST,DH,RNU,OMGS,RS,RLAMR)
VSTI = VST
A = (ROST/8.0)*(RLAMS*RL-RLAMR*(RL+2.0*H))
B = (QST+ROSTrRLAMR*OMGS*RS*(RL+2.0*H)/4.0)
C = -(QST*VIST+ROST*RLAMR*OMGS*OMGS*RS*RS*(RL+2.0*H)/8.0)
VST = (SQRT(B**2-4.0*A*C)-B)/(2.0*A)
ERROR = ABS(VST-VSTI)

C WRITE(9,*) 'VST=',VST,' ERROR=',ERROR
IF(ERROR.LT.0.0001) GOTO 20GOTO 10

20 CONTINUE

WRITE(12,*)
WRITE(12,*) 'A=',A,' B=',B,' C=',C
WRITE(12,*) 'VST=',VST,' ERROR=',ERROR
WRITE(12,*)

C SET ALL NON-DIMENSIONAL PARAMETERS
EPS1 = R/DELST1
ALPHA = DELST2/DELST1
CAPD = DELST1/H
CAPH = H/RS
CAPL = RL/RS
CAPK = RK*DELST1/RMU2ST
CAPS = OMGS*RS/VST
CAPW = OMGW*RS/VST
DELQ = QST/(DELST1*RMU1ST*ROST*SQRT(RFREON*TEMP))
SIG = ROST*VST*DELST1/QST
CGAM = 1.0- (VIST/VST)

WRITE(12,*)
WRITE(12,*) "THE NON-DIMENSIONAL VARIABLES"
WRITE(1l2,*) "EPS1=",EPS1," ALPHA=",ALPHA," CAPD=",CAPD
WRITE(12,*) "CAPH=",CAPH," CAPL=",CAPL," CAPK=",CAPK
WRITE(12 "CAPS=",CAPS," CAPW=",CAPW," DELQ=",DELQ
WRITE(12,* "SIG=",SIG," CGAM=",CGAM
WRITE(12,

C SET MATRIX COEFFICIENTS FOR SOLUTION
IMG=CMPLX(0.0,-1.0)
X(1,1)=((ALPHA*RMU2ST)/(DELQ*RMU 1ST))**2+(1.0/DELQ)**2+

& ((SIG*CAPL)I(CAPD*GAMMA))*(1.0-CAPW)*IMG
X(1,2)=SIG*CAPL*IMG/CAPD
X(2,1)=((SIG*CAPL)/(8.0*GAMMA*CAPD*CAPH))*(RLAMS-RLAMR*(1.0+

& 2.0*CAPH/CAPL)*(CAPS-1.0)*(CAPS-1.0))+(CAPL*IMG)/(DELQ*DELQ*
& SIG*RMU 1ST*RMU1ST*CAPD)-(CGAM/(DELQ*DELQ))

X(2,2)=1.0+(SIG*CAPL/(4.0*CAPD*CAPH))*(RLAMS-RLAMR*(1.0+2.0*
& CAPH/CAPL)*(1.0-CAPS))+(SIG*CAPL*IIMG/CAPD)*(1.0-CAPW)

Z(1)=((CAPK+((1.0/ALPHA)-1.0))+(SIG*CAPL*IMG*(1.0-CAPW)))*EPS1
& +(((ALPHA*RMU2ST)/(DELQ*RMU1 ST))**2-1.0)*EO+
& (1.0+(1.0/DELQ)**2)*El

Z(2)=CGAM*EPS1+(1.0-CGAM)*ETAI-CGAM*(1.0+(1.0/DELQ)**2)*EI
CALL SOLMAT(X,Z,EHAT,ETAHAT,DET)

C USE EQUATION TO GET EHAT PAGE 73 MILLSAPS [16]
C C1 = (1.0/ALPHA-1.0)+CAPK+SIG*CAPL*(1.0-CAPW)*IMG
C C2 = 1.0+(SIG*CAPL/(4.0*CAPD*CAPH))*(RLAMS-RLAM R*(1.0+2.0*
C & CAPH/CAPL)*(1.0-CAPS))+SIG*CAPL*(1.0-CAPW)*IMG/CAPD
C C3 = SIG*CAPL*IMG*CGAM/CAPD
C C4 = 1.0/(DELQ**2)+((ALPHA*RMU2ST)/(DELQ*RM U 1ST))**2+(SIG*CAPL/
C & GAMMA*CAPD)*(1.0-CAPW)*IMG
C C5 = SIG*CAPL*IMG/CAPD
C C6 = (SIG*CAPL/(8.0*GAMMA*CAPD*CAPH))*(RLAMS-RLAMR*(1.0+2.0*
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C & CAPH/CAPL)*((CAPS-1.0)**2))-CGAM/(DELQ*DELQ)+CAPL*IMG/((DELQ**2)
C & *SIG*RMU1S*RMU1ST*CAPD)
C EHAT = (C1*C2-C3)*EPS1/(C4*C2-C5*C6)

EHATR=REAL(EHAT)
EHATI=AIMAG(EHAT)
PHEHAT=ATAN2(EHATI,EHATR)

C SET SIGNS OF THE PHASE ANGLE SUCH THAT:
C EHATI>0 THEN PHEHAT>0
C EHATI<0 THEN PHEHAT<0

IF(EHATI.GT.0.0) THEN
IF(PHEHAT.LT.0.0) PHEHAT=-1.0*PHEHAT

END IF
IF(EHATI.LT.0.0) THEN

IF(PHEHAT.GT.0.0) PHEHAT=-1.0*PHEHAT
END IF

WRITE(12,*)
WRITE(12,*) 'EHAT=',EHAT
WRITE( 12,*) 'MAGNITUDE OF EHAT =',CABS(EHAT)
WRITE(12,*) 'PHI EHAT =',PHEHAT
WRITE(12,*) 'ETAHAT =',ETAHAT
WRITE(12 'DET =',DET
WRITE(12,*

Y(I,J)=CABS(EHAT)
YPHI(I,J)=PHEHAT*(360.0/(2.0*PI))
FN(I,J)=-1.0*PI*RS*RL*CABS(EHAT)*PSrCOS(PHEHAT)
FT(I,J)=-1.0*PI*RS*RL*CABS(EHAT)*PST*SIN(PHEHAT)
FNND(I,J)=-1.0*PI*CABS(EHAT)*COS(PHEHAT)
FTND(I,J)=-1.0*PI*CABS(EHAT)*SIN(PHEHAT)

ANGLE = (RADD)*360.0/(2.0*PI)

C WRITE(9,*) CABS(ETAI),',',CABS(EHAT)
C WRITE(13,*) CABS(ETAI),',',CABS(EHAT)
C WRITE(14,*) CABS(ETAI),',',PHEHAT*(360.0/(2.0*PI))
C WRITE(15,* CABS(EI),',',ANGLE,',',-1.0*PI
C & *RS*RL*CABS(EHAT)*PST*COS(PHEHAT),',',EI,',',ETAI
C WRITE(16,*) CABS(EI),',',ANGLE,',',-1.0*PI
C & *RS*RL*CABS(EHAT)*PST*SIN(PHEHAT),',',EI,',',ETAI

5 CONTINUE
EIMAG(J+1)=EIMAG(J)+0.001
ETAIMAG(J+1)=8.3975*EIMAG(J+1)
EOMAG(J+1)=EOMAG(J)+0.001

15 CONTINUE

WRITE(15,*)'ANGLE,',(EIMAG(J),',',J=1,NCNV)
WRITE(16,*) 'ANGLE,',(EIMAG(J),',',J=1,NCNV)
DO 6 I=1,NCNT
RADD = 2.0*FLOAT(I-1)*PI/FLOAT(NCNT-1)
ANGLE = (RADD)*360.0/(2.0*PI)
WRITE(15,*) ANGLE,',',(FN(I,J),',',J=1,NCNV)
WRITE(16, ) ANGLE,',',(FT(I,J),',',J=1,NCNV)

6 CONTINUE

EOMAG(1)=0.0
25 CONTINUE

END

C GEOMETRY OF SEAL
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SUBROUTINE SETGEOM(RS,RL,H,DELST1,DELST2,R,OMGS,OMGW)
REAL*4 RS,RL,H,DELST1 ,DELST2,R,OMGS,OMGW
READ(10,*) RS,RL,H,DELST1 ,DELST2,R,OMGS,OMGW
RETURN
END

C FLOW DATA
SUBROUTINE SETFLOW(PIST,POST,TEMP,VIST)
REAL*4 PIST,POST,TEMP,VIST
READ(11 ,*) PIST,POST,TEMP,VIST
RETURN
END

C REMAINING VARIABLES
SUBROUTINE SETREST(DELST1 ,RL,H,CC,DH,RNURO,RMU1ST,RMU2ST)
REAL*4 DELST1,RL,RLE,H,CC,DH,RNURO,RMU1ST,RMU2ST,ALPHA,BETA

C CONTRACTION COEFFICIENT & MU1, MU2
CC = 0.65
RMU1ST = CC
RLE= RL/0.342020143326
ALPHA = 8.52/((RLE/DELST1) + 7.23)
BETA = 1.0/SQRT(1.0 - ALPHA)
RMU2ST = CC*BETA

C HYDRALIC DIAMETER
DH = 4.0*(H+DELST1)*RL/(2.0*(H+DELST1)+2.0*RL)

C ABSOLUTE VISCOSITY OF FREON
RNURO = 0.0000127

C ABSOLUTE VISCOSITY OF AIR
C RNURO = 0.0000173

RETURN
END

C CALCULATE SENSITIVITY
SUBROUTINE FINDK(DELST1,RL,RK)
REAL*4 DELST1,RL,RLE,RK,A,B,C,CC
CC = 0.65
A = 8.52*CC*RLU(2.0*(DELST1 **2))
B = 8.52/((RL/DELST1 )+7.23)
C = RL/DELST1+7.23
RK = A/(((SQRT 1 .0-B))**3)*C*C)
W RITE(12,*) *** ******** * ** ** * *
WRITE(12,*) 'THE SENSITIVITY K=',RK
RETURN
END

C FINDS DARCY FRICTION FACTOR FOR THE WALL
SUBROUTINE LAMDAS(VST,DH,RNU,RLAMS)
REAL*4 VST,DH,RNU,RLAMS,RES,SGN1
SGNI=SIGN(1.0,VST)
RES = ABS(VST*DH/RNU)
RLAMS = SGN1*0.3164/SQRT(SQRT(RES))

C WRITE(12,*) 'SGN1=',SGN1,' VST=',VST,' RES=',RES,' RLAMS=',RLAMS
RETURN
END

C FIND DARCY FRICITION FACTOR FOR THE ROTOR
SUBROUTINE LAMDAR(VST,DH,RNU,OMGS,RS,RLAMR)
REAL*4 VST,DH,RNU,OMGS,RS,RLAMR,VREL,RER
VREL=OMGS*RS-VST
SGN2=SIGN(1.0 ,VREL)
RER=ABS(VREL*DH/RNU)
RLAMR = SGN2*0.3164/SQRT(SQRT(RER))

C WRITE(12,*) 'SGN2=',SGN2,' VST=',VST,' RER=',RER,' RLAMR=',RLAMR
RETURN
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END

C SOLVES A 2X2 COMPLEX MATRIX
SUBROUTINE SOLMAT(X,Z,EHAT,ETAHAT,DET)
COMPLEX X(2,2),Z(2),EHAT,ETAHAT
EHAT=(Z(1)*X(2,2)/X(1,2)-Z(2))/(X(1,1)*X(2,2)/X(1,2)-X(2,1))ETAHAT=(Z(1)-X(1,1)*EHAT)/X(1,2)
DET=X(1,1)*X(2,2)-X(1,2)*X(2,1)
RETURN
END
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