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NOMENGCLATURE

a constant, see Case I

cross-sectlional area o1 bar, square inches
width of bar, inches

a constant, see Case I

constants of integration

modulus of elasticity, pounds per square inch
depith of bar, inches

moment o1t inertia of cross-section,(inches)4
a constant, used for integrating, Cases II
and 1II

benaing moment at any point, inch pounds,
considered positive when decreasing the curva-
ture oi the bar

oending moment for complete yielding, inch
pounds

bending moment for initial yielding, inch
pounds |

bending moment for secondary yieiding, inch
pounds

applied load, pounds

inner radius of curved bar, inches

outer radius of curved bar, inches

stress at any point, pounds per square inch
yleld stress, pounds per square inch

deflection, inches

vi
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Nomenclature

"

i

distance of a point trom the neutral axls,
inches, measured positive upward

distances from neutral axis to bottom of bar,
inches

distance from neutral axis to top ot par,
inches

distance from neutrai axis to edge of plastic
region, measured downward, inches

distance from neutral axis to edge ot plastic
region, measured upward, inches

vertical dlstance pbetween neutral axis and
horizontal axis tnrough the centrold, inches

width of var at any point, 1inches

unit strain at any point, inches per inch
unit strain on bottom of bar, inches per inch
unit strain on top of bar, inches per inch
unit straln at yieid stress, inches per inch
radius ot curvature at any point, inches
initiai radius of curvature, inches

angie of positlion, measured from fixed end,
degrees or radians

angie to whicn plastic region extends on
pottom or par - degrees or radians

same to top of par
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Nomenclature

Nﬁmbers in parentneses reter %o bibliography.
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Transverse cross-sections of the bar originaily
piane and normal to the center line ot the bar

remaln so arter pending.

The material of which the bar 1s composed is

homogeneous and 1sotropic.



INTRODUCTION

The general fleid o1 the plastic behavior or
materials 1s ol great importancs since many common
rabricating processes are entirely dependent upon the
plastic properties ot materials., The bending or curved
bars, in the piastic as well as in tne slastic range,
1s or great i1mportance since many such elements are
used in structural engineering and electrical machinery,
whlie others serve as essential machine parts. Conse-
quently, 1t 1s desired to know oI the benavior oi such
ejements and to pe apie to predict the sutress conaltions
and the derlection ot such curved bars under various

loading conditions.



PURPOS

P B

It is the purpose of this thesis to develop
anaiytical expressions ror stress distribution ana
for deriection ol a curved bar, which 18 bDuilt in at
one end, of a length sutricient to rorm an arc ol 90°,
and loaded by a single ioad at the Iree end, this ioad
being applied in the plane ot curvature. (See Figure

1 for the geometry of the curved bar,)



PREVIOUS CONTRIBUTIONS TO THE SUBJECT

Several contributions have been made to knowledge
of the general field of plastic behavior of materials by
various individuals. A great deal of the work of formu-
lating the laws of plastic behavior has been done by
NADAI (2, 5, 6, T).

Murphy and Timoshenko (4, 11) have written textbooks
on the advanced theory of the mechanics of materials.

Both of these texts contalin expressions for stress distri-
bution and deflection of a curved bar loaded in the plane
of curvature, but these expressions apply only within the
elastic range and for a stress-strain curve in which stress
1s directly proportional to strain. WINSLOW and EDMONDS
(12) did considerable work on comparison of experimental
results with theoretical predictions but, again, this work
was only within the elastic range. HCGAN (3) developed
expressions for design purposes for stress distribution,
deflection angle of slope, and angle of twist in circular
cantilever beams loaded normal to the plane of curvature
under various load conditions; but these expressions also
hold only for the elastic region.

NADAI (7) has developed expressions for determining
the extent of the plastic region, the stress distribution,
and deflection of a bar subjected to plastic bending using
an ldeallized stress-strain curve and a curve accounting
for the effect of work hardening (somewhat idealized), but

these expressions apply only to a straight beam, not to an



PREVIOUS CONTRIBUTIONS TO THE SUBJECT

initially curved bar.
So far as the author could determine, there have been
no publications of work on the plaétic bending of a curved

bar.



PROCEDURE

Three separate cases were considered. The case of a
bar with rectangular cross-section and an idealized stress-
strain curve, the case of a bar with rectangular cross-
section and an arbitrary stress-strain curve of the form

S=9, (—%—E‘)Ji , and the case of the bar with triangular
cross-section and an arbitrary stress-strain curve of the
form 5==S,(§§ t ; these being hereafter referred to as
Case I, Case II, and Case III, respectively.

The first consideration was to determine a general
method and then apply it to each of these cases separately.
This 18 necessary since both the cross-section of the bar
and the stress-strain curve will affect the results
obtained. In fact, the results and their form are entirely
dependent on these two factors.

The method developed 1s simple in idea but very likely
to be unwieldy in execution. The method followed 1is:

(1) The use of the equilibrium condition, SS&A =Q ,
to determine the position of the neutral axis.

(2) The use of the equilibrium condition, M= SS'QAA ,
to determine the bending moment in terms of the geometry of
the cross-section and the stress-strain curve.

(3) The combination of the bending moment expression
Just derived and the stress-strain expression to obtain an
expression for stress distribution in terms of the bending

moment and the geometry of the cross-section.



PROCEDURE

(4) The determination of the expression, Qﬁé& , from

the bending moment expression derived in Step 2, and the
substitution of this term in the differential equation
frowe e(6®) 0o

This will give expressions for the stress distribu-
tion and deflection in general terms of M for the particu-
lar cross-section and stress-strain curve being considered.
These expressions must then be used to determine the stress
distribution equation and the deflection equation for the
geometry of the bar and the particular type of loading.

For the geometry and the loading considered 1n this
work, the steps to be followed are:

(5) The'substitution of -P g, co0s8 for M in the stress
distribution relation derived in Step 3.

(6) The substitution of =P Q°cose for M in the differ-
ential equation derived in Step 4, and the sclution of
the differential equation for the deflection in terms of
P and cose,

For each of the three cases, the extent of the plastic
region, the stresé distribution on the plane of maximum
stress, and the deflection curve was determined for five
different loads, varying from that required for initial
yielding to that required for complete yielding (Case I)
or for extensive yielding (Cases I and II). The maximum
deflection versus load relation was determined for each

of the three cases.



SUMMARY AND DISCUSSION

Case I

For the geometry of the curved bar and the type of
loading considered (Figure 1), the stress distribution is
given Ddy:

For the completely elastic beam,

s+ ar e

For the partially plastic-partially elastic bean,

5=z -S0 for y" {5y {y2

S = 6o (_a.:a. for y' v ( " (elastic portion)

Qo*‘a»

03]
n

So for y' ( v ¥y

M._. SQ&?ge:sl - Soﬁ:»’\l - — PQ°M9
3((0-2‘6‘) %

It is possible to combine the expression for stress
distribution and bending moment to eliminate y' and obtain
a new expression for stress distributlion in the elastic

portion. This expression is:

\
4 oz 2 __".a:_..>
S:‘So \}V‘i-rf—é'&:me 601‘6
So MRZ

For the geometry of the curved bar and the type of

locading considered (Figure 1), the deflection equation is:



Summary and Discussion - Case I

For the completely elastlc beam,

AT

For the partially plastic-partially elastic beam,
for the partially plastic portion

2w yw s - &\, St
4 o* | ~ XPegemo
Solr

for the completely elastic portion

3 .
W s Qa8 +Cow® = Loor—

Séveral attempts were made to find an analyticai solu-
tion to the differential equation given above. Unfortunately
all attempts met with no success. A solution may be made
by numerical integration by the method of successive approxi-
mations (1, 8, 9). This was done making use of the boundary
conditions that

8=0 w= 0, %‘%:o

)
At the point where the partially plastic-partially

elastic and the completely elastic portions of the beam

meet, the constants of integration, G, and Co, may be

evaluated from the boundary conditions that

o Aw _ Aw’
Wo=w de = de




Summary and Discussion - Cage I

A question might well be raised as to the validity
of the expressions derived for this case since the position
of the neutral axis does not remain fixed but shifts from
its position at initial yielding to coincide with the hori-
zontal axis through the centroid at complete yielding.
In this particular case, with the depth of the beam small
in comparison with the radius of curvature, this neutral
axis shift is very small and therefore its effect is
negligible. For example, in the numerical case for which
results were calculated, this neutral axis shift was 0.002"

in an original radius of curvature of 10.248".

Case II

For the geometry of the curved bar and the type of
loading considered (Figure 1), the stress distribution is
giﬁen by:

S = PQO Cen 6 (e *‘3:)
. - - 3 R/:
W3 (o020 TR (IR TR )

- (7507 7 W‘SJ

For the geometry of the curved bar and the tyve of

loading considered (Figure 1), the deflection equation is:
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Ssummary and Discussion - (Case II

W Plc'S _z.&!& + M:G -l)
= °

4sob‘[_g_(.-\\ﬁi. v b2 4 (TR -0RUR:)
(% 508

These expressions for stress distribution and de-
flection apply to both the completely elastic and the
partially plastic-partially elastic cases. The reason
for this 1s that the stress-strain curve applies to both

the elastlic and plastic regions.

Case IIT

For the geometry of the curved bar and the type of
loading considered (Figure 1), the stress distribution

i1s given by:

+u \%
g= F "eowep‘(eo*‘a>

(s 5 <SR )

e YRI5



11
Summary and Discussion - Case II

For the geometry of the curved bar and the type of

loading cohsidered (Figure 1), the deflection equation is:
P?'Q:,fﬁo (E%Q +M326"')
\ . "‘P_Z
453 [(s.g % &an;\)%' vl 22
(3 S IIR. -3 IR - S0 T 0%
<
eae L Sed VRL
(g LRI

W =

These expressions for stress distributiorn and deflection
apply to both the completely elastic and the partially
plastic-partially elastic cases. The reason for this is
that the stress-strain curve applies to both the elastic

and plastic regions.



SUGGESTIONS FCR FUTURE INVESTIGATION

Slnce this thesis covers only a very narrow range of
possibilities, future investigation could well be done in
this field by using different cross-sections (circular,
trapezoidal),mvarious other stress-strain relations, other
boundary conditions (arcs greater or smaller than 90°, bars
built in at both ends, bars simply supvorted), and other
conditions of loading (constant moment, uniformly distribu-
ted load, uniformly varying load, more than one concentrated

load, loading normal to the plane of curvature).

An investigatlon which should prove interesting would
be to determine the analytical expression for stress as a
function of strain for a particular material, derive the
stress distribution and deflectlion equations as was done
in this theslis, and compare the predicted results with
those obtained experimentally for a curved bar of the same
material having the same boundary and loading conditlons.
This could be done with a number of materilals and for a
variety of combinations of cross-sections, boundary

conditions and loading conditloms,

12



GENERAL PRELIMINARY

INVESTIGATION

Consider the general case
of a curved bar in bending

(elastic or plastic)

13



/ Let "cd" be drawn parallel
to "ab"

From the similarity of trliangles,

B T Ao PYD L %

Ju € JU <

P g - o4

Jo Ju c
—E:i‘_&_ = __Aé__-_- ﬁ:-:*af(‘\"ﬁ-_‘_)
U= ¢ S Q o R Co
oo % v o= 4.+ 4

Ju eo+ ‘3’(6"*.‘3')
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E a __t__ = _% - ‘B(tﬂto)
. +e - .
%..__ A
% S ‘5(—‘&,* *a—)
Y
E. = < Co
b, A
Co 'K
€= (e°-ex & ) . EaquaTion |\
€ Q:*‘b-
It should be noted that for ¢, = «© , &= % )
which 1s the case of a straight beam.
FRoM EQ. l
L I |
—l + —L = Q eo
© % €
S T |
-L = e eo _ L
*8 £ €
‘—“ = eo 'Q _ l
3 QQ,& €,
4 = Co— & — €£
3 e Q. &
Ja= e € £ EQUATION 2 =

.-+ 9



%’ Qe*’(ec‘ﬁ)& d e
ieo-e(l-\-&ﬂ

*6\ - e Qo &, Ecuavtion 3
eo‘i(\_'g')

“‘32-2 € Qo EZ EQ\)AT\ON 4
Co - (1rEe)

Where ~& & €&, are the unit strains

at — 2 «aa respectively.

_D\ EQuh“\°N5

Consider the cross-section

M= 2+ 5Gy)

‘&l ——ﬂx
‘9\ % N.A‘ d A= 2- &Ja—
&

Ler S = "Sa (E)

16



For equilibrium SSG\A =0 over the cross-section
of the beam,

. ee & o §G)- 5, (e, ¢)

t-e&)
Ea - QUATION b
fsan- (5.8, Q) 2eled de=o  Fe
=&, ig Q(w&)}

56?5 dA
M :S §z(.£)%£'(-‘a)%

—-Ahl
M (o et S deeled

2g,  [ee-eE) [eo-eC 8
M = Si”czeZ(e Q) S, (g) S, (E)Q_’ &E Equation 7
' -¢€, ie e~(\-\—E‘.)]
Bor M = 509

Eaﬁ e, (& 2.) % g+, (&, Q)E A€ = g(e) EquaTion B

- & [ - E.SX
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There are six variables:
W"A@ala'lsa)epe
There are five equations:
3, % s , 6, 8

) 1]

Therefore, @ = 5—1(9) can be found. EauaTion 9

Deflection Equation

It has been shown (10)
that the solution of the follow-
ing differential equation will
yield the deflection equation.

I |
T e

‘g_“.’ fw = Q: (—t"é“) = Qo(e.aé_..e) EQuATlONV 10

Substituting Equation 9 in Equation 10, and solving
for W=S'3(6) willl yield deflection equation of the bar.
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FIGURE |

GEOMETRY OF THE CURVED BAR

! 1

o o

Y A
—> aso“l<— -4 .a.sd‘|<—

CASEIaqm CASE TII
CROSS-SECTION OF THE BAR
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Case 1

Consider a curved bar of rectangular cross-section
with depth ¢f beam small
in comparison with the radius of curvature

and an idealized stress-strain curvé such as

5
Sol-—

]
o
mp—-————
o

-_._So
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For the Completely Elastic Condition (4)

a EquaTion I
Co Ro

S - M ( “3 ) EQ\)AT(ON \z
= A:g Qoﬂr*b
v . M
€ e ex
42 < ot M EquaTion 13
P

If the ldealized stress-strain curve is assumed,
it 1s obvious that beyond the yield point the neutral
axis will shift toward the centroid of the cross-
sectlion untlil at the point of complete yielding, the
neutral axis willl coincide with the horizontal axis

rassing through the centroid.
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Partlal Plastic Yielding

. )

< So—>|
77 F
J; '[ f,
- Y _ — — —N.A
Lo«
v ¥
e, \I{ Y
<— A > F?-So*g

Considering the elastic stress equaticn (Equation 12)
. 2
assume S 3 oy in the elastlic portion of the bar,
in which "a" and "¢" are constants for the particular

section.

For the plastic portion, S= ¥ o

S.= =" -5, 2l

Q+¢6 Q_...a'
Dwioing .
- §2 . t*-z : - j\. (Q'- é“.\)
o Zﬁqk Jﬂ'(g+*6)
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eo "2“3‘_7

22‘2
Co-24'

o S ( 2y (€a=y) )

o. = N ( Qo ‘43‘_) = . (Q,, **‘a“)
‘3. “a.“

S = So (E‘_;ﬁjxi) € quaTion |4
Y NGy |
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jSo\l\ o) |
-y Abla. 1, . ‘?(?.S N s
;, sbdy SA&‘ :*a; &6 5 )
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..35 L] L. v o ‘;c.+»6 —c/Q« Aa]_,a' 3 ,

ﬂ*a‘ﬁ-‘ o=y | - Sobw"%z‘a"ﬂ

(o 3
\ . o .)
<t AL
3770
o)
C—‘**& ) \(\ v
¥ 7Y
oR |
) " Qod . e
f_::ﬁ‘- i« SR ‘Ca«Z‘;é 6_03_3‘
c.—-»a" "a %
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(S et ] b ey

-26 € -2

ML e, Q.2 -2 2(@,-2‘)z
K] 24 L g_:za:a ¢ 2y

Cle-y) p & h-2y v 2e,

‘3 Co 23

D\_Qn' - (Qo Q)L L ‘Zeo
£} ]
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/‘a fo-?~a

This expression 1s used to determine the position
of the neutral axis. A trial and error solution is
recommended since the expression is not readily solvable
by algebralc means, Care should be taken to insure
accuracy since the solution involves the small difference

of two comparatively large numbers.
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Calculations for the Specific Case (Figure 1)

Ll

+
M:-—PQO 0 O fr= 0.250°
h= 0.500"
Initial Yielding Ro= 10.300 "
R.::10.000
From Equation 11 *
560 "
€ = Jleme = [0.298
10.000

From Equation 12 and using y = y' = y1

S, = M (_. : ma)

. 25D % . 500 x.002 10.000

ML: — 0.001008 So \nuB

P=0000984 5. ¢
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Secondary Yielding
From Equation 15
yl x ‘0‘248" or QQ - 10.248“

From Equation 16a using y" = y» = 0.252"
Ms = -0.01058 So inldb
P = 0.001032 So 1b

Complete Yielding
From inspection of the equilibrium corndition,
@, = 10. 250"

From Equation 16a or 16b using y' = y" = 0
Mc = -0.01562 So inlb
P = 0.001524 So 1lb

Stress Distribution

For any value of applied load up to that required
for initial yielding (P = 0.000984 So) and for the
elastic portion (completely so) of the curved bar, the

stress distribution is given by Equation 12.
5=.J!L i
A:6 Co *“a—

For larger values of applied load up to that
required for complete ylelding, in any section which
has partially ylelded, the stress 1s given in the
elastic portion by Equation 14 S :-—SOC&:%ﬁ e )

AL
and in the plastic portion by So for -y and by =50

for +y.



Deflection Equations

O <M <ML

Eaquation 13 Arrues

2 2
LCw o, w oo e M
o 6% o EX

Bu-\— N\= —PQOMG

olzw + W = ~ pc3 ceo B

EL

ComPLr MENTARY So\.uTloN
W 2 C‘ awn® + ( w06
PARTtCukAR Sot..u‘\‘\oN

3
w = - PCO
2ET

© wm O

G ENERAW So LUTLON

W= Qand+CGwd - Pe o o

2el
= = AW -
O = 0, w=o0, o2 =0
Cvawating C, =C,
C‘ = C 2 = O
p,3
W==-"8% oa0 E quaTion |8

2.eL
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RECREE E quation T Aerpuies
2 4 2, ks
&A\A:. *W o= -QO EO \ + Qo/3u EQUA“-\QN \7&
4 | - 4Pe 08
So rh?

e‘ <@<g EQURTlON \3 A’?\-\ES

2 . \ 3
dd)“i two= - ?_Sf_g_e E QuaTion 13a
4 ET

Strictly, Equation 17 applies only 0 { © { 6o, and
Equation 13 applies only &7 € €< %{ , leaving the small
range 85  ® { ©;. For this range there would be a new
expression. However, since for the case under considera-
tion, 1e, a thin bar with large curvature, the difference
between M1l and Ms 1s very small and consequently the
difference between €7 and 67 is very small. This small
difference can be neglected for Equation 17 will extend
over thls reglion with sufficient accuracy.

Several attempts were made to find an analytical
solution to Equation 17a. Unfortunately, no success was
met with. Accordingly, the equation was solved by
numerical integration using the method of successive

approximations (1, 8, 9).
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The general solution for Equation 13a 1s

\ C\Me -\-Cawe - Pef@m@

W =
2ETL
~ - dw _
e=0 ) w=0, ;ra = 0
6= 6 W= w' 0‘-“’:1\_“."
b ) e de

The four constants of integration may be determined
from the boundary conditions as stated above. Thus the
complete deflection curve may be determined; by numerical
integration from O to 8] and by substitution in Equation
13a (after evaluation of the integration constants) from
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CASE I
 INITIAL YIELDING
(y' = -0.248")

M = -0.01008 So in 1bs
P = 0.000984 So 1lbs
¢, = 10.248 1in

Extent of Plastic Region

There 1is no plastic region.



Case 1

Initial Yielding

Stress Distribution

on Plane of

Maximum Stress

Y
inches
0.252
0.200
0.150
0.100
0.050

-0.050
-0.100
-0.150
-0.200
-0.248

S
psi
-0.968 So
-0.772 So
-0.582 So
-0.390 5o
-0.196 So
0
0.198 So
0.397 So
0.599 8o
0.803 So
1.000 So

Deflectlion Curve

e
radians

0]
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400
1.500
1.5708

inches
0

0.203 &,
0.808 &,
1.802 &.
3,166 &,
4.873 &,
6.886 &
9.166 &,
11.66 &,
14.33 &,
17.10 &,
19.93 &,
22.74 €.
25.46 &
28.04 &o
30.41 &
31.93 g,
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YIELDING TO ONE QUARTER OF DEPTH CF BEAM

inches
-0.186
-0.190
-0.200
-0.220
-0.230

-0.248

(y' = -0,186")

td
1]

10.248 in

€

-0.01267 So in lbs
0.001236 So 1lbs

Extent of Plastic Region

n

y

inches
0.191
0.197
0.208
0.230
0.241
0,252

e
degrees
0

9024
16028"
25°46"'
29945
33923"
37°17°



Case I =~ Yielding to One-quarter of Depth of Beam

Stress Distribution

on Plane of

Maximum Stress

y S
inches psi
0.252 -1.,000 So
0.200 =-1.000 So
0.191 -1.000 So
0.150 -0.780 So
0.100 -0.523 So
0.050 '+ =0.263 So

0 0
-0,.050 0.265 so
-0.100 0.533 So
-0.150 0.804 So
-0.186 1.000 So
-0.200 1.000 So
-0.248 1.000 So

Deflection Curve

e
radians

o
0.100
0.200
0.300
0.400
0.500
0,600
0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400
1.500
1.5708

inches
0

4,818 &
19.13 &,
42,50 &,
T4.29 €.
113.7 &
159.7 &
210.7 &
260,8 &,
308.6 €.
353.6 &
395.4 €.
433.5 €,
467.4 &
496.8 &.
521.3 &.
535.6 &o
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GASE I
(Y' = "00124")

M - =0.,01431 So in 1lbs

P

0.001396 So 1bs
Qo= 10.249 in

Extent of Plastic Reglon

y' y" e-
inches inches degrees
-0.124 0.127 0
-0.132 0.136 9%6
-0.150 0.154 16956
-0.175 0.181 249541
-0.200 0.208 31°53"
-0.225 0.235 38926

0.251 42°19°

-0.249 45913



Case I = Yielding to One-hal

Stress Distribution

on Plane of

Maximum Stress

y S
inches psi
0.251 -1.000 So
0.200 -1.000 So
0.150 -1.000 So
0.127 -1.000 So
0.100 -0.789 So
0.075 -0.593 So
0.050 -0.396 So
0.025 =-0.199 So

0 0
-0.025 0.200 So
-C.050 0.400 So
-0.075 0.602 8o
-0.100 0.805 So
-0.124 1.000 So
-0.150 1.000 So
-0.200 1.000 So
-0.249 1.000 So

f

of

Depth of

;

B

eam

Deflection Curve

———

e
radians

0
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400
1.500
1.5708

inches

0

7.206 &

28.39
62.35
107.6
162.4
225.0
293.9
367.6
440.7
509.7
574.0
632.8
685.5
731.5
T65.4
793.2

&
&
€.
€o
€.
&o
&
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YEILDING TO THREE-QUARTERS OF DEPTH OF BEAM

(y = "00062")
M =z -0,01530 80 in 1lbs
P = 0.001493 So 1lbs

@ = 10.250 in

Extent of Plastic Regilon

y' y" 6
inches inches degrees
-0,062 0.063 o)
-0.100 0.102 14059
-0.150 0.154 26031*
-0.200 0.208 37022!

0.250 46°15"

-0.250 48047

4



Case I - Yielding to Three-guarters of Depth of Beam

rant——

Stress Distribution

on Flane of Deflection Curve

Maximum Stress

¥ S ] W
inches psi radians inches
0.250 -1.000 So 0 0
0.200 -1.000 So 0.100 14.26 &
0.150 -1.000 So 0.200 54.32 &
0.100 -1.000 So 0.300 114.8 &
0.063 -1.000 So 0.400 190.8 &.
0.050 -0.797 So 0.500 278.4 €.
0.025 -0.400 So 0.600 374.4 &
0 0 0.700 476.3 €,
-0.025 0.401 So 0.800 581.8 €o
-0.050 0.805 So 0.900 688.2 €,
-0.062 1.000 So 1.000 788.9 €.
-0.100 1.000 So 1.100 882.0 &,
-0.150 1.000 So 1.200 966.7 &
-0.200 1.000 So 1.300 1042 &
-0.250 1.000 So 1.400 1107 &
1.500 1161 €.

1.5708 1192 &



COMPLETE YIELDING

(yl - yll - O)
M = -0.01562 So in 1b
P = 0.,001524 So 1b
@s = 10.250 in

Extent of Plastic Reglon

y' y" e
inches inches degrees
0 - o}
-0.050 0.051 9914
-0.100 0.102 18954
-0.150 0.154 28°48°*
-0,200 0.208 38953

0.250 47922°

-0.250 49°49!



Case I - Complete Yielding

Stresgss Distribution

—

|

Maximum Stress

y S
inches psi
0.250 -1.000 So
0.200 -1.000 So
0.150 -1.000 So
0.100 -1.000 So
0.050 -1.000 So

0o -1.000 So
0] 1.000 So
-C.050 1.000 So
-C.100 1.000 So
-0.150 1.00C So
-0.200 1.000 So

-0.250 1.000 So

Deflection Curve

] w
radians inches
0 0
any other s

value
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1lbs

0
0.000492 8o
0.000984 So
0.001236 So
0.001396 So
0.001493 So
0.001524 so

Case 1

Maximum Deflection

Wmax
lnches
0
15.96 &
31.93 &
535.6 &
793.2 &,

1192 &,
O
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L
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FIGURE 3
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FIGURE &4
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1000 &

W~ DEFLECTION -~ IN.

1506&

5006

2§0&%

FIGURE 77

ODEFLECTION CURVES

P=20.001493%0

GASE T
P=0.001524 So P=0.001396 So
P=0.001236 So
P=0.000 984 5o
A 8 12 16

0 -ANGLE FROM FIXED END — RADIANS b



MAX. DEFLECTION — IN.

150Q¢€s

12506

10Q0¢0

7506

500¢o

250%

FIGURE 8
MRAX. DEFLECTION VS.LOAD
CASE 1

0.001 Seo
P-APPLIED LOAD -

L8s.

0.002%



Case II

Conslder a curved bar of rectangular cross-section
with depth of beam small
in comparison with the radius of curvature

and a stress-strain curve of the form

S-S ()
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Yy X IT IL /
=$‘° =
—_ Yy _ \L _ /s
? N.A.
{ 3=
v/ / /] Y 4
e 4]

S = So (%)ﬁ For + &
S =-S°(%)Ji For =— €
- (<)
S = S{(a&ﬂ%ﬂa For +ay
4
3=+ 5[(5)(%%‘?:@ For =4
Lev Qg = S° [(ixg%):)%.
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~S( A R 5"‘(&%) Sy =0

[M (o)t o .g:% [w‘w R

(e)?

. ]

S - 6 ey - b T <o
Py Ve = e [ur VTR b2 |
V7 ey + 32 Veore
S ETIPREUSRED

Using absolute values, Iquation 19 becomes

EqQuaTtion |3

Qo s

Eeuartion \Ja

This expression is used to determine the position

of the neutral axis, A trial and error soclution is

recommended since the expresslon 1s not readlly solvable

by algebraic means.
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.
M= §s,da

e Sy - Rt

R RRICHTRRICA T

3 1
M = {4 ( - [- ()2 (€ors)? S H T 13,2 =l .ab )
( T T ) (em)” it %}

( )l (.C )‘LL 1 1 2 ( ).L “n el
+| ()2 leeg)® 30, (L2 Frden oo ()0
K‘ > ‘%_(%\) (Eo*‘“&) +—§3 (::.,—\).J‘J )

a ‘t- eo

MMM{—-W Dearan ~ 3o Vg Veary 3o oo\ T
£ .
+ W Q;c‘,-\"az - _sz\r:a: 6_6::31 +1§AA‘;)%J

. M = Qx&ii(dj\j% + m&-\\)\ge-zg + lz-(mmfﬁf o_f;;)

q.
- 3@:(%@ +H\E::3%

&

W= X)) o o T 0T

(T T o) -2 (mien 5]

Equarion 20



Using absolute values, Equation 20 becomes

M = Sonf (o) [ (T v V)
* (I T - URT TR - (R *W@

EQquaTion d0a.

Care must be taken to use a high degree of
accuracy when evaluating the expression in Equation
20 (or 20a) contalned in the brackets since it
involves the very small difference of two compara-

tively large numbers,

5=+ S [(E)e c,,,a)]%

S - x M (eo"'"&)

2’[3—-:;-(&4;'\}355 ﬁMQ\J\)-%)#% \Fﬁ_ W r ) 3(0 ( \Téo*\y’su \S—RJ

€ quaTion &l

When using Equation 21, the + signs apply to +

values of y, the - signs to - values of y.



61

From E@urTion 20a

go *g = Ma eo T
¢ as:&r‘[s_;:(m;ﬁ b ) o4 (R TR -32VR) 2 (P 5. 0 0R)

SosstirurTing In EQuaTtion 10

Bw = G M E

4 6* , 3
as:»t_g (st e () (0 0% -V ) 245 53

Equavion 22



Calculatlions for the Specific Case (Figure 1)

L L L L L

M =- F>Qp O "
= £.250
A trial and error solution = 0.500"
of Equation 19a yields the Ro = 10.5C0"
result that RL = 10.000"
Qo = 10.249"

By the substitution of M = =P, cos® in Equation 21

LA
s = ¥ Pe, oo léeté)
36 (B ) (BT VR - ey %)

Equation 2la



Zvaluating
L}f_: (u;."\E-E ﬁwr‘ﬁ‘i—)a- %(E%‘i ﬁ. *W\WA) - %ﬁ’(ﬁ;\rﬂ. *\E‘. ﬁl):) =0.00183

Initial Yielding
From Equation 2la, S = So, y = y' = y1
Mi = -0.01250 So in-lb
P = 0.001220 So 1b

Secondary Yielding

From Equation 2la, S =z =-S0, ¥y =

]
g

1]
L
N

Ms = =-0,01276 So in-1lb
P = 0.001245 So 1b

Complete Ylelding

From Equation 2la, S = So, y=y' = y" =2 0

Mc = = ©O in-1b

P = O 1b

3tress Distribution

The stress distribution at any angle & from O to?%
for any load T from O to o0 is given by Equation 2la.
This appllies Lo both the elastic and plastic regions
since the stress-gstrain curve also applles to beth the

elastic and plastic regions.



Deflection Equation
Substitution of M = -P g, cosé and s = o020 ¥

<
in Equaticn 22 yields

Ail1{+W = P CL (mze.H)
4 4l »Lsc.( T B ) (5 Do U5 0R) - e ﬁ*ﬁ‘ﬁ)]

Complementary Solution

W= Clan® + C; ce0 ©

Particular Solution

be = P §i£o (wae _')

43012,‘{5_ \f; ,.,,_w\r ) (@W,-W\Yu) -é_gz(o;,\f .w;.w&]a

General Solution

£ (c»Zeﬁ
w: C.MG\C:MG - Peb °

AU B T i U505 S Dy )

Boundary Conditions
6:0, W = O é\-‘—ézo

4

Evaluation of Cl and Gy
C E¥e)
€= =P el e
SISV e W) 3 (1 7, TR T30 07 2

-qugo(___Q-i-caa_& )

4501}1;% (i T ) o (352 T 00 2o *%‘\WE

Xquation 23




This deflection equation (Equation 23) applies
for a1l values of P from O to O, ie, it applies cver
both the elastic and plastic regions. The sign of *he
deflecticn must be the same as that of the bending
moment before the mcment %term 1s squared and substituted

in Equation 22.



GASE I

INITIAL YIELDING

(}” - "'00249)
M=z -0.01250 So in 1bs
F = 0.001220 So lbs
e, = 10.249 in

Extent of Plastlic Region

There is no plastic region.
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Case 11

Initial Yielding

Stress Distribution

on Plane of

Maximum Stress

y

inches
0.251
0.200
0.150
0.100
0.050
0.040
0.030
0,020
0.010
0
-0.010
-0.020
=-0.030
-0.040
-C.050
-0.100
=0.150
=-C.200
-0.249

psi

-0.980 30

-0.877
-0.761
-C.5623
-0.442
-0.395
=0.342
-0.28¢C

-0.198 8§

S0
So
So

So
S0
So

0.198
0.280
0.343
0.397
O.444
C.629
0.772
0.8%4
1.000

30
So
S0
S50

So
So

S0

Deflection Curve

e
radlans

0
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.C00
1.100
1.200
1.300
1.400
1.500
1.5708

inches

1.027 &,
4.075 &
29.055 &,
15.85 &
25.84 &,
33.85 &
44,60 €.
56.11 &
68.00 &
80.11 &.
91.97 &
103.3 &,
113.9 &
123.6 &
132.0 &
137.2 &



y

inches
-0.,200
-0.209
-0.215
=-0,230

-0.249

M=z -0,01398 So in 1b
0.,001364 So 1lb

Co 10.249 in

Bxtent of Plastic Region

L

y

inches
0,208
0.218
0.224
0.241
0.251

]
degrees
0
12° 6!
15°28"°
21024
240 9!
26037



Am———

Cagse II - Yielding to One-fift

Stress Distribution

on Plane of

Maximum Stress

y S
inches psi
0.251 -1.096 So
0.200 -0.981 So
0.150 -0.851 So
0.100 -0.697 So
0.050 -0.494 3o
0.040 -0.442 So
J.030 -0.383 So
0.020 -C.313 So
0.010 -0.221 So

0 0
-0.010 0.222 So
-0.020 0.313 So
-0.030 0.384 3o
-0.040 O.444 So
-0.050 0.496 So
-C.100 C.704 So
-0.150 0.864 So
-0.200 1.0C0 5o

of Depth of Beam

Deflection Curve

e w
radlians inches

0 0
0.100 1.285 €&,
0.200 5.098 &,
0.300 11.33 &
0.400 16.83 &
0.50C 32.33 &
C.600 42.35 &,
0.700 55.80 ¢&.
0.800 70.20 &
0.900 85.07 &
1.000 100.2 &
1.100 115.1 &
1.200 129.3 &
1.300 142.6 &
1.400 154.6 &
1.500 165.2 &

1.5708 171.7 &,



CASE I

=

ZIELDING TO IWO-FIFTHS OF DEPTH OF BEAM

( Y' = “Oo 150“ )

M -0.01618 So in 1b

L]
"

0.001579 So 1b

e, 10.249 in

zxtent of Plastic Region

y' y" 8
inches inches degrees
-0.150 0.154 0
-0.155 0.160 10026
-0.164 0,169 17° 7'
-0.180 0.187 24017
-0.209 0.218 32022!
-0.230 0.241 36027"

0.251 37059'

-0.249 39026°




Case II =~ Ylelding to Two-fifths of Derth of Beam

Stress Distribution

on Plare of Deflection Curve

Maximum Stress

y S e W
inches psi radians 1hches
0.251 -1.269 So 0 0
0.20C -1.135 So 0.100 1.722 &
0.150 -0.985 So 0.200 6.832 &
0.100 -0.807 So , 0.300 15.18 &
0.050 -0.572 So 0.400 26.57 &,
0.040 -0.512 So 0.500 43,32 &
0.030 -0.443% So 0.600 56.75 €.
0.020 -0.362 So 0.700 74,78 &
0.010 -0.256 So 0.800 94.07 &

0 0 0. 900 114.0 &
-0.010 0.256 So 1.000 134.3 &
=-0.020 0.3563 So 1.100 154.2 &
-0.030 0.445 30 1.200 1732.2 &
-0.040 0.514 So 1.300 191.0 €.
-0.050 0.574 So 1.400 207.2 &
-0.100 0.814 So 1.500 221.3 &,
-0.150 1.000 So 1.5708 230.0 &,
-0,200 1.158 5o
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CAS

5]

I

YIELDING TO THREE-FIFTHS OF DEPTH OF BEAM

N A —— .  ————— . ¥ ————————"r  ——m— —————————— s

(y’ = "0.100")

M = -0,.01987 So in 1b
= 0.001939 50 1b
e°= 1002‘49 11’1

Extent of Plastlc Region

y' y" 8
inches inches degrees
-0.100 0.102 o
-0.110 0.112 17°38"
-0.125 0.128 26027*
-0.150 0.155 35928"
=-0.200 0.210 45017!

0.251 500 4°

-0.,249 510 1°

=~d
1Y)



Casgse 1 - Xielding to Three-fifths of Depth of Beam

Stress Distribution

con Flane of Deflection Curve

Maximum Stress

y S e w
inches psi radians inches
C.251 -1.558 So 0 0
0.200 -1.394 So 0.100 2.595 &
0.150 -1.210 So 0.200 10.28 &
0.100 -0.990 So 0.300 22.88 &,
0.050 -0.702 So 0.400 40.06 &.
0.040 -0.628 so 0.500 65.31 &,
0.030 -0.544 So 0.600 85.55 &,
0.020 -0.445 So 0.700 112.7 &
0.010 -0.314 So 0.800 141.8 &,

o 0 0.900 171.8 &
-0.010 0.315 So 1.000 202.4 &,
-0.020 0.445 So 1.100 232.4 &,
-0.030 0.546 30 1.200 261.2 &,
-0,040 0.631 Sc 1.300 288.C &
-0.050 0.705 So 1.400 312.3 €.
-0.100 1.000 So 1.500 325.0 €&,
-0.150 1.228 So 1.5708 346.7 €,
-0.200 1.421 5o

-0.,249 1.590 5o



y

inches
-0.050
-0.053
-0,058
-0.066
-0.075
-0.100
=0.150
-0.200

-0.249

CAS

£

il

I ————— ——————— aoumy i

{y*® = =0,050")

=
"

=0,02817 So in 1b

0.002749 So 1b
Qo= 10.249 1in

1t

y

inches
0.051
0.054
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0.102
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degrees
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29035
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Case Ii = Ylelding to Four-fifths of Depth of Beam

Stress Distribution

on Plane of Deflection Curve

Maxlimum Stress

y S 8 w
inches psi radians inches
0.251 -2.208 So 0 0
0.200C -1.976 So £.100 5.216 &
0.150 -1.715 3o 0.200 20.70 &
0.100 -1.404 So 0.300 45,99 &,
0,050 -0.995 5o 0.400 80.51 &
0.040 -0.891 So 0.500 131.3 &
0.030 -0.772 So 0.500 172.0 &
0.020 -0.630 So 0.700 226.5 &
0.010 -0.446 So 0.800 285.0 &,

0 0 0.900 345.4 €
-0,010 0.446 3o 1.000 406.9 €.
-0,020 0.632 So 1.100 467.1 &
-0.030 0.774 So 1.200 524,59 &
=-0.040 0.894 So 1.300 578.8 &
-0.050 1.000 So 1.400 627.6 &
-0.100 1.418 So 1.500 670.5 &
-0.150 1.741 So 1.5708 696.9 &
-0,200 2.015 So

-0.249 2.254 So



1lbs
0

0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018
0.0020
0.0022
0.0024
0.0026
0.0028
0.0030

S0
So
So
So

So
S0
S0
S0
So

S0
So
So
So

Case I

Maximum Deflection

Wmax
inches
0
3.689 &
14,76 &
33,20 &
58.29 €.
92.23 &,
132.8 &
180.4 &
236.1 &
298.8 &
368.9 &
446.4 €,
531.2 &
623.5 €.
723.1 &
830.1 &
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