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NOMENCLATURE

a - a constant, see Case I

A - cross-sectional area or bar, square inches

b - width of bar, inches

c a constant, see Case I

Cl, 02 - constants of integration

E - modulus of elasticity, pounds per square inch

h - depth of bar, inches

I - moment or inertia of cross-section,(inches)4

k - a constant, used for integrating, Cases II

and II

M bending moment at any point, inch pounds,

considered positive when decreasing the curva-

ture or the bar

Mc - oending moment for complete yielding, inch

pounds

Mi - bending moment for initial yielding, inch

pounds

Ms  - bending moment for secondary yielding, inch

pounds

P - applied load, pounds

Ri - inner radius or curved bar, inches

Ro  - outer radius of curved bar, inches

S - stress at any point, pounds per square inch

So  - yield stress, pounds per square inch

w - deflection, inches
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Nomencia ture

y -distance of' a point from the neutral axis,

inches, measured positive upward

Y - distance from neutral axis to bottom or bar,

inches

Y. - distance from neutral axis to top or bar,

inches

yl . distance from neutral axis to edge of plastic

region, measured downward, inches

y" - distance from neutral axis to edge of' plastic

region, measured upward, inches

7 - vertical distance between neutral axis and

horizontal axis through the centroid, inches

S- width of oar at any point, inches

E- unit strain at any point, inches per inch

E, - unit strain on bottom of bar, inches per inch

a - unit strain on top of bar, inches per inch

Eo - unit strain at yield stress, inches per inch

- radius of curvature at any point, inches

eo - initial radius of curvature, inches

- angle of position, measured from fixed end,

degrees or radians

@1 " angle to whicn plastic region extends on

bottom or oar - degrees or radians

02 - same to top of oar
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Nomenclature

Numbers in parentneses refer to bibliography.
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ASSUMPTIONS

1. Transverse cross-sections or the bar originally

plane and normal to the center line ol the bar

remain so aiter Dending.

2. The material of which the bar is composea is

homogeneous and isotropic.



INTRODUCTION

The general fleld or the plastic oehavlor or

materials is or great importance since many common

raoricating processes are entirely dependent upon the

plastic properties or materials. The bending or curved

bars, in the plastic as well as in the elastic range,

is or great importance since many such elements are

used in structural engineering and electrical machinery,

walle others serve as essential machine parts. Conse-

quently, it is desired to know or the betavior or such

elements and to oe aole to predict the stress conditions

and tne derlection or such curved bars under various

loading conditions.
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PURPOSE

It is the purpose or tlhis tnesls to develop

analytical expressions ror stress distribution ana

ror deli'ection or a curved bar, whicn is Duiit in at

one end, of a length surriclent to rorm an are or 900,

and loaded by a single load at the Tree end, this load

being applied in the plane or0 curvature. (See Figure

I for the geometry or the curved bar.)



PREVIOUS CONTRIBUTIONS TO THE SUBJECT

Several contributions have been made to knowledge

of the general field of plastic behavior of materials by

various individuals. A great deal of the work of formu-

lating the laws of plastic behavior has been done by

NADAI (2, 5, 6, 7).

Murphy and Timoshenko (4, 11) have written textbooks

on the advanced theory of the mechanics of materials.

Both of these texts contain expressions for stress distri-

bution and deflection of a curved bar loaded in the plane

of curvature, but these expressions apply only within the

elastic range and for a stress-strain curve in which stress

is directly proportional to strain. WINSLOW and EDMONDS

(12) did considerable work on comparison of experimental

results with theoretical predictions but, again, this work

was only within the elastic range. HOGAN (3) developed

expressions for design purposes for stress distribution,

deflection angle of slope, and angle of twist in circular

cantilever beams loaded normal to the plane of curvature

under various load conditions; but these expressions also

hold only for the elastic region.

NADAI (7) has developed expressions for determining

the extent of the plastic region, the stress distribution,

and deflection of a bar subjected to plastic bending using

an idealized stress-strain curve and a curve accounting

for the effect of work hardening (somewhat idealized), but

these expressions apply only to a straight beam, not to an
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PREVIOUS CONTRIBUTIONS TO THE SUBJECT

initially curved bar.

So far as the author could determine, there have been

no publications of work on the plastic bending of a curved

bar.
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PR 0 0 EDURE

Three separate cases were considered. The case of a

bar with rectangular cross-section and an idealized stress-

strain curve, the case of a bar with rectangular cross-

section and an arbitrary stress-strain curve of the form

S~= ~O (~- , and the case of the bar with triangular

cross-section and an arbitrary stress-strain curve of the

form $ = -. ; these being hereafter referred to as

Case I, Case II, and Case III, respectively.

The first consideration was to determine a general

method and then apply it to each of these cases separately.

This is necessary since both the cross-section of the bar

and the stress-strain curve will affect the results

obtained. In fact, the results and their form are entirely

dependent on these two factors.

The method developed is simple in idea but very likely

to be unwieldy in execution. The method followed is:

(1) The use of the equilibrium condition, SSCA • ,

to determine the position of the neutral axis.

(2) The use of the equilibrium condition, M~ SS VA ,

to determine the bending moment in terms of the geometry of

the cross-section and the stress-strain curve.

(3) The combination of the bending moment expression

just derived and the stress-strain expression to obtain an

expression for stress distribution in terms of the bending

moment and the geometry of the cross-section.



PROCEDURE

(4) The determination of the expression, from

the bending moment expression derived in Step 2., and the

substitution of this term in the differential equation

This will give expressions for the stress distribu-

tion and deflection in general terms of M for the particu-

lar cross-section and stress-strain curve being considered.

These expressions must then be used to determine the stress

distribution equation and the deflection equation for the

geometry of the bar and the particular type of loading.

For the geometry and the loading considered in this

work, the steps to be followed are:

(5) The substitution of -P P, cos9 for M in the stress

distribution relation derived in Step 3.

(6) The substitution of -P ýcos9 for M in the differ-

ential equation derived in Step 4, and the solution of

the differential equation for the deflection in terms of

P and cose.

For each of the three cases, the extent of the plastic

region, the stress distribution on the plane of maximum

stress, and the deflection curve was determined for five

different loads, varying from that required for initial

yielding to that required for complete yielding (Case I)

or for extensive yielding (Cases I and II). The maximum

deflection versus load relation was determined for each

of the three cases.



DISCUSSION

Case I

For the geometry of the curved bar and the type of

loading considered (Figure 1), the stress distribution is

given by:

For the completely elastic beam,

For the partially plastic-partially elastic beam,

S = -So for y" y (y2

S -o for y' ( y y" (elastic portion)

S : So for y' ( y <Yl

I_ S.•ea4_,_ S:jl, __ _ P-..,

It is possible to combine the expression for stress

distribution and bending moment to eliminate y' and obtain

a new expression for stress distribution in the elastic

portion. This expression is:

_I-y

For the geometry of the curved bar and the type of

loading considered (Figure 1), the deflection equation is:

S UMMAR Y AND.



Summary and Discussion - Case I

For the completely elastic beam,

For the partially plastic-partially elastic beam,

for the partially plastic portion

\," E. + 4 c.

for the completely elastic portion

Several attempts were made to find an analytical solu-

tion to the differential equation given above. Unfortunately

all attempts met with no success. A solution may be made

by numerical integration by the method of successive approxi-

mations (1, 8, 9). This was done making use of the boundary

conditions that

e-) = 0 =o, = o

At the point where the partially plastic-partially

elastic and the completely elastic portions of the beam

meet, the constants of integration, C1 and C2 , may be

evaluated from the boundary conditions that

(t a
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Summary and Discussion - Case I

A question might well be raised as to the validity

of the expressions derived for this case since the position

of the neutral axis does not remain fixed but shifts from

its position at initial yielding to coincide with the hori-

zontal axis through the centroid at complete yielding.

In this particular case, with the depth of the beam small

in comparison with the radius of curvature, this neutral

axis shift is very small and therefore its effect is

negligible. For example, in the numerical case for which

results were calculated, this neutral axis shift was 0.002"

in an original radius of curvature of 10.248".

Case II

For the geometry of the curved bar and the type of

loading considered (Figure 1), the stress distribution is

given by:

For the geometry of the curved bar and the type of

loading considered (Figure 1), the deflection equation is:
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Summary and Discussion - Case II

4So 1ZT +

These expressions for stress distribution and de-

flection apply to both the completely elastic and the

partially plastic-partially elastic cases. The reason

for this is that the stress-strain curve applies to both

the elastic and plastic regions.

Case III

For the geometry of the curved bar and the type of

loading considered (Figure 1), the stress distribution

is given by:

4 -
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Summary and Discussion - Case III

For the geometry of the curved bar and the type of

loading considered (Figure 1), the deflection equation is:

S3 L ( + V

These expressions for stress distribution and deflection

apply to both the completely elastic and the partially

plastic-partially elastic cases. The reason for this is

that the stress-strain curve applies to both the elastic

and plastic regions.
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SUGGESTIONS FOP, FUTURE INVESTIGATION

Since this thesis covers only a very narrow range of

possibilities, future investigation could well be done in

this field by using different cross-sections (circular,

trapezoidal), various other stress-strain relations, other

boundary conditions (arcs greater or smaller than 900, bars

built in at both ends, bars simply supported), and other

conditions of loading (constant moment, uniformly distribu-

ted load, uniformly varying load, more than one concentrated

load, loading normal to the plane of curvature).

An investigation which should prove interesting would

be to determine the analytical expression for stress as a

function of strain for a particular material, derive the

stress distribution and deflection equations as was done

in this thesis, and compare the predicted results with

those obtained experimentally for a curved bar of the same

material having the same boundary and loading conditions.

This could be done with a number of materials and for a

variety of combinations of cross-sections, boundary

conditions and loading conditions.
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GENERAL PRELIMINARY

INVESTIGATION

Consider the general case

of a curved bar in bending

(elastic or plastic)
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There are six variables:

There are five equations:

e )

Therefore, ;= (9) can be found. EQtVAvr-o1V .

Deflection Equation

a

I//
i i

It has been shown (10)

that the solution of the follow-

ing differential equation will

yield the deflection equation.

zw _

, w .QuATION 10

Substituting Equation 9 in Equation 10, and solving

for \WI= A (e) will yield deflection equation of the bar.
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Case I

Consider a curved bar of rectanxular cross-section

with depth of beam small

in comparison with the radius of curvature

and an idealized stress-strain curve such as

Q
so

-- I

I

/I

I,
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For the Completely Elastic Condition (4)

S M eA1
A-

o M

Q0A E7_

EQ~vATtN I1

Equ%-TIOM Z.

EQVNTOQN 13

If the idealized stress-strain curve is assumed,

it is obvious that beyond the yield point the neutral

axis will shift toward the centroid of the cross-

section until at the point of complete yielding, the

neutral axis will coincide with the horizontal axis

passing through the centroid.

eo A
L
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Partial Plastic Yielding

41

-N.A.

Considering the elastic stress equation (Equation 12)

assume 5 in the elastic portion of the bar,

in which "a" and "a" are constants for the particular

section.

For the plastic portion,
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This expression is used to determine the position

of the neutral axis. A trial and error solution is

recommended since the expression is not readily solvable

by algebraic means. Care should be taken to insure

accuracy since the solution involves the small difference

of two comparatively large numbers.
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Calculations for the Specific Case (Figure 1)

I

M =- P e

Initial Yielding

From Equation 11

*o.0o 0
lo. ooO

R= o.?-•0 u

0= O. SoO 0

R&L 10.000

10. .4 8 11

From Equation 12 and using y = y' - Yl

.•SD x .500 XSoo L

, . --- O. o.0 1 0 o 8

004o-ooo1

So k N.8.

PO. 00 0 o 4 So 1B

-M-MM... ...... -So
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Secondary Yielding

From Equation 15

y1 a -0.248" or -o a 10.248"

From Equation 16a using y" z Y2 : 0.252"

Ms : -0.01058 So inlb

P : 0.001032 So lb

Complete Yielding

From inspection of the equilibrium condition,

Qo : 10. 250"

From Equation 16a or 16b using y' - y" : 0

Mc : -0.01562 So inlb

P : 0.001524 So lb

Stress Distribution

For any value of applied load up to that required

for initial yielding (P = 0.000984 So) and for the

elastic portion (completely so) of the curved bar, the

stress distribution is given by Equation 12.

For lrger values of applied load up to that

required for complete yielding, in any section which

has partially yielded, the stress is given in the

elastic portion by Equation 14, S = -S•o.i• -

and in the plastic portion by So for -y and by -So

for ~y.



35

Deflection Equations
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NiK <M <M'

o (e (e, ~.q ON i• Aeppi.,mrE

EA__i. + w .es con 13o...

Strictly, Equation 17 applies only 0 < < 82, and

Equation 13 applies only G1 < @( -- , leaving the small

range @2 < 8 < 91. For this range there would be a new

expression. However, since for the case under considera-

tion, ie, a thin bar with large curvature, the difference

between Mi and Ms is very small and consequently the

difference between 81 and @2 is very small. This small

difference can be neglected for Equation 17 will extend

over this region with sufficient accuracy.

Several attempts were made to find an analytical

solution to Equation 17a. Unfortunately, no success was

met with. Accordingly, the equation was solved by

numerical integration using the method of successive

approximations (1, 8, 9).
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The general solution for Equation 13a is

=0 c w 0- O

I deWz \A Aw

The four constants of integration may be determined

from the boundary conditions as stated above. Thus the

complete deflection curve may be determined; by numerical

integration from 0 to e1 and by substitution in Equation

13a (after evaluation of the integration constants) from

81 to ,
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CASE I

INITIAL YIELDING

(y' = -0.248")

M a -0.01008 So in lbs

P = 0.000984 So lbs

fow 10.248 in

Extent of Plastic Region

There is no plastic region.



Case I - Initial Yielding

Stress Distribution

on Plane of

Maximum Stress

psi

-0.968 So

-0.772 So

-0.582 So

-0.390 So

-0.196 So

0

0.198 So

0.397 So
0.599 So

0.803 So

1.000 So

Deflection Curve

Y

inches

0.252

0.200

0.150

0.100

0.050

0

-0.050

-0.100

-0.150

-0.200

-0.248

e
radians

0

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1. 5708

39

w

inches

0

0.203 .

0.808 e.

1.802 e.

3.166 lo

4.873 Ea

6.886 .o

9.166 E~

11.66 E.

14.33 E.

17.10 F.

19.93 E.

22.74 E.

25.46 E.

28.04 E•

30.41 Eo

31.93 eo



40

CASE I

YIELDING TO ONE QUARTER OF DEPTH OF BEAM

(y' a -0.186")

M = -0.01267 So in lbs

P = 0.001236 So lbs

Eo= 10.248 in

Extent of Plastic Region

Y' y" 8

in ches in ches degrees

-0.186 0.191 0

-0.190 0.197 9024'

-0.200 0.208 16028'

-0.220 0.230 25046'

-0.230 0.241 29045'

0.252 33023'

-0.248 37017'
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Case I - Yielding to One-quarter of Depth of Beam

Stress Distribution

on Plane of

Maximum Stress

y

inches

0.252

0.200

0.191

O.150

0.100

0.050

0

-0.050
-0.100

-0.150
-0.186

-0.200

-0.248

S

psi

-1.000

-1.000

-1.000

-0.780

-0.523
-0.263

0

0.265

0.533

0.804

1.000

1.000

1.000

So

So

So

So

So

So

Deflection Curve

9
radians

O

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.5708

So

So

So

So

So

So

w

inches

0

4.818 e.

19.13 ~o

42.50 E.

74.29 E.

113.7 Em

159.7 Eo

210.7 Fo

260.8 P.

308.6 e,

353.6 F.

395.4 Ea

433.5 E.

467.4 Eo

496.8 E.

521.3 e.

535.6 Ea
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CASE I

YIELDING TO

M

P -

Qo:

ONE-HALF OF DEPTH OF BEAM

(y' = -0.124")

-0.01431 So in lbs

0.001396 So lbs

10.249 in

Extent of Plastic Region

y I

inches

-0.124

-0.132

-0.150

-0.175

-0.200

-0.225

yn"

inches

0.127

0.136

0.154

0.181

0.208

0.235

0.251

-0.249

9-
degrees

0

906 '

16056 '

24054'

31053'

38026 '

420191

45013'
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Case I - Yielding to One-half of Depth of Beam

Stress Distribution

on Plane of

Maximum Stress

inches psi

0.251 -1.000 S<

0.200 -1.000 S5

0.150 -1.000 Sc

0.127 -1.000 S(

0.100 -0.789 S(

0.075 -0.593 Sc

0.050 -0.396 Sc

0.025 -0.199 Sc

0 0

-0.025 0.200 So

-0.050 0.400 So

-0.075 0.602 So

-0.100 0.805 So

-0.124 1.000 So

-0.150 1.000 So

-0.200 1.000 So

-0.249 1.000 So

Deflection Curve

radians

0

0.100

0.200

0.300

0.400

0.500

0.600

0.700
0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.5708

inches

0

7.206 C.

28.39 4.

62.35 G.

107.6 E.

162.4 -o

225.0 to

293.9 £o

367.6 E.

440.7 to

509.7 -

574.0 .

632.8 E.

685.5 e.
731.5 &.

765.4 c.

793.2 E.

6

3

3

3
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CASE I

YEILDING TO THREE-QUARTERS OF DEPTH OF BEAM

(y = -0.062")

M = -0.01530 So in lbs

P = 0.001493 So lbs

Qo = 10.250 in

Extent of Plastic Region

inches

-0.062

-0.100

-0.150

-0.200

y" I
inches

0.063

0.102

0.154

0.208

0.250
-0.250

9

degrees

0

14059'

26031'

37022'

46015 '

48047'
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Case I - Yielding to Three-quarters of Depth of Beam

Stress Distribution

on Plane of

Maximum Stress

Y

inches

0.250

0.200

0.150

0.100

0.063

0.050

0.025

0

-0.025

-0.050

-0.062

-0.100

-0.150

-0.200

-0.250

psi

-1.000

-1.000

-1.000

-1.000

-1.000

-0.797

-0.400

0

0.401

0.805

1.000

1.000

1.000

1.000

1.000

So

So

So

So

So

So

So

Deflection Curve

e
radians

0

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.5708

so

30

30

So

30

so

w

inches

0

14.26 Z.

54.32 Eo

114.8 ýo

190.8 e.

278.4 E.

374.4 Eo

476.3 Eo

581.8 Ec

688.2 Ea

788.9 Es

882.0 E.

966.7 E,

1042 ~.

1107 E.

1161 E.

1192 Et
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CASE I

COMPLETE YIELDING

(y' : y" : 0)

KE: -0.01562 So in lb

P : 0.001524 So lb

e, : 10.250 in

Extent of Plastic Region

y l

inches

0.051

0.102

0.154

0.208

0.250

9

degrees

0

90141

18054'

28048 '

38053 '

47022 '

49049 '

inches

-0.050

-0.100

-0.150
-0.200

-0.250
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Case I - Complete Yielding

Stress Distribution

on Plane of

Maximum Stress

inches

0.250

0.200

0.150

0.100

0.050

0

0

-0. 050

-0.100

-0.150

-0.200

-0.250

psi

-1.000

-1. 000

-1.000

-1.000

-1.000

-1.000

1.000

1.000

1.000

1.000

1.000

1.000

Deflection Curve

radians

0So

So

So

So

So

So

any other

value

So

So

So

30

So

w

inches

0
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Case I

Maximum Deflection

Wmax

lbs

0

0.000492

0.000984

0.001236

0.001396

0.001493

0. 001524

inches

0

15.96 .,

31.93 E.

535.6 E.

793.2 Eo

1192 eo

So

So

So

So

So

So
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-•.

FI GURE .

EXTENT OF PLASTIC REGION

STRESS DISTRIB'TION

ON PLANE OF MAX. STRESS

CASE 3
p = 0.o000 84 So
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PLASTIC

PLASTIt

2

.2.00

.100 1*-

w

STRESS

0 0

U.

I-. too Z

0.,

M-6.e

FIGURE 3

EXTENT OF PLASTIC REGION

STRE3S DISTRIBUTION
ON PLANE OF MNA. STRES5

CASE I

P= 0.00,1 36 So

J
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PLAST IC

-S.

P = 0.00 o 31 6 So

.aoo.•00-

.100 J

it

2

0

-e0

IL

- .100 u

1-

FIG URE 4

EXTENT OF PLASTIC REGION

STRESS DI3TR~IUTION
ON PLANE OF MiPAX.

CASE r

S"TR E SS
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FI

EXTENT OF

3TRESS

GVURE 5

PLASTIC REGION

DO STRI BUTION
ON PLANE OF MAK. STI

CASE T
P= 0.001433 So

.too

.J
.100 *

I-.

STRESS
0

I.L

w

-. 100 0

D
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FIQURE 6

EXTENT OF PLASTIC REGION

STRESS DISTRIBUT ION

ON PLANE OF MAX.

CASE T

5TRE SS

P = 0.00 t S,4 So

.aoo _
I

UJ,

.J.?00
.100 z

STRESS

00

IL

-. 0OO t

tu

0

-. 00oo
I--0
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1000 fo

7 SOfo

2z
S500e

o

150 (*

O
o .4 .8

0-ANGLE FRO \ FIXED END - RADIANS

~ 0.00(4 9 s So

6 5o

P=0.000 84 So0
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Case II

Consider a curved bar of rectangular cross-section

with depth of beam small

in comparison with the radius of curvature

and a stress-strain curve of the form

s-s. ~ EO)1
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0
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j.t. 4AU-[

- oi 4."

EQUATIoN 13

Using absolute values, Equation 19 becomes

This expression is used to determine the position

of the neutral axis. A trial and error solution is

recommended since the expression is not readily solvable

by algebraic means.
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Using absolute values, Equation 20 becomes

1\A So Ir eo

EQ T TLoN 2-0 .

Care must be taken' to use a high degree of

accuracy when evaluating the expression in Equation

20 (or 20a) contained in the brackets since it

involves the very small difference of two compara-

tively large numbers.

M'IS--

6quamoN 2i.

When using Equation 21, the + signs apply to +

values of y, the - signs to - values of y.
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Calculations for the Specific Case (Figure I)

/

M ~-.-P , ~

A trial and error solution

of Equation 19a yields the

result that

b = 0.250"

h = 0.500"

Ro - 10.500"

Ri - 10.000"

Qo 10.249"

By the substitution of M = -PC cos@ in Equation 21

--' Pe,,, w~·P

Equation 21a
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Evaluating

Initial Yielding

From Equation 21a, S z So, y - y' = yl

Mi = -0.01250 So in-lb

P - 0.001220 So lb

Secondary Yielding

From Equation 21a, S = -So, y - y" = 72

Ms = -0.01276 So in-lb

P = 0.001245 So lb

Complete Yielding

From Equation 21a, S = So, y = y' a y" = 0

Mc = - 00 in-lb

P oO lb

Stress Distribution

The stress distribution at any angle e from 0 to •

for any load P from 0 to oO is given by Equation 21a.

This applies to both the elastic and plastic regions

since the stress-strain curve also applies to both the

elastic and plastic regions.



Deflection Equation

Substitution of M a -P (c os6 and

in Equation 22 yields

P "z 4c~ o oL

45"f o c~: ,.9;

eom = coaZ t +'
z

+l0

FR IF )]rR,ý )]

Complementary Solution

W = C A% C eC 9

Particular Solution

- U9*

General Solution

W 39 Act aw 09e - a e (C-I)S

Boundary Conditions

va0u iN = 0, nd =0

Evaluation of 0l and C2
0 

3
c f P(b Ir

r 
R

3 .+ cate+
o 3 3

Equation 23

64
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This deflection equation (Equation 23) applies

for all values of P from 0 to oO , ie, it applies over

both the elastic and plastic regions. The sign of the

deflection must be the same as that of the bending

moment before the moment term is squared and substituted

in Equation 22.
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CASE II

INITIAL YIELDING

(y' = -0.249)

M = -0.01250 So in lbs

P = 0.001220 So lbs

. = 10.249 in

Extent of Plastic Region

There is no plastic region.



Initial Yielding

Stress Distribution

on Plane of

Maximum Stress

inches

0.251

0.200

0.150

0.100

0.050

0.040

0.030

0.020

0.010

0

-0.010

-0.020

-0.030

-0.040

-0.050

-0.100

-0. 150

-0.200

-0.249

psi

-0.980

-0.877

-0.761

-0.623

-0.442

-0.395

-0.342

-0.280

-0.198

0.198

0.280

0.343

0.397

0.444

0.629

0.772

0.894

1.000

So

So

So

So

So

So

So

So

So

Deflection Curve

radians

0

0.100

0.200

0.300

0.400

0.500

o.600oo

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400
1.500

1. 5708

So

So

So

So

So

So

30

3So

So

w

inches

0

1.027 Co

4.075 6.

9.055 e.

15.85 e.

25.84 Ea

33.85 E.

44.60 E.

56.11 E.

68.00 f.

80.11 Eb

91.97 Ea

103.3 Ea

113.9 E

123.6 Eo

132.0 Co

137.2 ~.

Case II -

67
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CASE II

YIELDING TO ONE-FIFTH OF DEPTH OF BEAM

(y' - 0.200)

M = -0.01398 So in lb

P = 0.001364 So lb

co = 10.249 in

Extent of Plastic Region

inche s

-0.200

-0.209

-0.215

-0.230

inches

0.208

0.218

0.224

0.241

0.251

-0.249

e
degrees

0

120 6'

15028 '

21024'

240 9'

26037 '
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Case II - Yielding to One-fifth of Depth of Beam

Stress Distribution

on Plane of

Maximum Stress

inches

0.251

0.200

0.150
0.100

0.050
0.040

0.030

0.020

0.010

O0

-0.010

-0.020

-0.030

-0.040

-0.050

-0.100

-0.150

-0.200

-0.249

psi

-1.096

-0.981

-0.851

-0.697

-0.494

-0.442

-0.383

-0.313

-0.221

0

0.222

0.313

0.384

0.444

0.496

0.704

0.864

1.000

1.118

So

So

So

So

So

So

So

So

So

Deflection Curve

radians

0

0.100

0.200

0.300

0.400

0.500

o0.60o

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1. 5708

So

So

3o

So

So

So0

So

So
So

inches

1.285 E.

5.098 4e

11.33 Co

19.83 E.

32.33 Eo

42.35 E,

55.80 E.

70.20 4e

85.07 f.

100.2 E4

115.1 Eo

129.3 Eo

142.6 Eo

154.6 C.

165.2 Eo

171.7 E.
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CASE II

YIELDING TO

FM

TWO-FIFTHS OF DEPTH OF BEAM

(y' - -0.150")

-0.01618 So in lb

0.001579 So lb

10.249 in

Extent of Plastic Region

Y

inches

-0.150

-0.155

-0.164

-0.180

-0.209

-0.230

7"

inches

0.154

0.160

0.169

0.187

0.218

0.241

0.251

-0.249

8

degrees

0

10026'

170 7'

24017'

32022'

36027'

37059 '

39026 '
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Case II - Yielding to Two-fifths of Denth of Beam

Stress Distribution

on Plane of

Maximum Stress

inches

0.251

0.200

0.150

0.100

0.050

0.030

0.020

0.010

0

-0.010

-0.020

-0.030

-0.040O

-0.050O

-0.100

-0.150

-0.200

-0.249

psi

-1.269

-1.135

-0.985

-0.807

-0.572

-0.512

-0.443

-0.362

-0.256

0

0.256

0.363

0.445

0.514

0.574

0.814

1.000

1.158

1.295

So

So

So.

So

So

So

So

So

So

Deflection Curve

radians

0

0.100

0.200

0.300

0.400

0.500o

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1. 5708

So

So

So

So

So

So

So

So

So

inches

0

1.722 4o

6.832 E.

15.18 Co

26.57 Ea

43.32 .4

56.75 Ea

74.78 Eo

94.07 Co

114.0 Co

134.3 Ea

154.2 Ea

173.2 4E

191.0 E.

207.2 4o

221.3 Ea

230.0 Ea
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CASE II

YIELDING TO THREE-FIFTHS OF DEPTH OF BEAM

(y' = -0.100")

M - -0.01987 So in lb

P = 0.001939 So lb

e = 10.249 in

Extent of Plastic Region

inches

0.102

0.112

0.128

0.155

0.210

0.251

y

inches

-0.100

-0.110

-0.125

-0.150

-0.200

9

degrees

0

17038'

26027'

35028'

45017'

500 4#

510 1'-0.249
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Case II - YieldinE to Three-fifths of Depth of Beam

Stress Distribution

on Plane of

Maximum Stress

Y

inches

0.251

0.200

0.150

0.100

0.050

0.040

0.030

0.020

0.010

O0

-0.010

-0.020

-0. 030

-0.040

-0.050

-0.100

-0.150

-0.200

-0.249

Deflection Curve

radians

0

0.100

0.200oo

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.5708

inches

0

2.595 fo

10.28 e,

22.88 do

40.06 e.
65.31 E.

85.55 Eo

112.7 6o

141.8 Eo

171.8 Cc

202.4 4.

232.4 E6

261.2 Eo

288.0 E.

312.3 Co

326.0 .

346.7 E,

psi

-1.558 So

-1.394 So

-1.210 So

-0.990 So

-0.702 So

-0.628 So

-0.544 So

-0.445 So

-0.314 So

0

0.315 So

0.445 So

0.546 So

0.631 So

0.705 So

1.000 So

1.228 So

1.421 So

1.590 So



CASE II

YIELDING TO FOUR-FIFTHS OF DEPTH OF BEAM

(y m -0.050")

M -0.02817 So in lb

P : 0.002749 So lb

o4= 10.249 in

Extent of Plastic Region

y' yt"

inches inches degrees

-0.050 0.051 0

-0.053 0.054 13048'

-0.058 0.059 21056'

-0.066 0.067 29035'

-0.075 0.076 35022'

-0.100 0.102 450 8'

-0.150 0.155 54°56'

-0.200 0.210 60015'

0.251 630 4'

-0.249 63040'
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Case II - Yielding to Four-fifths of Depth of Beam

Stress Distribution

on Plane of

Maximum Stress

y

inches

0.251

0.200

0.150

0.100

0.050

0.040

0.030

0.020

0.010

0

-0.010

-0.020

-0.030

-0.040

-0.050

-0.100

-0.150

-0.200

-0.249

S

psi

-2.208

-1.976

-1.715

-1.404

-0.995

-0.391

-0.772

-0.630

-0.446

0

0.446

0.632

0.774

0.3894

1.000

1.418

1.741

2.015

2.254

So

So

So

So

So

So

So

So

So

Deflection Curve

9

radians

0

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.5708

3So

So

So

30

So

SoSo

So

inches

0

5.216 e.

20.70 e.

45.99 E.

80.51 e.

131.3 C.

172.0 e.

226.5 4o

285.0 Co

345.4 Eo

406.9 Eo

467.1 E.

524.9 e.

578.8 Eo

627.6 L.

670.5 &.

696.9 E
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Case II

Maximum Deflection

P Wmax

lbs inches

0 0

0.0002 So 3.689 1.

0.0004 So 14.76 Co

0.0006 So 33.20 E.

0.0008 so 58.29 C.

0.0010 So 92.23 Eo

0.0012 So 132.8 C.

0.0014 So 180.4 Eo

0.0016 So 236.1 e.

0.0018 So 298.8 E.

0.0020 So 368.9 Eo

0.0022 So 446.4 E.

0.0024 So 531.2 Eo

0.0026 So 623.5 E-

0.0028 So 723.1 c.

0.0030 So 830.1 eo
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Case III

Consider a curved bar of triangular cross-section

with depth of beam small

in comparison with the radius of curvature

and a stress-strain curve of the form

5S1E.
•---Fo
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Using absolute values, Equation 24 becomes

+ Ae 
r ,-e A)

Q0

Eq UQAT I~ON•9..

This expression is used to determine the position

of the neutral axis. A trial and error solution is

recommended since the expression is not readily solvable

by algebraic means.
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Using absolute values, Equation 25 becomes

Care must be taken to use a high degree of

accuracy when evaluating the expression in Equation

25 (or 25a) contained in the brackets since it

involves the very small difference of two compara-

tively large numbers.

EQUATLON 2

When using Equation 26, the signs apply to

values of y, the - signs to - values of y.
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From Equation 25a

A_ a~•

V

Substituting in Equation 10

EQ AT oN 2.7

A w 4 lW
Q0 "  E0.

5r--0. v O
_ 

Co

asd: 3,' · a+S, se4 8

Ueai. s

eC.-Q
3

If - ?

reo 4rl r'R.4

m.

e ",- f , Ty r -ýFRO

c~a~-~~s~s~r3+:Lrsdii·--O Yi,



92

Calculations for the Specific Case (Figure 1)

M -Pt 0co

A trial and error solution

of Equation 24a yields the

result that

b = 0.025"

h = 0.500"

Ro = 10.500"

Ri = 10.000"

Q0 = 10.165"

By the substitution of M = -P tocos9 in Equation 26

+( \2z 2 5 k
E QVNT oN Z6o4L
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Evaluating

Initial Yielding

From Equation 26a, S : -So, y : y" : y2

Mi : - 0.01120 So in-lb

P : 0.001102 So lb

Secondary Yielding

From Equation 26a, S : So, y : y' " Y1

Ms : -0.01557 So in-lb

P = 0.001532 So lb

Complete Yielding

From Equation 26a, S : So, y - y' : y" : 0

Mc = - oo in-lb

P o lb

Stress Distribution

The stress distribution at any angle 9 from 0 to i

for any load P from 0 to cO is given by Equation 26a.

This applies to both the elastic and plastic regions

since the stress-strain curve also applies to both the

elastic and plastic regions.
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Deflection Equation

Substitution of M = -PtocosS and oe

in Equation 27 yields

Complementary Solution

Patt c, 4e o o e

Particular Solution

- P 0 ?. Eo ( :3

+ a *4AV lebl

a.~ ~ ~ ~ 1 AL 6 ofA 3 -~vz,CR L \y l .s -2 (2 2.
+

4+ : ,v
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General Solution

Ck 3
\N C +A e 4Cace Lz3

gar o 
co4co

+

+ 7\

Boundary Conditions

eo), \N = O

Evraluation of C, and C2

C, = 0

3 t~a E0
dow 0 - -

+ ac V~z3:t j~i I512 R O r

-i~~h4~ s+s~

l-e OJ ae
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Equation 28

This deflection equation (Equation 28) applies

for all values of P from 0 to O , le, it applies over

both the elastic and plastic regions. The sign of

the deflection must be the same as that of the bend-

ing moment before the moment term is squared and

substituted in Equation 27.
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CASE III

INITIAL YIELDING

(y" z 0.335")

M a -0.01120 So in lb

P = 0.001102 So lb

o = 10.165 in

Extent of Plastic Region

There is no plastic region.
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Case III - Initial Yielding

Stress Distribution

on Plane of

Maximum Stress

inches

0.335

0.300

0.250

0.200

0.150

0.100

0.050

0.040

0.030

0.020

0.010

O0

-0.010

-0.020

-0.030

-0.040

-0.050

-0.100

-0.150
-0.165

psi

-1.000

-0.948

-0.867

-0.778

-0.675

-0.553

-0.392

-0.351

-0.304

-0.248

-0.176

0

0.176

0.249

0.305

0.352

0.394

0.558

0.685

0.719

So

So

So

So

So

So

So

So

So

So

So

Deflection Curve

radians

0

0.100

0.200

0.300o

0.400

0.500

0o.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.5708

So

30

So
30

So

So

So

inche s

0

0.795 Co

3.154 o.

7.010 e.

12.24 E.

19.55 C.

26.20 ,.

34.52 Em

43.43 i.

52.63 E.

62.01 Eb

71.19 Eo

79.99 E.

88.20 ~.

95.64 E.

102.2 C.

106.2 E,
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CASE III

YIELDING TO ONE SIXTH OF DEPTH OF BEAM (ON TOP)

(y" = 0.255")

M4 -0.01278 So in lb

P = 0.001258 So lb

o•= 10.165 in

Extent of Plastic ReRion

y"

inches

0.255

0.260

0.265

0.275

0.300

0.335

e

degrees

0

7052 '

110 4'

15027 '

22029 '

28051 '
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Case III - Yielding to One-sixth of Depth of Beam

Stress Distribution

on Plane of

Maximum Stress

)

2

2

)

)

)

)

Deflection Curve

S

inches psi

0.335 -1.142 Sc

0.300 -1.082 Sc

0.250 -0.990 Sc

0.200 -0.888 Sc

0.150 -0.771 Sc

0.100 -0.631 Sc

0.050 -0.447 Sc

0.040 -0.400 Sc

0.030 -0.347 Sc

0.020 -0.283 Sc

0.010 -0.200 Sc

0 0

-0.010 0.201 So

-0.020 0.284 So

-0.030 0.348 So

-0.040 0.402 So

-0.050 0.449 So

-0.100 0.637 So

-0.150 0.782 So

-0.165 0.821 So

inches

0

1.036

4.112

9.138

15.96

25.43

34.16

45.01

56.62

68.62

80.84

92.81

104.3

115.0

124.7

1 3,3 2

radians

0

0.100

0.200

0.300

0.400

0.500

0.600oo

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.5708 138.5 i
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CASE III

SECONDARY YIELDING

(y' -0.165", y" = 0.171")

M = -0.01557 So in lb

P = 0.001532 So lb

e,: 10.165 in

Extent of Plastic Region

v" e

degreesinche s

0.171

0.175

0.185

0.200

0.250

0.300

0.335

90 7'

160 6'

22022 '

340 0'

400 391

440 1'
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Case III - Secondary Yielding

Stress Distribution

on Plane of

Maximum Stress

inche s

0.335

0.300

0.250

0.200

0.150

0.100

0.050

0.040

0.030

0.020

0.010

O

-0.010

-0.020

-0.030

-0.040

-0.050

-0.100

-0.150

-0.165

psi

-1.391

-1.318

-1.206

-1.081

-0.939

-0.786

-0.545
-0.487

-0.422

-0.345

-0.244

0

0.244

0.346

0.424

0.489

0.547

0.794

0.953

1.000

So

So

So

So

So

So

So

So

So

So

So

Deflection Curve

radians

0

0.100

0.200

0.300

0.400

0.500
0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.5708

So

So

So

So

So

So

So

So

inches

0

1. 537 E.

6.099 E.

13.55 Eo

23.68 ~.

37.71 E.

50.67 ,.

66.76 E.

83.98 ~.

101.8 Eo

119.9 ~.

137.7 e.

154.7 Eo

170.5 E.

184.9 Eo

197.65 .

205.4 e.



103

CASE III

YIELDING TO ONE-HALF OF DEPTH OF BEA•M (ON TOP)

(Y" 1 0.110")

M = -0.01933 So in lb

P = 0.001902 So lb

q,• 10.165 in

Extent of Plastic Region

inches

-0.108

-0.113

-0.122

-0.146

-0.165

inches

0.110

0.115

0.125

0.150

0.175

0.200

0.250

0.300

0.335

degrees

0

11059'

200 9'

30054'

36021'

37019'

41051'

480 6'

52020'

54036'
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Case III - Yielding to One-half of Depth of Beam (On Top)

Stress Distribution

on Plane of

Maximum Stress

y

inches

0.335

0.300

0.250

0.200

0.150

0.100

0.050

0.040

0.030

0.020

0.010

0

-0.010

-0.020

-0.030

-0.040

-0.050

-0.100

-0.150

-0.165

S

psi

-1.726

-1.636

-1.497

-1.343

-1.165

-0.932

-0.676

-0.605

-0.524

-0.428

-0.303

0

0.303

0.429

0.526

0.607

0.680

0.963

1.183

1.241

So

So

So

So

So

So

So

So

So

So

So

Deflection Curve

e

radians

0

0.100

0.200

0.30o0

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

1.200

1.300

1.400

1.500

1.5708

So

So

So

3SoSo

So

So

So

inches

0

2.369 4o

9.400 L

20.89 Eq

36.49 E,

58.12 E.

78.09 E.

102.9 Eo

129.4 E.

156.9 ,

184.8 eo

212.2 Ea

238.4 to

262.9 Ea

285.0 4a

304.5 Ea

316.5 EO
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CASE III

YIELDING TO SIX-TENTHS OF DEPTH OF BEAM (ON TOP)

(y" - 0.050")

M - -0.02859 So in lb

P - 0.002812 So lb

te: 10.165 in

Extent of Plastic Region

y

inches

-0.050

-0.054

-0.064

-0. 074

-0.098

-0.146'

-0.165

inches

0.050

0.055

0.065

0.075

0.100

0.150

0.200

0.250

0.300

0.335

e
degrees

0

17030 '

28038'

35010 '

44052'

54032'

570 o'

59046'

630 91

65036 '

66056'



106

Case III - Yielding to Six-tenths of Depth of Beam (On To)

Stress Distribution

on Plane of Deflection Curve

Maximum Stress

y S 9 w

inches psi radians inches

0.335 -2.553 So 0 0

0.300 -2.420 So 0.100 5.181 Za

0.250 -2.214 So 0.200 20.56 e.

0.200 -1.986 So 0.300 45.69 Ea

0.150 -1.724 So 0.400 79.81 4.

0.100 -1.411 So 0.500 127.1 Eo

0.050 -1.000 so 0.600 170.8 E.

0.040 -0.895 so 0.700 225.0 E.

0.030 -0.775 So 0.800 283.1 E.

0.020 -0.633 So 0.900 343.1 &.

0.010 -0.448 So 1.000 404.2 Co

0 0 1.100 464.0 Cc

-0.010 0.449 So 1.200 521.4 Co

-0.020 0.635 So 1.300 574.9 Ea

-0.030 0.778 So 1.400 623.4 ea

-0.040 0.898 So 1.500 666.1 4

-0.050 1.005 So 1.5708 692.3 e.

-0.100 1.425 So

-0.150 1.749 So

-0.165 1.836 So
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Case III

Maximum Deflection

P Wmax

lbs inches

0 0

.0002 So 3.501 4.

.0004 So 14.00 e.

.0006 So 31.51 E.

.0008 So 55.32 C.

.0010 So 87.53 E.

.0012 So 126.0 C.

.0014 So 171.6 EO

.0016 So 224.1 E.

.0018 So 283.6 Ea

.0020 So 350.1 C~

.0022 So 423.6 E.

.0024 so 504.2 E.

.0026 So 591.7 E.

.0028 so 686.2 C.

.0030 So 787.8 ~,
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*NOTES ON INTEGRATIONe

Integration of Equation 17a

. ÷ , •  =  - o °Peaoe

This differential equation was integrated by the

method of successive approximations using an interval

in e of 0.02 radians, which is an interval of very

slightly over 10,. The three point method was chosen.

The basic reason for this choice was that since some

approximations had been made at various points in

arriving at the equation which was being integrated

the accuracy was not sufficient to warrant the use of

four or five point integration. Use was made of the

integrating ahead coefficients to predict points in

advance. The coefficients for three point integration

are: o A

0.41667 -0.08333 0.41666

0.66666 0,.66666 -1.33333

-0o08333 0.41667 1.91667

At 9 = 91, the equation

W C 1 e

becomes effective. The constants, 01 and 02, are

evaluated from the boundary conditions that when
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9 e1 l, w = w', dw/de a dw'/de.

For the case where P = 0.001236 So lb, 91 = 37 17'

which is 0.65 radians.

From numerical integration

w a -184.99 4.

dw/de = -518.03E.

Evaluation of Cl and 02

C1 - -495.44 Eo

02 : 156.88 E.

For the case where P = 0.001396 So lb, e1  45 13'

which is 0.79 radians.

From numerical integration

w : -360.05 ~o

dw/de = -752.02 o

Evaluation of C1 and C2

C1 = -747.86 eo

02 = 266.22 Eo

For the case where P = 0.001493 So lb, e1  48 47'

which is 0.85 radians.

From numerical integration

w = -635.30 C°

dw/de = -1072.5 £E

Evaluation of C1 and 02

C1 z -1143.6 EC

02 z 369.01 Eo
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Integration of Certain Integrals in Cases I and II

Integrals containing terms of the form (o ý)

can be readily integrated by substitution. For example,

consider

This new integral is of a form which can be readily

integrated by the use of any set of integral tables.


