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Abstract
In this thesis a pre-trip demand simulator with predictive capabilities and explicit

simulation of the response of the travelers to real-time pre-trip information is proposed
and implemented. The demand simulator is an extension of conventional OD estimation
models aimed at overcoming their inability to explicitly capture the effect of information
on demand. This is achieved by explicitly simulating driver behavior in response to both
descriptive and prescriptive information at the disaggregate level.

The true demand can be constructed from the historical with the addition of two
systematic deviations -the effect of information in the demand and the daily demand
fluctuations- and a random error. Conventional OD estimation models do not take
explicitly into account the first systematic deviation and, hence, their estimation accuracy
may be limited. In the proposed demand simulator, the systematic component of the
deviation that is due to the available information is captured by a set of disaggregate
behavioral models which update the historical demand. The OD estimation uses the
updated OD matrix, instead of the historical OD matrix itself, as a starting point to
compute an estimated OD matrix consistent with the observed link counts.

A series of case studies are performed to illustrate some of the capabilities and
assess some of the properties of the demand simulator, as well as investigate some of its
potential shortcomings. Furthermore, a framework that can be used for a more
comprehensive evaluation of the demand simulator is presented.
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1. Introduction

Road traffic congestion and all the side-effects it has on the environment,

productivity and mental state of the people, is one of the leading problems of cities today.

Congestion steadily increases and the conventional approach of building more roads is

faced with skepticism for a variety of political, economic, social, and environmental

reasons. The realization that the existing terrestrial infrastructure can indeed perform

better than it is doing at present, as a result of better utilization, led to the Intelligent

Transportation Systems (ITS) initiative, which was introduced in the late 80s as

Intelligent Vehicle Highway Systems (IVHS). For an overview of ITS, the reader is

referred to Sussman (1992).

ITS is a broad term used to describe a variety of advanced technologies in the

areas of advanced communication, computers, information display, road infrastructure,

traffic control systems and advanced vehicle control systems. It envisages the

development of a Dynamic Traffic Management System that would, in real-time, attempt

to improve capacity utilization by:

* Providing both pre-trip and en route information to motorists with respect

to optimal paths to their destinations, and

* Using advanced traffic control systems that are adaptive to rapidly

changing traffic conditions in real-time.

Congestion management measures can be categorized as either demand-based or

supply-based. Supply-based measures are intended to increase the existing capacity of the

system in order to improve the traffic flow for all modes. These measures include signal

control improvements, incident management and preferential treatment of high

occupancy vehicles (HOV) and public transit vehicles. Incident management refers to the

necessary actions that need to be taken in real time to mitigate the effect of an incident on

the network and alleviate the congestion that it may generate. The area of ITS that deals

with these traffic management schemes is called Advanced Traffic Management Systems

(ATMS).

Demand-based measures, on the other hand, are designed to reduce car demand on

the system by increasing vehicle occupancy and public transit share, distributing the

travel demand over time (peak spreading) and distributing the travel demand more

uniformly on the traffic network. Demand-based systems rely heavily on the availability



of reliable, real-time information about the traffic conditions in the network. Collected

information, such as current travel times and speeds on links, can be used as is or as the
basis for the calculation of more complex information, such as the shortest path for a
given origin-destination (OD) pair. These systems can improve the information available

to the travelers by updating them about current and anticipated conditions on the roadway

and transport network in general, and providing route guidance, using a variety of audio

and visual means, both in-vehicle and on the roadway and other transport facilities. The
disseminated information assists the individual travelers in decisions about their travel

patterns.

A particular sort of demand-based measures take advantage of technological
advancements, such as Advanced Traveler Information Systems (ATIS), for the faster and
more effective dissemination of real-time information to travelers. Information can be
provided either in the pre-trip stage or en route. Pre-trip information can be used by the
travelers for departure time, route and mode choice. Furthermore, the travelers may
decide to change their destination or cancel the trip altogether in response to pre-trip
information. On the other hand, the effect of information available en route is usually
restricted to subsequent route switching decisions. Nevertheless, it is theoretically
possible to have mode choice made en route, e.g. in the case of a driver deciding to use a
park-n-ride facility and switch to transit for the remainder of the trip, instead of driving.

A desirable feature of such ATMS and ATIS efforts is the ability to predict future
traffic, since without projection of traffic conditions into the future, control or route
guidance strategies are likely to be irrelevant and outdated by the time they take effect. In
predicting traffic, however, it is essential that the effect of the provided information and
guidance on travelers' travel decisions and, consequently, the network's traffic conditions
is captured. Otherwise, the information and guidance will not be reliable.

In this thesis, a pre-trip demand simulator which captures the effect of information
on estimating and predicting future roadway traffic demand is designed and implemented.
The simulator uses disaggregate behavioral models to predict the drivers' travel behavior
in response to real-time pre-trip information, and an aggregate OD estimation and
prediction model.

1.1 Background

A congestion management tool that has been under investigation over the past
years is Dynamic Traffic Assignment (DTA). A DTA system uses historical and real-time
information to estimate and predict traffic and, consequently, provide travel information



and guidance. Real-time information about the traffic conditions on the network is

essential in the performance of a DTA system, since this is the base of the generated

guidance. In addition of being a necessary element of ATIS, DTA is also an essential

element of ATMS. Travel guidance will be more effective when guidance information is

provided as a component of an integrated approach including advanced traffic

management and road pricing.

In this context, MIT Intelligent Transportation Systems (ITS) Program is

developing DynaMIT (Dynamic Network Assignment for the Management of Information

to Travelers), a DTA system that generates guidance based on predicted traffic

conditions. Provided information can be either descriptive or predictive. Descriptive

guidance provides tripmakers with information on network conditions so that they can

make better decisions about departure time, mode and route choice. Prescriptive guidance

consists of actual recommendations about route choice which users decide whether to

accept (comply) or reject. The way information is communicated may affect drivers'

compliance rates. For example, based on driver simulation experiments, some researchers

have reported higher compliance with prescriptive information when descriptive

information is also presented (Bonsall, 1992, and Kitamura and Jovanis, 1991).

The assumptions made about user tripmaking behavior, and particularly about

user response to travel choice guidance information, are central to any procedure which

attempts to generate such information. Hence, different categories of user behavior are

represented in the form of user classes in DynaMIT. In this context, a user class is a

particular combination of access to information (e.g. through an in-vehicle unit, a i

roadway sign or a radio broadcast) and user behavior parameters (e.g. utility function

specification and coefficients) so that the reaction of different tripmakers to the provided

information is taken into account (e.g. different degrees of compliance to guidance

recommendations).

The structure of the DynaMIT system is shown in Figure 1. DynaMIT simulates

both demand and supply. The demand is simulated by the demand simulator which

estimates and predicts the demand in the network, taking into account the effect of

available information. The supply (traffic) simulator then assigns this demand on the

network and simulates the vehicles' trips considering en route demand modifications due

to response to guidance. Using historical data and data from the surveillance system as

input, an iterative process between the demand and the supply simulator is used to obtain

a consistent estimate of the current state of the network in terms of OD flows, link flows,

queues and densities. This is an important task, since information obtained from the



traffic sensors is generally sparse, i.e. the link counts are known only for a fraction of the

links. Therefore, estimation is required to provide a complete picture of traffic conditions.

The demand simulator incorporates an OD estimation model, which uses historical OD

flows, real-time measurements of actual link flows on the network, and estimates of

assignment fractions (the mapping of OD flows to counts) to estimate the true OD flows.

The demand simulator is also sensitive to the information provided to the drivers. This

information represents the true conditions on the network. By taking this into account, the

simulator updates the historical demand in response to information from the network and

uses this updated historical demand as a starting point for the estimation. Therefore,

behavioral models which update the historical OD flows before they are used by the OD

estimation model are incorporated in the demand simulator. As a result, the updated OD

matrix already incorporates changes that took place in response to guidance and
information.

The supply simulation model simulates the actual traffic conditions on the
network. Inputs include OD flows estimated by the OD estimation model, network
capacities and traffic dynamic parameters, as well as prior control strategies and guidance

broadcast. The supply simulator outputs an estimate of the traffic conditions on the
network, including link flows. These link flows will generally be different than the actual
link counts in the network provided by the surveillance system. Therefore, an iterative
process is required between the supply and the demand simulator until the simulated link
counts are sufficiently close to the observed. In each iteration the supply simulator uses
the estimated demand as input to provide an assignment matrix, which is used by the
demand simulator to estimate a new demand. The demand and supply simulators may
have to go through several iterations to obtain a consistent estimate. The output of this
process is an estimate of the actual traffic conditions on the network, including link flows,
queues and densities.



Figure 1. Structure of the DynaMIT system

After the state of the network has been estimated, the demand simulator uses it, in

conjunction with the supply simulator, as a starting point to predict future performance of

the network. The guidance generation model uses the predicted traffic conditions to

generate guidance according to the various ATIS in place. The guidance provided must be

such that if the driver follows the guidance, there will be no better path that the driver

could have taken instead. This is required, because if the drivers realize that the provided

guidance is not the best possible, they will increasingly start ignoring the guidance

recommendations resulting in a decrease in the compliance rate. In order to obtain a

guidance that satisfies these requirements, an iterative process is required. An iteration

consists of the generation of a trial strategy, the state prediction under the strategy, and

the evaluation of the predicted state. The guidance that will result in traffic conditions

consistent with the information it is based on is the one that is implemented on the

network.

From the presentation of the DynaMIT framework, and general research

experience in the area, the importance of the following can be highlighted:

Basing the generation of guidance on predicted traffic conditions, and



Incorporating realistic models of driver behavior in general, and of drivers'

response to information in particular to achieve accurate predictions.

The demand simulator provides the future OD flows that are necessary for the prediction

of traffic conditions, while it also incorporates the driver behavior models that are

necessary to update the historical OD flows in response to available real-time

information.

A key component of the demand simulator process is dynamic OD estimation and

prediction. In a real-time application, estimation refers to the computation of the OD

matrix for departure time intervals up to and including the current interval of interest.

Prediction refers to the computation of the OD matrix for future departure time intervals.

The model uses aggregate historical OD matrices, representing demand at the OD level,
as input and computes an estimated OD matrix. Making assumptions about time

evolution of demand, the model is also capable of predicting future OD matrices. Since

historical demand is known at the OD level, an aggregate OD estimation model is used.

Besides the need for predicted traffic conditions, the validity and relevance of the

demand simulator's output is dependent on its ability to capture drivers' travel decisions

at the individual level. In order to capture these decisions, the demand simulator

incorporates disaggregate travel behavior models that predict trip making decisions such

as departure time, mode and route choice, based on real-time information and the

characteristics of the individuals. The use of disaggregate models allows the demand
simulator to model each driver individually and thus potentially capture the travelers'
behavior more accurately. Thus, the variations in demand due to the effect of information
in the individual travelers' decision are captured.

The combined use of an aggregate (macroscopic) and a disaggregate
(microscopic) model results in a mesoscopic demand simulator. This combination
provides a good tradeoff between computational performance and estimation accuracy.

1.2 Problem Statement and Thesis Contribution

The focus of this thesis is on the pre-trip component of the demand simulator of
DynaMIT discussed above. Pre-trip demand is the demand that enters the network and
thus reflects the effect of pre-trip information on drivers' decisions. The overall
representation of pre-trip demand estimation is presented in Figure 2. The true demand
can be constructed from the historical with the addition of two systematic and one



random deviations. The two systematic terms are the effect of information in the demand
and the daily demand fluctuations. The third deviation is a random error term.

Historical demand
+

Effect of information Systematic
True demand = + Systemati

Daily demand fluctuations d
+

Error e Random

Figure 2. Representation of demand estimation

Conventional OD estimation models update the historical demand to reflect actual
network demand, thus capturing drivers' travel patterns and demand deviations at the OD
level. The models start from a historical OD matrix and observed link counts and estimate

an OD matrix that is consistent with these link counts. Therefore, these models do not

explicitly take into account the first systematic deviation and, hence, their estimation
accuracy may be limited since they fail to directly capture the deviation from the

historical demand resulting from the pre-trip information that has become available to the
drivers about the network traffic conditions.

In this thesis a pre-trip demand simulator with predictive capabilities and explicit

simulation of the response of the travelers to real-time pre-trip information is proposed

and implemented. The demand simulator is an extension of conventional OD estimation

models aimed at overcoming their inability to explicitly capture the effect of information

on demand. This is achieved by explicitly simulating driver behavior in response to both

descriptive and prescriptive information at the disaggregate level. The systematic

component of the deviation that is due to the available information is captured by a

disaggregate behavioral model which updates the historical demand. The OD estimation

uses the updated OD matrix, instead of the historical OD matrix itself, as a starting point

to compute an estimated OD matrix consistent with the observed link counts. Thus, the

OD estimation procedure starts with the pre-trip guidance information already taken into

account. Thus, the final estimated demand explicitly includes both systematic

components of the deviation.

The prediction makes an assumption about the time evolution of the demand

fluctuations to predict future OD matrices. The demand simulator is designed and

implemented taking into account computational and other feasibility concerns.

Furthermore, the demand simulator is validated through an application using a simulated



real network in order to assess its potential methodological and operational capabilities in
a DTA context.

This methodology, characterized by the explicit representation of pre-trip travel

decisions in response to information, differs from existing approaches. To the best of the

author's knowledge and based on published literature, existing DTA models either do not

capture pre-trip travel decisions (e.g. Mahmassani et al. (1993)), or when they do, assume

complete knowledge of future traffic conditions (e.g. Ran et al.(1992) and Friesz et al.

(1993)).

1.3 Application

The proposed demand simulator is a tool with a wide variety of potential uses.
Although this thesis focuses on its application in a DTA environment, the demand

simulator is applicable to all kinds of networks, including rural and regional networks.
Furthermore, although the simulator is described in a real-time context (short term), it can
be used in a wide variety of applications, including evaluation (medium term) and
planning (long term). An important distinction between the use of the demand simulation
in a real-time context and in planning problems is the time scale of the interactions
between demand and supply. In the case of planning applications, these interactions
develop over possibly long periods of time. Therefore, the day to day learning and
adjustment mechanisms of individual drivers should be explicitly represented and
captured by the behavioral models. Depending on the type of application the effects can
be really long term and may include revisions of residential location or car ownership. In
medium term cases, such as the evaluation of the effectiveness of an ATMS project, the
effects may include changes in the mode or path that travelers customarily take to work.

1.4 Thesis Outline

This thesis is organized as follows. The literature review is presented in Section 2.
The design of the pre-trip demand simulator is described in Section 3. The software
implementation of the system is presented in Section 4. A preliminary evaluation of the
simulator is presented in Section 5. Finally, the summary, conclusions, and further
research are discussed in Section 6.



2. Literature Review

The objective of this literature review is to provide the necessary background for
the conceptual and analytical design of the demand simulator. The demand simulator

proposed in this thesis explicitly incorporates the effect of information on the users'

travel behavior, and estimates and predicts demand. To achieve this task, the demand

simulator uses:

* Dynamic OD estimation and prediction models (i.e. aggregate or

macroscopic level), and

* Behavioral models (i.e. disaggregate or microscopic level).

A literature review on these two topics is presented in the next two sections.

2.1 Dynamic OD Estimation and Prediction Models

Extensive experience with static OD estimation is available (see Ben-Akiva

(1987) and Cascetta and Nguyen (1989) for a review and bibliography), but less with

dynamic (or time-dependent) OD estimation. Furthermore, few of the available dynamic

OD estimation models can be extended to predict demand for future time intervals which,

as was discussed above, is very important for a traffic assignment application.

A comprehensive review of dynamic OD estimation models can be found in

Ashok (1996), from which the following review is partially derived. Literature on

dynamic OD estimation can be classified into models applicable for two types of

networks:

* "Closed" networks, where complete information is available on the entry

and exit counts of the network at all points of time, and

* General networks, where available information is limited to the

instrumented entries and exits of the network.

2.1.1 "Closed" Networks

A variety of methods have been proposed for dynamic OD estimation for closed

networks. Cremer and Keller (1987) proposed several estimators for the simple case of a

single intersection, where the turning movements can be considered to be OD flows.

Most of these are least squares based methods, with constrained versions of the problem

also proposed in order to ensure non-negativity of turning fractions. In addition, recursive

algorithms, such as Kalman filtering, have also been proposed (Nihan and Davis, 1987).



Nihan and Davis (1987) also report some experience with estimating freeway OD
matrices where an OD flow is taken as the flow between an origin ramp and a destination
ramp. Chang and Wu (1994) utilize on- and off-ramp counts as well as main-line counts
to estimate the OD matrix. Main-line counts at different points on the freeway are used to
obtain approximate estimates of travel times, which are then used to define the dynamic
mapping between OD flows and link flows.

2.1.2 General Networks

The approaches mentioned in the previous paragraph all suffer from the major

limitation that all entry and exit counts need to be known, which is unlikely to be the case

in a realistic network. The methods proposed for general networks are extensions of the
static OD matrix estimation problem. Cascetta et al. (1993) obtain estimates of dynamic

OD flows by optimizing a two part objective function. The first part seeks to minimize

the difference between the estimated OD matrix for an interval and an a priori estimate of
the OD matrix for that interval, while the second part seeks to minimize the difference
between link volumes predicted by the model when the estimated OD flows are assigned
to the network and the link volumes actually measured. Their model, though, cannot be
used in a real time application with the presence of information, because it does not offer

predictive capabilities.

An alternative model with predictive capability was developed as part of the
DRIVE-II DYNA project (Inaudi et al., 1994). Nevertheless, estimation and prediction
are dealt with separately. Estimation is based on the work of Cascetta et al. (1993)

mentioned above. The estimated values are then used to generate predictions by a
separate filtering technique; they combine historical and estimated OD information using

the concept of "deviations" proposed by Ashok and Ben-Akiva (1993), presented below.
This approach has the disadvantage that the prediction component is exogenous to the

estimation, resulting in a statistically inefficient estimator.

An approach based on Kalman Filtering has been suggested by Okutani (1987).
The set of decision variables or state vector is defined as the vector of unknown OD
flows. The model includes an autoregressive formulation, in which the state vector for
period h is related by correlation factors to state vectors for previous periods. Okutani
uses standard linear Kalman Filter theory to get optimal estimates of the state vector for
each time interval. Although this model has predictive and updating capabilities and
could be used in real-time applications, there are problems with the autoregressive



specification, which fails to capture any structural information on trip making patterns
and is limited in capturing temporal interdependencies between OD flows.

Ashok and Ben-Akiva (1993) introduced the notion of deviations of OD flows
from historical estimates, in order to overcome the inadequacy of Okutani's
autoregressive specification for OD flows. While their measurement equation is the same
as Okutani's, the state vector is defined in terms of OD deviations that conform to an
autoregressive process. Since the historical OD matrices incorporate all the information

about structural relationships that drive travel demand, the estimation and prediction

process takes into account all the experience gained over many prior estimations and is

hence richer in structural content. This model has been implemented on a linear network

with very encouraging results. Nevertheless, the model does not only estimate OD flows

for the current interval but also updates OD flow estimates for several past intervals, and

is therefore computationally very intensive. Later work by Ashok and Ben-Akiva (1994)

showed that by appropriate approximations in the measurement equation, significant

computational savings can be achieved at almost no accuracy loss. Ashok (1996)

developed and tested an approximate OD estimation and prediction formulation, based on

estimating each OD flow only once -the first time it is measured. This is based on the

observation that much of the information about and OD flow is likely to be provided the

first time it is counted. The algorithm gives good results, provides the capability for
prediction of future OD matrices and has the potential for use in a real-time application.

2.1.3 Conclusion

The pre-trip demand simulator requires a dynamic OD estimation model with

prediction capabilities, applicable to networks with incomplete entry and exit link count

information. Furthermore, the model needs to be suited for real-time applications, i.e. its

computational cost should not be prohibitive. From the above review, it is concluded that

the only available model that concentrates all these features is the approximate model by

Ashok (1996). Furthermore, the model has been tested and given promising results.

Therefore, as is evident in chapter 3, this model is selected and implemented in the
demand simulator.

2.2 Behavioral models

A literature review of existing behavioral models is attempted in this section.

Behavioral models attempt to capture the travel decisions of individual drivers. The

reviewed models are classified into:



* Departure time choice,

* Mode choice,

* Route choice, and

* Joint choice models.

2.2.1 Departure time choice

Departure time choice has been related empirically to the cost of early or late

arrival relative to some preferred arrival time. Initial models assumed a deterministic

departure time choice (see Small (1995) for a review). Probabilistic demand models have

been developed by various researchers such as de Palma et al. (1983) and Ben-Akiva et

al. (1984) who presented departure time choice as a general continuous logit model,

where the set of alternatives is assumed to be continuous. Mahmassani and Chang (1987)

applied the bounded rational user response concept to departure time choice introducing

the notion of an indifference band of tolerable arrival delay. In the scientific literature, the

concept of rational behavior is used to describe a consistent and calculated decision

process in which the individual follows his or her own objectives (Ben-Akiva and

Lerman, 1985). Simon (1957) developed the distinction between perfect and bounded

rationality. Unlike perfect rationality, bounded rationality recognizes the constraints on

the decision process that arise from limitations of human beings as problem solvers with

limited information-processing capabilities.

More recently Noland and Small (1995) developed a model that incorporates the

effects of uncertainty of travel times on travelers' departure time choice. The model

includes penalties for late as well as early arrival and captures temporal variations in
congestion. Jou and Mahmassani (1994) calibrated a Poisson regression model on the
daily departure time switching frequency. Factors affecting switching decisions included
tolerance in being late at the destination, travel time fluctuations, and travelers'
socioeconomic characteristics.

2.2.2 Mode choice

The most common mode choice models are random utility models (RUM)
assessing the choice between car and transit alternatives. Examples of estimated models
are those in Ben-Akiva and Lerman (1985), Bradley et al. (1991), and Badoe and Miller
(1995). Factors affecting mode choice include purpose of trips, in-vehicle travel time,



out-of-vehicle travel time, travel cost, car availability, destination and travelers'
socioeconomic characteristics.

2.2.3 Route choice

A comprehensive literature review of route choice models is presented by Bovy

and Stem (1990). The factors that in general affect route choice are travel time, travel

distance, number of traffic lights along the route, congestion, length of the route on

highways, road quality, and presence of commercial areas. Route choice models belong to
one or more of the following major categories:

* Random utility models, and

* Production rule models.

Random utility models assume that travelers maximize their travel utility. If the
error term in the utility function is independent and identically Gumbel distributed, then

the model becomes a logit model. An example is presented by Ben-Akiva et al. (1984)

who estimated a route choice model that captures the effects of travel time, distance,

number of signals, and highway distance. If the error term of the utility function is

normally distributed then the model becomes a probit model. Yai and Iwakura (1994)

estimated a transit route choice probit model with the independent variables being cost,

access time, egress time, walking, congestion rate, and transfer time. Cascetta et al.

(1995) proposed a modified specification of the logit model, named C-logit, which

overcomes the main shortcoming of multinomial logit (MNL), i.e. unrealistic path

probabilities for paths sharing a number of links. Furthermore, the proposed model has an

easily computable closed form, thus overcoming the drawback of the probit model which

has no closed analytical form. The C-logit model requires explicit path enumeration. The

basic idea is to deal with similarities among overlapping paths through an additional
"cost" attribute, named commonality factor, in the utility function of a logit model rather

than through covariances of the random residuals of perceived path utilities as assumed

by probit models.

Production rule systems are based on the assumption that decisional behavior in a

certain context (e.g. route choice) can be described as a system of IF-THEN rules. Lotan

and Koutsopoulos (1993) have explored route choice processes and driver perceptions in

the presence of information using concepts from fuzzy set theory, approximate reasoning

and fuzzy control. Variables affecting drivers' behavior are observations on current travel

time perceptions, congestion levels, and accidents.



2.2.4 Joint choice

Mahmassani and Herman (1984) and Ben-Akiva et al. (1991) developed joint
departure time and route choice models, in which drivers are assumed to minimize the
generalized cost incurred. This cost is a function of travel time, early arrival, late arrival,
and travel cost. Cascetta and Biggiero (1992) calibrated a joint departure time and path
choice model as a function of travel time, safety and comfort. Jou and Mahmassani
(1993) presented a bounded rational departure time and route switching model as a
function of travel time fluctuations, early and late arrival, and socioeconomic
characteristics. Early or late arrival is defined as the difference between the arrival time
given by a choice alternative and a desirable arrival time, e.g. official work start time.

In the context of real-time applications, though, a joint model that will be able to
capture departure time, mode and route choice, as well as response of drivers to
information is required. Drivers that do not receive information rely on historical
perceptions and experiences and, therefore, follow their habitual travel pattern. Travelers
that are provided with guidance, may decide not to travel, or adjust their destination,
departure time, mode, or route choice accordingly.

Khattak et al. (1996) model pre-trip travel response to ATIS. They investigate the
influence of unexpected and expected congestion, various types and quality of
information received about congestion, and travelers' experience with congestion and
related information on pre-trip travel decisions (trip cancellation, departure time, mode
and route choice). They examine the effects of various factors, such as source(s) of
congestion, information, trip characteristics, and route attributes on traveler response to
unexpected congestion. The model is formulated as a multinomial logit. They also model
the relationship between traveler response to qualitative, quantitative, predictive and
prescriptive information in a hypothetical ATIS context in combination with actual
behavior. However, the developed model is very specific to the context from which the
data was collected.

2.2.5 Conclusion

From the above review, it appears that none of the available models independently
provide all the functionality that is required for the demand simulator. The only model
that captures departure time, mode and route choice is the last one presented above, by
Khattak et al. (1996). However, this model requires the knowledge of information that is
very context specific and, consequently, is not general enough for use in the demand
simulator. Therefore, elements from this and other models will be combined into new



models that will be specially designed to meet the requirements of the demand simulator

in terms of both comprehensiveness and generality.



3. Design of the Pre-Trip Demand Simulator

In this section, the design of the demand simulator is presented and motivated.

The overall framework is presented in the first section. The variable definition, the time
discretization, as well as the choice set generation procedure are presented in the
following sections. Finally, the various components of the system are presented and their
corresponding models and algorithms are described.

3.1 Framework

The input to the demand simulator includes:

* Aggregate historical OD matrices,

* Real-time information and guidance, and

* Link counts.

The historical OD matrices give the average number of trips for each OD pair in
some past period, for which the OD matrices have been constructed. These OD matrices
are provided from a historical database. This database can be constructed from results of
estimations conducted in previous days, and can be stratified by day-of-week, type of
weather, special events, etc. Real time information and guidance made accessible to the
travelers via a number of ATIS media, including radio, telephone and the Internet can be
provided from the guidance generation module of the DTA system used by the ATIS in
place. Finally, link counts are provided by the surveillance system as direct measurements
from traffic sensors.

The pre-trip demand simulator incorporates explicitly the effect of pre-trip
information and guidance provision to update the historical OD matrices prior to OD
estimation, in order to capture the drivers' response to real-time information available at
the pre-trip stage. Although the OD estimation model is applied on aggregate OD
matrices, the individual choice of drivers is captured by disaggregate behavioral models.
Thus, variations of travel behavior can be captured at the individual driver level. This is
important because it allows the simulator to use individual driver characteristics to
capture travel behavior in a potentially more accurate fashion, rather than being limited in
capturing behavior at the OD level. In order to be able to use disaggregate models,
though, the demand simulator needs to disaggregate the historical OD matrices into a
population of drivers, which will be updated and subsequently aggregated to produce the
updated OD matrices that will be used as input to the OD estimation model.



The overall structure of the proposed pre-trip demand simulator is presented in
Figure 3.

Figure 3. Pre-trip Demand Simulator

,---



The functionality of the pre-trip demand simulator can be separated in two main
functions:

* Travel behavior update in response to information, and

* Dynamic OD estimation and prediction.

The travel behavior model is disaggregate and is applied on individual drivers. On
the other hand, historical demand is available as aggregate OD matrices. In order to be
able to use the disaggregate behavioral model, the demand simulator transforms the
aggregate OD matrices into a disaggregate population of drivers, upon which the
behavioral model is applied. The off-line disaggregation is responsible for this. The
behavioral model then updates the travel choices of each traveler, using the available real
time information to determine if they will stick to their initial travel pattern or they will
change departure time, mode or route, including canceling their trip altogether. After the
travel behavior of each driver has been updated to reflect the available information and
guidance, the aggregate OD estimation model is applied on the updated population of
drivers. Therefore, the population of drivers is aggregated to a set of updated OD matrices
(one OD matrix is generated for each departure time interval).

At this stage, the historical OD matrices have been updated to reflect the response
of the drivers to available real-time information. If this step had been omitted, then the
simulator would ignore significant information that could potentially affect its success in
estimating current OD matrices. After the behavioral update has been completed, the OD
estimation model accepts the updated OD matrices as input and uses traffic counts from
the surveillance system to estimate aggregate demand for the current interval in the form
of an estimated OD matrix. The OD prediction model makes an assumption about time
evolution of demand to predict OD matrices for a given number of future intervals.

The pre-trip demand simulator is designed with the capability to be used in a wide
range of applications, as discussed in Section 1.3. Depending on the nature and the
requirements of each application, the output of the module can be either:

* Aggregate demand, or

* Disaggregate demand.

If aggregate demand is required as output, then no further operation is performed and the
estimated and predicted OD matrices are the desired output. On the other hand, if
disaggregate demand is required, then the estimated and predicted OD matrices are
disaggregated to a list of drivers by an additional on-line disaggregation component. This



procedure uses the previously generated updated population of drivers as basis, and adds

or removes drivers to reflect the OD estimation results. For example, if for a given OD

pair the final estimated flow is 100 drivers, but in the updated population of drivers there

are only 95, then five additional drivers will be generated in the same fashion that was

used in the off-line disaggregation. Similarly, if there are 105 drivers in the updated

population for that OD pair and time interval, then five of them will be selected, using

Monte Carlo simulation, and removed from the population of drivers.

In the remainder of the chapter, the variables and parameters that are used in the

simulator are defined and the time discretization and the choice set generation procedure

are presented. Furthermore, the major components of the demand simulator are described

in more detail, including the models and the algorithms that are used.

3.2 Variable and Parameter Definition

The pre-trip demand simulator uses a number of variables and parameters in the

specifications of the disaggregate travel behavior models. These are presented in this

section. The variables are summarized in Table 1.

In the following definitions superscript H refers to historical information, whereas

superscript I refers to information provided by the information system. Subscript h refers

to departure time interval h and subscript p refers to path p. Finally, prime (') is used to

denote habitual, e.g. h'is the habitual departure time interval and p'is the habitual path.

Abbreviation

H

tt,
tt I

I
tthp'

I
tth'p

I
tth'p'

dth

Variable

historical travel time for departure time interval h and path p

historical travel time for other (than car) mode

travel time provided by the information system for departure time h

and path p

travel time provided by the information system for departure time h

and habitual path p'

travel time provided by the information system for habitual departure

time h' and path p

travel time provided by the information system for habitual departure

time h' and habitual path p'

departure time of traveler departing in interval h



I
athp arrival time of traveler departing in interval h on path p

athI arrival time of traveler departing in habitual interval h' on path p

athp, arrival time of traveler departing in interval h on habitual path p'

athp,  arrival time of traveler departing in habitual interval h' on habitual

path p'

H
ath p' habitual arrival time for traveler with habitual interval h' and path p'

T time that the information is sent to the traveler

VOTIo low value of time indicator

VOTd medium value of time indicator

VOThi high value of time indicator

Pw work as trip purpose (0-1 dummy variable)

PI leisure as trip purpose (0-1 dummy variable)

CF, commonality factor for path p

l, length of path p

w, length of path p in highway

cp out-of-pocket monetary cost for path p

s,  number of signalized intersections in path p

fp number of left turns on current path p

Table 1. List of variables for travel behavior models

The historical travel time tt~ is the average travel time observed for departure

time interval h and path p over prior observations. The variable ttmH is the minimum from

the historical travel times for all alternative non-driving modes. In other words, this is

assumed to be the historical travel time of the alternative mode that a driver is
considering. The travel time tthp is the travel time that the information system gives to

drivers departing during interval h on route p. Variables tt., ttP, and ttu can be

interpreted similarly.

The departure time dth is the actual departure time of a traveler departing in
interval h. It is calculated by assuming uniform departure rate for the departure time



interval and using Monte Carlo distribution to draw the exact departure time within that
interval. The arrival time of a driver departing in departure time interval h on path p is
given by atp = dth + ttp. When the habitual departure time h' or habitual path p' are

considered, the arrival time variable becomes at, at and at accordingly.

Similarly, the habitual arrival time for a driver departing in departure time interval h on
path p is given by athp'n = dtht + tthp.

The time that the traveler receives the information is denoted by T. There are also

three indicator variables VOTIo, VOTmd, VOThi to reflect the value of time of the driver

(low, medium, or high). Only one of these variables is equal to one for each individual,

while the other two are zero. In addition, there are two 0-1 dummy variables to capture

the trip purpose of the driver (work or leisure). The variable that corresponds to other

trips purposes is used as reference and, therefore, is not included in the utility functions.

The selection of the referent alternative has no effect of the outcome of the model.

Changes in the referent only shift the values of the estimated constants, preserving their

difference.

The commonality factor CF, (Cascetta et al., 1996) for path p is an additional

"cost" attribute in the utility of a logit model, which deals with the similarities among

overlapping paths (this will be described in Section 3.5.1). The commonality factor does

not affect travel behavior. Its role in the model is to overcome the limitation of the IIA

property. The length of path p, lp, the length of path p that is on highways, wp, the

monetary cost of path p, cp, the number of signalized intersections in path p, sp, and the

number of left turns in path p, fp, are attributes of the paths. The same variables with

subscript p' are used to refer to the habitual path.

Functions of the aforementioned variables appear in the models, as well. The

variable dth' - T is used to describe how early the traveler receives the information (how

much earlier than the habitual departure time). For example, information received two

hours before the habitual departure time may not be as relevant as information received

15 minutes before. In the specification of the utilities this variable appears as

max(dth' - T,0). This is to ensure that the variable takes a value of zero if the information

comes after the departure (since then it is not relevant for pre-trip decisions).
The variables at ' _at and at - Hath-p express the deviation in the arrival

time of the traveler departing at departure time interval h on path p, relative to the

habitual arrival time for the habitual arrival time and path. This, in association with the

possible early or late arrival penalty, captures the effect of arrival time variations in the



travelers' decisions. The variables are introduced in the specification of the utilities as the
following terms:

* max(ath, p'- athp,0), and

* max(at - atp,0).

The first term captures the early arrival. It is zero if the arrival time is later than
the habitual arrival time (i.e. athp < athp - the user is expected to be late). Otherwise, it

is equal to the amount of time that the driver is expected to be early. Similarly, the second

term captures the late arrival. It is zero if the expected arrival time is earlier than the
habitual arrival time (i.e. at hp, > ath - the user is expected to be early). Otherwise, it is

equal to the amount of time that the driver is expected to be late. The use of two such
variables allows for designing different penalties for late and early arrivals. Terms

max(ath - at , 0), max(at -at ,), max ath'p atp',0), and

max(athp- ath.p,O) are used similarly in the utility functions.

Tables 2, 3, and 4 present the coefficients of the models. The coefficients 8 and
the structural coefficients 0 appear in the utility and probability equations as well. There
are superscripts and subscripts to these parameters that need to be defined. Superscripts
specify the model to which the coefficients refer to. These superscripts are defined in
Table 1. Some # coefficients are specific to the corresponding alternative, denoted by the
appropriate subscript. These subscripts are defined in Table 3. Furthermore, all of these
variables are associated with a numerical identifier, ranging from 0 to 14. Finally, the
structural coefficients, 0, have a subscript that defines the alternative they are associated
with. These subscripts are presented in Table 4.

Coefficient with superscript

ph

od
OP

model indicated by superscript

habitual behavior

behavior based on descriptive information

behavior based on prescriptive information
Table 2. List of supercripts of coefficients for travel behavior models



alternative indicated by subscript to .

pP

DNC

PDT

fDTh

CP

cPP

CDTP

OCDThPp

Table 3. List of subscripts of coefficients for travel behavior models

coefficient with subscript

0 M

0 DT

Op

OcCT

alternative indicated by subscripts to 9

change mode

change departure time

change route

change departure time interval and route

cancel trip

Table 4. List of subscripts of structural coefficients for travel behavior models

3.3 Time Discretization

Time is a very important dimension in simulation environments. The demand

simulator is a discrete step simulator, i.e. the state of the system is updated in a series of

steps, each corresponding to some fixed time interval (Lerman, 1993). The demand

simulator uses two such time discretizations intervals:

* Departure time interval, and

* Estimation interval.

path p (in the utility of the paths for the habitual

behavioral model)

do not change

change mode

change departure time

change to departure time interval h

change path

change to path p

change departure time and path

change to departure time h and path p

coefficient with subscript



The departure time choice of individual drivers is modeled as a discrete choice.

Therefore, a time discretization is necessary in order to define the choice set. This time

interval needs to be small enough in order to realistically represent the drivers' change in

departure time in response to information. Nevertheless, very small departure time

intervals would increase the computational strain and the data requirements of the

simulator. Therefore, in order to make a decision for the departure time interval length,
this tradeoff should be examined and the length of the departure time interval should be

selected based on the needs of the application.

Similarly, the OD estimation is performed for discrete intervals of time.

Therefore, an interval that refers to the time period for which the demand is estimated is
also necessary. The selection of the length of the estimation time interval depends on the
application. As it will be explained in Sections 3.5 and 3.7, the two time intervals do not
need to coincide. In such a case, a procedure that maps one time discretization into the
other is applied (see sections 3.5 and 3.7).

3.4 Choice Set Generation

The behavioral models that are incorporated in the demand simulator are discrete
choice models and require that the individual drivers' choice sets are explicitly specified.
The travel decisions that the demand simulator considers are:

* Mode choice,

* Departure time choice,

* Route choice, and

* Trip cancellation.

Regarding mode, only the decision whether to drive or switch to public transit is
considered and, therefore, the alternatives are clear. Since the demand simulator focuses
on private transportation, only travelers switching from the automobile to transit are
captured. Similarly, for the trip cancellation choice, the driver may choose whether to
make the trip or not. Regarding departure time choice, the feasibility of the time intervals
is bounded by the decision time, since an individual can not decide to depart earlier than
the decision time. Since the habitual departure time interval is captured by the do not
change alternative, the departure times that are considered for the change departure time
alternatives do not include it. In the case of path choice, the choice set of an individual is
considered to comprise from all paths connecting the origin and destination of interest.
Again, the change path alternatives do not include the habitual path, since it is covered by



the do not change alternative. In the case of both departure time and path change, the
choice set is comprised from all possible combinations of the time intervals in the
departure time choice set with the paths in the path choice set. The only combinations that
are excluded from the choice set are those that include the habitual departure time, the
habitual path, or both.

In practical applications, it may be desirable to keep the number of alternatives to

a reasonable size. In this case, the choice set can be filtered to exclude paths and

departure time intervals that are very unlikely to be selected. Paths with very high travel

times can be removed from the choice set, since they are unlikely to be chosen. Similarly,

departure time intervals that are a lot later than the habitual departure time may also be

safely removed from the choice set, based on the assumption that the travelers need to

complete their trip within some time frame. Nevertheless, one needs to be cautious in

such an elimination procedure, in order not to exclude alternatives that may become

attractive under certain conditions, such as an incident on a generally preferable route.

3.5 Off-line Disaggregation

The role of the off-line disaggregation component is to generate a population of

drivers from the historical OD matrices. A number of socioeconomic characteristics, such

as value of time, and trip characteristics, such as trip purpose, are generated and assigned

to each driver. Origin, destination, departure time interval and mode are assigned to the

drivers using information from the OD matrices. The origin and the destination come

from the particular OD pair for which the driver is generated, the departure time interval

is the interval to which the OD matrix corresponds and the mode is by default the car

(since it is assumed that the OD matrices contain only car trips). Furthermore, a habitual

behavior model is applied to each driver in order to generate habitual travel behavior

based on historical information. This is presented in sections 3.5.1 and 3.5.2. Section

3.5.3 presents the entire off-line disaggregation algorithm.

3.5.1 Habitual Route Model Structure

The behavioral model that is used to provide choice probabilities for each path is

the C-logit model, a modified multinomial logit (MNL) model, proposed by Cascetta

(1993). The model specification of the C-logit is that of a MNL with a modified utility to

account for overlapping paths. The model overcomes the main shortcoming of MNL

where unrealistic choice probabilities result for paths sharing a number of links. For

example, consider the simple network represented in Figure 4. This network is composed



from three nodes, A, B and C, and four links. There are three alternative routes

connecting A and B. Assuming equal utility for the three alternative routes, a logit model

would result in equal choice probabilities, 0.333, for each alternative route. This is not

realistic, since paths 1 and 2 are practically identical. In the C-logit model this is captured

by the introduction of an additional "cost" parameter in the utility specification.

1
C

A B
2

3

Figure 4. Simple road network with overlapping paths

The model requires explicit path enumeration. The structure of the model is
presented in Figure 5.

Path A Path B ... Path N

Figure 5. Structure of the C-logit model

The choice alternatives are the paths that connect the origin and the destination of each
driver and are included in the choice set.

In the C-logit model, the effect of overlapping paths is taken into account by the
introduction of a term called "commonality factor" in the utility function. The
commonality factor can be interpreted as the degree of overlapping of a path with the
other paths in the choice set of the individual. The function of the commonality factor is
to decrease the utility of heavily overlapping paths by introducing an additional "cost" in
the utility of the paths, which is higher for overlapping paths. The reader is referred to
Cascetta et al. (1996) for a more complete presentation of the commonality factor. In this
reference, one can find alternative specifications, as well as a behavioral interpretation of
the commonality factor. For the purposes of this application, the following specification
has been selected:

CFp = In XcOpNj (1)
jE p

where:

CFp is the commonality factor for path p,



w~, is the proportional weight of link j in path p, defined as the fraction of the total length
of path p which can be attributed to link j ( the link weights sum up to one for all links of
a given path), and

Nj is the number of paths connecting the same OD pair, which share linkj.

3.5.2 Habitual Route Model Specification

Using the notation defined in Section 3.2, the systematic utility (from now on, the

term utility will be used instead of systematic utility for the sake of bravity) specification

for route p is given by the following formula:

V(p) = h,o + ph VOT1 o ttH + • VOTme ttp +ph VOTo ttH +

h 1CF+ h +ph 0 + h7 Cp +p +ph f p + (2)

thlo ? + hl P1

(From now on, the term utility will be used instead of systematic utility for the

sake of bravity)

The alternative specific constant ph,o, and the alternative specific dummy

variables Pw, and P1 can only appear in N-1 utilities. Without loss of generality, they are

omitted from the utility of the Nth alternative path, which acts as a referent. The selection

of the referent alternative has no effect on the outcome of the model. Changes in the

referent only shift the values of the estimated constants, preserving their difference.

Finally, the probability that an individual will choose path p from the choice set P

is:

eV(P)
P(p) = (3)

p'e P

3.5.3 Algorithm

The input to the disaggregation component includes:

* Historical OD matrices, and

* Information about the socioeconomic and trip characteristics of the

drivers, such as the value of time and the trip purpose.



As mentioned earlier, historical OD matrices are available from a historical
database. The information about the socioeconomic characteristics of the drivers can be
available in different forms and varying levels of detail. Population-wide distributions are
the minimum requirement, however origin, destination, or even OD pair-specific
distributions are preferred, if available, since they allow for capturing the spatial variation
in the behavior of the travelers. Population-wide distributions give the proportion of the
population that is characterized by each value of an attribute. Similarly, distributions of a
subset of the population, provide these proportions for that subset, e.g. the travelers from
origin A to destination B. The output of the disaggregation component is a population of
drivers, each characterized by a list of socioeconomic and trip characteristics, and a
habitual travel behavior.

In the disaggregation the historical OD demand is disaggregated into a historical
population of drivers, corresponding to the OD flows in the matrices. It is assumed that
the OD matrix represents the number of trips (i.e. vehicles or drivers) and not total
passengers traveling from an origin to a destination. Therefore, for each OD cell of the
matrix being disaggregated, a number of drivers equal to the OD flow is generated. The
origin and the destination of each driver are determined from the OD pair that they were
derived from. Furthermore, the departure time interval corresponding to the disaggregated
OD matrix is assigned as the habitual departure time interval of all the drivers that are
generated from the disaggregation of the OD matrix. Also, it is assumed that the historical
OD matrices represent only those trips that are made by private automobile. Therefore,
the habitual mode for all generated drivers is by default the automobile.

Besides origin, destination, habitual departure time, and mode, the individual
drivers need to have socioeconomic and trip characteristics as well as a habitual travel
behavior assigned to them. The socioeconomic and trip characteristics are necessary for
the determination of the utility of each alternative in the behavioral models. Furthermore,
the habitual travel behavior is used as the base alternative for the drivers, which they
decide if they want to change or not, based on the available information. Monte Carlo
simulation (also known as sampling from probability distributions or random variate
generation; refer to Winston (1994) for more details) is used to assign characteristics to
the drivers, based on the available distributions. As mentioned above, the more area-
specific the distributions are, the more representative the generated characteristic will be.
The characteristics that are assigned to each generated driver are:

Value of time, which is categorically represented by low, medium or high
(in this thesis), and



* Trip purpose, which is classified into work or leisure (in this thesis).

These characteristics have been selected from a larger set of possible

characteristics (including e.g. age and gender), because they appear to be more suitable to

the application. This set of characteristics is more directly relevant to the drivers' choice

and sensitive to information. Furthermore, it provides a good tradeoff between

complexity (number of characteristics) and ability to capture the drivers' behavior.

After the assignment of the characteristics to the drivers, the only attribute that is

missing is the habitual path (since socioeconomic and trip characteristics, origin,

destination, habitual mode and departure time have already been assigned to them). The

disaggregation component applies the habitual behavior model presented earlier in this

section to generate habitual paths for the drivers. The procedure is presented in Figure 6.

Figure 6. Habitual path choice generation

A set of enumerated paths is assumed for each OD pair. This choice set can be

generated off-line once (and perhaps be re-computed occasionally, to reflect new

information collected from the network). The habitual behavioral model uses the

characteristics of each individual driver, along with historical information on the path



attributes (e.g. travel time, length, monetary cost) to generate the probabilities that each

path will be chosen. Once the probabilities are known, Monte Carlo simulation is used to
randomly select one. The selection is assigned to the driver as the habitual route choice.

3.6 Pre-Trip Behavior Update

At this stage of the pre-trip demand simulation process, a population of individual
drivers with corresponding socioeconomic and trip characteristics, as well as habitual
choices on departure time, mode and route, is available. These choices reflect a priori
decisions which can be updated based on real-time information and guidance. The pre-
trip behavior update applies a behavioral model to each individual driver in the updated
historical population to capture their travel behavior in response to available information.
The drivers may decide to change departure time, path, mode, a combination of these, or
even cancel their trip. It is assumed, that the drivers' destination is fixed and it cannot be
changed in response to available information.

There are two types of information:

* Descriptive, and

* Prescriptive

Descriptive information reflects traffic conditions on the network and leaves the
responsibility of using this information in deciding on a travel choice to the driver. On the
other hand, prescriptive information provides specific recommendations to the user about
travel decisions (e.g. leave one interval earlier, change to route x, change to route x and
leave one interval later, or switch to public transit) and the user decides whether to
comply or not. Different models have been formulated depending on the available
information. The descriptive model is presented in sections 3.6.1 and 3.6.2, whereas the
prescriptive is described in sections 3.6.3 and 3.6.4.

3.6.1 Descriptive Model Structure

The descriptive behavioral model is formulated as a nested logit model. The
nested logit model was first derived as a generalization of the joint logit model by Ben-
Akiva (1973) and subsequently formalized in different ways based on utility
maximization by several researchers. The nested logit model structure is hierarchical in
nature. This allows for grouping subsets of alternatives at a particular level of the
hierarchy reflecting their similarity in comparison to alternatives outside the group. The
utility of the alternatives of a level is represented by a combination of the utility of the



alternatives of the lower level. Thus, the choice at each level can be expressed in term of
the alternatives of that level only. The utility of each alternative is expressed with a term

that attempts to capture the utility of the best alternative of the lower level. This term is

called expected maximum utility or systematic component of the maximum utility of a

subset of alternatives and is equivalent with the terms inclusive value (McFadden, 1978)

and accessibility (Ben-Akiva and Lerman, 1979). The random components or random

parts of the utility are called disturbances. The relation of the disturbance of the lower

level alternatives with the disturbance of the upper level alternative are represented by a

structural coefficient 9, which takes values between 0 and 1. If the structural coefficient is

equal to one, then it means that the disturbance is the same for the two levels and,

therefore, the model simplifies to a MNL. For a more rigorous explanation of the

structural coefficient, the reader is referred to Ben-Akiva and Lerman (1985).

The choice tree for the descriptive model is presented in Figure 7. At the first

level, the traveler decides whether to change habitual behavior or not. If the user decides

to change, then the next level choice is whether to change mode, departure time, path,

both departure time and path or cancel the trip altogether. The mode change and trip

cancellation alternatives do not require any further decisions. In the case of departure time

change, the lower level alternatives are the departure time intervals in the choice set of

the individual. Similarly, in the case of path change, the lower level alternatives are the

paths in the choice set of the individual. In the case of both departure time and path

choice, though, more than one tree structures can be used. For example, the individual

may first make a departure time choice and then, having decided on departure time

interval, make the path choice, or first make the path choice and then choose a departure

time interval. Neither of these approaches are adopted in this model. It is assumed that the

individual driver makes both choices simultaneously. Therefore, only one subsequent

level is required and the choice set is composed by the combination of all departure time

intervals and paths in the choice set of the individual (see Section 3.4 for more details).

This approach is selected mainly due to the lack of data and relative ease of estimation.

This tree structure is an arbitrary choice and may be revisited. A comparison of

alternative tree structures would be an interesting topic for further research, but it is out of

the scope of this thesis.
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Figure 7. Pre-trip choice tree in the case of descriptive information

3.6.2 Descriptive Model Specification

The utility of the do not change (DNC) alternative is:

V(DNC)= =dl VOT tt IVOTd +I VOThi tt'p' +

od CF, + pd lp, + pd 0)•, + cp, +d sp, + d fp, + (4)

ido max(dth, - T,O)

The utility for the change (C) alternative is the expected maximum utility of the set

of lower level alternatives:

* Change mode (CM),

* Change departure time (CDT),

* Change path (CP),

* Change departure time and path (CDTP), and

* Cancel trip (CT).

The utility of the change mode (CM) alternative is:

V(CM) = , + Pl VOTlo ttpf + d VOTmed ttH +
(5)

fd VOThi ttdH + CM,13 P c + PCM,14 P (5)

The utility of the change departure time (CDT) is the expected maximum utility of
the lower level alternatives, i.e. the intervals in the choice set of the individual. The utility



of a lower level alternative, i.e. change to departure time interval h of the departure time

interval choice set H, for the habitual route choice p' is:
fcD, I + p 2 VOTh 3 hp'

V (CDTh ) D 1T,O + f 1 VOT ttd + 1 VOTedtt d VOThi tt +

p11 max(at h - at, ,O)+ fi2 max(atiL - at iF,O)+ (6)

•CDT,,13 mP+ J DT,14 Pl

If there is a total of N departure time intervals in the choice set, the alternative
specific constant IRd Th,o can only appear in N-1 utilities. Without loss in generality, it is

omitted from the Nth utility.

The utility of the change departure time alternative is:

V(CDT) = 0CDT log IeV(h)/'ODT (7)
he H

where H is the departure time interval choice set for the individual and OCDT is the

structural coefficient associated with the change departure time alternative.

The utility of the change path (CP) alternative is the expected maximum utility of

the lower level alternatives, i.e. change to path p in path choice set P. The utility of a

lower level alternative, i.e. change to a feasible path p in the choice set P is:

V(CP' )= # .,0 + f jVOT1o tt + VOTmed p +  VOT , tt I, +

fi4 CFp + flp +pi +, +#I c s + S + + f, +
(8)

pll max(atu , - atIP ,0)+ #d max(at\ - at',,o)+

pd, 13 Pm + P~,14 P4

If there is a total of N feasible paths in the choice set P, the alternative specific
constant ,,o can only appear in N-1 utilities. Without loss in generality, the alternative

specific constant is omitted from the Nth utility.

The utility of the change path alternative is:

V(CP) = Ocp log 8ev(p)/0 cP  (9)
peP

where P is the departure time interval choice set for the individual and Ocp is the

structural coefficient associated with the change path alternative.



The utility of the change departure time and path (CDTP) alternative is the

expected maximum utility of the lower level alternatives, i.e. change to combination hp of

path p in path choice set P with departure time interval h in departure time interval choice

set H. The utility of a lower level alternative, i.e. a combination hp of route p and

departure time interval h, is:

V(CDTP,)= P, ,o + pfVOTott, + PlVOTmedtt+ + fVOThitt +

pl CFP + pifl + pfop + Pic, +fi3s, + fg f, +

Pildl max(at§f - at- ,O)+ pd max(atI - ath•,o)+

CDT P, 13, + P CDTP, ,14 Pl

If there is a total of N combinations of route and departure time choices, the
alternative specific constant fdCDThpo can only appear in N-1 utilities. Without loss of

generality, the constant is omitted from the Nth utility specification.

The utility of the change departure time and path alternative is:

V(CDTP) = OCDTP log XeV(hP) /OCDTP (11)
hpePxH

where PxH is the set of all combinations of the departure time intervals in the choice set

H with the feasible paths in the choice set P, and OcDTP is the structural coefficient

associated with this alternative.

The utility of the cancel trip (CT) alternative is:

V(CT) = dCT,0 + dCT,13 P + PCT,14 PI (12)

With all the lower level utilities already described, the utility for the change (C)
alternative is:

V(C) = Oc log(ev(M)Ic + eV(DT)Ic +e V(P)/c + eV(DT+P)IOC + eV(CT)/O) (13)

where Oc is the structural coefficient associated with the change alternative.

Once all the utilities have been specified, the probabilities that each choice will be
made can be calculated based on the following formulas. The probability that alternative
A will be selected from a choice set S, comprising from all the alternatives in the same
level, is:



eV(A)
P(A)= e•V() (14)

IeV(B)
Be S

whereas, the probability that a lower level alternative a will be chosen from choice set S,
provided that the higher level alternative A has been chosen, is:

eV(a)

P(a) = P(A) eV(b) (15)
XeV(b)
b S

Using the above two formulas, the probability that a driver will not change travel

behavior is:

eV(DNC)

P(DNC) e V(DNC) ) (16)
eV(DNC) +eV(C)

and the probability that a driver will change travel behavior is:

eV(C)
P(C) =eV(D C) (17)

V(DNC) +V(C)

The probability that a driver will change mode, provided that the decision to

change travel behavior has been made, is:

eV(CM)
P(CM)= P(C) (18)

eV(CM) +eV(CDT) + eV(CP) + eV(CDTP) + eV(CT) (18)

The probability that a driver will change departure time, provided that the decision

to change travel behavior has been made, is:

eV(CDT)
P(CDT) = P(C) (19)

P(CDT)P( v(CM) + eV(CDT) + eV(CP) + eV(CDTP) + eV(CT)

The probability that a driver will change path, provided that the decision to

change travel behavior has been made, is:

eV(CP)
P(CP)= P(C) 20eV(CP))

e (CM) + eV(CDT) + eV(CP) + eV(CDTP) + e v(cr)

The probability that a driver will change departure time and path, provided that

the decision to change travel behavior has been made, is:



eV(CDTP)
P(CDTP) = P(C) (21)

eCDTP) = P( V(CM) +eV(CDT) +eV(CP) +eV(CDTP) +eV(C) (21)

The probability that a driver will cancel his/her trip, provided that the decision to
change travel behavior has been made, is:

eV(CT)
P(CT) = P(C) ( V(22)

eV(CM) + eV(CDT) + eV(CP) + eV(CDTP) + eV(CT)

The probability that a driver will switch to departure time interval h, provided that

the decision to change departure time has been made, is:

V(CDTh)
P(CDT P(CDT) eV( (23)

1eV(CDTj)
je H

where H is the departure time choice set of the individual.

The probability that a driver will switch to path p, provided that the decision to
change path has been made, is:

SeV(CP,)
re P

where P is the path choice set of the individual.

The probability that a driver will switch to departure time interval h and path p,
provided that the decision to change path has been made, is:

P(CDThP) = P(CDTP) eV(CDTPp) (25)eV( CDT Pr) (25)

jre PxH

where PxH is the set of all combinations of the departure time intervals in the choice set
H with the feasible paths in the choice set P of the individual.

3.6.3 Prescriptive Model Structure

In the case of prescriptive information, the behavioral model simplifies to a
compliance model (Figure 8). The travelers are assumed to decide whether they will
change their habitual travel behavior or not, and if they decide to change, they are



assumed to follow the suggested alternative. The model is assumed to apply only to route

choice. This is due to the fact that -bearing current technological constraints in mind- no

prescriptive guidance for departure time or mode choice can be generated based only on

information derived from the prevailing network conditions. Although the system can

evaluate the alternative paths and provide route choice recommendations for each OD

pair, in order to perform a similar operation for departure time or mode choice, additional

information about the individual needs to be known. Departure time and mode choice

depend heavily on information about the individual traveler which is not available unless

an information technology with feedback capabilities (from the user to the information

provider) is in use.

An interactive guidance system, which would have the potential to acquire

information from the drivers and compute and send customized guidance could allow for

the extension of this framework to model departure time and mode choice under

prescriptive guidance. An alternative approach would be the use of a distributed guidance

system that transmits necessary traffic data to separate processing units, e.g. personal

computers or on-board units, that combine this information with information provided to

the unit by the driver to generate customized prescriptive guidance on departure time and

mode choice. Although this approach is potentially limited with technological constraints

associated with the capacity of transmission between the traffic control center (TCC) and

the distributed processing units, two such systems have already been designed and

implemented for en route applications. ADVANCE broadcasts current link travel times

and incident reports to the vehicles, which use an on-board computer to derive guidance

information (Lappin et al., 1994). EURO-SCOUT broadcasts a look-up table to all

vehicles with specific recommendations about the direction that the user should follow in

every crossroad (i.e. turn left or right, or continue on the same road) (Sodeikat, 1995). If a

system with similar capabilities was available for pre-trip application, it would be

possible to provide pre-trip prescriptive information regarding departure time choice and

mode.

Habitual travel pattern

Do not change Change

Figure 8. Pre-trip choice tree in the case of prescriptive information



3.6.4 Prescriptive Model Specification

The utility of the do not change alternative is:

V(DNC) = P VOTlo tthp + P VOTmed t h'p' +0 VOThi tp'

SCFp, + P p, + p f 7cp, +P sp, + f , + (26)

Pfo max(dth' - T,O)

The utility of the change (to the proposed path p) alternative is:

V(C) = pflc + PfVOT tthp +, VOTmd tt + VOTmedp +  VOThitt'p +

flCF, + #flp + fl3O , + fP c, + f P , +f if, + (27)

fl, max(atf,, - at ,O)+ P2 max(ath,, - at, ,o)+ p• Ph +

A31
1 P1

The probabilities that each alternative will be selected are respectively:

ev(DNC)
P(DNC)= eV(DNC(28)

eV(DNC) + eV(C)

and

eV(C)
P(CeV(C) (29)

C) = eV(DNC) + eV(C)

3.6.5 Algorithm

The input to the behavioral update procedure includes:

* A historical population of drivers, and

* Information and guidance, expressed as travel times for all alternatives.

The output is a population of drivers, with updated travel decisions, that reflect the
available information.

The procedure that is followed in the generation of the updated travel behavior of
each driver is presented in Figure 9.



Figure 9. Travel behavior update process

The first step in the pre-trip behavior update is the application of the appropriate

behavioral model, in order to get choice probabilities for all alternative options. The

component deals with both descriptive and prescriptive information. The traveler

behavior is captured by the descriptive or prescriptive models, which -selected based on

the type of available information- provide choice probabilities for each of the

alternatives. If the user receives both prescriptive and descriptive information, then it is

assumed that the prescriptive overrides the descriptive and the user behaves as if

receiving only prescriptive information. Furthermore, it is assumed that the system

provides full information, that is travel times (and any other required information) for all

combinations of paths and departure time intervals.

Once all the choice probabilities are computed, Monte Carlo simulation is used to

select an alternative. This concludes the computation of the updated traveler behavior.

The updated departure time interval, mode and path are then assigned to the driver, by

overwriting the default values generated for the driver at the off-line disaggregation stage.



At this point the effect of pre-trip information in the drivers' travel behavior has
been captured, and a disaggregate updated population is available. The OD estimation
needs aggregate demand as input. Therefore, an aggregation procedure is required. This is
presented in the next section.

3.7 Aggregation

The role of the aggregation component is to generate updated OD matrices by
aggregating the updated population of drivers. The updated OD matrices are used as input
for the OD estimation model. The aggregation is based on the departure time interval, the
origin and the destination of the drivers.

3.7.1 Algorithm

The input to the aggregation component is the updated population of drivers. The
output is a set of updated OD matrices, with one OD matrix corresponding to each
estimation time interval.

The aggregation component generates OD matrices by iterating over the drivers
that have decided to depart in a given departure time interval and have selected the car as
their mode and summing them, based on their origin and destination. The number of
drivers that depart in a given departure time interval from a given origin with a given
destination corresponds to the cell of the OD matrix for that departure time interval and
OD pair.

The effect of the behavioral update becomes apparent at this stage. Drivers are
now organized in OD matrices based on their updated departure time interval rather than
their habitual intervals that the historical OD matrices assume. Drivers that have decided
to cancel their trip or switch to public transit are not included in the updated OD matrices.
It must be noted that although the model explicitly captures mode switch from
automobile to transit and removes the drivers that decide to switch to public transit, it
does not capture explicitly travelers switching from transit to car. It is assumed that all
potential drivers (i.e. those with access to a car that possess a driver's license) were
included in the historical OD matrix.

At this point, the aggregate demand has been updated to reflect the travelers'
response to information. The next step is the OD estimation, which uses data from the
network and attempts to achieve consistency between the link counts and the demand in
order to estimate the actual demand.



3.8 OD Estimation and Prediction Model

The OD estimation and prediction model is presented in this section. The general

model is described first. An approximation of the model, which is more suitable for the

context of real-time applications, is also presented and motivated. Finally, the

implemented algorithm that solves the approximate model is presented and discussed.

Time-dependent OD matrices are key inputs to a DTA system. The ability of the

DTA to accurately model existing traffic conditions depends on the quality of the OD

matrices, since the OD matrices are translated into actual traffic that is loaded and

simulated in the network. To be useful, these OD matrices need to be updated in real-time

to reflect the changing traffic conditions in the network. The basic problem of dynamic

OD estimation is to compute, in real-time, an estimate of OD flows for a given time

interval from link traffic counts. The formulation of the real-time dynamic OD matrix

estimation problem based on a Kalman Filtering framework is described by Ashok

(1996). The basic idea of this approach is to use all the information contained in updated

OD data in conjunction with data on traffic counts to generate OD estimates in real-time.

The OD matrices that are used in this procedure have already been updated so that they

reflect the response to information available to the travelers at the pre-trip stage.

Unlike other approaches in the literature, the adopted model is based on

deviations from historical values as proposed by Ashok and Ben-Akiva (1993) rather than

the values themselves. This approach seeks to incorporate structural relationships in the

estimation process by including all estimations of prior days. This is important, since the

already estimated OD matrices subsume a wealth of information about the latent

relationships that affect travel demand and their variations over time. Thus the estimation

process indirectly takes into account all the experience gained over many prior

estimations and is richer in structural content.

The basic problem of OD prediction is to compute, in real-time, estimates of

future OD flows from the current OD estimates. The autoregressive process used by the

Kalman filtering approach provides a prediction tool, with real-time capabilities, that is

consistent with the estimation process and models the temporal relationship among

deviations in OD flows. Unobserved factors that are correlated over time (like weather

conditions, unusual events, etc.) give rise to correlation of deviations over time which are

modeled by the autoregressive process. The autoregressive process is characterized by a

set of coefficients describing the effect of the deviations during one time interval on the

deviation during another time interval. These coefficients are computed off-line, using a



linear regression model for each OD pair and for each time interval. Predicted deviations
are, therefore, obtained by applying this autoregressive model to the deviations estimated
for the current time interval.

Estimated and predicted deviations are finally added to a historical OD matrix to
get estimated and predicted OD matrices.

3.8.1 Model Overview

The OD estimation and prediction model is a model for real-time OD estimation
and prediction, proposed by Ashok (1996). The model is a state-space formulation that
uses deviations of OD flows from historical values as unknown variables. A state-space
model is formulated as a set of:

* Transition equations, and

* Measurement equations.

The formulation of the model is presented in the next two subsections. In Section
3.8.4, an approximate formulation is presented, which has many computational
advantages at virtually no accuracy cost. This makes it attractive for use in a real-time
application, such as the proposed pre-trip demand simulator. The Kalman filter algorithm
that is used to solve the approximate system of equations is presented in the next
subsection. The procedures that are used to get estimated and predicted OD matrices from
deviations are presented next. Finally, the overall algorithm of the OD estimation and
prediction process is discussed.

3.8.2 The Transition Equation

Assuming the following notation:

* xh is the vector representing the number of vehicles between each OD pair

departing their origins during time interval h,

* Xhn is the corresponding updated historical estimate, and

* Xh = Xh - Xh is the deviation of xh from XhH

the transition equation can be expressed in matrix form as:

JP hlX + (30)Xwhere:h+1 p=hq X + h (

where:



* fhP is an noD * noD matrix of effects of Xp on Xh+l,

* wh is an nOD* 1 vector of gaussian errors,

* q is the degree of the autoregressive process, and

* Xh+1 is an estimate of Xh+1.

The following assumptions are made about the error vectors:

1. E[Wh] =0

2. E[whWI] = Qhhl

where

* 8 hl = 1 if h = 1 and 0 otherwise Vh,l and

* Qh is an noD * noD transition error covariance matrix.

The second assumption implies that there is no serial correlation and is justified because

the unobserved factors in the transition equation that could be correlated over time are

captured by the updated historical matrix xh+il

The model in the above form is highly general and assumes dependence of

deviations corresponding to one OD pair on deviations corresponding to other OD pairs

in prior periods. In practical application this is unnecessarily general and relationships

between deviations across different OD pairs may be safely ignored. This simplification

is adopted in our implementation. In other words, we are assuming a diagonal structure

for the matrices fP. If a non-diagonal matrix is provided as input to some estimation,

then it is diagonalized prior to the application of the algorithm. Also, computation of the

matrices fhp involves estimating linear regression models for each OD pair and for each

interval. If one makes the additional assumption that the structure of the autoregressive

process remains constant with respect to h, the values of the matrix fh would only

depend on the difference (h-p) and not on the individual values of h and p. Given the data

limitations, this is a reasonable assumption.

3.8.3 The Measurement Equation

Assuming the following notation:

* yh are the link flows obtained by assigning the updated historical OD

flows,



* ah is an nl * noD assignment matrix of contributions of xp to Yh,

* Ah = ah is the assignment matrix mapping the drivers that departed in

interval h to the link counts observed in interval h,

* p' is the maximum number of time intervals taken to travel between any

OD pair of the network, and

S Yh h h-1 - p' p is the deviation in the link counts,

the measurement equation, which relates unknown OD flows to the observed link counts,

can be stated in matrix form as follows:

Yh = Ah Xp + Vh (31)

where:

vh is the vector of measurement errors.

The following assumptions are made about the error vectors:

1. E[vh = O
2. E [whl = 0 Vh, l i.e. transition and measurement errors are uncorrelated

3. E [vv = RhOhl

where

* Shl = 1 if h= 1 and 0 otherwise Vh,l and

* Rh is the nt * ni measurement error covariance matrix.

3.8.4 Approximate Formulation

The model, as presented above, filters a very large number of flows during each

interval. This imposes an enormous computational strain especially for large and

congested networks potentially making a real-time application of the model infeasible.

An approximation is made, based on the intuition that most of the information about an

OD flow is likely to be provided the first time it is counted. Ashok (1996) found that the

approximation has only a slight impact on quality of estimated OD flows relative to the
base model. Furthermore, the computational savings that this approximation gives make
it the preferred method for real-time implementation. Finally, he found that the model is
fairly robust with respect to measurement error in link counts. The measurement and
transition equations would then contain constant terms and could be expressed as follows:



Yh - yh =Ah Xhh h (32)

Xh+1 = Dh Xh + Ch + Wh (33)

where
h

* y ah p ,
p=h-p'

h-1
C* h = Ph-q f , P and

* Ah =fhh .

3.8.5 Algorithm

The solution of the presented formulation is given by a square root Kalman
Filtering algorithm (Chui and Chen, 1987). The selection of the particular algorithm has
been based on several criteria -presented in Section 3.8.7- and the proposed algorithm
fits well in the need of the system.

The input to the OD estimation and prediction model for time interval h consists
primarily of the following matrices, where ni is the number of links and noD is the number
of OD pairs in the network:

* One updated OD matrix xh of drivers departing in that interval with
dimension nOD x 1.

* p'+1 assignment matrices ahf. Each assignment matrix is nt x noD and

provides information about the contribution of the OD flows of a time

interval (for each of the p' past intervals plus the current one) to the link

flows for the current time interval.

* One observed link flow matrix yh with dimension nt x 1. This matrix
contains information about the traffic conditions on the links of the

network which has become available from the surveillance system.

The output is estimated and predicted OD matrices.

The assignment matrix is an important input to the model and can be provided
from a traffic simulator, if such a capability exists, or computed from flow and speed data
available either from the surveillance system of a real network or from a traffic simulator.
A detailed description of methods for computing the assignment matrix can be found in
Ashok (1996).



The structure of the module is presented in Figure 10.

Figure 10. Estimation and prediction structure

The OD estimation and prediction has three main components. The first one is

called initialization and takes place only once, prior to the estimation of the first interval.

The use of the initialization step is to produce necessary information for the first
estimation interval. The initialization is equivalent to a preprocessing step. The square

root of the variance of the state vector, which is required by the specific square-root
Kalman Filtering algorithm that is used for the solution of the model, is computed at the
initialization step.

Besides the OD, assignment and link flow matrices, the model also requires:

* q transition matrices fh, with dimension noo x noD. These matrices do not

depend on the actual intervals, but only on their difference q,

* transition and measurement error covariances of the system Qh and Rh, for
each time interval h. The dimension of Qh is noD x noD, while the

dimension of Rh is n1 x ni,

* the initial state vector xo, i.e. the set of decision variables, and the variance
of its deviation from a historical value xoA, Var(xo - xoH), with dimensions
noD x 1 and noD x noD respectively.



used:
In the formulation of the algorithm the following Kalman Filter terminology is

* Xhlh- 1 represents a one-step prediction of the state Xh, i.e. it represents the

best knowledge of the deviation Xh prior to obtaining the link counts for
interval h.

* Ihlh-1 and Ihlh represent the variances of Xhlh-1 and Xhlh respectively.

The algorithm proceeds as follows:

(i) Initialization:

The square root of the variance of the state vector is computed:

Zoo = (Var(Xo))c (34)

where

c denotes the Cholesky factor, which is the equivalent matrix operation to the square root

of a number.

Furthermore, one-step prediction is performed on historical data, to give an initial

estimate of the state vector for the first estimation interval:

Xh+11h ='h Xhlh + h- q P( ) (35)

The following computations are then performed for each estimation interval h=0,1,2,3, ...

(ii) Estimation of deviations:

(a) Variance propagation of the filter

-hlh-1 = h- h-11h-1 -1 ]nx(n+p)

HT T+ )cH h = (Ah~h1_hl~hlA h + Rh

and use them to compute

hh1h = 1hlh-1L hA-1 h Hh +Rh) -AhZhlh-1]

(b) Calculation of the Kalman gain

Gh = hIh-1hlh-lah (H)Hh

Compute

and

(36)

(37)

(38)

(39)



(c) Measurement update

Xhh = XhIh_1 +Gh[Yh - Ah(hhl +-1 h )- Ah1 (h-lh )- Ah-2 (h-21h-1 +X H  (40)

(iii) Prediction of deviations:

After the estimation of the deviation has been performed, i.e. Xhlh is known, k-

step prediction is performed, in order to get Xh+1V, Xh+21h, Xh+3h, ... , Xh+kL. The k-step

prediction algorithm follows:

Xh+l1 = "DhXhlh + p=h- q fhP Xp + Xh+1  (41)

Xh+21 = ( h+lh + p=h+h + h+l-q l ph + Xh+ 2  (42)

Sh+k-2 A H
h+klh =  h+k- h+k-11h +  p=h+k-1-q h+k-1 Xp + Xh+k (43)

3.8.6 OD Estimation from Deviations

The application of the Kalman Filter that has been described above outputs the
deviations Xhlh of the OD flows from the historical values for the estimation interval h. In

order to get the final OD flows Xh one needs to add these deviations to the historical OD
flows xhH

Xh = Xhlh + X44)

3.8.7 Discussion on Algorithm

The square root algorithm was selected for its numerical robustness and
efficiency. Indeed, in going to the square root, small numbers become larger and large
numbers become smaller, improving accuracy. The major time-consuming operation in
the Kalman filtering process is the computation of the Kalman gain matrices. This is due
to the need to perform a particularly computationally expensive inversion. The square-
root algorithm takes the Cholesky factor of this matrix, thus reducing the matrix to a
lower triangular. The square-root algorithm is thus more efficient since the inverse of a
lower triangular matrix can be computed efficiently (time-wise). The fact that some



matrices are lower triangular is beneficial also from a memory-requirements point of

view, since the upper triangle -which contains only non-zero elements- does not need to

be stored. This can significantly limit the size of required computer memory, which is

important, since the dimensions of the matrices describing a realistic urban network -and,

hence, the memory requirements- can be very large.

The algorithm contains two functions that require from the matrices upon which

they operate to be non-singular. These functions are the Cholesky factorization and the

inversion. The matrices that need to be non-singular are: Var(Xo) and Hh. If either happen

to be singular, then backup algorithms are required, that do not depend on the non-

singularity of these matrices. If Var(Xo) is singular, this means that some OD flows are

known precisely. Therefore they do not need to be estimated and will be removed from

the OD matrix, thus eliminating the singularity. Since this operation happens in the

beginning of the algorithm, it does not affect it. A way to detect in which measurements

the singularity occurs is to perform standard eigenvalue analysis. Furthermore, Hh is

unlikely to be singular, since its singularity depends on the variance-covariance of the

measurement error; if Rh is strictly positive definite, then Hh is non singular.

A modified Cholesky factorization algorithm that does not depend on the non-

singularity of the matrix (Schnabel and Eskow, 1988) is used to overcome potential

singularity problems. The algorithm is based on a modified Cholesky factorization

introduced by Gill and Murray (1974), which is commonly used in optimization

algorithms. Given a symmetric, but not necessarily positive definite matrix A, the

modified Cholesky factorization computes a Cholesky factorization of A+E, where E=O if

A is positive definite, and E is a diagonal matrix chosen to make A+E positive definite

otherwise. The algorithm succeeds in generating a small E matrix and a well conditioned

A+E, in practice.



4. Implementation

The pre-trip demand simulator is a complex system. The implementation of such a

system is not trivial and should be made in an organized manner. The steps that were

followed in the implementation phase of the system are presented in this section. The first

subsection presents an overview of the implementation environment. The second

discusses a set of objectives, whereas, the guidelines that were set for the implementation

of the required objects are presented in the third subsection. Finally, object design and

specific issues associated with the implementation of each individual component are

presented in the last two subsections.

4.1 Overview

The system is implemented using the Object Oriented (00) paradigm (Rumbaugh

et al., 1991). The programming language of choice is C++ with the Standard Template

Library (STL). The system is implemented as a client/server distributed application, using

Orbix, a Common Object Request Broker Architecture (CORBA) implemented by Iona

Technologies. Finally, the Object Modeling Technique (OMT) (Rumbaugh et al., 1991)

has been selected as the object design methodology.

C++ is an object oriented extension of the widely used programming language C,

and was developed by Bjarne Stroustrup at the AT&T Bell Laboratories (Stroustrup,

1991). C++ allows the user to define data types that behave in nearly the same way as

built-in types. Nevertheless, unlike earlier interpreted object oriented language, such as

Smalltalk and Lisp based languages, C++ is a compiled language that does not sacrifice

run time efficiency. Some of the advantages of C++ -besides object oriented features-
include portability into virtually any platform, compatibility with C, efficiency, and

performance.

The Standard Template Library is a template-based library of generic C++ data

structures and algorithms that work together in an efficient and flexible fashion (Nelson,

1995). STL was proposed by Alexander Stepanov, developed by Hewlett Packard, and

accepted by the ANSI/ISO C++ Standards Committee in July 1994. STL offers a set of

ready-to-use components that -from an efficiency point of view- are very close to their
hand-coded equivalents. Therefore, the need for custom-made vectors, lists and other -
more complicated- structures has disappeared, allowing the developers to concentrate on
more substantial aspects of the development procedure.



CORBA is the Object Management Group (OMG) consortium's standard for
distributed application communications. It is based on object-oriented design principles

and client/server technology. Orbix is a CORBA implementation, which allows software

interfaces to be defined in a standard language and then accessed from anywhere in a

distributed system. Servers are launched and managed automatically from the Orbix run-

time system. Orbix's performance has been shown to be comparable to other

communication protocols such as BSD sockets and PVM (Fatoohi, 1996).

The Object Modeling Technique uses the object model to describe the static data

structure of objects, classes and their relationships to one another. Nevertheless, no

behavior, dynamic evolution or data flow are captured by this model. The main

relationships used in this document and their representation on the diagrams are presented

in the next figures. Two objects can be connected with a one-to-one relationship, called

association. An association between two objects is represented by a link (Figure 11): the

PreTripBehavioralModel is associated with one MonteCarlo object. In the case of a one-

to-many relationship, a multiplicity relationship can also be specified (Figure 12): the

PreTripBehavioralModel is associated with several (zero or more) PreTripInfo objects.

An aggregation is an association that represents the "is a part of' relationship (Figure 13):

a driver is a part of the ListOfDrivers. Finally, inheritance, also known as generalization,

represents the "is a special case of' relationship (Figure 14): the full and sparse vectors

are special cases of Vector.

MonteCarlo PreTripBehavioralModel

Figure 11. Association example

PreTripInfo I- ---- PreTripBehavioralModel

Figure 12. Multiplicity example

Driver ListOfDrivers

Figure 13. Aggregation example



Figure 14. Inheritance example

4.2 Objectives

The following general objectives were set and followed during the

implementation stage:

* Object oriented (00) design,

* Computational efficiency, and

* Numerical robustness.

Each of these objectives is discussed in the following subsections.

4.2.1 Object Oriented (00) Design

The term "object-oriented" means that software is organized as a collection of
discrete objects that incorporate both data structure and behavior, in contrast to
conventional programming in which data structure and behavior are loosely connected

(Rumbaugh et al, 1991). Object oriented design supports several concepts, such as

abstraction, encapsulation and sharing, and offers substantial advantages over

conventional programming practices. The benefits from using the object-oriented

approach include:

* Flexibility of the design,

* Better communication of the objects and easy exchange of information,
and

* Easier debugging, maintainability and reusability of the code.

4.2.2 Computational Efficiency

The computational efficiency of the application can be broken down into three
major sub-tasks:



* Efficiency of the algorithms,

* Efficiency of the individual functions called by the algorithm, and

* Efficiency of the data structures.

The benefits from computational efficiency are two-fold:

* Higher execution speed, which is critical for a real-time application, and

* Large size of network, that can be processed, under current technological

constraints.

4.2.3 Numerical Robustness

The term numerical robustness refers to the elimination of numerical errors. The

numerical robustness of the demand simulator is ensured by:

i. Selection of the square root Kalman filtering algorithm (Chui and Chen, 1987)

for the solution of the OD estimation and prediction equation system, and

ii. Elimination of potential singularity problems.

As mentioned in Section 3.8.7, the square root algorithm uses the Cholesky factor

of some matrices, instead of the actual matrices. This improves the numerical robustness,

since the square root of very small numbers is larger and the square root of very large

numbers is smaller. In this way, extreme values, that are potential sources of numerical

instability, are avoided and accuracy is improved. Besides that, the algorithm also offers

computational benefits.

Furthermore, some of the functions that are used in the algorithm, namely the

Cholesky factorization and the inversion, require from the matrices upon which they

operate to be not close to singularity and positive definite. Although these matrices are

very likely to be non-singular, the necessary steps have been incorporated in the algorithm

to ensure that such an event will not influence the execution of the application. For

example, a modified Cholesky factorization is used that can be applied even in the case of

matrices close to singularity and non-positive definite matrices (Schnabel and Eskow,

1988).

4.3 Requirements

The objects that comprise the demand simulator need to be designed in a way that

they provide:



* Flexibility in the design,

* Efficient access of their elements, and

* Efficient storage, that meets the memory requirements.

4.3.1 Design Flexibility

The flexibility is achieved by the 00 design of the system, which makes the

substitution of a component with another one, that complies with the specified interface,

possible. This substitution should be transparent to the rest of the system and no

modification of other objects should be necessary to complement it.

In order to satisfy this requirement, the demand simulator exploits the advantages

of a full 00 development. Where appropriate, abstract classes are defined and the

concrete classes are derived from these. For example, in the OD estimation and prediction

component, a series of matrices and vectors are required, such as dense, sparse,

symmetric, and lower triangular matrices, as well as dense and sparse vectors. Abstract

matrix and vector objects are defined, and the concrete classes are derived from them. In

this way, a consistent interface is defined and the object elements are accessed through

that. Figure 15 and Figure 16 show the abstract and concrete classes for matrix and

vector.

Full Sparse Symmetric Lower
Matrix Matrix Matrix Triangular

Concrete classes

Figure 15. Matrix Classes



Concrete Classes

Figure 16. Vector Classes

The data of an object is not accessed directly from other objects or components,

but all interaction takes place through abstract interfaces. In most cases these interfaces

are defined as iterators I and are independent of the internal representation and structure of

the object. Iterators provide a way to access the elements of an aggregate object

sequentially, without exposing its underlying representation (Gamma et al., 1995). If the

user wishes to change the internal representation of the object, then the code

modifications are limited in changing the iterators to reflect the new structure. Once the

modification is complete, the other objects should be able to access the modified object in

exactly the same way as they used to. In other words, any change in the internal

representation of an object is transparent to other objects.

4.3.2 Element Access

Many objects need to access the elements of other objects. These operations are

performed through the interface of the objects and the calling objects do not have direct

access to the elements, which are private, but access them via the public interface. The

public interface consists from simple functions that return the requested data, and

iterators on the elements of the objects.

The iterator pattern, as defined by Gamma et al. (1995), is used as the basis for

these iterators. Iterators are intended to provide a way to access the elements of an

aggregate objects sequentially without exposing its underlying representation.

Furthermore, iterators support multiple traversals of aggregate objects by the use of

multiple iterators (e.g. iterators on the rows and the columns of a matrix). Finally,

iterators provide a uniform interface for traversing different aggregate structures. An

iterator has at least the following operations:

1 Iterators are discussed in the next section.



* First(): initializes the current element to the first element of the aggregate
object,

* Next(): advances the current element to the next element of the object,

* IsDone(: tests whether the iteration over the elements of the aggregate
object is complete, i.e. it has advanced beyond the last element, and

* CurrentItem(: returns the current element.

Besides this general read-only iterator, one can enhance the concept by adding
functionality. Such an addition, that was used in the current project, was the
SetCurrentItemo operation that sets the value of the current element to the desired one.
The resulting iterator is a read-write iterator, that inherits from the read-only iterator
(Figure 17) and provides a uniform interface in the update of the values of aggregate

objects.

Read-only iterator

* First()
* Next()
* IsDoneo
* CurrentItem()

Read-write iterator

* SetCurrentItem()

Figure 17. Read-write iterator inheritance

4.3.3 Memory Requirements

The demand simulator involves a number of objects, many of which have to be
loaded on the memory at the same time, while others need to be read from and written to
the storage devices in real-time. It is therefore important that these objects are created in a
way that they consume as little storage capacity as possible. Furthermore, since the size of
the network has closely relation with the size of some of these objects, the more efficient
the structure of the objects, the larger the network that can be processed. Therefore, it is
important that the representation of these objects is optimized in a way that their storage
needs are reasonable.



The storage efficiency is achieved by exploiting the special form of several of the
demand simulator objects. For example, some of the matrices are very likely to be highly

sparse, whereas others are symmetric or lower triangular. In the case of sparse matrices,

only non-zero elements are stored to decrease the memory requirements2. Similarly, in the

case of symmetric or lower triangular matrices only the lower triangle needs to be stored.

4.4 Objects

In this section, the objects that comprise the pre-trip demand simulator are

presented. In the first subsection, the objects are listed and a selective list of iterators are

presented. In the second, the object associations are described.

4.4.1 List of Objects

The following objects are required in the pre-trip demand simulator:

* OffLineDisaggregation: disaggregates the historical OD matrices into a

ListOfDrivers,

* PreTripBehavioralModel: updates the travel behavior of the drivers to

reflect their response to information made available at the pre-trip stage,

* Aggregation: aggregates the ListOfDrivers into an ODMatrixList,

* ODEstimationAndPrediction: estimates OD flows for the current time

interval and predicts OD flows for future intervals,

* OnLineDisaggregation: in the case that disaggregate demand is required as

final output of the demand simulator, disaggregates the aggregate demand

output, by removing drivers from the ListOfDrivers or generating and

adding new drivers to it,

* ODMatrix: a historical, estimated, or predicted OD matrix for a time

interval,

* ODMatrixList: a list of ODMatrices,

* LinkCounts: the link counts, observed by the surveillance system.

* AssignmentMatrix: an assignment matrix (see Section 3.8),

* TransitionMatrix: a transition matrix (see Section 3.8),

2 Nevertheless, additional information needs to be stored in this case -namely, the row and column index of
each non-zero element- and therefore this tradeoff should be examined before using this representation for a
matrix.



* ErrorCovarianceMatrices: the error covariance matrices Q and R (see

Section 3.8),

* Driver: one driver,

* ListOfDrivers: a list of drivers,

* PreTripInfo: pre-trip information provided by the guidance generator in

the form of travel times for all alternatives,

* Distributions: distributions of characteristics, based on which the

characteristics of the individual drivers are generated,

* Coefficients: coefficients of the behavioral models, and

* MonteCarlo: an object that given a distribution returns a randomly chosen
alternative.

Also, besides these objects, the matrices and vectors presented in Section 4.3.1 are

used for intermediate computations and the representation of additional objects that do

not require further functionality.

The last category of demand simulator objects are the iterators. As mentioned

earlier, iterators provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation. The iterators have been implemented

efficiently and exploit the data structure of the objects on which they iterate. An example
of iterators is given in Section 4.5.4.

4.4.2 Object Associations

The objects of the simulator and their associations are presented in Figure 18.
Each association has been numbered to facilitate easier reference at the description that
follows. For the sake of controlling the figure's complexity, the iterators have not been
presented, although they are included in the subsequent discussion. This does not affect
the clarity of the description, because the associations of the iterators are straightforward.



Figure 18. Object associations

The ODMatrixList is composed of ODMatrices (1). Similarly, the ListOfDrivers
is composed of Drivers (2).

The OffLineDisaggregation uses the ODMatrixListROiterator to read the

aggregate historical demand from the ODMatrixList (3). It subsequently disaggregates the

aggregate demand using the Coefficients (7), the Distributions (6), and the MonteCarlo

(5). Finally, the OffLineDisaggregation uses the ListOfDriversRWiterator to fill the

ListOfDrivers (4) with the disaggregate demand.



The PreTripBehavioralModel uses a ListOfDriversRWiterator to iterate on the
ListOfDrivers (8), and PreTripInfo (11), Coefficients (9) and MonteCarlo (10) to
calculate and update the current behavior of each driver. The updated behavior of the
drivers is written in the ListOfDrivers through the ListOfDriversRWiterator.

The Aggregation uses a ListOfDriversROiterator to read the characteristics of the

individual drivers from the ListOfDrivers (12). As the drivers are read, an

ODMatrixListRWiterator is used to update the entry in each cell of the ODMatrixList

(13), by incrementing the value of the appropriate existing cell or creating a new one, if it

does not exist.

The ODEstimationAndPrediction uses the ODMatrixList (14), the

AssigmentMatrixList (15), the TransitionMatrix (16), the ErrorCovariance matrices (17)

and the LinkCounts (18) as input to estimate the aggregate demand. Read-only iterators

are used for all these objects in order to get data, required in the estimation. Furthermore,

an ODMatrixListRWiterator is used to write the estimated aggregate demand in the

ODMatrixList.

The OnLineDisaggregation uses an ODMatrixListROiterator to read the estimated

aggregate demand from the ODMatrixList (19), and a ListOfDriversRWiterator to read

the disaggregate demand , as it was prior to the estimation, from the ListOfDrivers (20).

The OnLineDisaggregation checks the consistency of the two representations of demand

and updates the ListOfDrivers to reflect the results of the estimation. If further drivers

need to be generated, then the Distributions (21), Coefficients (22) and the MonteCarlo

(23) are used to generate the additional drivers.

4.5 Implementation Issues

Implementation issues concerning the five components of the system are outlined

in this section. These summarize the areas of the implementation where assumptions have

been made that may need to be revisited in the future in order to improve the performance
of the demand simulator.

4.5.1 Off-line Disaggregation

This procedure is performed off-line, since it is not dependent on real-time
information and takes place at the beginning of the simulation. Therefore, its efficiency is
not critical. Nevertheless, one should note that the procedure is computationally intensive,
since a large number of randomly generated numbers will be needed for the assignment of
characteristics and initial route to the drivers. The ListOfPackets needs to keep the drivers



sorted, in terms of departure time intervals. The STL set has been used in the

implementation of the ListOfPackets which keeps the list sorted at all times, with little

computational cost (Nelson, 1995).

4.5.2 Pre-Trip Behavioral Model

The pre-trip behavioral model is applied on every driver in the population of

drivers, which is represented by the ListOfDrivers object. Therefore, it is important that

the implemented algorithm is efficient. Several attributes of each driver have to be passed

to the component in order to compute the drivers' behavior and therefore the existence of

efficient iterators on their characteristics is important. Iterators are defined on the

ListOfDrivers object, that return their static characteristics and their dynamic travel

behavior.

Finally, a large number of random numbers needs to be generated in order to

determine the drivers' travel behavior from the choice probabilities of the alternatives.

This is a computationally intensive process.

4.5.3 Aggregation

The focus in the aggregation procedure is in the implementation of iterators on the

ListOfDrivers object, that will enable efficient iteration on each drivers' departure time

interval, origin and destination, which are necessary for their aggregation into OD

matrices.

4.5.4 OD Estimation and Prediction Model

The square root Kalman filtering algorithm that has been selected to solve the

system does not require many computationally intensive functions, e.g. inversions or

Cholesky factorizations. Nevertheless, the algorithm requires that the matrices to be

decomposed are non-singular and definite positive. Therefore, as discussed earlier, a

modified Cholesky decomposition algorithm (Schnabel and Eskow, 1988) that overcomes

this deficiency is used.

The functions that are called by the algorithm have also been designed efficiently.

Inversion, a particularly computationally intensive function, need only be performed on

lower triangular matrices. A special inversion algorithm has been implemented, which

exploits the special structure of the lower triangular matrices (Golub and Van Loan,

1983). Also, other functions have been designed to take advantage of the special structure

of symmetric, lower triangular or sparse matrices, whenever that was possible. Finally,



some operations required the identity matrix (I). Instead of generating and storing a
potentially very big identity matrix, the necessary steps have been incorporated in the
functions to "simulate" the identity matrix, i.e. return a value equal to one if the element

is on the diagonal, and zero otherwise. Besides being more efficient in terms of storage

requirements, this is a computationally inexpensive procedure.

The third efficiency aspect is on the design of the data structures. The OD

estimation and prediction model is associated with several objects, most of which contain

a large amount of information. Therefore, they are very intensive from a storage point of

view. Several of these objects, though, can be optimized in terms of required storage

capacity. This has dual benefits:

* Size of network that can be processed given a certain size of random

access memory (RAM), and

* Speed with which the objects associated with a network can be loaded

from the database.

Some of these matrices, namely the OD matrix and the assignment matrix, are going to be

highly sparse. Data structures that exploit this sparseness could result in significant

benefits. A small example follows, to show the comparative requirements of a sparse

representation of the assignment matrix over its conventional dense or full counterpart.

Consider the Boston, Ma., metropolitan area inside Route 128, which is a

reasonably sized urban network. There are some 4800 nodes and 11000 links in the

network, as well as 240 centroids, leading to 57360 OD pairs3. Assuming that 25% of the

links have sensors, the size of each OD matrix will be (57360*1) and the size of each

assignment matrix will be (2750*57360), or around 158 million cells. Nevertheless, both

matrices will be very sparse.

To show the benefit that can be obtained from a data structure, that takes

sparseness into account, the following example is presented. Considering on average:

* k paths per OD pair p,

* 1 links per path, and

* L links in the network,

3 NOD = Ncentroids * (Ncentroids - 1), where NOD and Ncentroids are the numbers of OD pairs and centroids in the
network, respectively.



a measure called degree of sparseness is defined, which gives the percentage of cells in

the matrix that have zero value:

kl
Degree of sparseness = 1- % (45)

In this example, assuming reasonable values (k = 10, 1 = 30, and L = 11000), the degree of

sparseness is 97.3%, which translates to a total number of 4.3 million non-zero cells.

Therefore, it is clear that significant benefits can arise from the use of efficient data

structures for the assignment matrix. Similarly, one can show that benefits can arise from

the use of a sparse data structure for the OD matrix.

The data structure that is used for the representation of the OD matrix needs to

have the following characteristics:

* Efficient iteration over destinations, for a given origin, and

* Management of the sparsity.

The data structure of the object is implemented as a map of maps (Figure 19). A

map is an STL structure that can store and retrieve data based on a key. Data is stored

using a tree organization, and there is no need for sorting. For each origin, a map contains

the non-zero flows to all destinations. Therefore, iteration over the destinations -for a

given origin-, which is required often, is very efficient. Iteration over origins -for a given

destination- is also possible, though somewhat less efficient. There is some overhead

associated with the use of the map (Nelson, 1995). Nevertheless, the functionality that it

provides through the ability to keep the elements sorted at all times, as well as the easy

retrieval and setting of elements outweigh this overhead.
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Figure 19. ODMatrix data structure

The iteration over the elements of the OD matrix is made possible through two
sets of iterators that allow iteration over destinations for a given origin and over origins

for a given destination. For each operation both a read-only and a read-write iterator are

defined. The read-only iterators simply allow the calling object to access the elements of

the OD matrix, whereas the read-write iterators enable the calling object to actually set

the values of the elements of the matrix. When the iterator for a given origin is created, it

is initialized to point to the first destination in the map that corresponds to that origin.

Each increment of the iterator moves the pointer to the next element. This is performed

using the default map iterator, thus making the operation very efficient. The iteration

proceeds until the iterator reaches the last destination. On the other hand, the iteration for

a given destination over all origins is somewhat less efficient. When the iterator is
initialized, it needs to traverse the map of destinations for each origin until it finds the
destination to which it corresponds. For each increment of the iterator the same procedure
is repeated for the following origins. Again, the iteration finishes when the iterator
traverses the map for the last origin.

The data structure that is implemented for the assignment matrix needs to have the
following characteristics:



* Efficient iteration over time intervals and OD pairs, and

* Management of the sparsity.

The data structure of the object is implemented as a vector of vectors of maps

(Figure 20). For each time interval, there is a vector of links. For each link there is a

vector of (current and prior) time intervals, and for each time interval there is a map of

cells. Each cell is stored using the OD pair it is referring to as key and contains the

corresponding assignment fraction for that time interval. For each link and prior interval,

the corresponding cell represents the fraction of the OD flow for that OD pair and interval

that contributes to the current link flow of the link. This data structure allows efficient

iteration over time intervals and OD pairs and stores only non-zero cells. Like the OD

matrix data structure, there is an overhead in this implementation, but the benefits are

greater.

Departure time interval

NULL

Figure 20. Assignment matrix data structure

4.5.5 On-line Disaggregation

In the case that disaggregate demand is required as output of the demand

simulator, the estimated and filtered OD matrices will need to be disaggregated on-line.

This is not as computationally demanding as the off-line disaggregation, since the already



generated population of drivers will be used as a basis and drivers will be removed and

added to reflect the result of the OD flows filtering. The main computational concerns are

the random number generation which is required for the generation of the characteristics

of the additional drivers and the exp function required for the calculation of the utilities

and the choice probabilities of the various alternatives of the habitual behavior model.



5. Evaluation

The demand simulator provides both estimation and prediction capabilities. The

purpose of this chapter is to assess some of the properties of this simulator. This

assessment focuses in the simulator's estimation capabilities. The estimation process of

Ashok (1996) has been extended to include the impact of information in pre-trip

decisions regarding departure time, route and mode choice and, therefore, an assessment

is warranted.

The pre-trip demand simulator uses a large set of data from different sources and

processes them to estimate demand. Depending on the application, this demand can be

subsequently used, for example, to generate and provide guidance in a DTA context,

generate traffic control strategies, or evaluate such traffic management measures.

Therefore, the ability of the simulator to estimate demand as close as possible to the

actual demand is important. The ultimate objective of the evaluation of the simulator

would be the assessment of its ability to replicate true demand. This, however, is beyond

the scope of this thesis. In this chapter a more limited set of assessments are conducted.

Nevertheless, a more comprehensive evaluation framework is proposed in Chapter 6 for

further research.

The series of case studies performed in this chapter attempt to illustrate some of

the capabilities and assess some of the properties of the demand simulator, as well as

investigate some of its potential shortcomings. More specifically, the three exercises

conducted here include:

* Impact of behavioral update,

* Stochasticity of the output, and

* Sensitivity of the simulator to key inputs.

First, the importance of the pre-trip behavioral update is investigated and

presented. The simulator's output should not change drastically as a result of small

fluctuations in inputs representing errors. Second, the impact of stochasticity, inherent in

some of the models that are incorporated in the demand simulator has to be analyzed.

Finally, a sensitivity analysis is performed which aims at capturing the impact of

inaccuracies in the inputs on the output of the demand simulator.



The various dimensions of the scenarios that are used in the evaluation exercises
are presented in Section 5.1, whereas the evaluation cases are presented in sections 5.2,
5.3, and 5.4. For each case, the process is described, the results are presented and
analyzed, and conclusions are drawn.

5.1 Scenarios

Each scenario considered in this evaluation exercise is a combination of up to 12
dimensions. In the following, each dimension is referred to by a capital letter. Some of
these dimensions are fixed across all scenarios. The other dimensions can take several

values. In this case, the capital letter is qualified by an index referring to each particular

value. Not all cases use all the dimensions. Therefore, in the specification of the scenarios

for each case, only the required dimensions are included.

5.1.1 Network (A)

The network that is used for the evaluation of the demand simulator is Boston's

Central Artery and Third Harbor Tunnel (CA/T) network currently under construction,

with an expected 2004 opening date. The network has 185 nodes and 217 links and is

represented in Figure 21. A node is either an intersection of several roadways or a source

or sink where traffic flows enter or leave the simulated network. Links are directional

roadways that connect nodes. The network connects Route 1A, and Logan Airport in East

Boston with 1-93, Route 1, and the Massachusetts Turnpike (MassPike) through two sets

of underwater tunnels, one in the north (Sumner and Callahan tunnels) and one in the
south (Ted Williams - Third Harbor tunnel).
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Figure 21. Map of the network

The representation of the network has been slightly extended from that used by

other researchers, e.g. Yang (1996), in order to provide a more realistic evaluation

environment for the purposes of the exercises presented in this chapter. In particular,

drivers moving westbound in the Sumner or Callahan tunnel, cannot turn south towards
downtown Boston and further destinations to the south without getting off the freeway
and using local streets. The rationale behind this decision is to divert traffic from
downtown Boston. As a result, drivers traveling from East Boston or Logan Airport
towards South Boston or the MassPike have only one freeway-only route, the Ted
Williams Tunnel, and, therefore, have no freeway route choice. In reality, drivers moving
westbound in the Sumner or Callahan tunnel might consider bypassing this constraint by
using local streets temporarily in Downtown Boston to reach the southbound direction of
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1-93. This is made possible in the representation of the network that is used in the current

thesis by the addition of a link representing the local street connection.

The existence of an incident on the network is also modeled, resulting in two

alternative network representations. In particular:

* No incident (Al), and

* Incident in the Third Harbor (Ted Williams) Tunnel (A2).

The incident was assumed to occur at 7:15 and be cleared out at 7:30. It affected both

lanes of the tunnel, blocking the right completely and limiting the speed in the left to 15

mph.

5.1.2 Historical demand (B)

The historical demand is derived from an assumed true demand. This demand was

constructed using the following process. A set of 5 origins and 2 destinations are

assumed. The origins are placed in the east part of the network (A, B, C, D, and E) and

the destinations in the southwest (F) and northwest (G) (see Figure 21). This simplified

network structure provides all the desirable conditions, while avoiding unnecessary

complexity. Specifically, the network can capture route choice, since there are two paths

connecting most OD pairs. Furthermore, the occurrence of an incident in either tunnel

does not block the traffic moving between any OD pair.

A schematic representation of the network is represented at Figure 22.

G

A

Figure 22. Schematic representation of the network



A sequence of 5 intervals -and their respective OD matrices- are generated. The

length of these intervals has been selected to be 15 minutes, resulting in a 75 minute

period, from 7:00am to 8:15am. The demand between 7:30 and 7:45 has been defined as

follows. The total demand is 7200 vehicles/hour. It has been distributed across origins

according to the number of lanes at entry points, and equally distributed across

destinations. The resulting OD matrix for the 15 minutes period is given in Table 5.

A

B

C

D

E

F G

300 300

150 150

225 225

75 75

150 150

Table 5. OD matrix for 3" interval (7:30-7:45)

Furthermore, it is assumed, that the first and fifth interval correspond to 80% of

the demand of the third interval and the second and fourth correspond to 90% of it. This

demand pattern is presented in Figure 23.

3rd Interval
100% ............................................... aa.

2nd Interval 4d Interval

90% ........................... 7:30 -7:45
18t Interval .5 Interval

0%7: - - 7:30 7:45 - 8:00
80%

7:00 - 7:15 8:00 - 8:15

Figure 23. Demand pattern



The OD matrices that result from this process are presented in Table 6.

OD pair Interval 1 Interval 2 Interval 3 Interval 4 Interval 5

1

2

3

4

5

6

7

8

9

10

A-*F

A-*G

300

300

150

150

225

225

75

75

150

150

270

270

135

135

202.5

202.5

67.5

67.5

135

135

240

240

120

120

180

180

60

60

120

120

Table 6. Generated OD matrices

Based on this demand pattern, three different historical demand scenarios (B1, B2,

and B3) are generated:

* B1: 80% of the true demand levels are independently perturbed by a

random number uniformly distributed between -10% and +10% of the
demand.

* B2: the B1 demand levels are independently perturbed by a random

number uniformly distributed between -5% and +5% of the demand.

B3: the B1 demand levels are independently perturbed by a random
number uniformly distributed between -10% and +10% of the demand.

5.1.3 Population-wide characteristics (C)

As described earlier, the pre-trip behavioral model requires a distribution for the
value of time of the individuals. The distribution we consider here is arbitrary. It is
presented in Table 7. This distribution could represent a time period in which a large
proportion of the drivers are going to work and hence have a high value of time. This is
consistent with the time that the simulation takes place (7:00am to 8:15am).

240

240

120

120

180

180

60

60

120

120

270

270

135

135

202.5

202.5

67.5

67.5

135

135

B--G

C-G

D-4G

E--G



Value of time

Low

Medium

High

20

30

50

Table 7. Population-wide characteristics distribution

5.1.4 Pre-trip behavior (D)

Pre-trip decisions are captured by a behavioral model (described in Section 3.6),
that was estimated for the purposes of this evaluation process using artificial data. The
number of parameters in the model were limited to provide an easier to estimate, yet

representative, model. The model estimation was performed using the estimation software
Hielow (Bierlaire, 1995, and Bierlaire and Vandevyvere, 1995) on an artificial data set.
The estimated coefficients and constants are presented in Table 9 and Table 10.

The data set generation was based on a simple artificial network, consisting of one

origin and one destination connected by two alternative routes.

The steps that were followed in the generation of the data set are described in the

remainder of the section.

(i) Choice set generation

Each driver can:

* Maintain the habitual behavior,

* Change mode,

* Change route,

* Leave earlier or later using the same route, and

* Leave earlier or later and change route.

In order to reduce the number of alternatives to a manageable choice set, it was assumed

that a driver only considers switching at most to two earlier or two later departure time

intervals (five intervals of 15 minutes are considered, which is consistent with the

demand described in Section 5.1.2). This assumption was motivated by the fact that

drivers are usually constrained to complete their trip within some time frame -which

restricts their ability to delay their departure- while at the same time are not willing to

- IIIII - --- __ __ - -1Proportion



switch their departure time to a lot earlier. The cancel trip option is not considered in this

exercise.

Therefore, the choice set of the individual drivers consists of the following

alternatives:

* Do not change travel behavior,

* Change mode,

* Change route,

* Leave two departure time intervals earlier using the same route,

* Leave one departure time interval earlier using the same route,

* Leave one departure time interval later using the same route,

* Leave two departure time intervals later using the same route,

* Leave two departure time intervals earlier and change route,

* Leave one departure time interval earlier and change route,

* Leave one departure time interval later and change route, and

* Leave two departure time intervals later and change route.

(ii) Identification of variables of interest

The second step in the generation of the data set was the identification of the
variables of interest. The following variables were considered:

* Travel times for all choice alternatives,

* Deviation from the expected habitual arrival time,

* Value of time, and

* Information reception time.

(iii) Generation of list of values for each variable

A set of four travel time profiles are hypothesized and shown in Table 8. This
table shows the travel times for each path and time profile, as they are supposed to be
known to the decision maker. In particular, the third row shows the travel time if the
traveler does not change departure time interval. The lines above that correspond to the
travel time that the decision maker will experience if the decision is to leave one or two
intervals early. Similarly, the lines below that correspond to the travel times that will be



experienced by the decision maker if the departure is delayed by one or two intervals. The
first three profiles correspond to the beginning of a peak period and have increasing travel
times. Profile 1 describes usual traffic conditions, while profiles 2 and 3 describe the
effect of an incident on routes II and I respectively. The fourth profile corresponds to the
end of a peak period and has decreasing travel times.

Time profile

Route

Leave two intervals early

Leave one interval early

Do not change

Leave one interval late

Leave two intervals late

1 2 3 4

I II I II I II I II

35 40 35 40 35 40 90 100

40 45 55 100 80 60 75 85

45 50 65 160 130 90 60 70

50 55 65 160 130 90 45 55

55 60 55 110 90 65 30 40

Table 8. Travel time profiles

For each route, the travel time of the do not change alternative for the first travel

time profile was assumed to be the habitual travel time. The travel time for the public

transit has been defined in relation to the habitual travel time. Two alternative values

were assumed for public transit travel times (constant over travel time profiles):

* 20% higher than the individual's habitual travel time, and

* 20% lower than the individual's habitual travel time.

This implicitly assumes that the travel time for the competing mode is not affected by

travel conditions. This is particularly true for modes with exclusive right-of-way such as

rapid transit. The use of habitual travel time in setting transit travel times is for

convenience only and does not reflect any inherent relationship between the two modes.

The expected arrival time for each choice alternative was computed by adding the

travel time associated with that alternative to the respective departure time. Within each

time interval the departure time was computed assuming a uniform departure rate. For

each driver the departure time was determined randomly within its corresponding interval

based on this distribution. The deviation of the individual's expected arrival time from

the habitual arrival time, given by the sum of the habitual departure time and habitual

travel time, was then computed.



Three values of time were assumed: high, medium and low. Finally, three

information reception times were considered:

* 35 minutes prior to the habitual departure time,

* 50 minutes prior to the habitual departure time, and

* 60 minutes prior to the habitual departure time.

The selection of the information reception time values is such that, for all three

alternatives, the information is received by the driver early enough so that departure time

change to all intervals in the choice set can be considered.

(iv) Generation of population of drivers

The combination of two habitual routes, four travel time profiles, three

information reception times, two public transit travel time patterns and three values of

time results in a total of 144 choice scenarios. For each of these exercises, the probability

that each alternative will be chosen was subjectively set. Although this is a subjective

process, efforts were made to assign values that reflect reasonable decisions under the

particular scenario.

A sample of 2114 individuals was created. The goal of the sample generation

procedure was to generate 20 individuals per scenario, a total of 2880 individuals. To

achieve that, the 20 individuals were assigned to the alternatives based on the probability.

The numbers of individuals were rounded to the closest integer. Nevertheless, since many

individual sets were rounded down, the process produced a smaller number of

individuals. Each driver was assigned the attributes defined by the scenario and the

chosen alternative. The resulting data set was used for the estimation of the model. Due to
the artificial character of the data and consequently its possible limitations in embodying
some of the more subtle decision processes a multinomial model was preferred over the
more complex nested structure. The values of the estimated parameters are presented in
Table 10.



Variable

Travel time (in minutes), users with low value of time

Travel time (in minutes), users with medium value of time

Travel time (in minutes), users with high value of time

Time that the user has received information (in minutes)

Early deviation from the expected habitual arrival time (in minutes)

Early deviation from the expected habitual arrival time (in minutes)

Value t-test

-0.0118 -5.649

-0.0187 -8.597

-0.0246 -10.28

0.0389 9.428

0.0060 1.040

-0.1197 -17.49

Table 9. Estimated coefficients for the behavioral model

The travel time coefficients have the correct sign and their relative values are

reasonable. Users with higher value of time have a higher (in absolute value) travel time
coefficient.

Similarly, the information reception time coefficient also has the expected sign.

This coefficient appears only in the do not change alternative, and, therefore, when the

time that the information has been received is larger the utility of the do not change

alternative is larger. This makes intuitive sense, since the users tend to consider older

information less up-to-date and therefore less reliable. The tendency of the users to

change their travel behavior based on this information is therefore lower, which is

represented by a larger do not change utility.

The last two coefficients correspond to the early and late arrival deviations. These

values should both be negative, since they actually correspond to penalties associated

with deviations from the desired arrival time (see for example Small, 1995). The sign of

late deviation penalty is correct. The early deviation coefficient sign is not. This is

attributed to the lack of real data and the estimation of the model based on an artificial

data set. It must be noted that the t-test value for that coefficient suggests that the value is

not significantly different from zero in the model for a 95% confidence interval (t-test =
1.040). A model without this variable is worth estimating. However, in this thesis this

model is adopted.



Constant

Leave two intervals early constant

Leave one interval early constant

Leave one interval late constant

Leave two intervals late constant

Change path constant

Leave two intervals early and change path constant

Leave one interval early and change path constant

Leave one interval late and change path constant

Leave two intervals late and change path constant

Change mode constant

Value t-test

2.1377 0.049

1.95 3.624

0.794 7.092

0.0221 8.633

1.267 5.301

2.404 0.069

1.9906 3.400

0.84225 7.168

0.0157 7.722

0.14204 0.626

Table 10. Estimated constants for the behavioral model

The estimated constants which are associated with all the change alternatives have

positive signs. This implies a tendency to change from the habitual travel pattern. This

may not be realistic in some cases. Furthermore, this emphasizes the need for real data,

which would capture the drivers' travel decisions better.

The behavioral parameters presented in Table 9 and Table 10 comprise behavioral
scenario Dl. In order to provide input for the sensitivity analysis scenario a perturbation
is achieved by independently multiplying each parameter with a random number drawn
from a uniform distribution in [1-p, 1+e]. Two alternative values of E are used:

* D2: 5%, and

* D3: 10%.

5.1.5 En route behavior (E)

En route decisions are simulated by the traffic simulator MITSIM (Yang and
Koutsopoulos, 1996) and, therefore, are captured by the route choice model incorporated
in it. MITSIM has been developed for modeling traffic networks with advanced traffic
control, route guidance and surveillance systems. MITSIM represents networks in detail
and simulates individual vehicle movements using car following, lane changing, and
traffic signal responding logic. A probabilistic route choice model is used to capture



drivers' route choice decisions in the presence of real time traffic information provided by

route guidance systems. It is a multinomial logit model which considers the ratio of path

travel time and shortest path travel time in choosing a route. The choice set includes all

the outgoing links at the downstream node of the current link that may take the vehicle

closer to its destination. Based on the route choice probabilities individual vehicles

choose their next link at each node. It must be noted at this point, that the assumption is

made that the traffic simulator perfectly replicates reality.

5.1.6 Guidance (F)

Guidance is represented in the form of travel times for all alternatives in the users'

choice set. These travel times are generated from the simulation of the true demand

(described in Section 5.1.2) by MITSIM, described in Section 5.1.5. Based on the

occurrence of an incident in the network, two guidance scenarios are generated:

* Fl: No incident (Al), and

* F2: Incident in the Third Harbor (Ted Williams) Tunnel (A2).

Therefore, in defining scenarios, Fl can only be paired with Al, and F2 can only

be paired with A2.

5.1.7 Habitual travel time data (G)

For the determination of the habitual behavior of the drivers a set of habitual

travel times is also required, besides the guidance. These travel times are generated from

the simulation of the historical demand by MITSIM, described in Section 5.1.5. Three

scenarios of habitual travel time data are generated, based on historical demand scenarios:

* Gl: Historical demand Bl,

* G2: Historical demand perturbed by 5% (B2), and

* G3: Historical demand perturbed by 10% (B3).

Therefore, in defining a scenario G1 can only be paired with Bl, G2 with B2, and

G3 with B3.

5.1.8 Link Counts (H)

Link counts are available from the traffic simulator, described in Section 5.1.5,

which simulates the true demand, described in Section 5.1.2. The simulator outputs the



number of vehicles that cross each sensor at each time interval. This output is used to
derive the link counts.

5.1.9 Assignment matrices (I)

The assignment matrices are computed using the traffic simulator and the

historical demand described in Section 5.1.2, by tracking the movements of vehicles.

Indeed, the traffic simulator keeps track of the departure time, origin and destination of

each vehicle that crosses each sensor in the network. Three sets of assignment matrices

are generated, depending on the input historical demand:

* I1: Historical demand (B 1),

* 12: Historical demand perturbed by 5% (B2), and

* 13: Historical demand perturbed 10% (B3).

Alternatively, the assignment matrices could have been generated based on the true

demand.

5.1.10 Transition matrices (J)

As mentioned earlier, transition matrices consist of elements which are essentially

measures of the effects of lagged deviations in a flow on deviations in that flow. It is

reminded that the approximation lies at the assumption that deviations in the rth OD

flows are most affected by those in the few preceding OD flows and that contributions

from other OD pairs are insignificant in comparison. The deviations were generated in

order to be on average equal to 10% of the total demand, with a variance of 10%.

Using these deviations, a linear regression is performed on Equation 30 to obtain

the transition matrices. An autoregressive process with degree 2 is assumed. This means

that the effect of the flows of only two prior intervals in the flows of the current interval

are taken into account. Under the approximation mentioned above, the transition matrices
are expected to be diagonal.

5.1.11 Error covariance matrices (K)

The system error covariance matrices are estimated next. The matrix Q of
equation 36 is obtained by taking the covariance of the residual vectors from an OLS
regression on the transition equation (Equation 30). Similarly, the matrix R is obtained by
taking the covariance of the residual vectors from the measurement equation (Equation



31), when the demand, the respective link counts and the estimated assignment matrices

(cf. Section 5.1.9) are used. This procedure is described in more detail by Ashok (1996).

5.1.12 Initial state vector covariance (L)

The initial covariance of the state vector estimate is a measure of the certainty by

which the initial vector estimate is known. Instead of estimating the matrix I analytically,

a different approach is followed. A large covariance of the state vector is initially

assumed. Each iteration of the OD estimation algorithm updates 1, improving the

certainty by which the state vector is known. Several iterations of the OD estimation

algorithm are performed and the covariance of the state vector is thus estimated. The

iterations are stopped when the decrease in the values of the matrix becomes small, i.e.

convergence is achieved.

5.2 Impact of Behavioral Update

As it has been mentioned before, the proposed demand simulator extends the OD

estimation process with a behavioral update in order to incorporate explicitly the effect of

information on the demand. The impact of the behavioral update of the historical demand

is explored in this section. Although the entire period from 7:00 to 8:15 is simulated, the

results are only analyzed for interval 3.

A more ambitious evaluation aimed at assessing the value of this behavioral

update in better estimating actual demand, however, is reserved for further research. A

framework for such an evaluation is, therefore, presented in Chapter 6.

In this section, the process is described, the results are presented and analyzed,

and conclusions are drawn.

5.2.1 Description of the process

The framework that is used is presented in Figure 24.
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Figure 24. Impact of behavioral update process overview

Besides the demand estimation, this framework also includes a simulation of the

reality. This is required for the generation of the inputs required by the demand

simulation, in particular the guidance. As part of the simulated reality, the traffic

simulation is run using the true demand, described in Section 5.1.2, in order to generate a

guidance, in the form of travel time information, as described in Section 5.1.6. In order to

assess the impact of the behavioral update on the historical demand, two guidance

scenarios are generated, as described in Section 5.1.6:

* Fl: No incident, and

* F2: Incident in the Third Harbor Tunnel (see Figure 21).

This guidance is used by the behavioral update in order to update the historical demand.

This process also uses the behavioral parameters (Dl) and the travel times produces from

the historical demand (Gl), which are used as habitual travel times in the update model.

Using the conventions that have been used to classify the alternative values of the

dimensions that define the scenarios, the two scenarios can be characterized as:

* Al-B 1-C-D 1-F1-G1, and

* A2-B1-C-D1-F2-G1.

5.2.2 Analysis of the Results

The behavioral update component of the demand simulator is expected to play a
more important role in the demand, under adverse traffic conditions in the network. This
is derived from the observation that users of the network are more likely to update their

Simulatb n



travel behavior under traffic conditions significantly different that the ones they usually

experience.

The percent change of the updated demand (relative to the historical demand) for
each case is presented in Figure 25. This figure shows the impact of the behavioral update

on the demand both on average for all OD pairs and for each OD pair individually. The

impact of the behavioral update is more significant in the presence of the incident. This is

consistent with the intuitive expectation, since in the case of an incident the traffic

conditions are significantly different than the historical and, therefore, users tend to

change their travel pattern to respond to that. In particular, drivers would either delay

their departure or leave earlier in order to avoid adverse traffic conditions, or even switch

to public transit.
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Figure 25. Deviation of updated from historical demand

The relatively high deviation of the updated demand is consistent with the

behavioral model constants presented in Section 5.1.4. These constants imply a tendency

of the drivers to change their travel behavior.

Moreover, in the context of this evaluation exercise, the demand pattern presents a

peak during the third interval (which, as shown in Figure 23, is the interval of interest).

Therefore, the traffic conditions on the network are generally worsening until the third

interval and improving thereafter. This pattern results in a tendency of the guided drivers,



whose habitual departure time was within the third interval, to depart earlier or later. This
tendency is larger than that of drivers, whose habitual departure time was in other

intervals, to switch to the third time interval. Therefore, a decrease in the demand for the
third interval is indeed expected.

5.2.3 Conclusions

This case study shows that the impact of the behavioral update is stronger in the
presence of an incident. In particular, when the conditions that are prevailing in the
network resemble the habitual traffic conditions, experienced by the drivers, a smaller
number of drivers decide to change their travel behavior. On the contrary, when the
conditions worsen and the travel times become larger, then the drivers exhibit a larger
tendency to change their habitual travel pattern. These results are consistent with the
motivations of the demand simulator design and the underlying assumptions. Therefore,
they encourage further investigations on the value of the pre-trip decisions in response to
guidance. An evaluation framework is proposed in Chapter 6.

5.3 Stochasticity Analysis

The second case study in the evaluation of the demand simulator relates to the
assessment of the stochasticity of its output. As it has already been mentioned, the

behavioral update component of the simulator introduces stochasticity with the use of

statistical disaggregate models. This case study attempts to assess the extent to which this

stochasticity is reflected in the aggregate output of the demand simulator. It is repeated

here that stochasticity is not undesirable per se. Nevertheless, the existence of

stochasticity would mean that in order to obtain a consistent estimate, the simulator
would have to be run several times and its output would have to be averaged. Therefore,
since the demand simulator is designed for use in a real-time context, high stochasticity,
requiring a large number of repetitions, would be a disadvantage.

Like the previous case, although the entire period is simulated, the results are only
analyzed for interval 3.

5.3.1 Description of the Process

The framework for the stochasticity analysis is presented in Figure 26.
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Like the first case, this framework also includes a simulation of the reality,

besides the demand estimation process. This is required for the generation of the inputs

required by the demand simulation, in particular the guidance. As part of the simulated

reality, the traffic simulation is run using the true demand, described in Section 5.1.2, in

order to generate a guidance, in the form of travel time information, as described in

Section 5.1.6. This guidance is used by the behavioral update in order to update the

historical demand. The process also uses the behavioral parameters (Dl) and the travel

times produces from the historical demand (Gl), which are used as habitual travel times

in the update model. The inputs that were used are the ones generated for the no-incident

scenario for the first case study (Section 5.2). The behavioral update component of the

demand simulator is run 129 times, using the same guidance, and the variability in the

output updated demand is observed. Indeed this is a component that is directly affected by

this stochasticity. A similar analysis about estimated demand is left to future research.

Using the conventions that have been used to classify the alternative values of the

dimensions that define the scenarios, this case uses the following dimensions:

* A1-B1-C-D1-F1-G1.

5.3.2 Analysis of the results

The measures that are used to assess the impact of the stochasticity in the

behavioral update in the updated demand are the mean and the variance of the updated
demand.

Figure 27 shows the evolution of the mean updated demand over realizations and

Figure 28 shows the histogram of the generated values of the total updated demand.



Figure 29 shows the evolution of its standard deviation. The following three measures are
shown in

Figure 27:

* Value of total updated demand for each iteration,

* Mean updated demand over all iterations, and

* Moving mean of updated demand of past iterations, that is the mean of the

updated demand for all previous iterations.

The results can be summarized in the following points:

* The maximum deviation from the mean is approximately 5% of the mean.

* The standard deviation corresponds to 2% of the mean.

* As seen in Figures 27 and 29 the convergence of the estimate of the mean

and standard deviation is slow.

* The histogram shown in Figure 28 indicates that 41% of realizations lie

within less than 1% of the mean and 69% of realizations lie within less

than 2% of the mean.
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Figure 27. Total updated demand
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5.3.3 Conclusions

As expected, the stochasticity introduced in the behavioral update affects the
updated demand. However, the impact on the total demand does not seem unreasonable.
Further analysis should also be conducted in individual cells of the OD matrix, and in the
final estimated demand. This is left to future research.

5.4 Sensitivity to Input

The purpose of the second evaluation case is to assess the sensitivity of the

demand simulator's performance to variations in its input. In this evaluation case, the
values of two important sets of inputs to the demand simulator are perturbed and their

effect in the demand is discussed. Like the first two cases, although the entire period is

simulated, the results are only analyzed for interval 3.

5.4.1 Description of the Process

The sensitivity of the output of the demand simulator to perturbations in the

following inputs is assessed:

* Historical demand, and

* Behavioral parameters.

The sensitivity of both the updated demand and the estimated demand are examined in
this analysis.

The followed process is presented in Figure 30.
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For each scenario, the true demand is input to the traffic simulator. The traffic

simulator provides guidance in the form of travel times for all alternative paths and

intervals, and link counts. The historical demand is then updated by the behavioral

update, using the guidance and the appropriate behavioral parameters and historical travel

time data. The updated demand is then used as input by the OD estimation, along with the

true link counts. The OD estimation also requires a set of assignment matrices. These are

generated using the appropriate historical demand according to the methodology

described in Section 5.1.9. For each historical demand scenario (Bl, B2, or B3) a

different set of assignment matrices are generated (I1, 12, and 13).

This case is performed for 5 scenarios. In the first, the historical demand is B 1 and

the behavioral parameters are D1. This is the referent scenario for both sensitivity

exercises. In the next two scenarios the historical demand is kept unchanged (B ), but the

behavioral parameters are changed to D2 and D3. Similarly, in the last two scenarios the

behavioral parameters are kept unchanged (Dl), but the historical demand is changed to

B2 and B3. Therefore, using the conventions that have been used to classify the

alternative values of the dimensions that define the scenarios, the scenarios can be
characterized as:
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* Al-B1-C-D1-E-F1-Gl-H-Il-J-K-L (no perturbation),

* Al-B1-C-D2-E-F1-G1-H-I1-J-K-L (behavioral parameters perturbed 5%)

* Al-B1-C-D3-E-F1-G1-H-Il-J-K-L (behavioral parameters perturbed 10%)

* Al-B2-C-D1-E-Fl-G2-H-I2-J-K-L (historical demand perturbed 5%)

* Al-B3-C-D1-E-Fl-G3-H-I3-J-K-L (historical demand perturbed 10%)

For each of these scenarios, the deviation (at the OD level) of the output for the
perturbed input from the output for the original input is computed. Furthermore, at the

aggregate demand level the relative error of the output when the perturbed inputs are
used, relative to the original output, is computed. The value of the relative error of an
estimated measure £ (updated or estimated demand using perturbed inputs) from a
referent value x (updated or estimated demand using inputs without perturbation) is
computed as:

Er x x 0 (46)

where p is the norm that is used. For the purposes of this evaluation exercise, the norm 2
is used, which is given by:

(IX l = xJl I + x1) (47)

5.4.2 Analysis of the results

The first scenario that is examined for this case is the perturbation of the
behavioral parameters. For the purposes of this case, the impact of the perturbation in the
updated and the estimated demand is examined. This is presented in terms of deviation of
the updated or estimated demand generated using perturbed behavioral parameters from
the respective demand in the case where no perturbation was done in the behavioral
parameters (Figure 31 and Figure 32). Furthermore, the relative errors of the updated and
estimated total demand obtained from perturbed behavioral parameters relative to the
updated and estimated total demand obtained when the original behavioral parameters
were used are presented in Figure 33.

A similar analysis is performed for the impact of the perturbation of the historical
demand in the updated and the estimated demand. Figure 34 shows the deviation of the
updated demand for the perturbed historical demand scenarios from the original updated



demand, whereas Figure 35 shows the deviation of the estimated demand for the
perturbed historical demand scenarios from the original estimated demand. Figure 36
shows the relative error of the estimated demand when the historical demand is perturbed
from the original estimated demand.

In all cases total demand is stable. Nevertheless, a few OD pairs exhibit behavior
that is somewhat not compatible with the anticipated. In particular, the deviation in the

updated and estimated demand in a few OD pairs is equal or even larger than the

perturbation in the behavioral parameters. Also, in two OD pairs the deviation is inversely

related with the perturbation. The explanation for these observations probably lies in the

following facts:

* Simulator is stochastic, and

* Perturbations were stochastic and independent, because they reflect errors

in input data.

Based on the results presented in the previous section, the level of error due to the

perturbations is of the same order of magnitude as the error due to stochasticity. The

stochasticity of the behavioral update process contributes to the random pattern that these

figures show. As it has already been explained in Section 3 and has been exhibited in

Section 5.3.3, the pre-trip behavioral update incorporates stochasticity, which is to some

degree reflected in the updated demand. Therefore, the values obtained from a single run

of the simulator may deviate from the values that a sufficient number of iterations would

converge to. These observations motivate the need of sensitivity tests based on several

runs instead of just one.

The stochasticity in the perturbation means that the value of some parameters in

the first case (5% perturbation) may be further away from the original value than the

value that was obtained when the parameter is perturbed in the second case (10%).

Similarly, since the perturbation may be both additive or subtractive, the 5% perturbed

value for a parameter may be 5% less than the original value and the 10% perturbed value

may be 10% higher than the original value, thus resulting in a 15% difference between the

two values.
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Figure 34. Deviation in updated demand due to perturbation of the historical demand
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Figure 36. Relative error in the updated and estimated demand due to perturbations of historical
demand

It is also interesting to analyze the sensitivity of the link counts to perturbations in
the inputs. Figure 37 presents the relative errors in the estimated link flows due to
perturbation in the historical OD flows. The effect of the perturbation of the historical
demand on the estimated link flows is very small.
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Figure 37. Relative errors in estimated link flows due to perturbation in the historical OD flows

5.4.3 Conclusions

As a conclusion, it can be stated that although the aggregate results seem pretty

stable with respect to noise in the input, additional sensitivity analysis in specific

disaggregate outputs is desirable. Also, sensitivity analysis should be performed over

many replications, since stochasticity has turned out to be relevant.
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6. Conclusions

This chapter provides a summary of the thesis and suggests a number of topics for

further research.

6.1 Summary

The demand simulator developed in this thesis uses a number of inputs to estimate

demand. These inputs include:

* Aggregate historical demand,

* Real-time information and guidance, and

* Link counts.

The demand simulator incorporates the effect of pre-trip information and guidance

provision to update the historical demand prior to OD estimation, in order to capture the

drivers' response to real-time information available at the pre-trip stage. Although the OD

estimation model is applied on aggregate OD matrices, the individual choice of each

driver is captured by disaggregate behavioral models. Thus, variations of travel behavior

can be captured at the individual driver level. This is important because it allows the

simulator to use individual driver characteristics to capture travel behavior in a potentially

more accurate fashion, rather than being limited in capturing behavior at the OD level. In

order to be able to use disaggregate models, though, the demand simulator disaggregates

the historical OD matrices into a population of drivers, which are updated and

subsequently aggregated to produce the updated OD matrices that are then used as input

to the OD estimation model.

Therefore, besides the two main functions of the demand simulator:

* Travel behavior update in response to information, and

* Dynamic OD estimation and prediction,

two more components are required by the demand simulator:

* Disaggregation of the aggregate historical demand, and

* Aggregation of the updated demand.

Finally, depending on the nature and the requirements of each application of the demand
simulator, its output can be either:
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* Aggregate demand, or

* Disaggregate demand.

If aggregate demand is required as output, then no further operation needs to be
performed and the estimated and predicted OD matrices are the desired output. On the
other hand, if disaggregate demand is required, then the estimated and predicted OD
matrices are disaggregated to a list of drivers by an additional disaggregation component.

In the generation of the individual drivers from the historical OD matrices, the
disaggregation component assigns to each driver a number of socioeconomic

characteristics, such as value of time, and trip characteristics, such as trip purpose.
Information from the OD matrices that are used for the generation of the drivers is used to

assign origin, destination and habitual departure time interval to these drivers. Also, car is
assigned to all individuals as habitual mode. Furthermore, a habitual behavior model is
applied to each driver in order to generate habitual travel behavior, i.e. path, based on

historical information. The behavioral model that is used to provide choice probabilities

for each path is the C-logit model, proposed by Cascetta (1993). The habitual behavioral

model uses the socioeconomic and trip characteristics of each driver, and historical travel

time information to generate choice probabilities for all paths in the driver's choice set. A

set of enumerated paths is assumed for each OD pair. Monte Carlo simulation is used to

select one of these paths, based on the generated probabilities, and assign it to the driver

as the habitual route.

At this stage of the demand simulation process, a population of individual drivers

with corresponding socioeconomic and trip characteristics, as well as habitual choices on

departure time, mode and route, is available. These choices reflect a priori decisions

which can be updated based on real-time information and guidance. The pre-trip behavior

update applies a behavioral model to each individual driver in the historical population to

capture their travel behavior in response to available information. The drivers may decide

to change departure time, path, mode, a combination of these, or even cancel their trip.

Nevertheless, it is assumed that the drivers' destination is fixed and it cannot be changed

in response to available information. Different behavioral models are used depending on

whether prescriptive or descriptive information is provided to the driver.

At this point, the effect of pre-trip information in the drivers' travel behavior has

been captured, and a disaggregate updated population is available. The OD estimation,

though, needs aggregate demand as input. An aggregation component is used to generate

updated OD matrices by aggregating the updated population of drivers. The updated OD
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matrices are used as input for the OD estimation model. The aggregation is based on the
departure time interval, the origin and the destination of the drivers.

The next step is the OD estimation and prediction. The OD estimation and
prediction model is a model for real-time OD estimation and prediction, proposed by
Ashok (1996). The model is a state-space formulation that uses deviations of OD flows

from historical values as unknown variables. The solution of the model is given by a

square root Kalman Filtering algorithm (Chui and Chen, 1987).

The demand simulator is implemented using the Object Oriented paradigm. The

programming language of choice is C++ with the Standard Template Library (STL). The

system is implemented as a client/server distributed application. Finally, the Object

Modeling Technique (OMT) has been selected as the object design methodology.

The following general objectives were set and followed during the

implementation stage:

* Object oriented (OO) design,

* Computational efficiency, and

* Numerical robustness.

The objects that comprise the demand simulator are designed in a way that they

provide:

* Flexibility in the design,

* Efficient access of their elements, and

* Efficient storage.

A number of implementation issues concerning the components of the demand simulator
are also discussed in detail.

Finally, a number of evaluation exercises were performed. These were focusing
on specific aspects of the performance of the demand simulator and dealt with the
following issues:

* Impact of the behavioral update to the demand simulator's output under
different traffic conditions,

* Effect of stochasticity inherent in the models required for the behavioral
update on the stochasticity of its output, and

* Sensitivity of the simulator's output to perturbations in some of its inputs.

107



These tests provided valuable information. Although this information can not
validate the simulator alone, it provides indicative evidence that its performance is
compliant to the design. In particular:

* Behavioral update plays a stronger role in the demand simulation, when
adverse traffic conditions are observed in the network. This is consistent

with the intuitive expectations, since the need to update the habitual travel
behavior is greater in the case that the traffic conditions are significantly
different than those usually experienced by the drivers.

,* Stochasticity inherent in the behavioral update of the simulator is indeed
reflected at the aggregate output level. Nevertheless, its impact does not
seem unreasonable.

* Small changes in the inputs of the demand simulator reflecting input
inaccuracies are not reflected dramatically in its outputs.

Further research is required on the topic of the evaluation of the demand

simulator. These conclusions have to be verified and extended in a complete evaluation

framework, and the simulator's overall performance has to be assessed. Therefore, most

of the topics suggested for further research, presented in the next section, are associated
with the evaluation of the simulator.

6.2 Further Research

This section presents a number of topics for potential research in this area. Of

course, it does not attempt to capture the entire spectrum of further research that could be

derived from this work. Nevertheless, this could be used as a starting point for the

selection of a relevant topic.

6.2.1 Extensions of Performed Tests

A number of evaluation exercises have been performed in Chapter 5. These

evaluation exercises led to some interesting conclusions about the demand simulator and

pointed to additional exercises that could provide valuable information. In relation to the

assessment of the impact of the behavioral update, presented in Section 5.2, a more

general framework is proposed and, therefore, is presented in a separate section (Section

6.2.3). In this section, proposed extensions to stochasticity and sensitivity analysis are

summarized.
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In Section 5.3, the impact of the stochasticity of the demand simulator on the total

updated demand was assessed. Future work should also address the following issues:

* Impact of the stochasticity in the estimated demand: although the

stochasticity is introduced by the behavioral update, it is also important to

assess its impact at the estimated demand, which is the final output of the

simulator.

* Analysis of the stochasticity at the individual OD cell level: the impact of

the stochasticity has only been analyzed at the total demand level. It is

possible that the stochasticity analysis at the individual OD cell level will

provide more information about the effect of stochasticity on the

performance of the demand simulator.

In Section 5.4, the sensitivity of the simulator in two of its inputs (behavioral

parameters and habitual demand) has been investigated. There are more inputs that may

not be perfectly known, thus compromising the ability of the demand simulator to

replicate demand accurately. Therefore, it is important to know to what extent

imperfection in the knowledge of some input would affect the simulator's output. Further

research could include the investigation of the sensitivity of the demand simulator to

perturbations in additional inputs, including:

* Link counts, and

* Transition matrices.

Finally, although the sensitivity analysis, performed in Section 5.4, was based in a single
run, future sensitivity analysis should be based on several runs, for the same interval, in

order to limit the effect of stochasticity in the results.

6.2.2 Assessment of Real-time performance

As it has already been mentioned, the demand simulator has been developed in a
real-time context. The assessment of the real-time performance of the simulator would be
an interesting topic for further research. This topic should include, but not be limited to,
the following issues:

Execution speed: the speed of the simulator should be such that it allows
its use in a real-time environment. In particular, in a DTA application the
selection of the time intervals of operation depends on the execution speed
of its components. Slow components could result in large intervals which
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are undesirable, as they may have negative impact on the ability of the

DTA to react promptly to changing conditions in the network.

* Size of network that can be processed: a DTA system is more likely to be
applied to large networks. The demand simulator stores and processes a
large amount of information. The size of the network that can be processed

by the demand simulator may be limited by the amount of information that

can be handled by the available resources (in particular memory of the

computer). This problem is stressed by the fact that the demand simulator

must coexist with the rest of the other modules of the DTA and share the

same hardware. The distributed design of the demand simulator (cf.

Section 4.1) may provide a solution to this problem. Since the system can

be distributed to more than one computer, the hardware requirements can

be shared by these machines.

* Tradeoffs between speed and accuracy: the demand simulator has been

designed to provide the best estimate of the demand. Nevertheless, it is

possible that compromises that could offer significant computational

advantages may not affect its performance significantly. The identification

of such potential and the evaluation of the tradeoffs is another interesting

topic for future research.

6.2.3 Evaluation of the Demand Simulator

A series of evaluation exercises that provide useful information about the

performance of the demand simulator are presented in Chapter 5. Nevertheless, they do

not cover the evaluation of the demand simulator completely. This section presents a

framework that can be used for a more comprehensive evaluation of the demand

simulator. This framework is presented in Figure 38.

The framework proposed here describes an evaluation methodology in a simulated

environment. This is especially useful when no real data is available to compare with

estimated results. A basic assumption in such an evaluation context is a full knowledge of

the (simulated) reality by the analyst. Nevertheless, to ensure the validity of the

evaluation, the system to be tested will only be aware of some aspects of this reality,

sometimes containing errors.
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The simulated reality uses a number of external inputs and generates inputs
required for the demand simulator. Furthermore, the simulated reality provides measures

that will be used for the evaluation of the performance of the demand simulator.

The inputs to the overall framework are:

* Habitual demand,

* ATIS information,

* Behavioral model parameters,

* Socioeconomic characteristics, and

* Network,

and the output is the estimated demand. The habitual demand refers to one particular day,
for which the estimation takes place. This is the "intended" demand, which does not
incorporate the effect of the real-time information provided by the ATIS. The ATIS
information is assumed to be a scenario, computed externally and provided as input (an
even more ambitious and comprehensive evaluation where guidance information is
internal to the process can be conceived). Similarly, the behavioral parameters and the
socioeconomic characteristics are external inputs. Finally, the network is assumed to be
known, as well. All these inputs are restricted to the simulated reality, with the exception
of the ATIS information which is also used by the pre-trip update in the demand
estimation being evaluated since it should be know to it in reality. The demand estimation
also uses data generated from the simulated reality:

* Link counts at sensor locations, and

* Assignment matrices,

as well as data derived from other information. In particular:

Historical demand is constructed as an average of the estimated true
demand over many prior days, and

Behavioral model parameters for the demand simulator are generated as a
perturbation of the model parameters provided for the simulated reality.
Indeed, the true behavior is not known perfectly by the demand simulator.
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The representation of the demand simulator in Figure 38 is the demand simulator

that has already been described. The process starts with the historical demand. This

historical demand is updated by the pre-trip update to reflect the impact of information.

The information is the same information that is provided by the ATIS to the simulated

reality. The result of this update is an updated demand, which incorporates the impact of

information. This demand, along with link counts at the sensor location and assignment

matrices -both available from the simulated reality- is input to the OD estimation. The

output of the OD estimation is the estimated demand.

The simulation of the reality follows a similar process. This process starts with a

known habitual demand, and given ATIS information, behavioral parameters and

socioeconomic characteristics. The habitual demand is updated using the provided

information. The demand resulting from this process is considered to be true. It

incorporates the effect of information provided to the drivers at the pre-trip stage. This

true demand is loaded on the given network from the traffic simulator. As described

above, this process provides two important inputs for the demand simulation:

* Link counts at sensor locations, and
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* Assignment matrices.

In order to get a good estimate of the historical demand, it is important to run the

simulation of the reality for several days and average the corresponding true demand

realizations across these days.

In the context of this evaluation framework, a number of interesting tasks can be

performed. The first one is the assessment of the ability of the simulator to replicate true

demand. The major motivation behind the entire demand simulation is to use a number of

known inputs and combine them to get a good estimate of the unknown true demand.

With the existence of a simulation environment, in which the true demand is known to

the analysts performing the evaluation exercise, the ability of the simulator to estimate

demand sufficiently close to the true can be assessed. For this exercise, the estimated

demand needs to be compared with the true, as it was loaded to the network in the

simulation of the reality. Additional information may be drawn by comparison of the

estimated demand with the historical and the updated demand. This exercise should be

conducted for many intervals, since the behavioral models move people through intervals.
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