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Chapter 1

Introduction

There are many ways in which galaxy clusters may reflect cosmological parameters.

For example, the normalization and shape of the cluster luminosity function certainly

reflect the amplitude and shape of the power spectrum of initial density fluctuations.

Assuming that the ratio of baryonic to total mass in large clusters is the universal

ratio, measured baryon fractions can be combined with nucleosynthesis constraints

on the overall baryon density to infer the total mass density Q (White et al. 1993).

Measurement of the Sunyaev-Zel'dovich effect in clusters can be used to determine the

cluster's true size and hence its distance, bypassing the many rungs in the cosmological

distance ladder and allowing determination of the Hubble parameter H0.

The internal structure of clusters of galaxies may be a powerful discriminator of

cosmological models as well. In particular, the amount of substructure in clusters is

expected to be highly sensitive to the mean density of the universe (Richstone et al.

1992). Assuming that mergers and accretions onto clusters impart internal structure

to the clusters and that such structure is then erased via relaxation processes, the

amount of substructure surviving today is a measure of the epoch of cluster formation.

More substructure indicates more recent cluster formation and a higher mean matter

density. This approach has been taken theoretically by Richstone et al. (1992),

Lacey & Cole (1993, 1994), and Kaufmann & White (1993). Each of these authors

applied extensions of the Press & Schechter (1974) formalism to study the fraction of

clusters which have recently formed. By assuming some value for the survival time



of substructure, and by estimating the fraction of clusters which currently possess

substructure, Richstone et al. (1992) and Lacey & Cole (1993) determined that

the frequency of substructure present in available data favors a large value for the

mean mass density of the universe, Q > 0.5. Kauffmann & White (1993) reached no

conclusion in this regard, as the survival time of substructure is so uncertain. Other

cosmological parameters, such as the power spectrum and cosmological constant, may

also leave a measurable signature in cluster structures (Richstone et al. 1992, Lacey

& Cole 1993).

The issue of substructure survival time lends itself naturally to testing by simu-

lation. Nakamura et al. (1995) and McGlynn & Fabian (1984) have addressed this

issue directly, albeit with simple models of equal mass subclusters, without gas, and

not in a cosmological setting. Taking the substructure survival time to be the time

from the initial encounter until only a single density peak remains, they find that this

timescale is very sensitive to the assumed mass profiles and velocity dispersions of the

subclusters, as well as the initial conditions for the orbit. Other simulators, including

Crone et al. (1994), Evrard et al. (1993), Mohr et al. (1995), Buote & Tsai (1995),

and Buote & Xu (1996) have taken a different approach: simulating clusters in differ-

ent cosmological models in order to establish the model discriminating power of their

structure statistics. In addition, Mohr et al. (1993, 1995) compared the substructure

measured in the simulated clusters to that in data from the Einstein observatory,

while Buote & Tsai (1996) and Tsai & Buote (1996) made similar comparisons to

ROSAT data. The results of Mohr et al. favor a high density universe, Q = 1. Buote

& Xu (1996) reach the opposite conclusion. We discuss possible sources of this dis-

crepancy in Chapter 4, and by comparison to our simulation identify a small bias in

the results of Buote & Xu.

In order to be interpreted these effects should be calibrated using simulations.

Unfortunately, the X-ray luminosities of clusters, being proportional to the square of

the electron density, are dominated by the dense cluster cores. Accurately simulat-

ing these cores requires extremely high resolution and corresponding computational

resources. The radiative cooling of the plasma must be included in simulations of



the largest clusters, where cooling flows may increase the central densities. Using

simulations to calibrate cluster baryonic mass estimates and measurements of the

Sunyaev-Zel'dovich effect also requires resolution of cluster cores.

Extracting cosmological information from cluster structure requires that substruc-

ture be quantified. Unfortunately, some measures of substructure in the X-ray images

of clusters have also been most sensitive to cluster cores (Mohr et al. 1993, Evrard

et al. 1993). However, Buote & Tsai (1995) have proposed a substructure statistic

based on the power in multipole moments of the projected gravitational potential.

Their so-called "power ratios" are most sensitive to structure outside the cluster cores.

With this statistic substructure can be quantified in simulated clusters without the

need for ultra-high resolution cores and cooling. Once substructure statistics have

been established, we can study substructure survival time, the expected distribution

of substructure statistics, and the evolutionary history of clusters measured in the

space of the substructure parameters.

Another advantage of the power ratio statistics for quantifying substructure is

that they are most sensitive during the earliest stage of the merger, as the subclump

falls toward the main cluster. In effect, as viewed via power ratios, the merger ends

before the complex dynamical processes of gas relaxing to hydrostatic equilibrium

take place in the core. This is advantageous both for simulations, as the modelling

of these processes is less important, and for making models to describe the merger

events themselves. In Chapter 5 we fashion such a model by combining the merger

rate, based on the Press & Schechter (1974) formalism, with a simple model describing

the infall of a subclump onto the main cluster.

In order to simulate clusters for study I have developed a new code, combining

an adaptive N-body code for evolving collisionless dark matter and a fixed resolution

hydrodynamics code for evolving collisional gas. Grid based Eulerian gas codes have

been used in engineering and scientific applications for many years and have been well

studied (Ryu et al. 1993, Bryan et al. 1995). They are limited, however, by finite

computational resources. Accurate cluster simulation requires that the mass field in

a large computational volume be computed, and high spatial resolution requires a



prohibitively large computational grid. Lagrangian approaches make more efficient

use of computational resources by allowing spatial resolution to flow to where it is

most needed. Smooth Particle Hydrodynamics (SPH), for example, uses particles as

elements of both mass and force resolution. This technique excels in high density

regions but does a poor job in low density regions where particles are few. Moving

grid techniques developed recently (Gnedin 1995, Pen 1995) also concentrate compu-

tational effort, but can have problems in regions where the flow is highly deformed.

Finally, Eulerian techniques which employ adaptively nested levels of resolution are

being implemented presently and are very promising as they are, conceptually at least,

only marginally more complicated than the single grid methods on which they are

based (Bryan 1996). While all these methods are useful, the single fixed grid Eulerian

methods are the simplest and best understood. One of these, the Piecewise Parabolic

Method (PPM) (Colella & Woodward 1984) as implemented in the KRONOS code

(Bryan et al. 1995), is the basis for the hydrodynamic portion of my code, described

in Chapter 2.

As described above, the combination of a fixed, high resolution grid and a large

spatial volume can be satisfied only at high computational cost. I have therefore bor-

rowed from the Lagrangian philosophy the idea of solving the relevant equations only

where the computational effort is most fruitful. Specifically, the accurate simulation

of a cluster requires evolving the mass field in a large volume around the cluster be-

cause gravity is a long range force. The equations of gasdynamics, however, are short

range, and as such need only be solved in a much smaller volume around the cluster.

I have therefore developed a code which evolves the mass and gravity fields in a large

volume and the gas density, velocity and energy fields in smaller, embedded volume.

The Poisson equation and Euler's equations each require that boundary conditions

be prescribed. The usual procedure for cosmological simulations is that periodic

boundary conditions be applied. This can still be done for the mass and gravity fields.

Since the gas is only explicitly evolved in a subvolume of the total simulation, its

boundary conditions must be handled differently. The total mass field is represented

by dark matter particles in most of the volume, and by dark matter particles and the



gas density field in the gas subvolume. Therefore the gas is assumed to follow the

dark matter outside the gas subvolume. At the edge of the gas subvolume, boundary

conditions for the gas can be estimated from the dark matter. Determining the total

mass and velocity fields from the particle distribution is straightforward. The gas

can be assumed to have identical velocity and density in proportion to the mean gas

mass to total mass ratio. The gas evolves adiabatically until shocks form, and since

the main shocks in a cluster's formation begin at the cluster center and propagate

outward, the gas energy, temperature and pressure at the boundary can be assigned

assuming the gas entropy is still primordial.

In chapter 2 we present a description of the simulation code, with additional details

given in the appendix. Chapter 3 describes the cosmological model we simulate.

Chapter 4 presents statistics for measuring substructure and its survival time and

analyzes the simulation in light of those statistics. In Chapter 5 we present a model for

determining the dependence of the power ratios on cosmological parameters. Chapter

6 presents conclusions.



Chapter 2

The Code

The simulations were performed using a hybrid code constructed from two well tested

codes, the P3M2 code of Bertschinger & Gelb (1991) and the KRONOS code of Bryan

et al. (1995). The combined code is called P8M3 1.

The P3M2 code solves the equations of Newtonian gravity and dynamics for a sys-

tem of collisionless particles in a Friedmann-Robertson-Walker cosmology. Comoving

spatial coordinates x are used, and the time coordinate - (not conformal time) is

related to proper time t by dT = dt/a 2, where a is the expansion factor which relates

proper distance (r) to comoving distance (x) by dr = adx. In these coordinates, with

a = 1 corresponding to the present, Poisson's equation becomes

V 20 = 47rGa2p6, (2.1)

where G is Newton's gravitational constant, p is the mean proper mass density, 6 =

p/p - 1 is the overdensity, and q is related to the Newtonian gravitational potential

4 by ¢ = 4 - 27rGa22px 2/3. The equation of motion for the collisionless dark matter

particles is
d2

dT2  a , (2.2)

1P3M stands for Particle-Particle-Particle-Mesh and is more properly written P3M. P3M2 uti-
lizes an extra, adaptive layer of refinement with a finer scale P3M calculation, hence it is more
properly written (p3M) 2. The KRONOS code uses the Piecewise Parabolic Method, or PPM. Com-
bining powers, (p3M) 2 . ppM = p8M3.



where g = -VO is the gravitational acceleration.

The equation of motion for the particles is integrated by the second order accurate

leapfrog technique,

yn+1/2 = + ?nAtn /2

vn+l = + r+1/2Atn (2.3)

Yn+1 = +1/2 + %+l1At/2,

where the superscript n is the timestep index.

The Poisson equation is solved approximately in several steps. First, long range

forces are calculated by the particle-mesh (PM) technique. In regions of low particle

density a short range correction is applied to each pair force in a direct sum over pairs

of near neighbors. Together, these two steps are called particle-particle - particle-

mesh, or P3M (Hockney & Eastwood 1981). In regions of high particle density, the

computational cost of direct pair summation can be prohibitive. Here an adaptive

technique is used in which a fine grid is used to perform a second level PM calculation,

followed by a further pair summation over only very near neighbors. The short-range

(PP) correction to the long-range (PM) force is designed to produce a net pairwise

force given by a Plummer law, F = Gmlim 2 (ri - r)/[(5i )2 + 2] 3/2 , which weakens

at short range to minimize two-body relaxation and to maintain the accuracy of the

time integration.

The KRONOS code solves Euler's equations of inviscid, compressible fluid flow,

while also solving the Poisson equation and integrating the trajectories of dark matter

particles. The KRONOS gravity solver uses the strightforward PM technique, but in

the combined code P3M2 performs the gravity calculation and leaves KRONOS to

handle the gas dynamics only. The equations governing the gas evolution are

0 0
-tPb + PbV' = 0, (2.4)

-pbv + (pbvizvj + P6ij ) pbg' , (2.5)at Or"



atE + Ori (E + P)v i = pbvJgj, (2.6)

where Pb is the baryonic (gas) proper density, Vi is the proper velocity, P is the gas

pressure, E is the total gas energy density, and ' is the gravitational acceleration

vector. Cosmological flows often occur in which high bulk flow velocities cause the

total gas energy to be dominated by the kinetic energy, so that small relative errors

in the total energy integration can yield very large temperature errors. In order

to accurately integrate the gas temperature (or equivalently the internal energy or

pressure) KRONOS also integrates the following equation for the gas internal energy

density e:

e + evi= P 2v . (2.7)
Ot Orz dri

Like P3M2 the KRONOS code also uses a comoving coordinate system, but with

different time, mass, velocity, energy and gravity variables. The combined P8M3 code

calculates conversion factors for these quantities.

The gas equations are integrated numerically by the Piecewise Parabolic Method

(PPM), a third order accurate, grid-based technique in which the cell-averaged gas

variables (density, velocity and energy) are represented on a grid and the three di-

mensional fluid equations are solved as a series of one dimensional problems. PPM

is one of a general class of higher order Godunov methods which employ a Riemann

solver to calculate mass, momentum and energy fluxes through cell faces. PPM can

resolve shocks in one or two grid spacings. Good descriptions of the method are given

in (Colella & Woodward 1984, Bryan et al. 1995).

Two versions of the combined P8M3 code have been written; one for serial and

shared memory parallel machines and another which uses message passing for a dis-

tributed memory parallel computer. Some of the technical aspects of these two im-

plementations are different, and will be described below.

Combining the P3M2 and KRONOS codes required changes to the treatment

of gravity by the gas code as well as establishing communication between the two

algorithms. As originally written, KRONOS used a simple PM gravity solver which

produced the gravitational potential on the gas grid. This potential was differenced



wherever the gravitational force was needed. The P3M2 code produces more accurate

gravitational forces directly, with no differencing of potential, by using four Fourier

transforms (p --+ , gi -- gi) instead of two (p --+ , q -- q). Therefore instances

of potential differencing in the KRONOS portion of the combined P8M3 code were

changed to use the P3M2 force directly. The P3M2 gravity solver also utilizes a high

order interpolation function, TSC (Triangular Shaped Cloud) (Hockney & Eastwood

1981) and an optimized, anti-aliased Green's function, as opposed to the lower order

CIC (Cloud In Cell) (Hockney & Eastwood 1981) interpolant and simple Green's

function of KRONOS.

The necessary communication between the gravity and gas portions of the code

was implemented differently in the shared and distributed memory versions of the

program. The shared memory code adopts the basic structure of KRONOS, with

calls to P3M2 routines where necessary. The distributed memory code is based on

the P3M2 code, with calls to KRONOS routines. In each, when calculating the

density field or gravity, each gas cell is treated as a "particle" with the appropriate

mass. This is accomplished in the shared memory code by adding a loop over gas

cells wherever there was a loop over dark matter particles in the gravity routines. For

example, the original P3M2 code contains a loop over particles in which the mass of

each particle is interpolated onto the density grid in preparation for the PM force

calculation. The combined code adds a loop over gas cells and treats each of those

cells as a "particle" with mass equal to the gas density times the volume of the gas

cell.

In the original distributed memory P3M2 code, each processor maintains a list of

particles which reside in a particular volume. To account for the gas in the combined

code, these particle lists are expanded to include gas "particles." Hence the gas has

two representations, one as a grid of density, velocity and energy, and another as
"particles" with mass and velocity. The former representation is used by KRONOS,

the latter by P3M2. These two representations must, of course, be kept consistent.

For this purpose special routines were written to send portions of the gas grid, which

is maintained on a single processor, to the processors whose assigned spatial volumes



overlap the gas volume. These processors then use the gas density and velocity to

update the masses and velocities of the gas "particles" contained in their particle lists.

This procedure is shown schematically in Figure A.2. On the left is a representation

of a 53 grid of gas data (e.g., density), which resides physically on processor 0. On

the right is a particle list (e.g., mass) which resides physically on, say, processor 5.

The two shaded slabs of the gas grid in this example lie within the portion of the

simulation volume assigned to processor 5. Hence, for each of these shaded gas cells

the processor 5 mass list has an entry. A separate list of particle indices stores a global

integer tag for each particle, for which there is a one to one correspondence between

the tag of a gas "particle" and it's location in the gas grid. A similar procedure is

used to send the calculated gravity at each gas "particle" back to the gas grid.

The basic code structure for the distributed memory version of the code is repre-

sented in Figure A.2. This shows that at the beginning of each timestep, gas density

and velocity are sent from the gas grid to the particle lists. The gas density is used

in the construction of the total density field needed for the PM force calculation.

The leapfrog integration scheme (Eqn. 2.3) for the dark matter trajectories and the

Riemann solver used by KRONOS require the density field to be evaluated one half

timestep ahead of the current time. For the dark matter particles this is easily ac-

complished by integrating their positions forward one half step before performing the

force calculation. To approximate the gas density at one half timestep ahead, the

particle representation of the gas is used, and the gas "particles" are moved off their

fixed grid postions by iAt/2. This is why the gas velocity must be passed from the

gas grid to the particle lists before the computation of the total density field begins.

Note however, that the gas "particles" must be returned to their grid positions after

the total density is computed so that the gravitational force felt by each gas "particle"

is the force at the grid position at the center of the gas cell.

The gas solver (KRONOS) requires boundary conditions for the gas volume at the

beginning of the timestep. As these are determined from the dark matter density and

velocity fields, they must be computed before the particle positions are integrated

forward the first half timestep. For this calculation, each processor determines which



portion of the gas volume, if any, resides locally, and then uses TSC interpolation to

compute the density and momentum density fields at the boundary cells of the gas

volume. Dividing the latter by the former gives the velocity field at these points. The

density and velocity boundary values are then passed from the particle list structure

on each processor to the gas grid structure on processor 0.

Next, the particle postions are integrated forward one half timestep and the gravity

calculation commences, modified only2 to move the gas "particles" back to their grid

positions after the total density is calculated, as described above. Then the particle

velocities are updated by one full timestep and the positions by the second half

timestep.

After the gravity calculation, the gravitational acceleration at each gas "particle"

must be passed back to a grid structure on processor 0. KRONOS is called next, to

update the gas variables by a full timestep, and the next timestep can begin.

20Other modifications to the gravity code were added to minimize memory usage. These, however,
are independent of the changes made to combine the gas and gravity codes.



Chapter 3

The Model

We evolve a cosmological model which is consistent with observational constraints

(Ostriker & Steinhardt 1995, Liddle 1996, Kochanek 1996).

Ho = 100h km s-1 Mpc - ' = 75 km s-'Mpc-1  (3.1)

QCDM + QB -QA = 1 (3.2)

-B = 0.015h - 2 = 0.0267 (3.3)

QCDM + QB = 0.3. (3.4)

Within this cosmological context we simulate a 51.2 Mpc comoving volume with

the dark matter density field sampled using 6069442 particles with nested mass reso-

lution. The innermost 16 Mpc cube contains particles with a mean spacing of 100 kpc

(comoving), corresponding to a mass of 4.7 x 107M® per particle. This is the total

mass of a 100 kpc cube at mean density, including dark matter and baryons (gas).

When dark matter particles fall into the gas-filled volume their mass is scaled down

by QCDM/(QCDM + QB). A layer 4 Mpc thick holds particles with twice the spacing

and eight times the mass of the central cube. Two more layers of 6.4 Mpc and 7.2

Mpc each have a further coarsening of the mass resolution by the same factors over

their inner neighbor. The largest particles then have masses of 2.4 x 1010 M0 and

reside at least 18.4 Mpc from the center of the simulation volume. These distant,



massive particles provide the tidal forces under which the cluster will evolve.

The central 10 Mpc (comoving) volume also contains a grid of 100' gas cells. The

mean gas mass per cell is 4.2 x 106M®.

Initial conditions are generated using the COSMICS package of Bertschinger

(1995) First, the linearized Einstein and Boltzmann equations are integrated to com-

pute the matter transfer function. An initial Harrison-Zel'dovich spectrum P(k) oc k

is assumed. The resulting transfer function is used to generated a constrained random

realization of initial conditions. The constraint applied is that the central overdensity,

when smoothed under a Gaussian of width 6.4 Mpc, would have a value of 0.7, or

2.5a, where a is the root mean square value of the smoothed overdensity. The 6.4

Mpc Gaussian encloses the same mass as a 10 Mpc top hat, or 2.0 x 1014 M 0 , which

is a medium sized cluster. Other simulators (Frenk et al. in progress) have used

constrained initial conditions to generate unreasonably large clusters, with the result

that the cluster evolution was affected when the nonlinear scale approached the size

of the simulation volume. Here we have been careful to chose a perturbation which

will result in a good size cluster while ensuring that such a cluster is not an extremely

rare event in a volume of this size. Using the fitting formula for peak number density

given by Bardeen et al. (1986), we find that the expected number density of 2.5a

peaks in our simulation volume is 0.5.

COSMICS produces a realization of the density and velocity fields (and equiva-

lently, the displacement field) of the mass. The central 100 Mpc volumes in these

fields are used to generate the initial conditions for the gas. The gas density is set

proportional to the total density, the gas velocity is set equal to the particle velocity.

The P8M3 code determines the appropriate temperature field by assuming the gas

entropy is constant in space. The mean gas temperature is chosen appropriate to the

initial simulation redshift.

Initial particle displacements are determined from the linear transfer function by

the Zel'dovich approximation. The initial simulation redshift is set by requiring that

the maximum displacement be no larger than 100 kpc, the mean interparticle spacing

in the high resolution central volume of the simulation. This results in an initial



redshift of zi = 83.

The gravitational force between particle pairs is softened to a Plummer law, for

which the potential energy is given as

Gm m2U= Gm 2  (3.5)

with E = 0.04 Mpc. With this softening, the force between a pair of particles 100 kpc

apart is 80% of the true (unsoftened) force. In this way the force resolution of the

gravity and gas portions of the code are kept consistent at 100 kpc.



Chapter 4

Substructure

Galaxy clusters were first identified optically as regions of high galaxy density pro-

jected on the sky. Abell (1958), for example, identified clusters by the number of

galaxies projected within a 1.5h - 1 Mpc radius circle. The most obvious property of

optical clusters is their richness, which is roughly the number of galaxies. But they

also display different morphologies. Abell (1965, 1975) classified his clusters on a

sequence from regular to irregular. Zwicky et al. (1961-1968) based their classifica-

tions on the relative compactness of the cluster. Bautz & Morgan (1970) devised a

classification scheme based on the brightest galaxies in the cluster. Rood & Sastry

(1971) developed a system reminiscent of Hubble's "tuning fork" diagram of galaxy

types. Morgan (1961) and Oemler (1974) classified clusters by their spiral and el-

liptical fractions. These classification systems are highly correlated, indicating that

cluster optical morphology can be approximately described by a simple sequence from

more to less regular (Sarazin 1988). The "ideal" regular cluster would have spher-

ically symmetric distribution in position, and the line-of-sight velocity distribution

would be Gaussian, although the velocity dispersion generally decreases with radius

from the cluster center (Sarazin 1988).

Irregularity in clusters sometimes manifests itself as multiple peaks in galaxy num-

ber density, either projected or in redshift space, indicating that a merger has recently

occurred. Geller & Beers (1982) found that 40% of rich clusters have multiple pro-

jected density maxima. Dressler & Shectman (1988) made use of velocity information



also and claimed to find significant substructure in 30-40% of clusters. West & Bothun

(1990) find "definite substructure" on Mpc scales in 30% of their sample.

Clusters can be imaged with better statistics in X-rays, as there are many more

X-ray photons than galaxies available. Forman & Jones (1970) and Jones & Forman

(1992) developed a classification system based on structure in the X-ray images.

Applying this to images obtained by the Einstein satellite, they identified about

20% of their clusters as "double" or "complex." Mohr et al. (1993, 1995) proposed

statistics for quantifying substructure in X-ray images and applied them to Einstein

data. By comparing these to simulated clusters (Evrard et al. 1993) these authors

conclude that the observations favor a high value for Q.

An alternative to observational (optical and X-ray) identification and classification

of clusters is the theoretical definition based on mass. Clusters correspond to the

highest density regions of an appropriately averaged mass density field. The mass

density of the Universe varies on all scales. In order to isolate the scales relevant to

clusters, one first smooths the density field on cluster scales. Define the mass density

field p(£) and the overdensity

6(,) = (4.1)
P

where p is the mean density. The density smorothed on mass scale M is then

6(0, M) = 6(:?)W(I£ - i1, M)dx', (4.2)

where the smoothing window function is spherically symmetric about Y and has com-

pact support. The mass scale M is related to a length scale Rs by

M = pW(r, M)4wrr2dr. (4.3)

Clusters are then identified with the regions above some threshhold in the smoothed

density field. If this field corresponds to the present, then this threshhold density will

be around 200 (Lacey & Cole 1993). Because the effects of non-linear gravitational



evolution dictate the spectrum of density fluctuations at present, it is more convenient

to work with the initial, linear density field. The statistics of this field are dictated by

the cosmological model, and are specified by a power spectrum of density fluctuations

which are usually assumed to be Gaussian. The high density regions in this smoothed

initial density field are assumed to evolve into galaxy clusters.

This cluster definition, based on the firm mathematical grounds of density fields,

power spectra, smoothing functions, etc., is attractive to theorists but not easy to con-

nect to observations. It is most useful for predicting things like the mass distribution

of clusters as a function of time, something which is not easy to observe.

In practice there are two approaches for studying cluster distributions based on

the initial density field. In the peaks method (Bardeen et al. 1986), high peaks

in the smoothed initial density field are considered to be the locations of non-linear

structures in the evolved field. E.g., the highest 10% of the peaks in a density field

smoothed on cluster mass scales correspond to the most massive 10% of clusters.

Statistics such as the correlation functions of the peaks are then thought to apply

to the corresponding clusters as well. The other approach, pioneered by Gunn &

Gott (1972) and Press & Schechter (1974) and extended by Bond et al. (1991) and

others, utilizes the analytic solution for the collapse of a spherical overdensity. The

power spectrum of fluctuations in the smoothed initial density field determines the

distribution of overdense regions. Each of these regions is modelled as a spherical

perturbation in an otherwise flat Universe to give both a mass and a collapse time

for that mass. This prescription has been used to determine tha mass function of

non-linear structures as a function of time (Press & Schecter 1974), as well as the

merger rates, formation histories, and survival times of dark matter halos (Lacey &

Cole 1993, Kauffmann & White 1993).

This thesis deals with a simulated X-ray cluster and with statistics based on

the initial density field. Because the simulation resolution and input physics are not

sufficient for modelling individual galaxies within the cluster, galaxy counts or cluster

richness are not useful criteria for defining or classifying clusters or for measuring

substructure. Instead we opt for the following definition: a cluster is a spatially



isolated high density region which contains hot, diffuse X-ray emitting gas, and which

formed from the mass in a high density region of the initial density field.

In order to make a clear definition of substructure within clusters it is useful to

define what substructure is not. A substructureless cluster is spherically symmet-

ric. Departures from symmetry, then, are indications of substructure. However, we

wish to avoid any definition of substructure which divides clusters into substructure

"haves" and "have nots," since there is of course continuum of degrees of departure

from symmetry. Such a division would be artificial. A better approach is to allow

operational definitions of substructure based on quantifiable measures. This way we

avoid terms like "significant substructure."

4.1 Substructure Statistics

One attempt at quantifying substructure in X-ray maps of clusters of galaxies is due

to Mohr et al. (1993). They develop statistics based on the Fourier transforms of

annuli in a circular image aperture. Each annulus of some specified thickness and

mean radius f can be decomposed in a Fourier transform

I(0, i) = Z Am(n) cos(mO) + Bm(i) sin(mO) . (4.4)
m=O

The coefficients An and Bn are then

An f I(0, i) cos(nO)dO, (4.5)

B - f 1(0, F) sin(nO)dO. (4.6)

The center of each annulus is not determined a priori, but is instead set to be the

position for which the difference between the center and centroid of the annulus is
minimized. Specifically, this corresponds to minimizing A2 + B1.

For each annulus, a centroid shift is calculated. The emission weighted centroid



shift is

w_ 2 Nj ' (4.7)

where j is the annulus index, 5j is the annulus centroid position, Nj is the photon

count in the annulus, and (7) = E Nj7j / _E Nj is the emission weighted mean centroid.

Mohr et al. (1993, 1995) also introduce an axial ratio

2 A+ B22
r7(T) ~ 1- (4.8)

r(dI/dr)

and an ellipsoidal orientation angle

1 _J32
0() = I tan- ( B2) (4.9)2 A2

as well as averages and variances (over annuli) of each of these. 1

In Evrard et al. (1993) these authors apply these statistics to clusters simulated

under different cosmological models and argue that the statistics discriminate well

between models of different density, though not between low density models (Q =

0.2) with and without a cosmological constant providing spatial flatness. Mohr et

al. (1995) apply these statistics to a sample of Einstein clusters and find that the

distributions of centroid shift and axial ratio agree better with their Q = 1 CDM

simulations than with their low density simulations.

Another method for quantifying X-ray substructure was proposed recently by

Buote & Tsai (1995). Their power ratio statistics are based on the multipole ex-

pansion of two dimensional gravitational potential, which solves the two dimensional

Poisson equation sourced by the projected mass density E interior to an aperture

radius R,

V 21F = 27rGE. (4.10)

1Equation 2.8 of Mohr et al. (1995) is incorrect and should be Oo = j NjOj(f)/- Ej Nj.



The multipole expansion is given by

I(R, ¢) = -2Gaoln(1/R) - 2G mR m (am cos mq + bm sin m¢) , (4.11)
m=1 mRm

am(R) = (r, )r m cos me rdrd¢, (4.12)

bm(R) = E(r,)r m sin m rdrd¢. (4.13)

The power in the mth multipole due to mass interior to R is the azimuthally

averaged value of the square of the mth term in equation 4.11,

Pm(R) = f Tm(R, ) Im(R, )do , (4.14)

which reduces to

4G 2

Po = [2Gao ln(R)]2 , Pm>o = 2 (a + b ). (4.15)
2m 2 R2 m m m)

The projected mass density E, while available in principle from weak lensing

maps of clusters, is not in practice well determined for any real clusters. Buote &

Tsai (1995, 1996) were concerned with the dynamical state of clusters and argued

that while this would be best reflected by using the projected mass density E, the

X-ray surface brightness would be an adequate mass tracer. In fact, since the X-ray

surface brightness is proportional to the projection of the square of the gas density,
the substructure in X-rays will provide a stronger signal than that in projected mass.

One can see immediately the advantage of this statistic over those of Mohr et al.

(1993) when quantifying substructure in simulations. The power coefficients am and

bm differ from the moment coefficients Am and Bm in their integrands by a factor of

rm, making the power ratios sensitive to structure on the scale of the viewing aperture

instead of structure in the simulated cluster core, where cooling physics is important

and uncertain and the spatial resolution is insufficient.

Which of these statistics is "best" for studying clusters depends strongly on the



scale on which the cluster structure is being investigated. Compared to the centroid

shift and axial ratio statistics, power ratios are more sensitive far from the cluster

center, and different scales can be selected for study by adjusting the image aperture

radius. However, the power ratios are more reliably calibrated against simulations,

due to the fact that the cluster core is simulated less accurately than the outer cluster

due to finite force resolution and the complications of modelling the cooling and

contraction of the gas.

Another advantage of the power ratio statistics is that they are relatively noise

free compared to the Mohr et al. (1993) statistics. Figure A-3 shows the emission

weighted centroid shift (Eq. 4.7) plotted versus expansion factor. Because a small

change in the X-ray image can cause the centers of all the annuli to shift, the centroid

shift jumps around from timestep to timestep in the simulation. Compare this to

Figure A-9, which shows the power ratios varying smoothly with time. Also note

that the difference between the largest centroid shifts and the mean value is a factor

of only a few. Comparing Figure A-3 to Figure A-9 shows that the primary merger

events show up as peaks in both figures, but that the maximum power ratios are more

than 10 times the mean values, making them easier to detect unambiguously. For

these reasons we concentrate on the power ratios in our analysis.

4.2 Cluster evolution in power ratio space

Figures A-4, A-5 and A-6 show the path of the cluster in the space of the P2/PO and

P4/Po power ratios from z = 10 to z = 1 for the x - y, y - z, and z - x projections,
respectively. In these plots and the following discussion we take the decimal log of

the above defined power ratios and refer to these as power ratios, with the logarithm

implied. The high density of points near the center of each of these figures indicates

that the cluster spends most of its life near the center of its "territory" in power ratio

space. Figure A-7 combines the three projections and shows clearly that this cluster

spends most of its life with power ratios -7 < P2/Po < -6 and -10 < P4/Po < -8.

However the allowed region in the P2/Po - P4/Po plane is much larger, extending



approximately from (P2/Po, P4/Po) = (-8.5, -11.5) to (P2/Po, P4/Po) = (-4, -5).

Between these extremes the allowed region of the plane is a thick filament.

This region of the P2/Po - P4/Po plane was identified by Buote & Tsai (1996),

who interpreted it as an "evolutionary track." They were able to confirm this inter-

pretation using 6 simulated clusters, with simulated X-ray images available at only

a few redshifts. These plots, showing a nearly continuous path in this power ratio

plane, offer spectacular confirmation of their observation.

Closer inspection of these figures reveals that the trajectory of the cluster in

this power ratio plane consists of periods in the central part of the allowed region

interrupted by excursions out from the center, usually up to the high power region,

then down to the low power region, and then gradually back to the center. The

excursions to the high power region of the plane generally are direct, progressing up

in P2/Po and in P4/Po simultaneously. Excursions to lower power sometimes occur

in only one coordinate direction, but usually in both.

Physically, what is occurring to the cluster to cause these excursions? In agreement

with the interpretation of Buote & Tsai (1996), we find that excursions to high power

occur during a merger event. As a subclump of X-ray gas first begins to cross within

the 1 Mpc aperture radius for which these power ratios were computed, both the

P2/Po and P4/Po ratios begin to increase. In each case, the P4/Po ratio peaks just

before the P2/Po ratio, and the peak in P2/Po is wider (in time) than the peak in

P4/Po. This can be seen in Figure A-8, in which P2/Po and P4/Po are plotted against

expansion factor a = 1/(1 + z) for a representative high power excursion. In the plots

of P4/Po versus P2/Po this fact is revealed in the clockwise direction in which the

cluster trajectory moves up, around and down in its high power excursions in power

ratio space.

For most of the high power excursions the return path in P2/PO - P4/Po space is

a concave path whose shape can be understood in terms of a simple model. Consider

the case of a point source with luminosity El1 falling on to a much brighter pointer

source with luminosity E0o. Most of this cluster's mergers consist of single small

clumps falling into the main cluster, so consideration of each as a point source can



reveal the qualitative behavior. For this argument we ignore the slight shift in the

center of the aperture caused by minimizing P1. When the small source crosses into

the aperture (radius R) surrounding the main source, the powers are given by

P2 = - , (4.16)

P4 = 32 o P22. (4.17)

Po is the same for each, so in the P2/Po - P4/Po plane this trajectory is a parabola.

Actual trajectories are more complicated, but qualitatively similar.

Excursions to low power regions of the P2/Po - P4/Po plane take a variety of

paths. Many of these consists of a general decrease, then increase, in both P2/Po

and P4/Po simultaneously. However, there are also excursions which occur parallel to

one power ratio axis or the other. In other words, P2/Po decreases, then increases,

while P4/Po remains almost constant. Or P4/Po cycles down and up while P2/Po

stays fixed. Excursions at fixed P2/Po to low P4/Po correspond to the higher order

components of the X-ray structure of the gas relaxing away, while the m = 2 mode is

being preserved by the linear nature of a dominant filament which stretches across the

aperture. The P4 /Po ratio measures "boxiness," while the P2/Po ratio measures the

linearity of the cluster substructure. Excursions to low P2/Po at fixed P4 /Po occur

when the linear nature of the substructure becomes less pronounced relative to the

"boxiness."

These types of behavior are indicated by Figures A-9, A-10 and A-11, which show

the power ratios plotted versus expansion factor. For an example, study Figures A-9

and A-10, which depict the trajectories in the power ratio plane for the x - y and

y - z projections. At an expansion factor just greater than 0.2, P2/Po reaches a local

minimum while P4/Po is at a local maximum. This corresponds to the horizontal

low power excursion in Figures A-4 and A-5. This feature is most prominent in the

x - y projection, but the actual sequence of mergers which produce this part of the

trajectory is most clearly seen in the y - z projection of the X-ray surface brightness.

This is depicted in Figure A-12, which shows the X-ray surface brightness at a few



key times in this merger sequence.

Panel A shows the cluster as an X-ray bright clump falls in from above. Both

P2/Po and P4 /Po are large. Panel B depicts the situation 15 simulation timesteps

later. The isophote contours in each panel are separated by one decade each, with

the highest contour at 10% of the maximum X-ray surface brightness. Because the

central luminosity of the cluster has increased, the subclump falling in from above

now appears as an elongation of the isophotes. Another, albeit smaller, subclump is

falling in from below the cluster center. These two subclumps are not falling exactly

radially onto the cluster center. Instead, they will collide just left of the cluster

center, as shown in panels C and D. At panel C, P2/Po reaches a minimum, then

abruptly begins increasing. By panel D linear structure is obvious again, although

now it is aligned perpendicular to the filament along which the two subclumps entered

the cluster. P4/Po has remained relatively constant, at a maximum, as the "boxy"

structure remains, here as a combination of the left-right orientation of the main

cluster and the up-down orientation of the main filament. In panel E the left-right

alignment cluster is still apparent, and is reflected in the large value of P2/Po. Panel

F shows the left-right structure relaxing away, while a new subclump approaches the

cluster from below. P2/Po is still decreasing, but the combination of the remaining

left-right structure in the highest isophotes and the up-down structure imposed by the

bottom subclump results in an increasing P4/Po. By panel G, the dominant structure

is again the up-down alignment resulting from the merger of the bottom subclump.

The whole history of cluster mergers of this sort is contained in figures A-13, A-14

and A-15, which show the time evolution of the P2/Po and P4/Po power ratios. Ap-

parent in these figures is the "bouncing ball" nature of the trajectories, with more or

less rounded peaks separated by "bounces" in which the declining trajectory abruptly

reverses itself and begins to rise again to a new peak. This behavior is the norm early

in the cluster's history, becoming less frequent as it evolves. The reason for these

"bounces" is that mergers are occurring frequently at these early times. After the

power ratios peak and begin to decline, but before they can relax to an equilibrium

value, a new merger begins as another clump of hot gas falls into the power ratio aper-



ture. The frequency of these high power events decreases with time, as the ever more

massive cluster will only show high power ratios when mergers with more massive

subclumps occur.

Also evident in figures A-13, A-14 and A-15 is the fact that while the power

ratios vary greatly on the timescale of individual merger events, they do not vary

greatly on much longer timescales. This can also be seen in figure A-16, in which the

amount of time spent at points in power ratio space is shown as a contour plot. The

contours are made by overlaying the trajectories in power ratio space for the three

projections of the P2/Po - P4/Po, which are shown individually in figures A-4, A-5

and A-6. The points along the trajectories are binned in the P2/Po - P4 /Po plane then

smoothed with a Gaussian. Superimposed on these contours are points corresponding

to the power ratios measured by Buote & Tsai for their sample of clusters observed

by ROSAT. Of course, the ROSAT clusters are at lower redshift than the simulated

cluster. But even over the huge redshift range from z = 10 to z = 1, the cluster

occupies the same region of power ratio space as the ROSAT clusters. In addition,

the single simulated cluster corresponds to a single perturbation scale, while the data

are drawn from clusters with a range of perturbation scales. Still, the shape of the

distributions for the simulation and the real data are very similar.

4.3 Substructure survival time

Richstone et al. (1992) and others have argued that the fraction of observed clusters

possessing substructure reflects the cosmic mean matter density. In a low density

universe, matter approaches free expansion at late times. Consequently, observed

structures must have formed early, when the mean density was closer to critical.

Clusters formed at early times would have had time to relax and would appear today

with little substructure. In order to quantify this effect one requires knowledge of the

cluster formation or merger rate as well as the relaxation time scale of the substructure

which results from these mergers.

Using the solution for the collapse of an overdense homogeneous spherical per-



turbation in a Friedman-Robertson-Walker universe and assuming a Gaussian dis-

tribution for the density on cluster scales, Richstone et al. compute the fraction of

clusters which collapse within a certain time interval of the present epoch. If this

time interval is chosen to be the amount of time for which evidence of recent merger

activity survives, then this fraction of clusters "recently formed" will be the same as

the fraction of clusters which show evidence of current or recent mergers. In brief,

their argument is as follows.

A homogeneous spherical overdensity above the critical density will collapse at a

time which is a monotonic function of the overdensity. A distribution of overdensities

then leads directly to a distribution of collapse times as a function of the initial

overdensity. The chosen initial density distribution is Gaussian, and its variance is

chosen so that the derived fraction of the mass on the scale of 1015M® which has

already collapsed is equal to the mass fraction of the universe in Abell clusters with

masses of about 1015M0 . Finally, they derive an expression for the fraction of existing

clusters which have collapsed within the last time interval 6t.

Applying this expression requires determining the fraction of clusters which show

recent merger activity and choosing a value for 6t, which should be the amount of time

for which merger activity remains visible in clusters. Interpreting cluster substructure

as evidence of recent merger activity, Richstone et al. argue, based mostly on optical

studies, that 25% of rich clusters show substructure at present. These authors have

concentrated on predicting cluster formation and merger rates and have made simple

assumptions about the relaxation time scale of substructure based on the cluster

dynamical time or crossing time. They assume that low contrast substructure is

erased in about 0.1/Ho. Their results favor Q > 0.5.

Lacey & Cole (1993) perform a similar calculation. They equate the fraction of

rich clusters with significant substructure to the fraction of clusters which "formed"

within some specified time interval of the present. They define the cluster formation

time as that time at which the halo mass first increased to 50% of its present value.

They find that matching observations with a CDM spectrum requires Q > 0.6 if they

assume that substructure is erased on a timescale of 20% of the present age of the



Universe.

Kauffmann & White (1993) apply the formalism of Press & Schechter (1974)

to study the merger history of dark matter halos. They argue that uncertainty in

substructure survival time precludes using their results to predict Q from cluster

substructure.

Richstone et al. (1992) and Lacey & Cole (1993) both characterized observations

of substructure with a single number: the fraction of clusters displaying significant

substructure. As discussed in the introduction to this chapter, different observers us-

ing different selection criteria have arrived at different values for this fraction, ranging

from 20% to 40%. This much variation seems inevitable when there is no consensual

definition of substructure. We avoid this dilemma by relying on a set of quantitative

statistics, the power ratios, to place each cluster on the continuum of cluster mor-

phologies. Then, rather than relying on subjective determinations of the significance

of substructure, we simply assign each cluster a set of power ratios. When the sim-

plicity of a single number is desired or required, we can, for example, consider all

clusters with P2/Po above some threshhold value.

Richstone et al. (1992) and Lacey & Cole (1993) also rely on simple estimates of

the time interval during which recent merger activity remains visible as substructure.

But these estimates are not rigorous, nor are they well motivated by the details of

the substructure measurements.

In this section we study the survival time of the substructure, measured as the

duration of high power excursions, in our simulated cluster. In chapter 5 we relate

these observations to a simple model for the merging events which produce high power

ratios.

Figures A-13, A-14 and A-15 show the time evolution of the P2/Po and P4 /Po

power ratios. If substructure survival time is governed by the physics of gas shock-

ing, cooling, and relaxing into hydrostatic equilibrium, then it should be relatively

insensitive to cosmology. If, on the other hand, substructure survival time depends

on the merger rates of clusters, then the survival time should depend on the cosmol-

ogy. As evidenced by these figures, a peak in P2/Po is usually coincident with a peak



in P4/Po and corresponds to the infall of a clump of hot gas onto the main cluster.

The survival time of substructure measured this way is just the width of the peak.

Clearly, peak width is relatively constant over the entire range of redshift covered.

Meanwhile, the cluster mass evolves significantly, increasing by more than a factor of

six between z = 4 and z = 1. Thus, the substructure survival time, as measured by

the power ratios, is insensitive to the cluster mass.

Specifically, we define substructure survival time, as related to power ratios, by

the full width at half maximum for single peaks in the function P2/Po(t), plotted

in figures A-13, A-14 and A-15. As the vertical scale is logarithmic, a factor of one

half corresponds in the figures to a decrement of logo10 2 = 0.3 from the peak. Low

peaks which do not fall to one half of their peak value before rising again are not

considered single peaks. By this definition, substructure survival time ranges from

0.13 to 0.30 billion years, or about 0.01 to 0.02 Ho1 . Clearly this is much less than

the estimate (0.1 Ho1 ) of Richstone et al. (1992), who state that their estimate of Q

varies approximately linearly with the substructure relaxation rate. Nakamura et al.

(1995) provide the following fit to equation 17 of Richstone et al.

Qm > -0.2 (4.18)
HoRt

with 6F representing the fraction of clusters which have formed within the last 6t.

The implication seems to be that this rate of relaxation indicates a value of Q greater

than about 2.5. However, their estimate of Q results from combining an estimate

of substructure survival time with measurements of the frequency of occurrence of

substructure classified in a certain way, such as the Jones & Forman (1992) morpho-

logical classes. A more fair comparison requires using the power ratios to quantify

both the frequency of the substructure and its survival time. Evrard et al. (1993)

and Buote & Xu (1996) have tried determining substructure frequency in different

cosmological models by simulating many clusters in each model. In chapter 5 we

develop an analytic model for substructure frequency and survival time that can be

used to rapidly test most cosmological models.



Ideally, a large number of hydrodynamically simulated clusters could be used to

quantify exactly the expected distribution in power ratio space for a given cosmolog-

ical model and as a function of time. Currently that goal is beyond the capabilities

of current simulations. However, by using simpler simulations and models for the

physics not explicitly simulated, greater numbers of clusters can be generated. Tsai

& Buote (1996) used 6 hydrodynamically simulated clusters from an Q = 1 CDM

model universe, and found too many high power clusters compared to ROSAT data,

indicating Q < 1. In order to get better statistics, Buote & Xu (1996) drew clus-

ters from gasless N-body simulations of different cosmologies. To generate simulated

X-ray images they assumed Pgas oc PDM and constant temperature. They found that

low Q CDM models produce power ratios in good agreement with observations, while

Q = 1 "standard" CDM does not.

While we cannot directly check these results, we can test some of the assumptions

that underlie them. Figure A-17 shows the cluster trajectory in power ratio space

computed once from the X-ray surface brightness and once again from the square of

the gas density. This is equivalent to assuming isothermality. Clearly, the trajectories

are very similar, with the isothermal assumption leading to overestimates of the power

ratios except at the highest power. This overestimate is due to the fact that the cluster

gas temperature is not isothermal; rather, it declines with radius. Figure A-18 shows

the spherically averaged gas temperature as a function of radius from the cluster

density peak. A similar overestimate is seen for the P3/Po power ratio. By neglecting

this effect, Buote & Xu (1996) would have overestimated the amount of substructure

for a given mean density present in their simulations, and hence would have been led to

underestimate Q. They argue, however, that the measured X-ray surface brightness is

actually the emissivity convolved with the ROSAT detector response function, which

varies little over the range of cluster gas temperatures. So the degree to which the

isothermal assumption leads to an understimate of Q remains uncertain.

A more significant difference appears when comparing power ratios computed from

the X-ray surface brightness and from the square of the dark matter density. Figure

A-19 shows the P2/Po power ratios plotted versus expansion factor and computed



from the X-rays, the square of the gas density, and the square of the dark matter

density. On average, approximating the X-ray surface brightness as the square of the

dark matter density produces significant overestimate of the power ratios. Combining

all 3 orthogonal projections of the cluster, we find the mean and root mean square

overestimates (in the decimal log of the power ratio) to be 9.3% and 10.5%, respec-

tively. Doing the same for the P3/Po power ratios yields mean and root mean square

overestimates of 9.3% and 9.9%. P4/Po overestimates are 10.8% and 11.0%.

Naively correcting for this overestimate in the results of Buote & Xu (1996) means

decreasing their value for the mean power ratios for their simulations by 10%. This

correction brings their values for the mean power ratios P2/Po and P3/Po for the

standard CDM model into good agreement with the values computed by Buote &

Tsai (1996) for their sample of ROSAT clusters. At the same time, this correction

destroys the agreement seen by Buote & Xu between the data and their simulations

of an Q = 0.35 open CDM model. This reversal of the result of Buote & Xu agrees

with the conclusions of Mohr et al. (1995), that the substructure in X-ray clusters is

more consistent with a high density than a low density cosmology.

However, this naive correction ignores a point made first by Buote & Tsai (1995),
that spatial temperature variations, which are present in the simulated data, are not

detected by ROSAT even when present in real clusters. These temperature fluctu-

ations arise due to adiabatic heating in collapsing gas subclumps, and due to shock

heating which results when a subclump collides with the main cluster or any of the

shock fronts present in the cluster. However, the spectral response of the ROSAT

PSPC (Position Sensitive Proportional Counter) is nearly independent of the gas

temperature (Buote & Tsai 1995, Pfeffermann et al. 1987).

Recalculating the power ratios for our simulation based on the square of the gas

density, as opposed to the X-ray emissivity p2T 1/ 2, results in power ratios closer to

those calculated from the square of the dark matter density. The result is still an

overestimate; i.e., power ratios computed from the square of the dark matter density

are higher than those for the square of the gas density. For P2/P o, the mean and root

mean square overestimates are 3% and 13% respectively. For P3/Po these numbers



are 4% and 13%, and for P4/Po they are 7% and 12%.

These overestimates, while smaller, are statistically significant. Applying the F-

test (Press et al. 1992) to check for significantly different variances in the power

ratio distributions reveals consistent variances for the P2/Po and P3/Po ratios, but

inconsistent variances in the P4/Po distributions at a significance level of 2.75a. We

use Student's t-test to determine the significance of different means in two distribu-

tions. Applying the version of this statistic appropriate for paired statistics we find

that the means of the P2/Po and P3/Po ratios differ at significance levels of 3.7a and

4.0a, respectively. To compare means of the P4/Po distributions we apply the version

of Student's t appropriate for distributions with different variances, and find a 4.6a

significance to the difference in means.

What accounts for this overestimate? There are two reasons why the gas in a

cluster will not be distributed exactly as the dark matter. One is that the gas shocks,

while the dark matter is collisionless. These shocks create hot spots in the gas which

affect the X-ray surface brightness of the cluster but are not expected to appear in

the ROSAT PSPC images due to the low temperature sensitivity of the detector.

The shocks also decelerate the gas, however, and cause the gas density distribution

to differ from that of the dark matter. This process will lead to larger power ratios

for the gas than for the dark matter. Competing with this effect is the fact that the

gas in much of the main cluster as well as in the cores of infalling subclumps may be

in or near hydrostatic equilibrium within the potential provided by the dark matter.

Hydrostatic equilibrium causes the gas distribution to be more round than that of the

dark matter, resulting in lower power ratios for the gas. Apparently this second effect

is stronger, as we have shown that power ratios computed from the square of the dark

matter density systematically overestimate the values based on the square of the gas

density. A third effect which can separate the gas from the dark matter distributions,

cooling, is only possible in the core of the cluster, where the power ratios are least

sensitive.

Buote & Xu (1996) argue that using the square of the dark matter density as an

approximation to the X-ray surface brightness is justified by Tsai & Buote (1996),



who computed power ratios for clusters in the hydrodynamic simulations of Navarro

et al. (1995). However, Tsai & Buote only argue that the dark matter density (and

not its square) gives power ratios that are qualitatively similar to those based on the

square of the gas density. For example, for both the dark matter density and the

square of the gas density, power ratios increase in response to mergers, then decay.

However, Tsai & Buote do not address the issue of bias in the values of the dark

matter power ratios, nor do they test the square of the dark matter density. Buote

& Xu also take as support the fact that Jing et al. (1995) find similar centroid shifts

and axial ratios for their simulated clusters when they assume gas traces dark matter

and when they assume the gas is in hydrostatic equilibrium. In fact, Jing et al. only

argue that axial ratios and centroid shifts have the same dependence on cosmological

parameters regardless of which of these two prescriptions they apply for determining

gas density from their N-body simulations. Jing et al. measure smaller statistics

(indicating less substructure) when the gas is in hydrostatic equilibrium as compared

to when the gas traces the dark matter. This is in agreement with our finding.

While significant statistically, this overestimate of power ratios by Buote & Xu

is small enough that correcting for it does not greatly change their conclusions, but

it does reduce the difference between their findings and those of Mohr et al. This

correction, applied to the Buote & Xu power ratios, moves all the models tested by

Buote & Xu, except for the open CDM model, into better agreement with the data.

The best agreement is obtained with the Q = 0.3, A = 0.7 CDM model.



Chapter 5

An analytic model for predicting

power ratios

Mohr et al. (1993) and Buote & Xu (1996) both tried to distinguish cosmological

models by simulating many realizations of each model and comparing the distributions

of their substructure statistics for the simulations to the same stastics applied to real

clusters. This approach requires a large simulation effort to study each point in the

space of cosmological parameters (QM, QA, Ho, P(k)). While much may be gained

by studying a few selected cosmological models, we attempt instead to develop an

analytical model which describes the merger events which result in high power ratios.

While this model does require calibration against a simulation, it does not require a

new batch of simulations for each model studied.

Richstone et al. (1992) and Lacey & Cole (1993) both used ad hoc estimates for

the survival time of substructure. With a simple model we can connect the survival

time to the substructure measurement in a self consistent way. Also, by isolating the

elements which comprise the analytic model, we can subject each to individual study

and improve the model assumption by assumption, element by element.

Several model elements go into estimating power ratios. This model requires

knowledge of the merger rate as a function of time and of the two merging masses,

the infall velocities of subclumps onto the main cluster, and the effect on the power

ratios of a merger.



5.1 Merger rate

Most obviously, the distribution of observed power ratios must depend on the merger

rate of the halos that make up a cluster of galaxies. Various authors have used

extensions of the Press & Schechter (1974) formalism to compute merger probabilities

(Bond et al. 1991), merger rates (Lacey & Cole 1993), merger histories (Kauffmann

& White 1993) and related quantities from the linear power spectrum.

Following Lacey & Cole (1993), we consider 6(£), the initial overdensity field

evolved linearly to the present. Smoothing 6(£) on a continuum of mass scales M

gives a function 6(£, M) which can be thought of, for each point 7, as a trajectory

with 1/M in the role of the time variable.

6(£, M) = 6(7)W(1f - Y , M)d7' . (5.1)

The mass scale M is related to a length scale R by

M = p fW(r, M)4wr2dr. (5.2)

As M and R approach infinity, the mean density enclosed in the smoothing volume

approaches the cosmic mean, i.e., the overdensity 6(£, M) approaches zero. As M is

decreased, the mean density begins to vary. The character of these variations depends

on the window function. The effect of different window functions on the trajectory

of 6 vs. M is explored in detail in Bond et al. (1991). Consider the case of the sharp

k-space window function, for which the Fourier transform is

W(k, R) = t9(1 - kR) (5.3)

and whose real space form is

W(r,R) = (sin x - x cos ) (54)
x3 272R 3 ,



where x = r/R. Expressing 6(Y, M) in terms of its Fourier components gives

S# dk
6(?, M) = 6(k)W(k, M) exp(zk -.)47rk 2 ) (5.5)

S 6(k) exp(z.k - )k 2dk, (5.6)27w2 J

where 65(k) are the Fourier components of the unsmoothed density field. An decrease

in smoothing mass scale corresponds to increasing the upper limit of the integral

in Eq. 5.6. If the linear overdensity is a Gaussian random field, then its Fourier

components 6(k) are independent random variables, so increasing the integration limit

means including more random variables in the integrand. As a result, the trajectory

of 6(£, M) is a random walk starting at zero for the largest M. As M is decreased,

smaller volumes are averaged over and the fluctuations in 6(£, M) increase.

Next, we include the spherical collapse model, which predicts a collapse time for

a given spherical perturbation in an otherwise homogeneous universe (Gunn & Gott

1972). The equation of motion for a point a distance a from the center of such a

perturbation is the Friedmann equation

S= H2[EQM- 3 + QA + QRa-2], (5.7)

QM + QA + QR = 1, (5.8)

where QM, QA and QR are the fractions of the critical density in matter, vacuum

energy, and curvature, respectively, all measured at the time corresponding to a = 1,

and Ho is the value of a/a, also measured when a = 1. QM is related to the overdensity

6 by

= 87rGp(1 + 6)
3/_0 (5.9)

If the matter density is sufficient, the perturbation's expansion will halt when

a = 0 and will collapse to zero size (a = O) at twice that time, tc, given by

H o t = 2 [Ma - + a 2± Q tR]-da, (5.10)



where amax is the radius of maximum expansion and is the first real positive root of

QM + ±QAa3 + QRa = 0. (5.11)

For a given cosmological model QA is constant but the matter density and hence

the curvature vary spatially. We can therefore determine the collapse time for any

spherical perturbation. Equivalently, for any time we can determine the linear over-

density of the perturbations which have just collapsed. We express this as a function

&c(t), which can be thought of as a threshhold value applied to the smoothed lin-

ear overdensity field 6(£, M). Clusters of mass M or greater have formed by time t

wherever

6((Z, M) > 6c(t) . (5.12)

Now reconsider the trajectories 6(7, M) of the smoothed linear density field as M

is decreased from infinity. At a fixed time t, the mass which has collapsed at 7 is

equal to the largest mass for which 6(A, M) = 6c(t), giving the distribution of cluster

masses at t. This equation can also be used to give the evolution in time of collapsed

mass at a fixed point 7. It is this latter application which can be extended to give

merger rates and formation histories of collapsed halos.

In the case of sharp k-space filtering of the initial density field, the trajectory at

fixed Y is a random walk. It begins at zero for infinite M and random walks away.

The probability density for the "distance walked," is a Gaussian (Chandrasekhar

1943, Bond et al. 1991),

1 62
P(6)d6 = exp(- 2 2 )dS, (5.13)

where a2 = a 2(M) is the variance in the smoothed field 6(A, M). Each 6(M) > 6,(t)

in the tail of the Gaussian corresponds to a mass point which has been incorporated

into a cluster of mass M by time t. It crossed the boundary 6(M) = 6~(t) and

continued to increase. For each trajectory that crosses and remains above 6,(t) there

is an equally likely one that crosses 6~(t) at the same mass scale M but then decreases



as the mass scale is decreased and ends up below &c(t). These trajectories correspond

to regions whose density is low on small scales but above the threshhold collapse

density on larger scales, i.e., small underdense patches inside larger overdense ones.

Despite being underdense on small scales, these have already been incorporated into

larger mass objects. Hence, the probability that a mass point is in a collapsed object

of mass M or greater at time t is equal to twice the area under the tail of the Gaussian

above 6(M) = &c(t). This is given by

P(> M, t) = 2 P(6)d6. (5.14)

Thus, the probability density for trajectories which have not crossed the &6(t) thresh-

hold by time t is

1 62 (6 - 26c)2
P<6 (6)d6 = v 2  {exp( 22exp ) -exp- 22 dJ6. (5.15)

This is the solution to the diffusion equation

aP<6e 1 0 2P<6e
0- 2  2 062 (5.16)

subject to an absorbing boundary condition at 6(M) = &c(t). Trajectories start from

6 = 0 and "diffuse" outward, some eventually being "absorbed" when they reach 6,(t)

and collapse into objects of mass M.

As trajectories are absorbed into the density threshhold boundary, the probability

density for trajectories which have not crossed the boundary decreases. Thus, the

probability that a trajectory first crosses the threshhold 6~(t) is

P(M,t) = OM P<, (6)d6= d- 2 P<c P (6)d6, (5.17)
-0 dM au 2 J-o'

which, by the diffusion equation, is

do 2 10P<6 (6) 6 (P(M,t) dM2 6 (5.18)
-oo



do-2  6c3 exp 2 2. (5.19)
dM /7j3 A 2u 2 '

Recall that at fixed time t one determines the collapsed mass of an object by finding

the largest mass scale for which 6(M) = 6c(t). Treating 1/M in the role of the time

variable, and increasing 1/M from zero, then the first 1/M for which the threshhold

is crossed determines the collapsed mass. The probability that a trajectory, which

starts from the origin 6 = 0, crosses the collapse threshhold for the first "time" (1/M)

is then P(M, t)dM.

The probability of a mass point being in a collapsed object of mass M1 at time

tl provided it will be in an object of mass M2 > M1 at t2 > tl is directly analogous

to P(M, t) just computed, but with the origin of the trajectory at "time" 1/M 2 and

6 = sc(t 2).

d2 6 - -2
P(M 1 , tM 2 ,t 2)dM1 = 1 2 exp - 62 dM (5.20)dMiV (2w) 1/2(O2 - O) 3/2  2 2(Or2 _Or

where 61,2 = 6c(t 1 ,2) and O1,2 = a(M 1,2). This equation can be used to give the mass

distribution of precursors to the mass M2.

We can also compute the probability that a mass point that is already in a col-

lapsed halo of mass M1 at time tl will collapse into a larger mass halo M2 at a later

time t2. This is determined by

P(M2, t2  1, tl1)dM 2 xP(MI, t)dM1 = P(MI, t1 M2 , t 2)d 1 xP(M2, t2)dM2 , (5.21)

which yields

P(M2 t2 M1, tl)dM2 d 1 2 )31 2 exp 2 2 - 1_2 2
dM 2 (2ir)1/ 2 10O3 (2 - )3/2 exp 2 - ) dM 2

(5.22)
In the limit as t 2 approaches tl, any finite change in mass must be the result of a

merger rather than continous accretion. As the time dependence in equation 5.22 is

contained entirely in the 61,2 = 6c(tl, 2) terms, this limit is equivalent to the limit as



62 -+ 61= 6 (t), which gives

d2P 1[ 2 3/2 [6(1 dc
S- exp dM (5.23)dAMdt 27r or2 2- _2)2 2 a o 2) dM2 d

This expression is equivalent to Eq. 2.18 of Lacey & Cole (1993). In a subsequent

paper, Lacey & Cole (1994) tested this expression and the related predictions for the

halo mass function and halo formation times against N-body simulations of scale-

free models and found very good agreement. This should not be surprising, as it is

common practice among N-body simulators to compare their mass function with the

Press & Schechter (1974) formula and to find reasonable agreement (Efstathiou et

al. 1988, Efstathiou & Rees 1988, White, Efstathiou & Frenk 1993, Bond & Myers

1993).
Equation 5.23 tells us the merger rate. We also need to model what occurs during

these mergers in order to predict the power ratios.

5.2 Infall model

Close inspection of the cluster simulation reveals that most high power excursions in

power ratio space correspond to single merger events in which a subclump of dark

matter and hot gas falls onto the main cluster. The power ratios (especially P2/Po)

begin to rise when the subclump starts to cross the aperture within which the power

ratios are computed. As these mergers are almost always radial or nearly so, the

power ratio decays away as the clump falls inside the aperture. The radial nature of

the orbits is a common feature in hierarchical clustering simulations, as clumps form

in sheets and filaments, then are funnelled along the filaments into the knots where

the filaments intersect and the clusters form.

We model these mergers as the collision between two point masses on a radial

orbit. This model is best known for its application to the Local Group, in which M31

and the Milky Way are treated as point masses. The observed distance and infall

velocity of M31 with respect to the Milky Way are combined with estimates of the



age of the Universe to compute the mass of the Local Group. The equation of motion

for the problem of two point masses interacting gravitationally is

d2 -4 GM,-2 = (5.24)dt2  r3 '

where ' is the separation vector between the two masses and M is the sum of the

two masses. The general solution for r = Ir| for an orbit with eccentricity e is given

parametrically in terms of the eccentric anomaly 77,

r = A(1- ecosr) , (5.25)

t = B(rT-esinrq), (5.26)

A 3 = GMB2 . (5.27)

Because the orbits we observe in the simulation are radial or nearly so, we henceforth

set e = 1.

Denote the collision time of these two masses as T. The probability density for

such a merger is given in Eq. 5.23, changing the variable t to T to avoid confusion

with the time coordinate in the two body problem solution, Eq. 5.26. The probability

that a merger of masses M and AM occurs between the times T and T + dT is

(d2P/dAMdT)dT. The probability that, during the time interval from t to t + dt,

masses M and AM will be separated by a distance R and on their way to a merger

at time T is then (d2P/dAMdT)(dT/dt),dt.

dT = dT dt (5.28)
dt rT T)r rr

with the subscript r denoting that all derivatives are taken at fixed r. Collision occurs

when r = 0, or r = 27r, so T = 27B, and

(GMT 2 1/3
r = 47r2 ) 1 -cos ) (5.29)

= (GMt2) 11/3  1 - cos (530)
(1- sin q) 2/ 3 (5.30)



Using Eqs. 5.29 and 5.30 we find that at fixed r,

dr G= • 1/3 - cos ) T- 1/ 3dT + T 2/ 3 sin dr] = 0 (5.31)

(GM) 1/3 sin)2/3 1 O7 2 t-1/3dt + (5.32)
(7 - sin 17)2/33

t2/ 3 [(1sin 7) 2 (1-_CO 2dT = 0 (5.33)(q - sin r/)2/3 3 (TI - sin 7)5/3

so that

dT = _ 3 sin 7(d 2 3 sT I(5.34)d _ t 2 1 - c o s 77

d1  2 1 - cos 3 - sin (5.35)

Eq. 5.28 then yields

(dT) 27 sin (5.36)
Sdt Jr sin1 - sin2 _ 3(1 - cos 7 )2 (5

This quantity ranges from zero at q7 = 7r to one at 17 = 27r, though in practice it is

never far from unity. We can now compute (d2P/dAMdT)(dT/dt)rdt, the probability

of masses M and AM at separation r in the time interval (t, t + dt), on their way to

merge at time T.

The next model element required is the duration the mass AM spends near the

image aperture radius, where it contributes strongly to high power ratios. Again, we

employ the solution to the 2 body problem. At time t the relative velocity of the two

masses is
dr dr_(dr'\( dt

v d -= , (5.37)

which, according to Eqs. 5.25 and 5.26 is

A sin _ ( GM 1/2V = s)in). (5.38)B(1 - cos) r( - cos) sin. (5.38)

The amount of time the subclump AM spends crossing the image aperture is just



the size of the subclump divided by its infall velocity. The size of the clump can be

estimated as the radius of a sphere with 200 times the critical density which contains

mass AM,
47 R3 H 2

AM = 4--R3 M( 2 0 0 pcrit) = 200 2 (5.39)
3 2G

While this choice may seem ad hoc, our results will not be sensitive to it. This

is because any linear error will be calibrated away when the model predictions are

compared to the simulation. Non-linear variation in halo size as a function of mass

would manifest itself as a variation in the halo's concentration, a measure of how

strongly the mass is concentrated. Detailed work on the structure of dark matter

halos by Navarro et al. (1996) shows that variations in concentration with mass are

extremely small. The time for subclump AM to fall through an aperture of radius

Rap is then approximately

tfall = 2 RAM/v . (5.40)

A more rigorous derivation of the subclump infall time, based on the infall solution

for the two body problem, is as follows. Let tl be the time at which the subclump

edge first touches the aperture on its way in. This occurs when the separation of

the two components is ri = Rap + RAM. Let t2 be the time at which the subclump

comes completely within the aperture. In the limit of small AM, this occurs at

r2 = Rap - RAM. However, for large AM we must account for the shift of the

aperture center. Recall that the aperture center is found by minimizing the difference

the center of the aperture and the emission weighted centroid of the portion of the

image within the aperture. For the two body model, this is equivalent to the center

of mass. When the separation of the subclump and the main halo is more than Rap,

the aperture sits centered on the main halo. As the subclump enters the aperture,

the aperture center shifts to the center of mass of the pair. As a result, the merger

ending time t2 occurs when

( AM 5.41
r2 =(Rap- RAM) 1++ M (5.41)



The corresponding times tl,2 can be found by solving equation 5.25 for r 1,2 , then using

equation 5.26 to solve for tl,2 . The difference in these times is the duration of the

merger,

tfall = t2 - t. (5.42)

This determination of tfall is not very different from equation 5.40, especially for small

AM, but as it is more consistent with the infall model we will use it hereafter.

Our definition of tfall depends on the simple radius - mass relationship for the

subclump, equation 5.39. As mentioned in the discussion following that equation,

much of any error in tfall introduced by that simple relationship can be calibrated away

using a simulated merger. We choose the merger corresponding to the high power

excursion occurring near redshift z = 2.5. For this event, the model predicts an infall

time tfall = 0.39 Gyr. The full width at half maximum for the P2/Po peak, seen in

figure A-13, is about 0.13 Gyr. Henceforth then, we shall renormalize tfall by the factor

0.13/0.39 = 1/3. This is roughly equivalent to assuming that the subclump radius is

smaller than that given by equation 5.39 by the same factor. This is not surprising, as

the subclumps are expected to be centrally concentrated rather than uniform density,

as equation 5.39 assumes. A factor of three reduction in radius corresponds to a factor

of 33 = 27 increase in density, and in fact the subclump here has a density contrast

of about 10,000 at Ra•/3. While a more precise estimate of the infall time may

be obtained through more sophisticated modelling of the subclump structure, furher

accuracy is not required here. Below, when the power ratio estimates are computed,

we shall see that the factor of 1/3 normalization used here can be subsumed into

another normalizing factor required then.

Calculating the model prediction tfall for our simulated cluster, we find that the

infall time varies by less than a factor of two for fixed AM/M from redshift z = 3

to z = 1, and by a similarly small factor in the range 0.1 < (AM/M) < 1.0 at

fixed redshift. The infall times increase gradually with time, as the main cluster mass

also increases. This model prediction can be seen in table 5.1, which shows for each

redshift the main cluster mass M at that redshift and the infall time tfall for subclumps



z
3
2
1

M/M® tfall(AM/M = 0.1) tfall(AM/M = 1.0) tcross
3.2 x 1013 0.086 0.137 0.287
5.7 x 1013 0.115 0.181 0.326
1.3 x 1014 0.158 0.240 0.417

Table 5.1: Model predicted tfall for simulated cluster

tdyn
1.163
1.123
1.096

of mass 0.1M and 1.0M. This predicted trend is followed by the simulated cluster,

as is evident in figures A-13, A-14 and A-15. These show the gradual widening of

peaks in the power ratios, corresponding to increasing tfall, as time increases and the

cluster grows.

Our tfall can be compared to the estimates for substructure survival time used by

Richstone et al. (1992) and others. The dynamical time for a cluster is

tdyn = (Gp)- 1 /2 , (5.43)

and the crossing time is

tcross = /( va) , (5.44)

where ac is the velocity dispersion within the cluster.

These have been computed for the simulated cluster using the velocity dispersion

of the dark matter particles to compute the crossing time and using the mean mass

density within the aperture to compute the dynamical time. Values are given in

table 5.1. Again we see that the estimates of substructure survival time assumed by

Richstone et al. (1992) and Lacey & Cole (1993) are too high, at least as applied to

the survival time of high power ratios.

The crossing time tcross is the timescale for the subclump to cross the aperture.

But it never does that. For apertures of 0.5 Mpc and greater, the subclump typically

loses enough kinetic energy, by dynamical friction as well as by the drag force on

the gas, such that even if it doesn't merge with the main cluster immediately, it will

never recede out to the aperture radius again. And since the power ratios disappear

as the subclump approaches the center of the main cluster, the power ratios are only



high while the subclump passes through the aperture on infall. From this argument,

we can see that dividing the crossing times in half brings them into the same range

as tfall.

The dynamical time tdyn may be the appropriate survival time for a subclump

orbiting in the dense cluster environment, but it is much longer than the time required

for the infalling subclump to cross the aperture.

5.3 Power ratio prediction

Combining the merger rate and infall model, equations 5.23, 5.36 and 5.42 give

dP d2 P dT)

dAM dAMdT dt f (5.45)

which is the probability density for the power ratios to be high due to an imminent

merger with a subclump of mass AM.

The expectation value for the power ratios of a cluster of a specified mass can now

be computed if we add to our model an estimate of the power ratios as function of

the two merging masses. Since our model assumes spherical masses on a radial orbit,

we will concentrate on P2/P o.

According to equation 4.15,

P2 _ (a2 + b2) 1

Po a2  8R2p(ln Rap) 2  (5.46)

where a2 and b2 are given by equations 4.13. To facilitate comparison with Buote &

Xu (1996), we set the scale of the power ratios by choosing kiloparsecs as the units for

Rap. For two masses approaching along a line, we can orient our coordinate system

to eliminate b2, leaving

P 2  [fr<Rap E(r, O)r 2 cos 20 rdrd]2  1(

Po [frRap E(r, ) rdrd ] 2 8R[ln(Rap/lkpc)] 2 (5.47)



The simplest model we can take for the X-ray surface brightness E is to assume a

point mass with luminosity proportional to mass. Labelling the subclump mass AM

and the main cluster mass M, and the distance of each from aperture center as rl

and T2, respectively, we have

a2  Mr + AMr (5.48)
a2 - -1 2 (5.48)ao AM + M

Because the aperture is defined to be the center of emission, here it is the center of

mass, so Mr 1 = AMr 2, and

a2 _ M(AM/M) 2 + A M  2

ao M + AM ) r2  (5.49)

Because the power ratios peak when the subclump is just at the aperture radius, we

take r 2 = Rap. This yields

P2  (M(AM/M) 2 +AM) 2  1
Po M + AM 8[ln(Ra,/lkpc)]2 ' (5.50)

which we take as our estimate of the power ratio P2/Po as the subclump mass AM

falls through the aperture onto the main cluster mass M.

Although we included the factor of 8[ln(Rap/lkpc)]2 in the P2/Po estimate, we

expect that the point mass approximation used to estimate a2/ao is sufficiently inac-

curate that a further calibration step is necessary. Using the same merger event for

which we calibrated tfall, we find that the predicted log(P2 /Po) for this event, given

the mass of the cluster and subclump and the time of the merger, is -3.35, much larger

than the measured value of -4.46. This measurement is obtained from the projected

square of the dark matter density, as done by Buote & Xu (1996), as we will be com-

paring to their data below. This means that for this particular merger, the value of

P2/Po predicted by our model is almost 13 times larger than for the simulated event.

While it is hard to say how reasonable this factor is without more complex modelling

of the merger, we are not surprised that the predicted value is high compared to the

actual value. The matter distribution in each cluster compononent is of course not



that of a point mass, and a more smeared out matter distribution will give rise to a

smaller P2/Po. In addition, we have assumed in our model that the power ratios peak

when the subclump is exactly at the aperture edge. While this is true for a point

mass, an extended mass will not contribute fully to the power ratios until most of it

has passed within the aperture, i.e., until its center is somewhat within the aperture.

This means that a more sophisticated model should use r2 < Rap in equation 5.48,

resulting in a lower predicted P2/Po in better agreement with the simulation. In order

to account for this oversimplification of the merger model, we henceforth renormalize

the predicted P2/Po by dividing by 12.88, the exact value of the model overestimate.

Combined and integrated over, equations 5.45 and 5.50 give the expectation value

of P2/Po for a cluster of mass M:

(P2) = I M  dP P2 dAM. (5.51)

K ) d ¾ dAM . (5.51)-O/ fM dAM Po

The upper limit of integration is M, so that this integral only counts mergers inwhich

the subclump is less massive than the main cluster. This prevents double counting.

The factor f in the lower limit of the integral is the fractional mass of the smallest

subclump to include in the integral. In practice the value f = 0.01 was sufficient

for the integral to converge. Lower mass subclumps, while common, do not make a

significant contribution to the power ratios.

We compared this model prediction to our simulated cluster. At redshifts of 4,

3, 2.5, 2, and 1, we applied the DENMAX algorithm to the simulation outputs to

determine the main cluster mass at these epochs. For each, we evaluated equation

5.51 to determine the expected power ratio P2/Po. These values are plotted in figure

A-9. Of course, our single cluster is free to deviate from the mean cluster prediction,

but it is reassuring that the general trend of a slowly decreasing P2/Po with increasing

time (and cluster mass) is common to both the simulation and the model prediction.

Equation 5.51 gives the mean P2/Po for clusters of mass M. In order to determine

the mean P2/Po for the ensemble of clusters in a given cosmological model, we need

the cluster mass function. Equation 5.19 gives the probability for a mass point to



collapse into a mass M at time t. Multiplying by po/M then gives the differential

number density of collapse objects, i.e., the mass function,

dn (Mt)dM = Pexp - dM.ct (5.52)
dM (27r) 1/2 M a3(M) dM 2a2(M)

The ensemble mean of the log of the power ratio P2/Po is then given by

log (5.53)Pog (P 2  ensemble fM lg (( M', t)dM'

where the factor f in the upper integration limit should be set to about 100 for

convergence. The lower limit M is now the minimum mass cluster to include in the

power ratio averaging. In comparing to real data this would be the lower mass limit

of a mass limited cluster sample, if such a thing were possible.

Note that two components of the expression for the ensemble mean of the loga-

rithm of P2 /Po have been calibrated with our simulation. The merger timescale tfall

predicted by the infall of two point masses was rescaled by a factor of 1/3. This

factor enters equation 5.53 through the merger rate, given by equation 5.45. Then

the expression for the power ratio P2/Po for a merger of two given masses (equation

5.50) was rescaled by a factor of 1/12.88. Since these two expressions are multiplied

in the integrand for the ensemble average P2/Po, given by equation 5.53, they amount

to only a single free parameter.

5.4 Testing the predictions

We can compare these power ratio predictions to the mean power ratios presented by

Buote & Xu (1996). They performed large N-body simulations of several cosmological

models and extracted clusters from each. Projections of the square of the dark matter

density were constructed for each cluster, and the power ratios were computed from

those images. Each of their models was evolved in a 200h-' Mpc box, with the

same set of random phases in the initial conditions, from which they extracted the 39



Model Qm QA Ho as Miow log(P 2/Po)ensemble log(P 2/Po)BX

SCDM 1 0 50 1.00 3.61 x 1015 -6.09 ± 0.20 -5.38 ± 0.76
OCDM 0.35 0 70 0.79 6.35 x 1014 -6.03 ± 1.12 -5.93 ± 1.03
LCDM 0.35 0.65 70 0.83 7.17 x 1014 -6.13 + 1.10 -5.87 ± 0.83

Table 5.2: Buote & Xu (1996) simulation model parameters with measured and model
predicted P2/Po

largest clusters in each. Our comparison requires determining the model prediction

for the average P2/Po for the 39 largest clusters in each model. For this we must

first determine the lower limit M = Mow to use in equation 5.53. Since Buote &

Xu use their 39 largest clusters in a 200h - 1 Mpc box, we must do likewise for our

comparison. We determine Mlow by solving the equation

foo dn 39
d-M (M' to)dM' = (5.54)

IoW dM' (200h-1Mpc) 3 '

which is just the denominator in equation 5.53.

Table 5.2 gives the three models for which we compare our model predictions to

the simulation data of Buote & Xu (1996). The model parameters SQM, QA, Ho and

power spectrum normalization as are given for the "Standard" CDM model (SCDM),

an open CDM model (OCDM), and a low density flat model with cosmological con-

stant (LCDM). In each case the power spectra are given by Bardeen et al. (1986).

Also listed in the table is the mass of the least massive cluster in the comparison Mlow,

followed by the model predicted value and the simulated value for the mean of the dec-

imal logarithm of P2/PO, denoted log(P2/PO)ensemble and log(P 2/Po)BX, respectively.

The variances of these last two quantities are also given.

Most obvious in this comparison are the low predictions for the power ratios. The

under-prediction is most severe for the SCDM model, while the OCDM prediction

is fairly good. What are the possible causes of this under-prediction? One obvious

possibility is that our calibration event may have been atypical in some way. Recall

that we used a merger which occurred at z = 2.5, in which the main cluster of mass

4.7 x 1013M® merges with a subclump of approximately 1/3 of that mass. In separate



stages we calibrated first the subclump infall time tfall, then the predicted power ratio

P2/Po. Although this was done in two stages, the net result for the prediction of the

ensemble mean P2/Po is that there is only one free parameter, which is the product of

the two calibration factors described above. If the chosen calibration event occurred

faster than is typical of similar mergers then the calibration factor applied to tfall was

too small and should be increased. If the calibration event gave a measured P2/Po

which was lower than everage for such events, then the factor applied to P2/Po was

likewise too small. Either or both of these would cause the predicted power ratios to

be too low.

In order to investigate this possibility, we would like to have several more calibra-

tion points. Unfortunately this is not presently possible. The next candidate event

for use as a possible calibrator is the merger that occurs just after z = 2 (a = 0.34

in figures A-4, A-5 and A-6). However, as is evident in these figures, this is not as

well isolated an event as that at z = 2.5 (a = .28). This means that we can expect

that the measured P2/Po is a result of several nearly coincident mergers rather than

one larger event. Inspection of the positions and masses of clumps in the dark matter

particle distribution of the simulation confirms this. There are several small clumps,

each with about one tenth the mass of the central cluster, falling together at this time.

From this it is impossible to draw out the effect of a single subclump on the power

ratios. Since our model effectively treats this situation as a combination of many sim-

pler events, rather than a single multi-component merger, this event will not serve as

a reliable calibration point. Note also that almost all the other peaks in the power

ratios are much lower than that at z = 2.5. Since we expect the calibration to be

most accurate when the calibration event clearly involves two dominant components,

these lower power events will not serve. Finally, we choose not to use the merger

at z _ 5.5 (a _ 0.18) as the cluster mass at this time is only 2 x 1013M0 . This is

much smaller than the mass of the least massive cluster for which we are making the

comparisons in table 5.2. In fact, this is also true of the merger at z = 2.5 which we

used as our calibration event. The mass difference then between the calibration event

and the comparison events may account for some of the underestimate in the power



ratio predictions. Ideally we would have prefered to have many calibration merger

events with masses in the range for which we make our comparisons. Although this is

unavailable in our current simulation, this calibration data would be easily available

from gasless N-body simulations with lower mass and force resolution.

Another possible source of the under-predictions of P2/Po given by equation 5.53

is in the mass function, which we take from equation 5.52. Differences between

the theoretical and simulated mass functions could skew the predicted power ratios.

For example, if the predicted dn/dM is too high, then the lower mass limit Mlow

determined from equation 5.54 will be too high also. Because Po is large for massive

clusters, the mean P2 /Po at a given mass is a declining function of mass, so that

the most massive clusters have low power ratios. Using a high value for MIow then

excludes high power ratio clusters from the ensemble average. Also, if dn/dM as

predicted by equation 5.52 is too shallow at the high mass end, as compared to the

simulated clusters of Buote and Xu (1996), then the ensemble average in equation

5.53 will give too much weight to the most massive clusters. A too-shallow mass

function then will result in a too-low ensemble average P2/Po .

The predictions of the Press & Schechter (1974) mass function (equation 5.52)

have been tested against simulations, with generally good agreement (Efstathiou et

al. 1988, Efstathiou & Rees 1988, White, Efstathiou & Frenk 1993, Bond & Myers

1993). This mass function goes from a power law at low mass to an exponential cut-off

at high mass, with the transition mass M, more than an order of magnitude less than

the lowest mass cluster Mlow in our comparison. Most of the work done in studying

the mass function concentrates on the region from the low mass end to perhaps one

order of magnitude above M., which means the mass function has not been tested in

this regime. While the success of the predicted mass function in the low mass regime

is reassuring, its application in the high mass regime is still uncertain. As a result,

errors here could be partly to blame for our model's low power ratio estimates. While

errors in the normalization of the mass function may be significant, errors in its shape

can have only a small effect. We computed the expected value of P2 /Po for clusters

of mass Mlow for each cosmological model (equation 5.51) and found that this value



was already significantly less than the Buote & Xu average values. This means that

over the whole mass range of our comparison, Mlow and above, the expectation value

of P2/Po is low. While an overestimate of the mass function at the high mass end

may cause a significant underestimate of the power ratios, any additional effect due

to error in the shape of the high end of the mass function is small.

Another problem evident in the model predictions for P2/Po is that the predicted

values are much closer together than are those from the simulations, and the relative

order of the power ratios is different. I.e., for these cosmological models the ensemble

mean values of the power ratios span only a small range, and the OCDM model is

predicted to have the highest power instead of the SCDM model. By studying different

factors in the model prediction, we can determine at least part of the explanation for

the small range of predicted P2/Po over these three models.

One such factor is their power spectra, P(k), which are plotted versus wavenumber

k in figure A-21. The two low density models have nearly identical power spectra,

while the SCDM model has significantly higher power on cluster and lower mass

scales. We saw a manifestation of this in table 5.2, in which the mass Mlow, which

is basically the mass of the 39th largest cluster, is much larger for the high density

SCDM model than for the low density models. In other words, the SCDM model

produces more rich clusters at a given mass scale.

Most of the factors going into the power ratio prediction are functions of the power

spectrum through a2 , so these factors are quite similar for the OCDM and LCDM

models. One difference between these two, however, is in the age of the Universe. Note

the factor of 1/t in the expression (equation 5.45) for the merger rate. Now consider

realizations of the LCDM and OCDM models, using the same random numbers to

generate the phases in the initial density field. Since the power spectra are so similar,

the number of clusters and the number of mergers which take place from t = 0 to the

present will be about the same in both models. Thus the younger model has a higher

merger rate. This is the lit dependence. The age of the OCDM model is 11.1 x 109

years, and that of the LCDM model is 12.9 x 109 years. This age difference results

in the prediction for the ensemble average of the log of P2/Po being 0.07 lower for



LCDM than if the two model universes were the same age. This is the dominant

factor in the difference between the two low density models.

In the Buote & Xu data, the OCDM and LCDM clusters show similar power

ratios, while the SCDM power ratios are higher. The reason this is not the case for

the power ratio predictions is primarily due to the da2/dM term in the merger rate

equation (5.45). This term is lower for SCDM than for the open models by a factor

of about 4. We can see the reason for this by considering du2 /dM for a power law

model, for which
da2  3 + n r2

dM n M ' (5.55)

where n is the power law index for the power spectrum P(k) oc kn . Although the

effective power law index on cluster scales differs for these three models, by far the

greater difference is in the mass scales. Mlow for the SCDM model is 5-6 times larger

than for the low density models. a2 for the SCDM model is larger than for the others,

but not by enough to make up for the difference in the mass scales. Another factor of

two difference between the SCDM predictions and those for the other models comes
from the a /O2 (2 -_2) term.

We should also note that although the Press & Schechter (1974) mass function has

been tested and found generally successful, we are testing it severely. By focusing on

rich clusters, we deal only with the high mass end of the mass function, where it drops

off exponentially with mass. Tests of the mass function using N-body simulations have

not focused on this regime, due to the small numbers of such rare events. In addition,

several authors (Bond et al. 1991; Efstathiou & Rees 1988; Carlberg & Couchman

1989; Bond & Myers 1993) have investigated the effects of using different window

functions, different values for the critical density for collapse 6c, and even different

methods for identifying collapsed objects in the simulations they use in their tests. It

may be that such a modification could improve the accuracy of the high mass cutoff

in the mass function. As a crude test of such a possibility, we tried adjusting the

collapse density 5c by 20% in either direction. This resulted in only a 1% change in

the predicted power ratio.



Extensions to the Press & Schechter formalism have also been tested. Specifically,

Lacey & Cole (1994) used N-body simulations of scale free models to test their merger

rate formula (equation 5.45). Kauffmann & White (1993) developed a Monte Carlo

approach for constructing merger histories of clusters and compared the results to a

CDM simulation. Both of these groups report good agreement. Because we use their

formula for the merger rate, the Lacey & Cole tests are most relevant to our work.

Unfortunately, they did not explicitly test CDM models, but instead tested scale free

models and argued that the good agreement found there should hold for CDM models

as well. We also expect a similar level of accuracy for CDM models as for scale free

models, as our tests rely only on a relatively narrow range of mass scales, i.e., those

relevant to rich clusters.

Other factors which may share the blame for the SCDM predictions being too low

relative to the other two models include those factors discussed above, such as the

accuracy of the high end of the mass function. Also, the value of P2/Po for a given

merging pair (equation 5.50) may need to include a more complicated dependence

on the masses or on the background density. Similarly, the simple two point mass

solution may need to be modified to include a more complicated dependence on the

masses.

It seems that the cosmological model discriminating power of the power ratios is

not realized by our simple analytic model. Our model and the simulations of Buote

& Xu (1996) are consistent in their predictions for the dependence of the power ratios

on the cosmological constant A. Both show clearly that the mean power ratios are

not sensitive to A. In our predictions for sensitivity to Q, however, we and Buote &

Xu strongly disagree. Figure A-20 shows the very slight dependence we find on both

A and Q. In this figure we compare the model predictions for P2/Po as a function

of Q for open and flat cosmological models. All of these models are normalized to

as = 0.6, so that all have similar cluster abundances. The variation in mean power

ratio predictions with Q is much less than the typical variance, as given for the model

and the simulations of Buote & Xu in table 5.2.

Why do Buote and Xu find an Q dependence of a factor of three between SCDM



and the low density models? We have isolated many of the factors which could

contribute to such a dependence, and we have found none related to the merger rate.

The subclump infall time varies by at most a factor of two between small and large

infall masses for a given model and cluster mass, and varies by much less across models

for reasonable cluster masses. Even if the two body orbit is a poor approximation

to subclump infall, it seems unlikely that SCDM subclumps take three times as long

as OCDM or LCDM subclumps to fall onto the cluster. The likely culprit, then, is

in the assumption of point masses in the estimate of P2/Po for a given merger event

(equation 5.50). Perhaps a more realistic mass distribution would illuminate an Q

dependence.

To test this hypothesis, we computed the integrals for a2 and ao (equation 4.12)

while modelling the subclump halo as having constant surface density within the ra-

dius RAM. The integration is over the area in which the image aperture and subclump

disk overlap.

The following definitions are useful.

A(R, r, d) = 2R20(R, r, d) - R 2 COs O(R, r, d) sin O(R, r, d) (5.56)

d2 + R 2  r2

cos O(R, r, d) = d R (5.57)
2dR

A(R, r, d) + A(r, R, d) if d2 > r 2 + R 2

7r 2 + A(R, r, d) - A(r, R, d) if d2 < r 2 + R 2

Fo(R, r,d) = (5.58)
7rr 2  if d+ r < R

0 if d> R+r

F (R, r, d) R2-d2r 2 4d2r2 - (R2 -- d2 - r2) 2

4d (5.59)
+r2d [arcsin (R2-d2-r2) ±+ 2]

F2(R, r, d) = dx FI (R, r, d) (5.60)

Utilizing these definitions, and modelling the subclump of mass AM as a uniform



disk of radius RaM and surface density AM/(1rR2M),

AM
ao = M + -- Fo(Rap, RAM, d 2) (5.61)

AM
a2  = Md ± AM
a2 Md1 - 2• F2(Rap, RAM, d2) (5.62)

Here d1 ,2 are the distances from the image center to the centers of the main cluster

and subclump, respectively, and

l AM F (Rap, RaM, d2 )di M -RM (5.63)

Whenever the full disk of the subclump is entirely within the image aperture,

the a2 and ao integrals reduce to to the point mass case. However, if the subclump

disk overlaps the aperture edge, so that only part of the subclump is within the

aperture, then the contribution to both a2 and ao is reduced. We calculate P2/Po as

a function of the subclump to cluster distance for individual mergers, and maximize

this function. We then use this value for the peak P2/Po, instead of equation 5.50, in

computing the model ensemble averages (equation 5.53).

The effect of using a finite disk model for the subclump, as opposed to a point

mass, is to reduce the power ratio P2 /Po. Both a2 and ao decrease as the radius of

the fixed mass (or fixed luminosity) subclump increases, since less of the subclump

will fall within the image aperture. But as the subclump size increases, the distance

from the image center for which P2/Po is maximum decreases. The next effect is to

decrease P2/Po with increasing subclump radius. Since SCDM clusters and subclumps

are more massive than in the low density models, their larger radii RAM lead to even

smaller power ratios than those predicted by the point mass model and listed in table

5.2.

As a next level of refinement of our model, we apply the findings of Navarro, Frenk

& White (1996), who find evidence in N-body dark matter halos of a universal density

profile. This profile,

Pcrit (r/r)(1 r/r) (5.64)
Pcrit (r/rs)(1 + r/rs)2 I



Model c log(P2/ Po)ensemble
SCDM 7.61 -5.79
OCDM 5.87 -5.64
LCDM 5.04 -5.77

Table 5.3: Predicted ensemble averages of P2/Po, based on uniform disk model rather
than point mass model.

is universal in the scaled coordinates r/r, and P/P,,it. The scale radius rs = RaM/c,

where the concentration c is related to the core density 6core by

200 c3

6 core =(5.65)3 [ln(1 + c) - c/(1 + c)] (5.65)

The cosmological dependence arises through the concentration factor c, which is sen-

sitive to the mean density at a suitably defined formation time for the halo. The

details of this dependence are described in Navarro et al (1996). These authors also

made available a FORTRAN subroutine which computes c for a given mass halo in a

given cosmological model.

Utilizing this code, we determined the concentration factor appropriate for a clus-

ter of mass Mlow in each of our models. Table 5.3 lists these concentration factors,

as well as the ensemble average P2/Po, based on modelling the infalling subclumps

as constant surface density disks of radius RaM/c. Again, we see that the predicted

power ratios do not discrmininate between cosmological models. Here the power ratio

predictions are higher than for the point mass model due to the new calibration of

P2/Po (using the same calibration event as before). For the SCDM clusters, RAM is

larger, but the concentration c is also larger. The competing effects largely cancel,

resulting again in a power ratio prediction which is not higher for SCDM than for the

low density models.

A more realistic model for the subclump and cluster halos, assuming temporarily

that we restrict ourselves to cylindrically symmetric models, will lie somewhere be-

tween the extremes of the point mass model and the uniform surface density model,

and does not seem to hold any promise for explaining our difference with Buote &



Xu on the SCDM power ratios.

However, one effect which our model in its present form neglects entirely is the

possible ellipticity of the cluster and subclump. Buote & Tsai (1995) compute power

ratios for spherical and elliptical isothermal 0 model clusters and find that P2/Po has

a strong ellipticity dependence. Table 1 of their paper shows log(P2/Po) for single

elliptical clusters varying from 0 at c = 0 to -5.40 at E = 0.3 to -4.79 at e = 0.6,

where E is the model cluster's (constant) ellipticity.

If cluster ellipticity is sensitive to cosmology, then adding such a cosmology de-

pendent ellipticity to our model's clusters may lead to higher power ratio predictions

for SCDM. We have some indication that this is the case from work by Splinter et al.

(1996), who find that "mean ellipticity increases strongly with increasing n" in their

studies of N-body clusters. Specifically, they find that ellipticity has no Q dependence

at fixed n, and a strong dependence on n at fixed Q. They argue that previous au-

thors, particularly de Theije, et al (1995), who claim to have found an Q dependence

were misled when they varied Q and n simultaneously, as with a CDM type spectrum.

Figure A-21 shows the power spectra for the SCDM, OCDM and LCDM models,

along with marks indicating the scale on which the relevant effective slope neff -

d In P/d In k should be measured. The effective slope for clusters of mass Mlow is about

zero for the SCDM model, and is about -1/2 for the other two models. According

to the results of Splinter et al (1996), this means the mean cluster ellipticities will

be higher for the SCDM model. According to Buote & Tsai (1995), these higher

ellipticities will produce higher power ratios.

Clearly the issue of ellipticity as related to power ratios must be considered in

future theoretical work. Adding mean cluster ellipticities to our model is a logical

next step. At this point, though, we can conclude that any cosmological signal present

in the mean power ratios is likely due to the cosmological signal present in the shapes

of individual clusters (Splinter et al. 1996, Crone et al. 1994, Navarro et al. 1996a,b).

Our model, which takes into account possible cosmological signal in the interaction

between cluster and subclump, finds no such signal. We conclude that merger rates,

as probed by the power ratios, are not an effective tool for constraining cosmological



parameters.

Our model, based on various oversimplifications such as spherical collapse and

two body orbits, and with only one free parameter to normalize the predictions,

is not sophisticated enough to predict the power ratio substructure statistic found

for simulated clusters. However, it has the convenient feature of being composed

of separable parts which can be studied and improved individually. The Press &

Schechter formalism, which gives us the mass function and merger rate, has already

been a subject of considerable study. The infall model is very simple, with much

room for added sophistication, and can be studied as a small problem and improved

in its own right. The estimate of the power ratio P2/Po for individual merger events

can also be improved by better modelling of the halos. This modelling should include

cluster ellipticity, which may have a stronger effect on the ensemble mean P2/Po than

do mergers.

We find no cosmological signature in the power ratios which can be traced to halo

interactions, and no likely explanation for the lack of such a signal. Any signal which

is present is likely due not to interactions, but to the cosmological dependence of

individual cluster density profiles.



Chapter 6

Conclusions

We have developed a hybrid N-body/gas code based on the p3 M2 code of Bertschinger

& Gelb (1991) and the KRONOS code of Bryan et al. (1995). This code uses the

Piecewise Parabolic Method (Collella & Woodward 1984) to solve Euler's equations

for the gas on a grid within a cosmological volume, and a nested variant of the

Particle-Particle-Particle-Mesh algorithm (Hockney & Eastwood 1981) to evolve the

gravity field and to integrate the trajectories of dark matter particles in an optionally

larger volume. The advantage of this approach is that fast methods are used to evolve

the gravity field in a large cosmological volume, while the gas dynamics can be solved

at high resolution only in a region of interest. This code has been implemented on

serial, shared memory parallel, and distributed memory parallel computers, and used

to study the formation of an X-ray emitting galaxy cluster.

Such a cluster can be expected to have an equilibrium configuration which is

roughly spherical, with density, temperature and luminosity centrally peaked. Whether

or not clusters have time to reach equilibrium between mergers is an important ob-

servational question. The presence of substructure in a cluster is a signature of recent

merger activity. The prevalence of substructure in a fair sample of clusters is an

indication of the current merger frequency, which in turn is a probe of the mean mass

density Q as well as other cosmological model parameters.

We have chosen a statistic for measuring substructure in clusters which is well

suited to application to our simulated cluster. Cluster simulations are least reliable



in the cluster cores, where high resolution and the physics of gas cooling are required.

The power ratio substructure statistic is more sensitive to substructure on the scale

of the observing aperture than in the core. We measure the power ratios of the

evolving cluster and interpret the trajectories in power ratio space in terms of the

progression of merger events. We determine that power ratios sourced by the X-ray

surface brightness are biased low with respect to those sourced by the square of the

gas density, which in turn is biased low with respect to those sourced by the square

of the dark matter density. The latter bias is present in the results of Buote & Xu

(1996), but the effect is small.

Observation of merging events in this simulation (and others) reveal that most

mergers occur along radial orbits. This fact leads us to propose a simple model for

the mergers between clusters and subclumps. This model combines the seemingly

contradictory ideas of spherical collapse and two body orbits. The spherical collapse

model has been shown, in the contexts tested, to reproduce well the merger rate

observed in simulations. However, it is clear from studying any hierarchical clustering

simulation that halo collapse and formation is anything but spherical. While some

continuous, roughly spherical accretion may occur on a cluster, the main contribution

to its increasing mass is due to mergers with significant subclumps. Thus, while the

spherical collapse model may predict the merger rate, a two body orbit resembles

more closely what actually occurs in a merger.

Combining the merger rate derived from spherical collapse with the infall model

derived from the two body orbit, and adding an estimate of the peak of the power

ratio P2/Po as a function of the merging masses, we derive an expression for the

average, over an ensemble of rich clusters, of the logarithm of the mean P2/Po. This

expression reproduces reasonably well the mean P2/Po obtained by Buote & Xu (1996)

for their simulations of low density CDM models, but fails in the case of high density

"Standard" CDM.

We investigate possible sources for this discrepancy, and find none related to the

interactions between the cluster and subclumps falling onto it. We argue that the

likely cause of the discrepancy is our model's lack of consideration of cluster ellipticity.



Although it is presently simple and inaccurate in detail, our analytic power ratio

model holds some promise as a tool for studying the cosmological signatures in galaxy

cluster structures. The model elements are separable and can be tested and improved

individually. The one free parameter in the model was set by considering separate

parts of the model, the merger infall time tfall and the peak of the power ratio P2/Po

for a merger between components of given masses. Still, the combined model did pro-

duce predictions that were in good agreement with N-body reults for the low density

cosmological models. And further improvement is to be expected. The infall model

can be improved by studying merger events in large N-body simulations. Significantly

less than the state of the art in computers and simulation methods is required here,

as very large particle numbers and fine force resolution are not required. These fea-

tures are necessary when internal features of dark matter halos, such as core radii,

are studied. They are not necessary when only the first interaction of a merging pair

is required. Finally, the power ratio prediction can be improved by replacing the

uniform spheres or point masses in the model with realistic halo profiles, using, for

example, the "universal" halo profile presented by Navarro et al. (1995, 1996). These

are all tasks for the near future.

However, if cluster ellipticity plays a significant role in the power ratios, as we

argue above, then the relationship between mergers and power ratios may be cos-

mologically irrelevant. In that case, the high power ratio events corresponding to

mergers are not cosmologically sensitive, while the lower power ratios corresponding

to unperturbed elliptical halos are. This would seem to suggest using power ratios or

some other measure of cluster ellipticity as a cosmological probe. This seems difficult,

however, as the range of effective power spectral slopes, on cluster scales, for different

models, is small. In addition, observational uncertainty in the cluster mass translates

to uncertainty in the scale at which the spectral slope is being probed. Even a suc-

cessful measurement of the spectral slope on cluster scales adds only one data point

to our knowledge of the initial power spectrum, at a time when other methods, such

as CMB anisotropy measurements, promise more.

Our results are specific to X-ray observations and power ratios. The question of



cosmological signatures in optical cluster data is still an open question. Nevertheless,

we agree with the conclusion of Splinter et al. (1996) that cluster morphology is a

less powerful probe of cosmology than has been hoped.



Appendix A

Computational details

Here are described many of the supplemental codes used, as well as the many detailed

changes to the main P8M3 code.

A.1 Initial Conditions

Before the P8M3 code can be run initial conditions must first be generated. For

this purpose I used the COSMICS package of Bertschinger (1995). COSMICS uses

separate codes for generating the power spectrum of initial density perturbations

and for generating particular realizations. This second code, GRAFIC, produces

initial displacements and velocities for dark matter particles whose positions at infinite

redshift are on a uniform three dimensional grid. As I required 100 kpc resolution in

the center of a 51.2 Mpc volume, it was necessary to produce full initial conditions

on a 5123 grid. As originally written, GRAFIC requires storage for 12.5 grids of

this size; six for displacement and its Fourier transform, three for velocity, two for

density and its Fourier transform, one for the constraint matrix, and and one half for

the power in each mode 1. This gives a total memory requirement of 6.7 Gigabytes!

Much of this memory usage is unnecessary and was included originally for simplicity

and slight speed advantages, and was easily eliminated. Four grids were removed by

1The array containing the power in each Fourier mode is real, and hence requires half the storage
of the complex Fourier space arrays



storing the complex Fourier transform arrays in the same space as the corresponding

real arrays. The three displacement grids were also removed, as they can be easily

computed later from the velocity field. Further memory savings were bought at the

expense of CPU time by running the modified GRAFIC code four times, once for the

density and each of the three coordinate velocities, for a further reduction in memory

of three grids. Rather than running the complete code each time, intermediate results

were written on the first run so that the next three could be restarted from that point

in the calculation. The half gigabyte of storage for the power array was also saved at

CPU expense by calculating the power each of the four times it was needed, rather

than saving it.

The only point in the GRAFIC computation where two large grids is required is

the convolution of the density field with the constraint field. To save more storage,

the constraint field was written to disk and read in small portions as needed. This

brought the total storage requirement down to just slightly more than one large grid,

or 512 Megabytes. This storage was available on a DEC Alpha workstation, although

most of it was in the paging space. Here we encountered another roadblock when

the GRAFIC code attempted to perform the Fast Fourier Transform (FFT). The

transform on the third dimension requires striding through the 5123 array in steps of

5122, resulting in the machine spending all its time paging data. This problem was

addressed by writing a transpose operation to transpose the first and third dimensions.

This transpose was performed on one 1283 block of the large three dimensional array

at a time, so that the supplemental memory required was only an extra 1.5%.

The result of all these manipulations was to produce 5123 grids of density and

velocity. Each of the velocity fields was converted to position via the Zel'dovich

approximation by a separate code.

This is much more data than necessary for a simulation of a single cluster. The

high resolution is only needed in the center of the volume, where the cluster will

form. Far from the cluster the mass field can be represented by fewer, more massive

particles. To complete the preparation of the particle initial conditions, particles

far from the center of the simulation volume are combined. Specifically, the initial



particle spacing in the central 13 Mpc cube is 100 kpc, yielding particles of masses of

4.7 x 107M®. The surrounding 4 Mpc has twice the particle spacing and eight times

the mass. Two more layers of 6.4 and 7.2 Mpc each have double the spacing and

eight times the mass of the previous layer. These heavy particles represent the large

scale mass distribution far from the developing cluster. The result is a total of just

over six million dark matter particles.

The central 1003 points in the 5123 initial conditions are used to generate the initial

conditions for the gas. The gas density is set proportional to the total density, the

gas velocity is set equal to the particle velocity, and these are read by the KRONOS

portion of the P8M3 code, which sets the gas temperature assuming spatially constant

entropy and a mean gas temperature appropriate to the initial redshift.

A.2 P8M3

Constructing the P8M3 code from P3M2 and KRONOS required the conceptual

changes described in chapter 2 as well as other modifications made for the sake of effi-

ciency. Those changes made to the message passing version of the code are described

here.

Due to the highly clustered nature of the problem, even initially, it was apparent

immediately that the gravity code efficiency could be increased by increasing the size

of the PM grid, thus reducing the amount of work performed by PP and the adap-

tive fine grids. Because the PM calculation is the most memory intensive portion

of the code, certain modifications were made to minimize memory usage. The real

and Fourier space density and force arrays, originally stored separately, were com-

bined. Since each component of the force array is the convolution of the density with

a Green's function, density and force are usually stored separately. One code modifi-

cation was to have the code attempt to allocate separate storage for these two large

arrays. If the requisite storage was unavailable, these were combined by storing the

Fourier transformed density on disk during the force calculations. The time required

for this disk I/O was no more than a few percent of the computation time.



Another memory savings was achieved in the FFT routine. Because the spatial

volume of the simulation was partitioned among processors as slabs in the z coordinate

direction, the FFT along the x and y dimensions could be performed independently

on each processor. The z dimension FFT was enabled by first transposing the y and z

dimensions. As originally written the transpose was capable of handling rectangular

non-cubic grids. The price of this generality was that a temporary array equal in size

to the full array had to be allocated to receive the transposed array sections from the

other processors. By accepting the restriction that the y and z coordinate axes were

the same length I wrote another transpose which performed paired send and receive

operations between pairs of processors. The temporary storage required was only as

large as the largest of these chunks, which was less than one tenth of the previous

temporary storage requirement.

Even with these memory savings allowing for the largest possible PM grid, the

computation was still dominated by the short range force correction. The primary

cost of the fine mesh PM is in the FFTs, and hence is fixed for each chaining mesh

cell. For sufficiently densely populated cells, the sub-PP computation dominates the

fine mesh PM. Hence, an added level of fine mesh was added to the code. Thus, if a

cell is sparsely populated the short range force correction will be performed by the PP

subroutine. Cells above a given threshold in number density (here, 1500) are handled

by a fine mesh PM grid of size 483, followed by sub-PP. A second, higher threshold

(here, 3000) determines which cells use a 963 fine mesh grid.

Computational load balancing is also affected by the high degree of clustering

in the simulation. The P3M2 code load balances the calculation by adjusting the

widths in the z direction of the slabs assigned to each processor, based on the time

spent in computation on the processor. Because the clustering is strong, the PP

and adaptive mesh portions of the gravity code dominate the CPU time. In the

center of the volume where most of the dark particles and all of the gas reside, this

load balancing scheme shrinks domains, enlarging those domains far from the cluster.

However there is a minimum limit on the width of a domain imposed by the width

of the cells used by the PP calculation. This limit is three PM grid spacings. There



is also an upper limit imposed by memory constraints. As the clustering increases

during the simulation, this load balancing scheme begins to break down when these

limits are enforced. Then the narrow domains in the center of the volume take more

time than the wider domains, but cannot shrink further due to the minimum width

limit. The wider domains sit idle while the narrow domains compute pair forces in

PP. Due to the communication in the transpose, the processors are synchronized in

the PM routine, but are unsynchronized through the adaptive mesh and PP routines.

The effect of the load imbalance is that some processors finish PP before others.

Two code modifications were made to alleviate this problem. First, the restriction

on the minimum domain width was removed. The restriction existed so that each

domain would need to communicate with only its next door neighbor in order to locate

the particles for which the short range force correction was required. Removing the

restriction involved providing for each processor to be able to communicate with

processors which are 3 domains away.

The second modification to remedy this problem was to develop a finer level of

load balancing. When a processor finishes with the short range force corrections (PP

and fine mesh PM) on its own particles, it sends a message to all others offering

help. Those processors which have yet to finish their short range force calculations

check for such messages as they loop over chaining mesh cells 2. Estimating the work

required for each chaining mesh cell by the product of the number of particles in the

cell and the number of particles in neighbor cells, this processor checks for messages

offering help whenever the time required to do the work is great enough to justify the

communication expense of sending it to another processor. When a message offering

help is received, the receiving process replies in order to establish a commitment by

the offering process. This handshaking is required to ensure that more than one

process at a time does not accept help from the same offering processor. Then the

processor requesting help sends the appropriate data (the number of particles in the

2The neighbor search required for the pair force calculation is facilitated by dividing the domain
into chaining mesh cells, each 2.78 PM grid spacings in width. The short range force subroutine
loops over chaining mesh cells, searching the central cell and its neighbors for near particle pairs.



central chaining mesh cell, the number in the central and neighbor cells, particle lists

of position, mass, and particle index) to the helping processor, which computes the

pair forces. Meanwhile the processor which requested the help continues to the next

chaining mesh cell, periodically checking to see if the results have been returned. Each

processor knows that all processors are finished when it has received an offer of help

from each. Of course, if no offer of help message has been posted when a processor

checks for it, that processor must perform the work itself.

This added level of load balancing worked well, until the simulation reached a

new bottleneck due to even stronger clustering. The clustering became so strong that

the short range force calculation for one the few chaining mesh cells at the cluster's

center took half or more of the total short range force calculation time. This left

one unlucky processor working on the cluster center all by itself even after other

processors were finished. The remedy for this problem was to loop over the chaining

mesh cells not in the naive order, but instead in decreasing order of the amount of

work, estimated by the number of particles in the cell. Then a a "high priority"

request for help message was added to the scheme described above. Due to the new

ordering of chaining mesh cells, the densest are tackled first. If a cell is extremely

densely populated, the processor which owns it send a "high priority" request for

help, then waits whether an offer of help is present or not. Because the processors

whose domains are far from the cluster are lightly loaded, they finish their own work

in a few seconds, and then accept the "high priority" work from the cluster center.

This ensures that the processor whose domain includes the cluster center is able to

farm out a significant fraction of its workload right away.

As before, this improvement was sufficient until the clustering progressed even

further, to the point that a single, extremely dense chaining mesh cell would require

more CPU time to perform the sub-PP computation than would all the other chaining

mesh cells in that domain combined. Even with the "high priority" help described

above ensuring that this cell's short range force calculation was farmed out to a lightly

loaded processor, this situation resulted in processors sitting idle while the single most

dense chaining mesh cell was still being handled. The remedy was a third level of



fine mesh refinement. Chaining mesh cells populated with more than 30000 particles

used a fine mesh PM grid of size 1923, followed by sub-PP.

In order to generate the Green's function required for the fine meshes, an FFT

three times larger in each dimension must be performed. This extra size is the buffer-

ing required to generate an anti-aliasing Green's function appropriate for the isolated

(non-periodic) boundary conditions on the chaining mesh cell (see Hockney & East-

wood, 1981). For the two smaller fine mesh sizes (483 and 963), the memory and CPU

cost of computing the Green's function is sufficiently small that each processor per-

forms the calculation. However, the memory requirement for generating the largest

fine mesh Green's function ((192 * 3)3 is about 750 Mbytes, well beyond the amount

available on most processors of the IBM SP2 on which the simulation was performed.

Therefore this Green's function was generated separately on an SP2 node with 1024

Mbytes of memory and stored. This Green's function was read from disk as needed

by the processors during the simulation.
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Figure A-i: Data motion from gas grid structure to particle list structure.
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Figure A-2: Basic P8M3 code structure.
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Figure A-3: Emission weighted centroid shift versus expansion factor for the x - y
projection of the cluster.
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Figure A-4: Trajectory followed by the x - y projection of the cluster in the P2/Po -
P4 /Po plane.
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Figure A-5: Trajectory followed by the y - z projection of the cluster in the P2/Po -
P4/Po plane.

-10

-9 -8 -7 -6
Iog(P2/PO)

Figure A-6: Trajectory followed by the z - x projection of the cluster in the P2/Po -
P4/Po plane.
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Figure A-7: Combined trajectories for 3 orthogonal projections of the cluster in the
P2/Po - P4/Po plane.
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Figure A-8: Power ratios P2/Po (diamonds) and P4/Po (crosses) versus expansion
factor for the x - y projection, near the high power excursion at z • 2.5.
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Figure A-9: Power
factor for the x - y
redshifts 4, 3, 2.5, 2

ratios P2/Po (diamonds) and P4/Po (crosses) versus expansion
projection. Also plotted are the predictions of equation 5.51 at
and 1, connected by the dotted line.
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Figure A-10: Power ratios P2/Po (diamonds) and P4/
factor for the y - z projection.
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Figure A-11: Power ratios P2/PO (diamonds) and P4/Po (crosses) versus expansion
factor for the z - x projection.
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Figure A-12: X-ray contours during a merger sequence. Contours are spaced by
factors of ten, with the highest contour at 1/10 the peak value. Each panel is a
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timespan of 0.3 Gyr. This is Panel A.



Figure A-12: Panel B.



Figure A-12: Panel C.
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Figure A-12: Panel D.
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Figure A-13: Power ratios P2/Po (diamonds) and P4 /Po (crosses) versus time for the
x - y projection.
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Figure A-14: Power ratios P2/Po (diamonds) and P4/Po (crosses) versus time for the
y - z projection.
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Figure A-15: Power ratios P2/Po (diamonds) and P4/PO (crosses) versus time for the
z - x projection.
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Figure A-16: Occupation probabability in the P2/P 4 plane. Countours are at 1, 10,
20 and 30. The cluster spends a factor of 30 more time near the 30 contour than near
the 1 contour. The region outside the level 1 contour is effectively never occupied.
Points are for the Buote & Tsai (1996) Rosat clusters.
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Figure A-17: Power ratio trajectory computed for the X-ray surface brightness (dia-
monds) and under the isothermal assumption (crosses).
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Figure A-18: Spherically averaged gas temperature profile.
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Figure A-20: Dependence of predicted mean power ratio P2/Po
2, for both open and flat models with cosmological constant.
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Figure A-21: Power spectra of initial density fluctuations P(k) plotted vs. wavenum-
ber k for the SCDM (diamonds), OCDM (crosses), and LCDM (squares) models.
The vertical marks indicate the scale k = 1/RTH for the halo of mass M1ow, where
Mlow = 4/3rR~Hpi. From left, these marks correspond to SCDM, LCDM and OCDM.


