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Abstract
The research conducted in this thesis is part of an overall effort to develop a retinal pros-
thetic for restoring vision to subjects with diseases of the photoreceptors. Here we develop
signal processing and modelling schemes verifying that the prosthetic device is working
as expected, producing vision-type signals in the visual cortex in the form of evoked
potentials. Efforts concentrate primarily in two areas: (1) reducing the number of cortical
recordings necessary for obtaining accurate estimates of the evoked potential, and (2)
modelling the recorded waveforms to further aid our understanding of the evoked
response.

Three methods are used to reduce the number of recordings necessary for accurate estima-
tion of the evoked response. These include ideal bandpass filtering designed to remove
those frequency components of the noise which do not overlap frequency components of
the signal, Weiner-type filtering designed to produce the best mean-square fit between the
filter output and the evoked response, and active noise cancellation designed to adaptively
subtract a filtered reference noise signal from the cortical recording such that an evoked
response estimate is produced. The success of these methods is based on statistical charac-
teristics of mean waveform features, and in the case of active noise cancellation it is also
measured in terms of normalized mean-squared error of waveforms. The mean waveforms
are formed from randomly chosen individual waveforms, and the features chosen are
dependent on characteristics of waveform "size". Ideal bandpass filtering produces a mod-
erate improvement over waveform averaging, although no consistent set of filter parame-
ters is best over all experimental conditions and data sets. Weiner-type filtering
consistently produces improvements over averaging and ideal bandpass filtering for all but
the smallest amplitude data set. Active noise cancellation produces improvements over the
other methods for the largest stimulus levels, but produces mixed results for the other data
sets. Active noise cancellation performs consistenly well in terms of normalized mean-
squared error between individual waveforms and the evoked potential estimate for all data
sets and experimental conditions.

An alternate model is put forth and verified which hypothesizes that the recorded wave-
forms consist of the sum of a random variable ampltiude scale factor multiplying a deter-
ministic evoked potential and additive noise. This model is verified over a time window of
20-40 ms for all data sets.
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1. Introduction
1.1 Project Overview
1.1.1 Visual System Description

The mammalian visual system consists of many biological subsystems each per-
forming different biological signal processing functions. After incident light passes
through the lens and vitreous of the eye, it then travels through several retinal cellular lay-
ers essentially unchanged until it reaches the photoreceptors (rods and cones) in the outer-
most part of the retina where it is converted to an electrical/chemical signal. From the
photoreceptors the signal then is processed biologically in the intermediary retinal cellular
layers until it finally reaches the innermost layer of the retina where the ganglion cells are
located. From the ganglion cells the signal then travels along the optic nerve, through the
optic chiasm and the lateral geniculate nucleus until eventually arriving at the visual cor-
tex of the brain where the signal is measured using surface cortical electrodes.

Numerous causes of blindness such as Macular Degeneration and Retinitis Pig-
mentosa in mammals are attributed to a loss of photoreceptor cells only, where the other
cellular layers remain essentially intact and functional [22]. The retinal implant project
uses a silicon based microelectrode implanted on the surface of the retina to directly stim-
ulate the ganglion cells with a current source, circumventing the damaged photoreceptors
and the intermediary retinal cellular layers. Since we desire a cortical response which is
equivalent to the response due to normal vision, we require the recording of cortical
responses to verify that the implant is working as expected. The cortical evoked potentials
are very small in amplitude with respect to background biological noise [30]. The most
commonly encountered biological noise comes from myogenic electrical activity, EKG,
breathing, and background EEG [2]. This unwanted noise must be reduced in order to
improve the measurement of the evoked response. This biological noise, and any other
noise which is picked up by recording electrodes is generally assumed in the literature to
be a stochastic process which is additive to the desired response signal, and the response
signal is assumed to be either a deterministic or stochastic process [5, 10, 14, 15, 24]. The
importance of which model is used to characterize the signal and noise is discussed below.

1.1.2 Retinal Implant Chip Description
The current version of the retinal implant electrode is a flexible multi-electrode

array which is fabricated using integrated circuit technology. It consists of 24 gold elec-
trodes for current stimulation and a single open circuit electrode, all of which are in a
square array. The electrodes are connected to contact pads via gold leads. The electrodes,
gold leads and contact pads are sandwiched between two layers of polyimide which passi-
vates the device and makes the device flexible so that it can conform to the shape of the
retina [19]. Each electrode is driven by a biphasic current source which uses the stimula-
tion waveform described below in Figure 1.1. Note that the positive and negative ampli-
tudes Aa and Ab respectively are related to the positive and negative durations Ta and
Tb respectively through the relation IAaTaI = IAbTb" .All stimulation currents are here-
after defined by the magnitude of a single number Ab passing through a single electrode
on the array. Recording was done at 1 Hz rate, with the electrode array in monopolar con-
figuration with the rabbit ear as the return electrode. The sampling rate used was 2 KHz.



Figure 1.1 Schematic Diagram of Biphasic Stimulation Current

1.2 Evoked Potentials Background
1.2.1 Types of Evoked Potentials

Numerous types of evoked responses are routinely recorded by medical profes-
sionals for diagnosing clinical disorders, including electrical evoked potentials (EEP's)
which use voltage or current as the stimulus and visual evoked potentials (VEP's) which
use light as the stimulus [1, 2, 8]. Although the waveform shape of EEP's and VEP's are
very similar, EEP's typically are much smaller in amplitude, and thus the recorded wave-
forms contain substantially larger amounts of undesirable background noise which must
be removed to measure the response. This thesis emphasizes noise removal from EEP
recordings only.

1.2.2 Characteristic Waveform Set
The characteristic waveform set used in this thesis consists of four sets of 500 indi-

vidual cortical recordings each corresponding to different biphasic stimuli, and one set of
500 individual cortical recordings when no stimulus was presented (the noise recordings).
The biphasic stimuli per electrode are +8.7/-35, +3.8/-15, +2.5/-10, +2/-7.5 RA, which
correspond to Aa/Ab in Figure 1.1 above, and are hereafter referred to as the 35, 15, 10,
and 7.5 gIA data.

1.3 Thesis Overview
1.3.1 Goals of Thesis

The primary goal of this thesis is to investigate methods for reducing the number
of recordings necessary to obtain a reasonably good estimate of the underlying evoked
response. The reasonableness of this estimate is based on comparison with the mean
waveform from the entire waveform population and its associated features. This mean
waveform is assumed to be the best estimate of the evoked response available.

The secondary goal of the thesis is the investigation of an alternative model for the
recorded waveforms and the determination of its validity in light of the recordings.

Ta

Tb



1.3.2 General Definitions
Noise refers to any portion of the recorded signal which is not part of the underly-

ing evoked response. This includes neural activity not associated with the evoked
response, other biological activity such as from the heart and lungs, and non-biological
noise from the recording process.

Individual waveforms are the single recorded cortical responses due to a stimula-
tion event, which in general include the underlying evoked response and additive noise.

Mean waveforms are those found from averaging the individual waveforms across
waveform number, i.e. for each discrete point in time the individual waveform amplitudes
are added and the sum is divided by the number of individual waveforms. The term over-
all mean waveform is used when the mean is taken over the entire population of individual
waveforms.

Random Subset Mean (RSM) waveforms are mean waveforms where the individual
waveforms used to create them are chosen randomly from the total population.

Average is used to describe operations over time for a particular waveform, and
mean is used to describe operations over waveform number (unless specified otherwise).

1.3.3 LTI Methods for Noise Rejection
Two linear time-invariant (LTI) methods are proposed for reducing the number of

recordings necessary in order to obtain an accurate estimate of the underlying evoked
response. The first is an approximation to ideal bandpass filtering where individual wave-
forms are filtered so that the output closely resembles the desired underlying evoked
response signal. The method of determining how well the output "resembles" the evoked
response is in terms of waveform features, and the reduction of an appropriate error crite-
rion. Bandpass cutoff frequencies are adjusted until this error criterion is minimized. The
evoked response is estimated by the overall mean waveform for each stimulus level.

The second LTI method for noise reduction is Weiner-type filtering. Here we use
an alternative form of the standard noncausal Weiner filter which is altered to account for
an assumed deterministic evoked potential (as opposed to the classic Weiner filter which
treats the evoked response as a random process). Implementation of this filter requires the
energy spectral density of the evoked response estimate, the power spectral density of the
noise estimate and a scale factor based in part on the time duration of the evoked response.
The evoked response is again estimated by the overall mean waveform for each stimulus
level, and the noise is estimated by independently obtained recordings when no stimulus
was present.

1.3.4 Modelling the Recorded Potentials
Two models are proposed to characterize the cortical recordings. The first assumes

that the cortical recordings consist of a deterministic evoked response plus an additive ran-
dom process noise component. It further assumes that this noise is wide-sense stationary,
that it is unaffected by the presence of the stimulus and the evoked response, and that the
evoked response is not affected by the presence of the noise.

The second model assumes that the cortical recordings consist of a deterministic
evoked response which is multiplied by an independent, identically distributed random
variable amplitude scale factor, plus an additive random process noise component. Again
the noise is assumed to be wide-sense stationary, unaffected by the stimulus and evoked



response, and independent of the amplitude scale factor, and that it does not affect the
evoked response. The amplitude scale factor is also assumed to not be affected by the
presence of the evoked response.

Verification of the amplitude scale model is facilitated through the use of the data
covariance matrix and its corresponding eigenvalues and eigenvectors. A test based on
these parameters is constructed and applied to the experimental data over finite duration
time windows, allowing verification over individual segments of the waveforms. Using
the second model, the amplitude scale factor is then estimated for individual waveforms,
and a rough approximation of its distribution is found using a histogram approach.

1.3.5 Active Noise Cancellation
This is an example of a general class of adaptive filtering methods which utilize a

searching scheme along an error surface. Typically these methods use iterative techniques
where an error signal generated by the filter is fed back as information indicating the qual-
ity of the solution at each iteration. The most common searching techniques utilize the
Least Mean Squares (LMS) or Recursive Least Squares (RLS) algorithms, which differ (a)
in their ability to track nonstationary noise signals, (b) the speed at which they converge to
their final solutions, and (c) the difficulty in how they are implemented [28, 29]. Generally
the LMS algorithm does not track nonstationary signals as well as the RLS method, but it
can be made to have an acceptably fast convergence rate, and it is considerably more easy
to implement. For this reason it is the method used in this thesis.

Active noise cancellation attempts to remove the noise associated with the record-
ing process (primary noise) using correlated noise from alternate sources (reference noise)
such as from the heart and lungs. The active noise cancellation filter uses both the primary
and reference signals as inputs, and attempts to filter the reference signal so that it resem-
bles the primary noise. During each iteration an error signal is generated equal to the dif-
ference between the primary signal and the output to the adaptive filter, and this error
signal is then used to change the weights on the adaptive filter for the next iteration. This
iterative process continues until the energy in the error signal is minimized, at which time
the primary noise has presumably been subtracted out from the cortical recordings. Active
noise cancellation appears promising given the fact that it achieves noise reduction
through subtraction, which is preferable over classical filtering in cases where the fre-
quency content of the primary noise and the evoked response contain considerable over-
lap.



2. Waveform Attributes
2.1 Overall Mean Waveforms

For each of the four stimulus levels used (35, 15, 10, 7.5 pA) the overall mean
waveform is assumed to be the best approximation to the underlying evoked response
waveform we desire [13]. It is used as this approximation in the numerous filtering, mod-
elling and estimation sections which follow, so its basic characteristics must be first under-
stood. Shown in Figure 2.1 are the overall mean waveforms for each of the four stimulus
levels used, when 500 individual waveforms were used to form the mean (an exception in
the case of 35 gA occurred where only 494 waveforms were used, and in the case of 10
gA where 499 waveforms were used, both due to corruption of some individual wave-
forms due to responses exceeding the minimum voltage measurable). Only the first 200
ms of the 500 ms total duration are shown to emphasize the temporally early portions
which are comparatively dominated by the evoked response in relation to the noise.

Examination of the plots in Figure 2.1 shows that there appears to be a distinctive
shape of the evoked response estimate for each stimulus level consisting of an early peak
followed by a trough and then an second smaller peak, with a tail which tends towards
zero. Note also that the relative amplitudes of the peaks and troughs tend to decrease with
decreasing stimulus, motivating the use of features which are dependent on some measure
of waveform "size".

Figure 2.1 Overall Mean Waveforms for the Characteristic Waveform Set (5-200 ms)
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2.2 DC Shifting of Individual Waveforms
For each of the four stimulus levels discussed above, a phenomenon of DC shifting

occurs for individual waveforms. This phenomenon is exhibited by individual waveforms
having a wide range of time average (DC) values. It is desirable to understand (a) the
range of DC values for which this occurs, (b) the distribution of DC values, and (c) any
temporal dependencies.

For each of the four stimulus levels, the DC value for each of the individual wave-
forms was calculated and plotted in a histogram using 25 bins, showing the relative distri-
bution of DC values. Figure 2.2 below summarizes these results. From the figure it is
apparent that the range of DC values ranges roughly from +400 RV for each of the four
stimulus levels. Furthermore they appear to have a somewhat Gaussian distribution with a
mean of roughly zero. The same analysis was performed on 500 noise waveforms when
no stimulus was present, and the same general range and distribution shape of DC values
was obtained.

Figure 2.2 DC Value Histograms for the Four Stimulus Levels
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In an effort to determine if any temporal dependence exists, the autocorrelation of
DC values was calculated, where any periodicity should show up as periodic peaks at non-
zero lag values. These results are summarized in Figure 2.3 below, where a normalized
autocorrelation was calculated, the peak at zero lag being unity. Examination of the
respective autocorrelation plots reveals no discernible periodicity. Non-periodic temporal
dependencies also do not appear to exist, qualitatively determined from examining plots
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of DC values as a function of waveform number.

Figure 2.3 Autocorrelation of DC Values (-100 to 100 lags)
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2.3 Frequency Spectrum of Evoked Potential and Noise Estimates
Using the overall mean waveform as our best estimate of the underlying evoked

response, we can obtain the frequency spectrum of both the evoked potential estimate and
the assumed additive noise. There are at least two methods we can use to obtain an esti-
mate of the noise. In the first, we subtract the overall mean waveform from each of the
individual waveforms used to compute it, and assume that the result is purely noise. This
assumes that our recorded signal model consists of the deterministic evoked potential plus
additive noise, and that we are not using the amplitude scaled deterministic signal model.
Since the modelling issues are dealt with in later sections, we do not use this method here
to estimate the noise. The second method for estimating noise uses independently
obtained recordings when no stimulus is present, and is the method used here.

The power spectral density of the noise is estimated by the Bartlett method which
suffers from poor frequency resolution, but which has lower estimator variance than most
other nonparametric methods [12, 21]. This asymptotically unbiased estimator is found by
finding the magnitude squared of the Fourier transform of each individual waveform
divided by the length of the waveform, and then averaging these terms to yield the power
spectral density estimate. This method and others are discussed in more detail in the
Weiner-type filtering section elsewhere.The evoked response energy spectral density is
estimated by the magnitude squared of the 4096 point FFT of the overall mean waveform.
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Figure 2.4 below summarizes these results. From Figure 2.4 it is apparent that the majority
of both the evoked potential and noise estimated signal components lie in an overlapping
low frequency range of less than 10 Hz.



Figure 2.4a Energy Spectral Density Estimates of Evoked Responses (0-100 Hz)
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Figure 2.4b Power Spectral Density Estimate of the Noise (0-100 Hz)
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3. Feature Extraction and Optimization of Parameters
3.1 Choice of Features

Given the characteristic shape of the overall mean waveforms for each of the four
stimulus levels whose "size" appears to be positively correlated to stimulus level, and the
presence of DC shifting of individual waveforms, we seek some features whose measure
of "size" are independent of the DC levels. Furthermore, since only the earliest portions of
the overall mean waveforms appear to contain the desired information from the evoked
response, we seek some features which only examine the earliest portion. Finally, given
the substantial overlap in frequency components of the evoked potential and the noise, and
the similarity in evoked response spectra for different stimulus levels, our features should
not depend on differences in the frequency spectra. Two features which satisfy all these
criteria are the peak-to-trough amplitude and the root-mean-square (RMS) amplitude
about the time average. Both of these features seek some measure of size in a finite length
window, and are both independent of DC shifting of individual waveforms.

3.1.1 Peak-to-Trough Amplitude Feature
The peak-to-trough amplitude over the window { W1, Wu } of an RSM waveform

rk [n] is defined as follows:

Pk = max{rk[n]} - min{rk[n]}
{ WI, WU}

3.1.2 Root-Mean-Squared Amplitude about the Time Average Feature
The root-mean-squared (RMS) amplitude about the time average (rk) over the

window { W1, Wu of an RSM waveform is defined as follows:

Fk=

where -- 1
r =rk[n]
rk = (Wu - W1 + 1)  rk[n]

n = W
1

3.2 Statistical Procedures for Error Criterion
Although we wish to ultimately compare the peak-to-trough and RMS amplitude

features of the RSM waveforms to those of the overall mean waveform, we would also
like to compare the results of the present work to the analysis of recordings made in the
future, when presumably fewer individual recordings are obtained. We thus desire an error
criterion which is somewhat independent of the number of recordings made, but which
presents results which are comparable across different experiments.

One method of comparing the features between RSM waveforms and the overall
mean waveform is using the mean squared error, which is the empirical average between



the RSM waveform features and the feature obtained from the overall mean waveform. An
alternative error criterion, the sample variance, does not explicitly depend on the overall
mean waveform (in the sense that we do not need to calculate the overall mean waveform
to find it), and thus yield results which allow the results of the present work to be extrapo-
lated to the analysis of future recordings. The similarity between sample variance S2 and
mean squared error E2 for the RMS feature can be seen by examining their defining for-
mulas:

NW NW

S=2 N k pF 2 C2i= (Fk-Fo) 2

NW _ 1= N wk = 1k=l wk=1
where

N = number of random subset mean waveformsw

Fk = root-mean-square (RMS) amplitude of waveform k about its time average,
k= 1, 2,..., Nw

F = mean of the Fk taken over k

Fo = RMS amplitude about the time average of the overall mean waveform

From the above it is apparent that the sample variance and mean square error are
very similar in the limit as N, becomes large. In this case the factor of Nw - 1 in the sam-
ple variance formula (which makes this an unbiased estimator of the true variance [21]) is
approximately equal to the factor of Nw in the mean squared error formula. Furthermore,
F = Fo as N becomes large since the average feature from the RSM waveforms
approaches the feature of the overall mean waveform under the assumption that the RSM
waveforms were found from a sufficiently large number of individual waveforms.

However, using the sample variance as the error criterion may produce some erro-
neous results. It is possible that it can be reduced to zero arbitrarily, as would be the case if
the RSM waveforms were passed through a no-pass filter. To circumvent this problem,
and to give error results which are more easily interpreted, our error criterion is the ratio
20/p., where a is the sample standard deviation (the square root of the sample variance
of the features), and g is the mean of the features. This error criterion attempts to give the
range of possible feature values where a large percentage of the data will fall under. For
example, if the feature distribution is Gaussian, then ±+2o/R represents the range where
95% of the feature values will fall [7]. For the above reasons, this is our chosen error crite-
rion, which will hereafter be referred to as the percent spread about the mean (when it is
multiplied by 100%).

3.3 Optimization of Parameters
The calculation of both features for RSM waveforms requires optimization of four

parameters for each feature. First we must determine the number of individual waveforms
Ni used to form each of the RSM waveforms. We seek the smallest number of individual
waveforms such that enough noise can be averaged out so that the measured features are
not primarily dependent on the additive noise, but not so large as to subvert our desire to
use the fewest number of individual recordings. We must also determine the number of



RSM waveforms Nw, where we seek the fewest number such that our sample variance
estimate becomes roughly constant for larger values of Nw . This number is merely the
minimum number necessary to ensure that our measure of sample variance is not strongly
dependent on which waveform set is arbitrarily chosen. Although in general a larger value
of Nw helps ensure accurate statistical measurements, in practice the computational time
for large Nw becomes excessive. Finally, we must determine the appropriate lower and
upper window times, W1 and Wu for feature extraction. This window time reflects our
interest in only a finite portion of the evoked response.

The following optimization process is initially applied to the 35 iV data only, and
the results are then verified for the other data sets.

3.3.1 Determination of the Number of Individual Waveforms Used to Form RSM
Waveforms and the Number of RSM Waveforms
These two variables are found by applying the feature extraction processes for

both features to RSM waveforms when no bandpass filtering is performed, and when the
largest window is used (from 5 to 50 ms). This window was chosen because the onset of
the evoked potential starts at 5 ms, and because the clinically significant portion of the
evoked potential ends at about 50 ms [20]. The number of individual waveforms used to
form each RSM waveform was varied between 20 and 200 using values of 20, 50, 100,
and 200, while the number of RSM waveforms was varied between 20 and 60 in incre-
ments of 10. No bandpass filtering was performed in order to better understand the effect
of changing Ni and Nw. This was the same motivation for using the widest window when
performing feature extraction. The results are summarized in Figures 3.1 and 3.2.



3.1 Mean Peak-to-Trough Feature and Percent Spread Versus Nw and Ni
Mean Peak-to-Trough Amplitude Vs. Nw and Ni
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Figure 3.2 Mean RMS Feature and Percent Spread Versus Nw and Ni
Mean RMS Amplitude Vs. Nw and Ni
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Consider first the mean peak-to-trough amplitude and corresponding percent
spread plots. Note that the percent spread decreases with an increase in Ni for all values
of N w , although the difference in percent spread between N i = 100 and Ni = 200 is
relatively small when N > Ž40. This suggests that we should choose Ni = 100 since
N i = 200 represents only a modest reduction in percent spread while requiring twice the
number of waveforms. Comparing the curves for the different values of Nw , the percent
spread is roughly the same for N Ž 40 when Ni = 100 which suggests that we should
choose N = 40.w

Consider now the mean RMS amplitude feature and corresponding percent spread
plots. Again the percent spread decreases with an increase in Ni for all values of Nw , and
the difference in percent spread between Ni = 100 and N i = 200 is relatively small for
all values of N Ž 40. This confirms our choice of N. = 100 and N = 40 from the

W 1 w
peak-to-trough feature plots.

Tables 3.1 and 3.2 summarize the analysis of the 35 gV data for both features,
where the case of N i = 1 (RSM waveforms are identical to the individual waveforms) is
added for comparison. Note the large disparity in the mean of the features when N i = 1
compared to larger values of Ni due to the large amounts of noise which is not averaged
out. For comparison, the peak-to-trough feature of the overall mean waveform is 522 gV,
and the RMS amplitude feature of the overall mean waveform is 109 RV.

The same range values for the variables N i and Nw was used for analysis of the
other data sets, yielding the same conclusions, i.e. using Ni = 100 and N w = 40. Based
on the above analysis it was concluded that the subsequent feature extraction for both fea-
tures should use N. = 100 and N = 40 waveforms.

1 W
As an aside, the percent spread error criterion can be transformed into a measure of

accuracy in our estimates by assuming that the distribution of the two features takes a
Gaussian shape. The efficacy of the Gaussian assumption can be verified qualitatively by
examination of the histograms of the RSM waveform features in Figure 3.3 when
Nw = 1000, Ni = 100, W1 = 5 ms, Wu = 50 ms and no bandpass filtering was per-
formed. Both histograms were fit to a Gaussian waveform with the same mean and sample
variance as the feature distribution.

Figure 3.3 Histograms of Peak-to-Trough and RSM Features
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()
o100
C

= 80
0
o
0 60
0

20
z

n

Mean = 524 uV

2Ii

450 500 550 600

1)

C:

0

O
4-
0
0

E
Z

0
Feature Amplitude (uV) Feature Amplitude (uV)

"

rI .1
I J
II

All

/



Table 3.1 Effects of N i and Nw on Peak-to-Trough Feature Analysis

Mean Sample
Standard PercentFeature
Deviation Spread (%)

Nw = 20 N. = 1 719 195.35 54.4

N. = 20 542 51.70 19.1

N. = 50 526 34.28 13.0

N. = 100 519 24.94 9.6

N. = 200 525 20.19 7.7

N = 30 N. = 1 744 150.47 40.4
w 1

N. = 20 557 62.50 22.5

N. = 50 538 43.33 16.1

N. = 100 522 38.52 14.7

N. = 200 519 18.64 7.2

N w = 40 N. = 1 702 146.97 41.8

N. = 20 535 56.06 21.0

N. = 50 533 31.69 11.9

N. = 100 526 25.37 9.7

N. = 200 515 18.97 7.4

N = 50 N. = 1 707 183.66 51.9

N. = 20 545 51.31 18.8

N. = 50 535 42.93 16.01

N. = 100 525 26.19 10.0
1

N. = 200 527 20.53 7.8

N = 60 Ni = 1 740 183.52 49.6

N. = 20 529 50.32 19.0

N. = 50 522 36.92 14.2
1

N. = 100 521 28.25 10.8
1

N. = 200 522 19.78 7.6
1



Table 3.2 Effects of N i and Nw on RMS Feature Analysis

Mean Sample
Standard Percent

Feature
Deviation Spread (%)(V) (gV)

N = 20 N. = 1 157 50.05 63.7
w 1

N. = 20 114 11.82 20.6

N. = 50 111 7.05 12.7

N. = 100 108 6.07 11.3

N. = 200 110 4.39 8.0

N = 30 N. = 1 166 38.33 46.2
W 1

N. = 20 116 13.60 23.5
1

N. = 50 113 9.49 16.8

N. = 100 109 7.41 13.6

N. = 200 109 3.02 5.5

N = 40 N. = 1 156 44.27 56.7
w 1

N. = 20 111 13.11 23.6
1

N. = 50 111 6.87 12.3

N. = 100 110 4.86 8.8
1

N. = 200 108 3.68 6.8

N = 50 N. = 1 158 47.33 60.1
w I

N. = 20 112 10.28 18.3

N. = 50 112 8.67 15.5

N. = 100 109 4.66 8.5

N. = 200 111 3.62 6.6

N = 60 N. = 1 163 45.21 55.5
w 1

N. = 20 108 12.49 23.2
1

N. = 50 109 7.98 14.6

N. = 100 109 5.80 10.6
1

N. = 200 109 3.66 6.7
1



3.3.2 Determination of Waveform Window for Feature Extraction
Here we wish to find the lower and upper window times for feature extraction such

that the percent spread is minimized. The results from section 3.3.1 above are utilized
(Ni = 100 and Nw = 40), and no bandpass filtering was performed so the effect of win-
dowing can be understood alone. Note that the results in this section for the given values
of Ni and Nw will not be identical to the corresponding results in the previous section
because a new set of RSM waveforms were formed (from the same set of 500 individual
waveforms).

Due to the presence of the stimulus artifact which ends at 5 ms, the range of possi-
ble lower window times W1 starts at 5 ms. Due to the clinical significance of only the ear-
liest portion of the evoked potential [1, 4] the range of possible upper window times Wu
ends at 50 ms. Referring to Figure 3.4 below which shows the overall mean waveform, we
note that the lower window time should occur prior to the large peak at about 13 ms. For
this reason the range of lower window times was chosen to be from 5-10 ms, which allows
for some variation in latency before the initial peak begins. Additionally, the lower end of
the upper window time should occur after the large negative peak occurring at about 18
ms, which yields a range of upper window times from 20-50 ms, again allowing for
latency variability, and the clinical interest in the second peak [20].

Based on the above, the lower window time W1 was varied between 5 and 9 ms in
unit increments, and the upper window time Wu was varied between 20 and 50 ms in 5 ms
increments. The results of the feature extraction process for both features is summarized in
Figures 3.5 and 3.6 which show plots of the mean features and corresponding percent
spread for the RSM waveforms.

Figure 3.4 Lower and Upper Window Ranges for Feature Extraction
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Figure 3.5 Mean Peak-to-Trough Feature and Percent Spread Versus W1 and Wu
Mean Peak-to-Trough Amplitude Vs. WI and Wu
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Figure 3.6 Mean RMS Feature and Sample Variance Versus W1 and Wu
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Consider first the mean peak-to-trough amplitude and corresponding percent
spread plots. The mean feature size is shown to be independent of the upper window times
used, which is expected when the peak and trough of the RSM waveforms occur prior to
20 ms. Note that the lower window time of W1 = 5 ms yields a slightly lower percent
spread than larger values of W1, suggesting that we should choose W1 = 5 ms. The
choice for the upper window time is inconclusive from this data.

Consider now the mean RMS amplitude and corresponding percent spread plots.
The mean feature size decreases with increasing Wu , for each value of W1 , which is
again expected when the largest peak and trough occurs before 20 ms. However, note from
the percent spread plot that the earliest lower window time of 5 ms yields the lowest per-
cent spread for each upper window time used, suggesting that we should choose
W1 = 5 ms, confirming our results from the peak-to-trough data discussed above. Note
also that the percent spread is roughly constant across all values Wu , making the choice of
upper window times inconclusive from this data.

Tables 3.3 and 3.4 summarize these results showing the mean feature, sample stan-
dard deviation and percent spread of the data about the mean for each feature, similar to
Tables 3.1 and 3.2. For the sake of brevity, only the values of WU equal to 20, 30, 40 and
50 ms are shown.

One interesting aspect of Table 3.4 is that the percent spread has a tendency to
increase with an increase in Wu , despite a decrease in the sample standard deviation. This
apparent anomaly can be explained by noting from the overall mean waveform plot in Fig-
ure 3.4 that as W U is increased above 20 ms, the RMS amplitude feature decreases since it
is averaging a larger portion of the waveform occurring after the maximum peak and
trough. Although the sample standard deviation is also decreasing, it is not doing so as
quickly as the RMS amplitude feature is decreasing, hence the ratio of two standard devi-
ations to the mean feature value (i.e. the percent spread) is increasing.

Another interesting aspect of Table 3.4 is the fact that the sample standard devia-
tion and percent spread tends to decrease with a decrease in W1 . This can be explained by
the fact that the evoked response begins at the earliest lower window time examined (5
ms) immediately following the large stimulus artifact which is roughly uniform in shape
and size for all individual waveforms. It is possible that the stimulus artifact limits the
recorded waveform to a narrow range of values immediately after its occurrence, and at
later times the recorded waveform is more subject to deviations from additive noise or
amplitude scaling of the deterministic evoked potential.

Despite the slightly larger percent spread when W = 50 ms compared to
WU = 20 ms for W = 5 ms, we chose the values of W1 = 5 ms and W = 50 ms as
our window width for both features. Although the choice of the upper window time is
inconclusive from these data, we note that variations of EEP waveform shapes occur in
different animals under different experiments, which includes variable latency of the ini-
tial large peak and trough. To avoid the possibility of missing these features, and because
of the clinical significance of the later region [20], we decided to use the longer window
time of W = 50 ms.

u



Table 3.3 Effects of W1 and Wu on Peak-to-Trough Feature Analysis

Mean Sample
Standard Percent

Feature
Deviation Spread (%)

W1 =5 Wu = 20 527 32.40 12.3

WU = 30 527 32.40 12.3

= 40 527 32.40 12.3

W = 50 527 32.40 12.3

W 1 =6 WU = 20 524 35.23 13.4

= 30 524 35.23 13.4

= 40 524 35.23 13.4

WU = 50 524 35.23 13.4

W1 =7 WU = 20 524 35.23 13.4

W = 30 524 35.23 13.4

= 40 524 35.23 13.4

W = 50 524 35.23 13.4

WI =8 W =u20 524 35.23 13.4

WU = 30 524 35.23 13.4

WU = 40 524 35.23 13.4

W = 50 524 35.23 13.4

W 1 =9 Wu = 20 524 35.23 13.4

W = 30 524 35.23 13.4

= 40 524 35.23 13.4

W = 50 524 35.23 13.4



Table 3.4 Effects of W1 and WU on RMS Feature Analysis

Mean Sample
Standard Percent

Feature
Deviation Spread (%)

(RLV)

W1 = 5 W u = 20 174 8.75 10.1

W = 30 138 7.22 10.5
U

W = 40 120 6.50 10.8
U

W = 50 110 5.98 10.8

W 1 =6 W u = 20 176 10.00 11.4

W = 30 138 8.07 11.7
U

W = 40 119 7.23 12.1
U

W = 50 109 6.62 12.2
U

W 1 =7 W u = 20 179 11.21 12.5

W = 30 139 8.78 12.6
U

W = 40 120 7.83 13.1
U

W = 50 108 7.15 13.2
U

W 1 =8 W u = 20 185 12.35 13.4

W = 30 142 9.34 13.2
U

W = 40 121 8.29 13.7
U

W = 50 109 7.56 13.9
U

W 1 =9 Wu = 20 191 13.50 14.1

W = 30 145 9.79 13.5
U

W = 40 122 8.67 14.2
U

W = 50 109 7.90 14.4
U



4. Ideal Bandpass Filtering
4.1 Statement of Goals, Assumptions and Methods

The goal here is to use the RSM waveforms as input to an approximate ideal band-
pass filter designed so that the output closely resembles the desired underlying evoked
response signal. Our measure of "resembles" is in terms of the peak-to-trough and RSM
amplitude about the time average features, and their similarity to the corresponding fea-
tures of the overall mean waveform. The comparison of the features to the overall mean
waveform is made indirectly through the use of the percent spread about the mean. The
method used finds the percent spread associated with RSM waveform features for each
cutoff frequency, and then varies the cutoff frequency finding the minimum percent
spread. The initial analysis is done on the 35 gA data, and the results are then applied to
the other data sets for comparison.

4.2 Approximation to Ideal Bandpass Filtering
True ideal bandpass filtering can only be accomplished by using an infinite length

impulse response, which is not possible for computerized implementation. The truncation
of the infinite length impulse response by different windowing functions yields different
filters which can be distinguished in the frequency domain by passband and stopband rip-
ple, transition widths between passbands and stopbands and by numerous other parame-
ters [17]. The approach taken here is different in that we start with an idealized frequency
response in the Discrete Fourier Transform (DFT) domain where the bandpass filter is
unity in the passband and zero in the stop band, with a single sample being the transition
width. Since multiplication of Fourier transforms in frequency is equivalent to the Fourier
transform of the convolution of the time functions, we can consider the effect of such a
process in the time domain. Essentially multiplying in frequency the boxcar filter with the
Fourier transform of the time signal is the Fourier transform of a sinc function convolved
with the time function. Although this method produces the Gibbs effect [17], its effects are
minimally intrusive for our purposes.

4.3 Determination of the Range of Cutoff Frequencies
Here we wish to determine the effects of changing lower and upper bandpass filter

cutoff frequencies fl and fu such that the percent spread of the features is minimized.
Clearly we cannot use any arbitrary values for these cutoff frequencies since by using an
extremely narrow filter we can virtually annihilate the signal, producing an output which
is very uniform with a very small sample variance, but whose feature sizes will not repre-
sent the evoked response. We thus begin by establishing the range of possible cutoff fre-
quencies such that our evoked response is kept sufficiently intact. We determine the
appropriate range of cutoff frequencies by examining the individual effects of lowpass and
highpass filtering applied to the overall mean waveform. Specifically this test shows the
minimum lowpass cutoff frequency and the maximum highpass cutoff frequency to be
used in our experiment. Figures 4.1 and 4.2 below show the effects of ideal lowpass and
highpass filtering respectively for the range of cutoff frequencies indicated.

From Figure 4.1 it is apparent that lowpass filtering with a cutoff of fu = 200 Hz
produces only minimal effects on the overall mean waveform, although filtering with a
cutoff of fu = 100 Hz produces large oscillating deviations. For this reason the lowpass



cutoff frequencies examined are no smaller than 200 Hz. From Figure 4.2 it is apparent

that each of the cutoff frequencies used preserves the large peak and trough between 10

and 20 ms, but the second large peak at about 40 ms is not well preserved for fl 2 20 Hz.

For this reason the highpass cutoff frequencies are limited to being less than 20 Hz.



Figure 4.1 Effects of Ideal Lowpass Filtering the Overall Mean Waveform
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4.4 Bandpass Filtering Recorded Waveforms
Given the results of lowpass and highpass filtering of the overall mean waveform

discussed above, and the previously determined values of Ni = 100, N = 40,
W1 = 5 ms, and Wu = 50 ms, the lower cutoff frequency fl was varied between 0 and
16 Hz in 4 Hz increments, and the upper cutoff frequency fu was varied between 200 and
1000 Hz in 200 Hz increments. The case of f, = 0 Hz, f = 1000 Hz is included for com-
parison when no bandpass filtering is performed. Figures 4.3 and 4.4 below summarize the
results for the Peak-to-Trough and RMS amplitude feature extractions respectively.

Consider first the mean peak-to-trough amplitude and corresponding percent
spread plots. From the mean feature plot it is apparent that the mean feature size is some-
what independent of both the lower and upper cutoff frequencies which is desirable since
we do not want the filtering to affect the measurement of the feature. However, the percent
spread plot shows that the effect of bandpass filtering produces minimal reduction of the
percent spread. The smallest percent spread occurred when fl = 0 Hz and fu = 600 Hz.
Furthermore fl = 0 Hz produced the smallest percent spread for all values of f, and
fu = 600 Hz produced the smallest sample variance for all values of fl

Consider now the mean RMS amplitude and corresponding percent spread plots
Again the mean feature size is mostly independent of both the lower and upper cutoff fre-
quencies (note the narrow range of the amplitude scale). The percent spread plot shows
virtually no effect due to lowpass filtering (varying fu) and only minimal effect due to
highpass filtering (varying fl). The smallest percent spread occurred when fl = 4 Hz and
fu = 1000 Hz. Furthermore fl = 4 Hz produced the smallest sample variance for all val-
ues of fu, and f = 1000 Hz produced the smallest sample variance for all values of f.

Tables 4.1 and 4.2 summarize this analysis in terms of the mean feature size, sam-
ple standard deviation and percent spread about the mean feature size.



4.3 Mean Peak-to-Trough Feature and Sample Variance Versus fl
Mean Peak-to-Trough Amplitude Vs. fl and fu
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Figure 4.4 Mean RMS Feature and Sample Variance Versus fl and fu
Mean RMS Amplitude Vs. fl and fu
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Table 4.1 Effects of fl and fu on Peak-to-Trough Feature Analysis (N i = 100)

Mean Sample
Standard Percent

Feature
Deviation Spread (%)

(V)(R)

f = 0 fu = 200 523 33.02 12.6

f = 400 527 31.65 12.0
U

f = 600 522 29.60 11.4
U

f = 800 522 31.74 12.2
U

f = 1000 523 31.28 12.0
U

f= 4 fu = 200 523 34.03 13.0

f = 400 527 32.36 12.3

fu = 600 522 30.01 11.5

f = 800 523 31.94 12.2

f = 1000 523 31.81 12.2
U

f= 8 f = 200 528 34.75 13.2

f = 400 532 32.91 12.4
u

f = 600 527 31.37 11.9
U

f = 800 527 33.03 12.5
U

f = 1000 528 33.00 12.5
U

f = 12 fu = 200 533 35.25 13.2

f = 400 538 33.58 12.5
U

f = 600 532 32.40 12.2
U

f = 800 533 34.07 12.8
U

f = 1000 533 33.85 12.7

f = 16 f = 200 533 34.78 13.0

f = 400 538 33.16 12.3
U

fu = 600 532 31.90 12.0

f = 800 533 33.61 12.6

f = 1000 534 33.32 12.5



Table 4.2 Effects of fl and fu on RMS Feature Analysis (N i = 100)

Mean Sample
Standard Percent

Feature
Deviation Spread (%)

(kV) (gV)

f = 0 fu = 200 108 6.37 11.8

f = 400 108 6.28 11.6
U

f = 600 108 6.25 11.6
U

f = 800 108 6.24 11.5
U

f = 1000 108 6.23 11.5
U

f = 4 f = 200 108 5.96 11.1

f = 400 108 5.86 10.8
U= 600 108 5.81 10.7

f = 600 108 5.81 10.7
U

f = 800 108 5.80 10.7
U

f = 1000 108 5.78 10.7

f = 8 fu = 200 107 6.08 11.3

f = 400 108 5.97 11.1
U

f = 600 108 5.92 11.0
U

f = 800 108 5.90 10.9U

f = 1000 108 5.88 10.9
U

f = 12 fu = 200 106 6.36 12.0

f = 400 107 6.26 11.7
U

f = 600 107 6.22 11.6
U

f = 800 107 6.1820 11.6
U

f = 1000 107 6.18 11.6
U

fl = 16 fu = 200 106 6.21 11.8

f = 400 106 6.12 11.6
U

f = 600 106 6.08 11.5
U

f = 800 106 6.07 11.4
U

f = 1000 106 6.05 11.4
U



Given the absence of appreciable reduction in percent spread when varying the
upper and lower cutoff frequencies, two different values of Ni were used in an effort to (a)
determine if bandpass filtering has any affect on reducing percent spread, and (b) to poten-
tially reduce the number of waveforms needed while still obtaining an accurate estimate of
feature sizes. The feature extraction process was repeated when Ni was reduced to 50 and
20 waveforms per RSM waveform, using the same number of RSM waveforms
(Nw = 40), using the same window (W1 = 5 ms, Wu = 50 ms) and using the same
range of values for the lower and upper cutoff frequencies. Tables 4.3 and 4.4 summarize
these results in terms of percent spread, including the case of Ni = 100 discussed above.

Again the effects of bandpass filtering produce only a negligible change in the per-
cent spread when we reduce Ni to only 50 for both features. As expected the percent
spread is increased since we are averaging fewer waveforms, but comparing all permuta-
tions of fl and fu to the case of fl = 0 and fu = 1000 (no filtering) reveal minimal
changes. Despite the above, several identical conclusions can be drawn from this data
when comparing it to the case of Ni = 100. For the peak-to-trough feature the smallest
percent spread also occurred when fl = 0 Hz and fu = 600 Hz, and further fl = 0 Hz
produced the smallest percent spread for all values of fu, and fu = 600 Hz produced the
smallest percent spread for all values of fl. For the RMS feature, the smallest percent
spread also occurred when fl = 4 Hz and fu = 1000 Hz, and further fl = 4 Hz pro-
duced the smallest percent spread for all values of fu, and f = 1000 Hz produced the
smallest percent spread for all values of fl -

Finally the effects of bandpass filtering produced only a negligible change in the
percent spread when Ni = 20. Despite this, some conclusions can be drawn which are
consistent with the analysis of data when Ni was equal to 100 and 50. First, the peak-to-
trough amplitude feature again showed that the smallest percent spread occurred when
fl = 0 Hz and fu = 600 Hz, and further fl = 0 Hz produced the smallest percent spread
for all values of fu, and fu = 600 produced the smallest percent spread for all values of
fl. For the RMS feature the results were slightly different for this value of Ni . Here, the
smallest percent spread occurred when fl = 16 Hz (contrasted with fl = 4 Hz) and
f = 800 or f = 1000 Hz (the same).



Table 4.3 Summary of Effects of fl and fu on Peak-to-Trough Feature Analysis

Percent
Spread (%)

N. = 100 N. = 50 N. = 20
1 1 1

f = 0 fu = 200 12.6 17.2 24.2

f = 400 12.0 16.4 22.4
U

f = 600 11.4 15.2 21.1
U

f = 800 12.2 16.0 21.9

f = 1000 12.0 15.6 21.3
U

f = 4 f = 200 13.0 17.7 24.4

f = 400 12.3 16.5 22.7
U

f = 600 11.5 15.3 21.3
U

f = 800 12.2 16.0 22.2
U

f = 1000 12.2 15.8 21.8
U

fl = 8 fu = 200 13.2 17.6 24.7

f = 400 12.4 16.8 23.4

f = 600 11.9 15.9 22.3
U

f = 800 12.5 16.5 23.0
U

f = 1000 12.5 16.4 22.8

fl = 12 fu = 200 13.2 17.5 24.7

f = 400 12.5 16.9 23.6
U

f = 600 12.2 16.5 22.9
U

f = 800 12.8 17.0 23.6
U

f = 1000 12.7 16.9 23.3
U

fl = 16 fu = 200 13.0 17.3 24.4

f = 400 12.3 16.7 23.1

f = 600 12.0 16.4 22.7

f = 800 12.6 16.9 23.3
U

f = 1000 12.5 16.7 23.1
u|



Table 4.4 Summary of Effects of fl and fu on RMS Feature Analysis

Percent
Spread (%)

N. = 100 N. = 50 N. = 20

fl = 0 fu = 200 11.8 15.0 24.2

fu = 400 11.6 14.8 23.9

fu = 600 11.6 14.7 23.8

fu = 800 11.5 14.7 23.8

fu = 1000 11.5 14.7 23.8

fl = 4 f = 200 11.1 14.2 24.0

fu = 400 10.8 13.9 23.7

fu = 600 10.7 13.8 23.6

fu = 800 10.7 13.8 23.5

fu = 1000 10.7 13.7 23.5

fl = 8 fu = 200 11.3 15.0 24.0

fu = 400 11.1 14.8 23.6

fu = 600 11.0 14.7 23.5

f = 800 10.9 14.6 23.4

f = 1000 10.9 14.6 23.4

fl = 12 fu = 200 12.0 15.9 23.7

fu = 400 11.7 15.6 23.4

fu = 600 11.6 15.5 23.3

fu = 800 11.6 15.5 23.2

fu = 1000 11.6 15.5 23.2

fl = 16 fu = 200 11.8 15.7 22.4

fu = 400 11.6 15.5 22.1

fu = 600 11.5 15.4 22.0

fu = 800 11.4 15.4 21.9

fu = 1000 11.4 15.4 21.9



4.5 Summary of Bandpass Filtering Results for All Stimulus Levels
The above experiment was repeated for the other three stimulus levels of 15, 10,

and 7.5 gA when Ni was equal to 100, 50 and 20, using the same number of RSM wave-
forms (N w = 40),the same window (W 1 = 5 ms, and Wu = 50 ms), and the same
lower and upper cutoff frequencies. Although the results are not presented here in the
same degree of detail as the 35 gLA data, the most salient results are summarized along
with the 35 gA data in Tables 4.5a-d below. The best case row in each table represents the
configuration of lower and upper cutoff frequencies which yielded the lowest percent
spread when filtering was performed.

Examination of Tables 4.5a-d reveal some noteworthy general trends. For the
peak-to-trough amplitude feature, the minimum percent spread generally occurred when
fl = 0 Hz, the exception being for the 7.5 gA data where the minimum occurred for fl
was equal to 4 or 8 Hz. Additionally, the lowest percent spread generally occurred for
fu = 600 Hz, with one exception for the 15 pA data, and a few exceptions for the 7.5
gA data where fu was equal to 200 Hz or 1 KHz. For the RMS amplitude feature, the
lowest percent spread generally occurred for fi = 4 Hz, with fu equal to 600-1000 Hz.
Note also that the best case configurations reduced the percent spread about the mean for
both features generally by less than 2% for all data sets except the 7.5 pgA data, where it
was reduced by as much as about 8%, although the percent spread was much higher for
this data set by comparison.

Given the results discussed above, we conclude that bandpass filtering yield no
appreciable reduction in percent spread for any of the four data sets we examined, for the
values of Ni equal to 100, 50, and 20. Although there were some substantial reductions in
percent spread for the 7.5 gA data when Ni = 20, the percent spread still made our fea-
ture estimates highly variable. For these reasons we conclude that no ideal bandpass filter-
ing should be performed.

A final overview of the feature sizes as a function of stimulus is presented in Fig-
ures 4.6 and 4.7 which present the results when no ideal bandpass filtering was performed
and when Ni = 100 waveforms. Error bars equalling two sample standard deviations are
included. As expected, there is a general trend of increasing feature size with increasing
stimulus level for both features.



Table 4.5a Highlight of Bandpass Filtering Results for 35 gA Data

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread
(/iV) (AtV) (/iV) (RV)

Ni=100 No filter 523 31.28 12.0 108 6.23 11.5

Best 522 29.60 11.4 108 5.78 10.7

(fl- fu) (0,600) (4,1K)

Ni=50 No filter 526 40.91 15.6 109 8.00 14.7

Best 524 39.95 15.2 109 7.50 13.7

(fl' fu) (0,600) (4,1K)

Ni=20 No filter 527 56.11 21.3 111 13.14 23.8

Best 526 55.48 21.1 107 11.67 21.9

(f fu) (0,600) (16,1K)

Table 4.5b Highlight of Bandpass Filtering Results for 15 gA Data

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread
(AV) (AV) (2 SD's) (iV) (IV) (2 SD's)

Ni=100 No filter 369 27.68 15.0 79 5.40 13.7

Best 372 26.82 14.4 78 5.03 12.9

(fl, fu) (0,200) (4,1K)

Ni=50 No filter 373 43.23 23.2 80

Best 370 42.76 23.1 79

Ni=20 No filter 385 50.13 26.0 81

Best 382 50.04 26.2 81
I m (fl u) 1 (0,600) 1(0,600) 1

I I (fl, 1(0,600) 1(4,1K) I



Table 4.5c Highlight of Bandpass Filtering Results for 10 gLA Data

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread
(4tv) (gv) (9v) ( tV)

Ni=100 No filter 188 15.26 16.3 41 3.95 19.5

Best 189 14.58 15.4 39 3.60 18.2

(f' fu)  (0,600) (4,1K)

Ni=50 No filter 190 20.24 21.3 42 5.41 25.9

Best 192 19.90 20.8 41 4.92 24.3

(fl fu) (0,600) (4,1K)

Ni=20 No filter 207 30.31 29.3 44 6.70 30.7

Best 208 28.14 27.1 44 6.68 30.7

(fl, u) (0,600) (0,800)

Table 4.5d Highlight of Bandpass Filtering Results for 7.5 p.A Data

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread
(gv) (gV) (gV) (tV)

Ni=100 No filter 108 11.12 20.6 21 1.84 17.2

Best 89 8.36 18.8 20 1.69 16.5

(f-l fu)  (8,200) (4,600)

Ni=50 No filter 115 17.34 30.3 23 3.28 28.8

Best 102 11.25 22.0 22 2.62 24.3

(fl fu)  (8,1K) (16,1K)

Ni=20 No filter 123 26.33 42.7 26 6.14 47.8

Best 104 20.88 40.0 24 4.67 38.9

(fl, fu) (4,200) (12,600)



Figure 4.6 Peak-to-Trough Amplitude as a Function of Stimulus Level (No filtering)
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5. Weiner-Type Filtering
5.1 Statement of Goals, Assumptions and Methods

The goal here is to filter RSM waveforms with a single LTI filter such that the out-
put of the filter best resembles the evoked potential in a mean-square sense. RSM wave-
forms are used to eliminate some of the assumed additive noise while not attempting to
remove it all through averaging. We also use RSM waveforms in an effort to compare
results obtained here with those of the ideal bandpass filtering discussed above. We again
estimate the evoked potential for each set of recordings for each stimulus by the overall
mean waveform. We further assume that the cortical recordings consist of the determinis-
tic evoked response plus additive zero-mean wide-sense stationary noise, which is unaf-
fected by the presence of the evoked response, and which does not affect the evoked
response. A single filter is constructed for each of the four stimulus levels used, and a sin-
gle set of 500 independently obtained noise recordings are used as the noise estimates for
each of the four filters.

The traditional Weiner filter was originally designed to address such a problem,
although its construction assumed that the desired signal (the evoked response in our case)
was a stochastic process [4, 6, 11, 16, 21, 25]. This distinction motivated the use of our
name, 'Weiner-type' filter, and was the basis for the derivation of our filter form which is
similar in appearance to the traditional noncausal Weiner filter.

5.2 General Form of Weiner-Type Filter
The general form of the noncausal Weiner-type filter frequency response, which is

derived in Appendix C is given by the following:

H (ei ) = IS (eJ) 12
IS (eJ•) 12 + TSvv (u)

where
IS (ei ) 12 = energy spectral density of the evoked response s [n]
SvV (Q) = power spectral density of the noise v [n] (v [n] replacing vi [n]

generically)
T = time factor reflecting the time duration of the deterministic signal plus some

time which accounts for the nonzero convolution product between the filter
and the signal beyond the range where the signal is nonzero

5.2.1 Estimation of the Energy Spectral Density IS (ejl ) 12
The energy spectral density of the deterministic evoked potential is estimated by

the magnitude squared of the 4096 point Discrete Fourier Transform (DFT) of the overall
mean waveform for each of the stimulus levels used. This length DFT was chosen so as to
give good frequency resolution, while not taking an excessively long time to compute,
allowing the method to potentially be used in a real time analysis at a later date.

5.2.2 Estimation of the Power Spectral Density Svv (Q)
The power spectral density of the random process noise signal is estimated by

making use of 500 independently obtained noise recordings when no stimulus was
present. Estimation of power spectral density is a very rich subject, usually divided



between nonparametric methods and parametric methods. Nonparametric methods such as
the periodogram, Bartlett method, Blackman-Tukey and minimum variance estimators
require no assumptions about the data except that it is wide-sense stationary [12, 21].
Parametric methods such as the autoregressive, moving average and autoregressive mov-
ing average are based on a rational transfer function formed from a model of the data, and
require additional assumptions about the data [12]. For this reason parametric methods are
not used here.

Among the different nonparamtric (and parametric) methods exists a classical
trade-off between frequency resolution and estimator variance [12, 21]. On one extreme is
the periodogram method which has good frequency resolution but a very large variance.
This method uses the data to form a consistent unbiased estimator of the true autocorrela-
tion. This is accomplished by using the average of the sample autocorrelation functions
(defined below) formed from individual waveforms, and the Fourier transform of the aver-
age sample autocorrelation to yield the power spectral density estimate. Although it is an
asymptotically unbiased estimate of the power spectral density as the record length of
individual waveforms increases, its variance is very large, on the order of the power spec-
tral density squared [12, 21]. On the other extreme is Bartlett's procedure which has poor
frequency resolution, but which has lower estimator variance. This estimator is found by
finding the magnitude squared of the Fourier transform of each individual waveform
divided by the length of the waveform, and then averaging these terms to yield the power
spectral density estimate. Again this is an asymptotically unbiased estimator, and the vari-
ance is reduced from the periodogram method by a factor equal to the number of individ-
ual waveforms. Although other nonparametric methods exist such as windowing the
individual sample autocorrelation's in the periodogram method by a Hamming window,
they in general represent worse frequency resolution than the periodogram method or
greater estimator variance then the Bartlett method, and are not included here.

Consistent with our assumption of zero-mean noise, the mean value across wave-
forms for each time index n was subtracted off from each of the noise recordings. The
form of the sample autocorrelation estimator for individual waveforms is as follows:

N-Ikl-1
Rv [k] = N v[n]v[n - kl]

n=0
where

N = length of the noise waveforms (1000 samples)
k = lag variable

An example of the above discussion can be seen for the 500 noise waveforms in the
lowest frequency range of interest in Figure 5.1 below, which shows each of the two esti-
mation results discussed above. Given the excessively large variance in the power spectral
density estimate using the periodogram method, we use the Bartlett method in the forma-
tion of all Weiner-type filters.



Figure 5.1 Power Spectral Density Estimates of the Noise Waveforms (0-20 Hz)
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5.2.3 Determination of Time Scale Factor T
The time scale factor T reflects the time duration of the deterministic signal plus

some additional time which accounts for the nonzero convolution product between the fil-
ter impulse response and the deterministic signal beyond the range where the deterministic
signal is nonzero. The value of T should have a duration of no less than 500 ms (the
duration of the deterministic signal), and no more than a small fraction of 500 ms longer,
under the assumption that the impulse response is negligibly small outside this range. To
determine the effects of various values of T on the filter's magnitude response, T was
varied between 500, 550, 600 and 650 ms. The resulting Weiner-type filter magnitude
responses were examined, and revealed no appreciable differences. For this reason T was
chosen as 550 ms, leaving a 10% addition to the duration of the deterministic signal.

5.2.4 Weiner-Type Filter Magnitude Responses
The Weiner-type filter magnitude responses using the Bartlett method for the noise

power spectral density estimate are shown below in Figure 5.2 over the frequency range of
0-100 Hz. At larger frequencies the magnitude responses are essentially allpass. Note the
notch filter like character of each magnitude response at very low frequencies less than 1
Hz, and at about 15-20 Hz.
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Figure 5.2 Magnitude Responses of Weiner-Type Filters (0-100 Hz.)
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In order to facilitate comparison to the
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results of the Ideal Bandpass filtering sec-
tion, the same experimental conditions were repeated here. Specifically, we used
N = 40 number of RSM waveforms formed from either 100, 50, or 20 individual wave-

w

forms as the input to the Weiner-type filter. From the output waveforms, the peak-to-
trough and RSM amplitude about the time average features were calculated using a win-
dow from 5 to 50 ms, and the percent spread error criteria was calculated, again defined as
the ratio of two sample standard deviations to the mean feature size. These results are
summarized in Table 5.1 below, which compares the results to those obtained in the ideal
bandpass section.

Table 5.1 indicates that for the 35, 15 and 10 jtA data sets, the Weiner-type filter
produced an output which had a modestly lower percent spread than either no filtering or
the best type of ideal bandpass filtering (the ideal filter with the best choice of upper and
lower cutoff frequencies for yielding the lowest percent spread), with the singular excep-
tion of when Ni = 20 individual waveforms per RSM waveform for the RMS feature for
the 10 LA data. For the smallest stimulus level of 7.5 RIA the results where mixed,
although in most cases the Weiner-type filter produces lower percent spread than no filter-
ing at all.
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Table 5.1a Highlight of Filtering Results for 35 ptA Data

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread
(RV) (RLV) (tV) (gV)

Ni=100 No 523 31.28 12.0 108 6.23 11.5
Filter

Best 522 29.60 11.4 108 5.78 10.7
Ideal
Filter

Weiner- 510 23.68 9.3 106 4.63 8.7
Type
Filter

Ni=50 No 526 40.91 15.6 109 8.00 14.7
Filter

Best 524 39.95 15.2 109 7.50 13.7
Ideal
Filter

Weiner- 518 33.71 13.0 106 7.14 13.4
Type
Filter

Ni=20 No 527 56.11 21.3 111 13.14 23.8
Filter

Best 526 55.48 21.1 107 11.67 21.9
Ideal
Filter

Weiner- 522 51.54 19.8 108 9.66 17.9
Type
Filter

- - -- -



Table 5. lb Highlight of Filtering Results for 15 gA Data

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread

(gV) (gV) (gv) (gY)

Ni=100 No 369 27.68 15.0 79 5.40 13.7

Filter

Best 372 26.82 14.4 78 5.03 12.9

Ideal
Filter

Weiner- 350 22.79 13.0 75 4.02 10.7

Type
Filter

Ni=50 No 373 43.23 23.2 80 8.73 21.8

Filter

Best 370 42.76 23.1 79 8.25 20.9

Ideal
Filter

Weiner- 346 34.31 19.8 74 7.21 19.4

Type
Filter

Ni=20 No 385 50.13 26.0 81 11.22 27.6

Filter

Best 382 50.04 26.2 81 11.19 27.5

Ideal
Filter

Weiner- 354 44.42 25.1 76 9.35 24.5

Type
Filter

- - - - - -



Table 5.1c Highlight of Filtering Results for 10tA Data

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread
(tv) (AiV) (AV) (AV)

Ni=100 No 188 15.26 16.3 41 3.95 19.5
Filter

Best 189 14.58 15.4 39 3.60 18.2
Ideal
Filter

Weiner- 166 10.34 12.5 37 2.77 15.1
Type
Filter

Ni=50 No 190 20.24 21.3 42 5.41 25.9
Filter

Best 192 19.90 20.8 41 4.92 24.3
Ideal
Filter

Weiner- 173 16.6 19.2 37 4.23 22.8
Type
Filter

Ni=20 No 207 30.31 29.3 44 6.70 30.7
Filter

Best 208 28.14 27.1 44 6.68 30.7
Ideal
Filter

Weiner- 183 23.52 25.8 38 6.08 31.7
Type
Filter



Table 5.1d Highlight of Filtering Results for 7.5 gIA Data

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread

(vtV) (gtV) (jiv) (Nv)

Ni=100 No 108 11.12 20.6 21 1.84 17.2
Filter

Best 89 8.36 18.8 20 1.69 16.5
Ideal
Filter

Weiner- 100 8.46 16.9 20 1.51 15.5

Type
Filter

Ni=50 No 115 17.34 30.3 23 3.28 28.8
Filter

Best 102 11.25 22.0 22 2.62 24.3
Ideal
Filter

Weiner- 105 14.16 26.8 21 2.85 27.0

Type
Filter

Ni=20 No 123 26.33 42.7 26 6.14 47.8
Filter

Best 104 20.88 40.0 24 4.67 38.9
Ideal
Filter

Weiner- 112 25.25 44.8 23 4.33 37.5

Type
Filter

- - - -I



6. System Modelling and Parameter Estimation
6.1 Signal-Plus-Additive Noise Model
6.1.1 Statement of Assumptions and General Form of Model

This model assumes that the underlying desired evoked response is a deterministic
waveform, and all noise sources can be modelled by a single additive zero-mean wide-
sense stationary stochastic process. It is also assumed that the presence of the additive
noise does not affect the evoked response, and that it is not affected by the evoked
response. Again we estimate the evoked response with the overall mean waveform assum-
ing a sufficiently large number of individual waveforms are used to create it. Mathemati-
cally this model takes the following form:

xi [n] = s [n] + vi [n]
where

xi [n] = individual recorded waveform, i = 1, 2,..., I, n = 1, 2,..., N

s [n] = deterministic unknown evoked response, n = 1, 2,..., N

vi [n] = WSS random process additive noise associated with xi [n] , assumed
unaffected by the presence of s [n] , i = 1, 2,..., I, n = 1, 2,..., N

6.1.2 Model Justification
This model was constructed based on observations of thousands of evoked poten-

tial waveforms using numerous stimulus levels and subjects. For a given stimulus level it
was observed that as one calculates numerous mean waveforms from multiple disjoint sets
of individual waveforms, there appears to be an underlying signal which has similar shape
and size in each of the mean waveforms. Consequently the "size" of the waveform as
defined by the feature size operations (peak-to-trough amplitude and RSM amplitude
about the time average) is roughly constant across these different mean waveforms. The
observed small variation in feature sizes can be attributed either to (a) additive noise
which is still present despite the assumed noise reduction from the process of creating the
mean waveforms, or (b) an alternative model which assumes that the underlying evoked
response is amplitude scaled by a random variable (discussed below). Finally, since the
noise waveforms are assumed to be unaffected by the presence of the underlying signal,
this model allows us to utilize noise statistics from independent experiments when the
stimulus is absent.

6.1.3 Model Limitations
First this model may be attempting to define an inherently random parameter (fea-

ture size) in deterministic terms. The implication of this is to associate the variation in
estimates as being due to background noise, instead of random variation in the experimen-
tal values of a random variable. An additional implication is that the interrelationships
between random variables such as the cross-correlation or cross-covariance may be over-
looked. Second this model fails to account for the possible existence of a random variable
scaling factor which may multiply the underlying evoked response (discussed below). The
mean waveforms created may be averaging this amplitude scale factor making it approach
its expected value. Third, since the noise is not fully characterized by a probability distri-



bution function (pdf) no pdf is formed for the observed signals which prevents developing
theoretical estimator performance measures such as the Cramer-Rao lower bound on unbi-
ased estimator variance [11]. Finally, the noise may in fact not be a wide-sense stationary
random process, but for reasons of mathematical tractability the assumption is made.

6.2 Amplitude Scaled Signal-Plus-Additive Noise Model
6.2.1 Statement of Assumptions and General Form of Model

This model assumes that the underlying evoked response is amplitude scaled by a
scalar, positive, independent, identically distributed (iid) random variable, and that all
noise sources can be modelled by a single additive zero-mean wide-sense stationary sto-
chastic process. Assuming that the amplitude scale factor is an iid random variable
reduces the complexity of attempting to construct its probability density function. It is also
assumed that the amplitude scale factor and additive noise are independent, and that the
presence of the additive noise does not affect the evoked response, and that it is not
affected by the evoked response. Finally it is assumed that the expected value of the
amplitude scale factor is unity. Although this choice appears arbitrary, it is done so that the
overall mean waveform can be used as an unbiased estimator of the underlying evoked
response when a sufficiently large number of individual waveforms are used. Mathemati-
cally this model takes the following form:

xi [n] = ai s [n] + vi [n]
where

xi [n] = individual recorded waveform, i = 1, 2,..., I, n = 1, 2,..., N

s [n] = deterministic unknown evoked response, n = 1, 2,..., N

vi [n] = random process additive noise associated with xi [n] , assumed
unaffected by the presence of s [n] , i = 1, 2,..., I, n = 1, 2,..., N

ai = random variable amplitude scale factor, i = 1, 2,..., I

6.2.2 Model Justification
The basic justification for this model is based on the same observations of wave-

forms which justified the signal-plus-noise model discussed above. The most important
distinction is the supposition that the variations in feature amplitudes of mean waveforms
are attributed to the presence of an amplitude scale factor, where in the signal-plus-noise
model they are attributed only to additive noise. The motivation for this model came from
a preliminary threshold experiment, where individual waveforms with large peak-to-
trough or RMS feature sizes above some threshold were removed. From this subset a
mean waveform was found, and compared to a mean waveform formed from the same
number of individual waveforms chosen from the collection of waveforms whose feature
sizes where below the threshold. Comparing the two mean waveforms revealed a similar
underlying shape, although the feature sizes of the mean waveforms where different. This
suggests that some underlying waveform (the evoked response) was amplified by a ran-
dom variable scale factor.



6.2.3 Model Limitations
Many of the same limitations exist with this model as with the signal-plus-noise

model discussed above. First this model may be attempting to define an inherently random
parameter (feature size) in deterministic terms. Second, since the noise is not fully charac-
terized by a pdf, no pdf is formed for the observed signals which prevents developing the-
oretical estimator performance measures such as the Cramer-Rao lower bound on
unbiased estimator variance. Third, the noise may in fact not be a wide-sense stationary
random process. Fourth, the noise and the amplitude scale factor may not be independent,
and the interrelationships between them are unlikely to be found given our inability to
obtain noise recordings when the evoked response is present.

6.3 Verification of the Amplitude Scaled Signal-Plus-Noise Model
6.3.1 General Form of Test

We seek some quantitative justification for the proposed amplitude scaled signal-
plus-noise model. Such a justification can be made using principles of linear algebra,
orthogonalization and Principle Components analysis. Since we are not interested in any
DC (time average) shifting, the following test is applied to the data when the time average
of the individual waveforms is first removed. Rewriting the form of the amplitude scaled
model in vector notation, and defining the zero-mean random processes vectors w and y,
with experimental values wi and yi for i = 1, 2,..., I, and the normalized signal vector
s we obtain:n

xi = ais + vi (Amplitude Scaled Model)

wi xi - s (Zero-mean Data)

wyr projs W = sswi sn = s- (unit length)
where I ns n s

i = [xi[l] xi[2] ... xi [N] ] T (i = 1, 2,..., I)

s = [s[l] s[2] ... s[N]]T

vi = [vi[1] vi12] ... vi [N] ] T (i = 1, 2,..., I)

wi = [wi [1] wi[2] ... wi [N] ]T (i = 1, 2,..., I)

Yi = Yi [ 1] yi [ 2 ] ... yi [ N ] ] T (i = 1, 2,..., I)

The covariance matrices for w and y are obtained as follows:

Aww E { (w-w) (W-gw) T} = E { wwT}

Aww = E{ (a - 1) 2ssT + E{vvT} = 2ssT + Avv

A =EE{ (y-g ) (y-• )T} = E{yyT} = Sns TA s sTyy y Y nfn wwn n



where

w = [pw[1] .w[2] ... gw[N]]T = 0

y = [PY [1] y [2] ... gy [N]]T = 0

Finally we find the expected value of the norm squared of y in terms of the covariance
matrix of w, and the eigenvalues and eigenvectors of w as follows:

= T Wi)T(SnSTWi)I = EjwTs STS sTw.}E {yTy} = E { = E {w sn nsn 1

E {yTy} = E {wTs sTw} = E{sTwwTsn} = sTA sn

Using Mercer's Theorem [23] we can express Aww in terms of its eigenvalues and eigen-
vectors yielding:

N N

E {yTy} = s i n i 2 (Quadratic Form)
i=1 i=l

where
i. = ith eigenvalue of AW

-i = it h eigenvector of AWw corresponding to Xi

We now let Xi 2  '" XN' and since (sTBi 2 1 for all i, we obtain our the ine-
quality:

N
E {yTy} < trace { Aw} where trace { Aw } = i

i=l
Equivalently

R- E{yTy} <1
trace {Aww

We can express R in terms of an additional expression which leads further insight into our
choice of this test. Defining the eigenvalues Ti and eigenvectors x4 i of the covariance
matrix AW of the zero-mean additive noise random process v, and using the quadratic
form for the expansion of sA sn we obtain:n vv n T:( 

<YSS 01i12+ Nny, 5T-q,)2
N

E {yTy} n = s ssT+A s = s I+s2+ 2 sn 2

i=l
N

trace {Aww = 2atrace {ssT} + trace {Aw} = 2lls112 + i.

n=l



Thus N N

S•( s TJ n iý2 'a[s12 +  y ri(sTi) 2

E {yTy} i= 1 i= 1
N N

trace { A }i Y0]S2 s +  i

i=l n=l

From the above expression R = 1 if an only if all the eigenvalues of Aww except the largest
(the dominant eigenvalue)2are equal to zero, and if sn = i . This provides confirmation
of the model because as aa increases, individual wi tend to look more like s, making the
dominant eigenvector of A look more like s, making the numerator of the expression
for R above approach the dominant eigenvalue X1. Furthermore the non-dominant eigen-
values tend to zero in this case because the covariance matrix A can be explained
mostly by the term X1 11 T from Mercer's Theorem.

However, note the presence of a degenerate case which causes R = 1 when the
model is not confirmed. This occurs when the non-dominant eigenvalues of A are all
equal to zero and the signal is in the direction of the dominant eigenvector (i.e. sn = Nil).
We expect the degenerate case to be unlikely given our assumption that the noise is due to
many additive sources.

6.3.2 Application of the Model Verification Test to the Four Data Sets
We have seen from the above discussion that the test for whether we support the

amplitude scaled model depends on how close the ratio R is to unity. We also recognize
that the underlying evoked potential signal s (and its amplitude scaled version) are likely
to only occur during a finite portion of the data record, presumably during the temporally
early portions of the individual waveforms, and that this time period should be roughly the
same across experiments (although it is certainly possible that larger amplitude stimuli
may produce an evoked response which occurs for a longer duration). Based on these
assumptions, we seek confirmation for the model during windowed segments of the indi-
vidual waveforms, and expect that confirmation will depend on the starting time and dura-
tion of these windowed segments.

Four time windows were examined of duration 20, 30, 50 and 100 ms, and the
starting times for these windows were swept from the beginning of the individual wave-
forms after the stimulus artifact (at 5 ms) in 0.5 ms increments up to the end of the wave-
form (at 500 ms - window duration). The ratio R was calculated for the four data sets in
each of these time windows, and these individual values of R were averaged across data
sets for each particular time window and starting point. The window starting time when
the maximum of this average R occurred was used to indicate which time window corre-
sponds to maximal confirmation of the model across data sets. These results are summa-
rized in Figure 6.1 below.



6.1 Average Value of R across Data Sets for Numerous Time Windows
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The plots in Figure 6.1 indicate a strong confirmation of the model when the time
window is limited to 20 or 30 ms, occurring during the early portions of the waveform,
although not in the earliest portion. This could be accounted for by a time dependent vari-
ance of the amplitude scale factor such that its variance is small during the earliest portion
of the waveforms, then growing, and then dying out for later portions when the signal s
may itself be dying out. Although the signal may be dying out after about 100 ms, we do
not expect a significant loss of the signal s to occur before 50 ms, making the above
explanation incomplete in attempting to account for the strong dip in R before 50 ms in the
20 and 30 ms time window data. It is also interesting that the lowest value of R occurs just
following the highest confirmation for the 20 and 30 ms time windows. The individual
values of R for the four data sets is summarized in Table 6.1 below for the time window
when the average value of R across data set is a maximum.

Table 6.1 Values of R for Each Data Set When Average R across Data Sets is Maximum

35 .tA Data 15 gLA Data 10 gIA Data 7.5 gIA Data

20 ms Window 0.7910 0.8243 0.7716 0.7190
(20-40 ms)

30 ms Window 0.7668 0.8081 0.7317 0.5791
(19-49 ms)

50 ms Window 0.6401 0.6401 0.6242 0.6016
(58-108 ms)

100 ms Window 0.6181 0.6378 0.6594 0.6462
(35-135 ms)

Further confirmation of the model can be made qualitatively by examining the
eigenvector corresponding to the largest eigenvalue (the dominant eigenvector/eigenvalue
pair) when the ratio R is large. We expect that this dominant eigenvector should resemble
the signal s when properly scaled. Using simple principles of orthogonality, the best mean
square fit between the signal estimate for s (the overall mean waveform) and a scaled
dominant unit length eigenvector occurs when the scaling equals the dot product of s and
the dominant eigenvector. Figure 6.2 below shows the comparison of the properly scaled
dominant eigenvector and the overall mean waveform (made zero-mean over the window
in question) for the 20 ms time window for each of the four data sets when the average
ratio R across data sets was a maximum (between 20 and 40 ms). This figure provides fur-
ther confirmation of the amplitude scaled signal model for the 20 ms time window over
the time range given.



Figure 6.2 Signal Estimate s and Dominant Eigenvectors (20 ms Time Window)
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6.4 Estimation of the Amplitude Scale Factor
6.4.1 Statement of Goals

Given that the amplitude scaled model has been verified over a time window of
limited duration, we seek an estimate of the amplitude scale factor of individual wave-
forms i . Although the model is not completely confirmed over the waveform duration of
500 ms, we assume that if present, the amplitude scale factor multiplies the signal s over
its duration, which may or may not be the same as the duration of the individual recorded
waveforms. We thus seek to estimate the amplitude scale factor for individual waveforms
using some finite portion of the waveforms, starting at 5 ms (when the stimulus artifact is
over) up to some finite time less than or equal to 500 ms. Again, since we are not inter-
ested in DC shifting effects, the time average of individual waveforms over the time win-
dow in question is first subtracted off. We seek to (a) determine a rough estimate of the
distribution of the amplitude scale factor, (b) determine if there is any temporal depen-
dence for the amplitude scale factor across waveforms, and (c) to determine the reason-
ableness of our estimates in terms of our underlying assumptions which are enumerated
below.

6.4.2 Estimator General Form and Underlying Assumptions
The estimation procedure for the amplitude scale factor for each of the individual

waveforms is based on a matched filter approach [11]. We assume here that the noise does
not appreciably resemble the signal and that the amplitude scale factor is a positive con-
stant whose expected value is unity. This assumption makes unbiased our estimate of the
evoked potential using the overall mean waveform. The general approach is to compare
the individual waveforms to a matched filter for the evoked potential estimate. The overall
mean waveform is scaled by a positive constant and compared to the individual waveform
whose amplitude scale factor we wish to estimate. The positive scale factor multiplying
the overall mean waveform is adjusted until the fit with the individual waveform is opti-
mized.

An equivalent procedure to the above comparison between the amplitude scaled
overall mean waveform and the individual waveforms is accomplished by minimizing the
Euclidean norm squared, defined as the sum of squared differences between the two wave-
forms at each moment in time. Appendix B shows the derivation of this estimator, whose
general form is as follows:

x i [n] s [n]
A.i= n as 2 [n]

n

where
ai = estimate of the amplitude scale factor, i = 1, 2,..., I

xi [n] = individual recorded waveform, i = 1, 2,..., I, n = 1, 2,..., N

s [n] = deterministic unknown evoked response, n = 1, 2,..., N, estimated by the
overall mean waveform



In practice, some initial signal processing of individual waveforms is performed to
remove any bias due to the DC values of the individual waveforms. This processing is
simply the removal of the DC component of the individual waveforms. The reason for this
initial processing can be seen by examination of the amplitude scale estimator form given
above. If we do not first remove the DC values of the individual waveforms, then we will
effectively be adding a bias equal to the dot product of the DC values and the evoked
potential estimate, normalized by the energy of the evoked potential.

6.5 Results of Amplitude Scale Estimation
The amplitude scale factor was estimated using the estimator described above,

applied to the 35, 15, 10, and 7.5 gV data using a 100, 200 and 500 ms time window,
starting in all cases from the point immediately following the stimulus artifact ending at 5
ms. The mean of each of these estimates is exactly one, given the form of the estimator
and the fact that the overall mean waveform is used as the evoked potential estimate.
These results are summarized in Figure 6.3a-c below which shows 25 bin histograms of
the amplitude scale estimates for each of the stimulus levels and time windows used.

Figure 6.3a Histograms of Amplitude Scale Estimates for 100 ms Time Window
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Figure 6.3b Histograms of Amplitude Scale Estimates for 200 ms Time Window
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Figure 6.3c Histograms of Amplitude Scale Estimates for 500 ms Time Window
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A number of salient features of the above histograms are noteworthy. First, for
each time window used, some of the amplitude scale estimates are negative which is
inconsistent with our assumption of only positive amplitude scale estimates. This can be
explained by the fact that the amplitude scale estimator is actually equal to the sum of the
actual amplitude scale factor and the dot product of the additive noise waveform v [n]
and the signal estimate normalized by the energy in the signal estimate (see Appendix B).
Note also that for a given time window, a larger percentage of amplitude scale estimates
are negative as the stimulus amplitude is decreased. This is expected since decreasing
stimulus amplitude also reduces evoked response strength, making the additive noise term
stronger in comparison. Second, increasing the window time for each stimulus amplitude
also increases the percentage of negative amplitude scale estimates. This can also be
explained by the additive noise term since we expect that the evoked potential signal is
strongest during the temporally early portions of the individual waveforms, making the
longer window estimates more subject to additive noise effects. Finally, the spread of esti-
mates is larger for smaller amplitude stimuli for a given window length, and larger for
longer window lengths for a given stimulus amplitude. Again this can be explained by the
effect of additive noise which is relatively stronger as the stimulus is decreased, or the
window is increased. Table 6.2 below summarizes this spread in terms of sample standard
deviation of the amplitude scale estimates.

Table 6.2 Sample Standard Deviation of Amplitude Scale Estimate

35 gA Data 15 tA Data 10 gIA Data 7.5 lgA Data

100 ms Window 0.5073 0.7174 0.9415 1.3769

200 ms Window 0.8456 1.3774 2.4861 4.4740

500 ms Window 1.0567 2.3859 3.8296 5.6325

In an effort to determine if any periodic time dependence exists, the autocorrela-
tion of each of the amplitude scale estimates as a function of waveform number was calcu-
lated. There appears to be no such discernible periodicity given the absence of large peaks
away from zero lag. Qualitative observation of the amplitude scale estimates as a function
of waveform number reveals no other temporal dependence.



7. Active Noise Cancellation
7.1 Statement of Goals and Assumptions

Active noise cancellation (ANC) is an example of a general class of adaptive filter-
ing methods in which the noise associated with a cortical recording (the primary signal) is
reduced by using a secondary noise recording (the reference signal) which is correlated to
the noise in the cortical recording [29]. The goal is to reduce the noise in the primary
recording to yield a more accurate estimate of the underlying evoked potential using the
smallest number of waveforms necessary. We assume that the noise in the primary record-
ing is zero-mean and additive to the deterministic evoked potential which may or may not
be amplitude scaled, and that the reference noise is zero-mean and correlated to the noise
in the primary recording. The earlier assumption that the additive noise is wide-sense sta-
tionary is not necessary here since the adaptive system has the ability to track the changing
signal statistics [29]. Note that this method yields estimates of individual evoked potential
waveforms without requiring a priori knowledge of the evoked potential or primary noise
statistics, unlike the Weiner-type filtering method discussed earlier.

7.2 Active Noise Cancellation Overview
The basic active noise cancellation block diagram is depicted below in Figure 7.1.

The primary signal is the sum of the desired evoked potential and the additive noise we
wish to remove. The reference signal consists of noise recordings which are assumed to be
correlated to the primary noise. The source of the reference signal is discussed separately
below. The basic method is to filter the reference signal in such a way that the output of
the adaptive filter best resembles the noise in the primary signal, so that the difference
between the primary signal and the adaptive filter output is the best estimate of the under-
lying evoked potential. During each iteration in which a single sample of the primary and
reference signals is processed, an error signal (or system output) Ek is generated which is
the difference between the filtered reference signal sample yk and the primary signal sam-
ple pk (note that we are using vector notation where pk = p [k] = x [k] , the raw
recorded individual waveforms). This error signal is then used to update the filter coeffi-
cients according to the adaptive algorithm. The adaptive algorithm used here is the Least
Mean Squares (LMS) developed by Widrow, which is discussed in more detail below.

Figure 7.1 Block Diagram of Active Noise Cancellation System

Primary
Signal

Reference
Signal

System
output



7.2.1 Adaptive Filter of the ANC System and the Performance Surface
The adaptive filter of the active noise cancellation system is depicted below in Fig-

ure 7.2. It uses Nf number of filter weights which are updated after each iteration accord-
ing to the LMS algorithm. The input to Nf - 1 of these weights are the last Nf - 1
samples of the reference signal, and the input to the final filter weight is merely the con-
stant +1, which has been shown to help eliminate low frequency motion artifact [3]. Using
vector notation we define the reference input at time k as Rk (where the bias of +1 is
included for completeness) and the weight vector Wk as follows:

Rk = [r[k] r[k-1] ... r[k-Nf+2]

Wk [wkO wk ... wkN-,_] T

1]T

Figure 7.2 Adaptive Filter Portion of the Active Noise Cancellation System

Thus the output of the adaptive filter at time k is yk = WkRk, and the error signal (sys-

tem output) at time k is k k k =  Pk - W Rk. We seek to minimize the mean

squared error ý, which is defined as follows:

2 2 WT W 2R T
-E{Ek} = E{Pk kRkRkkk -2pkR kWk

2 T T T
= E{pk +WkE {RkRkWk- 2 E{pkRk Wk

Dropping the notation, and further defining the reference input correlation matrix
Ar E { RR } (which is also the reference input covariance matrix since the reference
noise is assumed zero-mean) and the vector of cross correlations between the primary

V
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** N = Nf in text



input sample and the reference inputs P E { pkRk} , we rewrite the MSE:

p2 +W T TAW- T= E{pk} +W ArrW2P W

The MSE 4 written above is a quadratic function of the components of the weight
vector when the reference input components and primary signal are wide-sense stationary
[28]. The goal of the adaptive system is to search this quadratic mean square error surface
for the "bottom of the bowl", i.e. the value of the weight vector which yields the minimum
mean squared error. With a quadratic performance surface there is only a single global
minimum [28].

One method of searching the MSE quadratic performance surface is by gradient
methods. Dropping the k notation and defining the gradient V as the partial derivative of
the MSE with respect to the weight vector, and the optimal weight vector W* as that
value of the weight vector when the MSE is minimum we obtain the following:

V W = .wi W = 2A W- 2Paw w aw aw rr
Setting the gradient to zero and using W* = W we obtain:

V = 0 = 2ArrW* - 2P which implies

W* = A- 1P (assuming A is nonsingular)rr rri
This expression is an equivalent expression to the Weiner-Hopf equation in matrix form
[28, 29]. Substituting this result into the expression for the MSE above, and performing
algebra we obtain the following:

4min = E {pk2 - pTW*

This expression can also be reformulated into a general expression for the MSE under
nonminimized conditions [28,29], yielding the following:

= min + (W - W*) TArr (W- W*)

In general, the adaptive process k+1 iteration filter weights are related to the previ-
ous iteration filter weiht by the following expression, where Vk is the gradient of the
MSE surface at the k iteration, and g is a convergence constant governing the rate that
the weight vector converges to the optimal solution:

Wk+ = Wk- k Vk

Various methods are used to estimate the gradient Vk which include Newton's method
and the method of steepest descent [28]. Newton's method yields the optimal weight vec-



tor in a single iteration, but is not usable when the reference input correlation matrix is sin-
gular. The LMS algorithm is a special case of the method of steepest descent, and is
discussed in the following section.

7.2.2 LMS Algorithm
The LMS algorithm is an example of a steepest descent method for estimating the

2
gradient of the MSE surface. The LMS algorithm uses ~k as the estimate of the MSE

k = E { sk}. Defining k as the gradient estimate at the kth iteration we obtain the fol-

lowing:

a k k k k aEk ak ck
Vk1 - =-... 2  ..W wO awl *aw0  k aw 0 1 Nf-lf f

Therefore
Vk = -2EkRk"

Using the weight vector update equation developed above, and substituting Vk for Vk we
obtain the following:

Wk + 1 = Wk - LVk = Wk + 2 ipEkRk (LMS Algorithm)

This algorithm is easy to implement in a real time setting, which was the chief
motivation for its use in this thesis. One needs to only specify three parameters, the num-
ber of weights used in the adaptive filter, the initial value for these weights, and the con-
vergence parameter gt. We decided to use 24 weights which has been used successfully by
a number of others [3] with initial weight values of zero [3]. Although some initial experi-
ments where run with 12 and 36 weights also, the results where not significantly different.
The convergence parameter represents a trade-off between convergence rate and stability.
Since we desire a fast convergence rate given that the important waveform information is
contained in the temporally early portions, we sought the largest convergence parameter
without producing unstable results. After trial and error using convergence factors of 0.01,
0.1, 1 and 10, we decided to use gt = 0.1 since the convergence was not too slow (as it
was with 0.01) and the output remained stable (which was not true for values of 1 and 10).

7.2.3 Reference Noise Source
Generally, active noise cancellation uses reference waveforms which are simulta-

neously obtained from some secondary noise source [9, 18, 28, 29]. The secondary noise
source must also be chosen so that it contains no appreciable desired signal components,
or else these components may be subtracted off in the adaptive process [9, 28, 29]. For our
purposes such secondary sources may include the heart, lungs or muscular activity. These
sources are generally treated one at a time, and alterations in the adaptive filter structure
must be made to accommodate the use of multiple simultaneous recordings.

An alternative novel approach used here is to use a priori noise recordings from the
same recording location that the primary signal is later recorded. This allows the multiple
reference sources to be combined as one signal from only one recording sight. The chief



disadvantages are (a) that the secondary noise statistics must be the same during the a pri-
ori recordings as during the signal recording, and (b) that synchronization of the a priori
noise components must be made to match up to the noise present when the signal is
recorded. Disadvantage (a) is potentially problematic for biological noise sources since
the experimental procedure often stresses an animal in such a way that these noise charac-
teristics do change over time (such as increasing heart rate or breathing rate). Disadvan-
tage (b) can potentially be overcome if the adaptive process is able to track the phase
difference in periodic noise components between the reference and primary noise, and
counteract them accordingly. Despite these disadvantages, some interesting and poten-
tially beneficial results are obtained by using a priori recordings, which are discussed
below.

7.3 Results of Active Noise Cancellation
A single set of 500 a priori noise recordings was obtained prior to the presentation

of any of the four stimuli. All five sets of recordings were obtained from the same subject
during the same experimental period. These noise recordings form the reference signals
for the active noise cancellation system for each of the four recorded data sets. All ANC
input waveforms start at 5 ms to avoid the stimulus artifact. Numerous error criteria were
developed to evaluate the effectiveness of the active noise cancellation system, and are
each discussed separately below.

It is also instrumental to examine a typical recorded waveform used as input to the
ANC system, the corresponding output waveform, and the overall mean waveform, as
shown in Figure 7.3 below over two time durations. Each of these waveforms has a zero
time average over the 500 ms waveform duration. From the 5-500 ms plot, note that the
ANC output waveform more closely resembles the overall mean waveform from 100 to
500 ms, not exhibiting the low frequency amplitude movement characterizing the input
waveform. Note also from the 5-100 ms plot that the ANC output waveform also is a bet-
ter match to the overall mean waveform in the early portion of the waveform, not exhibit-
ing the large DC shift characterizing the input waveform. However, in terms of our feature
analysis (peak-to-trough and RMS amplitude), the differences between the ANC input and
output tend to diminish since the features are independent of DC shifting. Another impor-
tant feature, although difficult to determine from Figure 7.3, is the short duration from
about 5-10 ms where the ANC adaptive filter converges. Examining numerous output
waveforms reveals a large variation in amplitudes in this very early region.



Figure 7.3 Typical Input and Output Waveforms and Overall Mean Waveform (35 gIA)
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7.3.1 Normalized Root Mean Square Error of Individual ANC Input and Output
Waveforms and Scaling of Output Waveforms
The normalized RMS error between each of the ANC output waveforms and the

overall mean waveform (the evoked potential signal estimate) was found for each of the
four data sets, and compared to the corresponding normalized RMS error of the ANC
input waveforms. The normalized RMS error is defined as follows:

(RMS) Norm

N 1/2

1 (q[n]--X [nl) 2

N

nI X [n] J
n=l

where
X [n] = overall mean waveform
q [n] = input to the ANC system (x [n] ) or the output from the ANC system

(y [n] )

Note that this error criterion is applied to waveform estimates, as opposed to the features
of these waveforms, as was done in the earlier analysis of the feature variance (or percent
spread) error criterion. This latter analysis is repeated for the ANC system output wave-
form in section 7.3.3 below.

-Overall Mean -
o ANC Output
* ANC Input

IIj



To determine if the ANC system reduces the normalized RMS error more effec-
tively over shorter segments of the waveforms, the normalized RMS error was calculated
over three time windows from 5-500 ms, 5-100 ms and 5-50 ms labelled as the 500, 100
and 50 ms windows respectively. These results are summarized for the first 100 wave-
forms in Figure 7.4 below.

Additionally, given the likelihood that an amplitude scale factor is present for indi-
vidual waveforms (see section 6) the ANC output waveforms were also rescaled by an
estimate of the scale factor and by an additive constant such that the mean square error
between the rescaled ANC output waveforms and the evoked potential estimate is mini-
mized. The normalized RMS error was then calculated for the rescaled ANC output wave-
forms. Although this rescaling has no practical application in reducing the number of
waveforms needed for an accurate estimate of the evoked potential (since the overall mean
waveform is used to calculate the rescaling parameters), the rescaled output normalized
RMS error does indicate the effectiveness of the ANC process.

Determining the rescaling parameter was achieved by minimizing the MSE as fol-
lows:

N
MSE = Y (ay[n] +b-S[n]) 2

n=l
where

y [n] = an individual ANC output waveform
^ [n] = evoked potential estimate (the overall mean waveform)
a = amplitude scale parameter
b = additive scale parameter

N
-ZMSE = = 2y[n] (ay[n]+ b-^[n]) = 0

n=l

ally [n] 112 + bNy [n] = <y [n], I [n] > (*)
N

where Ily [n] 112 - y2 [n] (squared norm)
n=l

N
y [n] = y [n] (time average)

n=l
N

<y [n], ^ [n] >- y [n] s [n] (inner product)
n=l

N

MSE = 2 (ay[n] +b- [n]) = 0
n=l

aNy [n] + Nb = NM [n]

b = [n] - ay [n] (**)
Substituting:



(y [n] ,s [n]) - Ny [n] § [n]
Ily [n] 112 - N(y [n]) 2

Note that due to the presence of noise, some the amplitude scale estimates may be errone-
ous, such as when a < 0, and therefore when this occurs the scale factor a is set to one by
default, with b calculated accordingly.

From Figure 7.4 it is apparent that the vast majority of ANC unscaled output
waveforms display lower normalized RMS error than the input waveforms for all stimulus
levels and windows examined. This suggests that ANC system is very effective in estimat-
ing the underlying evoked potential from individual waveforms. Note also that the differ-
ence between normalized RMS error of the ANC output (scaled and unscaled) compared
to ANC input tends to decrease for each stimulus level as the window is made shorter.
Considering the typical ANC input, output and overall mean waveform in Figure 7.3, this
can be explained by the fact that the ANC output waveforms tend to be a much better
mean square match to the overall mean waveform than the ANC input waveforms in the
temporally late regions. Additionally note that the scaled output waveforms universally
show lower normalized RMS error then the unscaled output waveforms and hence also
display lower normalized RMS error than the ANC input waveforms. Essentially this is a
test of waveform shape, since discrepancies in amplitude are adjusted for in a mean-square
sense by the scaling parameters a and b.



Figure 7.4a Normalized RMS Error Between Individual ANC Input, Output Waveforms
and the Overall Mean Waveform (Waveform numbers 1-100) (500 ms window)
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Figure 7.4b Normalized RMS Error Between Individual ANC Input, Output Waveforms

and the Overall Mean Waveform (Waveform numbers 1-100) (100 ms window)
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Figure 7.4c Normalized RMS Error Between Individual ANC Input, Output Waveforms
and the Overall Mean Waveform (Waveform numbers 1-100) (50 ms window)
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7.3.2 Normalized RMS Error of Cumulative ANC Input and Output Waveforms
Here a second error criterion based on entire waveforms was calculated, the nor-

malized RMS error of the cumulative mean ANC input and output waveforms with the
overall mean waveform. The cumulative mean waveform is the mean waveform formed
from the entire past number of waveforms input to the ANC system, or output from it.
This error criterion takes the same form as the normalized RMS error in section 7.3.1,
except the cumulative mean waveform of the ANC input or output replaces the individual
ANC input or output waveform respectively. Again the output was put into a scaled form
as was done in the previous section, but the results were virtually identical to the unscaled
output case, and hence are not reported here. The primary goal here is to determine how
well the ANC system produces an output whose mean response is a good estimate of the
underlying evoked potential. A secondary goal is a critical comparison between the ANC
system evoked response estimate and the best estimate that can be made in real time using
the mean waveform from the past number of recordings. Since the evoked potential is
again estimated by the overall mean waveform formed from the ANC input waveforms,
the normalized RMS error of the cumulative ANC input waveforms goes to zero by defini-
tion when all the waveforms are used. Thus we expect that after finding the mean of some
number of waveforms, the normalized RMS error of the ANC input waveforms will be
less than that for the corresponding number of ANC output waveforms. Again all four
stimulus levels were used over three time windows of duration 500, 100 and 50 ms, all
starting from 5 ms. These results are summarized in Figure 7.5 below.

From Figure 7.5, a number of salient features are noteworthy. First, for each stimu-
lus level, the ANC output cumulative mean waveform produces an improved estimate of
the overall mean waveform with a smaller number of waveforms than the ANC input
cumulative mean waveform up to some crossover point where the estimate becomes
worse. Second, this crossover point tends to decrease as the time window is decreased for
all stimulus levels used. In other words the advantage in estimating the overall mean
waveform from the ANC output cumulative mean waveform only exists for a small num-
ber of waveforms, and this number tends to decrease as we examine shorter waveform
time windows. Third, although the normalized RMS error of the ANC input tends to
decrease as more waveforms are used to form the cumulative mean for all stimulus levels
and time windows (with some exceptions where the error fluctuates), the normalized RMS
error of the ANC output tends to be independent of how many waveforms are used, after
some initial decrease in normalized RMS error. Fourth, the steady-state normalized RMS
error of the ANC output (i.e. the error as the number of waveforms in the cumulative mean
increases) tends to be independent of the time window examined and the stimulus level,
with a value of approximately less than or equal to one.

Given that the normalized RMS errors of individual ANC output waveforms tends
to be less than that for the ANC input waveforms (section 7.3.1) we expect that the mean
of the ANC output waveforms should be a better estimate of the overall mean waveform
than the ANC input waveform, at least up to some crossover point, which is verified in
Figure 7.5. We also expect that this crossover point should occur for a fewer number of
waveforms as the time window decreases since the improvement in normalized RMS error
of individual ANC output waveforms also diminishes as the time window is decreased,
which is again confirmed in Figure 7.5. The independence of the normalized RMS error
for the ANC output with the number of waveforms in the cumulative mean is possibly due



to the effectiveness of the ANC output in eliminating much of the additive noise. Under
this scenario averaging more waveforms yields little improvement since each individual
waveform is already a good estimate of the underlying evoked response. One problem
with this explanation is the fact that the crossover point occurs when only a few wave-
forms are averaged (less than 20 in many cases), suggesting that the ANC system may
have also introduced a bias which cannot be averaged out. This is consistent with the fact
that the normalized RMS error is approximately the same in the steady-state for all stimu-
lus levels and time windows used.

In summary, the ANC system produces individual waveforms which are much bet-
ter estimates of the evoked potential than the individual recorded waveforms. Furthermore
the cumulative mean waveform formed from the ANC output waveforms also are better
estimates of the evoked potential than the cumulative mean waveform formed from the
recordings for small numbers of waveforms used to form the cumulative mean, but for
larger numbers the cumulative mean formed from the recordings is a better estimate.
Again this is partially explained by the fact that our evoked potential estimate was formed
from the overall mean waveform of recordings.



Figure 7.5a Normalized RMS Error of Cumulative Mean ANC Input and Output

Waveforms (Waveform Numbers 1-200) (500 ms window)
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Figure 7.5b Normalized RMS Error of Cumulative Mean ANC Input and Output
Waveforms (Waveform Numbers 1-200) (100 ms window)
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Figure 7.5c Normalized RMS Error of Cumulative Mean ANC Input and Output
Waveforms (Waveform Numbers 1-200) (50 ms window)
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7.3.3 Feature Analysis of ANC Output Waveforms
The third and final error criterion is based on analysis of the peak-to-trough and

RMS amplitude about the time average features of RSM waveforms. This error criterion
attempts to quantify how well the features of mean waveforms compare to the features of
the overall mean waveform, as opposed to the normalized RMS error criterion discussed
above which compared individual or cumulative mean waveforms to the overall mean
waveform. In order to facilitate comparison to averaging the recorded waveforms, ideal
bandpass filtering, and Weiner-type filtering, the same experimental conditions were
repeated here, with the exception of the lower window time for feature extraction. Instead
of using a lower window time of 5 ms, here a lower window time of 10 ms was used to
counteract the effect of ANC convergence during the first 5 ms after the stimulus artifact.
The table is noted with an asterisk for this reason. All other experimental parameters were
repeated. Specifically, for each set of output waveforms corresponding to a single stimulus
level, 40 individual RSM waveforms were formed from 100, 50 and 20 individual wave-
forms, and the window for feature extraction extended from 10-50 ms. For each of the
experimental conditions, the mean, sample standard deviation and the percent spread were
calculated. These results are summarized in Table 7.1 below, where the earlier results are
repeated for comparison.

Examination of Table 7.1 indicates mixed results. For the 35 RIA data, the percent
spread was lower for each of the experimental conditions used, although the mean RSM
feature tended to be roughly 10% below the mean RMS feature for the other signal pro-
cessing methods suggesting the possible introduction of a feature bias due to the ANC sys-
tem. For the 15 gA data, the percent spread was lower for each of the experimental
conditions except when 100 individual waveforms were used for the RMS feature, and no
appreciable attenuation of the mean RMS feature was evident. However, for the 10 and
7.5 pgA data, the percent spread was almost universally worse in the ANC case than the
other three methods.

Numerous possible explanations exist for these mixed results. First it is possible
that the statistical characteristics of the primary noise associated with the recording pro-
cess changed during the experiment such that they no longer were a close match to the ref-
erence waveforms which were obtained prior to stimulus presentation. The stimuli were
presented in decreasing order of amplitude, so the lowest stimulus level of 7.5 RA
occurred with the greatest temporal distance from the reference waveform recordings.
Although apparently the ANC system was able to track phase changes between periodic
reference and primary noise components with some effectiveness, it would not be able to
account for changes in breathing or heart rate as the experiment was performed. It is possi-
ble that additional a priori recordings made temporally closer to each stimulus presenta-
tion may alleviate this problem, but future work is needed to verify this.

A second possible explanation for the mixed results may be unrelated to changes
in the primary noise statistics. It is also possible that the ANC system was able to track
amplitude scale variations more effectively than ideal bandpass filtering or Weiner-type
filtering. Under this scenario, averages of relatively few waveforms may be expected to be
different due to the different amplitude scale factor contributions from the individual
waveforms. As the number of individual waveforms used to form the RSM waveforms is
increased, these differences should tend to diminish since the average of the amplitude
scale factors tends towards its expected value.



A final possible explanation is that the ANC system distorts the output waveforms
such that more feature variation exists among individual waveforms. From the data it is
unclear if any of the above explanations or combinations of them is correct.

As an aside, an alternative error criterion of feature mean squared error was also
examined here, which is the mean squared deviation between the RSM waveform features
and the feature of the overall mean waveform. This error criterion was discussed in sec-
tion 3.2 and compared to the sample variance where it was shown that under certain con-
ditions these two functions yield similar results, i.e. when the feature of the overall mean
waveform is approximately equal to the mean of the features from the RSM waveforms.
This alternative error criterion was not adopted here because it was found to yield very
similar results to the sample standard deviation.



Table 7.1a Highlight of Filtering for 35 gtA Data (Nw =40, WI =5ms, Wu =50ms)

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread

( tv) (Rtv) (9v) (9V)

Ni=100 No 523 31.28 12.0 108 6.23 11.5
Filter

Best 522 29.60 11.4 108 5.78 10.7
Ideal
Filter

Weiner- 510 23.68 9.3 106 4.63 8.7
Type
Filter

Active 520 21.96 8.5 97 3.62 7.5
Noise
Filter *

Ni=50 No 526 40.91 15.6 109 8.00 14.7
Filter

Best 524 39.95 15.2 109 7.50 13.7
Ideal
Filter

Weiner- 518 33.71 13.0 106 7.14 13.4
Type
Filter

Active 523 31.13 11.9 97 5.75 11.8
Noise
Filter *

Ni=20 No 527 56.11 21.3 111 13.14 23.8
Filter

Best 526 55.48 21.1 107 11.67 21.9
Ideal
Filter

Weiner- 522 51.54 19.8 108 9.66 17.9
Type
Filter

Active 535 46.42 17.3 101 8.91 17.7
Noise
Filter *

-L



Table 7.lb Highlight of Filtering for 15 gA Data (Nw =40, W1=5ms, Wu =50ms)

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread

(RV) (RV) (9V) (9tV)

Ni=100 No 369 27.68 15.0 79 5.40 13.7
Filter

Best 372 26.82 14.4 78 5.03 12.9

Ideal
Filter

Weiner- 350 22.79 13.0 75 4.02 10.7

Type
Filter

Active 384 24.83 12.9 76 4.75 12.6

Noise
Filter *

Ni=50 No 373 43.23 23.2 80 8.73 21.8
Filter

Best 370 42.76 23.1 79 8.25 20.9

Ideal
Filter

Weiner- 346 34.31 19.8 74 7.21 19.4
Type
Filter

Active 387 33.83 17.4 77 6.86 17.9
Noise
Filter *

Ni=20 No 385 50.13 26.0 81 11.22 27.6
Filter

Best 382 50.04 26.2 81 11.19 27.5

Ideal
Filter

Weiner- 354 44.42 25.1 76 9.35 24.5

Type
Filter

Active 406 49.39 24.3 81 9.72 24.1
Noise
Filter *

- - - -I



Table 7.1c Highlight of Filtering for 10A Data (N =40, W1=5ms, Wu =50ms)

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread

(RV) (RV) (AV) (tV)

Ni=100 No 188 15.26 16.3 41 3.95 19.5
Filter

Best 189 14.58 15.4 39 3.60 18.2
Ideal
Filter

Weiner- 166 10.34 12.5 37 2.77 15.1
Type
Filter

Active 196 21.00 21.4 37 3.47 18.7
Noise
Filter *

Ni=50 No 190 20.24 21.3 42 5.41 25.9
Filter

Best 192 19.90 20.8 41 4.92 24.3
Ideal
Filter

Weiner- 173 16.60 19.2 37 4.23 22.8
Type
Filter

Active 200 23.82 23.8 40 4.29 21.7
Noise
Filter *

Ni=20 No 207 30.31 29.3 44 6.70 30.7
Filter

Best 208 28.14 27.1 44 6.68 30.7
Ideal
Filter

Weiner- 183 23.52 25.8 38 6.08 31.7
Type
Filter

Active 214 38.34 35.9 40 7.08 35.7
Noise
Filter *

- - - -I



Table 7.1d Highlight of Filtering for 7.5 gA Data (Nw =40, W1=5ms, Wu=50ms)

P-to-T RMS

Mean S. Dev. %spread Mean S. Dev. %spread

Ni=100 No 108 11.12 20.6 21 1.84 17.2

Filter

Best 89 8.36 18.8 20 1.69 16.5

Ideal
Filter

Weiner- 100 8.46 16.9 20 1.51 15.5

Type
Filter

Active 86 13.15 30.6 19 2.49 25.6

Noise
Filter *

Ni=50 No 115 17.34 30.3 23 3.28 28.8

Filter

Best 102 11.25 22.0 22 2.62 24.3

Ideal
Filter

Weiner- 105 14.16 26.8 21 2.85 27.0

Type
Filter

Active 88 19.07 43.1 20 3.13 32.1

Noise
Filter *

Ni=20 No 123 26.33 42.7 26 6.14 47.8

Filter

Best 104 20.88 40.0 24 4.67 38.9

Ideal
Filter

Weiner- 112 25.25 44.8 23 4.33 37.5

Type
Filter

Active 89 19.98 44.7 21 3.94 37.4

Noise
Filter *



7.4 Amplitude Scale Model Revisited
In an effort to determine why the feature analysis results were mixed, the ampli-

tude scale model verification test was repeated here for the ANC output data. The details
of the modelling test are treated in section 6.3 and are not repeated here. We again calcu-
lated our ratio R whose values fall between 0 and 1 for each of the four ANC output data
sets using windows of duration 20, 30, 50 and 100 ms, each beginning at 5 ms and sweep-
ing upwards in 0.5 ms increments for the entire waveform duration of 500 ms. Shown
below in Figure 7.6 are the average values of R across data sets for the four windows used.
The individual values of R for each stimulus level corresponding to the time when Rave
was a maximum is summarized in Table 7.2 along with the earlier results from the ANC
input data.

Figure 7.6 again shows strong evidence in favor of the amplitude scale model for
some of the early portions of the waveforms before 50 ms. Comparison of these early por-
tions across waveforms shows striking similarity in the distribution of Rave for the differ-
ent windows used, which was not evident when the test was applied to the ANC input data
in section 6. Although the actual value of Rave is lower for these tests than for the ANC
input data evaluated earlier, comparison of the values of R in Table 7.2 does show similar
values of R for the 15, 10, and 7.5 gA data. In fact for the 20 ms window, the 10 and 7.5
.tA data value of R is larger for the ANC output data than that for the ANC input data.

This suggests that the ANC system effectively removed large amounts of the additive
noise in these data sets, and was able to track the effects of the amplitude scale factor.
Although far from conclusive, these results suggest that the mixed feature analysis results
were due in part to the effect of averaging waveforms with highly divergent amplitude
scale factors, increasing the percent spread error criteria as a result.



7.6 Average Value of R across ANC Output Sets for Numerous Time Windows

Average Value of R Across ANC Output Sets (20 ms window)
Figure
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Table 7.2 Values of R for Each Data Set When Average R across Data Sets is Maximum
(Raw Data and ANC Output Data)

35 gA 15 gLA 10 A 7.5 pA
Data Data Data Data

20 ms Raw Data 0.7910 0.8243 0.7716 0.7190
Window (20-40 ms)

ANC Data 0.4184 0.7186 0.7757 0.7580
(18-38 ms)

30 ms Raw Data 0.7668 0.8081 0.7317 0.5791
Window (19-49 ms)

ANC Data 0.2618 0.6130 0.6942 0.6631
(17-47 ms)

50 ms Raw Data 0.6401 0.6401 0.6242 0.6016
Window (58-108 ms)

ANC Data 0.1059 0.5057 0.5997 0.6037
(16-66 ms)

100 ms Raw Data 0.6181 0.6378 0.6594 0.6462
Window (35-135 ms)

ANC Data 0.0637 0.3348 0.4680 0.4816
(16-116 ms)





8. Conclusion
8.1 Restatement of Thesis Goals

The ultimate goals of this thesis were to (a) reduce the number of individual
recordings necessary in order to obtain an accurate estimate of the underlying evoked
potential, and (b) to determine the validity of an alternative signal model which assumes
that the recorded waveform is the sum of an amplitude scaled evoked potential and addi-
tive noise. These goals were made in light of an overall desire to extract some characteris-
tic features from the recorded waveforms which are a function of stimulus level, and the
effectiveness of the retinal implant in producing a visual type of response. Two features
were examined throughout, the peak-to-trough amplitude and the RMS amplitude about
the time average. All the methods utilized four data sets corresponding to four stimulus
levels, recorded during a single experiment on a single subject.

8.2 Summary of Methods
Methods used to reduce the number of recordings include ideal bandpass filtering,

Weiner-type filtering and active noise cancellation. The method of averaging is standard in
clinical practice, and is assumed to produce very good estimates of the evoked potential,
but it suffers from requiring large number of individual waveforms to form an accurate
estimate. Ideal bandpass filtering is a simple LTI method designed to remove noise com-
ponents which do not share the same frequency range as the evoked potential frequency
components. Weiner-type filtering is an LTI method which uses knowledge about the
evoked potential and additive noise statistics to form a single filter for each data set exam-
ined. It suffers from its reliance on a priori knowledge of these signal and noise statistics.
Active noise cancellation is an nonlinear, time-varying method which utilizes reference
noise recordings which are assumed correlated to the noise present in the primary record-
ings which contain the desired evoked response. This method was here employed using a
priori recordings when no stimulus was present, a departure from more traditional active
noise cancellation systems which use simultaneously obtained recordings. In order to
facilitate comparisons between the effectiveness of these methods, the error criterion of
percent spread was adopted, which is based on the mean and the feature sample variance
of waveforms formed from small averages of individual waveforms chosen randomly
from the waveform population. Two additional error criteria of normalized RMS error of
individual waveforms and of cumulative mean waveforms were adopted in the case of
active noise cancellation, which compares individual or mean evoked potential waveform
estimates to the overall mean waveform, which is assumed throughout to be the best esti-
mate of the underlying evoked response. Normalized RMS error of both individual and
cumulative mean waveforms was compared to that between the individual or cumulative
mean raw recorded waveforms and the overall mean waveform. These normalized RMS
error measures were made over three data lengths, from 5-500, 5-100 and 5-50 ms.

The method used to determine the validity of the alternative model was based on
principles of linear algebra, orthogonality and Principle Components analysis applied to
the signal statistics. This method employed an estimate of the recorded waveform covari-
ance matrix and the evoked potential signal estimate from the overall mean waveform.
The test was applied to numerous sections of the recorded waveforms and for numerous
time window durations. The test was also applied to the individual evoked potential esti-



mates from the active noise cancellation system output.

8.3 Summary of Results
The methods used to reduce the number of recordings for an accurate evoked

potential estimate were all evaluated in light of the number of waveforms used in averag-
ing, which again is assumed to produce the most accurate evoked potential estimate,
although requiring a large number of individual waveforms. Ideal bandpass filtering gen-
erally produced a moderate reduction in percent spread, although the required lower and
upper cutoff frequencies for optimal performance were not consistent across experimental
conditions or data sets. Weiner-type filtering consistently produced improvements over
averaging and ideal bandpass filtering for all experimental conditions and all but the
smallest stimulus data sets, with only few exceptions when RSM waveform were formed
from only 20 individual waveforms. The results for the smallest stimulus data set were
mixed, producing lower percent spread than averaging or ideal bandpass filtering when
RSM waveforms were formed from 100 individual waveforms, but producing larger per-
cent spread than ideal bandpass filtering when RSM waveforms were formed from 50 or
20 individual waveforms. In this case Weiner-type filtering still was an improvement over
averaging.

The results of active noise cancellation also were also somewhat mixed, although
these results suggest some potential flaws in our choice of percent spread as an error crite-
rion. In terms of the normalized RMS error of individual waveforms which compares indi-
vidual waveforms to the overall mean waveform in the mean-square sense, the results
were very promising. The normalized RMS error of individual waveforms was consis-
tently lower for the active noise cancellation output waveforms than that for the input
waveforms, over each of the three data record lengths examined, and over all four data
sets. This suggests that the active noise cancelation system produced very good individual
evoked potential signal estimates. In terms of normalized RMS error of the cumulative
mean waveform which compares mean waveforms to the overall mean waveform the
results were also positive, where it was shown that for mean waveforms formed from
small numbers of individual waveforms the ANC output produced an improved estimate
of the overall mean waveform than the same number of ANC input waveforms. However,
in terms of the percent spread error criterion which examines features of mean waveforms,
the results were less uniform. For the 35 and 15 gLA data sets, the percent spread was con-
sistently lower (with only a single exception) than all other methods, for all experimental
conditions and for both features. For the 10 and 7.5 pA the percent spread generally
increased over that obtained from the other methods. A number of possible explanations
were put forth, including the possibility that the amplitude scale factor model is correct,
and that the active noise cancellation system tracks it well resulting in RSM waveforms
which are expected to have divergent feature sizes due to the amplitude scale factor. This
scenario was confirmed tentatively by the application of the alternative model test to the
output waveforms which appear to show that the model is valid for this data (with the
exception of the 35 gA data). This also suggests that the percent spread error criterion
may be specious when RSM waveforms are formed from relatively few numbers of indi-
vidual waveforms.

Application of the test for determining the validity of the amplitude scaled signal
model appear to confirm the model over some of the early portions of the individual wave-



forms, both for the raw recordings and for the active noise cancellation output waveforms.
Specifically it appears that the amplitude scale factor is present from roughly 20-40 ms for
each of the four data sets, and that its variance is relatively large in this region. We expect
that if present, the amplitude scale model should be confirmed over the temporally early
region of the waveforms only since the evoked potential tends to die out during the tempo-
rally late portions.

8.4 Future Work
Future work should concentrate primarily in two areas. First development of signal

processing schemes which are based on the amplitude scale model. These methods will
likely borrow heavily from communication theory and the nonlinear effects of channel
characteristics. These methods will likely be adaptive in nature, able to track changes in
the amplitude scale factor and noise statistics over time. They should not rely on global
statistics derived over long periods of time, such as those used in the Weiner-type filtering.
The second concentration should be in the area of active noise cancellation. Work should
be done which utilizes simultaneous recordings from multiple reference sources such as
from the heart and lungs. More work should also be done using different adaptive algo-
rithms besides the LMS algorithm employed here, such as the recursive least squares algo-
rithm. Other algorithms may be able to track nonstationarities more effectively than the
LMS has done here. Finally, more work could concentrate on modelling, preferably adap-
tive modelling which may reveal the dynamic nature of the system being studied.
Although these future areas represent considerable advancements over the present work,
their basis is formed from the advances achieved here.





Appendix A: Experimental Setup
The experimental data acquisition system essentially consists of a bandpass/gain

stage, a second order filter stage and a data acquisition board and computer stage. These
are depicted below in the block diagram.

Figure A.1 Block Diagram of Data Acquisition System

Stage 1: Consists of a 10x differential instrumentation amplifier, a 100x gain sub stage,
and a second order active Butterworth bandpass filter with a gain of about 1.59 and with
lower and upper 3dB cutoff frequencies of about 0.5 Hz and 3.125 KHz respectively.

Stage 2: Consists of an isolator circuit used to isolate the electrode inputs from ground,
and two second order active Butterworth bandpass filters whose lower and upper 3dB cut-
off frequencies are about 0.33 Hz and 2.6 KHz respectively.

Computer: Consists of a 486 PC clone CPU using a Microstar data acquisition board at a
sampling rate of 2 KHz using 12 bit precision. The triggering of the data acquisition sys-
tem is synchronized to the stimulation pulse.

* Note that although the data used in this thesis was acquired using a sampling rate of
2KHz, and the bandpass filters described above have an upper 3dB cutoff above 1 KHz,
some aliasing of signal components above 2 KHz are aliased down to the lower frequen-
cies we are interested in. These high frequency signal components were previously exam-
ined when the data was acquired at 7.14 KHz, and were found to be very small in
comparison to the low frequency signal and noise components, thus the need for new anti-
aliasing filters was unnecessary.

Input

Ground
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Appendix B: Derivation of Amplitude Scale Factor
Estimator

Derivation of estimator:
Using the concept of the Euclidean norm which describes the length of a vector,

we seek to minimize the length of the error vector (or length squared for simplifying cal-
culations). The error vector is defined as the difference between the recorded waveform
xi [n] and the estimate of the amplitude scaled deterministic evoked potential ii s [n] .
Written mathematically, we seek some ai such that we minimize

-1 xi [n] -'i s [n] 12 = YaXi [n] - s [n])2

n

The minimum of rl can be found by setting = 0, solving for a. and checking
2 ' 1
'q ofmA> 0 verifying that the chosen value of a. yields a minimum of r .

1 1

A= 2 (xi [n] as [n]) (-s [n]) = 0
i n

- xi [n]s [n] +iCis 2 [n] = 0
n n

xi [n] s [n]
a i n (assuming s2 [n] 0O)

IXs 2 [n] n
n

Alternate derivation of estimator:
Consider the geometric interpretation of ri in two-dimensional time space (i.e. n =

1, 2) depicted below, where xi [n] and s [n] are vectors, denoted xi and s respectively,
and ai is a scalar. e is a vector which represents the minimum distance between xi and
ai s when the proper choice of a. is made. Since in general x. and ai. s are not collinear
(unless there is no noise, i.e. vi [n] , or if the noise equals a scalar multiple of the signal)
the shortest vector between xi and ai s is perpendicular to ai s as shown below. Thus the
figure below depicts the case when ai is chosen so as to minimize the size of e = xi - is

which is directly analogous to the minimization of the Euclidean norm squared discussed
above. Since e I is, e * ais = 0 where * denotes the inner product (or dot product).
We assume ai • 0 in the following.

e * i.s = (xi - s) a ais = 0
1 n

xi* s = is *s x. * x[n]s[n]
1 ai- SSs 2 [n]

n



xi[l]

Figure B. 1 Graphical Representation of Amplitude Scale Factor Estimation Problem

Estimator Bias:
The form of ai above can be reformulated into the sum of the true amplitude scale

factor a. and an additive error term 8. Consider the appearance of = 0 when we sub-

stitute for xi [n] :

a,, X2(xi[n]-a' s [n]) (-s[n]) = 0
i n

- 22(ai s[n] +vi[n]-a i s [n]) (-s[n]) = 0
I n

-+ (ai - ai) s2 [n] vi [n] s [n] = 0

nv [n] s [n]

=1 1 s2 [n]
n

Taking the expected value:

E { i} = E { ai + 8} = ai (since the noise is zero-mean)

Thus the amplitude scale estimator is unbiased.
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* Note that we dropped the subscript on the noise vi [n] because the only parameters of
interest to us are related to the statistics of vi [n] which are presumed to be the same for
all i, allowing us to determine these statistics from independent recordings when no stimu-
lus is presented.

The error term 8 can be viewed in numerous equivalent representations. First as
the dot product of the noise and the deterministic evoked response divided by the dot
product of the deterministic response with itself. This is a measure of the extent that the
noise vector lies in the same direction as the deterministic response signal, normalized by
the energy in the deterministic signal. Equivalently, the error term can be viewed as the
output from a matched filter for the deterministic signal at time zero when the noise is the
input, divided by the output from the matched filter at time zero when the deterministic
signal is used as the input. This is a measure of how much the noise looks like the deter-
ministic signal, compared to a "perfect" match.



102



Appendix C: Derivation of Weiner-Type Filter
The Weiner-type filter assumes that the recorded cortical signal consists of the

deterministic evoked response and the random process additive wide-sense stationary
zero-mean noise which is unaffected by the evoked response, and which does not affect
the evoked response. Furthermore, the deterministic signal is nonzero over an interval
[0, Ti] only. The system model is as follows:

x (t) = s (t) + v (t) (1)

The following derivation first assumes that the variables of interest are functions of
continuous time, and then extrapolates the results to the case of discrete time. The follow-
ing variables are used in this derivation:

x (t) = Individual random process recorded cortical signal used to estimate s (t)
s (t) = Deterministic evoked response which is nonzero over [0, Ti] only
v (t) = Zero-mean WSS random process additive noise
Rv (') = Stochastic autocorrelation of v (t)

Sv (co) = Power spectral density of v (t)
^ (t) = Estimate of s (t) using x (t)
Hw (jco) = Frequency response of Weiner-type "optimal" filter
hw (t) = Impulse response of Weiner-type "optimal" filter for estimating s (t)

from x (t) , i.e. ^(t) = h (t) * x (t) where hw (t) = h (t) when
the error e is minimized (defined below)

e = Error term which the Weiner-type filter is designed to minimize

We seek to minimize the error term E which is defined as follows:

(T1 + At) (T1 + At)
SE E{ At  [h (t) * x (t) - s (t) 2dt} E [(t) -s(t)] 2 dt} (2)

The time At is chosen so that hw (t) is negligible for Itl > At, i.e.

At [h (t) * s (t) ] 2dt [h (t) * s (t) ] 2dt (3)

The above approximation reflects the fact that h (t) is finite in duration, and can be
understood by considering the convolution of h (t) and s (t) near the boundaries of s (t) .
As s (T) is multiplied by h (t - t) when t is adjusted from zero towards -0 and from T1towards +0o, the product s (t) h (t - t) continues to be nonzero for a finite amount of
time due to the overlap between the two functions. We describe the amount of time where
there is nonzero overlap before zero and after T1 by At. Note that a stable h (t) cannot be
infinite in duration since bounded input bounded output stability requires that h (t) be
absolutely integrable.

Additionally, since ^ (t) = h (t) * x (t) = h (t) * s (t) + h (t) * v (t) uses a fil-
ter h (t) which is designed to minimize the noise and to make s (t) resemble s (t) , we
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expect that h (t) * s (t) should also resemble s (t) . Therefore since s (t) is nonzero over
the interval [0, T 1] only, we expect that h (t) * s (t) will approximately be nonzero over
the interval [0, T1] only, where the approximation is carried out in the At added bound-
ary in expression (3) above. This approximation assumption in (3) is important because it
allows the use of Parseval's theorem in evaluating the expression.

Alternative Description of the Error Expression:
The error expression in (2) can be rewritten as the sum of a filtered noise error term

and a deterministic distortion term.

(Tl + At)
SE { _At [h (t) * v (t) ] 2 dt} + [h (t) * s (t) - s (t) ] 2dt

Proof: (T1 + At)
- E {It [h (t) * x (t) - s (t) ] 2dt}

(T1 + At)
E = E { At [ (h (t) * x (t))2 - 2s (t) (h (t) * x (t)) + s2 (t) ] dt}

(At)

= E {(TA t [(h(t) * [s(t) +v(t)]) 2 -2s(t) (h(t) * [s(t) +v(t)])]dt}
AAt

(T{ At)s 2 (t) dt}+ E I [At

(T1 + At)
= E{ At  [(h(t) * s(t)) 2 + (h(t) * v(t)) 2]dt}

_At
(T + At)

+ El{f [2 (h(t) * s(t)) (h(t) * v(t))] dt}
-At
(T + At)

- E l{ [2s (t) (h(t) * s (t)) + 2s(t) (h(t) * v(t)) (t) dt
-At

(T 1 + At)
e = E _{ (h(t) *v(t)) 2 dt}

(T + At)

+E{At [ (h(t) * s(t)) 2 - 2s(t) (h(t) * s(t)) +s 2 (t)]dt
(T, + At)

S E { 2 (h(t) *v(t)) [(h(t) *s(t)) -s(t)]dt}
(T1 + At) (T2 + At)

-At -At

+2 (T,' +At)
-At

E{h(t) * v(t)} [ (h(t) * s(t)) -s(t)ldt

E{h(t) *v(t)} = E{ v(r)h(t-t)dt} = JfE{v()}h(t-t)dt = 0

since v (t) is zero-mean from the problem statement assumption.
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(T + •At)
[ (h (t) * s (t)) -s (t)] 2dt = [ (h(t) * s(t)) - s (t)] 2dt

because (Ti + At) [h (t) * s(t) ] 2dt [h(t) * s(t) ] 2dt and

(T, +At)-

(T + t) s (t)dt = s (t) dt since s (t) is nonzero over [0, T1] only

((Ti + At) 0

. If - (T+ E { [h (t) * v (t) ] 2dt } + [h (t) * s (t) - s (t) ] 2dt

Frequency Domain Representation of the Error Expression:
The error expression in (4) can be rewritten in the frequency domain using Parse-

val's theorem. Letting n (t) = h (t) * v (t) and T = T 1 + 2At, and noting that n (t) is
WSS since v (t) is WSS and h (t) is the impulse response of an LTI system:

(T1 + At) (T1 + At)
E {(-At [h (t) * v (t) ] 2 dt} = At E {n2 (t) } dt

(TI + At) T
=L R (0)dt = TR (0) = - Snn(o) dco-At nn nn 2r- nn

=T f H(jCO))2S(vv(& )d(

[h(t) * s(t) -s(t)] 2dt = f IH(jo)S (jo) -S (jo)l12 do

= IH (jo) - 121S (jo) -2d27d

.* E IH (jo)2S (Sd(o) do)+ IH (jCo) - 1121S (j0o)J 2 dco (5)

Frequency Response of Weiner-type Filter:
All of the terms being integrated in (5) are nonnegative, and thus e is minimized

by minimizing the sum of these terms, or equivalently by minimizing the sum of the
square root of these terms which simplifies calculations. Therefore Hw (jco) is found by
choosing real and imaginary parts of H (jco) for each co such that we minimize the
expression T1/21H (jco) (Svv (o)) 1/2 + IH (j) - 111S (jo)I.

Consider the geometric interpretation of the above minimization problem, where
H (j o) is written as the sum of its real and imaginary parts,
H (j o) Hr (jco) + jH i (jo) , and is described in the complex plane by the vector
H = Hr + jHi. Define also the vectors r H and r2  H - 1, and weights
wl T1/2 (Sv, (C)) 1/2 and w2  IS (jo) I. We thus wish to minimize the weighted sum
of the lengths of r1 and r2 , i.e. minimize w 1 2lrll + w211r211 .Note that both the weights
are real and nonnegative.
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Further define the error vector t• wlrl + w2r 2 whose length we wish to mini-
mize. Using r1 = H and r 2 = H - 1, we obtain rI = r 2 + 1 and the error vector becomes
the following:

= wl(r 2 + 1) +w 2 r2 = (w 1 +w 2) r 2 +w 1
(6)

The diagram below depicts the geometric minimization problem where the circle
represents the locus of points when the length of r 2 is constant given the weights w1 and
w2 . We seek some choice of r2 anywhere in the complex plane yielding the smallest
length of , which occurs when 4 and r 2 are coincident with the real axis. Thus since r 2
is real, H - Hr + jH i is real, which implies H (jco) = Hw (jto) is real for all (o. Further-
more this minimization implies that 11 minII < w1, which results in the following con-
straints on the frequency response vector H, where we use r2min to denote the value of
r2 when = min:

4min = (wI + W2) r 2min +w 1 " (w l +w 2 ) (Hr- 1) +w = (w l +w 2 ) Hr-w 2

11minlH = (w1 + w2) IIHrj I- w2 ! W1
.I Hr[ _ 1

In sum, the geometric minimization indicates that Hw (j(o) is purely real and its magni-
tude is less than or equal to unity.

Figure C. 1 Geometric Minimization Problem
Given the above constraints on Hw (jco) we need only consider real H (j o) in the

error expression found from (5), = TIH (j(o)1 2Svv (o)) + IH (jco) - 1121S (jw)12,
which reduces to minimization of the following:

= T(H(jo)) 2Svv (o) + (H (jo) - 1) 21S (jC)1 2
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Taking the derivative of ý with respect to H (jo)) for a particular co and defining
H (jto) = Hw (j o) when this minimum occurs:

= 2TH (jo) S (co) + 2 (H (jo) - 1) IS (j) 12
DH (jto) )

. Hw(jto) IS (jto)2 12  (7)
IS (j co) 12 + TSV (Co)

We verify that this frequency response actually yields a minimum of ý by taking the sec-
ond derivative and noting that it is greater than zero:

2

a v(2TS (co) +21S(jo)12 >0 Vco
DH2 (jo)

Note that the restriction HH (jo) I < 1 is satisfied for all values of IS (j0o)12, T, and
Svv (o) , and because all the terms on the right side in (7) are nonnegative, we can also
conclude that 0 Hw (j(o) < 1.

Note on Units of Energy Spectral Density and Power Spectral Density:
The units of the energy spectral density IS (jco) 12 for the deterministic signal

s (t) and of the power spectral density Svv (co) for the stochastic noise process v (t) can
readily be determined by letting s (t) and v (t) be voltage signals across a 1 ohm resistor.
Using convolution, the units of the deterministic autocorrelation of s (t) are V2-s, and
taking the Fourier transform, the units of IS (jco) 2 are V2-s2 . Using the relation
Power = - (energy) and noting that V2/R are units of power, the units of IS (jo) 12

a (time)can be seen as energy (V2 -s/R) per unit bandwidth, where bandwidth is in radians per
second. Similarly, using expected values the units of the stochastic autocorrelation of
v (t) are V2 , and taking the Fourier transform the units of S (to) are V2-s. Thus the
units of the power spectral density can be seen as power V2/R per unit bandwidth, where
bandwidth is in radians per second as before. The factor T in the denominator of (7)
adjusts the units of Sv (o) making them consistent with the units of IS (jco)12, and
reflects the fundamental difference between energy and power spectral densities.

Formulation of Weiner-type Frequency Response for Discrete Time Signals:
Using the discrete time signals x [n] , s [n] , and v [n] in place of the continuous

time signals x (t) , s (t) , and v (t) respectively requires a slight modification to (7). Here
we must replace the continuous time angular frequency co by the discrete time angular
frequency QZ which yields the following:

Is (eO)12Hw (eJn) = IS(eJ) 2  (8)
W Is (ejf) 2 + TSVV (9)
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Appendix D: Notation and Formula Summary
xi [n] = individual recorded waveform, i = 1, 2,..., I, n = 1, 2,..., N

s [n] = deterministic unknown evoked response, n = 1, 2,..., N

s [n] = estimate of deterministic evoked response, n = 1, 2,..., N

vi [n] = WSS random process additive noise associated with xi [n] , assumed
unaffected by the presence of s [n] , i = 1, 2,..., I, n = 1, 2,..., N

[i [n] = estimate of additive noise associated with xi [n] , i = 1, 2,..., I,
n = 1, 2,..., N

ai = random variable amplitude scale factor (Model 2), i = 1, 2,..., I

ai = initial estimate of the amplitude scale factor (Model 2), i = 1, 2,..., I

X [n] = overall mean waveform, n = 1, 2,..., N

Rave = time average of overall mean waveform

W1 = lower window time (ms)

Wu = upper window time (ms)

rk [n] = random subset mean (RSM) waveform, k = 1, 2,..., Nw

rk = time average of an RSM waveform over the window from W1 to Wu

NW = number of random subset mean waveforms

N. = number of individual waveforms used to form each RSM waveform
1

Pk = peak-to-trough amplitude of RSM waveform, k = 1, 2,..., Nw

P = peak-to-trough amplitude of the overall mean waveform

Fk = root-mean-square (RMS) amplitude about the time average, k = 1, 2,..., Nw

Fo = RMS amplitude about the time average of the overall mean waveform

P = mean of the Fk taken over k

S2 = sample variance of the Fk or Pk
2 = mean squared error of the Fk or Pk

hw [n] = impulse response of Weiner-type filter for estimating s [n] from xi [n]

Hw (eJQ) = frequency response of Weiner-type filter for estimating s [n] from
xi[n]

IS (ej) 12 = energy spectral density of s [n]

Svv ( ) = power spectral density of v [n]

T = time scale factor which is dependent on the duration of s [n] and the nonzero
overlap between hw [n] and s [n]
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Riv [k] = sample autocorrelation of the random process v [n] represented by the
vector v

x = vector representation of x [n]

s = vector representation of s [n]

sn = unit length version of s

v = vector representation of v [n]

w = zero mean version of s

y = projection of w on sn
A = autocovariance matrix of www
A = autocovariance matrix of v

yyAyy = autocovariance matrix of y
R = ratio used in amplitude scale model verification test

ki = ith eigenvalue of Aww

5i = ith eigenvector of Aww corresponding to Xi

Ti = ith eigenvalue of Aw

Vi = ith eigenvector of Aw corresponding to Yi
2

oa = variance of the amplitude scale factor

Pk = primary signal vector for the active noise cancellation system

pk = primary signal sample at time k (identical to p [k] or x [k] in our case)

yk = output of adaptive filter at time k

Rk = reference signal vector for the active noise cancellation system

Wk = weight vector for the active noise cancellation system

gt = convergence parameter for the active noise cancellation system

Ek = error signal for the active noise cancellation system
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x i In] = s [n] + vi [n] (Model 1)

xi [n] = ai s [n] + vi [n] (Model 2)

R [n] = xi [n]
i=l

(Vn) (Overall mean waveform)

1
ave (W _- Wl + 1)

T n= W1

X [n] (Time average of X [n] over the window)

1
rk [n] N [n] (xj [n] chosen randomly) (Vn)

ij = 1 (Random subset mean waveform)

Pk = max {rk [n] } - min {rk [n] }
{W1, Wu,

(Peak-to-Trough amplitude of RSM waveform)

P = max {X[n]}- min{X[n]} I {wW, Wu
(Peak-to-Trough amplitude of the overall mean waveform)

Fk W -_W1+ 1  rk [n]-rk 2
u n- (=W,

(Root-Mean-Square (RMS) amplitude about the time average)

k = (W -W 1+ 1)
rk [n]

n =W
1

(Time average of an RSM waveform over the window)

F0 = 1 (X [n] -ave )2ave
n = W1

(RMS amplitude about the time average of the overall mean waveform)
N

Xave = j X [n] (Time average of overall mean waveform)
n=1

NW

F = Fk (Mean of the Fk (if RSM waveforms used))
wk = 1 * P is defined equivalently

NW

S2 1 Fk - F 2 (Sample variance of the Fk
Sk =1 * with a corresponding definition for the Pk

1

I

A A



62 1 -  (Fk - F) 2 (Mean squared error of the Fk)
wk = 1 * with a corresponding definition for the Pk

1xi [n] s [n]

a. = n (Estimator of the amplitude scale factor)
1 Cs2[n]

n

Hw (ej) _ IS (eJ ) 12
IS (eJg) 12 + TSvv (2)

(Weiner-type filter for estimating s[n] from x[n])

N-lkl-1
Rvv [k] = N-Ik v [n] v [n-Ikl]

n=O

(Sample Autocorrelation of v[n])

y.projs w = s Tw.
n Wi = Sn n 1

(Random process used in modelling section)

S
Sn (Unit length version of s)n JIS11

E{yTy}R-
(Ratio used in model verification test)trace { Aww

Wk + 1 k + 2gEkRk (LMS algorithm)

N 1/2

N(q [n] [n]) 2
(RMS) Norm n = 1 (Normalized RMS Error)

n=l
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