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ABSTRACT

This thesis studies torque-ripple reduction in an axial-flux nine-pole-pair doubly-
wound synchronous motor with three phases on the rotor and stator. Torque ripple is
measured as a function of the magnitude of the three-phase rotor and stator currents
with a fixed electrical angle between them. This thesis then develops an open-loop
technique that uses the measured data to generate a modulation of the magnitudes
of the currents as a function of position. It is demonstrated that this modulation
significantly reduces torque ripple. This thesis also develops a method which reduces
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sition. This thermal-management technique can be unified with the ripple-reduction
technique with minimal effort.
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Chapter 1

Introduction

1.1 An Overview of the Problem

The continuing development of direct-drive robots poses new challenges for the de-

sign and control of motors. The direct-drive approach to robotics directly couples

the torque generating motor to a mechanical assembly, or linkage, without the use of

reducers. The removal of gearing eliminates backlash and friction, allowing for more

accurate positioning of the linkage. It also simplifies the dynamics of the arm, mak-

ing them more predictable and thus more suitable to modern and classical control

methods.

There are drawbacks to the direct-drive approach. Any variation in motor torque

now couples directly to the load. Thus, to obtain accurate forces at the end of the

linkage, that is, compliance and force control, motors with low torque ripple must

be utilized. At the same time, because these motors are operating without reducers,

they must generate large torques at low velocity. Compounding the problem further,

these motors are often situated on a distal link thereby presenting a load to the linkage

causing a reduction of positioning accuracy due to deflection, as well as a degradation

of dynamic response as a result of increased inertia. Minimizing the impact of this

requires the use of smaller, lighter-weight motors which generally runs contrary to

the demands for large torque output with low ripple. The only exception would

be for motors that use large currents, in which case thermal dissipation becomes a



limitation. Thus, direct-drive robotics requires motors capable of delivering a large

torque output at low ripple without increasing weight or thermal dissipation. All

these design considerations tradeoff against each other.

The thermal dissipation issue merits greater consideration. As mentioned above,

the combined demands on the motor to generate large torques with little weight

require that motors for direct-drive applications make use of large currents. These

large currents can cause overheating. This problem is compounded in situations where

the motor is enclosed or when the motor is used to hold a static load. In the case of a

static load, the motor must produce a constant torque. This normally implies that the

windings are fed constant currents, instead of time-varying sinusoids of current. In

this way, some winding is dissipating higher average power than it would if the motor

were rotating, creating the possibility for localized hot spots in the motor. Since

localized hot spots above the motor's temperature specification are unacceptable, the

temperature at the hot spots establishes the upper bound on torque output.

This thesis addresses the tradeoffs inherent in direct-drive motor design by pre-

senting control techniques to minimize torque ripple and localized temperature peaks.

These techniques do not compromise the demands for high torque over all velocities,

accurate positioning, and fast dynamic response. They do provide an enhancement

in compliance and force control as well as increases in torque output and motor re-

liability by reducing thermal stress. Furthermore, the two techniques can be merged

into one without significant additional effort.

1.2 Specific Statement of the Problem

There are many options when it comes to implementing a direct-drive system. There

are options in both the linkage construction and in the motors used to drive the

linkage. Asada and Youcef-Toumi [4] give an excellent introduction to linkage mech-

anisms in direct-drive robots as well as a presentation of some of their innovative

work. However, linkage mechanisms are not a subject of this research and attention

is devoted solely to the improvement of motor performance.



Thermal Epoxy - .

Figure 1-1: A Cross-section of the Axial Flux Motor.

Previously, brushless DC motors (BLDCM) and variable-reluctance motors (VRM)

have been used for direct-drive robot applications. The motor used for research in this

thesis is neither a BLDCM nor a VRM. Instead, a synchronous axial-air-gap motor

has been chosen, owing to its large torque output per unit mass. Figure 1-1 depicts

the mechanical construction of the motor. The machine used has a symmetrical con-

struction with the rotor and stator identically machined and wound. There are nine

pole-pairs on both the rotor and stator with three wye-connected electrical phases

per side. Windings are formed from stranded 12-gauge insulated wire distributed in

a 1-2-1-0-0-0-1-2-1-0-0-0 fashion for a total of 108 slots per side. Slots are skewed to

minimize slot ripple. Terminal blocks, attached to the rotor and stator, are employed

to make the connection between the windings and an external driving source. Cooling

is achieved by circulating water in a channel in the back-iron of the each motor half.

To supply the flow of water, cooling lines must be attached to both the rotor and the

stator. Another interesting element of the motor design is that a rotary encoder is

0.24")



embedded in the stator side with a coupling to the rotor shaft. The encoder provides

a measurement of position which is crucial to the success of the techniques described

in this thesis. The motor is cylindrical with an outer radius of 260mm and a depth of

54mm. For this thesis, the adjustable air-gap has been set at 51.2 mils. The motor

is intended to generate approximately 100 Nm of torque, provided the gap is set ap-

propriately. However, this torque level has not been achieved as a result of thermal

constraints and the relatively large gap setting.

The objective of this thesis is to create an open-loop technique for torque-ripple

reduction and a technique for thermal management. The ripple-reduction technique

is allowed one calibration or characterization, mimicking a manufacturing calibration.

The reason for doing the ripple correction on an open-loop basis is simple. Accurate

torque sensors are expensive, and do not fit the form factor of the arm assembly. Also,

torque control loops complicate the dynamics of the system, if not making it unstable,

and they at least impose design constraints on the system. A thermal-management

technique to avoid the formation of hot spots is also examined. It also has become

possible to merge the two techniques into one. In this thesis, the techniques are tested

experimentally. On the path to a working system, many practical issues have surfaced

and are discussed in this document. It is recommended that future systems consider

these matters up front.

1.3 An Overview of the Solution

This thesis first develops a torque-ripple-reduction technique. In the region of op-

eration for this thesis, the magnetics of the motor are assumed to behave linearly.

This assumption may become invalid if the magnetics are saturated in the attempt

to maximize torque output. Future research can be done to investigate the impact

of saturation on the effectiveness of the technique. For this thesis, the assumption

enables the torque to be expressed as a function of position for fixed phase currents.

Furthermore, the torque scales quadratically with a linear scaling of the currents in

the motor. The position dependence can be deduced by characterizing the motor



using known currents in the windings. In this thesis, the characterization has been

done using equal amplitude three-phase sinusoids of current in both the rotor and

the stator windings, maintaining a constant electrical angle between them. As the

rotor position varies, the three-phase currents rotate to maintain constant torque.

However, the reality is that using three-phase sinusoids generates a torque profile

with considerable torque variation versus position, or torque ripple. It is shown in

this thesis that if the three-phase currents are amplitude modulated versus position,

then the torque ripple can be reduced by a factor of three. The amount of amplitude

modulation at a position is proportional to the square root of the ratio of the desired

torque to the characterized torque at that position.

This thesis then explores the heating in the motor. A model of the temperature

changes is created. Then, based on the model and utilizing the unique construction of

the motor, a technique for eliminating temperature peaks is proposed. Since the mo-

tor in this thesis has both a three-phase rotor and stator, it is possible to constantly

rotate both sets of currents so that the phase angle between them remains constant.

This provides a nearly constant torque, while at the same time spreading the dissi-

pation uniformly among the windings. Experiments have been conducted to verify

the performance of the technique and the results show the predicted improvement.

However, the gains are extremely slight for this motor.

The final aspect explored in this thesis is the unification of the ripple-reduction

technique with the thermal-management technique. This is successfully accomplished

and data is reported. The combination of the techniques does not compromise the

benefits achieved by each technique in isolation from the other.

1.4 Organization

This thesis has two goals: to produce a torque-ripple-reduction technique, and to

create a thermal-management method. This document presents the research in the

following manner. Chapter 2 presents an overview of previous research efforts in

torque-ripple reduction. Chapter 3 produces a model that is used to study torque



and torque ripple. Using this model, the chapter derives the governing equations

for the ripple-reduction technique. Chapter 4 explains the implementation of the

ripple-reduction technique, documents the data collection method and provides data

supporting the effectiveness of the ripple-reduction technique. Chapter 5 formulates

a model of temperature changes in this motor, presents the thermal-management

method and offers data supporting the success of the method. The chapter also

combines the ripple-reduction technique with the thermal-management method and

provides data supporting the combined technique's effectiveness. Chapter 6 concludes

the main body of the document with an analysis of the strengths and weaknesses of

the present work and suggested ways to improve upon the weaknesses.



Chapter 2

Background

2.1 Introduction

A survey of the literature on torque-ripple reduction reveals that efforts have focused

on four approaches. One approach to the problem is to change the characteristics of

the motor. This can be valuable when used in conjunction with control techniques,

thereby removing some of the burden from the control system. As indicated in the

introductory chapter however, there are situations where it is desirable to remove the

performance burden from the motor and shift it to the control system. Nonetheless,

more research effort in the future can go into investigating the engineering tradeoffs

between optimizing the motor and using a more sophisticated control system.

The last three approaches to ripple reduction are control methods. An obvious

approach is the use of classical feedback techniques. A more interesting approach

is the use of indirect feedback methods, which employ observers or predictors to

calculate feedback quantities, like flux or torque, based on easily measured quantities,

such as phase current and position. Finally, there exist open-loop control techniques

similar to the present work. The following sections provide an overview of previous

works which use the various approaches.



2.2 Reducing Ripple through Motor Design

One method of ripple reduction is to design the motor in a way that minimizes torque

ripple. Yet, the minimization of ripple invariably trades off with maximum torque

production. All the design techniques revolve around shaping the flux distributions

so as to minimize ripple. Techniques such as distributed windings, pitch shortening,

multi-phase windings, multi-star windings, pole-arc optimization, and slot skewing

have been developed to accomplish this. A paper by Nogarede and Lajoie-Mazenc [13]

reviews most of these techniques. Slot skewing has also been discussed in many

papers, and a paper by Kim, Sim and Won [9] provides a reasonable discussion of

the topic. The two papers named above are a sampling of the available literature on

these issues.

2.2.1 The Work of Nogarede and Lajoie-Mazenc

Distributed Windings

The elementary model of a motor calls for each winding to create a rectangular

magnetomotive force (mmf) distribution. Doing this creates space harmonics of mmf

and thus harmonics of flux. These flux harmonics cause torque ripple. Distributing

a winding over several teeth gives the designer the flexibility to shape the mmf to be

approximately sinusoidal, thereby making the mmf more sinusoidal in space. This

technique is also called "conductor distribution" [13]. A textbook by Fitzgerald,

Kingsley and Umans [5, pp. 554-568] gives the elementary mathematics of distributed

windings.

The limitation to this technique comes in that the conductors require some amount

of space. As the number of slots for the conductors increases, there is less surface

area for teeth. This has two implications. First, it ultimately limits the number of

conductors on the motor and correspondingly the ability to shape a sinusoidal mmf.

Second, the reduction in surface area for the magnetic paths increases leakage and

thereby decreases motor efficiency.



Pole-Arc Optimization

Nogarede and Lajoie-Mazenc [13] describe a technique for reducing ripple whereby

the angular widths of the poles are reduced. Although their work was done on a

BLDCM, the conclusions they arrive at are applicable to other synchronous motors.

They assert that by selecting the appropriate arc width the particularly prominent

ripple harmonic can be nullified. It should be emphasized that the technique is

limited to reducing one harmonic. They also report that this technique reduces the

mmf fundamental amplitude and thus the average torque.

Pitch Shortening

Another fairly basic idea reported by Nogarede and Lajoie-Mazenc is pitch shorten-

ing [13]. There is a contemporary introduction to pitch shortening in the book by

Fitzgerald, Kingsley and Umans [5, pp. 554-568]. When fractional pitch windings

are created, the fundamental of the mmf wave is reduced, but the harmonics are gen-

erally reduced by a proportionally larger amount. This reduces torque but reduces

torque ripple by an even larger factor. Nogarede and Lajoie-Mazenc report that by

appropriately selecting the pitch factor, it is possible to nullify two space harmonics

of the mmf.

Multi-Phase Windings

The use of multi-phase windings can also decrease torque ripple [13]. The increase

in the number of phases reportedly increases the frequency of the ripple harmonics

which more than proportionally reduces the torque ripple. It can be visualized that

the more phases there are to work with the more able the designer is to shape the

flux sinusoidally.

Multi-Star Windings

The technique of using multi-star windings [13] also reduces torque ripple. In this

method, multi-phase windings are repeated, possibly several times, with some angle



of spatial separation between them. If the separation angle is chosen correctly, some

harmonics can be selectively eliminated. This technique has the drawback of using

quite a bit of winding area while not maximizing the torque for given current levels

and winding area.

2.2.2 The Work of Kim, Sim and Won

Slot Skewing and Magnet Skewing

Kim, Sim and Won [9] analyze the effect of slot skewing for a BLDCM. Typically,

variations in permeance caused by slots cause torque ripple. The idea behind skewing

is that the variation in permeance can be almost eliminated by skewing the slots by

one slot pitch. This will provide nearly constant tooth area between stator and rotor

poles as the motor rotates. A constant area maintains an almost constant permeance

and thus constant torque. In reality, there are still some variations due to edge effects

of the teeth and slots.

2.3 Direct Feedback Methods for Torque-Ripple

Reduction

Classical and modern feedback techniques can be used to control torque. These

techniques are widely used and well understood and provide good system performance.

The problem with feedback techniques is that they require torque feedback which, in

turn, requires a sensor. In general, sensors do not fit the form factor of the direct-

drive approach. Furthermore, there is a tradeoff between the accuracy of the torque

measurement and positioning accuracy. Asada and Youcef-Toumi [4] provide a good

discussion of the problems of torque feedback control in direct-drive motors.



2.4 Indirect Feedback Methods

Indirect feedback is a method by which desired feedback values are computed from

measurements of easily measured quantities. Typically either torque or flux is com-

puted from position and phase-current measurements. The computed quantities are

then compared to a reference value to generate an error signal which drives the sys-

tem plant. The technique is useful in that it can compensate for non-linearities. The

limitation comes in that there are loop dynamics associated with the feedback system

which can limit system response. There is in addition the obvious limitation that the

indirectly fed-back quantity depends on the modeling accuracy between it and the

measured quantities.

2.4.1 The Work of Low, Tseng, Lee, Lim and Lock

Low, Tseng, Lee, Lim and Lock [10] present a model-based estimation of torque using

current and position in a permanent-magnet motor. They attempt to compensate for

variations in torque due to flux space harmonics but do not address the issue of

slot ripple. The authors model the torque as a function of current and a spatially

varying inductance. Using position and phase-current feedback, they calculate the

value of inductance based on their model. This model does not address the variation

of inductance with saturation. Using the estimated inductance, they compute the

estimated torque and use this value in a feedback loop. They report graphical data

showing significant ripple reduction. No quantitative data is given to indicate the

success of their work.

2.4.2 Ilid-Spong, Miller, MacMinn and Thorp

Ilid-Spong, Miller, MacMinn and Thorp [6] present a control method for providing in-

stantaneous torque control for a switched-reluctance motor. Their technique involves

a coordinate transformation that makes the torque of a rotating motor appear as a

time-independent linear function of the transformed inputs. Using models of induc-

tance, they calculate what flux is required at each position for constant torque. From



the motor, they take measurements of the phase currents and use this information,

combined with inductance models, to make estimations of the flux in the machine. A

control loop then acts to cause the actual flux to equal, as estimated by output mea-

surements, the desired flux, as calculated from inductance models. This theoretically

should force the output torque equal to the desired value.

The advantage of the control structure presented in this paper is that the system

is controlled as a multi-variable, linear, time-independent system. For the switched-

reluctance motor they chose as an example, the coordinate transformation is quite

simple. Furthermore, for a switched-reluctance motor, the multi-variable linear equa-

tions describing the system are decoupled, allowing them to be treated as a collection

of single-variable equations.

This thesis uses a somewhat simpler approach, avoiding the complexity of the state

estimation. The estimation is replaced by a one-time characterization and subsequent

table lookup. Another limitation of the instantaneous torque control system is that

it utilizes a feedback control system which limits the torque control response by the

dynamics of the feedback loop. This thesis does not have a control loop and therefore

provides a wide-bandwidth operation.

2.5 Open-Loop Control of Torque

Open-loop methods of torque control utilize a one-time calibration to achieve reduced

torque ripple thereafter. Assuming that the motor torque is a function of position

and phase currents, it should be possible to control the currents to minimize, and

theoretically eliminate, torque ripple. This reduction in ripple comes without intro-

ducing new system dynamics, caused by a torque observer or feedback system. This

approach depends on the modeling accuracy of torque as a function of position and

currents.



2.5.1 Newman and Patel

Newman and Patel [12] describe a torque-ripple reduction algorithm for switched-

reluctance motors in the AdeptOne robot. They point out that torque is a function of

phase currents and position and that there is no unique inverse mapping from torque

to phase currents. If one imposes an additional constraint of minimizing heating,

they argue that at least one of the three phase currents, and maybe two, should be

set to zero. After imposing this additional constraint, they are able to exhaustively

map out torque versus position and versus one free variable in the domain of possible

currents.

They generate the map using an iterative process. They start with some reason-

able guess at what the current waveforms should look like. They then measure the

torque ripple for these profiles. This data can then be used to modify the profiles.

The modification is done as a scaling of the old profiles at each rotor position and

torque level in such a way as to theoretically eliminate torque ripple.

This technique achieves a reduction of torque ripple from about 25% to 10%. It

is not clear from the paper whether saturation is a contributing factor to the ripple.

2.5.2 Kamiya, Shigyo, Makino and Matsui

Kamiya, Shigyo, Makino and Matsui [8] present a ripple-reduction technique based

on a phase and amplitude modulation of the three-phase currents of a BLDCM. It is

not clear from the paper describing their work how they calculate the modulations,

whether from empirical data or by some other means.

The authors explicitly address the issues of torque ripple caused by cogging and

spatial variations in air-gap flux. Their work is presented in a transformed coordinate

system, namely the DQO coordinate system. They first propose to add a component

to the quadrature current in order to eliminate current-independent cogging torque.

The modified quadrature current is then modulated to eliminate the ripple caused

by flux space harmonics. This does not seem to be quite the right approach, as the

term added to offset the cogging torque is modulated. Ideally, the offset term would



not be modulated. Nonetheless, Kamiya, Shigyo, Makino and Matsui report ripple

reduction by approximately a factor of five, measured peak to peak.

For a fully synchronous motor as in the present research, there is almost no current-

independent ripple (only that which is generated by remnant flux in the core). Thus,

it is only necessary to eliminate the current-dependent portion of the ripple. The

modulation of currents done in this thesis in some ways repeats the work of Kamiya,

Shigyo, Makino and Matsui. However, some differences should be pointed out. The

chief difference is that the formulation of the present work does not rely on a trans-

formation. Thus, it is computationally simpler and involves fewer concerns for a

real-time implementation. Also, this research did not use any phase modulation of

the currents.

2.5.3 Matsui, Akao and Wakino

The paper by Matsui, Akao and Wakino [11] uses methods very similar to the paper

by Kamiya, Shigyo, Makino and Matsui. The difference comes in that the latter

uses a BLDCM and the former uses a VRM. Whereas the BLDCM has a current-

independent ripple, the VRM has only current-dependent ripple.

Matsui, Akao and Wakino propose a control method based on vector-controlled

induction motors. The description is made in DQO coordinates. Torque is expressed

as the product of quadrature current with a constant, which is itself proportional to

direct-axis current.

T = K iq (2.1)

K = (Ld - Lq) id (2.2)

The authors decide to control quadrature current, leaving the direct-axis current

fixed, since the quadrature-axis inductance is smaller than the direct-axis inductance

and thus lends itself to faster motor response. The torque ripple can then be described

as a sum of a position-dependent term and a term proportional to the product of a



position-dependent term and the quadrature current. The term that is independent

of quadrature current arises from the direct-axis poles moving by slots and teeth.

Equation 2.3 below expresses this formulation of torque ripple mathematically.

AT = Ko Fo(O) + K1 iq F 1 (0) (2.3)

The details of their technique are not extremely clear. It appears that they add a

term to the quadrature current to cancel the position-dependent term KoFo(O) and

then scale this in such a way that the current-dependent term, KliqFi (0), is cancelled.

However, the formulas presenting their material are incoherent and several questions

arise. Most notably, it is not evident how they produce any average torque. They

do produce plots of torque ripple versus current both with and without their ripple-

reduction method. They also provide photographs of torque waveforms plotted on an

oscilloscope. The Matsui, Akao and Wakino paper shows a best-case ripple reduction

by about a factor of four, peak to peak.

The Matsui, Akao and Wakino paper most closely resembles the present work.

One area of similarity is the use of empirical data in the framework of an analyti-

cal model. However, points of distinction should be made. Their technique uses a

transformed coordinate system, which adds to the complexity of the implementation.

The technique used in this thesis does not use a transformation. Furthermore, the

synchronous motor used in this thesis has three phases on the rotor and stator. Cor-

respondingly, the control technique involves modulating both the rotor and stator

phase currents.



Chapter 3

An Approach to Ripple Reduction

3.1 Introduction

This chapter presents the theory of operation for the ripple-reduction technique devel-

oped in this thesis. As highlighted earlier, this technique controls the torque without

the use of feedback. Its application in this thesis is limited to that of a synchronous

motor operating out of saturation. Jackson [7], however, has extended the technique

to the saturation region using the same motor.

The basic premise of the technique, as applied in this thesis, is that when the

magnetics are not saturated the torque will be a function of position, and will scale

quadratically with a linear scaling of the currents in the motor. This relationship

between the scaling of torque and the scaling of the currents permits a desired torque

to be produced by appropriately selecting the magnitude of the phase currents, Imag,

as a function of rotor position, 0. Each phase current, i,(0), can then be written

as the product of the magnitude, Imag, and another waveform, f(0O). This can be

written in vector notation as i(0) = Imag f(0), where the i,(0) and f,(0) make up the

rows of i(O) and f(0) respectively.

For this thesis, the function f(0), which will be referred to as the waveform shape

function, is chosen so that the rotor and stator currents are sinusoidal functions as

given by Equations 3.1-3.6. The rotor and stator sinusoids have a relative phase

angle, 6 S - 6 R, between them which is used to set the angle between the rotor and



stator magnetic poles, typically in such a way as to maximize torque output. As the

rotor rotates, this angle changes, requiring the stator waveforms to have a position-

dependent phase angle. Equations expressing the position-dependence of the wave-

forms are given in Equations 3.1-3.6. In the equations, the factor of nine provides the

transformation from mechanical frequency to electrical frequency for the nine pole-

pair motor. Figures 3-1 and 3-2, located below, graphically portray the waveform

shapes used for this thesis. far, fbr, and fc, are the rotor current waveform shapes.

fas, fbs, and fes are the stator current waveform shapes. It should be realized that the

rotor currents depicted are constants. This is possible because it is only the relative

phase angle between the rotor and stator currents which sets the torque, at least in

an idealized model of the motor, and not the absolute angle of either set of currents.

Thus, the rotor currents can be held constant, provided the stator currents have the

proper phase angle.

far = cos(6 R) (3.1)

27r
fbr = COS(6R - ) (3.2)

3
4w

fcr = cos(SR - -) (3.3)

fas = cos(9 0 + 6s) (3.4)

fbs = cos(9 0 + 6s - ) (3.5)
3

4w
fCs = cos(9 0 + 5s -4 ) (3.6)



-0

-1

0 50 100 150 200 250 300 350
Rotor Position (degrees)
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Figure 3-2: Waveform Shapes for the Stator Currents.



It is known that for the simplest models of machine behavior, the waveform shapes

described above produce ripple-free torque [17][18], with the average torque being set

by the magnitude of the current, Imag, which should be a constant over position. In

reality, there are non-idealities in the design and construction of the motor which

create torque ripple. This thesis compensates for the torque ripple by modulating the

magnitude, Imag, as a non-constant function over position, Imag(0). This produces a

scaling of the output torque, which, when done properly, reduces the torque ripple.

In order to calculate the proper amount of modulation, this chapter proceeds by

first deriving the relationship between the current magnitude and the output torque,

expressed mathematically in Equation 3.7. In this equation, L(O) is the position-

dependent inductance matrix for the windings. It is clear from the equation that the

torque is proportional to the square of the magnitude of the current. After deriving

this result, this chapter then derives the "correction factor" by which to modulate

the magnitude of the current, in order to reduce the torque ripple. The expression

for the correction factor is given in Equation 3.8. In this equation, To is the desired

ripple-free torque, and T(O, Imag, f(0)) is the torque obtained when Imag and f(0) are

used to specify the currents.

T(0, Imag,f (0))= (f(0) L(0) f(0)) ag (3.7)

kT (0, ImaT f (0) o (3.8)T°(I f(6)) =magT(0, Imag, f(0))

In this thesis, the calculation of the correction factor uses measurements of torque

as a function of position, taken when the currents have three-phase sinusoidal wave-

form shapes and a constant magnitude. Once the data is collected, correction factors

are calculated and ripple-reduced torque data is gathered using currents modulated

by the correction factor. The procedure described in the preceding sentences, forms

the ripple-reduction algorithm of this thesis. The body of this chapter develops a the-



oretical justification for why magnitude modulation reduces ripple. Chapter 4 details

the algorithm and experimental results. The results demonstrate reduced ripple.

3.2 Theoretical Justification

In order to discuss torque ripple and ripple correction on a technical level, it is first

necessary to create a mathematical framework within which the discussion can be

carried out. To aid in the selection of an appropriate framework, a brief description

of the context of the thesis is now given. It should first be noted that the techniques

developed in this thesis are aimed at reducing torque ripple in a motor that is not

in saturation. This permits the limitation of the mathematical framework to the

consideration of linear magnetic behavior. A second consideration is that the torque

ripple of interest is related to the spatial harmonics of inductance variations of the

phases. Therefore, a useful model must include some flexibility in specifying the

inductance variations. Thirdly, since the proposed technique will amplitude modulate

the magnitudes of the three-phase currents, it is necessary to have the ability to

incorporate this into the model. With these considerations in mind, it is found that

an expression relating torque to the partial derivative of the magnetic-field coenergy

suffices, providing flexibility in specifying the inductances and the phase currents.

The magnetic-field coenergy approach begins with a specification of the machine's

inductances and currents. It proceeds by calculating the coenergy and then the

torque. From an expression for the torque it is possible to calculate a "correction

factor" with which to scale the magnitudes of the currents. Using these modulated

currents, the motor produces constant torque versus position.

3.2.1 The Inductance Model of Machine Behavior

Before delving into the calculation of torque, a model of the motor must be set up. A

few assumptions of the model must be decided up front. First, the model assumes the

inductances do not vary with the flux density. That is, the effects of saturation are

neglected. The validity of this assumption is verified in Section 4.4.1. This also implies



that the inductances are independent of all the currents in the system. The second

assumption is that the inductances vary only with position. Using these assumptions,

the desired result of this chapter is worked out in a general form applicable to many

motors.

Now to define some variables. The vector i functions as a vector containing the

currents through each winding. If there are N windings with currents {il, i2 , ... , iN,

then i is given by Equation 3.9.

i = (3.9)

The vector A serves as the flux linkage vector.

make up the entries for A as shown in Equation

A =

A1

A2

AN

The flux linkages for each winding

3.10.

(3.10)

Using the inductance matrix of an arbitrary system of windings, the flux linkage in

each winding can be related to the currents. This relation is given in Equation 3.11

and the definition of the inductance matrix is shown in Equation 3.12. Each entry of

this matrix, Ljk, specifies the inductance between winding j and winding k. If j Z k

then the inductance is a mutual inductance, otherwise it is a self-inductance.

A = L(0) i (3.11)



L 11  L 12  ... LIN

L21  L 22  . .. L2N

LN1 LN2 ... LNN

(3.12)

3.2.2 Torque Production

Now that the flux linkages and currents have been defined, torque can be calculated.

One of the most elegant ways of calculating torque is by way of the magnetic field

coenergy, Wild. The book Electric Machinery [5, Chapter 3] contains an introduction

to this method. This presentation follows the format of that book.

Since the magnetic field energy is conserved in quasi-statics, it must equal the net

sum over time of the power flows into or out of the system, which is the sum of the

power flows into each winding minus any mechanical power out of the system. The

power into each winding equals the voltage across the winding, caused by back EMF,

multiplied by the current through the winding. The voltage drops across the windings

are given by Faraday's Law. This finds expression in a vector form in Equation 3.13,

where the ei are the back EMF's of each winding.

el

e2

eN

dA
dt(3.13)dt

The net power flow into the system from the windings is then given by Equation 3.14.

Pelectrical = eTi (3.14)

The total power entering the system is then the electrical input power minus any

L(0) =

e



work the system might be doing. For the case of a motor, this work is the torque, T,

times the angular velocity, w.

Ptotal = eT i - Tw (3.15)

This can be written in differential form by utilizing Faraday's Law, Equation 3.13,

and by noting that the angular velocity is the derivative of angular position.

dO
w = (3.16)dt

Also the realization that the derivative of the field energy with respect to time is

equal to the net power into the system, allows Equation 3.17 to be written. In this

equation, the variable Wfld(0, A) is the field energy.

dWfld(0, A) = (dAT) i - T dO (3.17)

This relation indicates that the field energy is a function of the flux linkage and the

position. This allows for an easy calculation of torque versus flux linkage; however,

it is more desirable to express torque as a function of the currents in the windings.

To this end, the magnetic coenergy, Wf d(0, i), is defined in Equation 3.18.

W'fld( , i) = AT i Wfld(0, A) (3.18)

Taking the differential of the coenergy yields Equation 3.19. It can readily be seen

that the coenergy is a function of the position and currents.



dWla(O, i) = d(AT i) - dWf ld(, A)

= (dAT) i +A T di - (dAT) i + TdO

= AT di + T dO (3.19)

This expression can be written without reference to the flux linkage by substituting

in Equation 3.11. Also, it should be noted that the inductance matrix is symmetric

as a result of conservation of energy in the magnetic field. This allows the matrix

LT(O) to be equated with L(O). This yields the equation below.

dW1fd(O, i) iT L(O) di + T dO (3.20)

The magnetic field coenergy at a particular state (0, i) can then be found by

performing a path integral from the origin to that state. In general, this integration

is not independent of path, so a path must be chosen. It turns out that if the path

is chosen so as to integrate along the dummy position variable, 0, until 0 is reached,

the remainder of the integral will be independent of path. Thus, the coenergy can be

expressed in integral form as shown in Equation 3.21.

Wl)(0,i) = Td + L() di (3.21)
0 i=o o 0 0

Examining the first integral, it should be noted that in the absence of external

forces and permanent magnets the torque is zero since the currents are zero. If the

torque is zero for the entire path, then its contribution to the coenergy will be zero.

Equation 3.21 then simplifies to Equation 3.22.



WId(0i) i L(O) di (3.22)
0

Now it can be observed that because of conservation of energy in the quasi-static

magnetic field, the integrand can be written as the gradient with respect to current,

Vi, of a scalar function. Equation 3.23 expresses the scalar function that satisfies the

necessary relationships. It is unique up to the addition of a scalar constant.

iL() = V : ( 1 L(0) i) (3.23)

Using Equation 3.23, Equation 3.22 reduces to Equation 3.24. Returning to what

remains of the path integral that was started, it can be seen that the integrand is

a gradient and thus the integral is independent of path (also a result of conserva-

tion of energy in general). Performing the integral, the field coenergy is given by

Equation 3.25.

W'td(O,i) = v (iTL(O) I di (3.24)

Wd, I) iT L(0) i (3.25)

From this coenergy expression, the torque can be calculated.

OWld(0 *T OL(0)T(O, i) - fld( 1 i (3.26)
00 2 00

In the introduction to this chapter, the torque is expressed as function of position.



Furthermore, the torque is shown to scale quadratically with a linear scaling of the

currents. This formulation can be obtained by expressing the current as the product

of a magnitude, Imag, and a waveform shape vector, f(0), as explained in Section 3.1.

This is expressed mathematically in Equation 3.27.

i = Imag f(0) (3.27)

Equation 3.27 can be substituted into Equation 3.26 and the magnitude factor

can be pulled out. This manipulation is shown in Equation 3.28.

I1 fT()L(O) Imagf()
T(O,Imag,f(0)) = 2Imag T ma0 g

S(fT(0) f(0)) Imag

2 8) ()) ag (3.28)

This model of torque production is useful for two reasons. First, it demonstrates

that a linear scaling of the magnitude of the currents scales the torque quadratically.

Second, it shows that the torque is a function of position, waveform shape, and the

magnitude of the current. Thus if torque measurements are taken versus position

using known waveform shapes and a known magnitude of current, the torque can be

set to any desired level versus position by using the same waveform shapes and by

scaling the magnitude appropriately. The following section exploits this feature as a

starting place for the ripple-correction technique.

3.2.3 The Derivation of the Correction Factor

This section derives a position-dependent "correction factor" which when used to

scale the phase currents results in reduced-ripple torque output. The calculation of

a correction factor requires that the torque output first be measured versus position

using known current waveform shapes and a known magnitude. The derivation pro-



ceeds as follows. First the effect of scaling the currents on the torque is examined

mathematically. From this, the appropriate scaling can be chosen at each position to

yield the reduced-ripple torque. These scaling factors, taken over position, form the

correction factor.

To begin the derivation, assume a measurement of the torque, T(0, Imag, f(O)), is

made with a known current i(0), i(0) = Imag f(0). If the magnitude of the current,

Imag, is scaled by a factor of kTo (0, Imag, f(0)), as defined in Equation 3.29, then the

resultant torque can be related to the value obtained without scaling by Equation 3.30.

Note that the scaling may be a function of position, making the scaled magnitude of

the current, Imag (), a function of position.

Imag(O) = kTo(O, Imag,f(O)) Imag (3.29)

T(O, Imag (0), f(0)) = ( fT (o) (0)) (Tf) (0, Imag, f (0)) Imag)

= kTo(0, Imag, f (0))2 T(0, Imag, f(0)) (3.30)

To keep the torque constant, T(O, mag(O),f(O)) = To, kTo(O0, Imag, f(0)) should be

chosen as governed by Equation 3.31.

kT(0 Im f (0)) T (3.31)(9O, magT(0, Imag, f (0))

Using the correction factor, kTo (0, Imag, f(0)), to amplitude modulate the currents,

theoretically yields a constant torque over position. Thus, modulation of the magni-

tude of the currents forms the basis for a simple ripple-correction method.

This chapter has developed the theory of operation for a ripple-reduction tech-

nique. It first demonstrates that torque can be expressed as function of position.



Furthermore, the torque scale quadratically with a linear scaling of the phase cur-

rents. Using this information, this chapter derives an expression for a correction

factor which when used to scale the currents will reduce the torque ripple of the

motor. However, in order to calculate the correction factor, it is necessary to charac-

terize the motor's torque production versus position. The next chapter describes the

method used in this thesis for obtaining the characterization, and proceeds from the

characterization to calculate correction factors and apply them to the currents. The

following chapter concludes with the results of applying the correction factors.



Chapter 4

Ripple Reduction

4.1 Introduction

As discussed in Chapter 3, the torque-ripple-reduction technique modulates the mag-

nitude of the currents in the motor. The modulation requires prior knowledge of the

position-dependent variations in torque for given currents in the motor. Acquiring

knowledge about the position dependence through characterization becomes the first

step in the ripple-reduction algorithm. With this data the algorithm can compute

the necessary modulations, in the form of "correction factors," and then apply these

correction factors to the currents in the motor to obtain a reduction in torque ripple.

Following the general outline of the algorithm given above, this chapter docu-

ments the specific implementation of the algorithm used in this thesis. Figure 4-1

graphically portrays the steps of the algorithm. As can be seen in the figure, during

the characterization phase raw data is collected. This data is then processed to ac-

count for the aperiodic sampling of the data. The "de-jittered" data then undergoes

a correction for baseline torque, that is, torque present when there are no currents in

the motor. Following the characterization phase, the correction factors are calculated

from the baseline-corrected data. The final phase is the actual application of the

correction factors and a measurement of the results. The measurement procedure

used during verification repeats the procedure used during characterization.
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Figure 4-1: Flowchart of Characterization, Calculation and Verification.

The sections of this chapter document the individual steps just mentioned. Sec-

tion 4.2 details the characterization dataset to be collected as well as the conditions

for the data collection. It also provides a glimpse at the raw data that is gathered.

Section 4.3 explains the next step in the data-flow which is the pre-processing of the

raw characterization data. This section implicitly documents the processing done on

the raw data collected during the verification phase as well, since the processing is the

same. Once the raw data is pre-processed, it is used in the calculation of the correction
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factors as described in Section 4.4. Once the correction factors are calculated, they

are applied and verification data is gathered and processed. Section 4.5 comments on

this step of the algorithm. The data demonstrates that the torque-ripple-reduction

algorithm reduces torque ripple. Section 4.6 examines the performance of the tech-

nique in regions where the motor is not explicitly characterized. The performance is

on par with that found in well characterized regions.

4.2 The Characterization Dataset

As a preliminary step in the ripple-reduction technique presented in this thesis, it is

necessary to characterize the motor's torque production versus position and current.

For reasons mentioned in Section 3.1, the currents are chosen to be three-phase sinu-

soids on both the rotor and the stator. The currents can be described mathematically

as expressed in Equations 4.1-4.6. iAR, iBR, and icR are the rotor A, B and C phase

currents respectively, and iAS, iBS, and ics are the stator A, B and C phase currents

respectively. 6R and 6s are constants used to set the relative phase angle of the rotor

and stator magnetic poles. This choice is made in such a way as to maximize torque

output [17] [18]. The thermal management technique of Chapter 5 utilizes the freedom

in choosing the absolute phase angles of 6R and 6s.

iAR = Imag Cos( R) (4.1)

2w
iBR = Imag cos(OR - • ) (4.2)

4i•
icR = Imag COS (6R - ) (4.3)

iAS = Imag cos(9 0 + 6s) (4.4)

2w
iBS = Imag COS(9 0 + 6S - - ) (4.5)

ics = Imag cos(9 0 + 6s - 3 ) (4.6)

For the characterization phase of the algorithm, torque measurements are taken



for one complete revolution of the rotor, while stepping the amplitude of the phase

currents, Imag, after each revolution. Imag ranges from zero to eleven amperes in one

ampere increments. The process is repeated to acquire two sets of measurements at

each current level (except at ten and eleven amperes). For a graphical portrayal of

the dataset, Figure 4-2 plots the data from one trial at each current. During each rev-

olution, the motor is rotated at a rate of approximately 0.05 RPM. The rotor position

is divided into 2049 bins per revolution, and one measurement is taken per bin. For

more technical information on the measurement apparatus, Appendix G documents

the position measurement subsystem and Appendix E documents the dynamometer

subsystem.
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Figure 4-2: Raw Characterization Data Portraying Measured Torque versus Position

and Current.



4.3 Pre-processing of Collected Data

This section details the pre-processing of data which is done in both the characteriza-

tion and verification phases (see Figure 4-1). The primary goal of the data collection

procedure is to ensure that the data is actually descriptive of the torque produced

by the motor and not other factors. Investigation has revealed three areas for con-

cern. The first area is the finite resolution of the torque transducer, which introduces

quantization errors into the torque measurements. Section 4.3.1 provides details re-

garding the accuracy of the instrument and the impact that its limitations have on

the experiments to be conducted. The second area for concern is the accuracy of

the position measurements. The position is measured nearly periodically but each

measurement has some amount of measurable deviation from the ideal periodic sam-

pling. Section 4.3.2 details the steps taken to ensure that the position measurement

is utilized as best as possible. The final area for concern is the existence of baseline

torque, that is, torque present when there are no currents in the motor. It is possible

to subtract out this effect. Section 4.3.4 explains the specifics of this step.

4.3.1 Quantization Errors in the Torque Measurements

The resolution of the torque measurement system limits the accuracy of the data

gathered during the collection procedure. The resolution of the torque transducer

is 0.311 Nm. With additional electrical noise due to the switching in the phase-

current drive electronics, the measurement accuracy further diminishes. As an idea

of the accuracy of the measurements, the RMS sample-to-sample difference between

two characterization runs at eight amps yields a standard deviation of 0.4088 Nm.

This is seen in subsequent sections to be about equal to the RMS torque ripple

after correction. Thus, the accuracy of the torque measurement critically hinders the

effectiveness of the technique. Future experiments need to put more emphasis on the

resolution of the measurement system. Details of the implementation and problems

of the torque measurement system and related systems can be found in Appendices E,

H and K. With a more accurate measurement system, it should be possible to better



probe the limits of this ripple-reduction technique.

4.3.2 Removing the Effect of Sampling Jitter on the Data

As can be seen in Figure 4-2 which plots measured torque versus position versus

current in polar format, the torque ripple displays a periodic structure. This is con-

firmed by viewing a DFT of the data as shown in Figure 4-3. As a result of the

periodicity, the analysis of torque ripple in the spatial-frequency domain simplifies

the problem and allows for a more compact representation of the dominant features

of the problem. However, the data collection system is not optimized for taking

the periodic samples necessary for an accurate transformation to the frequency do-

main. Appendix K discusses the flaws in more depth. The following discussion brings

out some precautionary measures that have been developed to ensure an accurate

frequency-domain representation of the problem.
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Figure 4-3: Magnitude of the DFT of Measured Torque Data at Imag = 8 Amps.

Because the rotary encoder has a resolution of 65536 counts per revolution, it is

possible to resolve the position to a greater accuracy than the number of measure-

ment bins would indicate. However, since the bandwidth and storage capability of

the measurement system are limited, it is not possible to take a data point at every

count of the encoder, and actually is not necessary. It proves more than sufficient

to take 2049 data points per revolution, as the highest spatial harmonic of torque

is the 216th harmonic. Taking 2049 samples per revolution exceeds the minimum

necessary to avoid aliasing; that is, the sample rate exceeds the Nyquist rate. Al-

though the system takes enough samples to accurately resolve the frequency content,

the measurement apparatus generates aperiodically spaced samples which introduce
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noise into the spectrum of the signal. Appendices D, F, G, J and K document the

measurement apparatus and the reasons for the aperiodic sampling.

Irregularly spaced measurements of torque versus position can cause inaccurate

resolution of the torque's spatial harmonics if a Discrete Fourier Transform (DFT) is

applied to the data. This can be best visualized by examining the effect of performing

a 512-point DFT on an aperiodically sampled sum of two sinusoids. Figure 4-4

depicts the result of performing a DFT on a periodically sampled sum of sinusoids

and Figure 4-5 depicts the result of performing a DFT on an aperiodically sampled

version of the same waveform. Clearly the DFT of the aperiodically sampled waveform

shows some additional noise and loss of spectral resolution. This is the problem to

be addressed.
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Figure 4-4: 512-point DFT of a Periodically Sampled Signal.
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Figure 4-5: 512-point DFT of an Aperiodically Sampled Signal.

To ensure that the irregular spacing does not pose a problem, a more general

approach to calculating the DFT has been constructed and used as a pre-processing

step on all raw data. This approach to the DFT has the effect of "de-jittering"

the data. This terminology seems appropriate because the calculation compensates

for the jitter in the sampling. It is not entirely clear if the "de-jittering" is necessary

because at a sampling rate of over eight times the Nyquist rate, the effects of aperiodic

sampling tend to get averaged out. However, if the sampling rate were closer to the

Nyquist rate, this technique would be a powerful tool.

The more general form of the DFT works as follows. A bandwidth-limited, peri-

odic input signal, x(t), is taken as an input. This signal is aperiodically sampled at
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known times, t[k], over one period. Since x(t) is periodic, its Fourier transform should

only have harmonics of its fundamental frequency, which implies that it should be

representable by a Fourier series. Using the condition that the signal is bandwidth-

limited, the Fourier series can then be written with a finite number of terms. It is

possible to set up a set of linear equations relating the Fourier series coefficients to

the aperiodically spaced samples of the original waveform. These equations can then

be solved. This finite sequence of coefficients comprises the sequence of coefficients

for the DFT, however it is arrived at by solving the linear equations as opposed to

performing a transform. This framework provides the flexibility to handle the aperi-

odic spacing of the samples. Thus, for an aperiodic sampling of a bandwidth-limited

periodic waveform, it is possible to obtain the DFT coefficients.

The above description can be written mathematically as follows. Given that the

input signal is periodic with period T, the time series x(t) can be expressed as a

Fourier series.

00

x(t) = E X[n]ej2 rnt/T (4.7)
n= -oo00

Since the signal is also band-limited, it is possible to put constraints on the coefficients,

X[n]. If the signal has a finite bandwidth, N, then the coefficients obey Equation 4.8.

X[n] = 0, Inj > N (4.8)

The application of Equation 4.8 to Equation 4.7 simplifies Equation 4.7 to Equa-

tion 4.9. It is also possible to write the time representation only at the sample times,

t[k].

N

x(t[k]) = E X[njej 2 rn' t[k]/T (4.9)
n=-N



This Fourier series representation of x(t[k]) now defines a set of equations in 2N+1

unknowns, the X[n]. It is a relatively simple matter to solve these equations using

a computer. Once the coefficients, X[n], are obtained they can be manipulated into

the conventional DFT format by zero-padding and re-ordering. Also, the terms X[N]

and X[-N] must be summed; this additional constraint properly accounts for the

loss of phase information for signals at half the sampling frequency. Appendix A

lists Matlab code that can be used to perform the de-jittered DFT. Using the Fourier

series form for the X[n], it is possible to construct a periodically sampled version

of the original continuous signal by employing Equation 4.9 with uniformly spaced

values of t[k]. Similarly, taking an inverse DFT of a DFT representation constructs

a periodically sampled representation of the original signal.

To test the de-jittered version of the DFT, it can be applied to the aperiodically

sampled sum of sinusoids examined earlier. If a traditional and a de-jittered DFT are

applied to the data, the DFT's displayed in Figures 4-6 and 4-7 result. The de-jittered

results show increased spectral resolution and a lower (zero) noise floor.
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Figure 4-6: 512-point DFT of an Aperiodically Sampled Signal.
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Figure 4-7: 513-point De-Jittered DFT of an Aperiodically Sampled Signal.

For this thesis the data set consists of 2049 sampled measurements, T[O[n], Imag], of

the continuous periodic torque waveform, T(O, Imag). For such large sample sequences,

the array size to do the de-jittered DFT computation is so large that it is not possible

to do it on any computer with a standard math package. To get around this obstacle,

the problem can be broken down into four smaller sequences of length 513. The four

sample sequences are chosen simply by beginning with the first through fourth data

points and taking every fourth point after that, as well as the 2049th point for each

sequence. This length of sequence is permissible because the highest harmonic of any

importance is the 216th spatial harmonic, and thus Nyquist's criteria is satisfied. 513

points are chosen so that when the de-jittered DFT is applied, the result is a DFT



of length 512, which is amenable to Fast Fourier Transform (FFT) algorithms. The

four data sets are used to construct four de-jittered DFT's which are then averaged.

This averaging reduces the noise floor of the measurement, as opposed to doing just

one de-jittered DFT on 513 points.
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Figure 4-8: DFT on 2049 Points.

c

---A . -J ý --A



(1

0)

0 50 100 150 200 250
Spatial Frequency

Figure 4-9: De-Jittered DFT on 2049 Points.

To examine the results of this procedure, compare Figure 4-8 and Figure 4-9,

showing DFT's of the motor's torque output versus position. Figure 4-8 shows the

results of a traditional DFT done on 2049 points. Figure 4-9 shows the results of

averaging the four de-jittered DFT's constructed from 2049 points. It should be noted

that the axes are cropped for the purpose of creating a more illustrative scaling. The

de-jittered DFT again demonstrates sharper spectral resolution of the harmonics. It

even moves the peak of the 216th spatial harmonic from 217 to 216 where it belongs,

since it is the second harmonic of the slot ripple. The amplitudes of the harmonics

are larger in the de-jittered DFT and there is less sideband energy. The noise floor

is reduced as well. However, these improvements are subtle and at times slight. To



more graphically see this, an overlay of the two DFT's is shown in Figure 4-10. The

lack of a large difference calls into question the need for doing the de-jittered DFT.

The best recommendation is that it should be decided for each particular system,

taking into consideration the desired accuracy of the results.
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Figure 4-10: A Comparison of the Standard DFT (dotted) and the De-Jittered DFT

(solid).

4.3.3 De-Jittered Data

Once the jitter elimination is done, it is possible to take a look at torque versus

position versus current. It is helpful to plot this data in polar format, as it graphically

reveals more of the harmonic structure of the ripple. A polar plot of the de-jittered

^ , r



characterization data is shown in Figure 4-11. The plot shows torque versus spatial

angle for currents ranging from three to eleven amps.
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Figure 4-11: De-Jittered Torque Data versus Position and Current.

Several characteristics of the data should be noted. There is a prominent 108th

spatial harmonic, which is about 5% of the mean torque value, as well as a significant

ninth harmonic. There is also a noticeable reduction in torque as the rotor rotates

in the counter-clockwise direction. This reduction in torque can be traced to a zero-

current torque caused by the pulling of cooling lines, described in Section 1.2, attached

to the motor. The cooling lines exert a spring-like force on the motor. This calls

attention to the need for a zero-current, or baseline, correction of the torque.



4.3.4 Zero-Current Torque Correction

The failure to account for a torque present on the motor in the absence of currents

can introduce significant error into the correction of torque ripple. Since the ripple-

correction technique depends on scaling the currents to generate a constant torque

output, any confusion over current-dependent and current-independent torque causes

inaccuracies in the correction. The significance of this problem depends on the partic-

ular motor in question. Because of the mechanical construction of the motor used in

this thesis, the zero-current torque is considerable and thus it is necessary to account

for it.

There are two methods to account for the zero-current torque and the choice of

method depends on the end objective. If it is desired to command a torque and

have that torque be generated, it is necessary to subtract the zero-current torque

from the desired torque to calculate the torque the motor must produce. In this

way, currents can be commanded so as to cause the net sum of baseline torque and

current-dependent torque to equal the desired torque. If measurements of the current-

dependent torque are the only objective, then it suffices to subtract the zero-current

torque from any measured results. This is the approach used in this thesis.

The existence of zero-current torque with the motor used in this thesis reveals a

need to account for the mechanical forces acting on the motor. To limit the scope

of the problem, an emphasis has been placed on the forces exerted during the first

counter-clockwise revolution starting from position zero, where the ripple-correction

algorithm is primarily tested. Yet, to get a more general picture of the scenario, data

is taken over the entire positional range of the motor. An effect of the rotational

direction on the baseline torque has also been discovered, calling attention to the

need to characterize the motor during both clockwise and counter-clockwise rotation.

This directional effect is not a major concern in this work since the emphasis is on the

counter-clockwise revolution; however, future examinations of torque control should

bear this phenomenon in mind.

To characterize the baseline torque, a series of experiments are conducted. First,



the rotor is turned in the counter-clockwise direction for two full revolutions, its entire

operating range, while measuring torque. Similarly, data is collected for two revolu-

tions in the clockwise direction. Two runs of data are collected in each direction. Fur-

thermore, an additional three runs of data are collected over the 0 to 360 degree range

in the counter-clockwise direction. The collected data is then de-jittered as described

in Section 4.3.2 and the data is averaged among runs. The averaging is necessary to

reduce the measurement error caused by measurement uncertainty, especially since

the zero-current torque is on the order of the resolution of the dynamometer, 0.311

Nm. Figure 4-12 and Figure 4-13 portray the results of a characterization experi-

ment, indicating magnitudes versus position in polar coordinates. Figure 4-14 plots

the values of the torque versus position in Cartesian coordinates.
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Figure 4-12: Magnitude of Baseline Torque for Counter-clockwise Revolutions.
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Figure 4-13: Magnitude of Baseline Torque for Clockwise Revolutions.
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Figure 4-14: Composite of Baseline Torque Showing Counter-clockwise and Clockwise

Data.

Upon examining the data, a number of points become obvious. First, the Carte-

sian plot exhibits a difference in zero-current torque between clockwise and counter-

clockwise rotation. It is believed this difference is caused by bearing friction which op-

poses the rotation. The Cartesian plot also demonstrates a noticeable first-harmonic

torque caused by gravity's action on the asymmetric weight distribution of the mo-

tor. The polar plots indicate a considerable spiral in the torque for both the counter-

clockwise and clockwise sets of data. This is caused by the spring-like action of

the cooling lines. This force is proportional to the displacement from the spring's

zero-force point.

As the experiments later in the thesis place emphasis on the first counter-clockwise

rotation from the zero point, a model of baseline torque is now made solely for that

range of operation. Since the baseline torques act in an additive way, a least-squares

fit to the torque can be made assuming the form of Equation 4.10. This smoothes

the noisy measurement data and extracts the dominant features.



Tbaseline a1 cos(O8) + a2 sin(8) + a38 + a4

The resultant model is super-imposed on the original baseline measurements in

Figure 4-15. Table 4.1 lists the coefficients for the curve fit. This model for baseline

torque can be used to account for torques not related to current. This ability is

absolutely necessary in order to control torque by commanding the phase currents in

an environment where feedback is not available. It is also necessary in order to more

accurately measure the current-dependent torque.
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Figure 4-15: Magnitude of Baseline Torque for Counter-clockwise Revolution with

Baseline Model Super-imposed.

(4.10)



Table 4.1: Coefficients for the Baseline Torque Model.

4.3.5 Baseline-Corrected Data

In this section, the baseline correction is applied to the de-jittered characterization

data gathered earlier in this chapter. A plot of the baseline-corrected data is shown

in Figure 4-16, and a DFT of the data is given in Figure 4-17. Observe that the

decreasing values of torque versus rotor angle seen previously are no longer present

at low current and torque levels. However, at higher current levels, the decreasing

of torque versus rotor angle still occurs, as evidenced by the discontinuity at the

0' position, for reasons that are not known. Yet, even in these cases the baseline

correction does reduce the error.

Coefficient Value

al 0.1384

a2  0.3177

a3  -0.1169

a4 -1.1845



270

Rotor Position (mechanical degrees)

Figure 4-16: Baseline Corrected Torque Data.
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Figure 4-17: Magnitude of DFT of Baseline Corrected Torque Data at 8 amps.

4.3.6 Comments on the Characterization Data

The baseline-corrected characterization data of the previous section can be analyzed

to find the significant contributors to the torque ripple. The most dominant features

are the 108th and 216th harmonics, which are the fundamental and second harmonic

of the slot ripple. These produce an RMS ripple approximately equal to about 5%

of the average torque. A prominent ninth harmonic of torque ripple also exists. The

cause of this ripple had eluded explanation during the experimentation period of this

thesis. In subsequent research, Jackson [7] discovered that this harmonic resulted

from an unintended harmonic distortion in one of the phase currents. Nevertheless,

_I^



as will be demonstrated, the relatively small amount of distortion does not preclude

the success of the ripple-correction technique, although it does diminish it slightly.

The ensemble of data gathered suffices to characterize the motor's torque produc-

tion versus position and current. The data is used to determine correction factors for

the magnitudes of the rotor and stator currents as discussed in the following section.

With this data, the possibility to perform open-loop correction opens up.

4.4 The Correction Factor

Once the characterization data is gathered, de-jittered and baseline corrected, Equa-

tion 3.31 can be employed to calculate the correction factors. Equation 3.31 is re-

peated below in Equation 4.11. In this equation, To is the desired constant output

torque and T(O, Imag, f(0)) is the measured torque data. Before performing any calcu-

lations, Section 4.4.1 modifies Equation 4.11 slightly to account for a deviation from

the ideal quadratic relationship between current and torque. Then, Section 4.4.2

details the procedure for calculating the correction factors. Section 4.5 applies the

correction factors and gathers verification data. It also analyzes the performance of

the ripple-reduction algorithm. Section 4.6 then examines the performance of the

technique in regions that have not been explicitly characterized.

kT0 (0, Imag, f(0)) = T(OImagf((4.11)
TY(0, Imag f(0)

4.4.1 A Deviation from the Ideal Motor Behavior

Looking at the plot of mean torque versus current shown in Figure 4-18, the torque

appears to obey the quadratic law given in Equation 3.26. The nearly quadratic

relationship between torque and current verifies the assumption, made in Chapter 3,

that the motor is operating out of saturation. However, when the logarithm of mean

torque is displayed versus the logarithm of current as in Figure 4-19, a slight variation

from the ideal quadratic law is seen, namely the slope is not as steep as it should



be (the dotted line shows the proper slope). At low currents the deviation can be

attributed to the lack of accuracy in the torque measurements. Most probably, at high

currents magnetic saturation is acting to reduce the torque. The paragraph below

documents the attempt made to account for this slight deviation from ideal behavior.

If the deviation is not taken into account, the amount of correction necessary might

be underestimated since the torque will not change in relation to the square of the

current but some lesser exponent.
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Figure 4-18: Mean Torque versus Imag.
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Figure 4-19: Logarithm of Mean Torque Versus the Logarithm of Imag.

To more accurately relate torque to current, Equation 3.26 is modified slightly to

reflect the role of saturation. As saturation is neared, the ideal quadratic relationship

between current and torque approaches a linear behavior. With this in mind, Equa-

tion 3.30 can be modified so that the torque will be a function of the magnitude of

the current raised to the power of a. This results in a new torque equation, Equa-

tion 4.12. It might appear that this causes a discrepancy in the units of the equation.

However, the hidden dependence of the inductance on the current, which causes the

non-ideal behavior, also causes the equation to have the proper units.

T(0, Imag, f()) = ( fT(O)) f (0) f ) I as (4.12)

The variable a is a weak function of current, meaning that in a neighborhood of

some current, i(O) = Imag f(0), a is constant. Thus when calculating the correction

factor it is enough to use the value of a that is valid in that neighborhood. Using

elementary calculus, a can be found to be equal to the derivative of the logarithm
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of the average torque over the derivative of the logarithm of the magnitude of the

current; this is merely the slope of the log-log plot of torque versus current. In this

thesis, a fifth-order polynomial fit of torque versus current is made and the values of

a are calculated from the fitted curve. At currents ranging from 8 amps to 11 amps,

a fell from a peak value of 1.98 to 1.84. Table 4.2 lists the calculated values of alpha

versus Imag.

Imag

1A

2A

3A

4A

5A

6A

7A

8A

9A

10A

11A

a

1.7266

1.8266

1.8555

1.8825

1.9135

1.9440

1.9674

1.9762

1.9628

1.9193

1.8367

Table 4.2: a versus Current Level.

Using an analysis similar to that shown in deriving Equation 3.31, a new correction

term can be derived. The new correction factor is stated in Equation 4.13, where To

is the desired torque. This is the equation for the correction factor that is used in the

ripple-reduction algorithm.

kTo (0, Imag, f(0)) = T 0
T(0, Imag, f (0))

(4.13)



4.4.2 Calculating the Correction Factor

Using the de-jittered, baseline-corrected characterization data, the correction factors,

kT o(, Imag), can be calculated using Equation 4.13. (When notating the correction

factor as kTo(0, Imag), it is implied that the current vector is formed by sinusoids

of amplitude Imag.) The correction factors can then transformed to the frequency-

domain via the DFT. Because of the periodic nature of the torque ripple, the DFT of

the correction factor has only a few large terms. An approximation of the correction

factors, kTo (0, Imag), using the dominant terms, can be created. These dominant terms

are the 0, 9, 108 and 216 terms. This approximation saves tremendously on storage

space as only a few coefficients need to be stored. To store the entire spatial-domain

waveform, at least 432 floating point values need to be stored. Using a dominant-term

approach, only seven floating point values need to be stored. This storage savings

comes at the cost of additional computation at run-time, however. The form for the

correction factor is given by Equation 4.14. Table 4.3 lists the coefficients for each

current level.

kT (9, Imag) = mo + m 9 cos(9 0 + 09) + i 108 cos(108 0 + 108os) + m 216 cos(216 0 +- 216)

(4.14)



Imag

4A

5A

6A

7A

8A

9A

Coefficients

mo m9 9 m108 o 108 m216  ¢216
1.0006 0.0252 2.2953 0.0384 2.4790 0.0074 0.5083

1.0005 0.0199 2.2879 0.0366 2.4011 0.0068 0.4127

1.0005 0.0173 2.4733 0.0377 -2.5309 0.0066 -3.0037

1.0004 0.0146 2.3560 0.0353 2.4347 0.0064 0.4515

1.0004 0.0128 2.3953 0.0344 2.4515 0.0062 0.5062

1.0003 0.0120 2.4192 0.0334 2.4526 0.0060 0.5394

Table 4.3: Correction Coefficients versus Current Level.

4.5 Verification

To verify the ripple-correction technique, the following experiment is conducted. Us-

ing the characterization data, the mean torque is calculated at current levels ranging

from four to nine amperes. These mean torques are then selected as the desired

constant output torque level to be produced by the motor. The experiment then

attempts to produce the desired constant torques using the correction factors.

In order to verify that the motor can be commanded to produce a constant torque,

the correction factors calculated in Section 4.4.2 are used to amplitude modulate

the phase currents as compared to the original characterization runs. The torque is

measured as the motor rotates. The measured torque is then de-jittered and corrected

for zero-current torque. This result is the torque produced solely by the action of the

motor. The desired result at this point should be a constant torque output. It

is observed that modulating the three-phase currents on rotor and stator achieves

significantly reduced torque ripple. Figure 4-20 plots the ripple-corrected data.

Table 4.4 lists many results of this experiment. The first column lists the desired

torque level. The second column lists the mean torque level that has been achieved.

The third column lists the original root-mean-square (RMS) ripple. The fourth col-



umn lists the RMS error from the desired mean torque level. The fifth column lists the

RMS ripple in the reduced ripple output. It should first be noted that the technique

has a significant error in the achieved value of mean torque relative to the desired

value of torque. The cause of this error is not yet explained. The effect of the error

in the achieved mean torque is to create a difference between the RMS error from

the desired value and the RMS ripple. If the achieved mean torque value equaled the

desired torque value, then the error and the ripple would be the same.
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Figure 4-20: Ripple-reduced Torque Data.



Desired Achieved Original Achieved Achieved

Mean Torque Torque RMS Ripple RMS Error RMS Ripple

7.218 7.432 0.485 0.392 0.329

11.058 11.302 0.664 0.436 0.361

15.507 15.962 0.971 0.590 0.376

21.045 21.259 1.151 0.494 0.445

27.097 27.613 1.484 0.665 0.419

34.108 34.450 1.720 0.617 0.515

Table 4.4: Results of Ripple Reduction.

A brief comment can be made about the choice of the metric for comparison. A

number of metrics are possible: RMS ripple, RMS ripple as a percentage of mean

torque, and peak-to-peak ripple. In this thesis, the choice is made to look at RMS

ripple and RMS ripple as a percentage of mean torque. There are at least two rea-

sons for this decision. Since the technique operates near the quantization limit of the

measurement system, a peak-to-peak metric would inherit the considerable granular-

ity of the measurement, and the results would be obscured. A second reason is that

since it is empirical data that is being dealt with, it makes sense to talk about the

distribution. The RMS error is the standard deviation of the measurement and so

it is a natural metric for analyzing the data. For these reasons, the RMS ripple and

RMS ripple as a percentage of mean torque are chosen as the performance metrics.

Expressing the RMS error of the results above as a percentage of mean torque,

the improvement becomes more tangible. Table 4.5 lists the original ripple as per-

centage of desired torque and the ripple-reduced ripple as a percentage of achieved

torque. At higher torque values, there is an improvement of 3.5%, which translates

into slightly more than a factor of three reduction. At lower torque values, the im-

provement is not tremendous. In agreement with the comments of Section 4.3.1, any

real improvement is obscured by the measurement error. By scanning the fifth col-

umn of Table 4.4 it can be seen that the RMS ripple is of the same magnitude as the



errors in the measurement system. The effectiveness of the technique is being limited

by the measurement system. This also accounts for the apparent improvement in the

percentage ripple as the mean torque value increases. It is conceivable that with a

more accurate measurement system or at higher torque values, the technique would

be able to achieve a ripple of less than 1%.

Table 4.5: Torque Ripple as a Percentage of Mean Torque.

4.6 Testing the Practicality

Seeing that the technique is reasonably successful at reducing torque ripple in well

characterized regions of operation, it is desirable to see how well it performs in areas

of operation that are not characterized. In order to quantify this, an attempt can

be made to produce constant torque at what should be the mean torque values with

current amplitudes of 4.5, 5.5, 6.5, 7.5, and 8.5 amps: 8.817, 12.943, 17.907, 23.728

and 30.383 Nm. To accomplish this, the correction factors are chosen to be the average

of the two nearest known correction factors. For example, to generate a correction

factor around 4.5 amps, the correction factors for 4 and 5 amps are averaged. Data is

then taken for a single revolution in the counter-clockwise direction, at each current

level.

Figure 4-21 plots the results of the experiment described above. Table 4.6 tabu-

Desired Original Achieved Achieved

Torque RMS Ripple Torque RMS Ripple

7.218 6.7% 7.432 4.4%

11.058 6.0% 11.302 3.2%

15.507 6.3% 15.962 2.4%

21.045 5.5% 21.259 2.1%

27.097 5.5% 27.613 1.5%

34.108 5.0% 34.450 1.5%



lates the metrics of performance. The results look quite good and are on par with

those obtained in regions where the torque production is characterized. There is an

unexplained error in the mean value again. The first column of the table lists the

desired torque, and the second column lists the achieved mean torque. The third

column lists the RMS error from desired torque value and the fourth column lists the

RMS ripple around the achieved torque value. The fifth column lists the ripple as a

percentage of the achieved mean torque.
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Figure 4-21: Ripple-reduced Torque Data.



Table 4.6: Results of Ripple Reduction in Uncharacterized Regions.

4.7 Summary of Results for the Ripple-Reduction

Algorithm

This chapter has documented the ripple-reduction algorithm. The basic data flow

is depicted in Figure 4-1. The data-flow begins with the collection and processing

of characterization data. This chapter documents the data gathered as well as the

processing steps which include a compensation for aperiodic sampling and a removal

of zero-current torque components. Once the characterization phase is completed, the

correction factors are calculated. Section 4.4.1 develops a modification to the basic

equation for calculating the correction factor, including an extra parameter to account

for a non-ideal torque versus current relationship. Section 4.4.2 then documents the

actual method used for calculating the correction factor and how to implement the

correction factor with a minimum amount of data storage. Sections 4.5 and 4.6

document the final phase of the data flow which is the verification phase. This phase

applies the correction factors and measures the resulting data. This data is then

processed to account for aperiodic sampling and zero-current torque.

The results of the ripple-reduction technique demonstrate a best-case reduction of

torque ripple from 1.72 Nm to .51 Nm. Relative to the mean torque values this is a

reduction from a level of 5.0% to 1.5%. The magnitude of the residual ripple is com-

Desired Achieved Achieved Achieved Achieved

Torque Torque RMS Error RMS Ripple RMS Ripple

8.817 9.206 0.502 0.318 3.4%

12.943 13.544 0.729 0.412 3.0%

17.907 18.543 0.736 0.370 2.0%

23.728 24.355 0.777 0.458 1.9%

30.383 30.854 0.670 0.476 1.5%



parable to the resolution of the torque measurement system. The ripple-reduction

technique is also applied via interpolation to areas where the characterization has

not been done. Results in these areas demonstrate ripple as low as 1.5%, which

is equal to the best value obtained in the characterized region. Thus, an effective

ripple-reduction technique has been demonstrated. While depending upon character-

ization, the technique operates successfully in regions where the characterization is

not explicitly carried out.

The following chapter investigates the possibility of rotating the magnetic fields

in the motor in such a way as to maintain constant torque at a fixed position while

spreading power dissipation among the windings. The technique of that chapter is

combined with the ripple-reduction technique of this chapter to obtain the benefits

of both.



Chapter 5

Thermal Management

5.1 Introduction

Often a limitation on torque output comes from the inability to radiate or conduct

heat away from a motor quickly enough. In particular there is the concern of creating

hot spots in the motor while providing constant torque. These hot spots can cause

insulation breakdown or mechanical failure. Normally, to provide constant torque at a

fixed position, the windings must conduct constant currents, and the winding handling

the most current will heat up more than the rest. This heating condition provides

a limit on how much current can be delivered without overheating the motor. The

problem is not easily solved since a reduction in current normally implies a reduction

in torque.

However, with the motor used in this thesis, there exists the possibility of provid-

ing constant torque without using constant currents. Since the motor is constructed

of two symmetrical "pancake" halves, each with a set of windings, it is possible to elec-

trically commutate the stator and rotor currents while maintaining a constant torque

output at a fixed position. This can be done by maintaining a fixed electrical angle

between the rotor and stator phase currents in such a way that the rotor and stator

fields are separated by a constant angle. If the period of the rotor and stator current

commutation is much less than the thermal time constants, the peak temperature in

each location in the motor will be only a function of the average power dissipation in



that region as opposed to the peak dissipation. This rotation of the phase currents

can increase the allowable power dissipation in the motor by some amount, which

translates into a proportional increase of the torque production capability.

This chapter proceeds by detailing a thermal model of the motor in Section 5.2.

Using this model, Section 5.3 examines the difference between constant and time-

varying currents in the windings in regard to peak temperature production. Sec-

tion 5.4 verifies the assumptions made in formulating the thermal-management tech-

nique. Section 5.5 provides a characterization of the motor's thermal properties and

Section 5.6 provides data supporting the success of the thermal-management tech-

nique. In Section 5.7, the technique is combined with the ripple-reduction technique

and supporting data for their combined effectiveness is provided.

5.2 A Thermal Model

The motor used for this thesis, a cross-section of which is shown in Figure 5-1, has two

symmetrical halves, one acting as a rotor and one as a stator. Windings in either half

dissipate power proportional to the winding resistance and the square of the current

through the winding. The motor has two mechanisms for removing generated heat.

The first mechanism is conduction to a cooling channel in the back-iron which has

cool water flowing in it. The second method for cooling is conduction through the

epoxy encasing the windings and then convection to the ambient air.

I



Thermal Epoxy - * . ..

0.24")

Figure 5-1: A Cross-section of the Axial Flux Motor.

This section will model the thermal behavior at any location in the motor using

thermal impedances and power sources. In this form of modeling, temperatures corre-

spond to voltages and power sources to currents. The impedances relate temperature

differences to power flow. For this model, it is assumed that there is no heat flux

between the rotor and stator and this is verified in Section 5.4. Once this assumption

is made, the thermal model be used to consider the thermal properties of the rotor or

stator, depending on the location of the point of interest. It can be noted that some

fraction of the power dissipated by each winding arrives at the location of interest.

Thus, the power flow into the point is equal to a linear combination of the power

dissipations in the windings. Equation 5.1 states this mathematically, where PA, PB

and Pc are the dissipations in windings A,B, and C respectively. The coefficients a,b,

and c depend on the location in the motor. If the power dissipation is time-varying,

the coefficients may also be dependent on the frequency of the power dissipation.



Pin = a PA + b PB + c Pc (5.1)

The power flow into the point of study must also flow out, eventually to the

cooling channel or to the ambient air. This power flow is supported by a temperature

gradient between the point and the cooling mechanisms. The relationship between

this temperature gradient and the power flow can be described by adding thermal

impedances to the model between the point and both the cooling channel and the

ambient air. Figure 5-2 provides a pictorial representation of the model. In the figure,

Tair is the temperature of the ambient air, Tw,,ate, is the temperature of the water in

the cooling channel, and T,,int is the temperature at the location of interest. Oair

and Owater are the thermal resistances from the point to the ambient air and cooling

channel, respectively. Similarly, Cair and Cwate, are the thermal capacitances from

the point to the ambient air and cooling channel.

0 water

wate r

Figure 5-2: A Pictorial Representation of the Thermal Model.

In this model, the thermal impedances are formed by a lumped thermal resis-

tor and a lumped thermal capacitor. A few qualitative comments can be made as

supporting evidence for the validity of this choice. The use of a thermal resistance as-

serts that the steady-state temperature differential from the point to the temperature



reservoir is proportional to the heat flow between these two points. A capacitive term

enters in when the heat capacity of the material is considered. The effect of heat ca-

pacity is that the material conducting the heat away from the dissipation source will

itself absorb some of the heat to effect a temperature change. A small digression is

necessary to describe exactly how the heat capacity behaves as a capacitive element.

Elementary thermodynamics defines the heat capacity of an object as the ratio

of its change in heat to its change in temperature. Equation 5.2 provides a mathe-

matical definition, where dQ is an incremental amount of heat, dT is an incremental

temperature and C is the heat capacity.

dQ = CdT (5.2)

The incremental addition of heat can be expressed as a flow of power, P, into the

substance for an incremental amount of time, dt. Substituting this into Equation 5.2

and re-arranging terms, yields Equation 5.3.

dT P
dT= C (5.3)

The form of this equation lends itself to immediate analysis of the effective ther-

mal impedance of the substance, which looks capacitive. Equation 5.4 provides the

Laplace-transform form of the thermal impedance resulting from the heat capacity.

Z = (5.4)
Cs

Since some of the power flow will divert into heating the conductive material,

the heat capacity should be modeled as an impedance in parallel with the resistive

impedance of the substance. Appropriate impedances to the cooling channel and the

ambient air have been included in the thermal model, as depicted in Figure 5-2. This



completes the thermal model of the motor. The following section uses this model to

analyze the temperature at the point of study for various phase currents.

5.3 Employing the Thermal Model

Using the model set up in the previous section, this section studies the temperature

of an arbitrary point in the motor when the currents in the windings are three-phase

sinusoids. It is found that as the frequency of the sinusoids increases, the peak

temperature at every point in the motor decreases. This fact gives motivation for the

thermal-management technique, which at a fixed rotor position provides time-varying

three-phase currents to both the rotor and the stator.

The currents in the windings are chosen to be three-phase sinusoids as used in

previous chapters. Equations 4.1-4.6 dictated these currents earlier. Since the prob-

lem now under consideration is equivalent for the rotor and stator, the equations for

the phase currents can be chosen to be either the rotor or the stator currents. For

simplicity the equations for the rotor are used. These are repeated below in Equa-

tions 5.5-5.7. It should be remembered that the variable 6 is a free variable. Imag is

the amplitude of the phase current sinusoid.

iA = Imag Cos(6) (5.5)

iB = Imag COS(6 - 3) (5.6)

47ric = Imag cos( - 31) (5.7)

The phase currents defined above yield power dissipations for each winding as listed in

Equations 5.8-5.10. R is the electrical resistance of each winding. For these equations,

6 is chosen to have a frequency-dependent term and a phase angle, 6 = w t + -y.



PA ,ag + cos(2w t +27) (5.8)
[1 1 4wP 2 = B I R + I cos(2w t + 2- ) (5.9)
1 1 27r

Pc= ImagR + 2 cos(2w t + 2y - 3) (5.10)

Using the expressions for the power dissipations in the windings, the power flow into

the point of interest is written out in Equation 5.11. In this equation, the frequency

dependencies of the coefficients a, b, and c are made explicit.

112
Pin =2maR [a(0) +b(O) + c(O)

+ 2 aR a(2) cos(2w t + 2-y7)

+b(2w) cos(2w t + 2y - )
3

+c(2w) cos(2w t + 2y - --) (5.11)

With Equation 5.11 it is possible to find the maximum power flux into the point

with a static distribution of currents, that is, w = 0. This can be done using standard

maximization methods from calculus as shown in Appendix B. Equation 5.12 ex-

presses this maximum power flux. This power flux will produce a temperature given

by Equation 5.13.

Pin = •agR [a(O) + b(O) + c(0)]

+2 2mag R a(0)2 + b(0) 2 + c(0) 2 - a(0)b(O) - b(O)c(O) - a(O)c(O) (5.12)

g



Owater Oair

point = Tair water Twater air
Tair + 0_er +Tw T air Oair Owater

+ I P R [a(O) + b(O) + c(0)] airwater
2 m0air + Owater

+ IVagR a(0)2 + b(O) 2 + c(0)2 - a(Ob(() - b(O)c(O) - a(O)c()] OairOwater

2 mair + Owater
(5.13)

It is also possible to solve for the temperature change when the frequency of the

sinusoidal currents becomes large relative to the thermal time constants of the motor.

In this case, the thermal impedances to the cooling sources approach zero, while the

power flow into the point remains bounded. In this way the sinusoidal power does

not contribute to the temperature at the point of interest. Only the direct current

component of the power flow creates a temperature change. Equation 5.14 expresses

the temperature at the point of interest when the frequency, w, is much larger than

the thermal time constants.

Owater eair
Tpoint = Tair Owater + Twater Oair

6 air + 0water 0 air + 0 water

1 (5.1i4)at5 1
+ ImagR [a(0) + b(0) + c(0)] Oair Owater(5.14)

2 ag ( ± )air + 0 water

Taking the difference between Equations 5.13 and 5.14 yields the temperature dif-

ference between the worst-case static distribution of currents and the high-frequency,

time-varying distribution of currents. This is given in Equation 5.15. For a typical

motor, the current distributions are static at a fixed position. This implies that for

over the range of possible rotor positions, each point experiences a peak temperature

change. For the motor used in this thesis however, it is possible to produce torque at

a fixed position while maintaining time-varying currents in the rotor and the stator.

If the frequency of commutation is sufficiently high, the temperature peaks can be

eliminated, and the temperature experienced corresponds to that generated by the



average power flow. Because this result has been derived for an arbitrary location in

the motor, it is valid for every location. Thus time-varying currents can be used to

eliminate temperature peaks while still producing torque at a fixed position.

AT = 12a R Va(0)2 + b(0) 2 + c(0) 2 - a(O)b(O) - b(O)c(O) - a(O)c(O) airOwater

2 mag air + Owater
(5.15)

5.4 Assumptions about Thermal Behavior

Before proceeding any further, the assumptions that underlie this thermal-management

technique should be verified. First, it has been assumed that the rotor and stator

heat independently. To verify this, an experiment is created in which the amplitude

of the three-phase sinusoidal stator current is fixed at 8 amps. The stator-current

phase angle is swept from 0' to 330' in 30' increments, allowing the motor to reach

thermal equilibrium at each angle. Temperature is measured at four thermocouples.

Appendix I gives more information on the temperature measurement system. The

temperature data is presented in Table 5.1. Ambient temperature is approximately

22TC. The rotor thermocouples are notated as T1 and T2 and the stator thermocou-

ples are T3 and T4. It is clear from the data that there is no phase angle at which the

thermal coupling is significant. Thus, for the purposes of this thesis, the rotor and

stator heating occur independently. However, it should be noted that the coupling

could increase if the air-gap distance were reduced.



Table 5.1: Thermocouple Temperatures versus Stator-Current Phase Angle.

Another assumption of the work so far has been that the phase currents can be

rotated much faster than the thermal time constant. Figure 5-3 presents temperatures

at the rotor thermocouple locations when all windings are driven with 6 amps. The

temperatures are measured versus time. It can be seen that the thermal time constant

is on the order of 3 minutes. Thus, if the phase currents can be driven at a frequency

much greater than .0056 Hz, the thermal-management technique should be successful

in avoiding temperature peaks.

Phase Angle(') T1(°C) T2(°C) T3(oC) T4(°C)

0 23 22 44 50

30 22 22 46 50

60 23 23 49 55

90 23 22 50 58

120 23 22 49 59

150 23 22 46 56

180 23 22 46 53

210 22 22 46 51

240 22 22 47 53

270 22 22 48 56

300 23 23 47 57

330 23 22 44 53



Time (minutes)

Figure 5-3: Thermocouple Temperatures versus Time.

5.5 Thermal Characterization

In order to anticipate what type of gains can be achieved by rotating the phase

currents, it is necessary to arrive at some estimate of the difference between the

peak temperatures and the average temperatures. This can be done for any one of

the four thermal couples in the motor. Figure 5-4 provides temperature data from

the Ti thermocouple on the rotor when the phase current magnitude is set to 8

amps and the phase angle is swept. The best-fit sinusoidal approximation to this

data yields an average value of 50.76'C and an amplitude of 2.980 C. From this data,

it would be expected that rotating the 8 amp phase currents at a frequency much

faster than the thermal time constants would yield a constant temperature of 50.76'C

at thermocouple T1. This eliminates about 30C of temperature increase, or about

10% of the temperature rise above ambient, 220C. Using the linear model of the

previous sections, it would be expected that at higher currents, the same percentage



reduction in the temperature rise would occur, provided the non-linearities of non-

linear phenomena, such as convection, remain negligible. Furthermore, the thermal

model predicts that if the motor had points with strong coupling to the dissipations

of only one or two phases, the effectiveness of the technique would be enhanced. As

it is, it appears that there is fairly uniform coupling to each phase.
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Figure 5-4: Rotor Temperature versus Phase Angle.

5.6 The Thermal-Management Technique

As discussed in Section 5.3, if the phase currents are rotated quickly enough, tem-

perature peaks are avoided. This section provides data supporting the validity of the

technique. An experiment is run in which the rotor and stator are driven with 10 amp

magnitude three-phase currents. Two scenarios are compared, similar to the scenar-

ios discussed in Section 5.3. In the first scenario, the motor position is locked at the

zero position. The rotor-current phase angle is fixed at zero degrees, which is close to

the angle which causes the peak dissipation as seen at the rotor thermocouple, T1.

0 50 100 150 200 250
Rotor Phase Angle (degrees)

1 - I I 1 I T



The stator-current phase angle is set to maximize torque output. The steady-state

temperature at each thermocouple is then recorded. The second scenario still locks

the motor position at zero, however, the rotor and stator-current phase angles rotate

at approximately 18 Hz while maintaining a constant phase angle between them. The

steady-state temperatures are then recorded.

Table 5.2 compares the steady-state temperatures for each experiment. The third

data column shows that the steady-state temperature goes down by a few degrees

at each thermocouple. But more telling is that the temperature is reduced at ther-

mocouple T1, where the heating would be at its maximum if the currents were not

rotating. In Section 5.5, it has been found that at 8 amps and a rotor current phase

angle of zero degrees, the temperature at thermocouple T1 was slightly less than

3WC above the mean temperature taken when the phase currents rotate. Translating

this into an equivalent expected reduction at 10 amps, one could anticipate a change

of slightly less than 4.7 0 C. Experimental data shows a change of 4.2°C, confirming

the expectations. Thus, the thermal-management technique successfully reduces the

temperature and does so in a predictable way. This technique can be folded into the

ripple-correction algorithm as discussed in the next section.

Thermocouple Non-Rotating Temp. (°C) Rotating(°C) AT(°C)

T1 80.7 76.5 -4.2

T2 67.1 63.1 -4.0

T3 66.5 61.7 -4.8

T4 80.0 74.6 -5.4

Table 5.2: Thermocouple Temperatures with Non-Rotating and Rotating Phase Cur-

rents.



5.7 A Unification of Ripple Reduction and Ther-

mal Management

It is possible to combine the ripple-reduction and thermal-management techniques.

The idea is that the phase currents should rotate to minimize peak temperature

while the magnitudes are modulated to correct for ripple. At the outset, it is not

clear whether ripple depends on the absolute phase-current angles or not. To get any

idea whether combining techniques would work, it is first necessary to characterize

the torque ripple versus position and phase angle.

Data has been taken for torque versus position and phase angle with fixed rotor

and stator-current magnitudes of 8 amps. The magnitude and phase of significant

ripple harmonics are listed in Table 5.3 versus the phase angle of the currents. It can

be seen that all but the ninth harmonic of torque ripple are of fixed magnitude and

phase. The ninth harmonic however, rotates with the phase angle of the currents. It

has been discovered that the rotation of the ninth harmonic is caused by harmonic

distortion in the current waveforms produced by the power electronics. Therefore, it

makes perfect sense that this ripple component rotates along with the phase angle of

the currents. There have been no efforts to re-do the experiment, as the distortion

can be compensated for quite successfully, as the results demonstrate.



Table 5.3: Magnitude and Phase of Ripple Harmonics versus Current Phase Angle.

Using the information in the table above, a ripple-compensation algorithm is con-

structed in which the magnitude and phase angle of the 108th and 216th harmonic

components of the correction factor are fixed. The 9th harmonic component is fixed

in magnitude with a phase that tracks the phase current rotation appropriately. This

correction algorithm is applied and ripple data is collected versus current phase an-

gle. The corrected ripple waveform is spectrally decomposed and the results are

reported in Table 5.4. These results show an appreciable reduction in ripple, on par

with results reported in Chapter 4. Thermally, there is a slight temperature depen-

dence on position that is caused by the modulating magnitudes of the phase currents,

yet the advantage of phase current rotation is not diminished. Thus, the thermal-

management technique of rotating the fields can be merged with the ripple-reduction

technique to achieve the advantages of both. Torque ripple and peak temperatures

are reduced.

9th Harmonic 108th Harmonic 216th Harmonic

Phase Angle Magnitude(Nm) Phase Magnitude Phase Magnitude Phase

0 0.343 133 0.926 41 0.180 144

36 0.352 167 0.931 38 0.187 139

72 0.352 206 0.930 41 0.178 143

108 0.335 244 0.928 42 0.180 144

144 0.358 280 0.908 40 0.181 142

180 0.384 318 0.928 32 0.182 127

216 0.377 353 0.945 42 0.182 145

252 0.385 29 0.923 42 0.176 146

288 0.350 63 0.906 41 0.175 142

324 0.353 98 0.891 40 0.181 142



9th Harmonic 108th Harmonic 216th Harmonic

Phase Angle Magnitude(Nm) Phase Magnitude Phase Magnitude Phase

0 0.044 331 0.202 334 0.078 85

36 0.044 4 0.235 327 0.093 74

72 0.041 46 0.207 329 0.080 79

108 0.034 72 0.215 331 0.078 81

144 0.042 105 0.185 333 0.072 86

180 0.042 136 0.259 328 0.094 81

216 0.046 182 0.221 329 0.075 79

252 0.044 206 0.195 333 0.077 86

288 0.052 246 0.209 330 0.083 81

324 0.042 288 0.224 326 0.086 81

Table 5.4: Magnitude and Phase of Corrected Ripple Harmonics versus Phase Angle

of Current.
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Chapter 6

Summary, Conclusions, and

Suggestions for Future Work

This thesis presents a method for torque-ripple compensation which can be seam-

lessly folded into a thermal-management technique. The torque-ripple reduction is

performed without the aid of torque feedback. Experimentation is done using a syn-

chronous axial-air-gap motor with a three-phase rotor and three-phase stator. The

ripple-correction method uses a magnitude modulation of balanced three-phase cur-

rents to achieve a 70% reduction of the Root-Mean-Square (RMS) torque ripple. The

proper magnitude modulation is determined from empirical measurement of the ripple

harmonics. The thermal-management technique uses the idea of rotating the rotor

and stator phase currents versus time, while maintaining a constant angle between

the fields. This distributes the generated heat throughout the motor, even while op-

erating at a fixed position. This technique proves to work as expected; however, the

gains are minimal, resulting in about a 50C temperature reduction. Finally, these two

techniques are combined. The results of the combined algorithm demonstrates ripple

reduction on par with results achieved using only ripple reduction. The paragraphs

below outline the achievements of each chapter. Following this are some ideas for

continuing research.



6.1 Summary

Chapter 3 presents an inductance-based model of torque production. Using the as-

sumption that the magnetics behavior linearly, the model torque is shown to be a

function of rotor position when the phase currents are functions of position. More

importantly, the model torque is shown to scale quadratically with a linear scaling of

the phase currents. This equation for torque production is given in Equation 3.28.

It is manipulated to show that if the phase currents are modulated proportionally to

the square root of the ratio of the desired torque to the measured torque at a posi-

tion, then the torque ripple is eliminated. Equation 3.31 provides an expression for

this correction factor. The technique requires a characterization of torque production

versus position before the ripple-reduction technique can be employed.

Chapter 4 documents the measurement procedure and provides data support-

ing the success of the ripple-reduction method. Section 4.3 documents the possible

sources of error in the measurement technique which include quantization error in

the dynamometer, aperiodic sampling of the torque data, and zero-current forces on

the motor. Section 4.5 reports the success of the ripple-reduction technique in re-

ducing the RMS torque ripple. Table 4.4 lists ripple levels versus mean torque for

the corrected and uncorrected cases. The best results are at the highest mean torque

level, 34.1 Nm, where the torque ripple is reduced from 1.72 Nm to 0.51 Nm. Taking

the ripples as percentages of mean torque, the ripple is reduced from 5.0% to 1.5%.

At lower torque levels, the improvements are less significant, being bounded by the

dynamometer resolution of about 0.4088 Nm as documented in Section 4.3.1. Sec-

tion 4.6 concludes Chapter 4 with an examination of the technique in regions where

the torque production is not characterized. The results listed in Table 4.6 indicate

that the technique performs as well in characterized regions as it does in uncharac-

terized regions. For a mean torque of approximately 30 Nm, the ripple is reduced to

a level of 0.4757 Nm.

Chapter 5 concerns itself with the issue of hot-spot creation during static loading

conditions. Taking advantage of the unique design of the motor used in this thesis,



a technique is developed which rotates both the rotor and the stator currents while

holding the rotor position fixed. This prevents all locations in the motor from ex-

periencing the peak temperatures that would occur if the currents did not rotate.

However, the gains are minimal. Sections 5.2 and 5.3 develop a model of the tem-

perature of an arbitrary location in the motor. When the windings conduct constant

currents, Equation 5.13 dictates the peak temperature of an arbitrary point in the

motor. When the windings conduct sinusoidal currents, Equation 5.14 expresses the

peak temperature. For the case in which the phase currents are constant, the peak

temperature is higher than for the case in which they conduct sinusoidal currents.

Thus the rotation of the phase currents while holding a static position reduces the

peak temperature experienced at every point in the motor. For phase-current magni-

tudes of 10 amps, Section 5.6 predicts a temperature drop of 4.7'C as measured by a

certain thermocouple. The section documents an actual decrease of 4.2 0 C. Thus the

thermal-management technique reduces temperature peaks in a predictable manner.

Finally Chapter 5 combines the ripple-reduction technique and the thermal-management

technique into one algorithm. Both techniques are compatible with each other. Data

is presented in Section 5.7 to demonstrate that the thermal-management technique

does not compromise the ripple-reduction technique.

6.2 Conclusions

The ripple-reduction technique provides a 3.5% decrease in the RMS torque ripple. A

distinguishing feature of the technique is that it does not depend on torque feedback,

but only on position feedback. This eliminates the need for a torque sensor during

normal operation. Eliminating the torque sensor reduces cost, and avoids the intro-

duction of additional system dynamics. The lack of a torque sensor does not seem to

be an enormous handicap, provided that accurate characterization measurements can

be made. Compared to this technique, other researchers using open-loop techniques

have observed similar reductions in torque ripple [8] [11] [12]; however, these gains have

been on other types of machines.



The thermal-management technique demonstrates only minimal reductions in

peak temperatures. Because of the distributed nature of the windings and the multi-

pole design, there is not the significant localization of the heating which causes hot

spots to form. Thus, rotation of the phase currents does not cause a large change

in zero-frequency power flow into a given point, as would be hoped. It is expected

that the technique would show much greater success with a motor having fewer poles.

However, it is note-worthy that the slight changes that are observed in peak temper-

atures do follow the predictions of the thermal model developed in this thesis.

6.3 Areas for Future Research

The full potential of the ripple-reduction technique has not yet been explored because

of limitations in the experimentation system. The resolution of the dynamometer

poses the greatest limitation. This is further hindered by the coupling of switching

noise from the servo amplifier into the measurement and control systems. Future

experimentation systems can be improved by selecting a more accurate dynamometer

and by eliminating switching noise and its effects.

The techniques discussed in this thesis allot some flexibility to the motor designer.

Future motors should be designed with these techniques in mind. The ripple-reduction

technique may make it feasible to obtain low ripple without using distributed wind-

ings, or at least fewer of them. The benefits of this could be an increase in torque-to-

mass ratio, a decrease in volume, a reduction in manufacturing cost and complexity,

and most likely an increase in the reliability of the motor. Related to this, the

thermal-management technique could be used to minimize the localization of heating

that would occur with a less distributed set of windings. The thermal-management

technique also allows for other relaxations in the motor design, again with the bene-

fits listed above. One possible design change may be to eliminate the cooling channel

in the back-iron. An interesting topic for research would be the study of the sim-

plifications that could be made in the motor design when employing the techniques

discussed in this thesis.



Extending the techniques of this thesis to other regions of operation is a natural

progression in the research. To some extent, this has already been carried out by Jack-

son [7] at MIT. He has had success in extending the ripple-reduction technique to the

saturation region. He uses the same motor and apparatus as is used in this thesis. His

static results are somewhat better because of improvements in the experimentation

apparatus; however, the limitations are not completely overcome. Jackson's thesis

provides more data on the techniques discussed in this thesis and it examines other

aspects of the techniques, the motor, and the experimentation system. Jackson also

examines what would be necessary to extend the techniques to a dynamic situation,

but does not implement such a system. Ultimately, the techniques used in this thesis

must to be implemented in a dynamic situation.



Appendix A

Matlab Code

This code performs the de-jittered DFT developed in Section 4.3.2. The code runs in

Matlab.

function [y]=djdft (index,data)

% [y]=djdft(index,data) This function does a de-jittered DFT
% The output is y in the canonical DFT representation

% To put the de-jittered DFT in a DFT format, the coefficients at
% half the sampling frequency are added. This properly accounts for
% the loss of phase information that results from aliasing.
% For real signals the sum must be a real number, so taking the
% real part does not affect operation, but cleans up finite-precision
% errors in the math, which could cause a probelm when doing an
% inverse FFT.

nopts=length(index)-1;
summa=(exp(index*[(0:(nopts/2)) ((-nopts/2):-1)]*i)\data)*nopts;
y=[summa(1:(nopts/2));...
real(summa(nopts/2+1)+summa(nopts/2+2)); ...
summa((nopts/2+3) :(nopts+1))];



Appendix B

Calculating the Maximum Power

Flow

Section 5.3 requires the calculation of the maximum power flow into a point when

the power flow, P, is in the form given by Equation B.1. The parameters A, B and

C are arbitrary, but range between 0 and 1. The maximization must be done over

the angle, a.

2w 4w
P = A cos(ca) + B cos(a - ) + C cos(a• - ) (B.1)

3 3

The maximization can be done using standard methods of calculus. First, the

extrema are found by taking a derivative with respect to the free variable, setting

the derivative equal to zero, and solving the resulting equation. This is carried out

below. Once the extrema are found, each one must be scrutinized to find if it is a

maximum or a minimum.

dP 2r 4w=d - -A sin(a) - B sin(a - ) - C sin(a - ) = 0 (B.2)
da 3 3

Using the trigonometric identity, sin(a - 3) = sin(a) cos(o) - cos(a) sin(o), Equa-
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tion B.2 can be written as in Equation B.3.

dP (A
da

1 sin
-- B - -C sin a

2 2!
+ (B - C) - cos a = 02

This equation can be solved for the quantity tan(a).

(B -C)v
tan a = 2

2 2

Once the tangent is known, the sine and cosine can be determined.

sin a = ±

Cos a = ±

(B - C)
v/A 2 +B 2 +C 2 -AB-BC-AC

A-1B--C

B 2 + C2 -AB-BC-AC

At this point the original expression for P should be expanded in terms of sin(a) and

cos(a) and substitutions should be done using Equations B.5 and B.6.

in the final expression for the extremum of P, Pmax-

2 s 2w
Pmax = A cos a + B cos a cos( ) + B sina sin(-)

3 3

This results

4+
+ C cos a cos( )

3

4 -
+ C sin a sin(-)

3

= (A-1 iN-B - C osa + (B - C) sin a2 2 2
-= ±vA2 + B 2 + C 2 - AB- BC- AC (B.7)

Once the extrema have been found it must be determined whether each one rep-

resents a point where a maximum or a minimum resides. It is clear that the positive
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root of Pmax represents the maximum. Thus, a function in the form of Equation B.1

has a maximum represented by Equation B.8.

Pmax = v\A2 + B2 + C 2 - AB - BC - AC (B.8)
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Appendix C

The Data Collection System

All the elements necessary to control the motor and take measurements on it compose

the data collection system. The system can be broken down into three subsystems:

control, drive, and measurement. The control subsystem coordinates all system ac-

tivities. It carries out the tasks of receiving input from the operator, commanding the

drive subsystem, commanding the measurement subsystem and logging data received

from the measurement subsystem. The drive electronics subsystem translates the

commands of the control subsystem into electrical currents which power the motor.

The measurement subsystem accepts commands from the control subsystem and re-

acts to these commands by taking the requested measurement and transmitting the

data back to the control subsystem. It has the ability to take data regarding motor

temperature, phase currents, rotor position, and torque. A system block diagram,

Figure C-1, illustrates the interconnections of the system. These blocks are all de-

scribed in more detail in the following sections and in Appendixes D through J. After

briefly outlining the operation of the system, each subsystem is discussed in more

detail. Finally, the data collection system description ends in Appendix K with a

mention of some practical issues of system implementation.
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Motori

Figure C-1: System Block Diagram
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C.1 The Control Subsystem

At the top level of the control subsystem is an IBM PC-AT compatible computer. This

computer coordinates all aspects of system operation. It is responsible for requesting

information from the operator and passing experiment parameters to the Spectrum

TMS320C30 System Board, an add-in DSP card inside the personal computer. The

personal computer (PC) also uploads information from the DSP board and displays

it on the monitor or logs it on the hard disk as appropriate.

Many pieces of information are passed between the PC and the DSP board. Typ-

ically, at the beginning of an experiment, the PC loads a machine language program

onto the DSP board. This code is primarily responsible for reading the rotor position

and coordinating phase currents with this position. Before the code begins operation

however, the PC queries the operator for any parameters for the experiment and

passes these as arguments to the DSP code. After these steps are complete, the DSP

board runs the code, thereby conducting the experiment. At this point, the DSP runs

freely, without any control intervention from the PC-AT, yet, the PC is capable of

reading measurements from the DSP board in a non-obtrusive way.

Once the DSP is executing experiment code, it performs many functions. It

controls its two on-board Digital-to-Analog (D/A) converters as well as two other

D/A converters on a 4 Channel Analog I/O daughter-card. These four analog outputs

are fed, via galvanic isolation, to the drive subsystem. The drive subsystem uses these

analog voltages as command inputs to generate the phase currents. This is described

in more detail in Section C.2 and Appendix H. By putting phase currents under

direct control of the DSP, various motor control algorithms can be implemented and

evaluated.

The DSP also reads in the drive systems internal measurements of the phase

currents. This is done using the analog-to-digital converter (ADC) on the 4 Channel

Analog I/O daughter-card. This read-in process is under the control of the DSP and

the results are stored in registers on the DSP for a non-obtrusive read by the PC

control computer.
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One piece of information does not travel through the DSP board to get to the per-

sonal computer. The PC directly communicates with the dynamometer, a Himmel-

stein Model 66032 Power Instrument, via an RS-232-C interface established through

a "COM" port on the PC. The interface is interrupt driven, so there are no problem

with data loss as a result of the asynchronous communications protocol. Using the

Model 66032 command language, the PC requests that measurements be taken and

then reads the values reported by the Model 66032. Once values are read in by the

PC, they can be stored on a hard disk and displayed on the PC's monitor.

C.2 The Drive Subsystem

The core of the drive subsystem is formed around a modified Allen-Bradley Bulletin

1389 AC Servo Amplifier System. The servo system has two three-phase current

drivers. Normally, the servo would commutate the three-phase currents based on

inputs to it but this commutation feature has been bypassed, turning the servo system

into a set of current drivers. Each three-phase driver has two analog voltage inputs.

The driver generates two currents proportional to the input voltages, and the third

current is calculated to balance the other two. This is done for both sets of three-phase

currents.

The four command voltages to the servo system originate at the output of the

DSP System Board and the 4 Channel Analog I/O daughter-card, two from each

board, as described in the previous section. From there each signal passes through a

galvanic isolation amplifier, which is configured to provide offset and scale trimming.

This calibration is carried out by hand, and only needs to be done periodically to

correct for drift. It should be noted that all drive system offsets and scale errors can

be corrected at this single calibration point and that it is irrelevant where a scale or

offset error originates.

The Allen-Bradley servo system has also been modified to provide feedback pro-

portional to the output currents. The servo system internally generates feedback

voltages roughly proportional to the current measured at the outputs. As part of the
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modifications to the Allen-Bradley servo, the four feedback voltages are brought out

of the servo system. These voltages are galvanically isolated and provided with an

offset and scale trim. Again, the feedback path can be manually calibrated to elimi-

nate offset and scale errors. These voltages are then input to the 4 Channel Analog

I/O daughter-card's ADC, where they are measured and registered by the DSP. The

PC-AT is then able to read these representations of the voltages. Also, the DSP uses

these feedback voltages to provide a feedback control loop on the output currents -

enhancing the accuracy of the not so well regulated outputs of the servo system.

Other elements of the drive system are a Allen-Bradley Bulletin 1389-T100DA

10kVA Isolation Transformer and an Allen-Bradley Bulletin 1389-PATO1 Power Sup-

ply Module. The isolation transformer provides a slight step up from three-phase 208

VAC input to three-phase 220 VAC input, as well as effecting galvanic isolation. The

power supply module rectifies and regulates the three-phase input to provide power

to the servo system.

C.3 The Measurement Subsystem

The measurement subsystem is composed of a position encoder/decoder, a Himmel-

stein dynamometer, temperature sensors and feedback voltages proportional to phase

currents. Although properly belonging to the measurement subsystem, the feedback

voltages have already been discussed in Section C.2, so further treatment will not be

given to them.

The rotor position is encoded using a Canon R-2A Laser Rotary Encoder. Orig-

inally it was supplied with a Canon CI16-1 Encoder Interpolator. With this inter-

polator the resolution of the decoder is 1,048,576 counts per revolution, which gives

20 bits of resolution per revolution. However, the interpolator board was subject to

ambient electrical noise and would not function in the operating environment of the

motor. As a result, a more reliable decoder was designed which provided 16 bits

of resolution per revolution. This decoder is not as subject to environmental noise.

Furthermore, the original decoder had only 8 bits of absolute position information
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and the more reliable decoder was designed to support 16 bits of absolute position.

The position encoder interfaces to the DSP System Board by way of a daughter-

card, called the DSPLINK, which buffers the data. The DSP can read the position

into its memory as often as it needs. This is vital to proper commutation of the motor

requires an indication of position, regardless of the sophistication of the commutation

algorithm. The PC-AT can read the position from the memory of the DSP board,

using it as an index to log each data point. The monitor generally displays the

position as well so that the operator knows the position of the rotor.

The dynamometer comprises another important element of the measurement sub-

system. The Himmelstein Model 66032 Power Instrument communicates with the

control subsystem, specifically the personal computer, by way of an RS-232-C serial

connection. The Himmelstein receives commands from the personal computer as to

what data to measure: torque, velocity or power. Once the measurement is complete,

the Model 66032 sends the information back to the PC via the RS-232-C link, where

each receipt of a character triggers a service interrupt in the PC-AT computer thereby

insuring against data loss. Upon receipt of the information the personal computer

typically logs the data on the hard disk and displays it on the monitor.

Four thermocouples distributed throughout the motor, two on the rotor and two

on the stator, provide the basis for measuring the motor temperature. The thermo-

couples are standard T-type, Copper-Constantan, thermocouples. They are switched

by a K-type thermocouple switch box (at room temperature). The switched output

is fed into a K-type thermocouple amplifier. There is no method for computer as-

sisted temperature logging, so all temperatures are logged by hand. The temperatures

are recorded without any conversion between thermocouple types and a conversion

accounting for the thermocouple type is done later.

This completes the discussion of the measurement system and with that the dis-

cussion of the three subsystems: control, drive and measurement. These three sub-

systems are well coordinated and are mostly under software control, providing a basis

for flexible experimentation in this thesis and for subsequent work. It can serve as a

model and starting place for future commercial and experimental systems.
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The next six appendices provide detailed information on the operation of the

hardware. For ease of organization, each appendix will address all issues related to

one major system block: the PC-AT, the dynamometer, the DSP subsystem, the

position encoder/decoder, the drive subsystem, the temperature sensing subsystem.

Appendix J contains complete listings of sample code. The details of what goes on in

that code is described in Appendices D-I. Finally, the last appendix provides insights

into some of the major obstacles encountered in system integration.
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Appendix D

The AT-compatible PC

This appendix provides information which may be helpful in understanding Sec-

tion 4.3.2.

The AT-compatible PC serves as the top level control for the data collection and

control system. The computer is an AT-compatible with a 30 Megabyte hard disk

drive. It is configured with a Spectrum DSP board, floppy and hard disk drives,

an RS232-C port and a monitor with an appropriate video interface. There is no

mouse or printer connected to the computer. The computer uses MS-DOS as its disk

operating system.

The CPU on the AT is a 80286 which is sufficiently fast to provide reasonable sys-

tem performance. Some increase in speed would be desirable especially for compiling

large programs.

D.1 Disk Management

The disk system is used to capture experimental data and transfer it to a permanent

backup. The permanent backup can then used to create a temporary copy which can

be ported to a workstation where it is processed. This porting to a workstation is

done, only because of the limited configuration of the PC and because of the wide

variety of software available on the workstation.

The PC-AT is configured with a 30 Megabyte hard drive. This disk drive size is
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barely sufficient for the system. It must store operating system files and raw data

from experiments. It also stores the Texas Instruments compiler for the TMS320C30

processor on the DSP board. Ideally the Microsoft C compiler used for code writing

for the PC should also be on the PC. The combined size of both compilers however

does not permit this, so a second PC is used to develop software for the PC. With all

the system files and compilers, there is about 5 Megabytes of free storage space left

for experimental data capture.

The hard disk drive puts some limitations on the data collection system's perfor-

mance. Because the computer searches around for empty storage space when it can

find it, as the disk drive fills up, the system slows down. This can present a problem

during data taking as the motor position might be changing faster than the PC can

store the data. This problem can be alleviated in the future by increasing the hard

drive storage space.

The computer also has two floppy drives, one capable of reading and writing

1.2 MB disks (as well as 360 KB) and the other capable of reading and writing 360 KB

disks. The 360 KB drive is not used. The 1.2 MB disk drive is used to copy the

temporary experimental data from the hard drive onto a permanent backup floppy.

After every few experiments, the data should be transferred to the 1.2 MB disks.

These disks should then carried over to another PC where they can be temporarily

copied to a 3.5 inch disk (1.44 MB). Most workstations then have a facility for reading

3.5 inch IBM format disks.
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Appendix E

The Dynamometer Subsystem

The dynamometer subsystem is responsible for measuring and logging torque output

upon request from an experiment. It is also possible for the dynamometer to report

angular velocity and power, but this data is generally is not requested during the

current experimental work. This appendix is referenced by Sections 4.2 and 4.3.1.

The following paragraph briefly summarizes the dynamometer operation and sub-

sequent sections will elaborate on the details. The PC computer is connected via an

RS-232-C standard connection to the Himmelstein Power Instrument as described in

Section E.1. Since a protocol transfer is involved, it is necessary to set up the proto-

col on both the PC and on the dynamometer as reported in Sections E.3.4 and E.4,

respectively. The PC has further set-up to be done since it uses interrupt driven

communication to ensure against data loss. The set-up of the interrupt handler is

documented in Section E.3.3. Once the set-up is completed, the PC can transmit

and receive messages with the dynamometer as described in Sections E.3.5 and E.3.6.

The actual format of the messages between the PC and the dynamometer is given in

Section E.5.

The detailed description of system operation will take place in much the same order

as outlined above. However, to be able to understand the code that implements what

is described above, first it is necessary to describe all the definitions and declarations

made in the headers which assist in the code writing. This is done in Section E.2.
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E.1 The RS-232-C Link

An RS-232-C serial link provides a mechanism for communication between the PC

and the Himmelstein torque sensor. The connector for this link is hand-fashioned

with a DB-25 type connector for connection to the back of the PC-AT and a card

edge connector for connection to the Himmelstein Power Instrument. The wiring is

given in Figures E-1 and E-2.

PC-AT
Computer

Figure E-1: Dynamometer System Interconnect.

113

(-
E

Himmelstein

Power Instrument

__



J-107

Earth GND 1
TD 2
RD 3

RTS 4
CTS 5
DSR 6
GND 7

CD 8
9

10
SSD 11

12

GND 13

22
21
20
19
18
17
16
15

Shield

21
22

23
24
25

RTSA+
RXDA+

GND

Figure E-2: Jumper J4 Pin Assignments and Wiring Diagram.

RS-232-C is a protocol transfer. The proper protocol in this system is 9600 baud,

8 bit, 1 Stop Bit, No Parity. This information must be programmed into both the

PC's RS-232 port and the Himmelstein's port.

AT compatible PC's have several serial ports. Typically serial port COM1 is used

for a mouse interface. The next serial port, COM2, is generally used by modem or

other such device. It has been decided to use this serial port to communicate with

the dynamometer. The COM2 serial port utilizes I/O port address Ox2f8.
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E.2 PC Code Definitions and Declarations

Coding for the RS-232 communication on the PC has been done in Microsoft C. The

code has been adapted from the book Advanced C Programming [14], which originally

coded in Turbo C. Before compilation the code defines and declares many variables for

the aid of the compiler. The main code file first inputs a header file, serial.h, to define

some I/O register locations and bit masks. The function of serial.h is described in

more detail below in Section E.2.1. After serial.h is loaded, the main code file defines

and declares many global references completing the definitions and declarations. This

is described in Section E.2.2. More information on RS-232-C communications can be

found in Advanced C Programming [14] and RS-232 Simplified, Everything You Need

to Know About Connecting, Interfacing, & Troubleshooting Peripheral Devices [15].

E.2.1 Definitions and Declarations in serial.h

The header file serial.h is loaded from the main code file. This accomplished with

the following line of code.

#include "serial.h"

The file serial.h first defines a structure type, sio, corresponding to the register

structure of the I/O port. The definition is shown below.

* define the register structure for the serial i/o

struct sio {
char data; /* data register */
char interrupt_enable;/* interrupt enable register */
char interrupt_id; /* what kind of interrupt is going on */
char format; /* communications format */
char out_control; /* modem control lines */
char status; /* status byte */
char i_status; /* input status */
char scratch; /* extra pad */
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The header file also defines two instantiations of this structure named COM1 and

COM2 and puts them at addresses Ox3f8 and Ox2f8 respectively. This definition is

done in the code fragment below. By assigning the addresses as such, a write to the

structure using the outp (port write) command becomes a cosmetically attractive

way of writing to the serial port registers.

* The location of the i/o registers on the IBM PC

#define COM1 ((struct sio near *)Ox3f8)
#define COM2 ((struct sio near *)0x2f8)

* Use COM2 for this program

#define COM COM2

Each successive byte of the structure sio corresponds to the next port address.

The first byte of the structure sio is the Data Register to and from which data is

written and read. The second byte is the Interrupt Enable Register which defines

when interrupts to the PC will be generated, if they are at all. The possibilities for

interrupts are when: the modem status flag changes, the receive status flag changes,

the transmit buffer is empty, a character is received.

The Data Register and Interrupt Enable Register are also used under certain

circumstances for transmitting the low and high bytes of the baud rate. This condition

is initiated by setting the Divisor Latch Access Bit in the Line Control Register

as discussed later. The following lines define the bit masks for easy programming of

interrupt selects via the Interrupt Enable Register.

* Defines for Interrupt Enable Register (interrupt_enable)

#define I_STATUS (1 << 3) /* interrupt on modem status changed */
#define I_REC_STATUS (1 << 2) /* interrupt on rec. status changed */
#define I_TRANS_EMPTY (1 << 1) /* interrupt on trans. empty */
#define I_CHAR_IN (1 << 0) /* interrupt on character input */

The third byte in the structure sio relates what type of interrupt occurs. The

register is named the Interrupt Identification Register. It is necessary to read
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this register to indicate that any interrupt present has been processed. The reading

action clears the interrupt flags.

The fourth byte of the structure sets the communication format. This register is

commonly known as the Line Control Register (LCR). Setting bit 7 of the LCR,

the Divisor Latch Access Bit (DLAB), to a '1' enables the baud rate to be set

on the next writes to the Data Register and Interrupt Enable Register. Setting

DLAB to a '0' resets the functions of the Data and Interrupt Enable Registers

to their normal modes. This type of register usage is often referred to as over-loading.

The header file serial.h defines a bit mask for these functions.

* Defines for Line control register (format)

#define F_BAUD_LATCH (1 << 7) /* enable baud rate registers */

#define F_NORMAL (0 << 7) /* normal registers enabled */

Bit 6 of the LCR sets the "break" or "no break" condition. The next three

bits, bits 3 through 5, set the parity either as "none", "odd", "even", "mark", or

"space". The next bit, bit 2, specifies the number of stop bits as being either one

or two. Finally the last two bits, bits 1 and 0, set the number of data bits for the

transmission. Bit mask are defined for all these bits as shown below.

#define F_BREAK
#define F_NO_BREAK

#define
#define
#define
#define
#define

<< 6)
<< 6)

F_PARITY_NONE
F_PARITY_0ODD
F_PARITY_EVEN
F_PARITY_MARK

F_PARITY_SPACE

#define F_STOPi
#define F_STOP2

#define F_DATA5
#define F_DATA6
#define F_DATA7
#define F_DATA8

<< 2)
<< 2)

(0)
(1)
(2)

(3)

set a break condition */
no break condition */

no parity on output */
odd parity on output */
even parity on output*/
parity bit is always 1 */
parity bit is always 0 */

Use one stop bit */
Use two stop bits */

5 data bits on output */
6 data bits on output */
7 data bits on output */
8 data bits on output */
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The next register is the Modem Control Register. This register takes direct

control of some of the RS-232 signal lines. It also permits loop-back test mode to

be entered. Setting bit 4 forces the modem into loop-back test mode. Bit 1 is the

Request To Send(RTS) bit, which tells the modem to indicate that data is ready

to be transmitted. Bit 0 is the Data Terminal Ready(DTR) bit which tells the

modem to indicate its presence to the remote device. The code below shows the bit

masks for the Modem Control Register.

* Defines for the MODEM control register (out_control)

#define O_LOOP (1<<4) /* loopback test */
#define O_OUT1 (1<<3) /* Extra signal \#1 */
#define 0_OUT2 (1<<2) /* Extra signal \#2 */
#define 0_RTS (1<<1) /* Request to send */
#define 0_DTR (1<<0) /* Data terminal ready */

The next register is the Line Status Register whose 8-bit value stores various

flags. Bit 6 stores the Transmitter Shift Register Empty flag and Bit 5 the

Transmitter Holding Register Empty flag. Bit 4 flags a Break Interrupt and

bit 3 flags a Framing Error. Bit 2 signals a Parity Error and bit 1 that the input

has overrun the buffer, an Overrun Error. Bit 0 indicates Data Ready, that the

receiver has a character in its buffer. The code below defines the appropriate bit

masks.

* Line Status register (Status)

S_TXE
S_TBE
S_BREAK
S_FR_ERROR
S_PARITY_ERROR
S_OVERRUN
S_RxRDY

(1 << 6)
(1 << 5)
(1 << 4)
(1 << 3)
(1 << 2)
(1 << 1)
(1 << 0)

/* Transmitter buffer empty */
/* Break detected on input */
/* Framing error on input */
/* Input parity error */
/* Input overrun */
/* Receiver has character ready */

Finally, there is the Modem Status Register. This register reports the status

of the Data Carrier Detect(DCD) flag, the Ring Indicator(RI) flag, Data Set
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Ready(DSR) flag, and the Clear To Send(CTS) flag. It also reports the "delta" of

these signals, that is, whether or not they have changed. This register is not currently

being used for any purpose.

* Modem Status Register (i_status)

#define I_DCD (1 << 7)
#define I_RI (1 << 6)
#define I_DSR (1 << 5)
#define I_CTS (1 << 4)
#define I_DEL_DCD (1 << 3)
#define I_DEL_RI (1 << 2)
#define I_DEL_DSR (1 << 1)
#define I_DEL_CTS (i << 0)

DCD control line is on */
RI control line is on */
DSR control line is on */
CTS control line is on */
DCD line changed */
RI line changed */
DSR line changed */
CTS line changed */

The last part of the header defines a few constants to assist in setting the baud

rate to be used on the PC. The value of the variable SPEED will hold a constant

indicating the baud rate.

* constants are used to define the
* baud rate for the serial i/o chip
* (Selected entries from Table-III of the National 8250
* data sheet)

#define B1200 96
#define B2400 48
#define B9600 12

#define SPEED B9600

E.2.2 Definitions and Declarations in the Main File

After the definitions contained in serial.h are loaded into the compiler, the main file

makes several definitions and declarations. This section will handle the definitions

and declarations in the order in which they occur in the main file.

The first define sets the buffer size for the RS-232 reception to be 1024 characters.
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/* size of the buffer to use for string incoming characters */
#define COM_BUF_SIZE (1 * 1024)

The next lines of code relating to the RS-232 interface are the following.

static char *buffer start; /* beginning of the buffer */
static char *buffer_end; /* end of the buffer */

/* pointer to next place to put character in */
static char *buffer_in;
static char *bufferout; /* place to get next character from */

The first two statement lines of code declare pointers to the start and end of the

buffer. The next statement declare a pointer to the current location to write incoming

data into the buffer. The line after that declares a pointer to the current location in

the buffer from which to read data. Handling of the buffer is cyclic. As characters are

read from the RS-232 they are put into the location bufferin. When this pointer

reaches buffer_end, the pointer is reset to bufferstart. Similarly, once data has

been read from the RS-232 and put in the buffer, it is read out of the buffer from

location buff er_out. When buff erout reaches the end of the buffer, buffer_end,

it is reset to the beginning of the buffer, bufferstart.

The next two lines of RS-232 related code declare a counter, count, containing the

number of characters to be read remaining in the buffer, and a flag, EOT, indicating

the end of a transmission from the dynamometer. These lines of code are shown

below.

static int count = 0; /* number of characters in buffer */
volatile int EOT = 0;

The following lines of code declare the presence of a number of pointers. The

first two lines declare pointers that will be used to store the locations for the serial

interrupt handler and break handler present when the program begins. The locations

will be stored so that upon completion of the code, the old original handlers can be

restored and the code will terminate without any side effects. The break handler is

the interrupt service routine activated by the pressing of the <CTRL-BREAK>
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key sequence. It is desirable to circumvent this handler because its normal operation

would allow jumping out of the program while the serial interrupt handler is still in

place.

static void (_interrupt _far *old_serial_interrupt) ();
static void (_interrupt _far *old_break_interrupt)();

Following the pointer declarations are four declarations which declare routines to

initialize the buffer, to initialize the serial port, to empty the buffer, and to write a

string to the RS-232 output.

void init_buf (void);
void init (void);
void empty_buffer(void);
void write_port(char *s);

E.3 The Main Code Body for the PC

Before the PC-AT can transmit or receive anything, the serial port must be ini-

tialized to the proper protocol. Furthermore, reception of characters by the PC is

interrupt driven, thereby assuring complete reception of the Himmelstein's transmis-

sion. This approach has been used in place of the simpler polling method which does

not guarantee reception of the complete transmission. The interrupt approach to

communications also requires some initialization.

The main code segment is responsible for initializing a character storage buffer,

initializing the serial port, and initializing the interrupt handlers. It is also where the

end goal of transmitting data and receiving data is accomplished.

The main code body operates as follows. First, the main code makes a few more

declarations. Second, the code initializes and empties the buffer. Third, it initializes

the interrupt handlers. Fourth, the serial port is initialized to use the proper RS-232

protocol. Then it proceeds to write a command to the Himmelstein and read the

response back. The write/read cycle can be done as many times as desired. When it

is desired for the program to exit, the code removes the interrupt handlers.
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E.3.1 Main Code Body Declarations and Definitions

Even after all the previous declarations and definitions discussed in previous sections,

a few last variables are declared in the main code body. The variable status is

declared in the line shown below. This variable is used for storing any reports of the

status of the RS-232 port. Also, the flag variable EOT is set to zero, indicating that

the transmission from the Himmelstein has not been completed. This will be the

state of the variable before any transmission to the Himmelstein is ever made. The

above declaration and define are accomplished in the following lines.

int status;

EOT=O;

E.3.2 Initializing the RS-232 Buffer

Initialization of the RS-232 is accomplished by calling the initbuf routine with the

following program line.

init_buf ();

The buffer initialization code is given below. First, a section of memory of length

COMBUFSIZE is allocated as the buffer and the pointer buffer_start is pointed to the

beginning of the buffer. Then the pointers buffer_in, the current location to which

to write incoming data, and buffer_out, the current location to read from the buffer,

are set to the beginning of the buffer. Finally the end of the buffer, buff er_end, is

assigned a value pointing ten characters before the end of the allocated memory area.

* init_buf -- initialize the buffer pointers *

void init_buf (void)

buffer_start = malloc(COM_BUF_SIZE);
buffer_in = buffer_start;
buffer_out = buffer_start;
buffer_end = bufferstart + COM_BUF_SIZE - 10;
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In the book Advanced C Programming [14] the code flushes the buffer after ini-

tializing it. This seems to be an unnecessary step, however the incredulous may want

to do it anyway. It should be noted that the code used for experiments in this thesis

accidentally flushed the buffer before creating/initializing it. This has only just been

realized during the documentation of the system. This bug did not adversely affect

system performance as flushing the buffer does not cause anything to be written to

memory.

E.3.3 RS-232 Interrupt Initialization

Three things must be done to initialize the interrupt handler. First, the old interrupt

code location must be stored. This makes it possible to restore the old interrupt

when the main code completes. Also, in order ensure that the old interrupt vector

is restored, it is necessary to disable the <CTRL-BREAK> interrupt, which hap-

pens whenever <CTRL-BREAK> is pressed. Failure to do this could cause the

main code to terminate without restoring the old interrupt vector. The old interrupt

handler locations are stored using the following lines of code.

old_serial_interrupt=_dos_getvect(OxOb);
old_break_interrupt= dosgetvect(Oxlb);

Second, after the old interrupt handler locations are stored, new interrupt vectors

are stored with the following lines of code. While the new handler locations are stored

in the vector table, it is necessary to disable all interrupts. Failure to do this could

cause the system to look up a partially updated interrupt vector, if an interrupt were

to occur during the update, and jump to that erroneous location. Thus, it is necessary

to disable interrupts while updating the vector table. After completing the update,

it is permissible to enable all interrupts.

_disable ();
_dos_setvect (OxOb, new_serial_interrupt);
_dos_setvect(Oxlb, newbreak_interrupt);
_enable ();
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Finally, the serial interrupt must be enabled. This is distinct from the enabling

and disabling of interrupts as done above, but rather refers to the specific interrupt

dedicated to serial I/O. This enable is accomplished by writing to two different port

locations as shown below.

/* enable interrupts */
outp(0x21, inp(0x21) & OxF7);
outp(0x20, 0x20);

These steps complete the interrupt initialization.

E.3.4 RS-232 Port Initialization

The RS-232 port needs to be initialized before using it. This initialization is achieved

by calling the subroutine init using the program line below.

init() ;

The first initialization step is to disable interrupts to prevent an interrupt from

occurring before the settings are set. Next, the serial port interrupt generation is

enabled. Then, the data format is sent to the Line Control Register. The format

is set to 8 bit, no parity, 1 stop bit, no breaks. Also, the Divisor Latch Access

Bit is set, which indicates that the next byte sent to the Data Register will be

the lower eight bits necessary to set the correct baud rate, and the next byte sent

to the Interrupt Enable Register will be the higher eight bits necessary to set

the baud. After the baud rate is set, the Line Control Register is again sent

the correct format, but this time the Divisor Latch Access Bit is not set. At

this point, the serial port is instructed to indicate its readiness for data transmission

and reception; Request To Send(RTS) and Data Terminal Ready(DTR) are

asserted. Finally, the serial port input registers, the Data Register, the Interrupt

Enable Register, the Interrupt ID Register, and the Line Status Register are

read, thereby clearing their flags indicating they have data. Finally, interrupts are

cleared and enabled, and the subroutine returns.
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* init -- initialize the port *

void init(void)

/* don't allow interrupts while we do this */

_disable();
/* receive interrupts */

outp((int)&COM->interrupt_enable, I_CHAR_IN);

outp((int)&COM->format,

F_BAUD_LATCHIFNO_BREAKF_PARITYNONE I FSTOP I FDATA8);

/* now that we have the baud latch set, send baud */
outp((int)&COM->baud_1, SPEED & OxFF);

outp((int)&COM->baud_h, SPEED >> 8);

outp((int)&COM->format,

F_NORMAL IFNO_BREAKIF_PARITY_NONE I FSTOP I FDATA8);

outp((int)&COM->out control, OOUT1O_-OUT210_RTSIO_DTR);

/* read the input registers to

clear their i-have-data flags */

(void)inp((int)&COM->data);
(void)inp((int)&COM->interrupt_enable);

(void)inp((int)&COM->interrupt_id);
(void)inp((int)&COM->status);

outp(0x20, Ox20); /* clear interrupts */
_enable();

E.3.5 Writing to the Serial Port

At this point, the discussion will move to the actual code that is run to perform an

experiment. The scope of this discussion is limited to the RS-232 interface operations,

and does not presently view the entire software operation.

Once the initialization steps have been completed, it is possible to transmit data

to the dynamometer. This is accomplished by way the of writeport subroutine

using a call similar to the one below. The call below writes the string "RUNN " to
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the serial port and then waits until the End-Of-Transmission Flag, EOT, becomes not

zero indicating that a response to the command has been received. At this point, the

buffer has data from the dynamometer which can be appropriately processed and to

prepare for the next transmission the EOT flag can be set back to zero.

writeport("RUNN ");
while (EOT==O);

EOT=O;

To understand the real workings of the code fragment above, it is necessary to

examine the subroutine write_port. The subroutine enters with an argument which

points to the beginning of the string to be transmitted. The subroutine immediately

enters a loop which checks to see if the current location of the pointer in the string

points to the string termination character. If it does, then the loop completes and the

code continues. If it does not, then the subroutine enters a polling loop which exam-

ines the Line Status Register and waits until the Transmitter Buffer Empty

status line is asserted, meaning that a character can be written to the transmitter

buffer. After a successful polling, the subroutine writes the contents of the current

pointer location in the string to the Data Register. It then increments the pointer

location in the string and returns back to the beginning of the loop, once again

checking to see if the string is at its termination.

Coming out of the loop, the code waits until the Transmitter Buffer Empty

line is de-asserted and then writes a line-feed character, OxOA, to the serial port. This

line-feed is the normal termination character of strings written to the dynamometer

and is not part of the standard protocol of an RS-232 communication. The writing

out of the line-feed completes the operation of the subroutine writeport.

* Write_port -- write a string to the RS232 *

void write_port(char *s)
{
while(*s!='\0') {
while (!((inp((int)&COM->status)) & S_TBE));
outp((int)&COM->data,*s);
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while(!((inp((int)&COM->status)) & STBE));

outp((int)&COM->data,OxOA);

E.3.6 Reading from the Serial Port

Reading a character from the serial port is a bit more automatic than writing a

character. When the PC expects to receive data, it resets the End-of-Transmission

flag; it sets EOT equal to zero. At some point, the serial port will receive a char-

acter and in turn generates an interrupt to the PC. This interrupt is handled by

the interrupt handler, whose location had previously been installed in the interrupt

vector table during initialization. In this case, the interrupt handler is the routine

serial_interrupt whose code is listed below. The net effects of the handler will be

to read the character from the Data Register and to clear the interrupt signal.

* serial_interrupt -- interrupt handler for serial *

* input *

* Called in interrupt mode by the hardware when *
* a character is received on the serial input *

static void _interrupt _far new_serial_interrupt()
{

int int_status; /* status during interrupt */

_disable();

intstatus = inp((int)&COM->status);

/* tell device we have read interrupt */
(void)inp((int)&COM->interrupt_enable);

(void)inp((int)&COM->interrupt_id);

if ((intstatus & SRxRDY) == 0) {
_enable();
return;

}
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*buffer_in = inp((int)&COM->data) & Ox7F;
if ((*buffer_in)==0x04) {
EOT=1;
((*buffer_in)='\O');
}
if ((*buffer_in)==OxOA) ((*buffer_in)='\O');
if ((*buffer_in)==OxOD) ((*buffer_in)='\O');
buffer_in++;

if (buffer_in == buffer_end)
buffer_in = buffer_start;

count++;
outp(0x20, Ox20);
_enable ();

The subroutine above begins by disabling further interrupts. Then the routine

reads the status of the serial port by reading the Status Register. Next, it clears

the interrupt by reading the Interrupt Enable Register and the Interrupt Iden-

tification Register. After that, it looks at the data read from the Status Register

and checks to see if a character is waiting to be read. If not, the subroutine enables

interrupts and returns. There does not seem to be any reason why this would happen,

but is retained from the original code (see [14]) as a safety precaution.

At this point, the code actually reads the character from the data register, zeros the

most significant bit, and stores the character in the location pointed to by buffer_in.

The code then checks to see if this character is ASCII character 0x04. This is the

character the dynamometer uses to indicate an end of transmission. If the character

is 0x04, then the program sets the EOT flag and also converts the character to a null

character. This conversion is done so that the contents of the buffer appears as a

normal string terminated by the null character. If the character is either a OxOA,

line-feed, or OxOD, carriage return, then a null character is substituted for it. This

again keeps the buffer in normal string format. After these conversions are done, the

pointer to the current read-in location is incremented and cycled to the beginning of

the buffer if necessary. The count variable containing the number of unread characters

in the buffer is incremented. Finally, interrupts are enabled and the interrupt handler
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returns.

Typically, the main program body should be looping waiting for the EOT flag to

be asserted. This self-defined protocol keeps the software from becoming a coordi-

nation nightmare. The communication works such that a command is issued, and

the code then waits for the reply. When the reply comes back, it is in string format

beginning at the location pointed to by buff er_out. The program can then process

the dynamometer's response appropriately.

E.3.7 Removing the Interrupt Handlers

Before the program terminates, it is necessary to restore the old interrupt handler

locations into the interrupt vector table. The code currently does this as part of the

new <CTRL-BREAK> handler. The necessary lines of code can be put anywhere

else an exit is desired. These lines of code are listed below.

_disable();
_dos_setvect(Oxlb, old_break_interrupt);
_dos_setvect(OxOb, old_serial_interrupt);
outp(0x21, inp(0x21) I 0x08 );
outp(0x20, Ox20);
_enable ();

These lines of code first disable the interrupts because, again, the interrupt vector

table is being modified. The old interrupt vector locations are then re-inserted into

the interrupt vector table and the serial port interrupt is disabled.

In the case of the <CTRL-BREAK> key being pressed, the code above is called

via the new <CTRL-BREAK> interrupt handler, newbreakinterrupt, which is

listed below. This code does the same thing as listed above, except it continues by

calling the oldbreak_interrupt interrupt handler.

static void _interrupt _far new_break_interrupt()

_disable ();
_dos_setvect(Oxlb, old_break_interrupt);
_dos_setvect(OxOb, old_serial_interrupt);
outp(0x21, inp(0x21) I Ox08 );
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outp(0x20, 0x20);
_enable ();

(*old_break_interrupt)();

}

E.4 Configuring the Dynamometer

Not only does the PC need initialization but also the dynamometer does. There

are two facets to this procedure. First the dynamometer must be calibrated. The

calibration only needs to be done once ever (or when it is desirable to re-calibrate

the instrument). For more information on this procedure, refer to the Himmelstein

Power Instrument's operating instructions [16, Section 3.0]. The second part of the

initialization is the programming of the RS-232 protocol into the instrument. This

programming is stored in the dynamometer even during power down.

Initialization of the dynamometer RS-232 port can be done either remotely or via

the keypad on the front of the instrument. It is much easier, and thus advisable, to

initialize the dynamometer via the keypad. This procedure will be described below.

Strangely, the dynamometer operator's manual [16, Section 5.11] lumps the details

of the RS-232 set-up with the printer set-up. It has been mentioned previously that

the present system uses a 9600 baud, 8 bit, no parity protocol. These numbers must

also be programmed into the dynamometer settings.

To start, the dynamometer must enter the program mode. The manual refers to

it as the "PGRM mode." This can be achieved by hitting the PGRM key, then

punching in the three digit program code (normally 473), then pressing the ENTR

key. This is described in Power Instrument's operating instructions [16, Section 5.5.5].

After the program mode is entered, the dynamometer gives the option of changing

many settings. In general, the first eleven can be ignored by hitting ENTR eleven

times.

Once this is done, the prompt "I/O Baud?" will be displayed. The proper baud

rate should then be entered using the numeric keypad on the dynamometer. The
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possible rates are 75,110,150,300,600,1200,2400,4800,9600, and 19200. In the case of

19200 baud, the number 1920 should be entered. After the digits have been entered

the ENTR key should be pressed. The dynamometer will then query with "I/O

Baud?" again. If the number is to be accepted press ENTR, otherwise enter a new

baud rate.

After the baud rate has been entered, the system will query for the number of bits,

either 7 or 8, with the prompt "# of BITS ?". The appropriate number, 8, should be

pressed on the numeric keypad followed by ENTR. The system will again prompt

"# of BITS ?" asking the user to accept the current value by pressing ENTR.

Once this is done, the system will query for the parity by prompting with the

current parity setting. To change the setting, hit the ± key until the correct parity is

displayed. Possibilities for this setting include no parity, odd parity, or even parity.

Once the desired parity setting is displayed, pressing ENTR will accept this value.

That completes the necessary protocol set-up.

E.5 Messages Passing

Messages between the PC and dynamometer make it possible to instruct the dy-

namometer to take certain measurements and report back the results. The general

flow of data in the serial link starts with the issue of an ASCII command by the PC to

the dynamometer. There are fixed format commands recognized by the Himmelstein

Power Instrument which generate fixed format responses. The responses are also in

ASCII. Typically the command will be to take some measurement and the response

will be a data or an error message.

This section catalogs the command and response formats that arise in typical

operation. Also the possible error messages are given. All the possible messages are

documented in more detail in the operating manual [16, pp. 79-88].

The first command of interest is the command RUNN [1f]. The "[if]" indicates

a line-feed character. Note also, that the RUNN [1f] command has a space after

the word "RUNN." This command causes the dynamometer to start a "test". The
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dynamometer documentation is sufficiently ambiguous as to the definition of a "test,"

to warrant using this at the beginning of each measurement session. It appears that

it is unnecessary however. When the command executes without error, the message

OK [cr] [lf is returned. " [cr]" is a carriage return. If there is an error, one of the

error messages listed below will be returned.

The only other command of interest is the SCAN ##, ##; ##, ## [if] command.

Again, the word "SCAN" is followed by a space, and the line is terminated with a

line-feed. This command instructs the dynamometer to take a measurement. The

arguments to the command, given by each "##", indicate which channels to mea-

sure. A comma indicates a range of channels and a semi-colon delimits ranges. The

response to the scan command comes as one line per measurement channel in the for-

mat ##, [channel value] [cr] Elf]. The "##" for each line is the channel number.

Following this is the string containing the measurement value. If there is an error,

one of the error messages below will be returned instead.

There are six possible error messages. These are listed below:

ER01.....INVALID COMMAND[cr] [lf]

ER02..... CHANNEL# OUT OF RANGE[cr] [1f]

ER03.....VALUE OUT OF RANGE[cr][1if]

ER04 ..... MEMORY FULL [cr] [1f]

ER05 ..... NONE [cr] [if]

ERO6 ..... PARITY ERROR[cr] [1f]

The messages are self-explanatory. Further documentation is available in operating

instructions [16].
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Appendix F

The Spectrum DSP Subsystem

The Digital Signal Processing (DSP) subsystem is the heart and soul of the motor

control system. It communicates with the PC, receiving arguments to various pro-

grams that are written for the DSP subsystem as well as transmitting measurement

data from the rest of the system to the PC. To summarize its capabilities, the DSP

controls and reads data from the torque sensing equipment, the position sensor and

the Allen-Bradley servo system. An understanding of this appendix may provide

greater context for the comments in Section 4.3.2.

The DSP subsystem is composed of SPECTRUM Signal Processing Inc.'s

TMS320C30 System Board and two daughter cards, the DSPLINK Prototype Inter-

face Module and the 4 Channel Analog I/O Board. The DSP motherboard contains

the DSP chip, two digital-to-analog converters (DAC's) and two analog-to-digital con-

verters (ADC's). It also connects to the DSPLINK, which is SPECTRUM's data bus.

It is by way of this bus that the System Board interfaces with the rotary encoder via

the DSP Link Prototype Interface Module. The DSPLINK bus also provides a means

of interfacing with the 4 Channel I/O Board. This board supplements the ADC's and

DAC's on the motherboard by adding two DAC's and a four-input muxed ADC. The

drive system uses the two DAC's on the motherboard and two on the 4 Channel I/O

Board, as well as the four inputs to the ADC on the 4 Channel I/O Board. It does

not use the two ADC channels on the motherboard. The analog inputs and outputs

are used to interface with the Allen-Bradley servo system.

133



To understand the DSP subsystem it will be helpful to describe each of the boards

and their functions in more detail.

F.1 The DSP System Board

The TMS320C30 System Board is a board designed by Loughborough Sound Images

Ltd. and manufactured in North America by SPECTRUM Signal Processing Inc.

The central processing unit on the board is a Texas Instruments TMS320C30 micro-

processor. The board comes socketed for up to four banks of random access memory

(RAM) storage, of which only banks 0 and 3 are populated with a total of 128K bytes

of storage. The board plugs into an 8-bit ISA socket on a PC, and by the default

setting of LK4 occupies I/O ports 0x290 to 0x29F. An alternate address range can be

set using link LK4.

Since the board resides inside an AT compatible computer, it is necessary to

discuss how to move information between the computer and the DSP subsystem.

There are primarily two types of information transfers to be done: program transfers

and data transfers. The former is necessary to download code onto the DSP board.

The latter is employed both to pass arguments (generally from the PC to the DSP)

or upload data to the PC. The information transfers discussed are facilitated by using

libraries supplied by SPECTRUM. Further documentation on the libraries and their

usage can be found in the TMS320C30 System Board User's Manual [22, Chapter 3,

pp. 41-56; Appendix C, pp. 121-158].

F.1.1 Downloading Code to the DSP Subsystem

To download code to the DSP several things must be done first. Obviously, the

code must be written and compiled. Coding can be done in Texas Instrument's C.

Next, the DSP System Board must be activated. Once that is done, it is possible

to download the code. Upon completion of that task, code execution may begin by

means of a reset. The board select, code download, and reset can be accomplished

using C library functions supplied by SPECTRUM.
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To select the DSP System Board, it is merely necessary to call the SelectBoard

library function. This function has one unsigned short value as an argument. This

value should contain the base address of the System Board. The function returns an

unsigned short. If the base address supplied is invalid, the function returns 0. In

the other case, that is if the address is valid, the function returns the base address.

The net action of the SelectBoard function on the DSP is to cause a reset of the

processor, leaving the processor looping at address OxCO. It should be noted that this

must be the first function called from the SPECTRUM library, as it configures the

library to talk to the selected board.

Once the board has been selected, it is possible to download COFF-format object

files to the board. This is accomplished via the library function coffLoad, taking

a pointer to an unsigned character as an argument and returning an integer. The

pointer argument points to a string containing the filename of the COFF-format file.

The function returns an integer 0 on success and a 1 on failure. The details of what

this function accomplishes are not detailed by SPECTRUM.

Calling Reset following a coffLoad function call begins program execution. There

is no argument to the function, and it returns an unsigned short. The return value

does not hold much interest in the present discussion.

F.1.2 The DSP Memory Map

The memory map for the DSP subsystem is somewhat configurable by software. The

file MAP. CMD defines the storage locations for different code segments, and if desired

for specific variables. The memory allocation is given in Table F.1. The file is listed

in Appendix J.
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BANK Size(words) Address(hex)

BANKO 64K 000000-00FFFF

BANK1 64K 010000-01FFFF

BANK2 64K 020000-02FFFF

BANK3 64K 030000-03FFFF

Memory Expansion Connector 7936K 040000-7FFFFF

DSPLINK 8K 800000-801FFF

Reserved 8K 802000-803FFF

Analog I/O & PC Interrupts 8K 804000-805FFF

Reserved 8K 806000-807FFF

On-Chip Peripherals 6K 808000-8097FF

RAMO 1K 809800-809BFF

RAM1 1K 809C00-809FFF

Memory Expansion Connector 8152K 80A000-FFFFFF

Table F.1: DSP Memory Map.

The most noteworthy point about the memory map is the ability to put specific

variables in specific locations. Combining this with the fact that BANK3 is a dual-

port memory, it becomes possible for the PC-AT to monitor certain memory locations

in the DSP memory. This can be used to pass arguments, pass data, or maintain a

semaphore signal to keep the PC and DSP in lockstep. All this can be done without

the PC interfering with the operation of the DSP. It is through this mechanism that

the measurement data is passed.

F.1.3 Passing Data and Arguments

Reading and writing data to the DSP board can be accomplished using the C library

functions supplied by SPECTRUM. All data transfers rely on knowing the proper

location to read or write. Because of this, it is necessary to dedicate fixed memory
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locations. This can be done at compilation by editing the MAP. CMD file as discussed

below.

Fixing Variable Locations in Memory

When transferring data between the PC and the DSP memory, it is convenient to

allocate fixed locations to specific variables. Otherwise, the compiler would not always

put the same variable in the same location. This would cause problems for the PC

as it has no way of knowing about the actions of the compiler. Although not strictly

required, it is advisable that the fixed locations reside in BANK3 of the DSP memory.

This bank is a dual port memory, allowing reads and writes by the PC without halting

the DSP processor.

An efficient implementation is to determine which variables need to be passed

between the PC and the DSP. These variables can be forced into fixed memory lo-

cations by properly instructing the compiler. As mentioned above, these locations

should be in BANK3, the dual port memory. Putting variables in fixed locations

does not affect the operation of the DSP. It does however make it possible for the PC

to directly alter the contents of a given variable. All PC needs is the memory location

where the variable is stored. Writing or reading that location directly changes the

variable value. This can be used by the PC to send parameters to the DSP code, or

to retrieve data stored in the DSP.

Fixing memory locations is a relatively simple task. In the file MAP. CMD, there

is a definition region called SECTIONS. In this, there is a definition of the section

".bss". In the ".bss" definition, lines can be added instructing the linker to put

certain variables in fixed locations. These lines have the following syntax.

_VariableO = .; += 1;
_Variablel = .; += 1;

Each line of definition does two things. First, the variable VariableO (note the

underscore is not part of the variable name) is assigned to the memory location

pointed to by the ".". If this is the first line of the ".bss" definition, it points to the

beginning of the ".bss" section. After the variable is assigned to a memory location,
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the pointer "." is incremented. The next line assigns Variablel in a similar manner.

As many variables as desired can be assigned locations like this.

Writing to the DSP Memory

Writing to the DSP memory can be accomplished using one of the following library

functions: PutFloat, WrBlkFlt, Put32Bit, WrBlk32, PutInt, or WrBlkInt. Of these,

the current system only uses Put32Bit and WrBlkFlt, and so only these two functions

will be discussed. Details of the other functions can be found in the TMS320C30

System Board User's Manual [22, Chapter 3, pp. 41-56; Appendix C, pp. 121-158].

The function Put32Bit writes a 32 bit value to the DSP memory. This is done

without any conversion on the 32 bit value. The function takes three arguments. The

first arguments is an unsigned long integer storing the address to be written. The

second argument is an unsigned short integer which indicates the type of memory to

be accessed. With the current system, only the dual port memory is used. The third

argument is an unsigned long integer which holds the value to which to write. The

function returns an integer 0 if successful and a -1 on a failure.

The second function used in writing to the DSP memory is WrBlkFlt, which

writes an array of floating-point values to the DSP memory. This write is done

with a conversion from IEEE floating-point format (which is used in Microsoft C)

to TMS320C30 floating-point format. There are four arguments to this function.

The first argument stores an unsigned long integer pointing to the first address to

which to write. The second argument is an unsigned short integer indicating the

type of memory to be accessed which for this system is dual port memory. The third

argument is an unsigned short storing the number of values to be transfered. The

fourth argument is a pointer to an array of floating-point numbers. The first element

of the array will be written to the first DSP memory location. The second element

will be written to the next location, and so forth. The function returns an integer 0

if successful and a -1 if unsuccessful.

A few comments should be made about WrBlkFlt. In the current system, WrBlkFlt

is used for one word writes to the DSP memory. It may seem strange to do a one
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word block write. This is done merely to keep parallelism with the read operations

where there is a complication in doing a single word transfer. The complication is

discussed in the paragraphs below.

Reading from the DSP Memory

Reading from the DSP memory can be accomplished using one of the following library

functions: GetFloat, RdBlkFlt, Get32Bit, RdBlk32, GetInt, or RdBlkInt. Of these,

the current system uses only RdBlkFlt, and so only this function will be discussed.

Details of the other functions can be found in the user's manual [22, Chapter 3, pp.

41-56; Appendix C, pp. 121-158].

RdBlkFlt reads an array of floating values from the DSP memory to the PC

memory. The values are converted from the TMS320C30 floating-point format to

the IEEE floating-point which is used by the PC. The function has four arguments.

The first arguments is an unsigned long integer specifying the address from which to

start reading values. The second is an unsigned short integer indicating the type of

memory to be accessed which is generally dual port memory. The third argument,

an unsigned short integer, specifies the number of values to read from memory and

the fourth argument, a pointer to an array of floating-point values, points to the

beginning of the destination array. The function returns 0 if successful and -1 if

unsuccessful.

The function RdBlkFlt transfers an array of floats. This function can also be used

to transfer a single floating-point number by reference instead of by value. Normally

when passing by value, Microsoft C converts to double precision a floating-point

number passed between functions. When using the function GetFloat to retrieve a

single floating-point number, to avoid the conversion to double precision it returns its

value as an unsigned long integer. This integer representation can then be coerced

to a floating-point number. To avoid this circuitous manner of passing values, it is

easier to pass pointers which do not undergo any conversion. Thus, passing a single

value is more easily accomplished by passing it as an array using RdBlkFlt.
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F.2 The 4 Channel Analog I/O Board

The 4 Channel Analog I/O Board incorporates two digital-to-analog converters

(DAC's) and a single analog-to-digital converter (ADC). However, the ADC can sam-

ple four inputs by means of a multiplexer in the signal path. In order to get samples

taken from the same instant in time, the inputs to the board are first sampled with a

sample-and-hold and then sent to the multiplexer. Details of the conversion process

are given in Section H.1. The I/O Board also has a timer but this timer is not used.

To understand the function of the board, in particular as it applied in Section H.1,

a few things must be discussed. Section F.2.1 outlines the basic configuration of the

board while Section F.2.2 explains how the board fits into the DSP memory map and

the functions of each pertinent location. The original documentation can be found in

the 4 Channel Analog I/O Board User's Manual [19], and the TMS320CSO System

Board Technical Reference Manual [21, Chapter 5, pp. 29-31; Appendix A].

F.2.1 Configuring the 4 Channel I/O Board

The 4 Channel I/O Board operates off the DSPLINK bus. Therefore, this bus must be

connected, using the 50-way connector, to the DSP motherboard. As a result of being

on the DSPLINK bus, the card utilizes that portion of the memory map allocated

to the DSPLINK interface. There are four links that need to be set in order for the

board to function properly in the overall system. Link Lkl sets the base address of

the board relative to the beginning of the DSPLINK address space. The options for

the base address are 0x800000, 0x800004, 0x800008, and Ox80000C by setting Lkl to

the "a", "b", "c", or "d" position respectively. The current system chooses 0x800008

for the base address.

There are three other links necessary to properly configure the board. Links Lk2

and Lk3 set the output ranges for the two DAC's on the I/O Board. These are

normally set for a ±2.5 volt output range, by setting the links to position "b". The

other option would be for a ±5.0 volt output range.

Link Lk4 controls the method by which the DAC input registers are updated. The
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options are for update on generation of a "Load DAC" signal, transparent output, or

update on the timeout of a counter or some other external trigger event. It is this

third option which is chosen and a conversion is started by an external trigger. Link

Lk4 should be set to position "c" for this option.

F.2.2 The I/O Board Memory Map

As mentioned above, the I/O Board fits into the DSPLINK segment of the DSP

memory map. For reasons discussed in the previous section, the current system puts

the base address of the 4 Channel I/O Board at 0x800008. The base address memory

maps to the I/O Board's Control Register on a write and its Status Register

on a read. The next address functions as a Timer Register on a write. Address

Ox80000A, serves as an input register for the first DAC on a write and an ADC result

register on a read. Similarly, address Ox80000B functions as an input register for the

second DAC on a write and an ADC result register on a read. Further documentation

on the functions of each register can be found in Section H.1 and in the 4 Channel

Analog I/O Board User's Manual [19].
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Appendix G

The Position Sensing System

The position sensing system is composed of a rotary shaft encoder and a decoder.

The DSPLINK interface is used to read values from the decoder into the DSP sub-

system. A value indicating the position is then stored and can be read by the PC-AT

subsystem. This appendix gives more information on comments made in Sections 4.2

and 4.3.2. It first treats the workings of the shaft encoder and decoder followed by a

treatment of the interactions between the decoder and the DSP subsystem.

G.1 The Rotary Encoder/Decoder

The rotary encoder/decoder system is built around the Canon R-2A shaft encoder.

This encoder is mounted inside the stator with an axial shaft protruding into the ro-

tor where it is fastened. The encoder produces two sine waves which are 90' degrees

out of phase and both with a frequency of 65,536 cycles per mechanical revolution.

This signal was originally intended to be decoded by the Canon C-I-16-1 interpola-

tor board, which would have provided a resolution of 1,048,576 locations per cycle.

However, this proved unworkable as the interpolator was not immune to the electro-

magnetic interference (EMI) generated by the servo system. Thus, a new decoder was

constructed. This section intends to explain the workings of the new decoder board.

Before delving into the schematics and logic equations of the new decoder, it is

best to examine how the rotary encoder works. The rotary encoder generates the
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two phase-shifted sinusoidal waveforms as described above. As the shaft rotates, the

phase angle of the sinusoids rotates but with an angular frequency of 65,536 Hz.

One can note that when the shaft turns in the clockwise direction (looking from the

rotor side) that the A-phase leads the B-phase by 900 and when the shaft rotates

in the counter-clockwise manner, the A-phase lags the B-phase by 900. With this

information in hand, it was decided to convert the sine waves into square waves by

comparing them with zero, using a comparator with a small amount of hysteresis. A

logical inversion was also done during the comparison. Taking these square waves,

it was possible to construct an algorithm for determining if the shaft was moving

clockwise or counter-clockwise. It was decided that a position change would only

happen when the digital version of the B phase input was a logic '0' and when the

digital A phase underwent a transition. If the transition was from a '1' to a 'O'

then the shaft was traveling in a counter-clockwise direction and a counter would be

incremented, indicating that the next position had been reached. If the transition

was from a '0' to a '1' then the shaft was rotating in a clockwise manner and the

counter would be decremented. This scheme has noise immunity for a number of

reasons. First, the digital levels are harder to corrupt than the analog levels and even

though the analog voltages still remain as inputs, the integrity of their levels doesn't

matter much since interference will only result in a slight phase error (always less

than one count). Additionally small amounts of noise will have little effect because

of the hysteresis in the comparator. Second, the phase based algorithm requires that

the proper sequence of phasings be generated before a count will occur. That means

that the phases must follow a four-step sequence. Third, In order to implement the

algorithm it was necessary to create a finite-state machine that could keep track of

the transitions in A and B. This system is synchronous with a 1 MHz clock. This

added element of synchrony also helps eliminate errors as only disturbances which

are coincident with the clock will ever be noticed by the system. The odds of an EMI

disturbance following the proper sequencing in synchrony with the clock is extremely

slim. It has however been observed that it is possible to occasionally be off by a few

counts after a full revolution of operation. Yet, performance is good enough for an
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experimentation system which is zeroed occasionally.

The ripple reduction algorithm discussed in this thesis required the existence of

well defined absolute positions. Creating a zero position using the above scheme was

not an easy task. Since the position was only generated by a counter, any powering-

down of the system would cause the position to be lost. Also, since there are occasional

errors, it is necessary to have some way to re-zero the system. Fortunately, the rotary

encoder has eight bits of absolute position information in grey code format. The zero

position was defined as the point where the decoded bits, now in binary coded decimal

format, changed from being all zeros to all ones. At that transition, the counter was

zeroed.

Schematics for the decoder circuit are shown in Figures G-1 and G-2. Following

the schematics follows the "palasgn" code for programming the 16V8 PAL devices.

Table G.1 lists the input signals coming from the rotary encoder and the pin numbers.

The pin numbers correspond to the JRC25PG-24 family connectors (manufactured

by Hirose) which the encoder uses. The schematics also refer to Jumper J5 which

connects between the decoder hardware and the DSPLINK interface. Jumper J5 has

a DIP connector on the decoder end. The wire numbers follow the normal ordering

convention for DIP connectors. Jumper J6 connects between the JRC25PG-24 con-

nector and the decoder hardware. Again, the pin numbers follow the normal ordering

convention for DIP connectors on the decoder end.
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Figure G-1: Rotary Decoder Circuit Schematic (Sheet 1).
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16v8 D /D /C C C C C C
palasgn output from source file: loadgen.eqn

Massachusetts Institute of Technology
CLK D1

GND
NC

D2
/OE
NC

D3
ONES

NC

LOAD = /DO*/D1*/D2*/D3*/D/D5*/D6*/D7*ONES

ONES := DO*D1*D2*D3*D4*D5*D6*D7

/DO*/Dl*/D2*/2*/D3*/D4*/D5*/D6*/D7

Program G.1: Palasgn Code for GAL16V8 U1.
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ZEROS

VCC
/LOAD

/ZEROS :=



16v8 /C /D /C D D D D D
palasgn output from source file: phase4.eqn

Massachusetts Institute of Technology
/LOAD
NC
OLDB

A
GND
ROLDB

/OE /ENABLE /ROLDA
OLDLOAD ROLDLOAD VCC

OLDA*/OLDB*/ROLDA*/ROLDB+
/OLDA*/OLDB*ROLDA*/ROLDB

OLDA :=

OLDB :=

ROLDA :=

ROLDB :=

OLDLOAD

ROLDLOAD

NEWLOAD =

A

B

OLDA

OLDB

LOAD

OLDLOAD

OLDLOAD*/ROLDLOAD

Program G.2: Palasgn Code for GAL16V8 U2.
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Pin # Function Pin # Function

1 A-phase signal 13 3rd Absolute Position Bit

2 GND 14 4th Absolute Position Bit

3 B-phase signal 15 5th Absolute Position Bit

4 GND 16 6th Absolute Position Bit

5 Z-phase signal 17 7th Absolute Position Bit

6 GND 18 8th Absolute Position Bit (LSB)

7 +5V 19 NC

8 GND 20 +5V Supply Sense

9 -5V 21 GND Sense

10 GND 22 -5V Sense

11 1st Absolute Position Bit (MSB) 23 Shield

12 2nd Absolute Position Bit 24 Case

Table G.1: Pin Out for the JRC25PG-24 Series Connectors.
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G.2 Interfacing the Position Measurement System

with the DSP Subsystem

The position measurement subsystem has been assigned a location in the memory

map of the DSP subsystem. This makes it possible to read a value from the position

subsystem by merely reading a memory location in the DSP memory address space.

This occurs because the position measurement subsystem interfaces via a DSPLINK

interface card. The document entitled DSPLINK Prototype Interface Module [20]

has more information on the DSPLINK. The TMS320C30 System Board Technical

Reference Manual [21, Chapter 5; Appendix A] also provides more information. The

base address of the card has been chosen to be at 0x800004 and it has an address

range up to 0x800007. This is done by setting the jumper LINK 2 on the DSPLINK

interface to setting "b". The decoder returns its data to the base address of the

DSPLINK card. Thus any read from location 0x800004 will return the 16 bit position

value generated by the position decoder.

To make the code more readable, DSP address locations have been assigned names

by way of global declarations. Below is a code fragment which defines four locations,

covering the four locations that the DSPLINK interface can access. The code fragment

occurs in the header of the DSP code.

#define CANONO ((unsigned int *) 0x800004)
#define CANON1 ((unsigned int *) 0x800005)
#define CANON2 ((unsigned int *) 0x800006)
#define CANON3 ((unsigned int *) 0x800007)

If one analyzes the decoder hardware closely, it will be noticed that the decoder

provides its data to all four memory locations. Thus any one of the four locations

can be read to access the rotor position. Customarily, only the base location is read

though. This is accomplished with the code fragment below.

posl=*CANONO;
posh=*CANONO; /* Dummy variable; Don't leave posh unassigned */

/* or the compiler will mess up the placement of */
/* variables in specific memory locations. At least */
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/* this appears to be happening. */

posll6=posl>>16;
posr=2*pi*pos116/65536.0;

This section of code reads memory mapped address location 0x8000004, the de-

coder value, and stores the value in the variable posl, which resides in the dual-port

memory bank, BANK3. After that, the location is read again and stored in the

variable posh. This would appear to be senseless, however it works around a bug in

the compiler. Originally when the interpolator board was used, 24 bits of information

were provided. This took two locations of memory. Specific locations in the memory

map were allocated to hold the values. When the interpolator board was abandoned,

the memory map was left unchanged. However the compiler seems not to respect the

memory map allocations if one of the variables is unused. The simplest work-around

for the problem was just to access the memory location. To further complicate the

situation, a simple assignment will not suffice. If nothing else is done with the value,

the optimizer recognizes that the assignment is never used and it removes the as-

signment. Thus, the assignment was placed in a loop which sufficiently confuses the

optimizer.

Once the position has been read into a variable with the above code, the informa-

tion is stored in the sixteen most significant bits. Thus it is necessary to shift right

sixteen times. This value can then be converted to a radian measure of angle. The

radian measure of angle can then be introduced into the control algorithms.

G.3 Interfacing the Position Measurement System

with the PC-AT Subsystem

The position measurement system can be indirectly interfaced with the PC-AT sub-

system by way of the DSP subsystem. Using the code discussed in the previous

section, the position can be read from the decoder into a specific memory location in

the DSP memory map. Using the techniques discussed in Section F.1.3, the value in
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the DSP memory can be read by the PC-AT subsystem. An appropriate conversion

on the value can then be done by the PC. A short discussion of the necessary code

will now be done. Note that no additional code is necessary for the DSP.

The PC first defines global variables which hold the locations in the DSP memory

map where the variable of interest, posl and posh, are located.

#define COMM 0x30000 /* Start of .bss memory area. */
#define POSL COMMO + 0 /* Absolute memory locations */

/* reserved in LSICMAP.CMD.
#define POSH COMMO + 1

The position is read from the DSP memory as a 32 bit value, which should then

be shifted right sixteen times. The value can then be converted to degrees or radians.

The line of code below accomplishes the transfer of data.

positl=Get32Bit (POSL,DUAL)>>16;

The following line of code gives an example of the type of conversion on the data

that can be done. The line prints the current angle in degrees.

printf("Degrees: %f\n",360.0*((int) positl)/65536.0);

152



Appendix H

The Drive Electronics

This appendix supports statements made in Section 4.3.1.

The responsibility of the drive electronics subsystem is to deliver a precise current

to each motor winding. The current desired is calculated by the control algorithm

on the DSP. The DSP then writes its data to the Digital-to-Analog Converters (D-

to-A, or DAC) of the drive electronics subsystem. These in turn produce analog

voltages proportional to their digital inputs. These analog signals pass through a

stage of isolation amplifiers which provide galvanic isolation and these outputs drive

a modified Allen-Bradley servo system. The servo system provides current outputs

which are fed into the windings of the motor. The servo system also provides feedback

voltages which are proportional to the output currents. These feedback voltage are

then galvanically isolated by another stage of isolation amplifiers whose outputs then

serve as inputs to a muxed-input Analog-to-Digital Converter (A-to-D, or ADC). The

outputs of the ADC are digital representations of the winding currents. These digital

feedback values are then used in a feedback loop to obtain greater regulation on the

winding currents (while reducing the system dynamic bandwidth). The digital values

can also be stored for retrieval by the PC.

The following sections detail the operation of each step in the above signal flow.

The above description provides a more easily understood description of the signal

flow. However, because of details of the implementation, it is more accurate to start

the description with the reading in of the feedback voltages by the A-to-D converter.

153



This is the event that triggers the beginning of a new cycle.

H.1 Controlling the ADC's

The drive electronics system's cycle begins with the A-to-D conversion. To under-

stand the conversion cycle, it is necessary have an understanding of the conversion

hardware and how to interface to it. Sections H.1.1 and H.1.2 detail the interfacing

to the motherboard converter system and the 4 Channel I/O Board converter sys-

tem, respectively. Following those sections, Section H.1.3 and Section H.1.4 detail

the initialization procedures for the motherboard and 4 Channel Analog I/O Board.

H.1.1 An Introduction to the Motherboard Converter Sys-

tem

The ADC's and DAC's are controlled via memory mapped ports in the DSP mem-

ory space. This is true both of the converters on the motherboard and on the

daughter-card. The motherboard's analog I/O interface occupies addresses 0x804000,

0x804001, and 0x804008. These locations have been given global definitions with

names IASREF, IBSREF, and SOFTCON respectively. The code where this is done fol-

lows below.

#define IASREF ((unsigned int *) 0x804000)
#define IBSREF ((unsigned int *) 0x804001)

#define SOFTCON ((unsigned int *) 0x804008)

Writing to IASREF writes data into the motherboard's Channel A DAC. Reading

from the same location reads the output of the Channel A ADC. The operation for

location IBSREF is similar except the actions occur to the motherboard's Channel B.

It should be noted that since the ADC's and DAC's generate sixteen bit data words,

all the bits of the memory location are utilized by the ADC's and DAC's. The global
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definitions are very suggestive of where each channel interfaces in this particular

application. Channel A which uses the memory mapped location named IASREF is

connected to the signal lines for the stator A winding. Similarly, Channel B, operating

from memory mapped location IBSREF, is connected to the stator B winding. The

memory location SOFTCON causes a software-initiated A-to-D conversion of both the

A and B channels upon either a read or a write. The current system does not use

this method of conversion cycle control. One note should be made regarding reading

and writing the ADC's and DAC's. The ADC's must be read prior to writing the

DAC registers, otherwise the value just written to the DAC's will be read back as if

it were the ADC output.

H.1.2 An Introduction to the 4 Channel I/O Board

The 4 Channel I/O Board occupies a configurable address in the DSP memory. The

exact address location of the I/O Board is selected via jumper Lkl on the I/O Board.

The link is set so that the I/O Board has a base address of 0x800008. It should

be noted that the 4 Channel I/O Board interfaces with the motherboard via the

DSPLINK interface and thus resides in the memory space allocated to the DSPLINK

system, addresses 0x800000 through 0x801FFF. On a write operation, the base ad-

dress serves as a Control Register, IOCREG, and on a read operation it functions

as a Status Register, IOSTAT. The next memory location, 0x800009, serves as a

Timer Register, IOTCTL, on a write and is unused on a read. For this system's

purpose, this timer goes unused since the motherboard timer suffices. However, a

conversion cycle is initiated by writing to the Timer Register. The next location,

Ox80000A, provides an input register for the first DAC on a write, and an ADC result

register on a read. The DSP source code uses the global reference of IARREF to refer

to this location on a write to the DAC and IMEAS to refer to this location on an ADC

read. These names are appropriate because the IARREF memory location controls the

DAC connected to the rotor A channel. The IMEAS location is connected to the one

output of the ADC which measures all the currents. Location Ox80000B provides an

input register for the second DAC on a write. The source code refers to the DAC
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register by the reference IBRREF. The ADC's and DAC's on the I/O Board have 12

bits of resolution. Therefore not all the bits to and from the conversion hardware are

meaningful. In the case of read operations from the ADC registers, bit 15 is used for

a sign bit followed by eleven data bits followed by four replicas of the sign bit. For

writes to the DAC registers, bit 15 is the sign bit which is followed by eleven data

bits. The last four bits of the DAC registers are unused. The code which defines the

global references for the 4 Channel I/O Board is given below.

#define IOCREG ((unsigned int *) 0x800008)
#define IOSTAT ((unsigned int *) 0x800008)

#define IOTCTL ((unsigned int *) 0x800009)

#define IARREF ((unsigned int *) Ox80000A)

#define IBRREF ((unsigned int *) Ox80000B)

#define IMEAS ((unsigned int *) Ox80000A)

Before operating the DAC's and ADC it is necessary to configure the motherboard

and 4 Channel Analog I/O Board to work in the present application. The following

sections detail the initialization procedures.

H.1.3 Initializing the Motherboard for Analog I/O

All Analog I/O is synchronized by the motherboard timer, TIMER1. To control

the timer, first the timer must be reset by writing RSTCTRL, 0x000601, to the Timer

Global Control Register, TIMECTL, at address 0x808030. Writing 0x000601 has

the effect of placing the timer in hold mode with no reset being performed. It also

configures the timer such that the timer counter is clocked by a clock internal to

the DSP, and such that a timer output pulse is generated by an equality compari-

son between the period register and the timer counter. The following line of code

accomplishes this register write.

*TIMECTL=RSTCTRL;

TIMECTL and RSTCTRL are defined as global variables in the following lines which

occur in the header of the DSP source code.

#define TIMECTL ((unsigned int *) 0x808030)
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#define RSTCTRL Ox000601

After the timer is reset, the Timer Period Register, which sets the number of

clock counts between each timer output pulse, can be set. Each count adds 120 ns

of delay between timer output pulses. A typical number of counts is around 2500,

corresponding to about 300 ps. This amount of time has been empirically found

to be slow enough to allow the DSP software for this application to keep up. The

Timer Period Register resides at memory location 0x808038. Below are code lines

which define the location of the Timer Period Register and the final count value.

Following that, is the code line that writes the count value to the Timer Period

Register.

#define PERIOD ((unsigned int *) 0x808038)

#define COUNT 2500

*PERIOD=COUNT;

Once the Timer Period Register has been set, the timer can be enabled. This

is accomplished by writing the value SETCTRL, Ox0006cl, to the Timer Global

Control Register. This control word configures the timer exactly as before but

instead of putting the timer in hold mode, it causes the timer to reset to zero and

start counting up. This write is implemented with the following lines of code.

*TIMECTL=SETCTRL;

SETCTRL is defined in the following code line from the header.

#define SETCTRL Ox0006cl
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H.1.4 Initializing the 4 Channel I/O Board

Initializing the motherboard timer sets the entire conversion loop in motion. From

this point on, the completion of the motherboard timer will cause a conversion to

occur. Thus before starting the conversion loop it is safer to initialize the 4 Channel

Analog I/O Board as detailed below. Before beginning the conversion loop by setting

the motherboard timer, a standard initialization routine first calibrates the sample-

and-hold circuits of the ADC circuit [19, p. 25,p. 19]. To do this, it is necessary to

pulse bit 5 of the Control Register high. After this, bit 5 of the Status Register

can be polled to wait for completion of the calibration routine. This action is shown

in the code below.

*IOCREG=IOCINIT;
*IOCREG=IOCAL;

*IOCREG=IOCINIT;
while(!(*IOSTAT & CALMSK));

IOCINIT, IOCAL and CALMSK are defined globally in the code by the following lines.

CALMSK is merely a bit-mask to look for the status of bit 5.

#define IOCINIT Ox000000

#define IOCAL 0x200000

#define CALMSK 0x200000

After the calibration is completed, the initialization procedure writes a control

word, IOSTRT to the Control Register. This actions puts the ADC sample-and-

hold circuits in sample mode. This must be done prior to the beginning of an ADC

conversion cycle to allow for the acquisition of the new input values. Also, this write

inhibits the timer on the I/O Board, which is necessary in order to use software

initiated conversions [19, p. 17,p. 19]. The code which writes the value is shown

below.

*IOCREG=IOSTRT;

IOSTRT is defined by the following global variable.

#define IOSTRT Ox400000
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H.1.5 Controlling the Motherboard ADC's

The control of the ADC's begins when the motherboard timer, TIMER1, counts to

the COUNT value (as defined in Section H.1.3), at which point the timer resets and

starts again. Also at this time, the motherboard ADC's perform a conversion. The

decision to operate the motherboard ADC's from the timer is hard-wired into the

motherboard by installing jumper LK2a [21, Chapter 4, pp. 21-23]. Since the inputs

of the motherboard ADC's are floating this conversion is meaningless. However, the

DSP motherboard interrupt INT1 is enabled so that when the a motherboard A-to-D

conversion is finished, an interrupt is signaled [22, Chapter 2, pp. 35-39] [23, Section

8.1, pp. 8-2-8-9]. When this happens, an interrupt handler can cause the 4 Channel

I/O Board's ADC to enter a conversion cycle.

H.1.6 Controlling the 4 Channel I/O Board's ADC

The first action of the interrupt handler is to trigger a conversion cycle on the 4

Channel Analog I/O Board. This software initiated conversion is accomplished by

writing to the I/O Board's timer register, IOTCTL. This is shown in the code line

below.

*IOTCTL=O; /* write used to generate software trig */

A few comments need to be made about this as it is not as straight forward as

would first appear. In order for a software initiated conversion cycle to triggered by

the above write operation two things must be done. First, the I/O Board timer must

be inhibited. This generally needs to be done only once somewhere in the initialization

portion of the DSP code, as described in Section H.1.4. The second action necessary

for a conversion cycle to begin is to put the sample-and-holds in hold mode. This is

accomplished by writing the control word IASMEAS to the Control Register. This

control word instructs the I/O Board to continue to inhibit the timer, put the sample-

and-holds in hold mode and indicates that the first conversion to take place should

be that of sample-and-hold channel 0, which corresponds to the stator A current

feedback signal.
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After the conversion cycle has been started, it will be normal for the interrupt

handler to poll the I/O daughter-card until the status register indicates that a con-

version is complete and another byte is available. This is done in the following line

of code. It simply checks that bit 7 of the status register is high indicating an end of

conversion.

while(! (IOSTAT & ADMSK));

ADMSK is a bit-mask defined by a global declaration.

#define ADMSK Ox800000

After each successful polling, a value is read from the ADC result register IMEAS.

Following that, the next command word is written instructing the system to convert

the next channel. On the last channel to be converted, the sample-and-hold is com-

manded to return to sample mode. The return to sample mode happens at the end

of the conversion. The code below executes what has been described above.

while(!(*IOSTAT & ADMSK));
iasnew=((int) (*IMEAS))>>20;
*IOCREG=IBSMEAS;

while(!(*IOSTAT & ADMSK));

ibsnew=((int) (*IMEAS))>>20;
*IOCREG=IARMEAS;
while(!(*IOSTAT & ADMSK));
iarnew=((int) (*IMEAS))>>20;
*IOCREG=IBRMEAS;
while(!(*IOSTAT & ADMSK));
ibrnew=((int) (*IMEAS))>>20;

H.2 Controlling the DAC's

After reading the feedback current values via the ADC, the interrupt handler writes

the new output values for the rotor and stator phase currents to the appropriate DAC

registers. It should be noted that before writing to the DAC registers, the internal

representations of the desired current need to be scaled appropriately. The output

bits must occupy the sixteen most significant bits of the 32 bit output word. The
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code below accomplishes the write operation. The variables iasd, ibsd, iard and

ibrd are the command values for the stator A phase current, stator B phase current,

rotor A phase current and rotor B phase current respectively.

*IASREF= ((unsigned int) (-32767.0*iasd/25.5))<<16;
*IBSREF=((unsigned int) (-32767.0*ibsd/25.5))<<16;
*IARREF=((unsigned int) (-32767.0*iard/25.5))<<16;
*IBRREF=((unsigned int) (-32767.Oibrd/25.5))<<16;

Once the new values have been written to the DAC's, they are converted to analog

voltages. This conversion does not take place immediately however. It is necessary to

get a conversion signal. For the stator currents, the DAC's reside on the motherboard.

The motherboard is configured such that the conversion commences at the timeout of

the timer, TIMER1, as documented in Section H.1.3 and Section H.1.5. The rotor

currents use the DAC's residing on the Analog I/O card. Because of the setting of

Link Lk4 the conversion begins when the Timer Register is written to, as is done

at the beginning of the ADC conversion cycle.

H.3 Isolation Between the DAC's and the Servo

System

The analog voltages created by the DAC's are galvanically isolated from the Allen-

Bradley servo system. This is done to protect the user from injury and the equipment

from damage in the case of a fault in the servo system. The isolation system provides

3500V of isolation. The isolation stage also performs offset and scaling of signals. An

illustration of the signal flow and power connections for the isolation system is shown

in Figure H-1.
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Figure H-1: Isolation Amplifier System.

Figure H-1 depicts four jumpers. Jumper J1 is a 15-pin 'D' type connector.

Jumper J2 is a 25-pin 'D' type connector. Jumpers J3 and J4 are 9-pin 'D' type

connectors. The following diagrams illustrate the pin assignments for each connector.
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Figure H-2: Jumper J1 Pin Assignments.
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Figure H-3: Jumper J2 Pin Assignments.
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Figure H-4: Jumper J3 Pin Assignments.
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Figure H-5: Jumper J4 Pin Assignments.

For Jumper J1, the important signals are DAC Output A, DAC Output B, A Ground,

and B Ground. These are the motherboard DAC outputs discussed in previous sec-

tions. For Jumper J2, the important signals are ADC-INO, ADC-IN1, ADC-IN2 and

ADC-IN3, and their corresponding grounds AGNDO, AGND1, AGND2 and AGND3. These

are the four inputs to the ADC muxing circuitry on the 4 Channel Analog I/O Board.

Also of importance are the two DAC outputs, DAC-OUTO and DAC-OUT1 and their cor-

responding grounds, OUTGNDO and OUTGND1. These are the Analog I/O Board's DAC

outputs. On Jumper J3, all the signals shown in Figure H-4 are used. The signal

IAS* is the stator A phase command signal to the servo system. Similarly, IBS* is

the command signal for the stator B phase. The grounds, GND, are used as return

paths for the circuit. Signals IAS+ and IAS- comprise a differential voltage signal

representing the measured stator A phase current. Signals IBS+ and IBS- perform

identically for the stator B phase current. Jumper J4 has the same basic function

except the quantities of interest refer to the rotor instead of the stator.
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Following the signal path in Figure H-1, the DAC output voltages are brought

to the isolation system via jumpers J1 and J2. The isolation system then scales and

translates the each voltage independently. This is achieved by an offset adjustment

potentiometer and a gain adjustment potentiometer. The use of the offset and gain

adjustments is explained in more detail in Section H.7. After the scaling and trans-

lation, each signal is fed through the AD210 Isolation Amplifier [3], which provides

the galvanic isolation. Following the isolation amplifier, there is an LF356 amplifier

which inverts the signal, undoing the inversion done by the isolation amplifier. The

isolated signals then go out on jumpers J3 and J4 and enter the Allen-Bradley Servo

System.

Schematics for the isolation system are shown in Figure H-6. It should be noted

that the motherboard DAC isolation is done on a board separate from the Analog

I/O board isolation. There is no particular reason for this, but it something of which

to be aware.

165



Figure H-6: Schematic for the DAC to Servo System Isolation.
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H.4 The Allen-Bradley Servo Amplifier System

Once the command signals leave the isolation subsystem, they enter a modified Allen-

Bradley Bulletin 1839 AC Servo Amplifier System. This system is capable of deliver-

ing 17 amps of continuous RMS current per winding. Modifications have been made

to the servo amp system so that the isolated versions of the DAC outputs can directly

command the winding currents, in a proportional manner. Furthermore, the servo

system can measure the instantaneous output currents and feed these measurement

signals back to the A-to-D via another isolation subsystem. This section will cover

the configuration and operation of the servo amplifier system.

The hardware for the servo system is composed of two 1389-AA17 servo amplifier

modules, one for the rotor and one for the stator, a 1389-PAT10 power supply and

associated chassis module, and a 1389-T100DA isolation transformer. The intercon-

nect of the system is shown in Figure H-7. Detailed information on the associated

subsystems can be found in the Bulletin 1389 User Manual [1].

167



Circuit
Breaker

r- - --

Three
Phase W --00 I

208 VAC
-L

Isolation
Amplifiers
Board #2

Y1

Y2
1389-T 100DA

H1 Isolation X1
Transformer

H4 X2

H7 X3
GO,G1,XO--

a

E E

am aE E: =3

I Chassis Module

TB1-7

TB1-8

TB1-1
TB-21389-PAT10
TB- Power

TB1i-3 Supply
Module

TB2-1

TB2-2

TB2-5

TB2-6

0 Stator A Phase

- Stator B Phase

--- Stator C Phase

-- 4 Rotor A Phase

-- Rotor B Phase

-- Rotor C Phase

Figure H-7: Servo System Block Diagram.

The isolation transformer is where the power flow begins. The transformer oper-

ates with three-phase 208 VAC on the primary in a delta configuration. The trans-

former has a three-phase 230 VAC output from the Wye-connected secondary. The

three-phase output will eventually provide the power to the motor windings. There is

also a single-phase 230 VAC output. This phase is used by the power supply module

to generate a +12V supply. A schematic depiction of the transformer as it is shipped

by Allen-Bradley is given in Figure H-8. A number of jumper connections need to be
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made for proper operation. Nodes H2 and H3, H5 and H6, and H8 and H9 need to

be jumpered together to form the delta on the primary. The shields need to be tied

to the transformer chassis, which should be tied to earth ground. The node XO, the

center node of the Wye, should be grounded to the transformer chassis as well.

H1 H3 H2 H4 H6 H5 H7 H9 H8 GO

XO XO X1 X1 X2 X2 X3 X3 Y1 Y1 Y2 Y2

Figure H-8: Schematic for the Isolation Transformer.

The power leaving the isolation transformer enters the power supply module. The

exact workings of the power supply module are not known, and it is not necessary to

know. The power supply module creates internal supplies that are fed to the servo

amplifiers via the chassis module. To configure the power supply correctly, it should

be wired as shown in Figure H-7. Of particular note, are the shorting jumpers between

TB2-1 and TB2-2, and TB2-5 and TB2-6, which control the reset and enable signals.

Inserting both jumpers enables the power supply module. Furthermore, the PAT10

has two internal jumpers which need to be set appropriately. Jumper JU1 needs to

be set to Position A and jumper JU2 needs to be set to Position A as well.

Once the power supply module is feeding voltage to the chassis module, it remains

for the servo amplifiers to do their work. The servo amplifiers have been modified into

mere transconductance amplifiers, whereas normally they have much greater function-

ality. The input signals come from the isolation system as discussed in Section H.3

and below. The outputs are located on a terminal block on the front face of the servo

amp module. These can be wired to the motor windings.

The following modifications have been made to the servo amplifier modules. An



Pin # Function Test Point

J3-1 IAS* TP7

J3-2 GND TP9

J3-3 IBS* TP8

J3-4 GND TP9

J3-5 IAS+ TP3

J3-6 IAS- TP9

J3-7 IBS+ TP6

J3-8 IBS- TP9

J3-9 NC NC

Table H.1: Connections from Jumper J3 to Servo Amp #1.
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aid in understanding what is described below will be a reference to the Bulletin 1389

User Manual [1] and to a fax entitled 1389 Block Diagrams [2]. On the jumper CNC1,

internal to each servo amp, pins 4 and 5 have been removed. A connector has been

attached to the inside of each of the servo amplifiers where jumpers J3 and J4 can

be attached. From this connector, connections are made to various test-points in

the servo amp circuitry. These connections are detailed in Table H.1 for servo amp

#1 and Table H.2 for servo amp #2. These modifications change the servo amp so

that the command voltage from the isolation amplifier subsystem, either IAS*, IBS*,

IAR*, or IBR*, controls proportionally the output current of the servo amp. They

also provide differential voltages proportional to the measured output current. These

were given the names IAS+, IAS-, IBS+, IBS-, IAR+, IAR-, IBR+, and IBR-.

These signals exit the servo amplifier subsystem via the jumpers where they return

to the isolation subsystem.



Pin # Function Test Point

J4-1 IAR* TP7

J4-2 GND TP9

J4-3 IBR* TP8

J4-4 GND TP9

J4-5 IAR+ TP3

J4-6 IAR- TP9

,J4-7 IBR+ TP6

J4-8 IBR- TP9

J4-9 NC NC

Table H.2: Connections from Jumper J4 to Servo Amp #2.

In addition to the modifications required to be done to the servo amplifiers, it is

necessary to set some jumpers internal to the servo amplifiers. Table H.3 details the

settings of the jumpers.

rJumper Position Jumper Position

JP1 A JP10 A

JP2 A JP13 B

JP3 A JP14 B

JP4 A JP15 A

JP5 B JP16 A

JP6 A JP17 A

JP7 B JP18 A

JP8 B SW1 F

Table H.3: Servo Amplifier Jumper Settings.
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H.5 Isolation Between the Servo System and the

ADC

As mentioned in the previous section, the measurements of the output currents are

returned to the ADC via the isolation subsystem. Pin assignments can be found

in Figures H-2-H-5. The schematics are shown in Figure H-9. They are nearly

identical to the schematics shown in Section H.3 except the LF356 components have

been removed and the fact that the signal names are different.
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Figure H-9: Schematic for the Servo System to ADC Isolation.
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Once the signals return to the ADC the signal loop is completed by a conversion.

The fed-back current measurement signals are used to establish a feedback loop on

the DSP. This helps to establish a greater control on the DC value of the currents,

at the cost of reduced dynamic bandwidth.

H.6 The Drive System Feedback Loop

The drive system has a feedback loop that is used to establish greater DC accuracy.

It was noticed early on that the DC regulation on the servo system was poor. The

loop works off the instantaneous current as a feedback quantity. This is the current

as measured at the servo system which undergoes an A-to-D conversion. Thus the

feedback loop is in the digital domain. The block diagram of the loop is shown in

Figure H-10. One can see that the inner loop is a low pass filter and the outer loop

forces the average value of the output to the command value.

Servo
Digital
Command
Value

Analog
Output
Curren:

Figure H-10: Block Diagram of Feedback Loop.

Code on the DSP for the feedback loop is listed below. The variables iasnew,

ibsnew, iarnew, and ibrnew are temporary storage locations for the raw A-to-D

converted values. These are then scaled appropriately and stored in values iasm,
ibsm, iarm, and ibrm. These are the measured currents. The drive currents, iasd,
ibsd, iard, and ibrd, are then calculated as the low pass filter of the difference

between the commanded currents and the measured currents. The drive current
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values are clipped if they exceed a reasonable value. This is to prevent the drive

values from increasing without limit if the feedback were to be broken or if the servo

system were not turned on. The latter problem would otherwise result in a very large

initial current at power-on which would decay slowly. Thus the clipping is a way to

protect the motor from excessive current.

while(!(*IOSTAT & ADMSK));
iasnew=((int) (*IMEAS))>>20;
*IOCREG=IBSMEAS;
while(!(*IOSTAT & ADMSK));
ibsnew=((int) (*IMEAS))>>20;

*IOCREG=IARMEAS;

while(!(*IOSTAT & ADMSK));
iarnew=((int) (*IMEAS))>>20;

*IOCREG=IBRMEAS;
while(!(*IOSTAT & ADMSK));
ibrnew=((int) (*IMEAS))>>20;

iasm=17.5*iasnew/2047.0;
ibsm=17.5*ibsnew/2047.0;

iarm=17.5*iarnew/2047.0;

ibrm=17.5*ibrnew/2047.0;

iasd+=0.01*(iasc-ias m);
ibsd+=0.01*(ibsc-ibs m);
iard+=0.01*(iarc-iarm);

ibrd+=0.01*(ibrc-ibr m);

if (iasd>12.5) iasd=12.5;
if (iasd<-12.5) iasd=-12.5;
if (ibsd>12.5) ibsd=12.5;
if (ibsd<-12.5) ibsd=-12.5;
if (iard>12.5) iard=12.5;

if (iard<-12.5) iard=-12.5;
if (ibrd>12.5) ibrd=12.5;
if (ibrd<-12.5) ibrd=-12.5;

*IASREF=((unsigned int)(-32767.0*iasd/25.5))<<16;
*IBSREF=((unsigned int)(-32767.0*ibsd/25.5))<<16;
*IARREF=((unsigned int)(-32767.0*iard/25.5))<<16;
*IBRREF=((unsigned int)(-32767.0*ibrd/25.5))<<16;
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H.7 Calibration

Calibrating the servo system is necessary to ensure an accurate relationship between

commanded current and output current. The simplest way to calibrate the system

is to put a current probe on each winding. Then turn the gains up to the maximum

on the isolation amplifiers. Command a current of zero amperes to each winding.

Zero the output currents by adjusting the potentiometer on each isolation amplifier

until the measured winding current, on the probe meter, is zero amperes. Then

null the feedback isolation amplifiers so that the ADC is reading 0 amperes for each

winding. Once this is completed, command some maximum output current to each

winding. Adjust the gain potentiometers until the proper current is delivered to each

winding, as read on the meter. Then adjust the feedback amplifier's gains so that

the ADC is reading back the maximum current properly. This should complete the

calibration. It is wise, however, to check the calibration at several points to ensure

accurate calibration.
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Appendix I

The Temperature Sensing System

The temperature sensing system is quite crude, but sufficient to carry out the mea-

surements of Chapter 5. There are four T-type thermocouples situated around the

motor, with two on the rotor and two on the stator. Thermocouple T1 is located in

one of the slots of the rotor. Thermocouple T2, also on the rotor, is located closer

to the water-cooled back-metal. T3 and T4 are in the same positions as T1 and T2

respectively, but on the stator side. Coming away from the thermocouple, the wires

pass through a K-type switch box and then as a single wire to a K-type thermocouple

meter. The switch box is used to select the channel which is to be measured. Read-

ings are taken manually and recorded in a notebook as read off the meter. Since the

actual thermocouple in the motor is a T-type thermocouple and the meter is a K-type

thermocouple meter, a conversion needs to be done to obtain the correct temperature

reading.

In order to understand the conversion, the system set up must be analyzed. The

system is set up so that the switch box and thermocouple meter are located quite

far from the motor and thus see the ambient temperature. With this arrangement,

the meter will measure a voltage corresponding to the T-type thermocouple voltage

plus the Seebeck voltage of the K-type thermocouple at room temperature. The

meter itself is cold-junction compensated for K-type thermocouple wire. Figure I-i

illustrates the connections. To a rough approximation, the sum of the voltage across

the K-type thermocouple and the K-type thermocouple cold-junction compensation
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provides a voltage which nearly equals that of the cold-junction compensation voltage

for a T-type thermocouple. Thus, the temperature reading taken using the K-type

meter can be converted to an equivalent cold-junction-compensated T-type thermo-

couple voltage. This is done by looking up the K-type cold-junction-compensated

voltage corresponding to the readout temperature. This voltage can then used as

the cold-junction-compensated T-type thermocouple voltage. Using this voltage, the

actual temperature can be looked up in tables.

Room Temp.

a-
Ni-Cr

Cu
I

K-typel T-type
nt

Cold Junction Room Temp. • Cu-Ni

Motor Temp.

Figure I-1: Thermocouple Setup.
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Appendix J

Sample Code

Appendix J gives a complete listing of some sample codings. This appendix may be

useful for understanding Section 4.3.2 and the other appendices. The intent in giving

these listings is to give a larger view of the coding that may not be evident in the

code fragments discussed in the previous Appendices. The first listing is a listing of

the code for the PC-AT compatible machine. Following this is a listing of the header

serial.h which is used by the PC code. The third listing is the code for the DSP,

followed by the memory map file MAP. CMD which is used during compilation.

To compile the PC code, execute the following batch file at the DOS prompt:

cl /c /AL /FPi87 /F f000 %1.c
LINK %1.obj Imcload.obj,%1.exe,,Im30dev.lib graphics.lib llibc7.lib,,

Typing the batch file name followed by the name of the C program (without the

extension) will invoke the compiler and linker. The output will be a file whose name

is formed from the C program name followed by ".exe".

To compile the DSP code, execute the following batch file:

c130 -s -al %1.c -z -cr -m %1.map map.cmd c:\c30tools\boot.obj
c:\c30tools\rts.lib -o %1.out

Typing the batch file name followed by the name of the C program (without the

extension) will invoke the compiler/linker. The output will be a file whose name is

formed from the C program name followed by ".out".
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J.1 PC Code

PCBAL.C - This is a PC C program that downloads and runs
bal.out on the DSP32C board.

#include "tms30.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <graph.h>
#include <math.h>
#include <errno.h>
#include <sys\timeb.h>
#include <sys\types.h>
#include <time.h>
#include "serial.h"
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif TRUE

/* size
#define

of the buffer to use for
COM_BUF_SIZE (1 * 1024)

#define BOARDADR

#define COMMO
#define POSL

#define POSH

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

IASMLOC

IBSMLOC
IARMLOC

IBRMLOC

IASDLOC

IBSDLOC
IARDLOC
IBRDLOC
IASCLOC
IBSCLOC
IARCLOC

0x290

string incoming characters */

/* Factory default I/O address. */

Ox30000 /* Start of .bss memory area.
COMMO + 0 /* Absolute memory locations

/* reserved in LSICMAP.CMD.
COMMO + 1

COMMO
COMMO
COMMO
COMMO

COMMO +

COMMO +
COMMO +
COMMO +
Ox3000a
Ox3000b
Ox3000c

180



#define IBRCLOC

#define IMAGLOC
#define GONOGOLOC

#define SAMPLES 1024.0

static char *buffer_start;
static char *buffer_end;

/* pointer to next place to

static char *buffer_in;
static char *buffer_out;

static int count = 0;
volatile int EOT = 0;

/* beginning of the buffer */
/* end of the buffer */

put character in */

/* place to get next character from */

/* number of characters in buffer */

static void (_interrupt _far *old_serial_interrupt)();
static void (_interrupt _far *old_break_interrupt)();

void init_buf(void);
void init(void);
void empty_buffer(void);
void write_port(char *s);

* serial_interrupt -- interrupt handler for serial
* input

* Called in interrupt mode by the hardware when *
* a character is received on the serial input *

static void _interrupt _far new_serial_interrupt()
{

int int_status; /* status during interrupt */

_disable();

int_status = inp((int)&COM->status);

/* tell device we have read interrupt */
(void)inp((int)&COM->interrupt_enable);

(void)inp((int)&COM->interrupt_id);

if ((int_status & S_RxRDY) == 0) {
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_enable();
return;

}
*buffer_in = inp((int)&COM->data) & Ox7F;

if ((*buffer_in)==0x04) {

EOT=1;

((*buffer_in)='\O');

if ((*buffer_in)==OxOA) ((*bufferin)='\O');
if ((*buffer_in)==OxOD) ((*buffer_in)='\O');
buffer_in++;

if (buffer_in == buffer_end)

buffer_in = buffer_start;

count++;

outp(0x20, Ox20);
enable();

static void _interrupt _far new_break_interrupt()

I

void

f

disable();

dos_setvect(Oxlb, oldbreak_interrupt);

dos_setvect(OxOb, old serial_interrupt);
outp(0x21, inp(0x21) I Ox08 );
outp(0x20, Ox20);
_enable();

(*old break_interrupt)();

main(int argc, char *argv[])

unsigned short loadstat;
unsigned long posith,positl;
float curs[12];

int status;
void emptybuffer(void);
float torque=0.0;
char keyin;
FILE *data;
float imag;
char *filename;
unsigned long lastpos,lookf;

/* dump the data buffer */
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imag=0;
printf("Magnitude of current? ");
scanf("%f",&imag);

if (argc==l) filename="DUMP.DAT";
else filename=*++argv;
if ((data = fopen(filename,"w"))==NULL) {

printf("Can't open data file %s\n",filename);
return;

}

EOT=O;

init_buf();

old_serial_interrupt=_dos_getvect(OxOb);
old_break_interrupt=_dos_getvect (Oxb);

_disable();

_dos_setvect(OxOb, new_serial_interrupt);

_dos_setvect(Oxlb, new_break_interrupt);
_enable();

/* enable interrupts */
outp(0x21, inp(0x21) & OxF7);
outp(0x20, Ox20);

init();

_clearscreen(_GCLEARSCREEN);

/* Initialize board: */

SelectBoard(BOARDADR);

loadstat = coffLoad("bal.out"); /* Special load function; required */
/* with -cr (RAM) linker option. */

if (loadstat != 0)
{
printf("\n\nError During Program Load!!!!\n");
printf("coffLoad() returned %x\n\n", loadstat);
exit (0);
}
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/* Start the DSP program running.

WrBlkFlt(IMAGLOC,DUAL,1,&imag);

Put32Bit(GONOGOLOC,DUAL,1);

write_port("RUNN ");

while (EOT==O);
EOT=O;

buffer_out=buffer_start;

buffer_in=buffer_start;

lookf=0;
positl=Get32Bit(POSL,DUAL)>>16;

while(1) {
_settextposition(1,1);
lastpos=positl;
positl=Get32Bit(POSL, DUAL)>>16;
printf("Position: %lu \nNext Bin: %lu
printf("Degrees: %f\n",360.0*((int) positl)

\n",positl,lookf);
/65536.0);

/* if (((long) positl)>(((long) lookf)+16)) printf("%c",7);*/

if ((((long) lastpos)<((long) positl)) &&
(((long) positl)>(((long) lookf)-16)) &&
(((long) positl)<=(((long) lookf)+16))) {

lookf+=32;
writeport("SCAN 1,1");

while (EOT==O);
EOT=O;

/* if (strncmp(buffer_out,"ER",2)==0) printf(buffer_out);
else { */

torque=(float) strtod(&buffer_out[3],NULL);
RdBlkFlt(IASMLOC,DUAL,12,curs);

printf(" %10s %10s %10s\n",
"Command","Drive", "Measured");

printf("IAS: %+10.6f %+10.6f
%%+10.6f\n",

curs[8],curs[4] ,curs[0]);
printf("IBS: %+10.6f %+10.6f %+10.6f\n",
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curs[9],curs[5] ,curs [1]);
printf("IAR: %+10.6f %+10.6f %+10.6f\n",

curs [10] ,curs [61 ,curs [2]);
printf("IBR: %+10.6f %+10.6f %+10.6f\n",

curs[ll] ,curs[7] ,curs[3]);

printf("Torque: %+7f \n" ,torque);
fprintf(data,"%u ",positl);
fprintf(data,"%+10.6f %+10.6f %+10.6f %+10.6f ",
curs[8],curs[9] ,curs[10] ,curs[11]);
fprintf(data,"%+10.6f %+10.6f %+10.6f %+10.6f ",

curs[4],curs [5] ,curs[6],curs[7]);
fprintf(data,"%+10.6f %+10.6f %+10.6f %+10.6f ",

curs[0,curs[1 , curs [2],curs[3);
fprintf(data, "%+7f\n",torque);

buffer_in=buffer_start;
buffer_out=buffer_start;

if (kbhit()!=0) {
if ((keyin=getch()) == 'q') {

fclose (data);
_disable();
_dos_setvect(Oxlb, old_break_interrupt);
_dos_setvect(OxOb, old_serial_interrupt);
outp(0x21, inp(0x21) I 0x08 );
outp(0x20, 0x20);
_enable();
return;

} /* End of while ,/

} /* End of main() */

/********************************************************

* init_buf -- initialize the buffer pointers *
********************************************************/

void init_buf(void)
{

buffer_start = malloc(COM_BUF_SIZE);
buffer_in = buffer_start;
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buffer_out = buffer_start;
buffer_end = buffer_start + COM_BUF_SIZE - 10;

* init -- initialize the port

void init(void)

/* don't allow interrupts while we do this */
_disable();
/* receive interrupts */
outp((int)&COM->interrupt_enable, I_CHAR_IN);

outp((int)&COM->format,
F_BAUD_LATCHIF_NO_BREAKIF_PARITY_NONEIF_STOP1IFDATA8);

/* now that we have the baud latch set, send baud */
outp((int)&COM->baud_1, SPEED & OxFF);
outp((int)&COM->baudh, SPEED >> 8);

outp((int)&COM->format,
F_NORMALIF_NO_BREAKIF_PARITY_NONEIFSTOPiIFDATA8);

outp((int)&COM->out_control, O_OUT110_OUT210_RTSIO_DTR);

/* read the input registers to clear */
/* their i-have-data flags ,/
(void)inp((int)&COM->data);
(void)inp((int)&COM->interrupt_enable);
(void)inp((int)&COM->interrupt_id);
(void)inp((int)&COM->status);

outp(0x20, Ox20); /* clear interrupts */
_enable();

* Empty_Buffer -- dump all the data buffered by *
* the interrupt routine *

void emptybuffer(void)

{
while (count > 0) {

fputc((*bufferout)&Ox7F, stdout);
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buffer_out++;

if (buffer_out == buffer_end)

buffer_out = buffer_start;
_disable();
count--;

_enable();

* Write_port -- write a string to the RS232 *

void write_port(char *s)

while(*s!='\0') {
while (!((inp((int)&COM->status)) & S_TBE));
outp((int)&COM->data,*s);
s++;

while(!((inp((int)&COM->status)) & STBE));
outp((int)&COM->data,OxOA);

}
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J.2 serial.h

* serial.h -- define the structures and bits for the *

* serial i/o hardware *

* define the register structure for the serial i/o

struct sio {
char data; /* data register */
char interrupt_enable;/* interrupt enable register */
char interrupt_id; /* what kind of interrupt is going on ,/
char format; /* communications format */
char out_control; /* modem control lines */
char status; /* status byte */
char i_status; /* input status */
char scratch; /* extra pad */

#define baud_l data /* alias for sending baud rate */
#define baud_h interrupt_enable /* alias part 2 */

* Defines for Interrupt Enable Register (interrupt_enable)

#define I_STATUS
#define I_REC_STATUS
#define I_TRANS_EMPTY
#define I_CHAR_IN

(1 << 3) /*
(1 << 2) /*
(1 << 1) /*
(1 << 0) /*

interrupt on modem status changed */
interrupt on rec. status changed */
interrupt on trans. empty */
interrupt on character input */

* Defines for Line control register (format)

#define F_BAUD_LATCH
#define F_NORMAL

#define F_BREAK
#define F_NO_BREAK

#define F PARITY NONE
#define F_PARITY_ODD
#define F_PARITY_EVEN
#define F_PARITY_MARK
#define FPARITY_SPACE

(1 << 7) /*
(0 << 7) /*

(1 << 6) /*

(0 << 6) /*

(0 << 3) /*
(1 << 3) /*
(3 << 3) /*
(5 << 3) /*
(7 << 3) /*

enable baud rate registers */
normal registers enabled */

set a break condition */
no break condition */

no parity on output */
odd parity on output */
even parity on output*/
parity bit is always 1 */
parity bit is always 0 */
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#define F_STOP1
#define F_STOP2

#define F_DATA5

#define F_DATA6

#define F_DATA7

#define F_DATA8

(0 << 2)
(1 << 2)

(0)
(1)
(2)
(3)

/* Use one stop bit */
/* Use two stop bits */

/* 5 data bits on output */
/* 6 data bits on output */

/* 7 data bits on output */
/* 8 data bits on output */

* Defines for the MODEM control register (out_control)

#define O_LOOP (1<<4) /* loopback test */
#define O_OUTi (1<<3) /* Extra signal #1 */
#define O_OUT2 (1<<2) /* Extra signal #2 */
#define O_RTS (1<<1) /* Request to send */
#define O_DTR (1<<0) /* Data terminal ready */

* Line Status register (Status)

S_TXE
S_TBE

S_BREAK
S_FR_ERROR

S_PARITY_ERROR
SOVERRUN

S_RxRDY

(1 << 6)
(1 << 5)
(1 << 4)
(1 << 3)
(1 << 2)
(1 << 1)
(1 << 0)

/* Transmitter buffer empty */
/* Break detected on input */
/* Framing error on input */
/* Input parity error */
/* Input overrun */
/* Receiver has character ready */

* Modem Status Register (i_status)

I_DCD
I_RI
I_DSR
I_CTS
I_DEL_DCD
IDEL RI
I DELDSR
I_DELCTS

<< 7)
<< 6)
<< 5)
<< 4)
<< 3)
<< 2)
<< 1)
<< 0)

/* DCD control line is on */
/* RI control line is on */
/* DSR control line is on ,/
/* CTS control line is on ,/
/* DCD line changed */
/* RI line changed */

/* DSR line changed */

/* CTS line changed */

* constants are used to define the
* baud rate for the serial i/o chip
* (Selected entries from Table-III of the National 8250
* data sheet)
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#define B1200
#define B2400

#define B9600

* The location of the i/o registers on the IBM PC

#define COM1
#define COM2

((struct sio near *)0x3f8)
((struct sio near *)0x2f8)

* Use COM1 for this program

#define COM COM1
#define SPEED B9600
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J.3 DSP Code

#include <stdlib.h>
#include <math.h>

/* Program bal.c
generate balanced three-phase currents in both the stator and

in the rotor. This program allows the stator current to have a phase

angle relative to its A phase, and it allows the rotor to have a

phase angle between its phase A and the stator's phase A.

Furthermore, this program rotates the currents in the phases while

maintaining a constant angle between stator phase A and rotor phase

A. */

#define TRUE 1
#define IASREF ((unsigned int *) 0x804000)
#define IBSREF ((unsigned int *) 0x804001)
#define TIMECTL ((unsigned int *) 0x808030)
#define PERIOD ((unsigned int *) 0x808038)
#define SOFTCON ((unsigned int *) 0x804008)

#define CANONO ((unsigned int *) 0x800004)

#define CANON1 ((unsigned int *) 0x800005)
#define CANON2 ((unsigned int *) 0x800006)
#define CANON3 ((unsigned int *) 0x800007)

#define IOCREG ((unsigned int *) 0x800008)
#define IOSTAT ((unsigned int *) 0x800008)
#define IOTCTL ((unsigned int *) 0x800009)
#define IARREF ((unsigned int *) Ox80000A)
#define IBRREF ((unsigned int *) Ox80000B)

#define IMEAS ((unsigned int *) Ox80000A)

#define pi 3.14159265

#define RSTCTRL Ox000601

#define SETCTRL 0x0006c1
#define COUNT 2500

#define IOCINIT Ox00000
#define IOCAL Ox200000

#define IOSTRT Ox400000
#define CALMSK Ox200000
#define IASMEAS Ox00000
#define IBSMEAS Ox010000
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#define IARMEAS 0x020000
#define IBRMEAS 0x430000
#define ADMSK Ox800000

main()

{

double sqrt(),cos(),sin();
double w,phi,phir,n;
double posr;
extern int gonogo;

extern float iasm,ibsm,iarm,ibrm;
extern unsigned int posl,posh;

extern float iasc,ibsc,iarc,ibrc,imag;
float iarcref,ibrcref;

extern float iasd,ibsd,iard,ibrd;
int i;

unsigned int pos116;

gonogo=O;

while(gonogo==O);

iasm=0.0;

ibsm=0.0;
iarm=0.0;
ibrm=0.0;

iarcref=fabs(imag)*cos(-pi/2);
ibrcref=fabs(imag)*cos(-pi/2+2.0943951);

posl=*CANONO;
posll6=posl>>16;
posr=2*pi*pos116/65536.0;
phir=-9*posr+3.1042;
iasc=imag*cos(phir);
ibsc=imag*cos(phir+2.0943951);
iarc=iarcref;

ibrc=ibrcref;

iasd=iasc;
ibsd=ibsc;
iard=iarc;
ibrd=ibrc;

*IOCREG=IOCINIT;
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*IOCREG=IOCAL;
*IOCREG=IOCINIT;
while(!(*IOSTAT & CALMSK));
*IOCREG=IOSTRT;

*TIMECTL=RSTCTRL;
*PERIOD=COUNT;

*TIMECTL=SETCTRL;

*IOCREG=IASMEAS;

asm(" OR 2h,IE");
asm(" OR 2000h,ST");

while(TRUE) {
posl=*CANONO;

posh=*CANONO; /* Dummy variable; Don't leave posh unassigned */
/* or the compiler will mess up the placement of */
/* variables in specific memory locations. At least */
/* this appears to be happening. */

posll6=posl>>16;
posr=2*pi*posll6/65536.0;
phir=-9*posr+3.1042;

iasc=imag*cos(phir);
ibsc=imag*cos(phir+2.0943951);

iarc=iarcref;
ibrc=ibrcref;
}

void c_int02(void) {

extern float iasm,ibsm,iarm,ibrm;
int iasnew,ibsnew,iarnew,ibrnew;
extern float iasc,ibsc,iarc,ibrc;
extern float iasd,ibsd,iard,ibrd;

*IOTCTL=O; /* write used to generate software trig */

while(!(*IOSTAT & ADMSK));
iasnew=((int) (*IMEAS))>>20;
*IOCREG=IBSMEAS;
while(!(*IOSTAT & ADMSK));
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ibsnew=((int) (*IMEAS))>>20;

*IOCREG=IARMEAS;
while(!(*IOSTAT & ADMSK));
iarnew=((int) (*IMEAS))>>20;
*IOCREG=IBRMEAS;
while(!(*IOSTAT & ADMSK));
ibrnew=((int) (*IMEAS))>>20;

iasm=17.5*iasnew/2047.0;

ibsm=17.5*ibsnew/2047.0;

iarm=17.5*iarnew/2047.0;

ibrm=17.5*ibrnew/2047.0;

iasd+=0.01*(iasc-iasm);
ibsd+=0.01*(ibsc-ibsm);

iard+=0.01*(iarc-iarm);
ibrd+=0.01*(ibrc-ibrm);

if (iasd>15.5) iasd=15.5;
if (iasd<-15.5) iasd=-15.5;
if (ibsd>15.5) ibsd=15.5;
if (ibsd<-15.5) ibsd=-15.5;
if (iard>15.5) iard=15.5;
if (iard<-15.5) iard=-15.5;
if (ibrd>15.5) ibrd=15.5;
if (ibrd<-15.5) ibrd=-15.5;

*IASREF=((unsigned int)(-32767.0*iasd/25.5))<<16;
*IBSREF=((unsigned int)(-32767.0*ibsd/25.5))<<16;
*IARREF=((unsigned int)(-32767.0*iard/25.5))<<16;
*IBRREF=((unsigned int)(-32767.0*ibrd/25.5))<<16;

*IOCREG=IASMEAS;

}
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J.4 MAP. CMD

/*****************************************************************

/* MEMORY MAP: MAP.CMD */

/* This is a memory map for LSI TMS320C30 System Board, for */

/* use with teh C Compiler (When not using SPOX).

MEMORY /* This maps memory SECTIONS to the board hardware. */

{

/* EXTERNAL SRAM ON THE MAIN BOARD:

/* Location 0 to COh are reserved for interrupt vectors */
/* and Debug Monitor usage. Although you COULD start using */

/* memory at Clh, this map starts at 1OOh -- to allow for */

/* future Monitor expansion, and for ease of adding hex *

/* address offsets.

VECTS: origin=000000h length=00000ch /* Interrupt vectors. */

BANKO: origin=000100h length=00ffOOh /* Std SRAM (0-wait). */
BANK1: origin=010000h length=010000h /* SRAM upgrade option.*/
BANK2: origin=020000h length=010000h /* SRAM upgrade option.*/
BANK3: origin=030000h length=OOf400h /* Std dual-access

/* (1-wait).

/* Bank 3 is dual-access between the 'c30 and the PC.
The length shown is for the default 64Kx4 devices, but
16Kx4 can be used. In both cases, the top cOOh locations
are reserved for Debug Monitor use. If you will never use
the debug monitor, your programs can use this area.

/* CACHED DRAM MEMORY EXPANSION ON THE DAUGHTER BOARD: */

EXPAND: origin=400000h length=400000h

/* ON-CHIP MEMORY: */

BLOCKO: origin=809800h length=0000400h
BLOCK1: origin=809c00h length=0000400h

SECTIONS

/* Assings program sections to the MEMORY statement, above. */
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The .data section, below, is not used by the linker to

link C compiler output files. It is used by the linker

when it is linking Assembler output files. The section

is included in this "map" file so that the same map can

be used to link files produced by EITHER the Assembler

or C Compiler (useful if you write some functions in

assembly language and happen to use the .data section).

.text:

.bss
{} >BANKO

_posl =
_posh =
iasm =

ibsm =
iarm =

ibrm =
iasd =

ibsd =
iard =
ibrd =
iasc =

ibsc =
iarc =

ibrc =
_imag =

_gonogo
} >BANK3

.data:

.cinit:

.stack:

+=1; /
+=1; /
+=1; /
+=1; /
+=1; /
+=1; /
+=1;
+=1; /
+=1; /
+=1; /
+=1; /
+=1; /
+=1; /
+=1 ;

+=1;

; . +=1;

{}
{}
{}

Define global address lables that */
can be used for communication
between the PC and DSP programs. */
These will each occupy one 32-bit */
word starting at zero offset from */
the beginning of the .bss section.*/

If you need more locations, you */
could add more "Comm" locations */
or you could create a "hole" in */
memory here that you address using*/
absolute pointers (instead of */
these labels).

>BANK3
>BANK3

>BLOCKO

/* Forces Reset and Interrupt Vectors to absolute locations: */
/* Your C source code should initialize these locations
/* using "ASM" in-line assembly macros (except for location */
/* 00, which is initialized in the LSIBOOT.SRC startup file. */

Reset (Power-on or otherwise).
INTO */
INT1 (A/D & D/A end of convert). */
INT2 */
INT3 */
XINTO */
RINTO */
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.int00
intOl
.int02
.int03
int04
.int05
.int06

OOh:

Olh:
02h:
03h:
04h:
05h:
06h:



.int07 07h: {} /* XINT1

.int08 08h: {} /* RINTi

.int09 09h: {} /* TINTO

.intlO Oah: {} /* TINT1

.intll Obh: {} /* DINT

}
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Appendix K

Practical Issues

There are a number of intricate practical issues involved in making this system work.

Some of the problems have been solved, some have only been worked around, and

some have been annoying but harmless enough to be ignored. The impact of these

problems on this thesis has been discussed to some degree in Section 4.3.1 and 4.3.2.

Future system design should take into account all the learnings related in this ap-

pendix, in order to yield a more reliable and better performing system. Commercial

systems especially should always keep in mind the environment in which the system

operates and some of the problems discussed below which crop up in these severe

environments. The most straightforward way to discuss these issues is to break them

down by subsystem: control, drive and measurement. Another key area to analyze is

the motor itself.

K.1 Problems with the Control Subsystem

The control subsystem works well, but the issue of having enough disk space does

come up. The nearly antique system in use for this thesis has only 30 megabytes of

hard disk storage. This is insufficient for an experimentation environment where two

compilers are needed, one for the PC control software and one for the DSP software,

and where large amounts of data are stored. This causes two machines to be used,

one for each compiler. This still leaves a meager amount of space for data and code

198



storage. However, most systems today are equipped with 213 megabyte hard disks

or bigger, which should amply cover an experimental environment's needs.

K.2 Problems with the Drive Electronics

The drive electronics has one extremely severe defect and one mild problem. The fast

switching times of the servo system, cause large voltage transients. The transients

couple into the measurement subsystem and have varied effects. In the position

encoder they cause random counting behavior, thereby totally corrupting the position

measurement. This is unacceptable in a system whose commutation algorithm relies

on the position measurement. In the dynamometer circuits, they coupled into the

input signals creating inaccurate torque readings.

The switching transients become a problem because of a juxtaposition of causes.

First, to obtain reasonable conversion efficiencies the servo system needs to be a Class

D, switching, type amplifier with fast switching edge rates. Second, the servo system

is not designed to minimize radiated emissions and the measurement system is not

designed to be immune to radiated emissions. In this situation it is almost inevitable

that switching noise be picked up by the measurement apparatus.

There are a number of possible ways around this problem. First, the switching

edge rates can be slowed down. This has the effect of reducing emissions but decreas-

ing efficiency as well. Because of the large powers involved in this servo system, this

is not a feasible option. The second solution is to minimize the conducted radiation.

This has been attempted but does not help. If this approach to solving the problem

is taken, it must be done up front with the problem in mind all the way through

development. The third solution is to minimize the received radiation. This also has

been attempted, but the system again has not been designed from the beginning with

this in mind.

Another problem with the drive electronics is the accuracy of the currents pro-

duced. As the equipment used for this thesis was inherited, there was not any control

over its selection. A more appropriate selection of electronics would yield a tighter
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tolerance on the output currents. This would have the favorable effects of making

experiments more repeatable and being able to control torque with greater precision.

K.3 Problems with the Measurement Subsystem

The measurement subsystem is negatively impacted by the electro-magnetic interfer-

ence caused by the switching current source. Specifically, the original rotary encoder

sporadically counted position and the dynamometer picked up erroneous signals. The

best solution to these problems would be to fix the servo system. As workaround to

this however a few things can be done. Analog rotary encoders should be used with

trepidation in a switching environment and a more reliable choice is to use a digital

encoder, as they a more immune to noise. To work around the erroneous dynamome-

ter readings, the bandwidth can be reduced so as to average the fluctuation out. One

should be aware though, that this has the undesirable effect of forcing the measure-

ments to be taken more slowly.

Another major lesson learned during experimentation is to be careful about over-

heating electronics. In the current setup, the rotary encoder is physically mounted

inside the stator. The stator can operate to temperatures of 150'C, whereas the elec-

tronics of the rotary encoder are only guaranteed to operate up to 500C. This has

caused the encoder to begin to operate erratically, probably as a result of thermal

stressing and thermally accelerated failure. Thus, it is important to design the motor

keeping in mind the possibility of electrical component failure.

An aspect of the present system configuration that could potentially cause prob-

lems is the asynchronous measuring procedure. Currently, the system requests torque

data, then requests measurements for the rotor position and phase currents. There is

no means for coordinating the measurements to happen at a given clock edge. This

opens the possibility for phase errors in the measurements. Furthermore, there is no

ability to take torque measurements at specific positions, but only within ranges of

positions. This limitation arises as a result of the inability to trigger measurements in

all measurement subsystems at specific points in time. Although there is no verified
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problem, this is one aspect of system operation that merits future consideration.

K.4 Problems with the Motor

Two issues regarding motor design also deserve further consideration. First, with the

present configuration of the motor, disassembly of the motor invalidates all previous

torque versus position data. Because there is no means to preserve the relative posi-

tion between rotor and stator and between the rotor and rotary encoder, any time the

motor is disassembled, a completely new set of characterization data must be taken.

Ideally, it would be possible to have an alignment scheme so that the motor can be

assembled the same way every time. This would also make it easier to correlate torque

fluctuations from motor to motor, possibly allowing for entire production runs to be

characterized by the data collection on one unit.

The second problem that needs to be solved is that as the motor rotates, it spindles

the power cables and cooling lines around the rotor. This causes position dependent

torque variation. More specifically, the torque changes from rotation to rotation.

Combined with the fact that the spindling is not neat, this phenomenon leads to

variations in torque for which it is hard to compensate. It also creates the possibility

that the motor will tear its own power or cooling lines.

Hopefully, these appendices present enough information for others to duplicate the

current system. Furthermore, problems associated with the current setup have been

delineated. Enhancements have been discussed which should advance the current

setup, providing for a more feasible and reliable system architecture.
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