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ABSTRACT

A major cause of Electromagnetic Interference (EMI) from electrical equipment
comes from inadequate shielding of the electronics. In the case of computers, the problem
originates from apertures used to ventilate heat from the electronics of a computer to keep
the computer cool and from apertures used for plugging input/output cables (e.g., mouse,
keyboard, printer, video cables, etc.) into the computer chassis. It is such apertures that
allow electromagnetic energy to escape the shielding enclosure, thereby causing EMI. The
Finite Difference-Time Domain method is an excellent tool for analyzing scattering
problems, provided there are enough spatial cells to provide good resolution of the small
aperture. The challenge to this problem is to accurately describe the behavior of the
aperture. The most direct way to solve this problem is to use the Brute Force method which
requires the computational domain to be finely gridded. Despite being memory intensive
and requiring rapidly increasing amounts of computational time to solve, it does provide
somewhat accurate results. On the other hand, a more efficient method to accurately model
the aperture is to use electric and magnetic dipoles to replace the aperture without
increasing computer resources. This is called the Induced Dipole method.

The Induced Dipole method involves shorting the aperture so that only a solid metal
plate remains. Then, a pair of oppositely directed magnetic and electric dipoles are placed
on either side of where the aperture was located originally. This has been shown to work
for small circular apertures. The intent is to apply this Induced Dipole method to circular
apertures which are electrically small. For simplicity, the case of an infinite conducting
plane with an electrically small aperture which is excited with an x-directed electric Hertzian
dipole will be investigated in detail.

My main research objective is to model electrically small apertures accurately, without
finely gridding the computational domain beyond 20 spatial cells per wavelength of highest
frequency of interest. It is shown that the Induced Dipole method can model electrically
small apertures as accurately as the Brute Force method with only a fraction of the
computer resources. An analytical solution is derived to compare against the Induced
Dipole method and the Brute Force method to determine their accuracy. This analytical
solution is constructed using the analytical solution of Hertzian dipoles. The Induced
Dipole method implemented with the Liao absorbing boundary condition, provides excellent



results compared to the analytical solution of the case of an infinite conducting plane with an
electrically small circular aperture.
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Chapter 1

Background

1.1 Electromagnetic Interference

Electromagnetic Interference (EMI) occurs when the electronics of one device affects the

proper operation of another device or even with its own proper operation. A simple

example of EMI is the nuisance caused when a hair dryer or a blender is being used which

then creates unwanted static (snow) on the television. More serious concerns of EMI are

the interference with critical equipment such as life support and monitoring equipment at

hospitals, computer data centers, and airplanes' navigation equipment.

EMI from computers is rapidly becoming more difficult to control and even more

difficult to predict. The reason is that computers are constantly being designed to run at

higher frequencies causing harmonics of the clock to appear in the Microwave frequency

band. The primary sources of EMI are the clock driver, the microprocessor, and the power

supply. It is usually the clock driver of the computer that causes radiated EMI above 200

MHz because of its high spectral content due to the trapezoidal waveform [1] and the

amount of power that is supplied to it to drive all the clock signals in the computer.

Secondary sources of EMI from computers are cables, resonances, and apertures.

Small circular apertures like those used for ventilation of heat produced by the electronics of

the computer system are of particular concern because they are a necessity and cannot be

15



CHAPTER 1. BACKGROUND

covered up. These small circular apertures cause EMI problems especially at high

frequencies; these problems are becoming exacerbated as computers are becoming faster

(running at higher clock frequencies).

1.2 Related Research

The problem of determining the penetration of fields through apertures is by no means a

new area of research [2]-[23]. In the early 1980's, the Finite Difference-Time Domain (FD-

TD) method was being used to determine the penetration of an Electromagnetic Pulse

(EMP), caused by nuclear detonation or lightning strike, through an aperture [2]-[4]. This

work was more concerned with susceptibility and immunity of a computer from an aperture

rather than how much EMI was generated from apertures of a computer; the analysis is the

same but with different applications. The Thin-Slot Formalism [2]-[4] attempts to model a

small aperture by increasing the permittivity seen by the electric field and proportionally

decreasing the permeability as seen by the magnetic field. This method tends to average the

electric field across the aperture, so as the aperture width decreases, the error increases

since it underestimates the electric field. The Babinet principle can be used with the

THREDE code [5] to solve the small aperture problem. THREDE is an older version of

THREII code, used for the Thin-Slot Formalism, and is a scattered-field solver rather than a

total field solver like THREII. The main problem with [5] is the results are not validated

with other methods. There also have been codes which use a hybrid approach to solve this

problem with the Method of Moments (MoM) and FD-TD method [6]. The small aperture

problem can be solved using the Faraday's contour integral [7], but this method is

intrinsically a two dimensional problem. An aperture also can be modeled in an infinite

ground plane [8], but this limits the apertures to one infinite ground plane. Although I

found plenty of research work done on modeling apertures using the FD-TD method, many

did not address the problem of small apertures with subcell dimension widths [6], [8]-[l 11].
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1.3 Description of Thesis

The purpose of my research is to accurately model electrically small apertures, where the

diameter is smaller than a spatial cell (1/20 of a wavelength), using the Finite Difference-

Time Domain method. An easy but computer intensive way of solving this problem is to

increase the resolution of gridding so the FD-TD method could somewhat accurately

calculate the fields that are scattered by the small aperture. The biggest problem with this

Brute Force method is that it requires a tremendous amount of memory and time to solve

the problem. I will attempt to model small apertures accurately without any need of

reducing the size of the spatial cells by using electric and magnetic dipoles on either side of

the small aperture. Oates [12] successfully modeled an electrically small round aperture,

which was much smaller than a spatial cell, by modeling the small aperture using oppositely

directed electric and magnetic dipoles on either side of the aperture, and short-circuiting the

aperture. The central idea is to generate magnetic and electric current moments from the

fields near the aperture. Once the current moments are accurately determined, the problem

of finding the penetration of an incident field through a small aperture can be determined.

Oates provided an accurate model of a small aperture by correctly specifying the current

moments for a given size aperture. My work will expand on Oates work by increasing the

accuracy of the Induced Dipole method by using a better absorbing boundary condition for

the FD-TD method and using a more realistic excitation source.



18 CHAPTER 1. BACKGROUND



Chapter 2

Finite Difference-Time Domain Method

2.1 Introduction

The Finite Difference-Time Domain method was first introduced by K. S. Yee in 1966 [24].

The method basically takes Maxwell's curl equations and transforms them into a set of

difference equations. Using the Yee grid, the H fields are located in the center of the cell

faces while the E fields are located on the center of the edges of the cell (see Figure 2.1).

The fields are updated every half time step, while using the leapfrog approach. The FD-TD

method did not become popular until the early 1980's for two reasons. First, the algorithm

requires that the computation domain be discretized to 20 cells per wavelength to obtain

accurate results. Unfortunately, this required an enormous amount of computer resources,

namely memory, which was not available at that time. It was not until the 1980's that there

were computers available to solve practical problems in a reasonable amount of time.

Another major problem with the FD-TD method was that spurious reflections were being

introduced by reflections at the borders of the computation domain. It was G. Mur that

developed the absorbing boundary conditions for the FD-TD method [25] that resolved the

problem of the spurious reflections.
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The equations below are Maxwell's equations in differential form.

VxE=- -J
Vt+

Vx H = D+ JEat

V D =Pe

(2.1)

(2.2)

(2.3)

(2.4)

In perfect conducting media and free space, (2.1) and (2.2) become (2.5) and (2.6),

respectively.

1 - 1
-- (Vx E) -- JM

1
- (Vx
Eo

- 1H)--JE
Eo

aH
at

(2.5)

(2.6)



2.1 INTRODUCTION

-Ey

oE 7

oEz oDE

OEy

OEx

Figure 2.1: Yee Grid

oEx

+'H

o Ex

oEz

y,

+E/

----

--- *H
°H

x

-ýEY



22 CHAPTER 2. FINITE DIFFERENCE-TIME DOMAIN METHOD

2.2 FD-TD Discretized Equations

The Maxwell curl equations can then be discretized in both space and time. The

computational domain of the FD-TD method represents the space of interest that the FD-

TD method will solve Maxwell's equations. This space of interest is divided into cubes with

dimensions Ax, Ay, and Az. Each of these cubes utilizes the Yee grid convention. The

following equations are the representation of discretized time (2.7) and space (2.8).

t = nAt (2.7)

(x, y,z) = (iAx, jAy,kAz) (2.8)

The corresponding difference equations for Maxwell's curl equations (2.5) and (2.6) are

given in the equations (2.9)-(2.14) below.

1 1nl--- /I---

x - ) Jex (2.9)
At so  Ay Az co

1 1
n n-- n--

Ey - E' 1 AHx 2 AH- 2 1
' = ( X )- Jey (2.10)

At Eo  Az Ax eo

n-- n--I
E~ -E - ' _ 1 AH 2  AH 2  1EZ E . I y ) Jz (2.11)

At so Ax Ay t o

1 1n+- AE A--Hx 2 _ Hx 2 1 AE A -1Y -. Z )> J, (2. 12)
At go AZ Ay go

1 1
n+- n--

Hy 2 -Hy 2 1 E" A 1I
A = (X) ) J (2.13)

At go Ax Az go
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n+- n--

Hz 2 - Hz 2  1 AE

At go Ay Ax

The difference equations can then be represented using the Yee grid convention, where:

E-l(i,j, k) +- (

At
-(

Hz
2(i,j,k)-

Ay

- 1) At

E (i,j,k)=

n--
At ,H z 2

1 1n----n -

-l(i,jk) At Hx 2 (i,j,k)-Hx 2 (i, j,k-1)
ZEyCo AZ

n--
(i, j, k) - Hz 2(i

k Ax
- 1, j,k) At

S ' ey
so

At
E z (i,j,k) = Ez- (i, j,k) + At(

EC

1
n--

H 2 n-
(i, j, k) - H), 2 (i- 1,j,k)

(ijk)-- n--
Hx 2(i,j,k)-Hx 2(i,j-

Ay

n--
Hx 2(i,j,k)

At Ez" (i,j+

0o

At Ey (i,j,k + 1) - Ey (i, j,k)
+ (

n
- -I At E (i, j,k+l)-E (i,j, k)

(i, j,k) = H, 2 (i,j,k)--( x
go Az

1
J

0 mz
go
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(2.14)

E (i, j, k) =

E ex
0

(2.15)

(2.16)

At 1,k) At

S ez

(2.17)

)A

At
(2.18)

1
n+-

Hy 2

n--H z 2 (i, j - 1, k)

n
-

i n--

HY 2 (i, j, k)- Hy 2 (i, j, k
] 

J ex

8o

) 
o, ey

8o

] 
Jez

8o

1
n+-

Hx 2(i,j,k)= go
1,k) - E" n(i, j, k)

I

• X. ./
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At E n(i + 1, j, k) - Ez (i, j, k) At
+ ( ) J (2.19)

Io Ax 0 my

n-At Et " (i + 1, j, k)- E (i, j, k)

H z 2 (i,j,k)= Hz 2(i,j,k)- ()
o Ax

At E (i,j+ 1,k) - E(i, j,k) At jmz+_(E (i, J- (2.20)•0 Ay go

2.3 Accuracy and Stability of FD-TD Method

Accuracy of the FD-TD method is determined by the discretization of the computational

domain. The finer the discretization (smaller Ax, Ay, Az), the more accurate are the results

from the FD-TD method. As a rule of thumb, accuracy is determined by the largest

dimension of a discretization cell whose dimensions are Ax, Ay, Az. This largest dimension

must be 1/20 of a wavelength of the highest frequency of interest. The following equation is

used to determine the highest frequency at which the results are still accurate:

C
f = (2.21)

20Amax

Stability of the FD-TD method is determined by the relationship of the dimensions of a

discretization cell (Ax, Ay, Az) to the time step At. The time step must satisfy the following

equation, which is also know as the Courant stability condition [26]:

1 1 1 1 -1
At+ +_ [•)+ 2+ ] 2 (2.22)
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2.4 Absorbing Boundary Condition

Absorbing boundary conditions are an essential component to the Finite Difference-Time

Domain method because they allow for the simulation of free space, a computational

domain that is infinite, which has no artificial barriers. Without absorbing boundary

conditions, the boundary of the computational domain would cause spurious reflections

similar to those caused by perfectly conducting walls. This is ideal for those who want to

simulate the behavior inside metal cavities and metal waveguides. Unfortunately, my

research cannot take advantage of natural reflections caused by the boundary of the

computational domain because I am mainly concerned with an infinite metal plate which can

have a variety of apertures in free space.

This raises two important questions: 1) how to simulate an infinite metal plate; and, 2)

what type of absorbing boundary to implement with the FD-TD method? Fortunately, both

questions can be answered with one solution, which is to use the Liao absorbing boundary

condition. The technique used to simulate an infinite metal plate is to run the metal plate

into the boundaries of the computational domain. The problem occurs when one tries to use

conventional Absorbing Boundary Conditions (ABC), such as Mur's first and second order

ABC [25]. With Mur's second order boundary condition, there was a big problem with

stability -- the FD-TD method blows up. The reason it blows up is because Mur's second

order ABC requires fields that are tangential to the boundary. Thus, boundary conditions

next to metal plates will attempt to pick up the E-fields (which are zero) of the perfectly

conducting metal plate which eventually will cause the boundary condition to become

unstable. Even if the metal plate does not run into a boundary but is within five grid spaces,

the boundary condition remains unstable. If the metal plate does not run into a boundary,

the ability to model an infinite metal plate is lost. Thus, it is impossible to model an infinite

metal plate with Mur's second order ABC. However, it is possible to model an infinite

metal plate with Mur's first order ABC, since it only requires the fields normal to the

boundary. The problem is that any field that is not completely normal incidence to the

boundary will cause Mur's first order ABC to reflect some of the field. The more the field
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is off normal incidence, the more the field is reflected. Thus, Mur's first order ABC causes

too many spurious reflection for accurate modeling of an infinite metal plate.

2.4.1 Liao Absorbing Boundary Condition

Another absorbing boundary condition is the Liao ABC [27]-[32]. The Liao ABC is an

excellent choice for modeling infinite metal plates because it only requires normal fields to

the boundary. The Liao ABC also has the added benefit of working under any order of

accuracy, but experience shows that any order beyond second order becomes unstable.

Actually, Liao's second order can become unstable, but can be easily fixed by introducing a

tiny loss in T,,,. The equations below are the Liao ABC for arbitrary order N. In equation

(2.23), u(t + At,x,) represents the field that will be absorbed at boundary x1 . This

equation is the generalized N-order Liao boundary condition.

N

u(t + At, x1) = (-1)j+1 CNTij. (2.23)
j=1

Also note that T' represents row matrix and ij represents a column matrix.

C7 is the binomial coefficient and is given below.

N!
C= N! (2.24)

(N - j)!j!

As mentioned before T' represents a row matrix of matrix T, which is the

interpolation matrix.

T = [Tj,I Tj, 2 ...,Tj,2 j+1] (2.25)

The first row matrix T; is given below.
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Tii = (2 - s)(l - s) / 2

T1,2 = s(2- s)

T, 3 = s(s- 1) / 2

cAt
Ax

(2.26)

(2.27)

(2.28)

and

For j 2 2, use the following recursion equation to find the Tj matrix rows.

0

T-1,2j-1Tj 1-,
0

0
0 (2.29)

Tj-1,2j-1

~iT is the transpose of field that is to be absorbed at the boundary.

if = [u,,u 2, . U2j+ (2.30)

(2.31)

(2.32)

(2.33)

i,j = u(ti,xi)

ti = t - (j- 1)At

x i = x, - (i - 1)At

There is a problem with Liao boundary conditions with N greater than 1. Basically,

Liao second order (N=2) or greater boundary conditions become unstable. The Liao

boundary condition can be stabilized [29] by introducing a minute amount of loss at the

transmitting/absorbing boundary. This is easily achieved by modifying one element of the

first row of the interpolation matrix ( T).

T, i = (2Rtos, - s)(1- s) / 2

Where s is:

Ti = T '

where:

T-

(2.34)
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where: 0.99 5 Ross 1.00 (2.35)

For my simulations, I used: Ro,,, = 0.9925 (2.36)

By adding this tiny amount of loss ( R1os ), second order Liao boundary conditions become

stabilized.

Thus far we have fully described a one-dimensional (along x) Liao boundary condition

at the boundary x= 1. The computational domain of the FD-TD method in three-dimensions

has six boundaries, like a rectangular box. Thus, to obtain absorbing boundary conditions,

the Liao boundary conditions must be applied to the tangential fields at each boundary. The

Liao boundary conditions in three-dimensions are as follows:

For boundaries at: x=1 and x=nx: where u is applied to both tangential fields Ey and Ez

N

u(t + At, x1) = Y(-1) j ' CiTx j (2.37)
j=1

N

u(t+ At, x)= •(l)-1) j +•; CTff (2.38)
j=1

For boundaries at: y=1 and y=ny: where u is applied to both tangential fields Ex and Ez

N

u(t + At, y ) =•(-1)J+' CT 5, (2.39)
j=1

N

u(t + At, y. ) = (-1)j+l CNTyjii (2.40)
j=1

For boundaries at: z=1 and z=nz: where u is applied to both tangential fields Ex and Ey

N

u(t + At,z1 ) = Zj(-1)+1C N , (2.41)
j=l
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(2.42)

Note: for uniform FD-TD gridding,

TJ = TJ = Ty = (2.43)

(2.44)S = Sx = sy = sz

where,

cAt
S= Ax

cAt
sY - Ay

cAt
S -- AZ (2.45)

Figure 2.2 compares the second order Mur and the second order Liao boundary conditions

to the analytical solution for the case of x-directed electric dipole radiating in free space

with no scatterer using a computational domain of 24 A x 24 A x 100 A, where each

A=0.01m. It is immediately obvious that the Mur boundary condition causes spurious

reflections, whereas the Liao boundary does not contain these reflections.

U(t + AtZ"') =y,(-IC+'0Tjw
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Figure 2.2: The analytical solution of the Ex field 0.2m away from an x-directed electric

Hertzian dipole in free space compared to FD-TD method using Mur 2nd order and Liao

2nd order boundary conditions.
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2.5 SOURCES

2.5 Sources

The Finite Difference-Time Domain (FD-TD) method requires an excitation source that

must be specified so that fields propagate throughout the computational domain. The most

common type of excitation sources are analytic plane waves, Hertzian magnetic dipoles, and

Hertzian electric dipoles. Hertzian dipoles have infinitesimal dimensions. The Hertzian

electric dipole is a current carrying element with infinitesimal length and a Hertzian magnetic

dipole is a current loop with an infinitesimal radius. The type of source most applicable to

what we want to model in reality, the computer enclosure with high-speed electronics

inside, is Hertzian electric dipoles. The equation below, Equation 2.46, is the E-field

produced by an x-directed Hertzian electric dipole for normal incident 0( = 90" and for

propagation along the negative z-axis 0 = 180". In Chapter 4, Hertzian dipoles are derived.

ikr()2

E(T) = -ioll 1 + (2.46)
4nr kr kr

Gaussian pulse in time: I(t) = e- a(-P) (2.47)

4
where: C =( )2 (2.48)

3At

2 p : pulse width (2.49)

It is very common to use a current with Gaussian pulse waveform in the time domain

to excite the Hertzian dipole because it is simple to implement and it provides a smooth roll-

off in the frequency domain. The biggest drawback to using a current with a Gaussian

waveform with the FD-TD method is that it creates a static dipole field which never decays

to zero, which could later cause numerical problems. A better waveform to use for the

current in the time domain is a doublet. A doublet is the time derivative of the Gaussian.

(2.50)I (t) = -c(e-a(t-PAt)
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The doublet is also easy to implement and provides smooth roll-off in the frequency

domain. Most importantly, it eliminates any static dipole field. One way to understand this

phenomenon is to imagine the positive values of the doublet as creating the static dipole

fields, while negative values of the doublet create an equal but opposite dipole fields which

causes the static dipole fields to be eliminated. In Figure 2.3, we see the time domain

doublet waveform of the dipole moment which is defined as the current multiplied by an

infinitesimal length 1. Figure 2.4 is frequency domain of the doublet.
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Excitation Source: x-Directed Electric Dipole Moment
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Excitation Source: x-Directed Electric Dipole Moment
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Figure 2.4: Frequency domain of an x-directed Hertzian electric dipole's dipole moment.
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Chapter 3

Brute Force Method

3.1 Introduction

The Brute Force method uses the FD-TD method directly without any simplifying models or

optimizations. In modeling electrically small apertures, the aperture is smaller than that of

the gridding of the FD-TD method. Recall that the gridding of the FD-TD method is

determined by the wavelength of the highest frequency of interest where gridding is such

that there are 20 cells per wavelength. This gridding determines the accuracy of the FD-TD

method up to the highest frequency.

3.2 Aperture Problem

One way to model this electrically small aperture is to make the gridding even finer than the

20 cells per wavelength so the aperture itself is represented by 80 cells as shown in Figure

3.1. Note that the FD-TD method using the Yee grid is confined to rectangular cubes or for

uniform gridding, square cubes. These rectangular cubes have a problem representing non-

orthogonal shapes (like circles, spheres, and triangles), which leads to a staircased

approximation of the non-orthogonal shape. In the case of the circular aperture,
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Figure 3.1: Brute Force gridding for aperture using 80 cells to represent the aperture.



3.2 APERTURE PROBLEM

we see that even with the 80 cells used to represent the aperture there is some staircasing

involved.

The aperture problem that will be solved using three different methods is that of an

infinite perfectly conducting plane (metal sheet) with an electrically small circular aperture

as shown in Figure 3.2. This aperture problem will be excited using an x-directed Hertzian

electric dipole as the source of electromagnetic energy. The infinite sheet is on z=0 plane,

where the source is located on z>0 side of the plane and the observation points are on z<0

side of the plane. The distance from the excitation dipole source to aperture is rda and the

distance from the aperture to observation point is rao . The three methods that will be

employed to solve this aperture problem are the: FD-TD Brute Force technique, analytical

approach, and the Induced Dipole method.

The observation point is placed within the line of sight of the aperture and the

excitation source, such that there is a line parallel to the z-axis connecting the excitation

source, aperture, and the observation point. This simplification implies that only normally

incident fields are considered as shown in the analytical solution to this aperture problem in

Chapter 4. This is only a simplification and not a restriction to any of the three methods

used to solve this aperture problem. For my simulations, the Brute Force method contains

cubes of size: Ax= Ay= Az=0.001m in dimension, computational domain of 120 x 120 x 500

cubes and

rda,, = rao = 0.1m (3.1)

Figure 3.3 and Figure 3.4 show the results using the Brute Force method to solve the

aperture problem described above for both the time and frequency domains, respectively.

The FD-TD method provides results in the time domain; to obtain frequency domain results,

a standard FFT was used. The results shown in Figures 3.3 and 3.4 must be verified using a

different method. In Chapter 4, these results are compared to an approximate analytical

solution to the aperture problem shown in Figure 3.2 for verification.
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rda

x directed elk

Infinite conducting plane

rao
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Figure 3.2: Representation of problem to be simulated, infinite conducting plane with an

electrically small aperture.
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Brute Force Method
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Figure 3.3: FD-TD simulation of an infinite ground plane with an aperture of radius 0.005m

using the Brute Force method. The excitation source is 0.1m away from the aperture and

the observation point is also 0. 1m away.
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Brute Force Method
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Figure 3.4: Frequency domain of FT-TD simulation of an infinite ground plane with an

aperture of radius 0.005m using the Brute Force method. The excitation source is 0.1m

away from the aperture and the observation point is also 0. im away.
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3.3 Hertzian Dipoles

Hertzian dipoles are an essential component to solving the aperture problem (described in

Section 3.2) using the three methods (Brute Force, Analytical, and Induced Dipole). The

Brute Force method uses an x-directed electric Hertzian dipole as an excitation source. For

both the Analytical and Induced Dipole methods, an x-directed electric Hertzian dipole is

used as an excitation source, in addition a y-directed magnetic Hertzian dipole is used to

represent the aperture when excitation source, aperture, and observation point are in line of

sight as shown in Figure 3.2.

Since these Hertzian dipoles are crucial to solving the aperture problem it is very

important to verify that the Hertzian dipoles described above provide accurate results in the

FD-TD method. The x-directed electric Hertzian dipole, as shown in Figure 3.5, is

simulated using the FD-TD method by defining a electric dipole moment II, as shown in

Figure 2.3. To represent a dipole in FD-TD, the dipole moment II must be converted to a

current density (Jex) to be used in the FD-TD equation (2.15). Similarly, a y-directed

magnetic Hertzian dipole, as shown in Figure 3.6, is simulated using a magnetic dipole

moment Ki which must be converted to current density (Jmy) to be used in the FD-TD

equation (2.19). 1 is the electric current; K is the magnetic current; and, I is the dipole

length. In FD-TD, 1 is the grid dimension associated with direction of the dipole, for

uniform gridding A=Ax=Ay=Az. The following equations convert dipole moments to

current densities:

1lJ = - (3.2)

my KI(3.3)JMY A3
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3.3 HERTZIAN DIPOLES

The FD-TD results of the Hertzian dipoles were obtained by using a computational

domain gridded by 120 x 120 x 500 cells, where each grid cell dimension was Ax = 0.001m,

Ay = 0.001m, Az = 0.001m. Thus, the physical dimension of the uniformly gridded

computation domain is 0.12m along the x, 0.12m along the y, and 0.5m along the z

directions. Liao's 2nd order absorbing boundary conditions were used at the boundaries of

the computation domain to simulate free-space propagation with no reflections.

For both the electric and magnetic dipole, the fields at observation point are normally

incident and are propagating along the negative z-axis as defined by angles (0,0) as shown in

Figures 3.5 and 3.6. The distance between the dipole and observation point (r) is 0.1m.

Figure 3.7 and Figure 3.8 show the FD-TD result for an x-directed electric dipole and y-

directed magnetic dipole, respectively. These results will also be verified by comparing

them to the analytical solutions for x-directed electric dipole and y-directed magnetic dipole

in Chapter 4.
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Figure 3.7: The Hy fields observed 0.1m away from x-directed electric Hertzian dipole with

0 = 180" and 0 = 90".
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Figure 3.8: The Ex fields observed 0. 1m away from y-directed magnetic Hertzian dipole

with 0 = 180" and 0 = 0".
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Chapter 4

Analytical Solution of Small Aperture

4.1 Introduction

It is possible to formulate an approximate analytical solution to the aperture problem solved

by the Brute Force method in Chapter 3. This is important for verification and validation

for both the Brute Force method and Induced Dipole method. The key to formulating an

analytical solution is to use Babinet's principle to construct an equivalent problem as used in

the Induced Dipole method, but instead of using the Finite Difference-Time Domain method

to solve for the fields of dipoles we use the analytical solution of magnetic and electric

dipoles. Since this analytical model for an infinite conducting plane with a single aperture

uses electric and magnetic dipoles, the dipole fields from the FD-TD method (obtained in

Chapter 3) will be compared to the analytical solution of the dipoles.

4.2 Electric Dipoles in Free Space

There is an analytical solution for the electric field of a Hertzian electric dipole [33], which

can be derived using the dyadic Green's function G(F, 7 ), given the current distribution 7.
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This equation (4.1) is given below:

E(F) = io)J dv' f (f,7 P (7)

where:

G(F, 7)= I+ VI VV 4r-'

For x-directed electric dipole, the current density is:

J(P ) = il6(7F' )

The resulting E field from an x directed electric dipole is:

eikr. + 2(.2
E()=- i~o rIl- U + - 2sin6cos0-6 1+-+ r)- 2cos 0cos0

4Ei• LLkr kkr J kr kr

+4 1+-+(± sin }

(4.1)

(4.2)

(4.3)

(4.4)

For normal incident 4 = 900, and for propagation along the negative z-axis 0 = 180", the

above equations simplify to:

ikr

4lei4r I kr kr

In applying Faraday's

0 = 180", we obtain:

1
law H = V x E on equation (4.4) and using 4 = 90" and

Wig

Hikr ik
H(F) = ikll 6 +l+--

47cr kr

Note: for 0 = 90' and 0 = 1800

(4.5)

(4.6)
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H(F)= H(r)= - eik r + (4.7)47 r kr

Taking the inverse Fourier transform, we obtain:

HY = 4 r [c a (t )+ tI(t-)] (4.8)S4 r c Dt t c r c

4.3 Magnetic Dipoles in Free Space

An analytical solution for a Hertzian magnetic dipole also can be constructed using (4.1) and

applying the duality principal. For instance, to construct a y-directed Hertzian magnetic

dipole, we first construct a y-directed Hertzian electric dipole as shown above for an x-

directed electric dipole to obtain the E field, use Faraday's law to calculate the H field, and

then apply duality to obtain a y-directed magnetic dipole's E field.

For a y-directed dipole the current density is: J(P ) = 15('(7 ) (4.9)

The resulting E field is:

E(F) = -iOpIl -4 r -+ - 2sin0 sin •-0 1+i+i2 ]cos90sink

4ir kr kr) kr kr (4.10)

-4 1++ F2cos}

For normal incident 0 = 0", and for propagation along the z-axis 0 = 180", the above

equations simplify to:

() i 4l 1++kr (4.11)
4xr~- krk
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In applying Faraday's law H = V x E on equation (4.10) and using p = 0' and
iwRt

0 = 180', we obtain:

H(F7)= -ikll e-  + ]+ (4.12)

Using duality, we obtain:

e ikrF *l'
E(F)= ikKle + '-j[ (4.13)

where: K is the magnetic current

Note: for 4 = 0W and 0 = 1800

E(T) = Ex(r ) = -ikK±l e 1 + (4.14)
47tr L kr

Taking the inverse Fourier transform, we obtain:

E =-1 -a tr) Kt(4.15)
4nr ct c r c

4.4 Analytical and FD-TD Dipole Results

The results using the analytical solution to Hertzian dipoles were obtained by providing a

dipole moment, for electric dipole: II and for magnetic dipole: Ki . For both the electric and

magnetic dipole, the same dipole moment was used which was a doublet, the derivative of a

Gaussian, as shown in Figure 2.3. This current is differentiated and multiplied by a constant

-- the differentiate term is the far field and the constant term is the induction term.

For both the analytical and FD-TD (from Chapter 3) results, the distance between the

dipole and observation point is 0.1m. From Figures 4.1 and 4.2, we see that both the
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analytical and the FD-TD solutions are in perfect agreement. Thus, we have the confidence

that the analytical solution and FD-TD solutions for both magnetic and electric dipoles are

correct.
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Figure 4.1: The Hy fields observed 0.1m away from x-directed electric Hertzian dipole with
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4.5 Analytical Approximation to Aperture Problem

Since we now have analytical solutions for both electric and magnetic dipoles, we can

formulate an analytical solution to the aperture problem described in Chapter 3. We start by

applying the principles of the Induced Dipole method to obtain the induced dipoles which

are described in Chapter 5.

From Chapter 5, the electric and magnetic current of the induced dipoles:

I -2a'il° EC (4.16)
3A2  dt

4a3  dHsc
K 11_ (4.17)

3A•l  dr

4a3  Hsc
4Ky= 1 4 -(4.18)

Since x-directed electric dipole is the excitation source at normal incidence and

propagation along the negative z-axis, only two fields are observed Hy and Ex . From the

above equations, we can see that only one induced dipole is induced, namely y-directed

magnetic dipole with magnetic current Ky. Note that the currents are in terms of the short

circuit field, not normally known. This short circuit field is produced when the aperture is

shorted resulting in a solid infinite ground plane. The total field is composed of the short

circuit fields and field scattered by the aperture. For small apertures, the field scattered by

the aperture is negligible, thus it can be ignored, while still producing extremely accurate

results. The relationship between the incident field and short circuit fields are as follows:

aE~s dE'E - 2dE (4.19)
az dz

= = 2 (4.20)
z a z
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Ez' = 2E' (4.21)

The above equations result from having radiating fields in the presence of an infinite

conducting plane. Using the Induced Dipole technique, another induced dipole is placed on

the other side of the infinite conducting plane, but opposite in direction to the original

induced dipole (see Figure 4.3). The infinite conducting plane actually decouples the

aperture problem into two separate problems. One problem is the generation of the original

induced dipole; the other problem is the oppositely opposed induced dipoles. In both cases,

the fields are radiating in the presence of the infinite conducting plane, which means that the

induced magnetic current for our case must be multiplied by a factor of 4. A factor of 2 is

introduced by each of the decoupled problems. Thus, the analytical equation for the

magnetic current of the induced dipole becomes:

K= 4 a3 -H• (4.22)
3A2 k

Note that for the analytical formulation there is an extra factor of 4 introduced because the

aperture decouples into separate problems which have to be simulated by using boundary

conditions of infinite conducting plane. In the FD-TD method, the infinite conducting plane

we define automatically introduces this factor of 4 because the FD-TD method used is a

total field solver.

H toa = Hjc + H"P (4.23)

where, HSC = H' + H' (4.24)

•S : is the short circuit H field

H"p: is the H field scattered by the aperture

H': is reflected H field due to infinite conducting plane

H': is the incident H field
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for small aperture Ha" = 0, so

Htota = HSC (4.25)

Putting it all together, we get:

H l [1 ( + a It da)1 (4.26)
- 4rda c a t c - a

4a3 aH'
Ky = 43 r ' (4.27)

Ex Ky, t r ao )+ K, t- o (4.28)
x r 4nrao c t c ra o c

Given a current I, use equation (4.26)

induced magnetic current K, (4.27).

dipole, which generated the observed

solved analytically.

to obtain incident H field Hy. Then, calculate the

Use the induced magnetic current for the magnetic

E field Ex . This is how the aperture problem is
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Figure 4.3: Induced Dipole method excited by an x-directed electric dipole with the

observation point at normal incidence along the negative z axis.
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4.6 Comparison of Brute Force to Analytical Solution

In Figure 4.4 and Figure 4.5, the results of solving the aperture problem using an

approximate analytic solution is compared to the results obtained using the Brute Force

method. From Figures 4.4 and 4.5, we see that the Brute Force method overestimates the

observed field by over 50%. The main reasons that the Brute Force method overestimates

the observed field are due to the staircasing of the circular aperture as shown in Figure 3.1

and to the staircased aperture which is slightly larger in area. The Brute Force simulations

were performed with an aperture of 80 cells which is not enough cells to provide the

resolution required to obtain accurate results. If the aperture in the Brute Force method

were represented with more than 80 cells, the error would be decreased as the number of

cells used to represent the aperture increased. Increasing the number of cells reduces the

error due to staircasing by more accurately representing a perfect circle and matching the

area of the perfect circle (78.54 mm2 ) to that of a staircased circular aperture with 80 cells

(80.0 um2 ). Due to computer memory restrictions, the circular aperture could not be

represented with more than 80 cells.
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Brute Force vs Analytical Solution
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Figure 4.4: FD-TD simulation of an infinite ground plane with an aperture of radius 0.005m

using the Brute Force method compared to the analytical solution. The excitation source is

0.1m away from the aperture and the observation point is also 0.1m away.
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solution. The excitation source is 0. Im away from the aperture and the observation point is

also 0.lm away.

3x

2.7x

2.4x

2.1x

1.8x

1.5x

1.2x

9x1

6x1

3xl

-oE

x
Li

' I I I I I ' I I ' I ' I I I I

... Brute Force
Analytic

r

o °
- ---

-i

-e

-i

S .. .. _

10 - 9

10 - 9

10 - 9

10 - 9

10 - 9

10 - 9

10 - 9o-9

0-10

0-10

0- 10

C)
~~~x~ * - -n L-



4.6 COMPARISON OF BRUTE FORCE TO ANALYTICAL SOLUTION

In Figures 4.6 and 4.7, the Brute Force method with an aperture of radius 5.0mm is

compared to that of an aperture of radius 5.7mm using the analytical solution. These figures

show that by increasing the radius of the aperture in the analytical solution, the Brute Force

method with an aperture with radius of 5.0mm and 80 cells matches the approximate

analytical solution with a radius of 5.7mm. It can be inferred that the Brute Force method

yields results of a slightly larger aperture of radius 5.7mm instead of a radius 5.0mm. By

increasing the radius of the aperture in the analytical solution to 5.7mm, we were able to

compensate for the staircasing error in the Brute Force method which caused the inaccurate

larger observed fields as shown in Figures 4.4 and 4.5.

Clearly, a better method that is more efficient and does not introduce staircasing error

is necessary to solve this aperture problem. The next chapter will describe such a method; it

is the Induced Dipole method.
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Calibrated Brute Force vs Analytical Solution
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Figure 4.6: FD-TD simulation of an infinite ground plane with an aperture of 0.005m using

the Brute Force method compared to the analytical solution with an aperture of 0.0057m.

The excitation source is 0. 1m away from the aperture and the observation point is also 0.1m

away.
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4.6 COMPARISON OF BRUTE FORCE TO ANALYTICAL SOLUTION

Calibrated Brute Force vs Analytical Solution
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Figure 4.7: Frequency domain results of FD-TD simulation of an infinite ground plane with

an aperture of 0.005m using the Brute Force method compared to the analytical solution

with an aperture of 0.0057m. The excitation source is 0. 1m away from the aperture and the

observation point is also 0.1m away.
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Chapter 5

Induced Dipole Method

5.1 Formulation

In Chapter 4, it was shown that the Brute Force technique could solve the aperture problem

described, but it was far too inefficient to solve electrically small apertures. The Induced

Dipole method can efficiently solve this aperture problem with extreme accuracy. My

implementation of the Induced Dipole method will build on the work conducted by Oates on

small round apertures, which are much smaller than one spatial cell, by using the Liao

absorbing boundary condition to increase accuracy by minimizing the reflections due to the

boundary conditions. In addition, the excitation source used for the aperture problem is a

Hertzian dipole, instead of a plane wave as used by Oates. A Hertzian dipole excitation

more accurately models the sources found in electronics. The small round aperture is

modeled by a pair of oppositely directed electric dipoles with the same electric current

moment (5.1) and a pair of oppositely directed magnetic dipoles with the same magnetic

current moments, (5.2) and (5.3). The pair of oppositely opposed magnetic and electric

dipoles replace the round aperture by being placed on either side of the aperture, then

shorting the aperture.

11(lmO) - 2a3rl
3A20) = -[hn-' (1, m,O) - hn-1 (1 - 1, m,O) + h' (1, m - 1,0) - h" (1, m,0)] (5.1)
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4a3

S(1, m,0) = [e (1, m,1) - (1, m + 1,0) + e2 (1, m,0)] (5.2)

4a3
K" (1, m,) = 4a[e (1, m,l) - e(l,m,O) + e(1 + l,m,0)] (5.3)

The above electric current and magnetic current can be related to current densities used in

the Finite Difference-Time Domain equations (2.15) to (2.20), using the following

equations:

I=Je, A2  (5.4)

K = Jm " A2  (5.5)

where, A can be approximated by using the corresponding discretization length.

As shown in Chapter 4, the short circuit field is approximated by the total field which

induces a small error. This error can be eliminated by subtracting the field produced by the

induced electric and magnetic dipoles as shown by Oates [12]. The resulting induced

electric and magnetic currents are the following:

l =[1) 3(K" - n-1) (5.6)

Kx" = a2( )3r z-rl-)+[1-a( )3]zK"+a Ky) (5.7)

K n a )3(,,ýn a)3, a a

-c 2 3A n n- + 4 k ) (5.8)

Note: rlI , x , and k are the uncorrected currents (5.1) - (5.3).

where,

87e (5.9)
IL •



=2 72 AT

3 4 2  AT
4•e(y2o

(5.10)

(5.11)

(5.12)

87(7m4

Ye 3a3
and

(5.13)

Ym 3
a

(5.14)

2a 3  4a3

a0 a 3 and aC, a
3 M 3

The constants below were evaluated using Simpson's rule [12].

S- dx dy (sin 2 x + sin 2 y)(l + sin 2 x+ sin 2 y) - (sin 2 x+ sin 2 y)}

(, = 0.9753582

ld sin 2 y coS 2 x
2 - dx dy = 0.48772070o -Xjo (l+sin2 x+sin2 y)

(5.15)

(5.16)

S d 2 2x+ Sin2

03 - dx 2dy sin x + sin2 Y COS 2 
X = 0.7466728S 1+ sin 2 x + sin 2 y

SC sin2 X Sin 2
0*2 2

4 dxdy sin x + sin y +sin 2 x+sin 2  sin 2 x+sin 2 y}/sin 2 x+ sin 2 y

a 4 = 0.1913744

5.1 FORMULATION

where,

(5.17)

(5.18)
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The above induced electric and magnetic currents will be used as currents for the

electric and the magnetic induced dipoles. It is these induced dipoles which will be used to

model an electrically small aperture.

As shown in Chapter 4 - Figure 4.3, the Induced Dipole method is implemented by

first shorting the aperture so that the infinite plane is solid without any holes. Then, electric

and magnetic induced dipoles are placed on the excitation side (the side where the excitation

source is located) as given by the induced magnetic and electric currents provided above.

These same induced dipoles are placed on the observation side of the aperture, but are

oppositely opposed to the original dipoles so that dipoles are oppositely directed. The main

advantage to this method is that it provides very accurate results without finely gridding the

computational domain.

5.2 Induced Dipole Results

In Figures 5.1 and 5.2, the Induced Dipole method, using various scaling factors, is

compared to the analytical solution in the time and frequency domain, respectively. The

scaling factor describes how large each dimension of a gridding cube of the Induced Dipole

method is compared to each dimension of a gridding cube of the Brute Force method. For

instance, a scaling factor of 10 means that for the Induced Dipole simulation, the x, y, and z

dimensions of a Induced Dipole gridding cube is 10 times larger than the Brute Force

gridding cube. For uniform gridding (Ax= Ay= Az), that essentially means that the same

computational domain in physical dimensions has 1000 times less cubes in the Induced

Dipole method than in the Brute Force method. For my simulations, the Brute Force

method contains cubes of size: Ax= Ay= Az=0.001m; for the Induced Dipole method with a

scaling factor of 10, Ax= Ay= Az=0.01m. As shown in Figures 5.1 and 5.2, the Induced

Dipole method provides very accurate results compared to the analytical solution for various

scaling factors. Note that the larger the scaling factor, the larger the gridding cubes, which

translates to a FD-TD problem that requires much less memory and computer time to solve.

Scaling factors larger than 16.6 or smaller than 8.33 produce results which are less accurate.
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Figure 5.3 shows the percent of error for the Induced Dipole method using various

scaling factors compared to the analytical solution in the frequency domain. In the region of

interest, the resonance, the Induced Dipole method produces results within 5% of the

analytical solution.
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Figure 5.1: FD-TD simulations using the Induced Dipole method (using various scaling

factors) compared to the analytical solution.
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Chapter 6

Summary and Conclusions

The problem of modeling a small circular aperture using the Finite Difference-Time Domain

method was solved using two methods: 1) Induced Dipole method and 2) Brute Force

method. Both methods were compared to an approximate analytical solution. The Induced

Dipole method was shown to produce superior results to those produced by the Brute Force

method.

In our aperture problem (Figure 3.2) where we have an infinite metal plate with an

aperture of radius 0.005m and rd, = ra. = 0.1m, we obtain the results shown in Figures 6.1

and 6.2 using the Brute Force method, Analytical method, and Induced Dipole method.

From Figures 6.1 and 6.2, we see that the Brute Force method overestimates the radiation

from the apertures by over 50%, thus the Brute Force cannot be depended upon to provide

accurate results without increasing the gridding finer than 0.001m to reduce the staircasing

error. On the other hand, the Induced Dipole method provides results that are within 5% in

the 1 to 3 GHz frequency region where most of the spectral energy is concentrated.

Furthermore, at the resonance frequency 1.6 GHz, the error produced by the Induced

Dipole method is within 2% of the analytical solution. This method produces results which

are very accurate, by using about 1000 times less memory and running about 1000 times

faster than the Brute Force method (depending on the scaling factor used).
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