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ABSTRACT

The objective of this research is to develop mathematical models to assist intermodal
carriers in determining their inland depot network - the location and capacity of each depot
and warehouse.

Our modeling framework embraces the fundamental features of the inland depot
selection problem - the hierarchical decision-making process, the multi-period structure in
multiple levels, and the balancing requirements. A mixed integer programming model for
determining the optimal location of inland depots is developed in the context of container
liner shipping. The model, called the multi-period model with balancing requirements
(MPB), is superior to the models in the literature, because it incorporates the above
fundamental features. We propose two solution algorithms, price-directive and resource-
directive decomposition algorithms. MPB is successfully applied to a real-world inland
depot selection problem facing a leading international shipping company.

The concept of container supply chain management is developed so that the MPB
model's implementation and deployment issues, especially the institutional barriers, can be
addressed from the perspective of integrated chain movement.

MPB is further improved in two aspects. First, a procedure, called the selected
artificial-depot procedure (SAD), is proposed to handle direct container movement
between consignees and shippers, which can significantly reduce transportation cost.
Second, the uncertainty in container demand and supply is handled by an MPB-based
simulation model, which integrates the MPB optimization model into a statistical
simulation model. The MPB-based simulation model is capable of providing decision
makers demand satisfaction levels and associated statistical confidence that can be used as
feedback to re-run the MPB optimization model. Numerical examples are provided in both
cases.

Thesis Supervisor: Ernst G. Frankel

Title: Professor of Management and Marine Systems
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Chapter 1

Introduction

1.1 Background

Since the 1970's. freight transportation activities have seen fundamental changes in

technology and in organization. In particular, one must note the increasing use of

intermodal transportation routes and of unitized transportation practices. A transportation

carrier delivers products to its clients using different types of vehicles in various

transportation modes: railcars, trucks, containers, etc. After delivery and unloading by the

customers, the empty vehicles (railcars, trucks, or containers) are shipped back to a depot

or warehouse designated by the carrier for subsequent shipment to other customers for

shipment. After loading the new customer's products, the vehicles are transported directly

to their destination or through some intermediate depots.

Under this type of logistics network, vehicles spend a significant amount of time in

empty movements. For a major European shipping company with over 300.000 land



container movements and with an estimated total distribution and transportation cost of

some US $50.000.000 in 1986, 40% of the movements were empty (Crainic et. al., 1993).

In the US rail system. it is estimated that a railcar is empty during 40% of its average car

cycle (Mendiratta. 1981).

The importance of empty vehicle movement in carriers' cost structure has inspired a

number of studies directed at managing empty vehicle fleets for railroads, liner shipping

operators. and truckers. A fundamental question these studies address is: Given an inland

logistics network. how should the carrier dispatch empty vehicles to meet shippers'

demand, to relocate empty vehicles among depots and warehouses, and to lease on/off

vehicles in preparation for future demand.

While these studies have achieved some degree of success in reducing empty vehicle-

related operational costs, a more fundamental and strategic question is how to design the

underlying logistics network; namely, how to determine the location and capacity of

depots and warehouses. in order to achieve a broader and more significant cost reduction.

A distinct characteristic of the depot selection problem is its balancing requirements.

Due to regional imbalances in empty vehicle demand and supply over the network at any

point in time, some depots are short of empty vehicles. whereas others have too many.

This requires the shipment of empty vehicles between depots to rebalance inventory. Due



to periodic changes in supply and demand patterns, optimal rebalancing can only be

achieved in a multi-period framework.

In recognition of the lack of research on the depot selection problems with balancing

requirements, the objective of this thesis is to develop a decision-support tool to assist

transportation carriers in determining their inland depot network - the location and capacity

of each depot and warehouse.

The research work is conducted in the context of principal intermodal vehicles -

marine containers in liner shipping. Nevertheless, the research methodology, modeling

framework, models and solution methods. and insights developed in this thesis are equally

applicable to other transportation vehicles, such as railcars, trucks, barges, domestic

containers, and any combination of these vehicles - intermodal transportation. These

vehicles share some basic characteristics in terms of model development; for example, the

balancing requirements, the hierarchical decision making process, etc., as discussed in

detail in Chapter 2.

1.2 Problem Context

The inland depot selection (IDS) problem for a liner shipping company can be

described in the context of a hierarchical container-related decision-making process,



namely. designing a ship routing network. selecting an inland depot network. and

managing empty containers, as depicted in Figure 1.1 below.

selecting

seaports:

selecting

inland depots:

allocating

empty containers:

Figure 1.1: Hierarchical Structure of Container-related Decision Making

in a Liner Shipping Company

A containership calls ports on its routing network according to a predetermined sailing

itinerary based on trade pattern, containership fleet availability and many other factors. As

an off-shore shipping locational problem. ship routing network selection is one of the most



important strategic decisions for a liner operator, and is usually made and adjusted on a

yearly basis by the company's planning department and senior management. Because of

the strategic importance of the ship routing network, both the container inland depot

network selection and the container fleet management are subject to. and are greatly

influenced by the characteristics of the underlying routing network. For example, the

add/drop of a calling port may accordingly require a change in location of inland depots

serving the port and a change in the empty container allocation pattern.

On a day-to-day operational basis. empty container management (allocation) means, to

a large extent, to dispatch empty containers to meet shippers' current demand, to relocate

empty containers in preparation for future demand, and to lease on/off containers to adjust

the deficit/surplus of the operator's own container inventory. The allocation of empty

containers may cross the off-shore ship routing network and the inland depot network, and

therefore, involves seaports, inland depots, shippers' warehouses, etc. Because of their

direct and significant impact on container-related costs, empty container allocation

problems have recently drawn the attention of researchers. for example, Chu (1995), Gao

(1994), Crainic et. al. (1993, 1991), Powell (1992), among others.

In the level between the strategic ship routing network decision and the operational

empty container management, as shown in Figure 1.1, there is another important decision

issue facing liner operators. This is a land-side locational problem: that is, liner operators

need to determine their inland container depot network - the location and size of each



depot. Land movement of empty containers plays a crucial role in container-related

activities in liner shipping as stated before.

The inland depot selection decision is made by a shipping or intermodal company

based on many factors, for example, empty container demand, supply, and cost structure,

and is on the level between the long-term strategic planning of ship routing network and

the short-term day-to-day operations of empty containers. We regard the inland depot

selection (IDS) as a medium-range strategic/tactical planning decision, which, in container

shipping companies, is usually reviewed and updated periodically from every few months

to every one or two years by the container fleet management (control) department in

conjunction with the planning department and with the involvement of senior

management.

1.3 Research Objectives and Scope

The objectives of this thesis research are to establish a framework for liner shipping

and intermodal transportation land-side operations, to develop mathematical models to

solve the inland depot selection (IDS) problem, and to provide liner shipping and

intermodal operators a practically useful decision-support tool to assist them in effectively

and efficiently planning and operating inland depots and container (or other intermodal

vehicle) fleets.



In particular. the models should be capable of: (a) incorporating empty container

demand, supply, and various costs associated with depots and containers; (b) integrating

the medium-term strategic/tactical IDS problems with the short-term empty container

allocation problems; (c) taking into account the multi-period feature of the problem,

characterized by balancing requirements; (d) handling uncertainty in shipping and

intermodal operations; (e) providing a least-cost solution for selecting appropriate location

and size of depots and for accordingly allocating containers among depots: and (f)

addressing the model's implementation issues, especially the institutional barriers to the

model's successful deployment.

Therefore, the scope of the research covers the second and third levels in Figure 1.1,

with the first level configuration as given. An illustrative diagram depicting the scope of

the study is presented in Figure 1.2 below.

In Figure 1.2. the underlying system consists of demand and supply customers1 , and

potential depots. Some depots and demand customers can obtain empty containers from

the outside, while some depots and supply customers may return spare containers to the

outside.

In this thesis, we use demand customer and shipper interchangeably, and supply customer and consignee
interchangeably.
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Figure 1.2 The Scope of the Study of the IDS Problem

demand demand
customer 1 customer 2

flow
M Mi



1.4 Thesis Structure

The thesis is organized as follows.

In the next chapter. we develop the framework for the IDS problem. First, we present

an overview of the intermodal transportation and container liner shipping industry. It is

hoped that this overview will deepen our understanding of. and serve as the basis of. the

framework for the IDS problem. Next, the IDS problem is formally defined, and a

modeling framework. incorporating the fundamental features of the problem is established.

The features include the hierarchical decision making processes, the multi-period decision

making structure on multiple levels, and the balancing requirements. The establishment of

this framework is one of the major contributions of the research. We then review the

literature on the IDS models. The only papers addressing the problem (Dejax et al., 1986;

Crainic et at., 1989; Crainic et. al., 1993; Crainic and Delorme, 1993; and Gendron and

Crainic, 1995) use essentially the same model as the classical single-period location-

allocation models. Thus. the fundamental feature of IDS - balancing requirements - is

unfortunately unaddressed. For this reason, we extensively review the relevant research

on facility location models and empty vehicle allocation models.

Chapter 3 is devoted to building mathematical models about the IDS problem.

Because of the heterogeneity of locations, including inland and seaport depots, and

demand and supply customers, the underlying network is defined and delineated in a 3-

dimensional time-depot-customer network. Due to the lack of previous research and the



complexity of the problem. it is necessary to identify and explain the important factors

contributing to IDS decisions. A single-period model is then built as the central

component of the multi-period model, to gain better understanding of the problem's

complexity, and to demonstrate the inadequacy of the single-period modeling approach.

The final multi-period model with balancing requirements, called MPB. is developed at

the end of the chapter. MPB is a large-scale mixed integer program.

In order to solve MPB efficiently, in Chapter 4 we critically evaluate methods for

solving large-scale locational models like MPB, including solution methods for multi-

period location models and single-period location-allocation models. We propose two

decomposition-based algorithms for solving MPB, the resource-directive (Lagrangean)

decomposition algorithm and the price-directive (Benders) decomposition algorithm.

Chapter 5 is concerned with the MPB model's implementation and deployment in

practice. We first apply the MPB model to solve a real-world depot selection problem

encountered by a major container shipping company in North America. To address the

issues of model implementation and deployment, we develop the concept of container

supply chain management so that we are able to examine the sophisticated implementation

issues from this perspective. This will help us better understand the institutional barriers

behind the IDS problem.



When developing the MPB model in Chapter 3. we assume that there is no direct

container movement allowed between shippers and consignees and that the demand for and

supply of empty containers are deterministic. These two assumptions are removed in this

chapter with the hope of making the model theoretically more sound and practically more

useful as a decision-support tool. First, we develop an efficient procedure, called the

selected artificial-depot (SAD) procedure, to solve the IDS problem permitting direct

movement between shippers and consignees. The uncertainty in container demand and

supply is handled by an MPB-based simulation model, which integrates the MPB

optimization model into a statistic simulation model. The MPB-based simulation model is

capable of providing decision makers the level of customer demand satisfaction and

associated statistical confidence that can be used as feedback to re-run the MPB

optimization model.

In Chapter 7. the thesis is summarized and concluded, and further research directions

are recommended.



Chapter 2

Framework of the IDS Problem

This chapter is devoted to establishing the modeling framework for the IDS problem.

First, an overview of intermodal and liner shipping operations is presented. It is hoped

that this overview will deepen our understanding of, and serve as the basis of, the

framework for the problem. Next, the IDS problem is formally defined, and a modeling

framework, incorporating the fundamental features of the problem is established. We then

extensively review the relevant research on facility location models and empty vehicle

allocation models. Finally, the significance of the research is discussed and the chapter is

summarized.

2.1 Overview of Intermodalism and Container
Transportation

Liner shipping differs from tramp shipping in many ways. As a common (public)

carrier, a liner operator usually provides shipping services with fixed calling ports on a

trade route, regular sailing schedules, stable freight rates and uniform bills of lading.



The liner shipping industry pioneered the concept of containerization, which first

revolutionized their own business, and subsequently also fundamentally changed the way

domestic truckload and carload freight were being handled. Therefore, in many aspects,

shipping lines have been the major driving force behind intermodal freight transportation

in the United States and the rest of the world. Further, the industry conceived the idea of

land-bridge (mini-bridge, micro-bridge) that was the first example of truly intermodal sea-

land service. Finally, it was the American President Lines (APL) which first introduced

the double-stack service, a break through for intermodal service in the mid-1980's.

2.1.1 Sea-Land Intermodalism and Container Liner Shipping

Containerization has numerous advantages. It has reduced both the time and the costs

of loading and unloading operations at ports and terminals. The turnaround time of ships

has been reduced, and the utilization of ship fleets has increased. Losses to cargo due to

damage and pilferage has diminished.

Another major innovation in sea-land intermodalism was the launch of so-called

bridge services, which refer to a combined ocean-land movement from a foreign port to a

domestic port, where the land transportation replaces an ocean leg. It is called a

minibridge if the destination of the movement is a domestic port, and a microbridge if the

destination is an inland point. An example of a minibridge would be Hong Kong-Los

Angeles-New York, with the LA-NY portion provided by rail as opposed to the all-water



route through the Panama Canal. Hong Kong-Los Angles-Chicago is an example of

microbridge service.

Landbridge has been positioned as a premium service for travel-time sensitive freight.

It is estimated that landbridge between Asia and the US East Coast can have a 6-12 days

shorter trip time than all-water. This shorter trip time not only reduces in-transit inventory

cost, it also allows for shorter vessel cycles and therefore higher annual payloads per

vessel.

APL took the idea of landbridge to the next level when it pioneered regular double-

stack service between Los Angeles and Chicago in 1984. This operation was subsequently

copied by most other major Pacific Ocean carriers and railroads.

The Intermodalism brings new entities into the operation of shipping companies,

including railroads, trucking companies, freight forwarders, shippers, consignees,

regulatory agencies, etc. Coordination of activities among different entities becomes a

crucial element of the efficient operation of shipping companies. An important challenge

facing shipping operators is the management of intermodal equipment fleets, including

containers, chassis, trailers, and their attachments, over a network composed of many

ports, inland depots, rail terminals, warehouses, traffic routes of different modes, shippers

and receivers.



2.1.2 Intermodal Container Movement

The status of an empty container can be summarized as follows.

* in storage:

- at depot: ports, inland depots, container freight stations (CFSs). etc.

- in customer's hand: either in shippers' or consignees' hand

- in idle: for repair or inspection

* in transit:

- in ships or barges

- in railcars or trucks

The task of empty container management is to assign empty containers to shippers,

direct returned containers to depots, relocate containers among depots, and to lease on

(off) empty containers from (to) lessors. This is to satisfy shippers' demand for empty

containers to load their outbound shipment over a continuous time period, and to minimize

overall container-related capital investment and operating costs.

In general, shipper's empty containers are provided through depots, either inland

depots or seaports. There are five ways for an inland depot to obtain empty containers: (1)

from a seaport via an inbound ship; (2) from a consignee after stripping the full containers;

(3) from a leasing company by leasing on the containers; (4) from recovery of containers

after repair or inspection; and (5) from other inland depots.



On the sea-side, empty containers are usually transported using the idle space aboard

scheduled ships. Although there is no significant additional cost for this operation, the

necessary inland transportation to/from ports, lift on/off costs at inland interchange points,

and loading-on/off-ship costs may be great. It is also not unusual that space in other

shipping companies' ships has to be purchased to relocate empty containers. On the land-

side, empty containers are often transported using external paid transportation services.

such as trucking companies, railroads, and inland waterway carriers.

Empty containers are usually stored in a depot that is owned and operated by a third

party, often a railroad. trucking company, port authority, etc. Depot usage costs usually

consist of two parts: fixed charges for rendering the shipping company the right to use the

storage facility over a period of time, ranging from several months to a few years, and a

daily storage fee for each container stored in the depot.

2.1.3 Container Inland Depot Network

Containerization has been seen as primarily a maritime technology. The progression

of container shipping services in the 1970s and early 1980s led to a restructuring of port

systems around the world. Within the past several years, however, the most significant

innovations in containerization have occurred inland. Not only has there been an

important geographical shift in the movement of maritime containers between inland



destinations and ports, but the "boxes" themselves are beginning to replace other cargo

systems in domestic freight transportation.

The current container inland depot network, also called the intermodal network, has

evolved in a vastly different way from its predecessor, which was oriented towards

individual depots, and was characterized by a very large number of ramps in each market

center. The current container intermodal network, on the other hand, possesses a distinct

hub and spoke structure, with traffic being concentrated at a number of load centers,

usually linked by rail. Each hub depot services its own market area by truck. Some of the

major players in the system, such as Burlington Northern, have adopted a specific strategy

of concentrating rail traffic at a small number of hub depots, each serving an area 250

miles in radius (Slack, 1994). The result has been a concentration of traffic and a

significant reduction in the number of intermodal terminals. Thus, whereas in 1978 there

were 1176 intermodal depots in the US, there were fewer than 200 in only 106 cities in

1994 (Slack, 1994).

The load center concept is particularly associated with containers in regards to

seaports. The maritime load center concept anticipates the development of one or two

base ports on each maritime range, from which large capacity cellular ships will sail for

other load center ports on other maritime ranges. It is assumed that each load center port

will serve its hinterland by small feeder services or rail and highway connections. Thus, a



very concentrated pattern of container flow is predicted. with one or two ports dominating

traffic on each maritime range.

A very different picture of load centers is proposed for inland hub depots. The

economics of rail transport and the need for inland hubs to be served by trucking suggests

that several inland load centers will be established. Thus, although there will be fewer

intermodal hub depots than piggyback ramps, the load center concept suggests that there

will be a more dispersed pattern of inland depots in comparison to the very small number

of hypothesized base seaports.

Slack (1994) points out that the theoretical number of inland load centers that will be

established is determined by the effective radius of truck drayage. Evidence from

modeling and the actual policies of the railroads indicates that this radius varies between

200 and 300 miles. Taking the land area of the continental USA, 24 hubs could be packed

to provide an optimal hub configuration.

The number of actual hubs in this network is considerably larger than 24, even though

a remarkable concentration has already taken place. There are 79 non-port cities in the US

possessing intermodal terminals with top lift equipment. This could be indicative of the

inefficiencies still in the system. For example, Conrail and several other eastern railroads

still maintain a dense local network of intermodal hubs (Slack, 1990). However. it must

also be recognized that the US market is not uniform, and the existence of a particularly



strong market relatively close to other major centers inevitably leads to the establishment

of "excess" hubs. Extreme examples are the hubs established to serve automobile plants,

such as Fort Wayne, despite their proximity to other hub centers. Furthermore, because

the shipping lines, railroads and other intermodal carriers serve overlapping trade areas,

there is no assurance that all will select the same center as the regional hub. This latter

fact mirrors the situation in the location of maritime load centers. One of the reasons for

the absence of a true base port load center system is that not all the shipping lines have

chosen the same spatial strategy to serve a particular maritime range (Hayuth. 1988).

Table 2.1 provides estimated intermodal container traffic in major US inland

intermodal centers (Manalytics, 1990). The table reveals that major inland centers handle

large numbers of containers, and are comparable to the major seaports of North America.

Indeed, Chicago handled more containers than any seaport in North America in 1987.

Several of the major historical regional centers of the US, Atlanta, St. Louis, Salt Lake

City, etc., are among the largest inland hubs.



Table 2.1 Intermodal Container * Traffic at Major Inland Centers

U.S., 1987
City Traffic in TEU

Chicago 2,660,493
Dallas 800,277
Kansas City 400,771
St. Louis 362,198
Stockton 344,721

Memphis 343,797
Phoenix 338,197
Atlanta 263,756
Detroit 246,806
St. Paul 225,548
Fresno 213,101
Salt Lake City 181,884
Denver 141,245
Columbus 75,979
Albuquerque 66,492

Note: Including maritime and domestic containers together.
Source: Manalytics, 1990.

2.2 Problem Definition

The problem this research is concerned with can be formally defined as follows.

A container liner shipping company usually regards its inland depot network selection

problem as a medium-term strategic/tactical planning issue, and needs to determine and

adjust the network periodically, ranging from every several months to every few years so



that (1) it can supply a sufficient amount of empty containers to shippers for their

outbound shipment at the right time and right location: and (2) its container-related capital

and operating costs can be minimized. The given conditions prior to making the decision

comprise:

* Demand for and supply of empty containers in a set of inland shippers and

consignees over a time period;

* Locations and sizes of a set of candidate inland depots;

* Container storage cost and capacity in candidate inland depots;

* Transportation cost and capacity between any feasible pair of depot-depot and

depot-customer; and

* Container inventory costs.

We want to know how to choose depots from the set of potential ones to minimize the

total costs of depots, transportation, and container inventory, while satisfying the customer

demand for empty containers, over the entire planning time period. Subsequently, a

suggested pattern of empty container allocation among depots, and demand and supply

customers, over the time period, can be provided to guide the day-to-day empty container

allocation operations.

At first, this problem appears to be similar to those classical location-allocation ones.

However, we will argue in detail in the next two sections that our IDS problem has distinct



characteristics from classical location-allocation models, and is mathematically more

involved.

2.3 Modeling Framework

The purpose of this section is to construct the modeling framework to guide the

subsequent model development. The framework should reflect the decision-making

process and its timing structure for solving the IDS problem in a liner shipping company,

capture the fundamental feature of the problem - balancing requirements - and other

crucial characteristics.

2.3.1 Hierarchical Decision Making Process

As a location-allocation problem, depot selection is a longer-term decision than pure

container allocation. It is a strategic/tactical decision, often involving the company's

planning department and senior management. Once a depot selection decision is made and

the physical depot layout is deployed, container day-to-day allocation and management

has to be based upon this deployment. On the other hand, the container allocation pattern

determines container allocation and storage costs, and subsequently influences the choice

of depot locations. Therefore, this location-allocation decision is a hierarchical decision-

making process, where the depot location decision is made first while considering the

subsequent container allocation problem. The container allocation decision is then made



based upon the given depot location decision. This hierarchical decision-making process

is depicted in Figure 2.1 below.

strategic/tactical "

location decision *

depot

1

I

III

network a
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*

daily operational container allocation
allocation decision

Figure 2.1: Hierarchical Structure of Location-Allocation

Decision-Making for Depot Selection Problem

2.3.2 Balancing Requirements

Balancing requirements in the IDS problem means to re-allocate empty containers

among depots to meet anticipated demand in the subsequent periods. Balancing



requirements are essential in container depot location-allocation problems. The reasons

are as follows.

First, regional container demand/supply imbalance is common in liner shipping, and

requires the number of containers stored at depots to be adjusted periodically in response

to anticipated future demand/supply imbalance. For example, consider an inland depot

system only having two depots, A and B. If, due to previous trade patterns. the number of

existing empty containers stored in A and B are 80 and 20 respectively, while the expected

demand for empty containers in A and B are 30 and 70 respectively in the next period,

then there is a need to transport at least 50 containers from A to B to make up the deficit of

50 in B before the beginning of the next period.

Second, empty containers repositioned from one depot (A) to another (B) may not be

used at depot B in the next immediate period. The reason for this is that the operator may

anticipate the container deficit at depot B two periods from now. However, in the next

immediate period, there will not be appropriate capacity to transport these empty

containers to depot B. So these required containers have to be shipped to depot B from

depot A in the current period.

Third, because depot storage costs vary from depot to depot, sometimes container

reallocation arises purely to reduce depot storage costs. For example, if the storage cost

difference between two depots is higher than the transportation cost between them, there is



certainly a cost-reduction incentive for the operator to reposition some containers from the

higher storage-cost depot to the lower storage-cost depot.

Balancing requirements complicate the problem in several ways: (a) In the underlying

network, in addition to customer-facility (depot) movement, there is inter-depot movement

to reposition containers among depots. This inter-depot movement does not exist in

classical location-allocation models; and (b) Rebalancing can only be reflected in a

dynamic environment, because within a single-period static model, one cannot express the

sequential behavior of the containers' reallocation from depot A to depot B and their use at

depot B. This can only be captured by multi-period models.

2.3.3 Two Levels of Multiple Periods

It is natural now to consider multi-period requirements in the modeling framework.

The hierarchical decision-making process makes it necessary to make a distinction

between the medium-term strategic/tactical decisions of depot location and the short-term

day-to-day container allocation operations. The time framework for these two kinds of

decisions is different and needs to be modeled on two different levels accordingly, one for

locational decision. the other for allocation decisions.

Locational decisions are regarded as medium-range strategic/tactical planning

decisions, which, in a container shipping company, are usually reviewed and updated from



every several months to every few years by the container fleet management department. in

conjunction with the planning department and with the involvement of senior

management. For instance, suppose the total length of the planning horizon is three years,

and each time period is six months long. Then there are five time periods within the

planning time horizon. This indicates that by using the rolling-horizon planning approach,

each time the planners consider the depot location problem for the next six months, they

need to look ahead up to three years. However, they will only need to implement the

decision for the next immediate period. i.e.. the next six months.

After determining the depot network layout. the operator needs to allocate empty

containers over the depot network within the planning period, which is six months long in

the above example. The operator then needs to divide the six months into several shorter

sub-periods, to capture the dynamics of container demand and supply, and more

importantly, to reflect the balancing requirements of periodically adjusting containers

among depots. Suppose the length of each sub-period is one month. Then there are six

sub-periods within the planning period of six months.

Therefore, there are two levels of multiple periods in this study. The first level is

comprises the planning time periods, each corresponding to a locational decision for that

period. These periods compose the whole planning horizon. Each time period is further

divided into several sub-periods, each accommodating a container allocation decision for

the purpose of balancing container inventory among depots.



2.3.4 Container Inventory Reduction

The essence of container management is to minimize container-related costs, while

still meeting customer demand for empty containers. One way to minimize container

costs is to reduce the container transportation and storage costs of the company's existing

fleet. Another more fundamental way is to cut down the number of containers in the

company's fleet. This can reduce container movement and storage costs to a larger extent

as well as container capital and insurance costs. In the IDS problem, if container

inventory can be cut down, then intuitively we require less depot capacity, therefore less

depot fixed and storage costs, less container movement, and needless to say, less capital

investment. Therefore, the model we will build should be capable of reflecting the

principle that whenever possible, the level of container inventory in the system should be

kept as low as possible.

2.3.5 The System's Interaction with the Outside

As described in Section 2.2, Problem Definition, the system being studied needs to

find some ways to communicate with the outside world. In practice, a shipping

company's inland depot network usually covers a geographically well-defined region,

ranging from several counties and states (provinces), to an entire continent (North

America, for example). Most of the depots in the system only move containers to/from

other depots and/or customers within the system, whereas a few depots, composed of

mainly seaports and certain inland depots, may exchange containers with seaports, inland



depots, and/or customers outside of the system. We call these depots as source depots.

They can obtain empty containers from outside sources, or in many cases, move spare

containers out of the system for the sake of cutting down container inventory (in this case,

the net container supply into the system is negative).

Allowing the existence of source depots makes the system possess a sufficient number

of containers to meet system-wide demand whenever a demand arises, while keeping that

number as low as possible to minimize total container costs. In fact, the system's

interaction with the outside is the only way to adjust the container inventory in the IDS

problem.

Therefore, depots in the problem need to be divided into two groups. The first group

includes those depots only moving containers to/from other depots and/or customers

within the system. The second group is composed of most seaports and a few inland

depots, which exchange containers with seaports, inland depots, and/or customers outside

the system. This distinction should be reflected in our models.

2.3.6 Mixed Depot Ownership

Shipping companies usually do not build their own inland depots. Instead, they lease

a depot or part of a depot owned and even operated by a third party, often a railroad,

trucking company, port authority, or warehouse, etc. It is this feature that makes our



research meaningful and important for shipping companies, because if all depots used by a

shipping operator were actually owned by him, he would not have much choice about

whether or not to use these facilities. Mixed ownership is also the feature that makes the

IDS problem different from other location-allocation problems. Therefore, our models

should be able to choose depots from a set of candidate depots not owned by the shipping

company, and at the same time take the openness of the depots owned by the company as

given. For instance, an shipping operator owns two depots A and B. and wants to decide

which ones to choose from a set of potential depots owned by a third party, whose depots

are C, D, E. The depot selection problem facing the operator is to solve the IDS problem

over the network comprises nodes A, B, C, D, and E, while taking A and B open as given.

In summary, tile major ingredients of the modeling framework for the IDS problem are

as follows.

* Hierarchical decision-making process

* Two levels of multiple periods

* Balancing requirements

* Container inventory reduction

* The system's interaction with the outside

* Mixed depot ownership.



2.4 Literature Review on Location and
Allocation Problems

In this section, we review relevant literature on empty vehicle depot selection

problems. Viewing the lack of existing studies in modeling this complex problem, we

extend the review to advanced locational modeling approaches and evaluate their solution

methods, including capacitated facility location problems, and dynamic and stochastic

location models. Because of the importance of balancing requirements in the problem,

empty vehicle allocation models with balancing requirements are also reviewed.

2.4.1 Empty Vehicle Inland Depot Selection Problem

The inland depot container selection problem is first studied by Dejax et al. (1986),

who treat this problem as part of a global study of the logistics system of a large European

container transportation and distribution company. Their approach is to sequentially solve

a classical depot location problem, followed by a minimum cost flow problem to allocate

containers among depots.

Crainic et al. (1989) then integrate the depot location and container allocation

problems, and call their model a location-allocation model with balancing requirements.

The model is subsequently solved using a branch-and-bound algorithm (Crainic et al.,

1989). Because of the size of the problem, the branch-and-bound procedure cannot



determine the optimal solution in a reasonable computing time. Gendron and Crainic

(1992) propose a parallel implementation of the branch-and-bound algorithm. The model

is later solved by Tabu search procedure (Crainic et al.. 1993) and by a dual-ascent-based

branch-and-bound algorithm (Crainic and Delorme. 1993; Gendron and Crainic, 1995).

As pointed out by these papers, the most important distinction of the IDS problem

from general location-allocation models is the balancing requirements, which require the

container inventory at depots to be adjusted periodically to account for demand and supply

imbalances among regions. However, these models basically use the same model

formulation and fail to address the issue of balancing requirements. For example. the

balancing constraints (4) in Gendron and Crainic (1995, p. 41) are:

total inflow to ifrom (all supply customers + all other depots)
for any depot i

total outflow from i to (all demand customers + all other depots)

which are actually flow conservation constraints required for transshipment nodes in any

network flow problem.

In essence. balancing requirements imply repositioning empty containers from one

location to another in preparation for expected demand in the latter depot in the subsequent

time periods. A crucial pre-condition for permitting the modeling of balancing activities is

a multiple-period modeling framework, because in a single-period model one cannot

express the sequential behavior of the reallocation of containers from an origin depot to a



destination depot and then the use of the containers in the destination depot. This can only

be captured by multi-period models. Unfortunately, the previous models are all single-

period ones and therefore fail to capture the very nature of balancing requirements.

As we argued in Section 2.3.1. Modeling Framework, another fundamental issue in the

empty vehicle depot selection problem is the relationship between the depot location

selection decision and the decisions of the empty container allocation among depots and

customers, which, in reality, is a hierarchical relationship. The empty container allocation

decisions take as given of and is guided by the depot location selection decisions; and the

depot selection decisions must take the container allocation decisions into account. None

of the previous models reflects this hierarchical relationship. Dejax et al. (1986) considers

the two as sequential decisions, and therefore there is no feedback from the allocation

decisions to the location decisions. All other models make the location and allocation

decisions in the same manner and at the same time. This is not consistent with the real-life

decision-making process.

In addition to missing the balancing requirements and the hierarchical decision-making

process, the previous models also fail to address some other critical issues inherent to the

empty vehicle location selection problem, such as the vehicle inventory reduction, the

system's connection with the outside, the mixed depot ownership, and the vehicle storage

costs, as we described in Section 2.3.



2.4.2 Facility Location Problems

One widely studied problem in location theory is the so-called uncapacitated facility

location problem (UFLP). This problem consists of locating a number of facilities among

a finite set of potential sites, in order to minimize the linear combination of fixed facility

costs and of variable production and transportation costs to customers. The objective is to

achieve the best trade-off between fixed and variable costs: opening a larger number of

facilities results in lower transportation costs but higher fixed costs, and vice versa, when

fewer facilities are opened. UFLP was originally studied by Kuehn and Hamburger

(1963). and is known to be NP-hard (Garey and Johnson, 1979). The most efficient exact

methods to solve this problem are dual-based approaches (Erlenkotter, 1978; KOrkel,

1989). Several UFLP extensions have been proposed along the lines of capacity

constraints, network dynamics and stochastic. In the following, we discuss these

extensions in order.

One natural extension is called capacitated facility location problems (CFLP), in which

the production capacity of any facility is bounded above by a preset value. CFLP has been

studied by Geoffrion and McBridge (1978), and Van Roy (1986), among others. Hansen

et al. (1987) provide an overview of these problems and their relationships to other

location problems. In our IDS problem, the storage capacity of a depot is usually limited,

as is the transportation capacity between any pair of depot-depot and any pair of depot-

customer. Therefore, it is expected that our models will fall into the category of

capacitated facility location problems (CFLP).



In the dynamic context, the time-phasing of the decisions becomes important. It

reflects a multi-period situation where demand, supply, facility and transportation

capacity, and cost structures, vary between time periods. In addition, in the context of our

problem, multi-period models become necessary to capture the balancing activities of

moving containers among depots.

The theoretical sophistication of the state-of-the-art solution methods for multi-period

location problems lags behind that of the single-period location models. Only the

problems of small dynamic location models can be solved exactly; in most cases one must

resort to heuristics (Jacobsen, 1990). With the exception of Van Roy and Erlenkotter's

special model (1982), no computationally feasible exact method is available for solving

medium- or large-scale problems.

In recent years, a number of studies have addressed the stochastic dimension present in

some facility location problems. Typical elements which may be random in a locational

problem are the location of customers, the presence or absence of each customer, the level

of demand and supply, the price of product or service, the travel costs, and the

transportation capacity. Louveaux (1993) gives a comprehensive survey of the stochastic

location problem. As usual in stochastic programming, one makes the distinction between

decisions made before the random variables can be observed (these are called first-stage

decisions) and decisions made after the random variables are observed (they are called

second-stage or recourse decisions). Most stochastic location models consider the location



and the size of facilities as first-stage decisions. which are integer variables, and regard the

allocation of customers to facilities as second-stage decisions, which may be integer or

continuous variables. Therefore stochastic location models are usually stochastic integer

programs, which have a well-deserved reputation for being computationally intractable. In

fact, they combine two types of programs which by themselves are often difficult to solve.

So far, the most promising result is with the problems involving up to 40 customers and 10

potential facility locations, by using the branch-and-cut method (Laporte et al.. 1994).

Therefore. it is far from practical for stochastic programming methods to be applicable in

any meaningful facility location problems.

2.4.3 Empty Vehicle Allocation Models with Balancing
Requirements

Empty vehicle allocation problems arise when a set of customers in different

geographical locations need empty vehicles to carry their shipments, and another set of

customers return their empty vehicles to carriers. Balancing requirements are a necessity

in this problem, because regional trade imbalance is common in most of the transportation

modes. The current state-of-the-art is that the problem has been formulated as a dynamic

and stochastic programming model with network recourse (Sheffi et al., 1984; Powell,

1987; Crainic et al., 1993; and Chu, 1995). The random factors include vehicle demand

and supply, and random transportation link costs and capacity. Efficient approximation

algorithms are proposed by Powell (1987), Powell and Cheung (1994), and Chu (1995).



A critical difference between the empty vehicle depot selection problem and the empty

vehicle allocation problem is that the former is a mixed integer program, which is

generally very mathematically involved by itself. Any dynamic and/or stochastic

formulation of the depot selection problem may easily become mathematically intractable.

A different approach adopted by Gao (1994) to solve the empty container allocation

problem is to emphasize the impact of empty container return behavior on the allocation of

containers, and to allow changes of fleet size, by leasing on and off containers to

simultaneously solve the fleet sizing and the allocation problems.

2.5 Chapter Summary

This chapter was designated to lay a foundation for the subsequent research. We first

gave an overview of the intermodal transportation and liner shipping industries. After

formally defining the problem we want to study, we identified and discussed six

fundamental ingredients of the framework for modeling the intermodal inland depot

selection problem. Finally we critically reviewed the relevant literature on the IDS

problem against our modeling framework, and concluded that there are no existing models

and methods for adequately solving the IDS problem.



In the next chapter. we will develop mathematical models for solving the IDS problem.

A multi-period model with balancing requirements, called MPB. will be developed in

Chapter 3 and solved in Chapter 4.



Chapter 3

Model Development

In this chapter, we develop mathematical models for solving the IDS problem facing

intermodal transportation and liner shipping carriers. We first draw a delineation of the

container inland depot network in a multi-period context. Because of the sophisticated

heterogeneity of locations, which comprise inland and seaport depots. and demand and

supply customers, the underlying network is defined and delineated in a 3-dimensional

time-depot-customer network. This differs from the common 2-dimensional time-space

network for modeling dynamic transportation problems (Chu, 1995). Because of the lack

of previous research and the complexity of the problem, it is necessary to identify and

explain the determinants of the depot location-allocation problem, such as demand and

supply, cost structures, etc.

A single-period model is then built to better understand the problem's complexity and

to demonstrate the inadequacy of single-period modeling approach in reflecting the major

ingredients of the modeling framework. These ingredients were identified in Section 2.3,

for example, the hierarchical decision-making process, the balancing requirements, etc.

The final multi-period model with balancing requirements, called MPB. is developed at

the end of the chapter. MPB is a large-scale mixed integer program.



3.1 Three-dimensional Delineation of the
Container Depot Movement Network

Dynamic transportation problems are generally represented by a 2-dimensional time-

space network. A container shipping service network with three depots and a planning

horizon of four time periods is shown in Figure 3.1 below (Chu, 1995).

Time

t=l t=2
Space

location 1

location 2

location 3

I

2

3

t=3 t=4

S..................... ..................... ........................

Figure 3.1 A 2-D Time-Space Network for Dynamic Transportation Problems

Node 1 represents location 1 at time period 1, node 2 represents location 2 at time

period 1. Node 4 represents location 1 at time period 2. Arc (1,8) represents an available

traffic link leaving location 1 at time period 1 and arriving at location 2 at time period 3.
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The horizontal dotted arcs model the inventory activities at each location across the time

periods.

In our IDS problem, we have two types of locations: depots and customers. They are

heterogeneous with regard to the locations' functionality, cost and capacity structures.

Moreover, unlike classical location-allocation problems. here there are bi-directional

movements between depots. That is, we allow container movement between two depots in

both directions. of course, at different time periods. Another dimension of the problem is

time. Because a container supply customer (consignee) may become a demand customer

(shipper) in the next period, and vice versa, the movements between a depot-customer pair

may change direction from one period to another. In order to depict the complicated

relationships of depots and customers in the context of multiple periods, we delineate a 3-

dimensional time-space-space network as shown in Figure 3.2 below.

The network consists of three depots, two customers, and four time periods. All

transportation arcs are directed with arrows pointing to the destination. Nodes 1, 2 and 3

stand for depots 1. 2 and 3 at time period 0. Nodes 4 and 5 represent customers 4 and 5 at

time period 0. At time period 1, these depots and customers are represented by nodes 6, 7,

8, 9, and 10 respectively. The same holds for the time periods 2 and 3.
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Figure 3.2 A 3-D Time-Space-Space Network for Multi-period Depot Selection Problems

In the depot-time plane, the vertical dotted arcs with arrows model the inventory

activities in each depot across time periods, and the diagonal arcs with arrows represent

inter-depot movement across time periods. For example, arc (2,11) represents a

movement leaving depot 2 at time period 0 and arriving at depot I at time period 2, arc

(11,17) respectively a movement leaving depot 1 at time period 2 and arriving at depot 3 at

time period 3. Note that if the time taken to travel between two depots is less than the
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length of the time period, depot-depot movements may take place at the same time period

and are represented by horizontal dotted arcs with arrows. For example, arc (7,8) stands

for a shipment from depot 2 to depot 3 within time period 1.

Depot-customer movements are depicted by arcs between the depot-time plane and the

customer-time plane. For instance, arc (5,1) represents a depot to customer shipment at

time period 0. It is noted that customer 5 is a supply customer at time period 0. and

becomes a demand customer at time period 2. because there is a shipment, arc (8,15),

leaving depot 3 at time period 1 and arriving at customer 5 at time period 2. Arc (3.9) is a

shipment leaving depot 3 at period 0 and arriving at customer 4 at period 1.

Because no direct movements are allowed between customers, there is no arc in the

time-customer plane.

Our goal is to select appropriate depots from a set of candidate depots over this 3-D

time-depot-customer network to meet customer demand for containers and to minimize

total cost over a planning horizon. Our modeling work will be based on this 3-D network.



3.2 Determinants of Container Inland Depot
Selection

The major determinants of IDS include container demand and supply from customers,

depot and transportation link costs, depot storage and transportation link capacity, and

container inventory cost. We discuss them in detail as follows.

3.2.1 Empty Container Demand and Supply

Customers demand empty containers when they have a shipment to be loaded in their

sites - warehouses, factories, etc., or in the shipping carrier's sites - depots, container

freight stations (CFSs), etc. For the sake of modeling, we aggregate a certain number of

demand customers as a single customer, depending on the scale of the study area and the

scope of the modeling requirements. For example, if the study area is an entire country, a

customer in our model may represent an aggregation of as many as 100 actual customers

in a province (state); if the study area covers only several counties, each customer in the

model may consist of as few as several customers in a county.

The same aggregation principle is also applied to shipment receivers. i.e., consignees.

After stripping their shipment, consignees need to return empty containers to a depot

designated by the shipping company within certain days pre-stipulated in the shipment

contract.



In general, empty container demand and supply are difficult to predict because of

inherent uncertainties. Because our model is a long- and medium-term planning model,

day-to-day demand and supply uncertainty can be approximately assumed to be

deterministic in a longer-run, say, one month as a time period in our model. In addition,

aggregation of actual individual customers can offset, to a certain degree, the uncertainty.

Therefore, we do not consider stochastic factors in our optimization models. However, we

will, in Chapter 6, develop a simulation model to address demand and supply uncertainty.

3.2.2 Depot Costs and Capacity

Container shipping companies usually do not own inland depots. Instead they lease

depots from railroads, trucking companies, port authorities, warehouses, and others.

Depot costs generally consist of fixed and variable costs. The fixed cost pays for the

right to use the depot. The amount of the fixed cost is fixed for the period specified in the

contract, say, one year. A contract usually also specifies the maximum number of

containers the shipping company can store in the depot. This is the depot storage capacity

for the shipping company.

In addition to the fixed depot cost, depots also charge for storage each time a container

is stored in the depots. This variable charge takes the form of $ per unit per day. Fixed

and variable costs vary from depot to depot, depending upon the services provided by the



depots (such as lift equipment efficiency, record-keeping accuracy), competition among

depots, and the local real estate market.

3.2.3 Transportation Link Costs and Capacity

Transportation cost of depot-depot and depot-customer movement is an important

factor in determining depot selection. For the shipment of empty containers, the

transportation costs are usually linear to the number of containers transported, although in

certain circumstances, such as union trains, batch movement of containers may show some

economies of scale by obtaining discount from railroads. In fact, transportation costs can

be further divided into in-transit cost and lift-on-off cost. For short distance shipment, lift-

on-off cost may account for more than half of the total transportation cost. Transportation

cost is represented as $ per container per shipment. Table 3.1 gives transportation tariffs

for empty container/trailer movements for selected rail services.

Transportation link capacity is a critical constraint for empty container relocation.

This is particularly true if the relocation is carried out by a shipping company's own ships.

The priority of ship space is always given to loaded containers, because the revenue

brought in by a loaded container is much higher than that by an empty container. This is

why in practice, some empty containers are relocated from depot A to depot B not for

immediate use in depot B. Instead they are used in depot B some time in the future,

because the operator anticipates the unavailability of spare ship space for empty containers



at the future time when the containers are needed in depot B. So, it is wise to ship these

empty containers to depot B at current time when there is ship space available.

Table 3.1 Rail Tariffs for Empty Container/Trailer Movements

unit: US $

Source: Marcus (1993),

Note that there is another important service measurement - transit time - for any mode

of transportation, which, for our problem, means the travel time for depot-depot and depot-

customer movement. We intentionally omit it because the IDS problem is a planning

issue. The time interval even for the lower level of operational allocation decision is



usually no shorter than a month, which is usually sufficient long for any shipment to

complete its journey in an inland network. If a shorter time interval is needed, however,

our model is capable of incorporating transit time.

3.2.4 Container Inventory Costs

A new container usually costs several thousand US dollars, and the daily rent per TEU

is several US dollars. Therefore, the daily cost of the container inventory for a container

shipping company with a fleet of 50.000 TEU is at least hundreds of thousands of US

dollars. Thus, reducing the container fleet inventory is one of the primary goals for

container management in a shipping company. In addition, smaller container inventory

can also reduce container transportation and storage costs.

3.3 Single-Period Model

In this section, we present a single-period model formulation of the IDS problem. The

purpose of formulating a single-period model is twofold. First, this simplified model

enables us to gain better understanding of the problem's complexity. Second, it shows

that this model is not capable of conveying the important ingredients of our modeling

framework, for example, the balancing requirements and the dynamics.



A "depot" in the model is referred to as any location used to store containers, including

seaports, rail terminals, trucking terminals, warehouses, and others.

3.3.1 Assumptions, Notation, Input Data and Decision Variables

Assumptions

(1) No direct movements between demand and supply customers are allowed. Although

shipping companies usually do not want customers to adjust empty containers among

themselves because of the risk of losing track of those containers, the shipping companies

and their agencies often directly move containers among customers (consignees and

shippers). Therefore, this assumption will be relaxed in Chapter 6.

(2) The container inventory (capital) cost for a period is the average cost of the container

inventories at the initial and the end period in all depots.

(3) The storage cost for a period is the average storage cost at the initial and the end period

in that depot.

(4) The number of containers initially stored in each depot is given, and the number stored

at the end of the planning horizon is optimally determined by the model. Note that the end

number could also be pre-set by the shipping company if so it desires. The model is

capable of handling this.

Notation

O = the set of customers supplying empty containers.



D = the set of customers demanding empty containers.

I = the set of depots not allowing container exchange with the outside.

E = the set of depots allowing container exchange with the outside.

SP = the set of depots owned by the shipping company.

F = I u E, the set of all depots, F D SP.

G = (N, A), the network concerned in the study, where N = 0 u D u F. and A = the set of

transportation links among N.

F+ (i) = {j E Fu D: (i, j) e A), for V i N. This includes all depots and demand

customers receiving containers from depot i.

F (i) = {j Fu O: (j. i) E A}, for V i E N. This consists of all depots and supply

customers providing containers to depot i.

Input Data

si = units of containers supplied from supply customer i. i E 0.

di = units of containers demanded by demand customer i, i E D.

cij = transportation cost on arc (i, j) in terms of $ per container, (i, j) E A.

uij = transportation capacity on arc (i, j) in terms of units of containers, (i, j) e A.

fj = fixed cost at depot j if it is open, j F.

cj = half of the storage cost at depot j in terms of $ per container for the period, j e F.

vj = storage capacity at depot j in terms of units of containers, j e F.



rj = cost for shipping in/out one container from/to depots allowing exchange with the

outside, jE E.

wj = units of containers initially stored at depot j, j e F.

k = half of the inventory cost in terms of $ per container for the period.

Decision Variables

yj = 0-1 variable, equals 1, if depot j is open; otherwise, 0. j E F.

xij units of containers transported from i to j, (i, j) e A.

zj = units of containers stored at depot j at the end of the period, j E F

qj = units of containers supplied to depot j from an outside source, j E E. Negative qj

means there is net outflow of containers from depot j to the outside.

3.3.2 Single-period Model Formulation

The single-period model for solving the IDS problem is formulated as a mixed integer

program as below:
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3.3.3 Discussion of the Model and Its Inability to Incorporate
Balancing Requirements

In the above single-period model, the objective function (1.1) states that the total

container-related costs considered in the model include: (a) depot opening cost; (b)

transportation costs from supply customers to depots, between depots, and from depots to

demand customers; (c) container depot storage cost; (d) handling cost for shipping

containers into or out of the system: and (e) container inventory (capital) cost.

Constraints (1.2) and (1.3) require that customer demand for and supply of containers

be fully satisfied. Transportation link capacity is met by constraints (1.6). Constraints

(1.7) and (1.8 are to ensure that no shipment leaves or arrives at a depot if the depot is

determined not to be open, and that the shipment size is less than a depot's maximum

storage capacity if the depot is determined to be open. Shipment includes depot-customer,

depot-depot, and in/out of the system movements. Constraints (1.9) are a straightforward

expression of depot storage limitations. The depot opening variable yj is a binary variable,

if yj equals 1, depot j is open; and if yj equals 0, depot j is closed, as shown in constraints

(1.10). As an ingredient of our modeling framework, mixed depot ownership is reflected

by constraints (1.11), where all depots owned by the shipping company are designated to

be open. Some depots not owned by the shipping company may also need to be open, due

to some strategic considerations or simply because of previous contract obligations. These

scenarios are modeled in constraints (1.11).



Two sets of constraints - constraints (1.4) and (1.5) - are very important and

interesting. They are called flow conservation in general network flow problems. They

simply say that the total flow into a depot should be equal to the total flow out of the

depot. Constraints (1.4) are for depots without interactions with the outside, and (1.5) for

depots having interactions with the outside.

It is important to note that these constraints have nothing to do with balancing

container inventory among depots. A balancing activity takes place after the imbalance of

container distribution among depots occurs. In practice. shipping operators rebalance

container distribution periodically to meet expected future demand and supply patterns

among their depots. In this single-period model, however, there is no information

available about the imbalance status of container distribution in the previous periods or the

expected demand and supply pattern in the subsequent periods. Therefore, we conclude

that a single-period model is not able to model balancing requirements, the fundamental

characteristics of the IDS problem, and we have to turn to multi-period models to address

this issue. Unfortunately, in Gendron and Crainic (1995) and a series of early papers

mentioned in Section 2.4.1, a similar set of constraints to constraints (1.4) and (1.5) are

claimed to be capable of modeling balancing requirements. The above analysis

demonstrates that that claim does not hold.

The single-period model is a mixed integer program, which is NP-hard and difficult to

solve for large-scale applications. The basic objective is to achieve the best tradeoff



between fixed depot cost and various transportation, container inventory and storage costs.

Because of the capacity constraints on the depot storage and transportation as explained in

Section 2.4.2, the model falls into the category of capacitated facility location problems

(CFLP). An overview of these problems can be found in Hansen et al. (1987).

3.4 Multi-period Model with Balancing
Requirements (MPB)

In this section, we present our multi-period model with balancing requirements (MPB)

for the IDS problem. MPB is an extension of the above single-period model to multiple

periods. This extension enables us to model balancing requirements. MPB is a large-scale

mixed integer program.

To be concise and consistent with the above single-period model, we will state the

assumptions, notation, input data and decision variables for the MPB formulation with the

minimum overlap with those for the single-period model.

3.4.1 Assumption, Notation, Input Data and Decision Variables

Assumption

(1) No direct movements between demand and supply customers are allowed, as discussed

in Section 3.3.1.



(2) The overall planning horizon comprises several time periods, each of which consists of

several time sub-periods. A location decision is made for each time period, and an

allocation decision for each time sub-period.

(3) The length of the travel time for any of the depot-depot and the depot-customer

movements is less than a time sub-period. This is usually true because as a planning issue.

a container allocation decision covers a time sub-period of one month or longer, which is

sufficiently long for any movement within an inland network.

Notation

T = the number of time periods over the planning horizon, t represents the t'h time period.

which is a basic time unit for making depot location decisions. For example, if the overall

planning horizon is two years long, and the length of each time period is equal to six

months, then T equals 4. and t ranges from 1 through 4.

P = the number of time sub-periods within a time period. T represents the Tth time sub-

period, which is a basic time unit for making operational container allocation decisions.

For example, if the length of each time period is six months, and the length of each time

sub-period is one month, then P equals 6, and T ranges from 1 through 6.

The following symbols are same as in Section 3.3.1:

O, D, I, E, SP, F. N, A, F+ (I), F (I).



Input Data

si (t, T) = units of containers supplied from customer i in the I'h time sub-period of the t'h

time period, i E 0.

di (t, T) = units of containers demanded by customer i in the Ith time sub-period of the tth

time period, i e D.

cij (t, T) = transportation cost on arc (i, j) in terms of $ per container in the th time sub-

period of the tth time period. (i. j) e A.

uij (t, r) = transportation capacity on arc (i, j) in terms of units of containers in the Tth time

sub-period of the tth time period. (i, j) E A.

fj (t) = fixed cost at depot j if it is open in the tth time period,, j E F.

cj (t) = variable container storage cost at depot j in terms of $ per unit in the tth time period,

j e F, except for the last period t = T. cj (T) is half the amount of the storage cost for that

period.

vj (t) = container storage capacity at depot j in terms of units of containers in the tth time

period, j F.

rj (t, T) = cost for shipping in/out one container from/to a depot allowing exchange with

the outside, in terms of $ per container in the rth time sub-period of the tth time period, j E

E.

wj (0, P) and wj (T,P) = units of containers stored at depot j at the beginning and the end

respectively, of the planning horizon, j E F.



k(t, T) = container inventory (capital) cost in terms of $ per unit for the Tr he time sub-

period of the tth time period, except for the last sub-period of the last period, t = T and T =

P. k(T, P) is half the amount of the inventory cost for that interval.

Decision Variables

yj (t) = 0-1 variable, equal to 1, if depot j is open in the tth time period; equal to 0.,

otherwise. jE F.

xij (t, T) = units of containers transported from i to j in the Ith time sub-period of the tt h

time period, (i, j) e A.

zj (t, T) = units of containers stored at depot j at the end of the I th time sub-period of the tth

time period except for zj (T, P), which is half the number of the containers stored at the

end of the Pth time sub-period of the Tth time period, j E F.

qj (t, -) = units of containers supplied to depot j from an outside source in the -th time sub-

period of the tth time period, j E . Negative qj means a net outflow of containers from

depot j to the outside.

3.4.2 MPB formulation.



I -fl(t)yJ,(t)+ I Icj(t, r ri(t, T)+ c (),. (tT)+
t=1 j =1 ()eA eF

jeE jeF"

Ix (t, )C= si(t,t)
jeF+(i)

xji(tt) = di(t,t)
jeF- (i)

VieO t e[, T] T e[1, P]

VieD t e[1, T] Tc e1, P]

z.(t, )- E xj,(t,z)-z(t, -1)
id 7~)

e xii(t,)= 0
IEF- (j)

Vj El te[l1,T] r e(1,P]

I x,(t,j)-q,(t,T)=0
ieF-(j)

VjeE t e[1,T] e[l1,P]

u,.(t,t) xij (t, T) Ž C

.xj(t, ) < vi (t)y, (t)

qj(t, ) • vj (yit)

vj (t)yj(t) zj (t, )-

z (0, P) = w(0, P).

yj(t) e {0,1

yj(t) = 1

V(i,j) eA t e[1, T] -1 e[1, P]

V (i,j) eA te[l,T] T e[1,P]

VjeE t e[1, T] T e[1,P]

VjeF t e[1,T] T e[1, P]

1
z(T, P) = -w, ( T, P)

2
Vj eF

Vj eF t e[1,T]

Vj eSP t e[1,T]

Min
x q .yj ., I qJ

subject to:

(2.1)

(2.2)

(2.3)

z (t,z). E xj,(t,)-z,(t,i -l)
ieF' (j)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)



3.4.3 MPB's ability to Satisfy Balancing Requirements

MPB is an extension of the previous single-period model to two levels of multiple

periods, one level for depot location decisions and the other for container allocation

decisions.

We want to highlight the important role of the constraints (2.4) and (2.5) play. (2.4)

says that the number of containers stored in a depot at the end of a sub-period is equal to

the total inflow into the depot during that sub-period plus the initial storage in the sub-

period minus the outflow from the depot during the sub-period. This container leftover at

the end of a sub-period acts as a bridge between two sub-periods so that shipping

companies can take action to correct the imbalance of container distribution among depots

from one sub-period to another to meet expected future demand and supply patterns. It is

the multi-period model, MPB, that makes information available about the existing

imbalance status of container inventory and the expected demand and supply pattern in the

future. Therefore. we conclude that a multi-period model is able to model balancing

requirements, the fundamental characteristic of the IDS problem. The capability to model

balancing requirements is a crucial difference between MPB and the single-period model.



3.5 Chapter Summary

In Chapter 3. we focused on developing mathematical models for solving the IDS

problem. We started from drawing a delineation of the container inland depot network in

the context of a multi-period framework. Because of the complicated heterogeneity of

locations, the underlying network is defined and delineated in a 3-dimensional time-depot-

customer network. which differs from the common 2-dimensional time-space network for

modeling dynamic transportation problems. We then identified and explained the

determinants of the depot location-allocation problem, such as demand/supply, cost

structures, etc. Next, a single-period model was built to better appreciate the problem's

complexity and to demonstrate the inadequacy of a single-period modeling approach in

reflecting the major ingredients of the modeling framework. The final multi-period model

with balancing requirements, called MPB, was developed at the end of the chapter.

MPB is a dynamic capacitated facility location model, and is NP-hard. For example,

for a medium-sized problem with 50 potential depots to choose from, 24 time sub-periods

within 6 time periods, there are 1200 0-1 variables. plus more than 10,000 columns and

rows. This is a challenging problem to solve under current OR techniques. We will spend

the next chapter discussing appropriate solution algorithms to efficiently solve MPB for

real-world problems in the intermodal and liner shipping industries.



Chapter 4

Solution Methods and Algorithms

MPB is a multi-period (dynamic) mixed integer program. Thus far the theoretical

sophistication of the state-of-the-art solution methods for multi-period location problems

lags behind that of the single-period location models. Only small size problems can be

solved exactly; in most cases, one must resort to heuristics. In order to solve MPB

efficiently, in this chapter we critically evaluate methods for solving large-scale locational

models, and propose two decomposition-based algorithms.

4.1 Evaluation of Methods for Solving Large-
Scale Locational Models

Throughout the years, the closely related notions of bounding techniques, duality, and

decomposition have been central to the advances in large-scale mixed integer

programming. In the light of this, the scope of the mathematical techniques evaluated in

this section includes methods for solving multi-period (dynamic) location models and

algorithms for solving single-period location-allocation models.



4.1.1 Solution Methods for Multi-period location Models

Jacobsen (1990) provides an excellent survey of multi-period location models and

solution methods. We use some of his ideas to study possible solution method for MPB.

From the perspective of dynamic programming, constraints (2.4) and (2.5) in MPB are

the system's "equations of motion," which describes the trajectory of the state variables zj

(t, r) from the initial value zj (0, 0). The state variables may be eliminated by substituting

constraints (2.4) and (2.5) into (2.1) and (2.9). The decision variables are xij* (t, C), yj (t),

and qj (t, r). For given location opening decision yj (t), it is straightforward to find the

flows xij (t, T) and qj (t, T) using an allocation algorithm.

The backward recursion for the dynamic programming (DP) derived from formulation

(2.1) through (2.12) becomes:

B[z(t, ), y(t -1)]= Minm f(t)y(+ A[z(tt), y(t)]+ B[z(t,T +1), y(t)
Y 11, • (3.1)

B[uw(T, P),]= 0 t [1,T] r E[1,P]

where z (t, r) is a vector of zj (t, r), and y (t) is a vector of yj (t), for j EF, t [1, T], Ce [1, P].

A[a, 3] denotes the optimal objective function value of the following allocation model

with inventory a (representing z (t, r)) and depot opening state P (representing y (t)):
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B[z(t, r), y(t-1)] in (3.1) is the minimal cost of getting from state z at time (t, t) to the

end of the planning horizon (T. P). B[z(O, 1), y(0)] is the optimal value of the objective

function (2.1). As stated in Chapter 3, two levels of time intervals t (period) and t (sub-

period) interact with each other and overlap at the initial and final time intervals. For

example, period (t, P+I) is equivalent to period (t+1, 1).

(3.2)
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The major single obstacle to the use of the DP method is the dimension of the state

vector. If the dimension is high, the number of different states to be evaluated at each state

(t, T) becomes very large and computationally prohibitive. This is often referred to as the

"curse of dimensionality." Special considerations or approximations are needed to reduce

the number of states evaluated. In (3.1) the dimension of state vector z equals the number

of locations, which may be as large as 100 in our IDS problem. In general, a single

location case can be solved directly by the DP method given that the regeneration point

theorem reduces the set of states to be considered. Unfortunately, the regeneration point

theorem- does not hold in the case of multiple locations. However, approximations that

reduce the size of the state-space as though the theorem could be generalized create good

heuristic procedures. Several heuristics of this type have been proposed. One may refer to

Jacobsen (1990) for details.

Van Roy and Erlenkotter (1982) present the following multi-period version of the

uncapacitated facility location model:

See Jacobsen (1990) for details about regeneration point theorem, p. 183.
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where, the input data are:

cjis: the cost of supplying customer i in time period t from capacity established at

location j at the beginning of time period s, with cjits = +o for t < s.

f s: the fixed cost of establishing capacity at location j at the beginning of the time

period s.

The decision variables are:

Yjits : the fraction of customer i's demand in time period t delivered from capacity

established at the beginning of time period s at location number j.

xjS: binary variable indicating whether or not capacity is established at location j at the

beginning of time period s.



Model (4.1) can be interpreted as a single-period model with "locations" (j, s} and

"customers" {i, t}. Consequently, (4.1) can be solved by DUALOC (Erlenkotter, 1978).

However, by noting that

T

5 1 jE[1, J] (4.2)
s=1

in an optimal solution (fjs >0 is assumed) and by assuming that cji ts is independent of s,

Van Roy and Erlenkotter (1982) develop a substantially more efficient implementation,

which they refer to as DYNALOC. DYNALOC is efficient in solving this kind of simple

uncapacitated facility location problem.

4.1.2 Algorithms for Single-period Location-Allocation Models

As discussed in Chapter 3, the model developed by Gendron and Crainic (1995) is a

single-period container depot selection model, essentially the same as the single-period

model (1.1) through (1.11) we presented in Chapter 3. Gendron and Crainic (1995)

propose a branch-and-bound algorithm in which bounds are computed by a dual-ascent

procedure and the design of efficient branching, fathoming and preprocessing rules is

particularly emphasized.



Gendron and Crainic (1995) report that the algorithm outperforms other existing

methods, such as the TABU search heuristic (Crainic, et al., 1992), the dual ascent

heuristic (Crainic and Delorme, 1993), etc.

The maximum number of potential depots in randomly generated examples in Gendron

and Crainic (1995) is 43 depots; the time taken to solve them ranges from 47 to 3975

seconds on a SUN Sparc2 workstation. For a multi-period model with 4 time periods and

12 time sub-periods, the maximum number of potential depots allowed, in order not to

exceed the maximum number of candidate depots handled in Gendron and Crainic (1995),

is about 4. Thus, for our MPB, the above solution algorithm is far from being useful in

practice.

4.2 Price-Directive (Lagrangean)
Decomposition Algorithm for MPB

Because discrete facility location problems contain two types of inherently different

decisions - where to locate facilities and how best to allocate demands to the resulting

facilities - this problem class is an attractive candidate for decomposition. Once the

discrete-choice facility location decisions have been made, the continuous allocation

problem typically becomes much simpler to solve. Two basic decomposition strategies

applicable to location problems are price directive (Lagrangean relaxation) and resource

directive (Benders') decomposition. The reader is referred to Shapiro (1979) for details



about these two decompositions and to Magnanti and Wong (1990) for decomposition

methods for facility location problems. In the following, we discuss two decomposition-

based algorithms for solving MPB; one is the price-directive decomposition algorithm, and

the other is the resource-directive decomposition algorithm.

A natural way to perform price directive decomposition on our MPB model, (2.1)-

(2.12), is to bring the constraints linking locational and allocation decisions up to the

objective function (2.1). The linking constraints turn out to be constraints (2.7)-(2.9),

which tie the locational variables y together with allocation variables x, q and z. The

obtained Lagrangean relaxation is as follows:

L(?.)= Min OBJ+ C h,(,r) ,X (t,t)+O + (t,)- vj(t)yj(t)] (5.1)
( Ai) A t,

subject to
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,. (t, ) 0 (i) eA t [1,T] rz [1,P] (5.3)

,((t,) 2 0  (EA) • tE[1,T] rz e[1,P] (5.4)

Where OBJ in (5.1) is the objective function (2.1). 0 vector in (5.3) is the slack variables

in constraints (2.7) through (2.9). x stands for the continuous variables of x, q, or z in

MPB.



The dual problem to the original problem (2.1)- (2.12) is:

(DU) Maximize. L(X) (6.1)

To solve the dual problem (6.1), note that the Lagrangean relaxation as given in (5.1)-

(5.4) may be separated into the following two independent sub-problems:

(7.1)(LC) Min { f (t)y 1 (t) - I D i(t', )vj(t)yj ( t )

t=l je-F (ij) EA tT

subject to

(2.11) and (2.12)

and

(AL) Mini SCD+ EA (t, )[ x (t,r)+  i(t,T)]

subject to

(2.2) - (2.6), (2.10)

0U(t,T) 2 0 (ij) A tE[1,T] ' C[1,P]

(7.2)

(8.1)

(8.2)

(8.3)



where SCD in (8.1) stands for the second through the fifth items in the objective function

of formulation (2.1).

(LC) is a pure location problem, and (AL) a pure allocation problem. Hence, the

Lagrangean relaxation (5.1) - (5.4) is decomposed into two sub-problems, each of which is

relatively easily solved. It is important to note how the multipliers {J} act to split the

various costs between the (LC) and (AL) models. In fact, the determination of the

appropriate multipliers (or equivalently, the appropriate allocation of the total cost between

the (LC) and (AL) models) can be interpreted as a feedback process in the hierarchical

framework of our IDS problem.

The dual problem is to find {X}to maximize the Lagrangean. One procedure to solve

the dual would be iterative, where at each step the Lagrangean is solved for a given k, and

based on this solution a new set of multipliers is picked.

The solution of the dual problem given in (6.1) need not. and usually will not, identify

a primal feasible solution to the original problem. In such instances, a duality gap is said

to exist and the dual solution is just a lower bound for the optimal value of the original

problem. Two procedures have been suggested for resolving these duality gaps. The first

approach is to use the dual problem for generating bounds in a branch-and-bound or

implicit enumeration procedure; the feasibility of such an approach would depend on the

tightness of the bounds from the dual problem, and on the number of integer variables.



The number of integer variables in our IDS problem is equal to the number of locations

times the number of time periods, which is very large.

The second approach is to incorporate the solution of the dual problem into a heuristic

procedure. Here, at each iteration of the dual solution process, a feasible solution to IDS,

corresponding to the current dual solution, is generated. The lowest cost of these feasible

solutions can be compared with the value of the dual problem, which is a lower bound on

the primal problem. The procedure stops either when the best feasible solution is

sufficiently close to the lower bound generated from the dual problem. or after a preset

number of iterations, whichever occurs first. We adopt this approach in our algorithm.

Thus, our price-directive decomposition algorithm for solving MPB is proposed as

follows.

Step 0: form sub-problems (LC), (AL), and the dual (DU) of the original MPB problem

Step 1: set k = 0, choose X• = 0

Step 2: solve (AL) and (LC) separately for X = •k

Step 3: generate a feasible solution to MPB:

based on the (AL) solution in Step 2, solve constraints (2.7) - (2.9) in MPB to

obtain a feasible solution to MPB

Step 4: if k < 8, then stop

Step 5: update Xk: )k+1 = kk + Ck Yk, set k = k + 1, and go back to Step 1



Yk is equal to the difference between the objective value of (2.1) for the feasible solution

derived in Step 3 and L(.k) obtained from the solution in Step 2. 6 is a preset stopping

criterion. Another stopping criterion is to preset the number of iterations allowed. Scalar

ak is the step size. Its choice is critical to the convergence behavior of the procedure, XCk is

usually set between 0.25 and 1.

The economic interpretation of this price-directive algorithm is as follows. At any

arbitrary iteration k. the planner responsible for the depot location decision chooses an

optimal set of depots, given the Lagrangean multipliers (prices) Xk, by solving (LC). Then

a lower-level container operator tries to allocate containers, given the above depot-opening

decision and the prices )k. Because of the arbitrary setting of Xk, (AL) may not have a

feasible solution. Thus, in the next round of iteration. Xk is readjusted and (LC) and (AL)

are resolved according to the new prices. In this way, the overall performance of the

system can be improved over time.

This algorithm can also be embedded into a branch-and-bound algorithm to find a

lower bound of the original problem to speed up the branch-and-bound algorithm.



4.3 Resource-Directive (Benders')
Decomposition Algorithm for MPB

For our MPB formulation of the IDS problem, Benders' decomposition consists of an

integer programming master problem involving the variables y, and a linear programming

sub-problem involving the variables x (including x, q and z variables in our MPB model).

The approach is resource directive, because for5y fixed at values 0-1, (2.1) reduces to the

linear programming sub-problem:

u(y)= Min
xij",j ,qj

T P

1=1 =1 (j )E JE

Zr,(t,t
ieE

(9.1)

)z,(t,tr:)]) q j ( t , ) + k(tj T
jEF

subject to

(2.1) - (2.10)

The dual for (9.1) is as follows:

u(f) = Max { l' y + ?ls + ± 'd + k u}
subject to

k' + k2 + k1 + X4 < 0

k ,X 4 < 0

(10.1)



where y, s. d, and u stand for the value of depot-opening vector P. container supply vector

s, demand vector d, and transportation link capacity vector u respectively.

Denote u" for n= 1,..., N and um for m=1,..., M to be

extreme rays of the dual feasible region in (10.1).

algorithm, we use subsets of u" and um to construct

problem:

the respective extreme points and

At any arbitrary iteration of the

the integer programming master

v '= M in (11.1)

subject to

v Z fj(t)yj(t)+u"[ 'y+ 2s+ d+ u]
r=1 jeF

u"-['y + 2s + 3d + X'u] <•0 m E[1, M]

y(t) e •0,1} Vj, t

n e[1,N] (11.2)

(11.3)

(11.4)

The solution 9 is used in the pair of linear programming problems (9.1) and (10.1),

which can be optimized by the simplex method. If (9.1) is infeasible, then a new dual

extreme ray is discovered and a constraint is added to the constraint set in (11.3). If (9.1) is

feasible, then it has an optimal .^ and (X, 9) is a feasible solution to the mixed integer



programming (2.1). Let k denote the optimal solution to (10.1), found by the simplex

method. The solution (i, 9) is optimal in (2.1) if

T

v L fj(t)5 -(t) + u n 2s+ d + Xu (12.1)
t=i jEF

holds. If this optimality test fails, then condition (12.1) is added to the constraints in

(11.2).

Thus our resource-directive (Benders') decomposition algorithm for MPB can be stated

as follows.

Step 0: form linear sub-problem (9.1), its dual (10.1), and integer programming master

program (11.1).

Step 1: set k = 1; and provide an initial set of binary values for location variables Yk.

Step 2: use simplex method to solve linear sub-problem (9.1) and its dual (10.1), given

Yk*

Step 3: if (9.1) is infeasible, then a new dual extreme ray is discovered and an

additional constraint is added to the constraint set in (11.3); and go to Step 5;

if feasible, then (xk, Yk) is a feasible solution to MPB.

Step 4: if(xk, Yk, Uk) satisfies condition (12.1), then (xk, Yk) is optimal in MPB, stop;

otherwise, condition (12.1) is added to the first constraint set in (11.2).



Step 5: set k = k + 1. solve the integer master problem (11.1), and go back to Step 2.

The resource-directive decomposition algorithm for MPB converges in a finite number

of iterations to an optimal solution because each time the integer programming problem

(11.1) is solved, there is a new constraint added to the constraint set of (11.1) or (11.2), and

there are only a finite number of such constraints possible. The algorithm has the desirable

feature of producing a feasible solution to (2.1) at each iteration that (9.1) is feasible, and

the lower bound v' is the cost of an optimal solution in (2.1). Moreover, the lower bounds

increase monotonically with iterative solutions of the master problem.

Note that the multi-period container allocation problem (9.1) can be further

decomposed into single-period transportation problems, if doing so is computationally

more efficient.

The Benders' decomposition algorithm has the following economic justification. At

any arbitrary iteration k, the depot location decision maker wishes to select a set of depots

so that the IDS problem, formulated as MPB in (2.1), is solved when individual linear

programming problems, (9.1), corresponding to each time sub-period's container allocation

problem can be solved using some simpler techniques. Because of the arbitrary selection

of the depot set, container allocation problems for individual time sub-periods may not

have a feasible solution. Thus, in the next iteration. the chosen depot set is readjusted so

that container allocation problems of the individual time sub-periods are resolved



accordingly. In this way, the overall performance of the IDS problem can be improved

over time.

4.4 Chapter Summary

MPB is a multi-period (dynamic) mixed integer program. In order to solve MPB

efficiently, in this chapter we critically evaluated methods for solving large-scale locational

models, including solution methods for multi-period location models and for single-period

location-allocation models. We proposed two decomposition-based algorithms for solving

MPB. The first one is a price-directive (Lagrangean) decomposition algorithm and is a

heuristic. The second one is a resource-directive (Benders) decomposition algorithm and

can be solved to optimality.



Chapter 5

MPB Model Implementation

We devote this and the next chapters to dealing with the application and

implementation issues of the MPB model. In this chapter, we first apply the MPB model

to solve a real-world depot selection problem encountered by a major container shipping

company in North America.

To address the issues of the model implementation and deployment, we develop the

concept of container supply chain so that we are able to examine the sophisticated

implementation issues from the perspective of container supply chain movement. This

will help us better understand the institutional issues behind the container depot selection

problems.

5.1 MPB Model Application

In this section, we apply the model to solve an inland depot selection problem for a

major liner shipping company in North America. Some of the information is disguised to

protect the confidentiality of the company. However, the changes in numerical values do

not distort the fundamental relationships of the factors involved.



5.1.1 Problem Description

The problem is about the company's inland depot operation in the hinterland of the

Port of New York, including the northeast of the US and the Lake Ontario area in Canada.

Currently, the inland depot network in the region consists of 10 inland depots.

On a weekly basis. the number of 40-foot containers into/out of each depot is

presented in Table 5.1. The number of containers into/out of each depot changes with

time, and the size of the depots varies. The New York depot and the Chicago depot are

much larger than the others. This indicates the important role of New York as the sea

access of the northeastern region in the US to the Atlantic Ocean and to the Pacific

through an all-water way. and of Chicago as the intermodal hub between the West coast

and the northeast.

We aggregate customers according to their geographical location, so that each depot in

the network serves three to four aggregated customers (shippers and/or consignees). In

some cases, a shipper may later become a consignee, or vice versa. Table 5.2 shows the

distance and the number of 40-foot containers transported between depots and their major

customers during a week. Altogether, these volumes represent about 80% of the

company's total container movement in the region.



Table 5.1 Number of 40' Containers Into and Out of Each Depot

into depot (containers / week) out of depot (containers/week)

depots average minimum maximum average minimum maximum
Depot 1: Randolph, MA 40 20 48 40 22 52
Depot 2: Worcester, MA 62 42 76 62 47 78
Depot 3: Portland, MN 18 12 26 18 14 24
Depot 4: Chicago, IL 320 260 380 320 270 410
Depot 5: Pittsburgh, PA 82 70 91 82 68 92
Depot 6: Stanton, NJ 22 15 28 22 14 30
Depot 7: Cincinnati, OH 58 44 72 58 41 76
Depot 8: Buffalo, NY 92 70 104 92 68 106
Depot 9: Toronto, ON 70 60 80 70 58 82
Depot 10: New York, NY 280 202 300 280 212 340

Note: The data is for 40' containers only in a typical week.
Source: Provided by the shipping company.

Table 5.2 Distance and Number of 40' Containers to and from Customers

distance containers/week
depots customers (miles) to shippers from consignees

1 28 18
Depot 1: Randolph, MA 2 42 12

3 64 10
4 18 20
5 8 38

Depot 2: Worcester, MA 6 15 14
7 50 18
8 82 4

Depot 3: Portland, MN 19 14 8
10 60 4
12 28 6
12 20 180

Depot 4: Chicago, IL 13 38 64 12
14 112 40 8
15 140 86
16 20 42

Depot 5: Pittsburgh, PA 17 40 18 4
18 60 8 29
19 8 15 2

Depot 6: Stanton, NJ 20 48 6
21 108 12
22 18 26

Depot 7: Cincinnati, OH 23 42 18
2 .-.24 60 20
25 10 46 2

Depot 8: Buffalo, NY 26 15 28
27 22 18
28 40 40

Depot 9: Toronto, ON 29 60 20
30 68 28
31 22 160 12

Depot 10: New York, NY 32 28 80 10
33 40 28
34 62 100

Note: The data is only for 40' containers in a typical week.

Source: Provided by the shipping company.



The question facing the company is that. given the forecast in one year about the

container demand and supply, the depot and transportation costs and capacity, and the

container inventory cost. how should it choose its inland depot network, from the set of 10

currently operated. depots to meet customer demand for empty containers and to minimize

the overall container-related costs. There are 17 consignees (empty container suppliers)

and 25 shippers (empty container demanders), as shown in Table 5.2. The consignees are

numbered from I through 17. and shippers from I through 25. The total planning horizon

of one year is divided into two planning periods, each is six months long. The inland

depot location decision is made for each six-month planning period, each of which is

further divided into three two-month-long sub-periods. The container allocation decision

(rebalancing action) is made for each two-month sub-period.

5.1.2 Model Result and Interpretation

The MPB model of the problem is solved by a Branch-and-Bound algorithm using the

OSL solver (Optimization Subroutine Library) embedded in the GAMS optimization

language (General Algebraic Modeling System, Brooke et al., 1992). The model is run on

a PC-486 computer with 24 MB memory3

To compare the effectiveness of the MPB model, we run the model under several

scenarios, as shown in Table 5.3. "CURRENT" in Table 5.3 stands for the current

3 The GAMS code of the MPB model is available upon request.



situation of the shipping company's inland depot operation in the region. "SINGLE"

means the single-period model developed in Section 3.3. MPB1 through MPB4 are the

variants of the MPB model using different parameters. One of the major differences

among the testing scenarios is in source depots. In contrast to a general depot, a source

depot is allowed to move containers into or out of the system through this depot. The

existence of source depots enables the MPB model to move containers into or out of the

system to minimize the system's overall container-related costs. In general, seaport depots

and inland hub depots can be regarded as source depots. MPB 1 and MPB4 are two

extreme scenarios. MPB2 and MBP3 can be regarded as closer to real-world operation,

where some of the depots are designated by the shipping company as source depots. The

results of the depot-opening decisions determined by the MPB model are reported in

Figure 5.1. The corresponding container allocation decisions in the depot network over

the planning horizon are simultaneously determined .

4 The complete running result for the problems are available upon request.



Table 5.3 Parameters of Testing Scenarios

scenario periods depot fixed cost source depots storage cost inventory cost transport cost handling cost
CURRENT 1 $600,000 none $1.2/cntr.day $0.9/cntr.day $75+0.34*miles $56/cntr.
SINGLE 1 $600,000 none $1.2/cntr.day $0.9/cntr.day $75+0.34*miles $56/cntr.
MPB1 6 $600,000 none $1.2/cntr.day $0.9/cntr.day $75+0.34*miles $56/cntr.
MPB2 6 $600,000 4, 10 $1.2/cntr.day $0.9/cntr.day $75+0.34*miles $56/cntr.
MPB3 6 $600,000 1, 4, 5, 7, 8, 10 $1.2/cntr.day $0.9/cntr.day $75+0.34*miles $56/cntr.
MPB4 6 $600,000 1-10 $1.2/cntr.day $0.9/cntr.day $75+0.34*miles $56/cntr.

* Note: The handling cost means the cost for moving a container into/out of the system.
Source: The data is compiled by the author based on the information provided by the shipping company.

scenarios
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Figure 5.1 Depot-Opening Decisions

Because there is no data available on the depot shut-down and re-opening cost, we

assume that a depot will stay open or shut-down through the planning horizon. For the 10

depots currently operated by the company, depots 1, 3 and 4 are determined not to be open



by the MPB model to minimize the total costs. When there are more depots allowed to

interchange containers with the outside, as shown from scenarios MPB 1 to MPB4, depot 7

is dropped from the opening list. The total container-related costs of these scenarios are

depicted in Figure 5.2.

Because the scenarios of CURRENT, SINGLE, and MPB 1 are closed system and have

no container interchange with the outside, the number of containers within the system is

fixed. Thus, the container storage and inventory costs in these three scenarios are the

same. The depot-opening and container allocation decisions in SINGLE and MPB 1 are

obtained by our optimization model MPB. Therefore, their costs are lower than that of

CURRENT. Notice that, because the parameters used in the problems, including depot

fixed cost, storage cost, inventory cost, transportation cost, and handling cost, are constant

over the planning horizon, the optimal solutions for SINGLE and MPB I are identical.

However, the problem with a single-period model is not because it cannot yield least-cost

solution; rather, a single-period model is not able to reflect the actual operations in the real

world. It would not be realistic that the container inventory imbalance over an inland

depot network be adjusted only once a year as implied in the SINGLE scenario.

For scenario MPB2, depots 4 and 10 are allowed to interchange containers with the

outside world. Compared with MPB 1, MPB2 reduces the system's storage, inventory, and

overall costs, while managing to meet customer demand, even though the transportation

cost is higher. When more depots are designated as source depots to allow interaction
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with the outside. as shown in scenarios MPB3 and MPB4. cost reduction mainly comes

from container storage and inventory.

Container inland transportation and handling charges are generally open to the public

and stable in the intermodal industry; container inventory cost can be easily derived from

the capital cost of new containers. Hence, given container demand and supply, depot fixed

cost and storage cost are the most sensitive parameters in Table 5.3 for the problem. In

addition, depot fixed cost and storage cost are the focus of our IDS problem (intermodal

depot selection problem). Therefore, we perform a sensitivity analysis to test the

robustness of the MPB model, that is, whether MPB can outperform the CURRENT

scenario (actual operation) and the SINGLE scenario (the single-period model) under

various depot fixed and storage costs. The container inventory cost, transportation cost,

and handling cost, remain the same as the above; the depot fixed and storage cost vary as

described in Table 5.4 below. MPB4 is the representative of the MPB model. CURRENT

stands for the current operations. SINGLE represents the single-period model.

Table 5.4 Parameters of the Sensitivity-Testing Problems

Po PP P2 P3 P4  P5  P6
depot fixed cost change 0% +30% 0% +15% -15% +10% -10%
storage cost change 0% 0% +30% +15% -15% -10% +10%



The model results for these sensitivity-testing problems are reported in Figure 5.3.

The cost of the MPB4 result is lower than those of the CURRENT and MPB I results.

This shows that the MPB model is capable of providing lower-cost solution than the

current operation or the single-period model under various cost settings.

To compare and contrast the patterns of the container allocation in the current

operation and the MPB model result, Figure 5.4 reports the container flow between the

New York depot (depot 10) and its shippers and consignees in the current operation and in

the MPB I model result (called Current and Optimal respectively in Figure 5.4). The

resulting flow between the depot and consignees of the current operation and the MPB 1

solution are very close. This implies that the current operation between the New York

depot and its consignees is close to optimum. On the other hand, there is a much larger

number of containers transported to shippers from the depot in the current operation than it

should do as recommended by the model. Instead, some of the containers in the New

York depot should be moved to other depots to optimize the overall inland depot network-

wide performance.

Container inter-depot movement plays a crucial role in rebalancing container inventory

among depots. Our MPB model enables the planners to "look ahead" to adjust container

inventory among depots according to the future demand and supply pattern, and the cost

and capacity structure. Our multi-period modeling framework provides an adequate

framework for the "look ahead" planning and rebalancing operations.
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5.2 Container Supply Chain Management

In order to address the implementation and deployment issues of the MPB model, in

this section, we develop the concept of container supply chain so that we can examine the

sophisticated implementation issues from the viewpoint of the container supply chain.

This will help us better understand the institutional issues behind the container depot

selection problems. After introducing the supply chain management in manufacturing and

service industries, we develop the concept of container supply chain. Finally, we address

the implementation issues of the MPB model from this perspective.

5.2.1 Introduction to Supply Chain Management in
Manufacturing and Service Industries

Christopher (1994) defines a supply chain as a network of organizations that are

involved, through upstream and downstream linkages, in the different processes and

activities that produce value in the form of products and services in the hands of ultimate

consumer. Most of the studies about supply chain thus far have focused on

manufacturing, because physical material flow in manufacturing industries is more

tangible and visible than chain channels in service industries.

The focus of supply chain management is given to the following areas (Franciose,

1995).



(1) Strategic issues: strategic drivers of supply chain management to achieve

competitive advantage through focus on:

. strategic goals: increased efficiency, customer focus, reduced costs

reduced time to market, and adapting to market changes

. strategic choices: core competency, inter-company ties. and supply chain

choice

(2) Process restructuring: process restructuring techniques to improve the flow of

materials, information and cash:

. within companies

" between two companies

" within a multi-company supply chain

(3) Organizational issues:

. supply chain organizational forms

" changing roles, need for new skill sets, human resource issues

. behavior incentives

. monitoring mechanisms for supply chain relationships

(4) Integration enablers: supporting systems and tools for supply chain management:

" information systems and technology

" measurement systems and metrics (including costing methods)

" supply chain analysis tools and models
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One of the first systematic studies about service supply chain management was

conducted by Smith and Barry (1991), who describe a service supply chain as a process of

coordinating non-material activities necessary to the fulfillment of the service in a cost-and

customer service-effective way.

Smith and Barry (1991) compare and contrast the characteristics of the manufacturing

supply chain and service supply chain activities as shown in Table 5.5.

Table 5.5 Characteristics of Manufacturing and Service Supply Chain Activities

Manufacturing Supply Chain
sales forecasting

sales forecasting
sourcing/purchasing

production planning

inbound transportation

inventory management

warehousing

customer service

order processing

distribution systems

field warehousing
distribution control
intra-company transportation

distribution administration
outbound transportation

Service Supply Chain

service request forecasting
partnership development, staff hiring, data
acquisition
staff and equipment scheduling, distribution
channel selection, capacity planning
data collection, customer pick-up, repair part
pick-up
capacity management, database management
customer record management, personnel training
data/information storage, retrieval and
management
quality measurement and management,
expediting, billing
interacting, assessing need, negotiating, and
committing to customer, monitoring delivery
network layout, network planning, systems
planning, channel planning
data/information storage, retrieval and control
network control, communications control
personnel/customer movement,
data/information management
network administration
customer reporting, service engineering routing
and scheduling to customer transportation sites



5.2.2 Conceptual Development of Container Supply Chain

The focus of the shipping companies' container management is on their empty fleet,

which is the product delivered by the container management department to serve the

customers' shipping requirements. The movement of empty containers ends in the hands

of shippers, which load their cargo for the subsequent shipment. There are several sources

supplying empty containers: seaports after unloading containers from inbound ships;

inland depots with containers transported from seaports, consignees or other inland depots;

and consignees after containers stripped for a shipment; and lessors and repair shops.

A container supply chain possesses the characteristics of both manufacturing and

service supply chains. Container shipping, as a mode of transportation services, falls into

the category of service industries. Therefore, its supply chain should have the

characteristics of service supply chains. The actual flow along a container supply chain,

however, is tangible containers. Thus container supply chains share some features with

manufacturing supply chains.

A empty container supply chain is developed and presented in Figure 5.5 below.

There are two kinds of flow along the chain. The first is about physical containers as

depicted by the real lines in Figure 5.5. A shipper receives containers from seaports,

inland depots, or consignees. A consignee returns stripped empty containers, as instructed

by the shipping company, to seaports, inland depots, or directly to shippers. A seaport

obtains empty containers from inbound ships, inland depots, or consignees, and sends
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containers to other seaports. inland depots, or shippers. An inland depot receives empty

containers from seaports. other inland depots, or consignees, and dispatches containers to

seaports, other inland depots. or shippers. To simplify the presentation, the repair shops

and lessors are not included in the figure as sources of empty containers. The second kind

of flow is about information as shown by the dotted arcs in Figure 5.5, which involves

four major departments in a shipping company. The inbound freight department is in

charge of the import operations of full and empty containers and deals with consignees,

seaports, and inland depots. The outbound freight department is responsible for the export

operations of full and empty containers and is involved with shippers, seaports, and inland

depots. The responsibility of the marketing/sales department is for marketing outbound

freight shipment and maintaining a close relationship with shippers. Therefore, the

inbound and outbound freight departments and the marketing/sales department possess a

large amount of information about containers, in particular, the data about the container

demand and supply, although it is the container fleet management department that is

actually responsible for planning and allocating containers over the company's

geographical network. The inbound and outbound freight departments and the

marketing/sales department influence the container management through the information

exchange with it as shown in the upper part of Figure 5.5.
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5.3 MPB Model Implementation: the
Perspective of Supply Chain Management

In order to make the MPB model implementable and deployable for shipping and

intermodal carriers as an effective decision-support tool, in this section, we address the

implementation and deployment issues of the MPB model using the container supply

chain concept developed in the previous sector.

The most distinct characteristic of container supply chains is that containers are

usually under the control of the fleet management department for their entire movement

through the supply chain, as shown in the lower part of Figure 5.5. Other functional

departments, such as the inbound and outbound freight departments, and the

marketing/sales department, do not directly involve containers' operations. This feature

suggests that the complexity of the container supply chains mainly lies on the information

flow instead of on the physical flow of containers.

In order to solve the MPB model, there is a need to collect and forecast a large amount

of reliable data about the future container demand and supply, transportation cost and

capacity, depot cost and capacity, and container inventory cost in the planning horizon.

The data about the future transportation cost and capacity, depot cost and capacity, and

container inventory cost are generally available within the fleet management department.
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The future container supply consists of the containers recovered after being used by

shippers and is usually estimated based on the projected accumulation of inbound

container flow at each point of the planning horizon in the future. Empty containers can

be recovered after being used by shippers. After loading a shipper's cargo, a container is

transported to a seaport and boards a ship to its consignee's location, where the container

is stripped by the consignee and transported to a designated seaport, inland depot or

shipper. The container then rejoins the empty container supply chain. Therefore, in order

to manage empty containers, the fleet management department needs to obtain information

about the inbound shipment from the inbound freight department to track the full

containers that will become empty at a later time. The inbound freight department can

provide the inbound container flow data, comprising volume of traffic, origin and

destination (including inland shippers and consignees, and loading and unloading ports) at

each point of the planning horizon in the future.

The above data are generally reliable and sufficiently good for the use in a planning

model like MPB. The most troublesome data are container demand, which come from the

marketing/sales and the outbound freight departments. In order to maximize their primary

objective, customer satisfaction, the marketing/sales and the outbound freight departments

tend to require more containers than are actually needed in order to protect the shippers

(and their own departments) from running into the stockout of empty. Therefore the fleet

department has to prepare for more containers than needed. This is a cost inefficiency for

the entire company.
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The principles of the container supply chains can be used to reduce the container-

related inefficiency, including the unnecessarily high level of container storage, etc., as

discussed below.

(1) Set the appropriate strategic goals of the company so that the performance of

individual departments can be evaluated from global optimum instead of local functional

optimum. For example, the satisfaction maximization of customer demand for empty

containers and the minimization of total container-related costs can be used as the global

objectives to evaluate the performance of each individual department. This indicates that

when managing its containers, the fleet management department should consider its own

objective of minimizing total container-related costs. It should also meet other

departments' objectives, for example, the customer demand satisfaction maximization of

the marketing/sales department.

(2) Restructure the process of information flow among the functional departments.

The marketing/sales department and the inbound and outbound freight departments should

provide the necessary data as accurately as possible, to assist the fleet department in

making proper container management decisions, in order to realize the objective of global

optimum for the entire shipping company.



(3) Improve the supply chain enablers. One of the tasks is to strengthen our MPB

model's capability to handle the uncertainty in the container demand and supply. This will

be discussed in detail in the next chapter.

There are some other important organizational issues for the successful

implementation of the MPB model in shipping companies. The MPB model is generally

run by the fleet management department to optimize its decisions about inland depot

selection and container management. In today's highly competitive shipping markets,

however, customer demand satisfaction is the top priority in any shipping companies. The

container fleet management is a "service and assurance" activity in the shipping business.

Under pressure from customer-related departments and from senior management, it may

be difficult for the fleet department to manage containers to achieve both the goals of the

satisfaction maximization of customer demand and the minimization of container-related

costs. Therefore, to implement MPB, the top management needs to establish an efficient

and effective organizational form, to pay attention to the changing roles of individual

functional departments, to provide proper behavior incentives, and to develop monitoring

mechanisms for supply chain relationships. For example, the fleet management

department should be given the full responsibility to coordinate the container-related

activities of obtaining relevant information and implementing necessary operations. In

other words, the fleet management activities should be regarded as an integrated part of

the company's strategic supply chain development.
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5.4 Chapter Summary

This chapter was concerned with the MPB model's application in practice. The MPB

model was successfully applied to solve a real-world depot selection problem facing a

major container shipping company for its North American operations. To address the

issues of the model's implementation and deployment, we developed the concept of

container supply chains, and examined the sophisticated implementation issues from this

perspective.

Chapter 6 will go on to solve two technical issues for the effective and efficient

implementation of the model - direct container movement between consignees and

shippers, and stochastic container demand and supply.



Chapter 6

MPB Model Improvement

As demonstrated in Chapter 5, the multi-period model with balancing requirements

(MPB), developed in the previous chapters, successfully determines the optimal location

and size of inland depots for intermodal transportation companies. MPB is superior to the

models in the literature, because it incorporates the fundamental features of the IDS

problem, including the balancing requirements. On the other hand, however, MPB needs

some improvements. When developing the models in Chapter 3, we assumed that direct

movement is not allowed between shippers and consignees and that the demand for and

supply of empty containers are deterministic. These two assumptions do not always hold

in real world, and therefore limit its application scope and value as an effective decision-

support tool in practice, although both assumptions can be justified on the grounds that

they simplify the model development and make the solution methods computationally

tractable.

In this chapter, we remove these two assumptions with the hope of making it more

practically useful. First, we develop an efficient procedure based on the MPB solution to

solve the IDS problem, permitting direct movement between shippers and consignees.

Second, we develop a MPB-based simulation model. which integrates the MPB
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optimization model into a statistical simulation model. It is capable of providing decision-

makers customer satisfaction level and associated statistical confidence that can be used as

feedback to re-run the MPB optimization model. Numerical examples are given in both

cases.

6.1 Direct Movement between Suppliersand
Demanders

Recall from Chapter 1 that we did not explicitly draw direct links between suppliers

and demanders in Figure 1.2. In Figure 6.1, we re-draw most of Figure 1.2 with the

explicit reflection (in thicker lines) of direct movement between suppliers and demanders.

Figure 6.1 Direct Movement of Containers between Suppliers and Demanders
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In this section, we first show the necessity of adding movement between container

suppliers and demanders to the MPB modeling framework. We then propose and evaluate

several procedures to handle the movement. Finally, we present a numerical example to

demonstrate the effectiveness of the proposed procedure.

6.1.1 Movement between Suppliers and Demanders

Consider the following example.

The simple network in Figure 6.2 has one depot, one empty container supplier and one

demander respectively. The depot stores 100 empty containers, the supplier can provide

150, and the demander requires 250. The unit transportation cost is $50 on depot-

demander link, $30 on supplier-demander link, and $40 on supplier-depot link.

The assumption made in the MPB modeling framework does not allow the direct

movement from suppliers to demanders. Thus, the supplier has to first move 150

containers to the depot, and then transship them together with the 100 units stored in the

depot to the demander. Using this route, the total transportation cost to meet the demand

is:

150 * 40 + (150 + 100) * 50 = $18,500

If we remove the assumption and allow direct movement from the supplier to the

demander, the optimal route and cost are:
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supplier - demander: 150 units

depot - demander: 100 units

cost: 150 * 30 = $4,500

cost: 100 * 50 = $5,000

Then, the total cost is $9500, which is much lower than $18.500 in the previous situation.

The significant cost saving results from the fact that the supplier and demander in this

example is so close that moving containers between them is much more cost efficient than

any supplier-depot-demander triangle movement.

Supplier: 150

$30

Figure 6.2 Direct Movement between Supplier and Demander

This example mirrors the real operations of liner shipping and other intermodal

transportation. For example, a shipping liner may have a depot in Boston, Massachusetts,
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and an empty container supplier (consignee) as well as a demander (shipper) in

Providence, Rhode Island. If the time of an empty container released from the supplier is

just several days ahead of the time required by the demander to load his shipment, the

shipping company may require the supplier in Providence to transport the empty

containers to the nearby demander's site in the same town instead of first returning to the

depot in Boston and then moving back to the demander in Providence several days later.

Container shipping companies and other intermodal transportation carriers operate

inland depot networks consisting of many depots, suppliers and demanders. Some

suppliers and demanders may be located close to one another. Intuitively, it may be more

cost efficient to directly adjust container supply and demand between them without using a

depot as an intermediary.

Our MPB modeling framework should reflect this reality and provides efficient

solution methods to solve the resulting models.

6.1.2 Straightforward Procedures

The most straightforward way to deal with direct supplier-demander movement is to

simply remove the restriction in the MPB modeling framework and add all supplier-

demander links to the MPB model.
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This procedure complicates the model structure and accordingly its solution in several

ways.

First, link variables x in MPB, standing for the number of containers transported

between two locations (including supplier-depot, depots-depot and depot-demander),

represent the largest number of continuous variables in MPB. Because the number of

suppliers and demanders is usually larger than the number of depots, the number of link

variables x will increase significantly by adding all supplier-demander links to MPB, so

too the total number of continuous variables. For example, suppose the network has N

candidate depots, 1.3*N suppliers and demanders respectively. If supplier-demander links

are not permitted, the total number of link variables x is:

1.3*N z + 1.3*N 2 + N* (N-1)= 3.6*N2 -N (13.1)

Permitting supplier-demander movement will increase the number of link variables x by

1.69*N 2, an increase of above 47%. Because the number of link variables x dominates the

number of depot storage variables z or depot inflow variables q, the increase of the overall

number of continuous variables due to the introduction of direct supplier-demander

movement will be in the same order as the increase of the dominant variables x..

Second, in the constraint set of the MPB model - constraints (2.2) through (2.12) - the

number of constraints in (2.6) and (2.7) is dominant. In the example of (13.1), permitting
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direct supplier-demander movement will increase the number of overall constraints by

above 40%.

Therefore, the size of the constraint matrix for the MPB model will increase by about

40% for the above example, if we adopt the straightforward procedure of simply adding all

supplier-demander links into the MPB modeling framework. This is a huge computational

burden.

A variant of the straightforward procedure is to add an artificial depot to the network

for each connected supplier-demander pair. This artificial-depot procedure works in the

following way.

Step 1: create an artificial depot h for each supplier-demander link i-j

Step 2: add artificial depot h, and links i-h and h-j to the network for

each i-j link, where supplier i E O and demanderj eD

Ste : 3: let Ch (t) = M and vh (t) = M, where M is a sufficient large number;

let fh (t) = 0, and wh (0,P) = 0 ; and

let cih (t,t) = chj (t,t) = 1/2 cij (t,t), and uih (t,t) = uhj (t,t) = Uij (t,t)

SteD 4: run MPB on the expanded network.
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Proposition 6.1:

The artificial-depot procedure is equivalent to the straightforward procedure

in terms of the solution for decision variables.

Proof:

Because the storage cost M is sufficiently high, there will be no containers stored

at an artificial depot AD in an optimal MPB solution. Then, if AD is determined to

be open by MPB, containers entering AD need to leave AD at the same sub-period,

i.e.. they are through-flow at AD and there are no storage costs associated with AD.

Thus, path supplier-AD-demander on the expanded network is equivalent to

supplier-AD link plus AD-demander link in terms of cost and container flow.

Therefore, the artificial-depot procedure is equivalent to the straightforward

procedure.

Because the artificial-depot procedure introduces many new 0-1 variables, one for each

supply-demander link, and a number of continuous variables - link flow variables x. depot

storage variables z, and depot outsourcing variables q, it is not computationally superior to

the straightforward procedure in any aspect. However, the artificial-depot procedure is

instrumental in developing a computationally efficient and applicable procedure as

discussed below.



6.1.3 Selected Artificial-Depot (SAD) Procedure

Notice that MPB on the original network may fail only if

3 i E O,j eD. and k e F, such that

Cik (t,t) + Ckj (t,t) > ij (t,t), and Xik (t,) * Xkj (t,t) > 0 (14.1)

provided that i-j movement is allowed. This implies that condition (14.1) is a key in

developing an improved solution procedure. We may need only to consider those i-j

movements, where condition (14.1) is satisfied.

Based on this observation, we develop the following improved procedure, called the

selected artificial-depot (SAD) procedure.

SteR 1: run MPB on the original network

Step 2: find depots h e F, suppliers iE O and demanders j eD satisfying

condition (14.1)

Ste : 3: add the artificial depot h, and links i-h and h-j to the network for

each (i,j) pair identified in Step 2. Remove the original i-j link

Step 4: let Ch (t) = M and vh (t) = M, where M is a sufficiently large number;

let fh (t) = 0, and wh (0,P) = 0 ; and

let cih (t,t) = Chj (t,t) = 1/2 cij (t,t) and Uih (t,t) = Uhi (t,) = ij (t,t)

Step 5: run MPB again on the expanded network
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Proposition 6.2:

The Selected Artificial-Depot procedure (SAD) is equivalent to the

straightforward procedure in terms of the solution for decision variables.

Proof:

Because we have proved in Proposition 6.1 that the artificial-depot procedure is

equivalent to the straightforward procedure, it is sufficient to show here that the SAD

procedure is equivalent to the artificial-depot procedure.

Suppose (P) is an optimal solution of the artificial-depot procedure, (P') is an

optimal solution of the SAD procedure.

Note that the artificial-depot procedure introduces all supplier-demander links to

the network, whereas the SAD procedure only chooses those hopefully-carry-flow

supplier-demander links into the network. Thus, the two procedures differ only in the

way of selecting supplier-demander links into the expanded network. That is:

{(ij): i E 0 and j eD in (P')} c {(i,j): i E 0 and j eD in (P)} (15.1)

Now consider a link 1-m, 1 E O and m eD, 1-m e {(i,j): i E O and j eD in (P)}, but

1-m r {(ij): i e O and j eD in (P')}. By condition (14.1), if

Clk (t,t) + Ckm (tu) > Clm (t,t), for V k E F

then. either XIk (t,I) = 0 or Xkm (t,t) = 0 on the original network, viz., either supplier 1

does not supply any containers to depot k, or demander m does not receive any
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containers from depot k. viz.. demander m does not receive any containers directly

from supplier 1. Thus

xIm (t,t) = 0 for 1-m E {(i,j): i E O and j eD in (P)} (15.2)

i.e., there is no flow directly from supplier 1 to demander m on (P)'s expanded

network.

Therefore, we conclude from observations (15.1) and (15.2) that (P') is the same as

(P), i.e., the SAD procedure is equivalent to the straightforward procedure in terms of

the final solutions for the decision variables.

The SAD procedure has less link flow variables x than the straightforward procedure

and less depot opening variables (0-1 variables) than the artificial-depot procedure. This

makes it computationally more tractable. Moreover, the SAD procedure can be

implemented within the existing MPB modeling framework.

6.1.4 Numerical Example

We present the following example to illustrate step-by-step the SAD procedure in

dealing with direct movement between suppliers and demanders.
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The network consists of two container suppliers. two demanders, and four candidate

depots, as shown in Figure 6.3

Figure 6.3 Network for the Numerical Example in 6.1.4

The problem has two time periods corresponding to the depot selection decision. Each

time period includes three sub-periods for the container allocation decision. The
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transportation cost of supplier-depot, depot-demander, and direct supplier-demander are

presented in Table 6.1.

Table 6.1 Transportation Costs of Supplier-Depot, Depot-Demander

and Direct Supplier-Demander Movement

unit: $/container

time-frame period 1 period 2

movement sub-period 1 sub-period 2 sub-period 3 sub-period 1 sub-period 2 sub-period 3

supplier-demander
supplier 1-demander 200 400 400 400 400 400

supplier 1-demander 350 350 280 350 350 350
supplier 2--demander 370 370 370 370 370 370

supplier 2-demander 300 300 300 180 180 180

supplier--depot
supplier 1--depot 1 140 140 140 140 140 140

supplier 1-depot 2 210 210 210 210 210 210

supplier 2--depot 2 170 170 170 170 170 170

supplier 1-depot 3 200 200 200 200 200 200

supplier 2-depot 3 140 140 140 140 140 140

supplier 2-depot 4 70 70 70 70 70 70

depot--demander
depot 1-demander 1 110 110 110 110 110 110 110

depot 2--demander 1 110 110 110 110 110 110
depot 2-demander 2 120 120 120 120 120 120

depot 3--demander 1 160 160 160 160 160 160
depot 3-demander 2 100 100 100 100 100 100
depot 4-demander 2 120 120 120 120 120 120

The SAD procedure for this example works in the following way. After running

MPB assuming no direct movement, we find that in sub-period 1, 50 containers are

transported from supplier 1 to demander 1 through depot 1, while in Table 6.1 the unit

transportation cost for the path of supplier 1-depot 1-demander 1 is 250, and the unit cost

for the direct link of supplier 1-demander 1 is 200 This suggests the possibility of directly
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moving containers from supplier 1 to demander 1 to reduce transportation cost. The same

observation holds for the path of supplier 2-depot 2-demander 2 in sub-periods 5 and 6.

We therefore re-run the model on the extended network according to the SAD

procedure. The container flow result of the model is reported in Table 6.2.

The model result shows that during the first sub-period, there are 200 containers

moving directly from supplier 1 (via artificial depot ADI) to demander 1 without passing

through any of the four candidate depots. During the fifth and sixth sub-periods, there are

respectively, 150 and 50 containers directly transported from supplier 2 (via AD2) to

demander 2. This would not have occurred if we had not removed the restriction on direct

movement between suppliers and demanders.

The overall cost for the problem during the planning horizon has been reduced by over

12% ($3,066,450 vs. $2,680,150) after direct supplier-demander movement is allowed.
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Table 6.2 Container Flow Result of MPB based on SAD Procedure

unit: container
time-frame period 1 period 2

MPB model result sub-period 1 sub-period 2 sub-period 3 sub-period 1 sub-period 2 sub-period 3
supplier-depot movement

supplier 1-depot 1 0 50 50 0 0 0
supplier 1--depot 2 0 0 0 100 0 100
supplier 2-depot 2 0 0 0 0 0 0
supplier 1--depot 3 0 350 250 150 450 50
supplier 2--depot 3 0 0 0 0 0 0
supplier 2-depot 4 300 150 400 400 100 300
supplier 1-AD1 200 0 0 0 0 0
supplier 1-AD2 0 0 0 0 0 0
supplier 2-AD1 0 0 0 0 0 0
supplier 2--AD2 0 0 0 100 150 50

depot-demander
depot 1-demander 1 200 200 150 0 0 0
depot 2--demander 1 0 400 300 400 250 400
depot 2-demander 2 300 0 0 0 0 0
depot 3--demander 1 0 0 0 100 0 150
depot 3-demander 2 0 350 500 0 500 350
depot 4-demander 2 0 150 50 0 0 0
ADi-demander 1 200 0 0 0 0 0
AD1-demander 2 0 0 0 0 0 0
AD2-demander 1 0 0 0 0 0 0
AD2--demander 2 0 0 0 100 150 50

overall cost: $ 2,680,150

6.2 Uncertainty in Container Demand and
Supply

There are many uncertainties within the existing MPB modeling framework, for

example, container demand and supply, transportation cost and capacity, and depot cost

and capacity. Among them, the most bothersome uncertainty for shipping companies is

container demand and supply.
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The goal of this section is to handle container demand and supply uncertainty so that

shipping companies can evaluate the level of customer demand satisfaction provided by

the MPB solution, and accordingly adjust their container allocation decisions to achieve a

desired satisfaction level under stochastic container demand and supply.

An MPB-based simulation model is developed. The simulation model is capable of

providing decision makers customer satisfaction level and associated statistical confidence

that can be used as feedback to re-run the MPB optimization model.

The simulation model is composed of three parts: (a) the analytical derivation of the

statistical distribution of container supply and demand, and inventory in depots; (b) the

evaluation of demand satisfaction and statistical testing; and (c) the adjustment of

container flow and re-run of the simulation model

6.2.1 Statistical Distribution of Container Movement

First, we justify our assumptions for the distribution of container supply and demand,

and then derive the distribution of depots' container inventory. Finally, we arrive at the

distribution of containers received by demanders.
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(1)Container Supply Distribution

Empty containers are primarily supplied by shipping consignees, who receive loaded

containers and return the empty ones to the shipping carrier after stripping them. From the

perspective of a shipping carrier, the number of recovered empty containers from a

consignee in a period (day, week, or month) is unknown in advance and follows a certain

statistical distribution. as assumed below.

Assumption 6. 1 The number of empty containers supplied from a supplier

(consignee) CS to a depot D during a certain sub-period 5 follows a Poisson distribution,

(x/ ) with mean k.

The justification for Assumption 6.1 is as follows. First, from the viewpoint of the

depot receiving empty containers, the arrival of containers from a CS can be regarded in

the same way as arriving vehicles in transportation, or incoming phone calls in

telecommunications, which are widely assumed to follow a Poisson distribution. Second,

a CS's release of empty containers after receiving and stripping them is a random process

and takes time ranging from several hours to several weeks, depending on the stripping

and transportation link conditions. The number of containers returned in any two time

sub-periods is usually independent. Finally, in any two equal-length-time sub-periods, the

possibility of a container being returned within either of the periods is the same. That is,

s We use the term "sub-period" as explained in the MPB modeling framework. See Sections 2.3.3 and 3.4.1

for the discussion and definition of sub-period.
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the probability of a container being returned during any particular very short sub-period of

time is approximately proportional to the length of the sub-period.

(2) Container Demand Distribution

Demand for empty containers is derived from the demand for container transportation

services. Shippers request empty containers to load their shipment. A shipper's demand

for transportation services varies from time to time and is determined by many factors.

The number of empty containers required is a random variable. We have the following

assumption.

Assumption 6.2 The number of empty containers demanded from a depot D by a

demander (shipper) CD during a certain sub-period follows a normal distribution, pq(x) -

N(p., a2).

This assumption reflects the following observations. First, demand for empty

containers is predictable from the perspective of both shipping carriers and shippers. In

fact, econometric methods are among the most widely used for forecasting transportation

service demand. (p(x) obtained from econometric models generally follows a normal

distribution. Second, if we regard the number of containers demanded by a CD as the

mean of a large sample drawn from the shipper's demand distribution, and each sample is

approximately a realization of the actual demand in the previous years for the same time

period, then by the Central Limit theorem, (p (x) follows a normal distribution.



(3) Distribution of Container Depot Storage

A depot Di receives containers from four sources: (a) other depots Dj (i # j); (b) supply

customers CSs; (c) inventory in Di from the previous period: and (d) the outside if Di is

designated as a source depot 6. We know from the MPB model that there exists at least

one depot which does not receive any containers from other depots. Otherwise we could

always find a container flow along a cycle of depots in that sub-period. This would

contradict the objective of cost minimization in MPB.

Thus, the derivation of the distribution of container inventory at depots can have the

following sequence, according to the ways depots receive containers from other depots: (a)

outflow-only depots; (b) depots only receiving containers from outflow-only depots; and

(c) all other depots.

Shipping consignees (container suppliers) are generally independent of each other with

respect to the times of receiving loaded containers and returning stripped empty

containers. Therefore, we have the following assumption.

Assumption 6.3 If the container supply of consignees CS1, CS2,...,CSn to depot

D, follows Poisson distribution 4(xl/1), 4(xA9,/..., (x,/A) respectively, then 4(x/A),

(xA_9 ... 4(xn,/ n) are independent.

6 See Sections 2.3.5 and 3.3.1 for the discussion of the depot interaction with the outside.
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The total number of containers from all suppliers to a depot Di in group (a) is Zj" Xj,

which is a summation of n independent Poisson variables with respective mean •, , Xi ,...

hX. Thus, j"'xj follows a Poisson distribution with mean yj" ij

Denote qi to be the number of containers sent to depot Di from the outside sources7 , ei

to be the container inventory from the previous sub-period at D, then the deterministic

number of containers at Di in the current sub-period is (qi + ei).

Therefore, the total number of containers at depot Di is jn xj + (qi + ei); the first part is

stochastic and the second is deterministic. We denote this as (8~ + d1), where 8i stands for

the stochastic part and di for the deterministic part respectively.

Now we can derive the container inventory distribution in group (b) depots. Although

we make a distinction between the stochastic and deterministic parts of the container

inventory in a depot for the purpose of the study, the depot operators are not able and do

not need to track whether a container belongs to stochastic or deterministic part. Thus, it

is reasonable to make the following assumption.

Assumption 6.4 A depot D sends its containers to other depots and shippers

(demanders) both the stochastic and deterministic parts of its container inventory

proportionally.

7This is meaningful only if D i is a depot allowing container exchange with the outside.



Therefore. the container inventory distribution of a group (b) depot is (61 + d, + 62 +

d2), where 61 is the number of containers sent to the depot from all suppliers. 68 is

stochastic. d, is the total number of containers from the outside and from the previous

sub-period at the depot. d, is deterministic. 6, and d2 stand for the respective stochastic

and deterministic parts of total container inventory supplied by all other depots only

receiving containers from outflow-only depots.

Finally, we can derive the container inventory distribution of group (c) depots. This

has the form: (6, + dI + 62 + d2 + 63 + d3). The meaning of 61, dl,, 62, and d2 is the same as

in the above. 63 and d3 are the stochastic and deterministic parts of the container inventory

received from all other depots in group (c).

(4) Distribution of Containers Received by Demanders

Containers arriving at demander CD come exclusively from depots, which send the

stochastic and deterministic parts of their container inventory to the demander

proportionally as assumed in Assumption 6.4. Suppose there are m depots. Each depot

sends (yi + di) containers to demander CD; yi is its stochastic part and di is its deterministic

part. Then the total number of containers supplied to CD is Xim-(yi + di). The stochastic

part is a summation of m independent Poisson variables and therefore also follows a

Poisson distribution, whose mean is the summation of the means of the m Poisson

distribution.
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6.2.2 MPB-Based Simulation Model

After deriving the statistical distribution of containers supplied to each demander, we

now can answer the following questions: under the stochastic demand and supply, can the

customer demand be met using the MPB model result? And how can shipping companies

adjust the container inflow (outflow) from (to) the outside to obtain a statistically desired

level of demand satisfaction?

The number of containers demanded by a shipper is given and assumed to follow a

normal distribution. The number of containers supplied to the shipper has been derived,

and has stochastic and deterministic parts. The stochastic part follows a Poisson

distribution. Then, we can define the demand satisfaction factor for demander i at the jth

sub-period as:

rý = (4(x/ X) + d) / p(x)

where, 4(x/ X) + d is the total number of containers received by demander i at the j'h sub-

period, 4(x/ X) is its stochastic part with mean X. d is its deterministic part; cp(x) is the

number of containers requested by demander i at the jth sub-period, and follows a normal

distribution N(i., a2).

r = 1 means that the customer demand for containers is fully satisfied. Neither r >1 nor

r < 1 is desirable in practice; r >1 means unnecessary extra container storage and

associated costs, and r < 1 results in unmet customer demand. If r # 1, the shipping
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company needs to increase or reduce the supply of containers to the demander by sending

more containers into (out of) the system through the designated source depots.

Because r is a random variable, we need to take the mean F as the measurement of

satisfaction factor. Thus, F is the mean of a random sample taken from the distribution r

= (4(x/ X) + d) / (p(x). By the Central Limit theorem. F has a distribution, which is

approximately normal with mean g and variance ac / n. n is the sample size.

In fact, the sample mean and variance of the normal distribution F can be computed

from the simulation. Shipping companies can conduct statistical tests about the true value

of F to achieve a desired level of demand satisfaction. There are two types of tests

relevant to this goal, the mean hypothesis test and the mean confidence intervals.

Suppose variables r,,r~,--,7 form a random sample from the normal distribution r,

whose mean and variance are unknown. However, by simulation we can obtain the

sample mean and variance of r,r, .,-,,, denoted as j and "' respectively. In order to

test a hypothesis about the true mean of the normal distribution F, we can construct the

following statistic:

U _ (16.1)
a
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where p0 is the hypothesized threshold value we want to test about the true mean, and n is

the sample size. Now we can test the hypothesis:

Ho:• 2 Cio

H1:'p < o0

under a certain level of significance ao. For Pr (U > c) = ao , If U > c, then we can accept

the hypothesis Ho: t _ :po.

For example, the shipping company may want to know whether the true value of the

mean is no less than 1 (po 2 1) with a 1% significance level, given sample mean i =

1.006, sample variance F-= 0.009, and sample size n = 1000. By statistic (16.1), we

compute U = 2.000. From a t-distribution table, c (0.01, 1000) = 2.326. Then U < c (0.01,

1000). Thus, we reject the hypothesis that the true mean is no less than 1 at the 1%

significance level. However, if the significance level is 5% instead of 1%, then c (0.05,

1000) = 1.645, and U > c (0.05, 1000). Thus, we are able to accept the hypothesis at the

5% significance level.

Based on the acceptance or rejection of the hypothesis about the desired level of

demand satisfaction, shipping companies can decide whether to adjust the container

supply to achieve a desired level of customer satisfaction.

Another related method to grasp stochastic demand satisfaction factor F is to calculate

the confidence interval that the true mean pt falls into, given sample mean j , sample
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variance a-, sample size n, confidence coefficient 0o, and c satisfying Pr (U > c) = to.

Let

- co.;

Ca Ca
and a = n b = P +•n then (a, b) is called a confidence interval for Cp with

confidence coefficient ao. We can then make the statement that the unknown value of t

lies in the interval (a, b) with confidence a0o. The confidence interval method is

particularly useful when shipping companies want the satisfaction factor r to be within a

certain range, for example, (0.97, 1.02) on the justification that if r > 1.02, the costs

associated to achieve the goal is too high and unnecessary; if r < 0.97, the customer

satisfaction level is too low to be acceptable.

In general, r should be close to 1. r greater than 1 indicates there are a more than

sufficient number of containers at the demander's hand in the sub-period. The surplus of

containers contradicts the objective of cost minimization. However, in certain

circumstances, some shipments are so important that the carrier prefers to provide the

demander some spare containers to prepare for unpredictable events, for instance,

transportation delay, more-than-expected demand, etc. r less than one means that the

demand is not fully satisfied for the demander in the time period. The acceptance of r < 1

depends on the shipping company's relationship with the shipper and the market

138



competition. r < 1 is usually not acceptable in the highly competitive and high-value-

added shipping markets.

We now combine the major components developed above into a complete MPB-based

simulation model, as shown in Figure 6.4, which is explained in detail as follows.

Step 1 Run the MPB model:

Run MPB. assuming all the input data are deterministic, using the mean of the

Poisson distribution of CSs and the normal distribution of CDs as the deterministic

container supply and demand for each supplier CS and demander CD, respectively, at

each sub-period.

Step 2 Derive depot's distribution

Derive the distribution of container inventory for each depot at each sub-period,

using the procedure developed in (3) of Section 6.2.1

Step 3 Derive demanders' distribution

Derive the distribution of containers received by each demander during each sub-

period, using the procedure developed in (4) of Section 6.2.1
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Figure 6.4 The MPB-Based Simulation Model
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Step 4 Compute demand satisfaction factor r = received / demanded

Containers received by each demander are composed of stochastic and

deterministic parts, while containers demanded follow a normal distribution. We can

use a statistical program to calculate r for each demander at each sub-period.

Step 5 Mean hypothesis test and confidence interval

Conduct mean hypothesis test and calculate confidence interval for each r, as

detailed in the earlier part of this section.

Step 6 Satisfaction factor r is desired ?

Now the decision maker needs to make a judgment whether r is desirable based

on the result from Step 5: whether the hypothesis that r is larger than a certain level is

accepted and/or whether r falls into a desired confidence interval under a given

significance level ?

Sten 7 Container depot inflow adjustment

If a r is not accepted in Step 6, the decision maker needs to adjust the inflow

(outflow) of containers from (to) the outside to (from) the depots that are designated to

have interaction with the outside under the MPB modeling framework.

After the adjustment, we need to re-compute depots' container distribution and start

the algorithm from there all over again.



Note that each step of the above algorithm is usually performed for all depots or

shippers before moving to the next step. However, there is the case where the decision

maker knows the demand satisfaction factors for some shippers at some sub-periods are so

important that if these factors do not meet certain criteria, the adjustment is necessary.

Therefore, these factors may be preferred to obtain and tested prior to other factors. We

accommodate this observation by drawing a returning path from Steps 3 to 2 and from

Steps 5 to 4.

6.2.3 Numerical Experiment and Insights

A numerical experiment is conducted to illustrate the procedure of the MPB-

simulation model and to gain some insights of the effects of uncertainty on the intermodal

depot selection (IDS) problem for liner shipping and intermodal transportation.

To simplify the presentation, the problem concerned is the same as the one presented

in section 6.1.4 except that: (a) direct supplier-demander movement is not permitted; and

(b) container demand and supply is assumed to be stochastic instead of deterministic.

In order to make the presentation more concise, we consider only the first three sub-

periods out of the entire 6 sub-periods. The deterministic supply and demand is used as

the mean of the respective stochastic supply and demand as given in Table 6.3
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Table 6.3 Stochastic Supply and Demand

unit: containers

Poisson distribution Normal distribution

customer supplier 1 supplier 2 demander 1 demander 2

time-frame mean mean mean variance mean variance
sub-period 1 200 300 400 30 300 20
sub-period 2 400 150 600 35 500 32
sub-period 3 300 400 450 27 550 37

Following Steps 1 through 3 in the above simulation model, we obtain the container

distribution for each depot and demander at each sub-period, and report them in Table 6.4.

In Step 4, a statistical simulation is performed to calculate the sample mean and variance

of the demand satisfaction factor r for each demander at each sub-period. The result is

shown in Table 6.5.

Table 6.4 Container Inventory Distribution for Depots and Demanders

unit: # of containers

time-frame sub-period 1 sub-period 2 sub-period 3
location stochastic deterministic stochastic deterministic stochastic deterministic

depots
depot 1 401 710 171 183 I 139 11
depot 2 I 1 499 33 367 I 2671 33
depot 3 1581 1,242 350 0 I 250 250
depot 4 301 1,449 1 44 6

demnanders
demander 1 i 11 389 501 550 4061 44
demander 2 1 299 500 0 I 2941 256



Table 6.5 Sample Mean and Variance of Demand Satisfaction Factor r

time-frame sub-period 1 sub-period 2 sub-period 3
demander mean variance - mean variance mean variance

demander 1 1.006447 0.005953 1.003469 0.003608 1.004085 0.005639
demander 2 1.004216 0.004460 1.004649 0.006148 1.004873 0.005516

Having obtained these information, the shipping company is able to assess the

acceptability of each demand satisfaction factor r using mean hypothesis test and/or

confidence interval as discussed in Step 5. The calculation result is presented in Table 6.6

for various significance levels.

Table 6.6 Mean Hypothesis Test and Confidence Interval

Note: Ho(r) stands for hypothesis Ho: true mean > r; H,: true mean < r; "y" means accepted, "n" not accepted
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time-frame period 1
sub-period 1 sub-period 2 sub-period 3

hypothesis confi. interval hypothesis confi. interval hypothesis confi. interval
demander sig. Ho(r) sig. interval sig. Ho(r) sig. interval sig. Ho(r)  sig. interval

demander 1 99% y:0.990 99% 1.0008-1.0121 99% n:1.000 99.5% 0.9986-1.0084 97.5% y:0.999 97.5% 0.9994-1.0087
demander 21 90%I n:1.0021 99%I 0.9952-1.0053 99%1 n:0.999199.0%1 0.9989-1.01041 99.0%1 n:1.001 99.0% 0.9994-1.0103



It is observed in Table 6.6 that the values of satisfaction factor r for demander I at sub-

period 2 and for demander 2 at all three sub-periods 1, 2 and 3 do not achieve the desired

level. Another way to analyze the satisfaction factor r is to consider maximum uoma ,

which is the maximum value of uo that the hypothesis test Ho: u > 110 can be accepted for a

given significance level. uom" is the lower bound of the corresponding confidence level

for each demander at each sub-period. For example, uom"x for demander 1 at sub-period 1

is 1.0008 at 99% significance level. This means that at 99% confidence level, the true

mean of the demand satisfaction level r will be no less than 1.0008.

To achieve a desired level of customer satisfaction, the shipping company can adjust

the inflow (outflow) of containers through depots 3 and 4 as illustrated in Step 7. For

instance, the company may think it is costly to maintain the satisfaction factor at a level

greater than 1.0008 for shipper 1 at sub-period 1. Accordingly, he can move some

containers in depot 3 and/or depot 4 out of the system to lower the r level. On the other

hand, one may believe shipper 2 at sub-period 1 is very important so that the satisfaction

factor should be higher than 0.9952. Then additional containers should be sent into

shipper 2 from the outside through depot 3 and/or depot 4 at sub-period 2.

From the numerical example, we can obtain the following insights of the intermodal

depot selection (IDS) problem.
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(1) The larger the number of deterministic containers supplied to a demander, the

lower the variance of the satisfaction factor, i.e., the more certain the demand satisfaction

level is. In the context of the MPB modeling framework, shipping companies can adjust

the supply of deterministic containers using the inflow/outflow of the outside source

through designated source depots.

(2) Even in the presence of stochastic demand/supply, the values of customer

satisfaction factors obtained using deterministic MPB are usually fairly close to 1.

However, in many circumstances, the shipping companies may have to use the MPB-

based simulation model developed in this section to achieve an appropriate level of

customer satisfaction.

(3) In contrast to common sense, the equal mean of number of containers received and

demanded may result in a greater-than-1 satisfaction level. The reason is that the number

of containers supplied follows a Poisson distribution and the number of containers

demanded follows a normal distribution, therefore the supplied variance is generally

greater than the demanded variance. Given the equal mean, it is possible for the

satisfaction factor r to be greater than 1.

The MPB-based statistical simulation model developed in this section handles the

uncertainty of demand/supply in the MPB optimization model, however, it is not a
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stochastic version of the MPB optimization model, which is mathematically intractable

under the current OR techniques.

6.3 Chapter Summary

This chapter is a refinement of the MPB model developed in the previous chapters.

The improvements were done based on the principles of relaxing unrealistic assumptions

and enhancing the MPB model's strength.

First, we proposed an efficient procedure to solve the IDS problem, permitting direct

movement between shippers and consignees. Second, we developed a simulation model,

which is capable of providing decision makers with customer satisfaction level and

associated statistical confidence that can be used as feedback to re-run the MPB

optimization model. Numerical examples are given in both cases.

Both improvements were done on the basis of the MPB model so that we can provide

shipping and intermodal carriers a unified decision-support tool for their intermodal inland

depot selection and container management problems.

Note that for the purpose of simplifying the presentation, the handling of uncertainty in

Section 6.2 still assumed no direct movement between customers. The MPB-based

simulation model can be equally applied to the situations, where there is direct movement.
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Chapter 7

Conclusions and Future Research

7.1 Summary and Conclusion

This research developed mathematical models to assist intermodal carriers in

determining their inland depot network - the location and capacity of each depot and

warehouse.

A mixed integer programming model for determining the optimal location of inland

depots is developed in the context of container liner shipping. The model, called the

multi-period model with balancing requirements (MPB), embraces the fundamental

features of the inland depot selection problem - the container balancing requirements, the

hierarchical decision-making process, the multi-period structure in multiple levels, the

container inventory reduction, the system's interaction with the outside, and the mixed

depot ownership.

Two solution algorithms were proposed: the price-directive decomposition algorithm

and the resource-directive decomposition algorithm. The MPB model was applied to solve
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an inland depot selection problem facing a major international liner shipping company in

its North American operations.

Given the fact that many sound OR models failed in their implementation and

deployment stage, both Chapters 5 and 6 on discuss how to effectively apply the MPB

model in practice. The concept of container supply chain management was developed so

that the MPB model's implementation and deployment issues, especially the institutional

barriers to deploying the model, was addressed from the perspective of integrated

container chain movement.

The MPB model was enhanced further in two aspects. Our interviews with liner

operators suggested that the restriction on direct container movement between consignees

and shippers is not a realistic assumption. Therefore, an efficient procedure, called the

selected artificial-depot procedure (SAD), was proposed to incorporate direct movement

into the MPB modeling framework. As one of the most difficult issues concerning the

container management, the uncertainty in container demand and supply was handled by an

MPB-based simulation model, which integrates the MPB optimization model into a

statistical simulation model. It provides decision makers demand satisfaction levels and

associated statistical confidence to be used as feedback to re-run the MPB optimization

model. The work of the model's enhancement was done based on the MPB model so that

we can provide shipping and intermodal carriers a unified decision-support tool for their

intermodal inland depot selection and container management problems.
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7.2 Research Contributions

(1) Establishing the Modeling Framework

This research systematically establishes the first modeling framework for the

intermodal inland depot selection problem. The following fundamental components of our

framework were not included in the literature. They are composed of:

* Hierarchical decision-making process

* Two levels of multiple periods

* Container balancing requirements

* Container inventory reduction

* System's interaction with the outside

* Mixed depot ownership.

(2) Developing the Multi-period Model with Balancing Requirements

The multi-period model with balancing requirements (MPB) is developed to solve the

inland depot selection problem. MPB incorporates the fundamental features of the

modeling framework. In particular, MPB embodies the very nature of the problem -

container rebalancing activities, which is not included in the literature.

(3) Proposing Two Decomposition-Based Solution Algorithm

These two algorithms are the price-directive (Lagrangean) decomposition algorithm

and the resource-directive (Benders) decomposition algorithm. In addition, MPB is

150



successfully applied to a real-world inland depot selection problem facing a leading

international shipping company.

(4) Developing the Concept of Container Supply Chain Management

To effectively address the issues of model implementation and deployment, we

develop the concept of container supply chain management to be able to examine the

sophisticated implementation issues from this perspective.

(5) Integrating MPB into a Statistical Simulation Model to Handle Uncertainty

The uncertainty in container demand and supply is handled by an MPB-based

simulation model, which integrates the MPB optimization model into a statistical

simulation model. The MPB-based simulation model is capable of providing decision

makers the level of customer demand satisfaction and associated statistical confidence that

can be used as feedback to re-run the MPB optimization model.

7.3 Future Research

Future research work could be carried out along three directions: enhancing the

existing MPB's efficiency and effectiveness, further addressing organizational issues, and

expanding the current modeling framework.



The MPB model is tested against a real-world problem with 10 candidate depots in the

Northeast region of the US. However, a large-scale application may cover all of North

America and has as many as 80 potential depots. The efficiency of the proposed two

decomposition algorithms need to be tested. There may be a need to develop more

efficient algorithms (Shapiro, 1979).

The current simulation model can provide decision makers only with the information

about customer satisfaction level after adjusting container inflow (outflow) into (from) the

system, but they may also want to know the costs associated with the adjustment. The

simulation model should be able to reflect this cost change. In addition, the simulation

model may be extended to cover uncertainty in transportation costs and capacity, and

depot costs and capacity.

We have discussed institutional issues for successfully implementing and deploying

the MPB model. In particular, we recommended three important principles: setting

appropriate strategic goals, restructuring the information flow process, and improving the

supply chain enablers. Further research work is needed to examine organizational issues.

For example, what kind of organizational changes will be necessary to accommodate the

model's deployment? Which might be the major organizational barriers to the

deployment? What might be the major costs and risks associated with the deployment?

The model can be better deployed when these important organizational questions are

appropriately answered. We need to develop models to study these issues in greater detail.
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The reader is referred to Sussman (1994) for a discussion of the implementation and

deployment issues of transportation systems. Intermodal industry-wide regulatory and

institutional issues are addressed in National Research Council (1992).

With respect to expanding the modeling framework, a first step could be to incorporate

the off-shore locational problem, i.e., selection of seaport network into the framework so

that seaport network, inland depot network and container allocation problems can be

addressed in a systematic manner to achieve global optimum, as depicted in Figure 1.1.

The relationship among these three levels may be found in Marcus (1993) and Dejax and

Servant (1986).

Ideally the uncertainty issues should be addressed in the MPB optimization model,

viz., formulating a dynamic and stochastic optimization model to solve the problem.

However, considering the limit of current OR techniques in solving large-scale dynamic

and stochastic locational optimization models, there would be long way to go before any

meaningful attempt can be accomplished (Louveaux, 1993).
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