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Abstract

Several topics from the subject of supersymmetric field theories are reviewed. We first
present the structure of the minimal supersymmetric standard model. Next we discuss the
issue of the doublet-triplet splitting problem in supersymmetric grand unified theories. We
show some necessary conditions which a viable model has to satisfy and present three models
which successfully solve the doublet-triplet splitting problem. We extend the simplest model
to include fermion masses as well. Phenomenological consequences of this and other models
are reviewed as well.

The next topic to be reviewed is confinement in N = 1 supersymmetric gauge theories.
We first summarize the low energy behavior of supersymmetric gauge theories and discuss
the special case of SUSY QCD for different number of flavors. Then we present two necessary
conditions for a theory to be "s-confining", which allows us to give a complete list of such
theories based on a single gauge group.

Finally we review the subject of dynamical supersymmetry breaking. We present the
criteria for a model to break supersymmetry and discuss the method of Dine, Nelson, Nir
and Shirman for finding new models of dynamical supersymmetry breaking. Using this
method we find a large new class of models of dynamical supersymmetry breaking based
on the gauge group SU(n) x SU(m) x U(1), and analyze these theories in detail.

Thesis Supervisor: Lisa Randall
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Chapter 1

Introduction

Supersymmetry (SUSY) is the most popular of theories beyond the standard SU(3) x
SU(2) x U(1) model. The major phenomenological motivation of SUSY is that it solves the
"hierarchy problem". The problem arises because of the presence of elementary scalars in
the standard model. These scalars receive quadratically divergent loop corrections to their
masses, and one needs a huge fine tuning between the bare tree-level mass term and the
loop corrections (usually cut off at a scale A - MPlanck) to set Mweak < MPlanck.

Supersymmetry automatically solves this problem by the cancelation of all quadratic
divergences between fermionic and bosonic loops. There are other hints in favor of super-
symmetry as well. As we will discuss in Chapter 3, the particle content of the minimal
supersymmetric standard model (MSSM) automatically guarantees the unification of gauge
couplings at MGUT " 1016 GeV.

A theoretical motivation for supersymmetry comes from string theories. It has been
shown that in order to have a stable vacuum in string theory (that is to avoid the presence
of tachyonic states) one needs to consider supersymmetric string theories (superstrings).

Here we will discuss several topics from the subject of supersymmetric field theories.
First we review the structure of the minimal supersymmetric standard model. We dis-
cuss the field content and the superpotential, and review the description of supersymmetry
breaking. The issue of electroweak symmetry breaking within the MSSM ("radiative sym-
metry breaking") is taken up next. Finally we close that chapter by reviewing the tree-level
mass matrices of the sparticles (the superpartners of the standard model particles).

Chapter 3 deals with the subject of supersymmetric grand unified theories (SUSY
GUTs), specifically with the doublet-triplet splitting problem which arises in SUSY GUTs.
After a brief introduction to SUSY GUTs, Section 3.1 describes the doublet triplet splitting
problem and the known possible solutions to it. Section 3.2 reviews the most economical
solution, the "Higgs as pseudo-Goldstone boson" mechanism. Three possible implementa-
tions of this mechanism are given in Section 3.3, where one of the models is extended to
incorporate fermion masses as well. This model serves as an existence proof for complete
SUSY GUTs solving both the doublet triplet splitting problem and the fermion mass hi-
erarchy problem. Phenomenological consequences of the Higgs as pseudo-Goldstone boson
mechanism are described in Section 3.4.

Chapter 4 deals with the issues of non-perturbative effects in asymptotically free super-
symmetric gauge theories. After a brief introduction we review the recent results by Seiberg
on the low-energy behavior of SUSY QCD. These results will also be important in Chap-
ter 5. The remainder of Chapter 4 focuses on the confining supersymmetric gauge theories.



In Section 4.2 we define what we mean by "s-confining" theories and in the following derive
two necessary conditions that an s-confining theory has to obey. Using these conditions we
are able to find all s-confining theories based on a single gauge group. These theories are
listed in Section 4.4.

Finally, the issue of dynamical supersymmetry breaking is reviewed in Chapter 5. We
first motivate the importance of dynamical supersymmetry breaking and give the necessary
conditions for a model to break supersymmetry. Section 5.3 describes the classic models
by Affieck, Dine and Seiberg [49], while the SU(N) x SU(M) x U(1) models are reviewed
in Section 5.4. We first describe the SU(4) x SU(3) x U(1) model, where we derive the
exact low-energy superpotential and explicitly supersymmetry breaking. Then we repeat
the analysis for the general SU(n) x SU(m) x U(1) models, which break supersymmetry as
well.



Chapter 2

The Minimal Supersymmetric
Standard Model (MSSM)

In this chapter we review the structure of the MSSM [1, 2, 3, 4, 5, 6, 7]. We first motivate the
particle content of the theory by examining the quantum numbers of the known standard
model particles and by the requirement of anomaly cancelation.

Once the particle content is fixed we can write down the most general renormalizable
superpotential. However such a superpotential will contain terms breaking lepton and
baryon number which leads us to the concept of R-parity conservation.

The question of supersymmetry breaking is discussed next. We list the possible soft
breaking terms. However the Lagrangian involving the most general soft breaking terms is
phenomenologically intractable because of the appearance of many new parameters. It also
leads to some unacceptable predictions. To reduce the number of parameters we restrict
ourself to the case with universal soft breaking terms at the GUT scale. We motivate
the need for universal soft breaking terms by the apparent unification of gauge couplings
in the MSSM and by the absence of flavor changing neutral currents. Then we discuss
radiative electroweak symmetry breaking. Radiative breaking arises because the one loop
corrections involving the large top Yukawa coupling change the sign of the soft breaking
mass parameter of the up-type Higgs doublet, this way introducing a nontrivial minimum
in the Higgs potential.

Finally we give an overview of the possible mixings in the MSSM and enumerate the
physical (mass eigenstate) fields together with the mass matrices.

2.1 Particle content and superpotential

The Standard Model (SM) of particle physics enjoys an unprecedented success: up to now
no single experiment has been able to produce results contradicting this model. Particle
theorists are nevertheless unhappy with this theory. The most important features of the SM
that are technically allowed but nevertheless theoretically unsatisfying are the following:

a. There are too many free parameters
b. The SU(2) x U(1) group is not asymptotically free
c. Electric charge is not quantized
d. The hierarchyproblem.

While the first three problems can be taken care by introducing grand unification, the
mystery of the hierarchy problem remains unsolved in GUTs as well. The hierarchy problem



is associated with the presence of elementary scalars (Higgs) in the SM. The problem is
that in a general QFT containing an elementary scalar the mass of this scalar would be
naturally at the scale of the cutoff of the theory (if the SM were the full story then the Higgs
mass would be naturally of O(Mpi)) due to the quadratically divergent loop corrections to
the Higgs mass. If one wants to protect the scalar masses from getting these large loop
corrections one needs to introduce a new symmetry. The only known such symmetry is
supersymmetry (SUSY), which relates fermions and bosons to each other.'

In this chapter we will review the minimal extension of the SM that includes SUSY, the
Minimal Supersymmetric Standard Model (MSSM) [1, 2, 3, 4, 5, 6, 7]. We will assume that
the reader is familiar with both the structure of the SM and with N=1 global SUSY.

The SM is a spontaneously broken SU(3) x SU(2) x U(1) gauge theory with the matter
fields being

leptons: Li= ( = (1,2, -)
) Li

eR = (1,1,-1)

quarks: Qi = ) = (3,2, )

dR1= (3,1,2-)

Higgs: H= (h (1,2,) i 1,2,3, (2.1)

where i is the generation index, L and R refer to left and right handed components of
fermions and the numbers in parenthesis are the SU(3) x SU(2) x U(1) quantum numbers.

The MSSM is an extension of the SU(3) x SU(2) x U(1) gauge theory with N=1 SUSY
(which will be broken in a specific way, see Section 3).

The rules of building N=1 SUSY gauge theories are to assign a vector superfield (VSF)
to each gauge field and a chiral superfield (XSF) to each matter field. The physical particle
content of a VSF is one gauge boson and a Weyl fermion called gaugino, and of the xSF is
one Weyl fermion and one complex scalar [9, 10]. The VSF's transform under the adjoint
of the gauge group while the xSF's can be in any representation. Since none of the matter
fermions of the SM transform under the adjoint of the gauge group we can not identify
them with the gauginos. Thus we have to introduce new fermionic SUSY partners to each
SM gauge boson.

If we now look at the matter fields of the SM listed above we see that the only possibility
to have two SM fields as each others superpartner would be to have H = i-r2 H* as a
superpartner of L. However this is phenomenologically unacceptable since L carries lepton
number 1, while H lepton number 0, and the superpartners must carry the same gauge and
global quantum numbers. Thus we conclude that we have to introduce a new superpartner
field to every single field present in the SM: scalar partners to the fermions (called sleptons
and squarks), fermionic partners to the Higgs (Higgsino) and gauge bosons (gaugino).

1Another way of solving the hierarchy problem is to assume that the Higgs is not an elementary scalar
but a bound state of fermions, which idea leads to technicolor theories.



xSF SU(3) SU(2) U(1) B L
Li 1 2 -1 0 1
El 1 1 1 0 -1
Qi 3 2 0
l 3 1 - -6

Di 3 1 1 - 0
H1  1 2 1 0 02

H2  1 2 1 0 0

Table 2.1: The xSF's of the MSSM with their gauge and global quantum numbers. i =
1,2,3.

However we can see that we have introduced one extra fermionic SU(2) doublet Higgs
with SU(3) x SU(2) x U(1) quantum numbers (1,2,1). This is unacceptable because of the
Witten anomaly and because of the U(1) anomaly that it causes. Thus we need to introduce
one more SU(2) doublet with opposite U(1) charge. The need for this second Higgs doublet
can also be seen in a different way: in the SM one needed only one Higgs doublet to give
masses to both up and down type quarks, because one was able to use both H and H in
the Lagrangian. However in SUSY theories the superpotential (the only source of Yukawa
interactions between only matter fields and its partners) must be a holomorphic function
of the fields thus both H and H can not appear at the same time in the superpotential [9].
This again calls for the need of two Higgs doublet xSF's, one with the quantum number of
H, the other with the quantum numbers of H. The final resulting xSF content of the MSSM
is given in Table 2.1. (We use the conjugate fields U, D, E because in the superpotential we
can not use conjugation anymore.)

Once the particle content is fixed one can try to write down the most general renormal-
izable Lagrangian for this N=1 SUSY SU(3) x SU(2) x U(1) theory. It is known from the
structure of N=1 SUSY gauge theories that the Lagrangian is completely fixed by gauge
invariance and by supersymmetry, except for the choice of the superpotential, which could
contain all possible gauge invariant operators of dimensions not greater than 3. In our case
this means that

W = (AQ'H2U' + A'jQ'H 1 D3 + A'L'H 1E + /ZH1H2 ) +

+ +(a k iLeDk + kLLEk + L + a"-kDiD U k). (2.2)

The terms in the first pair of parenthesis correspond to the SUSY extension of the ordinary
Yukawa interactions of the SM and an additional term ( "a-term") breaking the Peccei- Quinn
symmetry of the two doublet model. However the terms is the second pair of parenthesis
break baryon and lepton number conservation. Thus as opposed to the SM where the
most general renormalizable gauge invariant Lagrangian automatically conserved baryon
and lepton number, here one has to require some additional symmetries to get rid of the B
and L violating interactions that are phenomenologically unacceptable. The easiest way to



achieve this is to introduce R-parity and require R-parity conservation.2 Under R-parity

H1, H2 -+ H1H2,

Q,u,;DDL,E E -(Q,2U,7D,7L, E)

9 -- -0, (2.3)

which means that

(ordinary particle) - (ordinary particle)

(superpartner) - -(superpartner). (2.4)

Note that this Z2 group is a subgroup of a U(1)R symmetry where the R-charges of the
xSF's are:

R=1 for H1, H2
1

R = for L, E, Q, U, D. (2.5)

However the imposition of the full U(1)R symmetry forbids Majorana masses for the gaugi-
nos which are phenomenologically needed. There are two possible solutions to this problem.
One could impose only the Z 2 subgroup, R-parity, which forbids the B,L violating terms
in the superpotential, but allows for gaugino mass terms.3 If however one imposes the
full U(1)R symmetry then this symmetry has to be spontaneously broken to its Z2 sub-
group leading to complications with the resulting Goldstone boson. We will not discuss this
possibility further here. In both cases however R-parity is an unbroken symmetry of the
theory.

As a consequence of R-parity conservation superpartners can be produced only in pairs,
implying that the lightest superpartner (LSP) is stable if R-parity is exact. Most of the
experimental detection modes of SUSY are based on this fact [11].

2.2 SUSY breaking, radiative breaking of SU(2) x U(1)

In the previous section we have seen the particle content and the superpotential of the
MSSM. However we know that this can not be the full story for two reasons:

-SUSY is not yet broken
-SU(2) x U(1) is not yet broken.

First we discuss SUSY breaking. SUSY was invented to solve the hierarchy problem. How-
ever SUSY can not be an exact symmetry of nature since in this case many of the super-
partners should have been observed by experiments. One has two possibilities for SUSY
breaking, either explicit or spontaneous breaking. While theoretically spontaneous breaking
of SUSY is much more appealing, one nevertheless has to rule out this possibility in the
context of MSSM. To see the reason behind this we have to examine the scalar quark mass

20One could forbid the appearance of the B,L breaking terms by imposing different symmetry requirements.
For example a Z 2 subgroup of BxL known as matter parity could achieve this goal as well. The point is
that once those terms are absent R-parity will necessarily be a symmetry of the Lagrangian.

3 R-parity as defined in Eq. 2.3 is actually Z 2 subgroup of the continuous R-symmetry of 2.5 combined with
a baryon and lepton number transformation. The value of the R-parity can be given by R = (-1)3B+L+2s

where B is the baryon number, L the lepton number and S the spin of a given particle.



matrix in detail [12]. The most general scalar mass matrix in N=I SUSY gauge theories is
given by [10]

2a bWbc + c + !DaDc WabcWb + 1 a r 2D6
M = W W + 2D ° 2 cc' 1 + 2 Ct e1 C (2.6)

Wabc + !DcaD cc WabWbc + aD aD• + 2DCaD kJ2 2 2 aa

where Wa = 1=( ), Wab = =(), etc. and Dc = -g otaTaa b, Dcc = =()

etc., W is the superpotential, the Oa's are the complex scalars of the xSF's, the g,'s are the
gauge couplings, and the Ta's are the generators of the gauge group in the representations
of the xSF's.

Specifying this matrix to the squarks we note that since all the squark VEV's must
vanish (so as color and electric charge are unbroken symmetries) Da = 0 for the squarks.
On the other hand quarks get their masses solely from the superpotential thus WabWbc is
nothing but the square of the quark mass matrix m. Since electric charge and color are
not broken one needs to have D1 = D2 = 0 (where 1 and 2 here are SU(2) indices) and
Di = 0 (i = 1,...8 of SU(3)). Thus the only possible non-vanishing D-terms are D3 and
Dy. Therefore the squark mass matrices can be written in the form

S(m2/3 3 +(1gD 3 + 1g'Dy)1 A
M 2 M32/3 +2 6- = (2.7)

3  at m2/3m2/3 - g'Dy1

for the charge 2/3 squarks and

t + (-!gD3 + !g'Dy)1 A'
M m1 3m11/3 ( 2 (2.8)1/3 - A/t M

A't m/3ml/3 + -g'Dyl

for the charge -1/3 squarks. Here mi/3 and m2/ 3 are the 3 by 3 quark mass matrices in
generation space. M 2/3 and M 2/3 are thus 6 by 6 matrices for the 3 generations of left
and right handed squarks. The exact form of A and A' is not important for us. One
may notice that (as a consequence of the tracelessness of the group generators) the sum of
the D-terms appearing in the two squark matrices is zero. Therefore at least one of the
appearing D-terms is non-positive. Assume for example that 1gD 3 + g'Dy < 0. But if
is the normalized eigenvector of the quark mass matrix m2/3 corresponding to the smallest
eigenvalue mo we get that

(pt, 0)M < m . (2.9)

Therefore there must be a charged scalar state with mass less than the mass of either the
u or d the quark which is experimentally excluded.

Thus we conclude that we need to introduce explicit SUSY breaking terms in order to
circumvent the previous argument. However these terms must be such that the solution of
the hierarchy problem is not spoiled. Such terms are called soft SUSY breaking terms, and
those are the terms that do not reintroduce quadratic divergences into the theory.

The philosophy behind these soft breaking terms is the following: there is a sector of
physics that breaks SUSY spontaneously. This is at much higher energy scales than the
weak scale. SUSY breaking is communicated in some way (either through gauge interactions
or through gravity) to the MSSM fields and as a result the soft breaking terms appear. One
popular implementation of this idea is to break SUSY spontaneously in a "hidden sector",



that is in a sector of fields that do not interact with the SM particles ("visible sector")
except through supergravity which will mediate the SUSY breaking terms to the visible
sector. This mechanism with minimal supergravity generates universal soft breaking terms
for the visible sector fields at the Planck scale.

Thus one has to handle the MSSM as an effective theory, valid below a certain scale (of
new physics), and the soft breaking terms will parameterize our ignorance of the details of
the physics of the SUSY breaking sector.

The most general soft SUSY breaking terms are [13]
i. gaugino mass terms
ii. scalar mass terms
iii. scalar quadratic and trilinear interaction terms.
Thus if one wants to implement this program consistently one has to add a separate

mass term for each scalar and gaugino and add each quadratic and trilinear interaction
term appearing in the superpotential with different coefficients to the Lagrangian:

-Laoft = iQ, n. 2 +Mi;iX i - BIH 1H 2+
i=Qi,Ui,... (i= 12,3

±+ A\ 1Q1 H 2U A Q 1 E A + Aid A '-ALH1 
3l + h.ic. (2.10)

ij ij i/

This would mean that we introduce 17 new real and 31 new complex parameters into the
theory. There are two major problems with this:

-not every set of (mi, Mi, B, Akj ) parameters is allowed by phenomenology
-there are too many new parameters to handle the phenomenology.
Let's first see what the requirements for the soft breaking parameters are. The two most

serious restrictions come from the requirements that
1. large flavor changing neutral currents (FCNC) and lepton number violations are

absent
2. the theory should not yield too large CP violation.
One can easily understand why a general set of soft breaking parameters introduces

large FCNC's. Let's look at the Ko - K 0 mixing. In the SM one gets contributions from
the diagrams shown in Fig. 2-1. However in the MSSM one has additional contributions
from the diagrams of Fig. 2-2, where the intermediate lines are now gauginos and squarks,
and the cross denotes the soft breaking squark masses. In Fig. 2-2 the usual CKM factors
appear at the vertices. Thus the leading part of this diagram is proportional to VtM 2V,
where V is the CKM matrix. The successful implementation of the GIM mechanism in the
SM in Ko - K 0 mixing is based on the fact that the diagrams are proportional to VtV = 1.
However if M 2 is an arbitrary matrix then VtM 2V $ 1. Thus we can see that in order to
maintain the successful GIM prediction in the MSSM one has to require that M 2 0 m 21,
that is squarks must be nearly degenerate.

Very similar arguments hold for the I -+ e7 process which will result in the need of
nearly degenerate sleptons.

The second constraint on the soft breaking terms comes from the fact that the SM can
account for all the measured CP violation. Thus there is no need for extra sources of CP
violation in the MSSM, therefore it is usually assumed that the soft breaking parameters
are real.
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Figure 2-1: Diagrams contributing to Ko - ko mixing in the SM.
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Figure 2-2: Additional diagrams contributing to Ko - ko mixing in the MSSM.
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Thus we have seen what the phenomenological constraints on these soft breaking pa-
rameters are. Now we present a set of assumptions that satisfy these constraints and at the
same time highly reduce the number of free parameters of the model:

1. Gaugino unification (common mass for the gauginos at the Planck scale)
2. Unification of soft masses (common soft breaking mass terms for the scalars at the

Planck scale)
3. Unification of the soft breaking trilinear couplings A'13 (common trilinear soft breaking

term for each trilinear term at the Planck scale)
4. All soft breaking parameters are real.

As one can see these assumptions greatly reduce the number of independent free parameters
of the theory. However one has to stress that these are just assumptions, with no solid basis
of origin. The strongest argument in favor of these assumptions is that if one takes a
supergravity theory in which SUSY is broken in a hidden sector and SUSY breaking is
communicated to the visible sector by gravity then one gets flavor independent mass terms,
real universal A-terms at the Planck scale and real gaugino masses, provided one assumes
that the Ki.hler potential of the supergravity theory is minimal.

The argument for gaugino unification is the following. It is experimentally indicated
that gauge couplings do unify in the MSSM [14]. However the 1-loop RGE for the gaugino
masses is given by [5]

dt ) 0, i = 1,2,3 t =log A (2.11)

Here ai = g2/47r, gi are the gauge couplings and Mi the gaugino masses. The ratios
of gauge couplings to gaugino masses are scale invariant. Thus if gauge couplings unify so
must the gaugino masses.

If one accepts these arguments then the independent soft breaking terms are Ao, mo, B
and M11/2 (at the Planck scale), and the soft breaking Lagrangian at the Planck-scale is
given by

-- £aoftlMp = m2 2, 1/2 12 +i)i- BiAH1H2+ft mi=Q ,,... i=1,2,3

+ Ao( +A'QiH2U3 + ZA Q1HlD3 +± ZA LH1E 3) + h.c. , (2.12)
ij ij ii I

and the Lagrangian at the weak scale can be obtained by running down these universal
parameters from the Planck-scale4 to the weak scale. This procedure will yield sufficiently
degenerate squark and slepton masses, and if the soft breaking terms are real at the Planck
scale then they will not obtain imaginary parts at the weak scale either. Therefore the
above assumptions do satisfy the phenomenological constraints and at the same time they
greatly increase the predictive power of the theory. Often these assumptions about the soft
breaking terms are assumed to be part of the definition of the MSSM. However one can
not overemphasize the fact that these assumptions are ad hoc and need not necessarily be

4Usually the Planck-scale and the GUT-scale are not distinguished and it is common to assume that 2.12
is still valid at the GUT-scale 1016 GeV.



satisfied.
In the remainder of this section we will discuss the breaking of SU(2) x U(1). The Higgs

potential without soft breaking terms is given by

Vsusy(Hi, H2) = 2 (I HI 2 + H2 12) + ( 1 + H2) + 2 (H - H2 )2. (2.13)
2 1 HH+H•H2)2 - 1 2

The minimum of this potential is at (Hi) = (H 2) = 0, thus we need to incorporate the soft
breaking terms to get electroweak breaking. The full Higgs potential at the Planck (GUT)
scale is

V(H, H2)IGuT = (,L2 + m02)(IHi 2 + JH212) - ByI(H 1H2 + h.c.)+
2 12

+ 9(Ht1 fH 1 + H 7H2)2 + 9(H1H1 - H H2)2. (2.14)

This potential still does not break SU(2) x U(1). This can be seen in the following way: in
order to have a nontrivial minimum of the Higgs potential

M2 g12
m IHi HI2 ± m JlH2 

2 - m 2(HiH2 + h.c.) + (H H H H2 ) -(H - HH2

(2.15)
the quadratic coefficients have to fulfill the following inequalities:

mlI + m 2 > 21m121
m 2 2 mH 2  (2.16)

The first inequality is required so that the potential remains bounded from below for the
equal field direction H1 = H2, while the second is required so that the quadratic piece has a
negative part enabling a nontrivial minimum. We can see that the potential in Eq. 2.14 can
not fulfill both inequalities at the same time thus electroweak symmetry is not broken at
the tree level. However radiative corrections can change this situation. To calculate these
radiative effects one needs to evaluate the one loop effective potential:

V-ioop = Vtree(A) + AVi(A), (2.17)

where Vtee is the tree level superpotential with running parameters evaluated at a scale A
and AV1 is the contribution of one loop diagrams to the effective potential evaluated by the
method of Coleman and Weinberg. The running of the parameters in the tree level potential
is generated by the one loop RGE's. Vtee + AV1 is A independent up to one loop order. If
we choose the scale A to be close to the scale of the masses of the particles of the theory
(in our case A -- Mweak) AV1 will not contain large logarithms, thus the leading one loop
effects will arise due to the running of the parameters of the tree level potential between
the Planck and the weak scale. To estimate the running effects on the Higgs parameters
we neglect all Yukawa couplings with the exception of the top Yukawa coupling (this is the
only large Yukawa coupling so it is reasonable to assume that the largest effects will be
caused by it). Then the RGE's for the soft breaking mass terms of the scalars participating
in the top Yukawa coupling of the superpotential are [5]:

dm2H2 3 2 M22 - 3(m + A2)dt 5•Y 1 + 392 3At + A t



dm 16 16 2M2t -91 Mý + g3 M3 - 2A(M2 + Atdt 15 3
2m 1 16
t- -gM 1 + 3g M + -g 3M 3 - A (m 2 + A t ), (2.18)

dt 15 3

where m2 = m2 + , t = 1 log m , A is the energy scale, gi are the gauge cou-

plings, At the soft breaking trilinear parameter corresponding to the top Yukawa coupling,
Mi the gaugino masses and At the top Yukawa coupling.

One can see that the contributions of the gauge and Yukawa loops are independent of
each other and the contributions of the gauge loops are independent of the soft breaking
masses m?. Thus one can solve Eq. 2.18 by setting the gauge couplings to zero and at the
end add the gauge contribution to the resulting solution. Therefore one has to solve the
following equation:

d m2 3 333 mH2 3
M? 2 2 2 m(2.19)

S1 11 m 2Q 1

This differential equation can be solved easily if one neglects the running of of At and At.
The solution corresponding to the universal boundary condition at t = 0 (A = MGUT)

=MM2 3 = m 2 in the limit t -- oo is given by

2 2
mH2 = -2m o

m =0

m Q = 12m. (2.20)

Thus we can see that the radiative corrections due to the top Yukawa coupling want to
reverse the sign of the soft breaking mass parameter of the up-type Higgs, which is enough
to satisfy the conditions for electroweak breaking of Eq. 2.16 at the weak scale. The gauge
loops will yield additional positive contributions proportional to M2/2, and the solution to
2.19 is more complicated if one takes the running of At and At into account. However the
most important feature of the solution in 2.20 is unchanged: appropriate choices of the
input parameters M 11 2 , mo, Ao and At will drive the soft breaking mass parameter of the
up-type Higgs (and only of the up-type Higgs) negative which will result in the breaking of
electroweak symmetry. This mechanism is called radiative electroweak breaking.

Thus as we have seen loop corrections usually modify the Higgs potential such that at
the weak scale SU(2) x U(1) is spontaneously broken. However it is not enough to require
that the symmetry is broken, it has to reproduce the correct SM minimum. The Higgs
potential at the weak scale can be written as

(m•H, + IL2 )IH12 + (m .2 + L2)jH 2 12 - Bu(H1 H2 + h.c.) +

+2 H2 2 ± T2 1 - H H2 )". (2.21)
2 \(Ht7rH1 HH2) 2 1 2



The VEV's of the Higgs doublets are

(H) = ( ) (H2) V2 (2.22)
and we define tanp3 = v2 /vl, v 2 = v2 + v2. Minimizing the Higgs potential we find that to
fix the W,Z masses at their experimental values it is necessary that [5]

m2  - m 2 tan2 P 1
tan2 p - 1 2

B (m + m 2 + 2 2) sin 23
2B = H(2.23)2p

where all parameters are to be evaluated at the weak scale.
With this we are now able to determine the free parameters of the MSSM. In the soft

breaking sector we had mo, M 11 2, Ao and B. In the Higgs sector we have I and tan p, and
since the top mass is experimentally not well measured and At tends to run to an IR fixed
point at Mz, At(MG) is basically an unknown parameter of the theory as well. However
from Eq. 2.23 I 2 and B are determined (but not the sign of I). Therefore the MSSM with R-
parity, universal soft breaking parameters and radiative electroweak breaking is determined
by 5+1 parameters: mo, M 1/ 2, Ao, tano3, At and the sign of I.

2.3 Sparticle masses

In this section we present the possible mixings between the superpartner fields and list the
tree level mass matrices [1, 5, 15].

2.3.1 Sfermions

In principle one must diagonalize 6 by 6 matrices corresponding to the mixing of the L and
R scalars of the 3 generations. To simplify this we neglect intergenerational mixings and
take only L-R mixing into account.

Squarks

The mass matrices in the L-R basis are for each generation of up-type scalars is

(m + 2 - Z sin2 Ow)D m+ (A - I cotn )3 Q U 2 3
MUL,R = 2 2 2- (2.24)m, (A - cot p) mi + mI + sin2 wD

where the mass parameters with a tilde refer to the soft breaking squark mass parameters
while the mass parameters without tilde are the usual quark masses, D = M2 cos 23.

The down-type mass matrix is

( 2  - - -l sin2 Ow)D md(Ad - I tan) )
M? Q d 23 (2.25)

dL d(Ad - tanI3) md + m2 Wsin2 9wD

The only source of intergenerational mixing is the superpotential, thus in the more
general case the diagonal elements m2 and m2) must be exchanged to v,(dXAu,d)ij, where



ij are generation indices. However since the CKM mixing is small and the soft breaking
mass terms are large compared to the quark masses, these effects are usually negligible.

Sleptons

In the same notation the sneutrino masses are:

M? = M? + 1D (2.26)V L 2

while for e, i, i the mass matrices are

= mý + m2 - (I - sin2 w)D me(Ae - tan) (2.27)
eL,R me(Ae - Itanip) m + 2 sin2 OwD

2.3.2 The scalar Higgs sector

We use the notation

H 1 = h ), H 2 = . (2.28)

The tree level masses are calculated from the mass matrices

1 (92 Vree 1 in2 tan p 1
2 a(Imh )a(Imhq) 2! 1 cot p

1 ( 2 Vree 1 2 2 tan3 -1 + 12 ( cot 3 -1=Re ehO) M sin 2t +tMzsn2 12 O(Reh )a(Rehq) 2 -1 cot 0 2 M -1 tan O

2 ee 12 in 2 (tan3 1 (2.29)
OhiA 2 H1 cot #

where M 2 = m' + 2 + 2L 2 , MH± = MWv + MA, i,j = 1,2.

The first mass matrix has eigenvalues 0 (GB eaten by the Z) and MA (CP odd scalar).
The second matrix gives the masses for the light and heavy Higgs bosons:

M,h - [(Mi + MZ) ± /(M I + M) 2 - 4 MAM cos 2 2/3 . (2.30)

The third matrix has eigenvalues 0 (charged GB's eaten by W±) and M%+ (charged scalars).
It is important to mention that for some of the Higgs masses the 1-loop corrections can

be significant. For example from the above formula one would get that mh < Mz, while
including 1-loop corrections the corresponding bound will be modified to mh < 150 GeV
[15].

2.3.3 Charginos

Charginos are mixtures of the charged Higgsinos and the charged gauginos (VW1,2 ). The
mass matrix is given by (A± = (T17 2 ± iW,1)/ //V):



(A+

The eigenvalues are

0

2 I M2

0 M2  -92v 1
0 g2v2  -I1

g2v2  0 0
-I 0 0

M1,2= - (M2 + 2Mv) \I±2 + 2M )p 22 - 4(M 2/p - M, sin 23)2. (2.32)

2.3.4 Neutralinos

Neutralinos are the mixture of neutral Higgsinos and the neutral gauginos (B, VW3 ). The
mass matrix is given by

i 3 1 h2 ) 2
-M 1

0

g'v1 /
-g'v2 / -Vf

0 g'lv/v
M2 -92V1/ l

g2v2/ 2

g2 V2 / V/2
92O2/

0

iB3 )
ho

(2.33)

(2.31)

-



Chapter 3

Supersymmetric Grand Unified
Theories1

As mentioned in the Introduction, one of the main motivations for considering supersym-
metric theories is the unification of gauge couplings. Calculating the running of the coupling
constants in the standard model, it turns out that the gauge couplings do not meet at one
point. However changing the particle content to that of the MSSM, the one-loop 3-functions
change, and the gauge couplings automatically unify at MGUT , 1016 GeV [14]. This is a
strong evidence for the MSSM itself being embedded into a large gauge group, which breaks
at MGUT to SU(3) x SU(2) x U(1).

The simplest such model is to embed the MSSM into an SU(5) theory, and introduce
an SU(5) adjoint (24) chiral superfield E, and an SU(5) flavor H + H (= 5 + 9).

A superpotential for the field E

W 1 MTrý2 ±+ 3ATr 3  (3.1)
2 3

forces a VEV
2

2 = 2 (3.2)
-3

-3

which breaks SU(5) to SU(3) x SU(2) x U(1), while the fields H + H will provide the Higgs
doublets of the MSSM. The matter fields can be incorporated in the usual way using the
representations (10 + 5);, i = 1, 2, 3. The superpotential giving rise to ordinary fermion
masses is given by

W = A1jH10l10j + Bjrl10j5j. (3.3)

3.1 The doublet-triplet splitting problem

The model above (and all other SUSY GUTs) have a potentially devastating problem.
The SU(5) representations H, H are to contain the MSSM Higgs doublets H1 and H2,

1 Based on research done in collaboration with Lisa Randall and Zurab Berezhiani reported in Refs. [34,
40].
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Figure 3-1: The diagram leading to proton decay via the color triplet Higgs fields.

whose masses we know must be in the range of few hundreds of GeV. Moreover, by SU(5)
symmetry the H, H fields contain now color-triplet components as well. However, the
fermionic component of these color triplet fields mediate proton decay via the diagram in
Fig. 3-1. To suppress proton decay to an acceptable level, one must require that the mass
of the color triplets are ~ MGUT. Thus the color triplets of the SU(5) representations H, H
must have mass - 1016 GeV, while the doublets from the same SU(5) representations have
mass - 10' GeV. The doublet-triplet splitting problem is to naturally explain the splitting
of O(1014) of the different components of H, H, without introducing fine-tuning into the
theory. Next we review the possible suggested solutions to the doublet-triplet splitting
problem [16].

3.1.1 Fine tuning

One can just tune the parameters of the superpotential in order to achieve splitting of the
doublet and the triplet masses. Consider the superpotential

1 1
W = MMr TrE2 + Tr 3 + MHHH + f HEH. (3.4)

2 3

The E VEV is given by

(E) = 2 , (3.5)
-3

-3

which yields a mass matrix

( MH + 2f-
MH + 2f f

MH + 2f-{L . (3.6)
MH - 3f

MH 3f -



One can see that if MH - 3f-- = 0, then the doublet masses are zero, while the triplet

masses are of order MGUT. However this requires a tuning of the parameters of order 10- 14,

which makes this model very unattractive.

3.1.2 The "sliding singlet"

Witten noticed [17], that this fine tuning can be achieved naturally, if one introduces a

gauge singlet S and modifies the superpotential to

1 1
W = -ME Tr2 + 1ATri 3 + f'SHH + fH HII. (3.7)

2 3

Now the H equation of motion sets

(f'S + fE)H = 0, (3.8)

and assuming that
0

(H) = 0 (3.9)
0

we get that

f'(S) = 3 f '  (3.10)

which is automatically the right value needed to set the doublet mass terms to zero. How-
ever, it is crucial for this solution, that the only place S appears in the Lagrangian is in
the superpotential term f'SHH. However, after soft SUSY breaking terms are introduced,
loop corrections will generate additional S-dependent terms in the scalar potential and ruin
this elegant solution [18].

3.1.3 The "missing partner" mechanism

In Minimal SU(5), the best proposed solution to the doublet-triplet splitting problem is
the Missing Partner Mechanism [19, 20]. The idea here is to give the triplet a mass through
a Dirac mass term involving a more complicated representation of SU(5) which has the
property that it contains a triplet but not a doublet. The 50 is the smallest representation
with this feature. One therefore constructs the mass terms

W D A5H 5OH(75H) + A'5H50H(75H) (3.11)

so that the triplets, but not the doublets are massive. A model with additional symmetry
to forbid a direct mass term for the 5 and 5 incorporates an additional 75 [20].

This is a very nice idea, but seems unlikely to be the resolution of the dilemma. There
are several problems with this model. First of all, the large rank of the representations
is disturbing. From a theoretical perspective, one has yet to find string theory examples
containing these large rank representations. Another problem is that the gauge coupling
grows very rapidly, so that the theory is strongly coupled not far above the GUT scale.
Although this might be acceptable, it is certainly a problem at the level of nonrenormalizable
operators which we discuss shortly.



A further problem is that one cannot leave the states in the remainder of the 50 massless,
since they contribute like an extra doublet pair to unification, which we know is too much.
One can solve this problem for example by adding a mass term M50 5-0 (though this is
forbidden by the symmetry of Ref. [20]). But then there is nothing in the symmetry structure
of the theory which could forbid the term (5)(5)(75)(75)/Mp which is the product of two
allowed terms in the superpotential divided by a third and is therefore allowed by the
symmetry, no matter what it is. If one believes Planck suppressed operators consistent
with the symmetries are present, the doublet has much too big a mass. This problem is
exacerbated in the case the coupling blows up at a low scale, because it is probably the
associated strong scale which would suppress such operators.

A more compact implementation of the Missing Partner Mechanism was proposed for
Flipped SU(5) [21]. The idea is again to pair up the Higgs with "something else". Here the
something else is a 1 0 H for the 5 H and a 1 0 H for the 5 H, the subscript refers to the Higgs
sector to distinguish these fields from the ordinary matter fields. These 10 H and 1 0H fields
are not dangerous because the nonsinglet nontriplet fields are eaten when SU(5) breaks.
Hence one has eliminated the necessity for the additional mass term.

The 10H contains a 3 but no color singlet weak doublet. The 10H and 10H get VEVs
breaking the SU(5) x U(1) gauge group to the standard model. The triplet Higgs in 5H
pairs with the triplet in 1 0H and the remaining fields in the 10H are eaten by the massive
vector bosons.

This model might work. However, flipped SU(5) is not really a unified model since
the gauge group is SU(5) x U(1) which is not a semisimple group. If it is embedded in a
larger gauge group, the problem should be solved in the context of the larger gauge group.
The other feature we find disturbing is that there are many assumptions about the vacuum
structure. At tree level, there is a D-flat, F-flat direction, and the loop corrections have to
be such as to generate the desired minimum. In Ref. [21], the correct ratio of gauge and
Yukawa couplings was assumed so that the VEVs for 10H and 10H were at the GUT scale
while the 5 H and 5 H VEVs are small and the VEVs of an SU(5) singlet generated the "I"
term. It is certainly easier to evaluate the vacuum when it is determined at tree level, as it
will be in our preferred model.

3.1.4 The "missing VEV" mechanism

Other solutions have been proposed for models which incorporate SU(5) as a subgroup, for
example SO(10). The "missing VEV" or Dimopoulos-Wilczek mechanism [22] is probably
the most popular SO(10) solution. The idea is again to pair the triplet and not the doublet
Higgs with something else so that the triplet, but not the doublet is massive. In this model,
the way this is done is that the VEV aligns so that the triplet, but not the doublet, gets a
mass. (This would not have been possible in minimal SU(5) due to the tracelessness of the
adjoint.)

Again, this mechanism seems very nice at first glance, but worrisome at second. For if
this were all there was, you would have four light doublets, not two. You need to give the
extra doublets a mass, and the problem is how to do this without reintroducing a problem
with proton decay. A series of papers by Babu, Barr and Mohapatra [23, 24, 25, 26] showed
possible ways to make the DW mechanism into a more complete model.

The first example [23] had two sectors giving VEVs aligning in different orientations, one
responsible for the triplet mass, and one responsible for the doublet mass. They thereby
achieved strong suppression of proton decay. There was an additional field to complete



the breaking of SO(10) to the standard model, and an additional adjoint to couple the two
sectors together (eliminating a massless Goldstone) without misaligning the DW mechanism.
The total field content in this model is uncomfortably large - 3(16) + 3(10) + 3(45) + 2(54) +
16 + 16, leading to fairly big threshold corrections and the blowing up of the gauge coupling
before Mpj. Other problems with this particular model was that some operators which
would have been allowed by the symmetries of the model needed to be forbidden, and that
nonrenormalizable Planck mass suppressed operators could be dangerous.

This last problem was addressed in their second model, where they sacrifice strong
suppression of proton decay but generate a natural model, in the sense that they include all
operators permitted by their assumed symmetry structure. The field content of this model
was 3(16) + 2(10) + 3(45) + (54) + (126) + (126). Discrete symmetries were sufficient to
forbid any unwanted terms from the potential. However, the field content was still quite
large, and high rank representations were required.

The third model incorporated a smaller field content and no high rank representations,
so it should be more readily obtainable from string models. In this model, the authors
achieved the DW form with higher dimension operators, so no (54) was required. There
was a 16 + 16 to complete the breaking to the standard model.

However, without three adjoints, there were intermediate scale pseudo- Goldstone bosons.
The authors resolved this problem by canceling the fairly large corrections to unification
of couplings (due to the light charged fields) by large threshold corrections. Although this
might work, it is at the edge of parameter space.

Another nice model based on SO(10) is the model of Babu and Mohapatra [26] which
allows for a 10-16 mixing and therefore a Higgs sector which distinguishes the up and down
quark masses. However, this model had a few small (but not very small) parameters, a flat
direction and therefore vacuum degeneracy at tree level, extra singlets, and a complicated
superpotential.

To summarize, there are some interesting models in the literature, primarily based
on clever group theory structure. However most models suffer from one of the following
problems.

* There is the problem of actually implementing the potential to get the desired min-
imum and light Higgses. The minimum can sometimes be destabilized with higher
order terms. Also some models have flat directions so the vacuum needs to be carefully
thought through.

* It is necessary to ensure the light particle spectrum is compatible with gauge coupling
unification. Most solutions rely on pairing up the triplet higgsinos (not doublet) with
"something else". "Something else" can be a problem (with gauge unification).

* The particle representation is cumbersome. This leads to the questions of whether it
is derivable from strings or whether the coupling blows up before the Planck scale. In
any case, models with large particle content seem unappealing and unlikely.

The problem is clear. Minimal SU(5) relates doublets and triplets! Almost always,
the solution relies on a compromise at the edge of parameter space or tuned parameters or
setting some couplings to zero in the potential. This is a good introduction to the Higgses
as pseudo-Goldstone bosons model which we will argue is an exception to the discussion
above. Rather than relying on pairing the Higgs in complicated ways, the theory relies on
a spontaneously broken symmetry under which the Higgses are Goldstone bosons. This



distinguishes the doublets from the triplets in a very nontrivial way, so that it is natural to
obtain light doublets when the remaining fields are heavy. The originally proposed model
[27, 28, 29] involved gauged SU(5) symmetry and a global SU(6) symmetry which was
implemented by tuning potential parameters. A better model [30, 31, 32, 33] was later
proposed which admits the possibility for justifying the large global symmetry with discrete
symmetries. In fact, as we will see, one can construct a simple model to implement this
idea [34].

3.2 The Higgs as pseudo-Goldstone boson mechanism

One of the most economical and satisfying explanations for why the Higgs doublets are light
could be that they are pseudo-Goldstone bosons (PGB's) of a spontaneously broken acci-
dental global symmetry of the Higgs sector [27]. The Higgs sector of the chiral superfields
is defined with the use of matter parity. Under this Z 2 symmetry all matter fields (fermion
fields) change sign while the Higgs fields are invariant. When Yukawa couplings are incor-
porated (couplings of the Higgs sector to matter fields), the accidental global symmetry
is explicitly broken; however, because of supersymmetric nonrenormalization theorems the
Higgs masses can only be of order of the supersymmetry breaking, or weak scale.

The first attempts to build such a model were made by requiring that the chiral su-
perfields of a given gauge group are put together into a representation of a bigger global
symmetry group [27, 28, 29]. For example the 24, 5, 5 and 1 of an SU(5) gauge group could
form the 35 adjoint of SU(6). While the global SU(6) breaks to SU(4) x SU(2) x U(1), the
gauged SU(5) breaks to SU(3) x SU(2) x U(1), and the uneaten PGB's are in two SU(2)
doublets [27, 28]. Other similar models were discussed in ref. [29].

Unfortunately this model requires even more fine tunings of the parameters of the su-
perpotential than the usual fine tuning solution of the doublet-triplet splitting problem.
For example in the SU(5) model mentioned above this would mean that for the general
superpotential

W = 1MTrj 2 + 1ATr3 + r•L H + a-H + plY + P2y2 +2 3 2
p3Y 3 + p4Tr 2Y ± p5 IHY, (3.12)

where the fields E, H, H, Y are the SU(5) fields transforming according to 24, 5,5, 1 the
following relations have to hold in order to have the larger global SU(6) invariance:

a=M=p 2, /IL=A, P -3 2) A,
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These relations are very unlikely to be a result of a symmetry of a higher energy theory.
Thus this version does not tell much more than the original fine tuned SU(5) theory.

A much more appealing scenario is that the accidental symmetry of the superpotential
arises because two sectors of the chiral superfields responsible for gauge symmetry breaking
do not mix and thus the global symmetry of this sector is G x G instead of the original gauge
group G [30, 31, 32, 33]. This accidental symmetry could be a result of a discrete symmetry
that forbids the mixing of the two sectors so this scenario might well be a consequence of



a symmetry of a larger theory. During spontaneous symmetry breaking G x G -+ G1 x G2
while the diagonal G (which is the original gauge group) breaks to SU(3) x SU(2) x U(1).

The D-terms of the group G x G in this scheme of spontaneous symmetry breaking
(SSB) vanish in order to preserve supersymmetry. Because supersymmetry is preserved,
the requirement for "total doubling" [27] is fulfilled, so associated to every Goldstone boson
there is also a pseudo-Goldstone boson in a chiral multiplet which is massless only by
supersymmetry. Therefore, all the scalars in a Goldstone chiral superfield are light, not
only one of the scalar components. We will refer to both as PGB's throughout the paper.
The genuine Goldstone bosons remain massless even after adding the soft SUSY breaking
terms, while the pseudo-Goldstone bosons get masses at the order of the weak scale at this
stage. The remaining massless states get masses during the running down from the GUT
scale to the weak scale due to the symmetry breaking Yukawa couplings.

These Yukawa couplings have to break the accidental global symmetry of the Higgs
sector explicitly. Otherwise the couplings of the Higgs doublets (which are identified with
the uneaten PGB's of the broken global symmetry) to the light fermions would vanish. Thus
there would be no source for the light fermion masses. The nonvanishing of the couplings
of the Higgs fields to the light fermions (especially to the top quark) is also essential for
radiative electroweak breaking. Thus it is necessary that in these models the Yukawa
couplings explicitly break the accidental symmetry of the Higgs sector.

Explicit symmetry breaking terms in the Higgs sector can yield additional contributions
to the g-term of the Higgs potential (the models presented in section 4 will contain such
explicit breaking terms). There can also be additional contributions to the 1t-term from
nonrenormalizable contributions to the Kiihler potential [35].

An example of models of this kind was given in refs. [30, 31, 32, 33]. In this case G =
SU(6), and the accidental global symmetry is broken to SU(4) x SU(2) x U(1) x SU(5).
There are exactly two light doublets in this model, so the low energy particle content is
just that of the MSSM. The Higgses are naturally light (they are PGB's), while the triplets
have masses of O(MGUT).

Although such a model is very appealing in principle, it is not clear that it holds up
to more detailed scrutiny. The first problem is to construct a potential with the desired
symmetries and symmetry breakings. The second problem is to generate a fermion mass
spectrum compatible with observation.

The flavor problem can be addressed by enhancing the field content and including non-
renormalizable operators [32, 33]. However, the first problem is very difficult. The models
of Refs. [31, 32] do not give the correct minimum without fine tuning and are therefore
unacceptable. The model of Ref. [33] has the correct symmetry and gives the desired min-
imum if one incorporates only the renormalizable terms in the superpotential. However,
once nonrenormalizable terms are incorporated it is very difficult to construct acceptable
models without fine tuning.

In the following we outline many constraints for model building. We consider only
models of the second type; that is, models where the accidental global symmetry arises
as a result of two nonmixing sectors of the Higgs fields. In supersymmetric theories it
may happen that some operators are unexpectedly missing from the superpotential even
though they are allowed by all symmetries of the theory. However we will use the most
pessimistic assumption, that is, all terms consistent with all the symmetries are present and
they are as big as they can be (suppressed only by the appropriate powers of MpI). Our
philosophy for constructing models is to find discrete symmetries that forbid the dangerous
mixings of the two sectors. These could be either R-type or usual discrete symmetries.



(We assume that all other symmetries of the theory above the Planck scale are broken
with the exception of some possible discrete symmetries. These should actually be gauge
type discrete symmetries so that they are not destroyed by large gravitational corrections.
This implies that these discrete symmetries could possibly have anomalies. However these
discrete anomalies can always be canceled by adding extra gauge singlets transforming
nontrivially under the discrete symmetries.)

We find for such models a general feature that the more one suppresses mixing terms,
the more fine tuning is necessary in the superpotential to maintain the correct values of
the vacuum expectation values (VEV's) if the VEV's of all fields in the Higgs sector are
comparable. To find a way out we either need to introduce small mass parameters or fields
with small (or zero) VEV's.

However, the small parameter which can be used to build these models is necessarily
present in models with supersymmetry breaking. Based on the analysis of requirements
for a successful model, we show how to exploit the supersymmetry breaking scale to create
models which have an accidental global SU(6) x SU(6) symmetry. In these models the
Higgs is naturally light, and there are no problems with the triplets. Alternatively we will
show how to use the second possibility (the presence of fields with zero VEVs) to build
another class of natural models without the use of any small parameter.

In the following subsection, we review the SU(6) model and give a simple example for a
model that is acceptable if one incorporates only renormalizable terms into the superpoten-
tial. In Section 3.2.2 we first discuss the requirements for building an acceptable potential
and show why it is difficult to get a natural model. First we consider the use of alternative
SU(6) representations to forbid the dangerous mixing terms. Then we discuss the possibil-
ity of using restrictive discrete symmetries for this purpose. We draw the conclusion that if
mixing terms are suppressed there must be either small parameters or fields with zero VEV
in the theory. In the next section we present three different models that naturally fulfill all
the requirements for the superpotential.

The first model uses a small mass parameter, namely the weak scale, to get the correct
magnitudes of VEV's of the fields in the Higgs sector. The second model does not use
any small mass parameter, but exploits the presence of fields with zero VEV's to obtain
an acceptable theory. In the third model, we assume the appearance of the GUT scale by
an unspecified dynamical origin. With these three models we demonstrate that the idea of
having the Higgses as pseudo-Goldstone particles can be naturally implemented. Finally
we show, that the simplest model can be extended to include fermion masses as well.

3.2.1 A review of the SU(6) model

In the SU(6) model of Refs. [30, 31, 32, 33], the gauge group of the high energy GUT theory
is SU(6). The accidental symmetry of the Higgs part of the superpotential arises because
there are two sectors involving two different fields which do not mix in the potential, so
that an accidental global SU(6) x SU(6) symmetry is preserved. The fields suggested in
Refs. [30, 31, 32] to realize this idea were E in an adjoint 35 representation and H, H in 6, 6
representations of SU(6). Their SU(5) decomposition is

= 35 = 24 + 6 + 6 + 1

H=6= 5+1

S= 6 =5 + 1. (3.14)



Then one of the sectors consists of the fields H, H and the other of E. The accidental
symmetry is realized if mixing terms of the form HEH are not present in the superpotential.
If the fields E and H, H develop VEV's of the form

1 0

=1 0
S= 1 (H) = (H)=U 0 (3.15)

-2 0
-2 0

then one of the global SU(6) factors breaks to SU(4) x SU(2) x U(1), while the other to
SU(5). Together, the VEV's break the gauge group to SU(3) x SU(2) x U(1).

The Goldstone bosons (GB's) coming from the breaking SU(6) -- SU(4) x SU(2) x U(1)
are (according to their SU(3) x SU(2) x U(1) transformation properties):

(3,2) + (3,2) _ +(1, 2) +(1, 2)_1 (3.16)

while from the breaking SU(6) -- SU(5) the GB's are

(3 1) 1 + (3, i)i + (1,2)1 + (1, 2)_ 1 + (1,1)o. (3.17)
3 3 2 2

But the following GB's are eaten by the heavy vector bosons due to the supersymmetric
Higgs mechanism (the gauge symmetry is broken from SU(6) to SU(3) x SU(2) x U(1)):

(3, 1)_ + (3, + (3, 1)) + (3, 2) ± (3, 2) + (1, 2)j + (1, 2)_j + (1, 1)o. (3.18)
3 3 6 6 2 2

Thus exactly one pair of doublets remains uneaten which can be identified with the Higgs
fields of the MSSM. One can show that the uneaten doublets are in the following combina-
tions of the fields E, H, H:

UhE - 3VhH
hi = /9, (3.19)

9V 2 + U2

Uhr, - 3Vhg
h2 = 9V U2 (3.20)

where hH and hft denote the two doublets living in the SU(6) field H and H, while hE and
hE denote the two doublets living in the SU(6) adjoint E .

In order to get the correct order of symmetry breaking we need to have (E) ' MGUT,
(H) = (H) > (E). In this case the gauge group is broken as

SU(6) -+ SU(5) -- SU(3) x SU(2) x U(1)

In the case of opposite ordering of the magnitudes of the VEV's we would get

SU(6) -+ SU(4) x SU(2) x U(1) -- SU(3) x SU(2) x U(1),

which would give unreasonably large threshold correction to the RG values of sin 2 9w.
The biggest question of this model is how to realize the necessary suppression of mixing

terms like H•H in the superpotential and thus achieve the desired vacuum. We want to



find discrete symmetries that forbid the mixing of the two sectors. These could be either
R-type or usual discrete symmetries.

In Ref. [31] a Z 2 discrete symmetry H -- -H, S - -S, H - H, E --+ (S is an SU(6)
singlet) was suggested to forbid the mixing term HEH. But in the supersymmetric limit
the H, H, S VEV's were all zero, so these VEV's come from the soft breaking terms, and
consequently

(H) , (mMGUT)½ a 108GeV, (3.21)

where m is a mass parameter of the order of the weak scale. Consequently unreasonably
large fine tuning is needed to obtain (H) > MGUT-

One can overcome this problem by introducing more fields into the theory [33]. One can
take for example two adjoints E1, E2 instead of just one and a discrete Z3 symmetry under

2,ni 22wi
which El -- es E1 and E2 --+e E2, while H, H, S are invariant. Then the most general
renormalizable superpotential is of the form

W(S, H, HI, E, 2) = aS(IH - ~2) M'S - - m H +2 3
aSTriEE2 + MTr21i 2 + 3 2TrrE3  (3.22)

which automatically has the global SU(6) x SU(6) symmetry. The VEV's are:

m
(S) = (3.23)

1 11

__+M 1(E1 1 -a (3.25)-2

M'm 7m2  12(a +- M) 2 am1 2-2
aH)a= 3 = a+ + 2 a0(3.26)

20

so that this model gives the correct order of VEV's if m, M, M' MGUT. There is no renor-
malizable mixing term allowed by the discrete symmetry that could destroy the accidental
SU(6) x SU(6) symmetry.

But the problem is that it is not sufficient to consider only renormalizable operators.
Nonrenormalizable operators scaled by inverse power of Mp, can potentially introduce large



breaking of the global SU(6) x SU(6) symmetry, which in turn yields large contributions
to the PGB masses. In particular, in the above example the term •-iEiH E1 2H is allowed
and gives an unacceptably big correction to the PGB masses if present. Namely, the Higgs
doublets would acquire masses - MuTI/MpI M 1013 GeV.

3.2.2 Requirements and constraints for the superpotential

We have seen in the previous section that even if mixing terms of the renormalizable su-
perpotential are forbidden by some discrete symmetries, the possible nonrenormalizable
operators can still break the accidental global symmetry and thus spoil the solution to the
doublet triplet splitting problem.

The origin of the nonrenormalizable operators can be of two forms: they either come
from integrating out heavy (O(MpI)) particles from tree level diagrams or they can be a
consequence of nonperturbative effects.

The dangerous mixing terms coming from integrating out the heavy fields can be easily
forbidden by some additional requirements on the Planck scale particles, for example by
requiring that all the Planck mass fields are matter (fermion) fields. In this case the non-
renormalizable terms arising from integrating out the heavy fields can only yield Yukawa
terms. But we know that Yukawa terms are irrelevant from the point of view of PGB masses
(the accidental global symmetry is a symmetry of the Higgs sector only). This assumption
on the heavy fields is usually fulfilled by the interaction terms introduced in models for
light fermion masses (e.g. [32, 33]). In those models we want to generate exactly additional
Yukawa terms suppressed by Planck masses. Thus matter parity can be used to forbid all
dangerous nonrenormalizable mixing terms arising from tree diagrams. Loop diagrams are
naturally proportional to supersymmetry breaking.

Even if the above assumption for the superpotential involving heavy fields is valid, there
is still the possibility of Planck mass suppressed operators in the superpotential which
violate the global symmetry. Although the nonrenormalization theorem prevents these
operators from being generated perturbatively if they were not present at tree level, we
will take the attitude that all operators consistent with the low energy gauge and discrete
symmetries are present, both in the Kiihler potential and in the superpotential. We ask
the question whether it is possible with this assumption to still maintain an approximate
global symmetry which can guarantee that the Higgs doublet is sufficiently light.

The first observation is that the Kiihler potential will always permit symmetry breaking
terms, suppressed only by two powers of Mpi, for example:

1 HtstEH. 
(3.27)

M2

There is no symmetry which can prevent such a term. However, although such terms do
break the accidental global symmetry, they do not lead to generation of a mass term for
the PGB's.

However, the PGB mass terms will be generated if the global symmetry is broken in the
superpotential. In the remainder of this section, we show that it is extremely difficult to
prevent mixing in the superpotential.

We now summarize the requirements for the superpotential of a realistic model.
1. The mass terms for the PGB's (which are identified with the Higgs doublets of the

MSSM) resulting from the symmetry breaking mixing terms should be suppressed at least
by a factor of 10-13 compared to the GUT scale. In this case the masses of the PGB's will



be at the order of 1000 GeV.
2. The VEV's of the fields E and H, H should be naturally (without tuning) at the

order of the GUT scale (1016 GeV).
3. The triplets contained in the E field should have GUT-scale masses not to cause

too large proton decay. One might think that the same requirement holds for the triplets
contained in the fields H, H. However these triplets are eaten by the heavy SU(6) gauge
bosons and are not dangerous for proton decay.

There are two approaches one could imagine to prevent mixing through nonrenormal-
izable operators. One might try to find a representation of SU(6) which breaks SU(6) to
SU(4) x SU(2) x U(1) but does not allow mixing. Alternatively, one can search for more
restrictive discrete symmetries.

We have found no solution with alternative representations. It is also very difficult to
realize the second solution if we try to use Mpj as the only mass scale in the theory. We
show that one either needs to introduce small mass scales into the theory or to use fields
that have zero VEV's to overcome all constraints listed in the following subsections.

In the next two subsections we consider the above two possibilities for model building.
We show that the above requirements necessarily lead us to consider the kind of models
presented in the next section [34].

Alternative representations

Let us first consider the possibility of achieving the desired symmetry breaking pattern
with alternative representations of SU(6). One can consider symmetric, antisymmetric, or
mixed representations. We don't want to replace the the H, H fields because the H7 field
is capable of splitting the light fermions from the heavy ones through the renormalizable
operator 1516, see [32], so we only consider replacing the E field. If the representation is
symmetric, one does not achieve the desired symmetry breaking pattern. An antisymmetric
representation (for example a 15 looks promising) can achieve a good symmetry breaking
pattern since it can break SU(6) to SU(4) x SU(2). Thus with an additional U(1) gauge
group SU(6) x U(1) could break to SU(4) x SU(2) x U(1) (much like the flipped SU(5)
model of [21]). Furthermore, it looks naively as if it can forbid undesired mixing terms such
as 1566 because of the antisymmetry of 15ij . However, in order to cancel anomalies, one
must introduce additional fields, either 15 or 6 + 6'. But this addition makes mixing already
possible through 15 15HH or in the other case through 15H6. Larger representations do
not help because we require a representation that is capable to break SU(6) to SU(4) x
SU(2) x U(1).

Discrete symmetries

The next possibility is to look for more restrictive discrete symmetries. Throughout this
subsection we will assume that the only mass scale present in the theory is Mp1 and that all
fields have VEV's of the order of the GUT scale. It turns out that under these assumptions
even with additional fields, it is extremely difficult to find a satisfactory superpotential with
no unnaturally small parameter. We first summarize the reasons why it is difficult to find
a satisfactory potential without fine tuning. We subsequently elaborate and illustrate each
point in more detail. To be explicit, we assume all fields in the Higgs sector have VEV's of
order 10- 3 Mpt, the lowest possible value, in order to obtain the maximum suppression in
higher dimension mixing operators. This ratio might in fact be larger; one would then need



to suppress mixing operators still further. For this value, we require that the mixing term
is at least of dimension four greater than the terms in the superpotential which respect the
symmetry and generate the VEV's for the F, and H, H fields. The PGB masses will then
be at most (MGUT/MPI)4 MGuT - 1000 GeV.

It is easy to see that with just the fields E, H, H we can not obtain a successful super-
potential. The reason for this is that in order to get nonzero VEV's for the fields we need
to have at least two terms in both sectors of the accidental global symmetry (one sector
contains the adjoint E and breaks SU(6) to SU(4) x SU(2) x U(1) while the other H and
H and breaks SU(6) to SU(5)). Then the quotient of the two terms can always multiply a
term in the other sector, thereby generating unwanted mixing. Explicitly, if there are terms
in one sector of the form

1 1
M"Tr T b (3.28)

then TrEb-a transforms trivially under an abelian discrete symmetry (even if it is an R-type
symmetry). The presence of the terms

1 1
Mc-3 (HH)c + M (3( H)d (3.29)

in the other sector then means that terms such as

M 1+b, (HEb-aH)(H-H)c-1 (3.30)

are allowed. The number b - a cannot be arbitrarily big if the dimensionful fields have
VEV's of order MGUT. This is because in order to balance the two terms in equation 3.28,
there must be a small coefficient of order EbG-a where EG = MGUT/MPI , 10- 3. So in order
for the mixing term to be suppressed by 10- 13, the mixing must be suppressed by at least
e4 .But then b - a > 4 and there must be a small parameter in the potential of order 6C,
which is badly fine tuned.

So we have established that one requires additional fields, that there must be at least
two operators in each of the two nonmixing sectors (one involving the H and H fields and
one involving only the E field), and that the quotient of operators in the superpotential from
the same sector must involve negative powers of at least one field, so that such symmetry
invariants are not holomorphic functions of the fields.

The next point is that in order to prevent fine tuning, the superpotential should contain
operators of similar dimension. The argument which we just gave without additional singlets
can readily be generalized (if the singlet VEV is of the same order as those of other fields)
to show that in order to prevent fine tuning, the dimension of the operators in the potential
which are balanced at the minimum should have comparable dimension. Furthermore, a
term of dimension d will yield a mass term for the non PGB's of the order M , MGUT C 3.
A very high dimension operator without a large coefficient will yield masses for the triplet
fields much less than MGUT. Thus according to our requirement 3 the terms containing
the E field should have low dimensions so that the triplets contained in E have sufficiently
large masses.

Of course, one can consider cases where not all VEV's are the same, but then VEV's
are larger than MGUT and mixing terms will be less suppressed.

We can generalize the above argument about the superpotential containing only the fields
E, H, H to the case when the superpotential also includes an additional SU(6) singlet. To



have nonzero VEV's for the fields we need at least two terms that contain HH and two that
contain Z in the superpotential, while all these four terms may contain the SU(6) singlet
field S. Thus generally the superpotential will have the form (if there is no mixing of the
two sectors)

(RH)aSb + (!H)cSd + TrS f + TrEgSh. (3.31)
Without loss of generality we can assume that d > b, f > h and d > f. If f > h

we require that g > e; otherwise the operator TrEe-gS f - h (which is just the quotient of
the last two terms and thus invariant under all discrete symmetries) would be holomorphic
and could multiply either term of the E sector to give a non-suppressed mixing term. But
because g > e, the operator Eg-eSh-f+d(HH)c is holomorphic. This operator is allowed
by the discrete symmetries, because it is the product of two terms of the superpotential
divided by a third term. Therefore the dimension of the allowed mixing term is equal to the
dimension of one of the terms originally present in the superpotential plus the difference of
the dimension of two terms present in the superpotential. (It is easy to see that this is also
true for the case e > g.) Thus the necessary fine tuning is equal to the suppression factor of
the mixing term. If we want to suppress mixing by c we will need fine tuning of the same
order (to balance terms of different dimensions). To illustrate this argument we present a
model where although mixing terms are suppressed sufficiently we need unreasonably large
fine tuning to get the correct VEV's. In this model the superpotential is given by

W(E, H, H, S) = a SHH + OSTrF2 +

S(HH)3 + TrE, (3.32)

where the discrete charges for the fields E, HH, S are Q = ~ Qj- H= 3, Qs and the

R-charge of the superpotential is 4. (The transformation of the fields under the discrete
symmetry is given by 4 -+ e2riQ,.) Then the first allowed mixing term is HIsHS4,
suppressed by 4 dimensions compared to TrE7 or SSHH. The equations of motion for this
theory are

5aS4(HH)
+ ±TrO2 = 0

aS 5

Mp- + 37 (IH) 2 = 0

76 1
2PS M + AM 6 r)= 0. (3.33)

P1

If the VEV of E has the form

1 11

() 1 V 1 (3.34)

-2
-2



then the solution for V is

1

V = MPI [ (12) (2)1' 3 ] 61 (3.35)

The number multiplying Mpi should be 10- 3 , so even if we assume that this is the 13/61st
power of a combination of the parameters this combination must be (10- 3 )T 10-12
Thus we can see explicitly in this model that the amount of fine tuning (10- 12) is equal to
the suppression factor of the dangerous mixing terms.

One might think that we can overcome this problem by introducing even more fields
into the theory. If we could find a superpotential where the number of terms contained in
the superpotential is equal to the number of fields in the superpotential we could assign
arbitrarily different R-charges to the fields in the superpotential and thus forbid mixing
terms. However this is not possible. The reason is the following: suppose we have n fields
and n polynomial terms in the superpotential. Let's call these terms Ai, i = 1,...n, where
Ai is a polynomial of the fields Ik, k = 1,...n. The superpotential is then

W(Ii) = c akAkA(:i). (3.36)
k=1

The equations of motion are 0 = 0. If neither of the VEV's is zero then we can also write

these equations in the form ýia- = 0, i = 1,.. .n. Thus we get a system of equations

ik Ak = 0, i = 1,...n, (3.37)
k=1

where Ak = Ak((Ij)). This is a set of n linear homogeneous equations for the terms Ak.
There are two possibilities: the determinant of the coefficients fiik is either zero or nonzero.
To have it zero requires fine tuning of the parameters in the superpotential and even then we
can not have all VEV's determined by the superpotential because the equations are linearly
dependent so there are in fact fewer equations than n. If the determinant is nonzero then
the only possibility is to have Ak = 0 for k = 1,.. .n. This implies that at least one of the
VEV's is zero contrary to our assumption.

Thus we need at least n+1 terms in the superpotential to have the VEV's of all fields
determined of the correct size without fine tuning. But this means that we can not choose
the R-charges of the fields arbitrarily. Generally these connections among the R-charges
make it very difficult to find an acceptable superpotential that both determines the VEV's
at the right scale without fine tuning and has the mixing terms sufficiently suppressed. In all
cases we examined with only low dimensional operators for the E field in the superpotential
we were either able to find allowed unsuppressed mixing terms or fine tuning was required
to set the VEV's to the right scale.

3.3 Three models in which the supersymmetric Higgs par-
ticles are naturally pseudo-Goldstone bosons

We have shown in the preceding section that one cannot construct a model based on low
energy discrete symmetries without a small parameter if neither of the VEV's of the fields



of the Higgs sector is zero. However, low energy supersymmetry must contain a small
parameter, namely the weak scale, or equivalently, the supersymmetry breaking scale. In
the first subsection, we show how one can exploit this small parameter to generate models
which naturally respect the accidental global SU(6) x SU(6) symmetry. Our models differ
from the model in Ref. [31] in that we exploit the supersymmetry breaking scale, but we
do not need to tune the parameters. We naturally balance small terms against each other.

In the second subsection we present a different class of models. These models contain
fields with zero VEV's; thus the no-go arguments of the previous section are not valid
here. These models include two mass parameters: all mass terms are proportional to the
GUT-scale while the nonrenormalizable operators are suppressed by the Planck-scale. In
the third model we assume the appearance of a dynamical scale (related to the GUT scale)
but do not specify its origin.

These three models serve as existence proofs for models which implement the SU(6) x
SU(6) symmetry. Based on the considerations of the previous section, we expect the sim-
plest successful models will have features of one of the models presented below.

3.3.1 Model 1

In these models we give superpotentials which together with the soft breaking terms give the
correct values of VEV's. This is similar to the model of Ref. [31] but there the superpotential
contained only renormalizable terms. Consequently the soft breaking terms alone were not
enough to set the VEV's to the right scale and additional fine tuning was required.

The essential observation is that the triplets from H, H are eaten by the heavy gauge
bosons and thus we don't need O(MGUT) mass terms for these fields. The superpotential
is given by

W(E, H, H) = MTrE2 + IATrk3 + a - (3.38)
2 3 +M2n-3PI

If one assigns a discrete Zn symmetry under which HH -+ e2"i/nHH and E is invariant
then these terms are the lowest order allowed ones. In the supersymmetric limit

-1 1
M 1

( 1 , (H)= (H) = 0. (3.39)
-2

-2

The scalar potential (including the soft breaking terms) will have the form:

1 n2 t2 +
V(E, H, H) = TrIME + AE~  + Tr 2 - ( H ) 2 - 2( H 2 +  2)

AmATrE3 + A'maM _ + BMm 2 + m2 (TrE2 + HI2 + IHJ2) + D - terms

(3.40)

where m is a mass parameter of the order of the weak scale while A, A', B are dimensionless
parameters. The D-terms have to vanish not to have supersymmetry breaking in the visible
sector. The soft breaking terms shift the E VEV only by a small (, m) amount. However



for the H, H terms we have the possibility of a new minimum appearing due to the soft
breaking terms. To find this we minimize the H, H part of the potential (using (H) =

(H) = U(1, 0, 0, 0, 0) which is a consequence of the vanishing of the D-terms).

V(U) = n 2 a 2 U4n-2 A'ma U2
n + 2m 2U2 . (3.41)MV• 4-~6  M2n-3

Minimizing this potential we will get for one of the minima

U = 2n2a(4 n - 2)(-nA' + /n2(A')2 - 16n 2 (2n - 1))M L 2n (3.42)

The magnitude of the VEV is determined by the factor

[MI 22 =( P Mpj (3.43)

For n < 4 we get a smaller scale than MGUT which is not acceptable. However for n > 4
the resulting scale always lies between the GUT scale and the Planck scale. (For n =
4, 5, 6 we get U ? 1.5 1016, 7 1016, 2 1017 GeV.) Thus all these cases yield naturally the
correct values of the H, H VEV's. The first mixing term allowed by the Z, symmetry is

P1•2-2(IH)"-1(HRH). However the resulting mass for the PGB's is

(= 2I < 22 . (3.44)
MPy MPI

This means that all models with n > 4 yield an acceptable theory with the correct order
of VEV's and naturally suppressed mixing terms. The possibility that the H, H VEV's
are between the GUT and the Planck scale may even be welcome from the point of view
of fermion masses (see Ref. [32]), and (H) > MGUT is also required for the unification of
couplings.

We can not use this method for getting GUT-scale VEV's for the sector containing the
field E because then the triplets of Z would get too small masses and would spoil the proton
stability. This is however not the case for the H, H fields because the triplets from H, H
are eaten by the SU(6) gauge bosons. Fortunately it suffices to use this method for only
one of the sectors because then mixing terms are already sufficiently suppressed. This leads
us to the choice of the operator (HH)n/M -3, while we have no restriction for the other
sector. Alternatively we could use for example the superpotential

1 1 CLMTr~12  + 2 1Tr3 + 2T2r3_ (HH) (3.45)

with the additional Z 3 discrete charges QE1 = 1/3, Q• 2 = -1/3, Qf-H = 0 (similar to the
model of Ref. [33]). In this case the mixing term is even more suppressed by the additional
discrete symmetry. The lowest order mixing term in this case is

(HE •,2H)( H)n-1/Mw n- 1 m

This model will be used in Section 3.3.5, when we extend it to incorporate fermion masses.



E1 E2 A BT S N HH

Z 1)  - 1 0 0 0 0

R 1 02 1 1 4 1 2W

Table 3.1: The discrete charge assignments of the fields of the Higgs sector of Model 2.

3.3.2 Model 2

In this class of models we will use low dimension operators to get the VEV's of the adjoint
sector and then use two singlets with zero VEV's to communicate the required values of
the VEV's to the H, H fields. The adjoint sector consists of two adjoint fields E1, E2 and
two SU(6) singlets A, B, while we introduce additional singlets (N, T, S) to get the desired

VEV's for H, H. We use a Z( 1) x Z( 2) Z2 X R symmetry, where R is a discrete R-symmetry
with the charge of the superpotential being 1. The discrete charge assignments of the fields
are given in Table 3.1.

The lowest order superpotential allowed by the discrete and gauge symmetries is

MTr1ZE 2 + aTrE 3 + bTr.A + M'AB + cB 3 +

N(TrýE + 1T 3 ) + M S(T 4 - 6(H)2 ). (3.46)

The VEV's are

M6M' 3  1
V, =(3 c [M 6M ' 3]M

3a V2 [M MV2= MV ~MM
M

108ba2
(B) = M V4 8 [M6M'3]1

M 2 M'M

(A) = -3(B)2 [M3MI6]1

121 1(T) = ( ),V2 _ [MMI6']

(T) 1
(HS)= (I)= ,o ( 3[M4MI6]

(S) = (N)= 0 (3.47)



where V1 and V2 are defined by

1 1 1

(JE() = Vi E2) = V2 (3.48)
-2 -2

-2 -2/

If M, M' ý MGUT then all fields (with the exception of N and S) have O(MGUT) VEV's.
The lowest possible mixing term in the superpotential is (H•EH)(HH)AS which yields a su-
persymmetric mass term (so called i-term) for PGB Higgs doublets 9 ~ (1016/2 1019)4 1016

1000 GeV. One can see that the dangerous mixing term is quite big (compared to the low-
est order mixing term of Model 1). One might need some additional suppression factor but
no large fine tuning. The feature of this model that there are symmetry breaking terms that
yield extra p-terms for the Higgs doublets (which may also arise in the models presented in
the previous subsection) solve a potential problem of these models. Namely, if there are no
explicit symmetry breaking terms in the Higgs sector then the 'genuine GB's' will remain
exactly massless at the GUT scale even after adding the soft breaking terms. This results
in a potential instability of the Higgs potential (a flat direction for hi = h*), which has
to be removed by radiative corrections (essentially due to the large top Yukawa coupling).
Explicit global symmetry breaking terms in these models lift this flat direction and remove
the instability. However, these symmetry breaking terms at the same time invalidate the
specific prediction of the 'Higgs as PGB' scheme (the /z-term is not related to soft SUSY
breaking mass term anymore), and we will be left with the general Higgs potential of the
MSSM.

In the above model all fields (except S and N) had the same order of VEV's, thus
there is no hierarchy between the H, H and E VEV's. However such a hierarchy may be an
attractive feature for generating fermion masses and is also necessary for the unification of
couplings. This can be easily achieved in this model by modifying the discrete charges of
HH. We take the Z(1) x Z2) xZ 4 x R chargesforthe AH as 0, 12, , instead of the
charges listed in Table 3.1 (and all other charges are unchanged). Then the only change
will be that instead of S(HH)2 we have S(HH) 4 appearing in the superpotential. This will
result in an H VEV that is the geometric mean value of Mpl and MGUT, which is desirable
for fermion masses. The mixing terms again yield 0(1000 GeV) PGB masses.

3.3.3 Model 3

In the third model we assume that some SU(6) singlet fields have VEV's of the order of
the GUT scale through some unspecified dynamics.

One possibility to suppress mixing terms is to have at least two fields whose VEV's are
naturally zero in the supersymmetric limit and whose presence is required in all dangerous
mixing terms. In this case the mixing terms have the form ST(HH)"•Eb where S, T are
the fields with vanishing VEV's. Then these mixing terms do not contribute to the Higgs
masses because of (S) = (T) = 0 (if we add the soft breaking terms, (S, T) will be of
O(Mweak), so the contribution to the Higgs masses will be also suppressed by a factor of
Mweak/MGUT which is exactly what we need). Thus such fields with vanishing VEV's can
yield the desired suppression of the mixing terms.



One such an example could be a superpotential of the form

aS(IH - aM') + bT(TrV3 - 3N3 ). (3.49)

(We take a cubic term in E because the trace of E vanishes and a quadratic term would
give SU(35) accidental symmetry. N and M should be singlets with respect to the SU(6)
group so that their VEV doesn't break the symmetry further and also to avoid a larger
accidental symmetry.)

The equation of motion for the S, T singlets sets

(HH) = a(M 2)

Tr(E 3 ) = p(N3), (3.50)

while the S and T VEV's vanish because of the other equations of motion.
The problem with this model is that the VEV's of the fields M, N and consequently

of E, H, H are not determined. To find an acceptable theory based on the superpotential
of Eq. 3.49 we need to reintroduce the GUT-scale into our theory by setting the M and
N VEV's to the GUT-scale by hand. The origin of this new scale in the theory could
be for example a condensation scale of a strongly interacting gauge group (other than the
SU(6)). We assume that for some reason the fields M, N acquire VEV's of O(MGUT). Then
these VEV's can be communicated to the fields E, H, H without introducing mixing terms
through the Eqs. 3.50. (In other words we could say that an effective tadpole term in the
superpotential for the fields S and T is generated by integrating out heavy fields that have
VEV's of the order of the GUT scale which spontaneously break the discrete symmetry.)
But even if we set the M, N VEV's to the desired value the H, H, E VEV's are still not
totally determined. This is done by the D-terms and the soft breaking terms. The D-terms
vanish if (H) = (H) and (,) is diagonal. Now adding the soft breaking terms will shift
the values of the VEV's by terms of the order of the weak scale and also lifts the very
high degeneracy of the E vacua. Eq. 3.50 fixes only TrE 3. After we add the soft breaking
terms the only possible E vacua are those which break SU(6) to SU(n) x SU(6 - n) x U(1)
depending on the values of the parameters of the soft breaking terms.

To forbid the direct mixing terms (those without the fields S, T) we should set the
discrete charges of E, HH to be small, so that the mixing terms require high powers of
these fields. If the discrete symmetry is not an R-type then by choosing the charges of
E, HH the charges of the other fields are already determined. For example if we take the

charges as Qs QH M = , = 16,QQT= 21 and QE3 = QN = 2 the first mixing
term without S, T is (/H)18E63, or !H, E exchanged to M2 or N, while the mixing terms
involving S, T are automatically suppressed by a factor (M~ ). (These mixing terms are
just the products of the operators in the two sectors.)

We can go further and forbid even the mixing terms that include S, T by promoting the
discrete symmetry to an R-symmetry. For example if we assign the R-charge for the fields
Qs = 5, Q-H = i = QN2, QT = , QE = QM = 3, and that of the superpotential is

then all mixing is forbidden to more than 50 orders.33

3.3.4 Summary

In this section we have presented three different type of models that all yield acceptable
theories. We have shown how to circumvent the difficulties of section 3 and build natural
theories with sufficiently suppressed mixing terms.



One might think that the above arguments for building a superpotential are true only
for the SU(6) model we have considered. However, it can be shown that alternative models
based on the idea of two noninteracting sectors and either an SU(n), SO(n), or E 6 gauge
group which do not have additional light doublet or triplet fields are trivial generalizations
of the model we have considered, and therefore yield no more compelling solutions [34].

3.3.5 Fermion masses

Next we show that it is possible to extend the successful picture of fermion masses of
Refs. [32, 33] with the discrete charges in accordance with a realistic Higgs sector. For
the Higgs sector we will use the superpotential presented in Section 3.3.1, extending the
discrete symmetry to the fermion sector. We will see a model that is consistent both in
the Higgs sector and in the fermion sector. This serves as an existence proof for realistic
models implementing the idea of having the Higgs fields as pseudo-Goldstone bosons.

First we briefly review the model of Refs. [32, 33] for fermion masses in the SU(6) model.
The minimal anomaly free fermion content of SU(6) that includes one generation of light
fermions is

15 + 6 + 6', (3.51)

where 15 is the two index antisymmetric representation and 6 is the conjugate of the defin-
ing representation. One can add any self adjoint representation and maintain anomaly
cancelation. Generally self adjoint representations have invariant mass terms so it is no use
adding them to the fermion content. But there are some special cases when this mass term
vanishes. For example if we add just one representation 20 of SU(6) (three index antisym-
metric representation) then the mass term for this vanishes by antisymmetry (in general if
we have odd number of 20's one of them will have a vanishing mass). We remark that the
addition of a 20 to the usual particle content of the theory destroys asymptotic freedom of
the SU(6) gauge coupling. But this is not a problem since with only one 20 the increase of
the coupling is very slow, its value increases only a few percent between the GUT and the
Planck scale.

The idea of [32] is to add the extra 20 to the fermion content which will be then

(15 + 6 + 6')i + 20, i = 1, 2, 3 (3.52)

The SU(5) decomposition of these fields is

20 = 10 + 10,

15 = 10 + 5,

S= 5 + 1. (3.53)

Then the renormalizable Yukawa couplings have the form

A(1)20E20 + A(2)20 H 15i + A 15iH6', i, j= 1,2,3 (3.54)

(i, j denote generation indices). If we insert the VEV's of H, H, E and the Higgs doublets
into E (if (H) > (E), the Higgs doublets live almost entirely in the E field, see Eqs. 3.19,
3.20) we get the following mass terms:

A(2)(H)101-0 + AI )(H)5i5 + A(')Q uC h2, i, j = 1, 2, 3, (3.55)\~~-LSI I .7 .7~~~q



where the decomposition of 10 of SU(5) is Q + uC + ec. The fermion fields in (3.52) contain
altogether four 10's, six 5's, three 5's and one 10 of SU(5). From (3.55) we see that out of
these fields one combination of 10's, three of 5's and the three 5's and the 10 will get masses

of O(MGUT), so the light fermion spectrum is the desired

3 x (10 + 5), (3.56)

while only one light fermion (namely, the up type quark contained in 20) gets a mass from
the renormalizable interaction with the Higgs doublet. The reason is that the couplings
of the 20-plet explicitly violate the global SU(6)E x SU(6)H symmetry, so that the Higgs
doublet h2 has non-vanishing coupling to the up type quark from 20, which can be identified
with the top quark. Thus, the top mass is naturally in the 100 GeV range. Other fermions
stay massless at this level, unless we invoke the higher order operators explicitly violating
the accidental global symmetry.

To go further we need to introduce nonrenormalizable operators to give masses to the
other fermions. Generally, these operators explicitly violate the accidental global symmetry,
since they include both the E and H, H fields, so that they can provide nonvanishing
Yukawa couplings to the Higgs doublets, though suppressed by Mpl. In Refs. [32, 33] these
operators were obtained from heavy fermion exchange [36]. For this purpose a specific set of
heavy (Planck-scale) vectorlike fermion superfields in nontrivial SU(6) representations was
introduced whose couplings with the light fermions and the Higgs superfields yielded the
needed structure of nonrenormalizable operators (together with flavor-blind discrete Z2 [32]
or Z3 [33] symmetries to forbid some unwanted operators). For example, in Ref. [32] the
relevant nonrenormalizable operators coming from the specified heavy fermion superfield
exchanges were specified by

1
1p(20E)H 15i, i = 1,2,3,MPI

1
M~120(•EH)6 3

1
M, 15;(EH)(E6j), i,j = 2, 3. (3.57)

The first operator gives mass to the c quark, the second to the b and 7, and the third to
the s and /. These masses will have a proper hierarchy provided that (H) >> (ý). In the
model of ref.[32] the first generation fermions were left massless, however in the model of
Ref. [33] they can also get masses of the needed value.

However in our approach all nonrenormalizable operators that are not forbidden by some
symmetry are present in the superpotential. In other words, we would like to obtain all
masses in general operator analysis, not relying on heavy fermion exchange mechanism [36]
with specified fields. Therefore a 'flavor democratic' approach to fermion masses (which
means that there are no 'family symmetries' that would distinguish among the generations)
is out of question: it would yield too heavy first generation masses. Thus we will need to
use family symmetries in constructing the fermion mass terms. The simplest way is just to
extend the discrete symmetries used for the stabile picture in the Higgs sector also to the
fermion sector.

For the demonstration, we will use the Model 1 presented in Section 3.3.1, which is
based on a Z3 x Z 1) Z2) discrete symmetry. The discrete charge assignments are given
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Table 3.2: The charge assignments of the chiral superfields under the discrete Z(1) x Z ) x Z3
symmetry.

in Table 3.2. The Higgs sector is given by the superpotential of Eq. 3.45. Because we have
now two adjoint fields in one of the sectors of the accidental symmetry the hi, h2 Higgs
doublet fields live in a linear combination of them. One can show that the uneaten PGB
doublets are given by

hi = cos a(cos 7 hE• + siny hE2 ) - sin a hH

h2 = cos a(cos 7 h•, A + sin- h,2 ) - sin a h! (3.58)

where tany = V2 /V 1 and tana = 3V/U. Here (H) = (H) = U, (E1,2) = V1 ,2 , and
v = (V2 + V2)1/2

If V1 , V2 <K U, as it occurs e.g. for n = 6, then the Higgs doublets are dominantly
contained in E1 and E2 while almost not contained in H and H.

The allowed Yukawa couplings in this model together with their physical role are listed
below.

- 15iHI•: makes the extra 5's and 5's heavy.
- 20H15 3: makes the extra 10 and 10 heavy.
- 20E120: yields heavy top quark.
- 20E2HH63: defines 63 state and yields b and r masses.

- 20E 2 H152 : defines 152 state and yields charm mass via c-t mixing.

-15 2 ,1E1 E2l62: gives s, IL masses and Cabbibo mixing.

-- 152,11E2R2 R(HH)63,1: gives d,e masses and 1-3 mixing.

- _152 ,1H~~1 2 H152 ,1 : gives u mass.
M denotes the suppression scale of the nonrenormalizable operators. We denote EH =

H), E . As we noted before, for n = 6 (H) is at an intermediate scale scale between (E)
and Mpl . Since (E) = MGUT - 1016 GeV is fixed (as the SU(5) scale) by the gauge coupling
unification, we obtain EH - E - 1/30, which can explain the fermion mass hierarchy. A

somewhat better fit can be obtained with the slightly larger value EH , 0.1. This could
occur if the above listed operators are generated by heavy fermion exchange (the heavy
particles should be below the Planck scale, with masses M - 1018 GeV). The desired value
of the parameter e should remain - 1/30 which fits perfectly to the light generation fermion
masses.

The physical consequences of the above listed operators can be summarized as follows
(A denotes the Yukawa couplings of the MSSM, while 0ij denotes the mixing angle of the
i'th and j'th generation):

- Atr 1
- Ab,-r " Ef , Ab = A'.
- Ar ,E 2



- sin023 = A - EH.

- A,,, c EE~, but the ratio A,/A, is not fixed (because there is more than one operator
due to the different possible contractions of indices in the operator 152,1Y1EE26 2).

-Ad,e EE4H but the ratio of the couplings is not fixed again. The ratio Ae,/, is of

order EH Nc/At. However Ad is a somewhat small.
-A, , E3E. The ratio A,/Ac is of order EEH AJ,/•XT V /-, .

- sin 012 - 0(1) (Cabbibo angle).
- sin 01 3 N •
All these consequences (except the down mass which must be enhanced by introducing

a large Clebsch coefficient) are in qualitative agreement with the experimental values, pro-
vided that tan 3 is small (close to 1). In fact, here we used the general operator analysis
consistent with the gauge SU(6) and discrete symmetries. By addressing the specific heavy
fermion exchanges, one could also fix the relative Clebsch factors between the down quark
and charged lepton masses [32, 33]. Thus we have shown that a consistent model based
on the SU(6) gauge group and discrete symmetries can be constructed. In this model the
accidental global SU(6) x SU(6) symmetry is preserved by nonrenormalizable operators
in the Higgs superpotential up to sufficiently high order terms, so that the Higgs doublets
are PGB's without any fine tuning. On the other hand, Yukawa terms explicitly violating
the SU(6) x SU(6) symmetry yield the necessary Yukawa couplings for the light fermion
masses.

3.4 Phenomenological constraints on the Higgs as pseudo-
Goldstone boson mechanism

In this section we investigate the restrictions that the assumption that the /-term is gen-
erated purely by the Higgs as PGB mechanism places on the low energy physics. Because
of an additional constraint on the Higgs sector tan 3 is not an independent parameter. We
impose this constraint and check whether a suitable standard model minimum exists. This
will result in an equation for tan/p which is given in Eq. 3.85.

We solve this equation numerically and give the resulting range of tan 3. The parameter
range where this equation can be satisfied is also displayed.

Thus we will show how our assumptions on the GUT physics together with our present
knowledge of weak scale phenomenology constrain the parameters of weak scale supersym-
metry. This way we could get information on the GUT scale physics if the MSSM parameters
are ultimately measured in future colliders.

3.4.1 The Ip-term from the Higgs as PGB scheme

In the Higgs as PGB solution to the doublet-triplet splitting problem one assumes that
there is an additional global symmetry which, after spontaneous breaking, ensures the
lightness of the Higgs particles [27]. For example, in the originally proposed model the
SU(5) gauge group is enlarged to an SU(6) global symmetry containing the gauged SU(5).
While the SU(6) breaks to SU(4) x SU(2) x U(1), the gauged SU(5) breaks to the SM
group SU(3) x SU(2) x U(1), leaving one pair of SU(2) doublets as uneaten Goldstone
bosons [27, 28].

However only one of the scalars in the chiral superfields is a genuine Goldstone boson;
the other scalar is massless only on account of supersymmetry. Thus it is not surprising



that the soft breaking terms (which do preserve the extra global symmetry) generate mass
terms for these non-Goldstone boson light fields and a supersymmetric i-term for the Higgs
fields.

In this section we will explicitly demonstrate how this mechanism works in the above
mentioned SU(5) model with SU(6) global symmetry. Although this model is not the most
esthetic in that it requires tuning the SU(5) couplings, the simplicity of this model makes it
a good example to illustrate the generic features of the Higgs as PGB mechanism. We will
also see in Section 3.4.4 that this model can be an effective theory for some energy range
for the more realistic model of Refs. [30, 31, 32, 33, 34]. All the results in this section apply
more generally as has been shown in Ref. [27].

The Higgs sector of this model consists of one adjoint of SU(6), denoted by -,

4 = 24 + 5 + 5 + 1 = E + H + H + S (3.59)

under SU(5). The explicit realization of this decomposition is given in the following way:

( 3 S1 ) (3.60)

The superpotential is given by

1 1W( =) = MTr +2  Tr)3. (3.61)
2 3

The VEV is given by

1

M 1 1 (3.62)

-2
\ ~-2

which breaks the gauged SU(5) to SU(3) x SU(2) x U(1), and leaves one pair of Goldstone
bosons uneaten, which can be identified as the SU(2) doublets in H and H. The scalar
potential after the inclusion of the soft breaking terms is given by

V(I) = Tr M4ý + A(4 2 
- 2T + (A.ATr# + BMTr + h.c. + 06 ± 3 2

(3.63)
Now the P VEV is shifted to

(~ = [M + (A - Bp) + (3AMB, - A- 2Bj - m ) + O . (3.64)

After substituting (f) into the potential one finds a mass term for the doublets in H, HI
(denoted by h,, hd)

2t
h, -

[2M2 + 2(At - B e )2, (3.65)

while at the same time the shift in the 1 VEV generates a mass term for the higgsinos h1



and hd of the form
(A, - B)h/,clhd + h.c.. (3.66)

Thus, as it was shown in general in Ref. [27], there is a supersymmetric p-term generated by
this mechanism, which is usually a model dependent function of the soft breaking parameters
(in the above described model I = A4 - Be). The other important lesson from this example
is that the combination 1/Vi2(h, + ht) is the genuine Goldstone boson with no mass term
at the GUT scale even after inclusion of the soft breaking terms [27]. Such a mass term is
generated only by the explicit symmetry breaking loop corrections.

Thus, the general conclusion is that the Higgs as PGB mechanism generates the following
mass term for the MSSM Higgs fields at the GUT scale:

V(h,, hd)lMGUT = (mO + P2 )Ih, - htd2 + D-terms, (3.67)

where mo is the soft breaking mass parameter introduced in Eq. 3.63, while yt is a function
of all soft breaking parameters.

The general Higgs potential in the MSSM is given by

V(hu, hd) A = m2(A)hthd + m2 (A)t h, -+ m2(A)(huhd + h.c.)+ D-terms (3.68)

where we have explicitly displayed the scale (A) dependence of the parameters and where

m (A) = m (A) + P2(A),
m (A) = m(A) + t(A),

m2(A) = B(A)s(A), (3.69)

mU, m2 are the running soft breaking mass terms for the up- and down-type Higgses, I(A) is
the running p-parameter, while B(A) is the running soft breaking parameter corresponding
to the p-term. From Eq. 3.67 one can see that the specific tI-term generated by the Higgs
as PGB mechanism requires that the boundary condition

mr(MG) + IL2 (MG) = m2(MG) + tI2 (MG) = -B(MG)ti(MG) (3.70)

is satisfied. If one assumes universal soft breaking terms at the GUT-scale, then the first of
the equations is automatically satisfied, and we have one additional constraint equation.

As noted already in Refs. [27, 28, 37, 31], Eq. 3.70 means that the number of free
parameters in the MSSM is reduced by one. However we have not seen in any of the
previous analysis an explicit determination of the results of this additional restriction.

Already the authors of the first papers on this subject noted the importance of Eq. 3.70,
and analyzed its consequences. However in these papers [28, 37] a very specific form of
the soft breaking terms was assumed and therefore the consequences were not sufficiently
general. The authors of Ref. [31] also provide an analysis of the constraint of Eq. 3.70.
However their method is not described in sufficient detail for us to compare the results.



3.4.2 Analysis of the constraint arising from the Higgs as PGB mecha-
nism

As we saw in the previous section, the specific form of the I-term generated by the Higgs
as PGB mechanism implies the following constraint on the running mass parameters:

m2(M) + 2(M) = m(M) + 2(M)= -B(M)(M) (3.71)

where M is the scale where the additional global symmetry which gives rise to the light
Higgses is broken. We make the following assumptions:

A. The IL-term is generated purely by the Higgs as PGB mechanism implying the con-
straint 3.71.

B. The form of the constraint 3.71 remains valid at the GUT-scale. 2

Usually the number of free parameters in the MSSM (assuming universal soft breaking
terms at the GUT scale and gaugino unification) is 5+1, where the 5+1 are:

1. mo - the universal soft breaking mass term,
2. A 0 - the trilinear soft breaking term,
3. M1/2 - the gaugino mass,
4. At - the top Yukawa coupling,
5. tanp/ - the ratio of Higgs VEV's,

and the extra parameter is the sign of the y parameter.
We can see that this set does not contain either IL or B, since they are determined (at the
weak scale) from the requirement of electroweak symmetry breaking (see e.g. [5]):

i - -2 tan2 p 1-2(Mz) d mu M2tan2 p - 1 2

1
B(Mz)p(Mz) = 2 sin 2/(m + fit ), (3.72)

where mn•, 2 , in, m•n are the 1-loop corrected values of the above defined soft breaking
mass parameters evaluated at the weak scale.

This means that the constraint Eq. 3.71 will determine one additional parameter of the
5, but in a nontrivial way. In our analysis we choose mo, Ao, M1/2, At and the sign of iL to be
the independent parameters and tan/3 will be evaluated in the following way: given the 4
input parameters, one can calculate the soft breaking mass terms at the weak scale through
RG running. Thus, we will have an expression for CI2(Mz) and B(Mz) as a function of tan f
for every set of input parameters. Then we scale these expressions back to the GUT-scale
and require that Eq. 3.71 is satisfied. This will yield an equation for tanf3. In our analysis
we use the one loop RGE's for the MSSM, retaining only the top Yukawa coupling and the
gauge couplings. In this case the RGE's can be solved analytically with the exception of one
function, where numerical integration is necessary. The approximate analytical expressions
are [38, 39]:

m = m + 0.52M 2/v , + Am 2

2Our results do not change significantly when allowing running between Mp and MG. See the end of
Section 3.4.4.



2 2 2
md = m0 + 0.52M11 2

p 2 (Mz) = 21(1 (1 - 1/2

Ao Yf Ye

B(Mz) Bo -2 Y + M 11 2 1.2t- 0.6 , (3.73)

where

Am 2 = --mo +2.3AoM 1/2 1 - Yt 2 Y 1  +M1/ 2 -7 Yt +3 3
2 YJ Yf YJ 2 YJ YJ Yf YJ

(3.74)
Yt = A/47, (3.75)

27rYt(Mc)E(t)
= 2r + 3Yt(MG)F(t)'

16 3 13

E(t) = (1 + 0 3t) 3b3 (1 + 32t)2(1 + ilt) 9b, (3.77)

Ei = ac(Mc)b/4rx, (3.78)

t = log(MG/A) 2 , (3.79)

F(t) = E(t')dt', (3.80)

Yf 2E(t= (3.81)3F(t) '
for t = log(Mc/Mz) 2 , MG = 2 _ 1016 one has E - 14, F _ 293 in the MSSM. Putting these
together with the constraint Eq. 3.71 and with Eq. 3.72 for electroweak breaking one gets
the following equation for tan r [40, 41]:

m0 + 2(1 - y)1/2 0 - /2 - Am tan2 -1 2

1 Y tan a 201-

[ - M 11 2 1.2 - 0.6 -m2 - 0.52M 12/

2 tan2 3 p M 2t an 2 3- 1 2 . (3.82)

When solving this equation one has to be careful about the sign of tanp. In the MSSM
one can fix tanOp to be positive, because for negative tanp one can redefine the phase of
one of the Higgs fields to absorb a minus sign and thus changing the sign of the ByI term in
Eq. 3.70. However in our case the constraint of Eq. 3.70 is not invariant under this phase
redefinition. As a result Eq. 3.82 is not invariant under tanp/3 - tanp, thus as opposed to
the MSSM one loses generality by restricting to positive tanp. Therefore we solve Eq. 3.82



separately for positive and negative tan p.
The ± in Eq. 3.82 stands for the two possible signs of the y parameter. Note however,

that Eq. 3.82 does not yet include the corrections to m2 and m2 arising from the one loop
corrections to the effective potential which are known to be significant and which should be
incorporated. The expressions for these corrections are:

Am2 =- cAVU iV 2

Amd_ OAV
and we retain only the top-stop loops for

and we retain only the top-stop loops for AV:

(3.83)

AV = m2 m,  log ( 2

where m!, 2 are the stop masses and rr

1

m + 2(1 - XYt)1/2

Am tan2

tan2 • _

+ m log - - m' log _ 33,2 t2
2  2 2 k A 2  2

(3.84)
it is the top mass. Eq. 3.82 is then modified to be

S2 tan2  2 Am2-m 2 - 0.52M 2 - Am2 ' Z + d
/2 tan 2 - 1 2 tan2 - 1

_1

YlJ-~)

+M] ± - M1/2 (1.2

Am _ Amu tan2 \
tan 2 /3 - 1 tan 2p - 1

tan) M 2+ tano p+ 1
/4 + tan2 IU tan2/3 - 1

- 06 - m - 05 2 M 2 , - Am 2 tan2 •3 M2
- k0-6)] 0.52M1/2 tan2 )3 - 1 2 -F

1/2

1 . (3.85)

3.4.3 Results

We have shown in the previous section that the fact that the ,-term is generated by the
Higgs as PGB mechanism implies Eq. 3.82 for tan3p.

We note that Eq. 3.82 is invariant under the transformation -1 -+ , M1/ 2  -M+1/2
and Ao -+ -Ao. Therefore one can fix pj < 0, and then the solutions corresponding to
positive IL are obtained by taking M 11 2 -~ -M1/ 2 and Ao -- -Ao. Consequently we will
show four plots; the first two corresponding to tano > 0 and both signs for M1/ 2 (Figs. 3-
2.c and 3-2.d). Subsequently we will give the two plots corresponding to tan/3 < 0, with
M1/2 > 0 in Fig. 3-3 and M 11 2 < 0 in Fig. 3-4. In all these plots we will have i < 0 fixed.
All IL > 0 solutions can be obtained as described above.

The values of mo and IM1/21 are bounded from below in order to ensure that the sparticle
masses obey the experimental limits [42]. Thus one has to combine the experimental lower
bounds on the sparticle masses and the requirement that there is a solution to Eq. 3.85 to
get the possible parameter range of the MSSM.

We solved Equation 3.85 numerically for the small tan/3 regime (we take 1 < tan/ < 15;
large tan/3 would require a fine tuning of order 1/ tanf in the Higgs sector [43] contrary to
the spirit of not tuning parameters). In the following we summarize the main features of
the solutions.

-- v v



If one fixes tan p > 0 then the only viable solutions fulfilling the experimental constraints
correspond to

-large values of IAo0
-relatively small values of mo and IM112 1.

This is illustrated in Fig. 3-2 where we display the allowed parameter space for a fixed value
of A• and different fixed values of mo. One gets the same type of plots for other fixed values
of At. Figs. 3-2. a and b are presented to ease the reading of the subsequent plots. They
both display the mo = 60 case with detailed explanation of the allowed parameter space.
Figs. 3-2. c and d are the same but for four different values of mo.

However there is an important potential problem with these solutions: the existence of
charge and/or color breaking (CCB) minima of the potential of the sleptons and squarks.
We use the "traditional" condition for the absence of such minima [44] but we evaluate this
condition not at the GUT scale but at the weak scale. This yields the following conditions
for the weak scale parameters:

S<3(m + m + m2)
A22 S< 3(m + md  )
A+ < 3(m + + (3.86)

where the Ae, Ad and Au refer to the soft breaking trilinear terms of a given interaction
(that is Ao scaled down to the weak scale) and the m's refer to the soft breaking scalar mass
terms also evaluated at the weak scale. We have calculated these parameters in the same one
loop approximation (that is including only loops with gauge or top Yukawa couplings), and
plotted the allowed region (that is the region where the inequalities 3.86 are satisfied). It is
well known that these conditions are neither sufficient nor necessary to avoid the presence
of CCB vacua [44]. The full analysis for the absence of these particular CCB vacua has
been recently done in [45]. We have checked that these results are sufficiently close to those
of the full analysis given in Ref. [45], with the results of Ref. [45] being always even more
restrictive than those based on our analysis.

Furthermore even if a CCB vacuum exists that is a global minimum of the scalar poten-
tial one has to calculate the tunneling rate from the false MSSM vacuum to the real CCB
vacuum for each such solution and only if that is large can one exclude a given point in
the parameter space. Thus it is clear that Eq. 3.86 is not the full story. However it can be
used as an approximate indicator for the presence of CCB vacua. If one is very far outside
the allowed region allowed by 3.86 then that point on the parameter space can be safely
excluded. If one is deep inside the allowed region CCB vacua are probably not dangerous.

In Fig. 3-2 we also display the CCB bounds obtained from Eqs. 3.86, along with the
allowed parameter space. As one can see from Fig. 3-2, all these solutions to equation 3.85
lay outside the bounds of 3.86 and thus CCB poses a threat to the entire allowed parameter
space. Therefore if we take these CCB bounds seriously we have to discard these solutions.
This conclusion is not altered if we take different values of At.

In this case we can conclude that one needs to take tan/3 < 0. If we again fix I < 0 as
before. We will get two type of solutions for this case. The solutions to the M1/2 > 0 case
resemble very much the solutions of the previous case; that is one needs to have large jAol
and small mo and M 112. However now larger values of M1/ 2 and mo are possible, but the
overlap with the CCB allowed region is still very small as illustrated in Fig. 3-3. (There is
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Figure 3-2: The allowed MSSM parameter space for a fixed value of At (At = 1.2) and for
different fixed values of mo with tan/3 > 0. a: mo = 60 GeV, M 1/ 2 > 0. The curve on the
right of the plot gives the region where Eq. 3.85 can be satisfied with the above mentioned
parameters, while the curve on the left gives the region where CCB vacua are absent. b:
the same as in a for M1/2 < 0. In both cases i < 0. As explained in the text the I > 0
solutions can be obtained by taking M1/2 -+ -M1/1 and Ao -- -Ao simultaneously. c: As
in a for varying mo. In both c and d the solid line corresponds to mo = 0 GeV, the dashed
to mo = 60 GeV, the dotted to mo = 120 GeV and the dash-dotted to mo = 180 GeV. d:
As in b for varying mo.
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Figure 3-3: The same as Fig. 3-2 but for tan,3 < 0 and positive M1 1 2 . The solid line
corresponds to mo = 0 GeV, the dashed to mo = 120 GeV, dotted to mo = 240 GeV and
the dash-dotted to mo = 360 GeV. One can see that the overlap of the solutions with the
CCB allowed regions is very tiny.

still no overlap for small values of mo's and tiny overlap for large values.)
The final possibility (negative tanf, negative IL and negative M1/ 2) is not so restrictive.

In this case one does not get an upper bound on IM11 21 and mo; instead one gets a lower
bound on IM 11/2 (which is however more constraining then the usual experimental bounds
in the MSSM). One gets a large overlap with the CCB allowed region. This region of overlap
is however much more restricted than the region of parameters allowed in the MSSM. This
is illustrated in Fig. 3-4 for different values of mo and fixed At. Figs. 3-4.a and 3-4.c are
again presented to ease the reading of the other two plots, with detailed explanation of the
allowed region. Note in Figs. 3-4.b and 3-4.d that for mo = 500, 1000 GeV one does not get
any restriction from the CCB bounds if JAoj < 1000 GeV. Also note that for large values
of mo the MSSM bound on M1/2 is independent of mo. Different values of At yield similar
plots, with the curves somewhat shifted to the right (towards larger values of Ao). This is
illustrated in Figs. 3-4.b and 3-4.d.

In summary we find that most of the possible solutions to Eq. 3.85 obeying the CCB
bounds correspond to the tanL3 , M1 / 2 , IL < 0 case with the allowed parameter space displayed
in Fig. 3-4.

Since tano is not a free parameter of the theory it is not surprising that the range of
values tan/3 can take on is much smaller than in the MSSM. There any low value of tan ,
not too close to 1 can be acceptable for fixed A 0 and mo if one varies M 1/2. In our case
however tanp is the solution to Eq. 3.85 and thus will in general not take all values. This
is illustrated in Fig. 3-5, where we display the allowed range of tanp3 for fixed values of At
and mo, while IM1/2 1 is allowed to vary in the range of 0, 800 GeV. One can see that one
finds a smaller region of acceptable vacua than the MSSM together with the experimental
constraints would allow.

To conclude this section we summarize the consequences of our analysis. We have
seen that the boundary condition 3.70 together with the requirement of an acceptable
SM minimum will determine tan/p from other input parameters. We have seen that this
equation for tanp3 does not always have solutions which excludes some regions of the MSSM
parameter space (which is now reduced to mo, M1/ 2 , Ao, At). These constraints displayed
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Figure 3-4: The allowed region of parameters for tan/3 < 0 and negative M 1/2 . At = 0.8
for all four plots (except in b and d where explicitly stated) a: mo = 0 GeV. The upper
straight line corresponds to the bound on M1/2 in the MSSM, if the values of tanp are
varied between 1 and 15. The A-shaped curve on the top of the plot gives the region
allowed by the absence of CCB vacua, while the lower line corresponds to the bound on

M1z2 obtained from Eq. 3.85. b: The same as in a but for different values of mo. The
solid lines corresponds to mo = 0 GeV, the dashed lines to mo = 500 GeV and the dotted
line to mo = 1000 GeV. Note that one does not get any restriction from the CCB bounds
for mo = 500, 1000 GeV when |Aol < 1000 GeV. Also note that for large values of mo the
MSSM bound on M1/2 is independent of mo. The dash-dotted line corresponds to mo = 500
GeV, but with At = 1.2. The increase in At results in the shift of the curves towards larger
values of A 0 . c: The bounds on the absolute value of M1/ 2 as a function of the absolute
value of Ao obtained from a and b. c gives the mo = 0 case, where the lower straight curve
is the MSSM bound, the upper straight curve is the bound from CCB, while the third curve
in the middle is the bound obtained by requiring that 3.85 has a viable solution. d: The
same as in c, where mo = 0 GeV corresponds to the solid lines, mo = 500 GeV to the
dashed lines and mo = 1000 GeV to the dotted line. The dash-dotted line corresponds to
mo = 500 GeV but At = 1.2.
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Figure 3-5: a: The allowed region for tanp/ if we vary IM11 21 between 0 and 800 GeV.
mo = 0 GeV and At = 0.8 is fixed. b and c are the same as a with mo = 500, 1000 GeV.

in Figs. 3-4 and 3-5 are the main results of our analysis. If the /p-term is generated by the
Higgs as PGB mechanism then the MSSM parameters must be inside the boundaries given
in Figs. 3-4 and 3-5 or inside the tiny overlapping regions of Fig. 3-3.

Thus if one ultimately measures these parameters in colliders one can check whether
they are indeed in the allowed region or not. If the MSSM parameters are all measured one
can also check whether the experimental value of tan/3 does satisfy Eq. 3.82 or not, thereby
testing the assumptions on the GUT-scale Higgs sector.

3.4.4 Implications for realistic models

We finally comment on the validity of our analysis for models implementing the Higgs as
PGB scheme. Although the Higgs as pseudo-Goldstone boson idea is perhaps the most
natural solution to the doublet-triplet splitting problem in the context of SUSY GUT's, it
is difficult to build realistic models that implement this idea in a natural way (see Ref. [34])
without additional light charged particles which disrupt unification.

The only known realistic model is based on the SU(6) gauge group [30, 31, 32, 33, 34]
and has an accidental SU(6) x SU(6) global symmetry of the Higgs sector. This symmetry
is achieved by requiring that two sectors of the Higgs fields are are not mixed among each
other in the superpotential. The models of Refs. [30, 31, 32, 33, 34] use the SU(6) adjoint
E and a pair of SU(6) vectors H, H for the Higgs sector. Then the superpotential has the
form

W(E, , ) = W1(() + W2(H, H) (3.87)

up to dimension seven in the superpotential of the Higgs fields. This stringent requirement
is necessary so that nonrenormalizable operators breaking the accidental global symmetry
do not give too large a mass to the Higgs doublets. In Section 3.3 several suggestions for a
superpotential implementing this idea have been presented. From the point of view of the
/M-term we can divide them into two categories, according to whether a symmetry breaking
term (that is a term that couples the E and H, H fields) containing seven Higgs sector fields



is or is not allowed.3 A dimension seven operator would give an additional contribution to
the IL-term spoiling Eq. 3.85 without destroying the solution to the doublet-triplet splitting
problem.

In Model 2 of Section 3.3 such a term is allowed by all symmetries of the Lagrangian and
thus may yield a contribution to the /I-term of order 100-1000 GeV. Since the coefficient of
this operator is a completely free parameter of the theory the constraint of Eq. 3.85 does
not hold and our analysis may not be applied to this theory. Such a theory cannot be tested
by the constraints described in this paper.

However, if no dimension seven mixing terms are allowed in the superpotential then
there can be no significant extra contribution to the /L-term. This is the case in the simplest
model, namely Model 1 of Section 3.3 and also in Model 3.

The superpotential of Model 1 is given by

1 1 aI
2MTr2 + ATr M 3 (HH)", (3.88)

where n = 4, 5, 6. After the inclusion of the soft breaking terms one gets (H) - 1017 GeV >

MGUT, and at this scale SU(6) is broken to SU(5). If one neglects the small admixture
of H, H fields in the Higgs doublets then at the SU(5) scale (H) we have an SU(5) gauge
theory with an "accidental" global SU(6) symmetry of the Higgs sector, since the theory
originates from an SU(6) gauge theory. Thus at the (H) scale we get as an effective theory
exactly the model of Section 3.4.1 since the SU(5) nonsinglet fields of H are eaten by the
heavy gauge bosons. This means that the threshold corrections to Eq. 3.70 arising from the
fact that the constraint is not generated at the GUT scale but at a somewhat higher scale
can be estimated to be of the order

12 log ~ 0.01 (3.89)167r (MGUT

due to the running between the (H) and GUT scales. Thus the corrections in this model
to Eq. 3.82 are expected to be a few percent and the results of our analysis should not be
modified significantly. We have checked that corrections in Eq. 3.70 as large as 10 percent
caused only a small shift in the constraint curves. Consequently there was still no overlap
between the allowed parameter region and the region allowed by CCB for the tanof > 0
case. Therefore the constraints obtained in this analysis should be robust.

3 The models in Section 3.3 were especially designed such that no symmetry breaking terms containing
only six or less Higgs sector fields are allowed, since these would give the doublet Higgses a mass of order

MGUT(M )
- 3 ,- 107 GeV and thus spoil the solution to the doublet-triplet splitting problem.



Chapter 4

Confinement in N= 1
Supersymmetric Gauge Theories1

There has been a revolution in the understanding of the low-energy behavior of asymptoti-
cally free supersymmetric gauge theories in the past three years. This has been sparked by
the work of Seiberg [46] who showed how to describe supersymmetric QCD in the far in-
frared. In this chapter we will first review Seiberg's results on supersymmetric QCD. Then
we focus our attention on a particular case, the N1 = Nr + 1 theory. We will describe what
the most important features of this theory are, and define a class of theories ("s-confining")
which behave similarly. After giving two necessary conditions for "s-confinement", we de-
scribe all such theories with a single gauge group.

4.1 The low energy behavior of SUSY QCD

4.1.1 General features of asymptotically free SUSY gauge theories

In this section, we summarize the most important general features of the low-energy behavior
of supersymmetric gauge theories. A general N = 1 SUSY gauge theory is given by the
Lagrangian [9]

r = d4 9 tegVI + [J d20W(p) + 8 d2 OWcW + h.c.,

where 0 is the Grassmanian superspace coordinate, the V's are chiral superfields, the V
is the vector superfield in the adjoint representation of the gauge group, g is the gauge
coupling and W, = -¼_DDe-gVDegV is the field strength chiral superfield. W is the
superpotential which is a holomorphic function of the chiral superfields.

The first question about a theory is to ask what the possible vacua of the theory are.
This can be inferred by looking for the minimum of the scalar potential of the theory, which
in case of the above Lagrangian turns out to be

V = g2  a (T +2 aw
ation with Martin Sch a reported in Ref. [61].

'Based on research done in collaboration with Martin Schmaltz and Witold Skiba reported in Ref. [61].



where the first term is called the D-term while the second is called the F-term. Let us
assume for a moment, that there is no tree-level superpotential in the theory, and ask what
the possible vacua are. These are given by the solutions of the equations

y(=Io)(T`)bý - 0. (4.1)

The directions in field space satisfying 4.1 are called D-flat directions, or classical moduli
space. An important mathematical theorem relates the classical moduli space to gauge
invariant operators [47]. More exactly, it states that the classical moduli space (up to gauge
transformations) can be parameterized by the independent holomorphic gauge invariant
operators X,.

This has very important consequences for the low-energy behavior of the theory. Ac-
cording to this theorem the classical low-energy theory can be described in terms of the
independent gauge-invariant operators X,, since the potential vanishes along these direc-
tions,

V(X,) = 0.
If there is in addition a tree-level superpotential, one can calculate from the equations

of motion which of the D-flat directions are lifted.
However, this is only the classical description of the theory. What we would be more

interested in is whether this simple picture is valid in the quantum theory as well. Indeed,
in perturbation theory, the non-renormalization theorem [48] forbids any contributions to
the superpotential, therefore the D-flat directions can not be lifted in perturbation the-
ory. However, there might be non-perturbative effects violating the non-renormalization
theorem, that give contributions to the superpotential. Such non-perturbative effects are
the main interest of the next sections. In the following, we review the nature of these
non-perturbative effects in SUSY QCD, following the discussion of Seiberg.

4.1.2 SUSY QCD for Nf < Ne: runaway superpotential

Supersymmetric QCD is an SU(NC) gauge theory with Nf flavors, i.e. Nf chiral superfields
in the representation N(OE] + 0) = Q? + QT, where i, j = 1,..., Nf are flavor indices and
a = 1,..., N, are gauge indices. The theory is asymptotically free only if N1 < 3Nr, thus
this is the region of Nf we are interested in.

It turns out that the low-energy behavior of the theory is very different depending on
the number of flavors Nf. First we look at the case Nf < Nr. We assume first that there is
no tree-level superpotential in the theory. Then the theory has a large anomaly-free global
symmetry given in the table below:

SU(NA) SU(NA) SU(Nf) U(1)B U(1)R
Q Z ol 1 1 •f -. NcNf
Q L 1 l -1 N-NNf

where SU(Nc) is the gauge group, SU(Nf) x SU(Nf) are the non-abelian flavor symmetries,
U(1)B is baryon number and U(1)R is the non-anomalous R-symmetry.

According to the previous section, we first have to form the gauge invariant opera-
tors, which parameterize the classical moduli space. For Nf < N0, the independent gauge
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Figure 4-1: The runaway scalar potential resulting from the dynamically generated super-
potential term for Nf < N,.

invariant operators are the meson fields

Mi = QaiQx J"

Their transformation properties under the global symmetries are

SU(Nf) SU(Nf) U(1)B U(1)R
M EO 0 2 N -NNf

The superpotential generated by the non-perturbative effects must be invariant under the
global symmetries of the theory. To obey the SU(Nf) x SU(Nf) global symmetry, a dy-
namical superpotential can only be a function of detM. However, detM has R-charge
2(Nf - N,). Therefore, global symmetries and holomorphy of the superpotential fix the
only possible dynamically generated superpotential term to be

Ne(3 -N, Nc-N
1Wdyn = detNM , (4.2)

where A is the dynamical scale of the theory.
It has been shown by Affleck, Dine and Seiberg in 1984, that for Nf = N, - 1 this

superpotential term is indeed generated by instanton effects [49], and the coefficient of the
superpotential term is one. If one knows that this term is there for Nf = N, - 1, one can
establish its existence for Nf < N, - 1 as well, since one can just add a mass term for one
flavor and integrate that flavor from the theory. One finds that the above term is there for
any N1 < N,. However the dynamical effect which produces this term for Nf < N, - 1 is
gaugino condensation in the unbroken gauge group instead of instantons [49].

Let us discuss what the physical meaning of this superpotential term is. If one calculates
the resulting scalar potential, it is of the form given in Fig. 4-1. The scalar potential slopes
to zero if the fields go to infinity, therefore the theory has no stable vacuum state, the
vacuum exhibits runaway behavior. The dynamics of the theory wants to push the fields
to larger and larger expectation values. Since the fields are forced to have large VEV's,
the gauge group is broken before it could get strong, thus the theory is in the Higgs phase.
We remark, that usually the runaway behavior can be stabilized at finite VEV by adding
tree-level superpotential terms to the theory.



4.1.3 N1 = No: confinement with chiral symmetry breaking

The gauge invariants of this theory are the meson fields

Mil = Q i 2
and the baryon and antibaryon fields

B • . .Q e1 N
cB EcglaNQ QCil EN,

B -:, E-QiNc

However these fields are not independent, classically there is a constraint detM = BB
among these fields.

Following the same kind of reasoning as in the previous section one can show that there
can be no superpotential term generated for this theory.

Seiberg argued convincingly [46], that the correct low-energy description is in terms of
a confined theory. The confining degrees of freedom are the fields M, B and B. However,
they are not independent, but the classical constraint is modified by quantum effects to
detM - BB = A2Nc, where A is again the dynamical scale of the theory.

There are several independent checks on this simple picture advocated by Seiberg. First,
a confining theory has to satisfy the 't Hooft anomaly matching conditions [50] for the
unbroken global symmetries. One can show, that along the quantum modified constraint
these conditions are indeed satisfied. Another check is that one can add a mass term for
one flavor and integrate this flavor from the theory. The superpotential in the low-energy
becomes

W = A(detM - BB - A 2Nr) + mMN,,Nf,

where A is a Lagrange multiplier enforcing the quantum modified constraint. After taking
the equations of motion with respect to the massive fields one finds that the superpotential
of Eq. 4.2 is indeed reproduced.

Note, that the quantum modified constraint implies that some of the fields M, B and B
necessarily have VEVs. Thus some of the chiral symmetries are broken in the ground state.
Therefore the phase of the Nf = N, theory is confinement with chiral symmetry breaking.

4.1.4 N1 = Nr + 1: s-confinement

In this case, the gauge invariant operators are given by

Mj = Qfl-Q

B i  0l ... QNýc E'l...iN
= Efl...NC Qil ... IN, l

B i = 60E1 ·. N ct il * Nc
• " " "•aN, 'i,il ...iNe

These fields obey the classical constraints

MiB' = MiBi = 0, detM(M- 1 ) . = BiBj.

Seiberg argued [46], that the correct low-energy description of the theory is in terms
of the confining variables M, B and B. The superpotential terms allowed by the global



symmetries and by the holomorphy of the superpotential are detM and BMB. The rela-
tive coefficient of these terms in the superpotential are fixed by requiring that the theory
reproduces the classical limit for large VEVs. This requires that there be a non-vanishing
confining superpotential for the fields M, B and B

1
W A2N:1 (BMB - detM). (4.3)

When taking the equations of motion with respect to the fields M, B and B from the
superpotential of Eq. 4.3 the classical constraints are exactly reproduced.

Another check on Seiberg's picture is that the 't Hooft anomaly matching conditions
are satisfied everywhere, including the origin of the moduli space. Finally, integrating out
one flavor will reproduce the quantum modified constraint of the Nf = No theory.

Thus the N =- N, + 1 theory is confining with a confining superpotential 4.3 and
without chiral symmetry breaking. This will be used as a definition of s-confinement in the
upcoming sections.

4.1.5 Nf > Nc + 1: duality (conformal and free magnetic phases)

Seiberg noted [46], that the !Nc < Nf < 3Nc theories have a non-trivial infrared fixed point
in their p-functions [51]. Thus he conjectured, that these theories are in the non-abelian
Coulomb phase (conformal phase). He also found an equivalent description of the same
low-energy physics in terms of a dual gauge group. Seiberg argued, that the theories

SU(Nc) SU(Nf) SU(Nf) U(1)B U(1)R
Q o E 1 1 , W=0

S1 N1 -N-1
[] I ] -i N,

q

M

SU(Nf - Nc) SU(Nf) SU(Nf) U(1)B U(1)R
ElO 1

Nf-N, N
N1 , V W W=Mqq

Nf -Nc N1
1 L Nf -Nf1[ 0 2 ,Nf

have the same low-energy limit, and called this phenomenon N = 1 duality. This is a weaker
version of the electric-magnetic duality conjectured by Olive and Montonen [52].

The consistency checks in favor of the duality are:
- The flat directions of the two theories are in one-to-one correspondence.
- The 't Hooft anomaly matching conditions are satisfied
- Integrating out flavors and higgsing the gauge group is consistent with duality.
Seiberg further noted, that the dual magnetic gauge group SU(Nf - Nc) exists for

Nf < •Nc as well and is infrared free. He conjectured, that the duality is not only valid in
the conformal phase but also in the regime Nc + 1 < Nf < ýNN, where the dual description
is infrared free. He called this phase the free magnetic phase.

Shortly after Seiberg's original work several other N = 1 dualities have been dis-
covered [53, 54, 55, 56, 58], and some other confining theories have been discovered as
well [57, 59, 60, 61]. In the next sections, we will concentrate on the confining theories
analogous to SUSY QCD with Nf = Nc + 1.



4.2 S-confinement

Following in Seiberg's footsteps, others have obtained results on a whole zoo of theories [62,
63, 64, 53, 54, 55, 57, 56, 58, 59, 60, 61]. Most of the discovered phenomena follow similar
patterns to SUSY Q CD, and one is tempted to ask if there is maybe a more general approach
than the model-specific trial and error procedure that has been customary thus far.

Whereas a completely general approach that allows one to understand all the obtained
results seems impossibly difficult to find, we can make much progress by focusing on the
particular phenomenon of confinement. In fact, a frequently occuring and relatively easily
identified infrared behavior is "s-confinement". We define an s-confining theory as a theory
for which all the degrees of freedom in the infrared are gauge invariant composites of the
fundamental fields. Furthermore, we demand that the infrared physics is described by a
smooth effective theory in terms of these gauge invariants. This description should be valid
everywhere on the moduli space of vacua, including the origin of field space. Finally, we
also demand that an s-confining theory generates a dynamical superpotential. At the origin
of moduli space all global symmetries of the theory are unbroken and the global anomalies
of the microscopic theory are matched by the macroscopic gauge invariants of the effective
theory.

The best-known example of a theory which has been conjectured to be s-confining is
supersymmetric QCD (SQCD) with N colors and F = N + 1 flavors of fundamental and
antifundamental matter, Q and Q [46, 65]. The gauge invariant confined degrees of freedom
are mesons M = QQ and baryons B = QN, B = QN. At the origin of moduli space, all
components of the mesons and baryons are massless, and they interact via the confining
superpotential

1
A2N-1 (det M - BMB). (4.4)

This description is also valid far from the origin of the moduli space where the large expec-
tation values of the fields completely break the gauge group. In such a vacuum the theory is
in the Higgs phase. A smooth gauge invariant description of both the Higgs and confining
vacua of the theory can only exist if there is no phase transition between the two regions
in moduli space. In particular, there should be no gauge invariant order parameter that
distinguishes the two phases.

To understand this in the example of SQCD, note that the quarks transform in a faithful
representation of the gauge group SU(N). This implies that arbitrary test charges can be
screened by the dynamical quarks because the vacuum can disgorge quark-antiquark pairs
to screen charges transforming in any representation of the gauge group. Thus a Wilson
loop will always obey a perimeter law because any charges we might want to use to define
the Wilson loop can be screened. Our definition of s-confinement above necessitates that
an s-confining theory is in such a "screening-confining" phase.

This situation should be contrasted with SU(N) with only adjoint matter or SO 0(N) with
vector matter. In both these cases the matter does not transform in a faithful representation
of the gauge group. Now there are charges that cannot be screened by the dynamical quarks,
and a Wilson loop can serve as gauge invariant order parameter to distinguish the Higgs
and the confining phases. As a result, such theories cannot have a single smooth description
of both the Higgs and confining phases of the theory, thus they are not s-confining.

In the next section, we discuss two necessary criteria for a theory being s-confining.
In Section 4.4 we apply our conditions to identify all theories with a single gauge group
and no tree-level superpotential which s-confine. We give a complete list of the confined



spectra and superpotentials for all s-confining theories with an arbitrary SU, SO, Sp, or
exceptional gauge group. Finally we comment on possible applications of our results on

s-confining theories.

4.3 Necessary criteria for s-confinement

In this section we develop two necessary criteria which allow us to identify all s-confining

theories with a simple gauge group and no tree-level superpotential [61]. The first crite-
rion follows from holomorphy of the dynamically generated superpotential, which can be
determined using the global symmetries of the theory. This criterion allows us to reduce

the number of theories that are candidates for s-confinement to a manageable set. Our
second criterion follows from explorations of regions in moduli space which are easier to

understand than the origin. As will be demonstrated in Section 4.4, these two conditions
combined are sufficient to identify all s-confining theories with a single gauge group and no
tree-level superpotential.

4.3.1 The index constraint

In this subsection, we derive a simple constraint on the matter content of s-confining theories
which follows from the requirement of holomorphy of the confining superpotential. In the-
ories with a simple gauge group G and no tree-level superpotential, the symmetries are suf-
ficient to determine the form of any dynamically generated superpotential completely [49].
A simple way to prove this makes use of non-anomalous R-symmetries. Define a U(1)R
symmetry as follows: all chiral superfields, except for one arbitrarily chosen field ij, are
assigned zero R-charge. The charge q of the remaining field is determined by requiring
anomaly cancelation of the mixed G2 U(1)R anomaly

(q - 1)14 - Pi + AG = qi - E ij + MG = 0, (4.5)
jii alln j

where Pi is the Dynkin index 2 of the gauge representation of the field qi, and (q - 1) is the
R-charge of its fermion component. These three terms arise from the contributions of the
fermion components of q{, of all other matter superfields Oj with j / i, and of the gauge
superfields, respectively. The Pji are the indices of the remaining matter representations,
they are multiplied by the R-charges -1 of the fermion components of Oj, and finally JG is
the index of the adjoint representation of G multiplied by the R-charge +1 of the gauginos.
R-invariance of the supersymmetric Lagrangian requires the dynamically generated super-
potential to have R-charge two. This uniquely fixes the dependence of the superpotential
on the field ;i

W cx (i"')2/(EjC' I-G). (4.6)

To determine the functional dependence on the other superfields, we note that the global
symmetries contain a corresponding U(1)R symmetry for each of the matter superfields,
and the superpotential has to have R-charge two under each such R-symmetry. Finally, the
dependence on the dynamical scale A can be determined by dimensional analysis or using

2 We normalize the index of the fundamental representations of SU and Sp to 1 and of the vector of SO
to 2. This definition ensures invariance of the index when decomposing representations of SO(2N) under
the SU(N) subgroup. This is relevant to the flows discussed in Section 4.3.2



an anomalous R-symmetry [62]. The result is

W oc A 3 (4.7)

There may be several (or no) possible contractions of gauge indices, thus the superpotential
can be a sum of several terms. We require the coefficient of this superpotential to be
non-vanishing, then holomorphy at the origin implies that the exponents of all fields qi
are positive integers. Strictly speaking, we should require holomorphy in the confined
degrees of freedom which would imply that the exponents of composites must be positive
integers. Since we do not want to have to determine all gauge invariants for this argument,
we settle for the weaker constraint on exponents of the fundamental fields. Therefore,3

-j lIj - ILG = 1 or 2. However, in our normalization of the index, anomaly cancelation
further constrains this quantity to be even, thus

Z j - AG = 2. (4.8)

This formula summarizes our first necessary condition for s-confinement, which enables
us to rule out most theories immediately. For example, for SQCD we find that the only
candidate is the theory with F = N +1. Unfortunately, Eq. 4.8 is not a sufficient condition.
An example for a theory which satisfies Eq. 4.8 but does not s-confine is SU(N) with an
adjoint superfield and one flavor. This theory is easily seen to be in an Abelian Coulomb
phase for generic VEVs of the adjoint scalars and vanishing VEVs for the fundamentals.
In the following section, we derive another necessary criterion which allows us to rule out
theories that satisfy the "index-constraint" but do not s-confine.

4.3.2 Flows and s-confinement

The second condition is obtained from studying different regions on the moduli space of
the theory under consideration. A generic supersymmetric theory with vanishing tree-level
superpotential has a large moduli space of vacua. By definition, an s-confining theory has
a smooth description in terms of gauge invariants everywhere on this moduli space. There
should be no singularities in the superpotential or the Kiihler potential and there should be
no massless gauge bosons anywhere.

Thus, we can test a given theory for s-confinement by expanding around points that are
far out in moduli space where the theory simplifies. In the microscopic theory the gauge
group gets broken to a subgroup when we go out in moduli space by giving large ((0) > A)
expectation values to some fields. In this vacuum, the gauge superfields corresponding
to broken symmetry generators get masses through the super-Higgs mechanism and the
remaining matter fields decompose under the unbroken subgroup. This "reduced" theory
has a smaller gauge group and may be easier to understand. If the original theory was
s-confining then its confined description should be valid at this point in moduli space as
well. Therefore, the reduced theory is s-confining if the original theory was. This statement

3 Other solutions exist if all pi have a common divisor d, then for -i pi - LG = d or 2d the superpotential
Eq. 4.8 may be regular. We will argue at the end of Section 4.4.3 that these solutions generically do not
yield s-confining theories. Another possibility is that the coefficient of the superpotential above vanishes.
There are examples of confining theories with vanishing superpotentials in the literature [82].



can be applied in two directions.
Necessary condition: If the reduced theory does not have a smooth description with only
gauge invariant degrees of freedom, then the original theory cannot be s-confining. Suffi-
cient condition: If the original theory is known to be s-confining, then all possible reduced
theories (with a remaining unbroken gauge group) which the original theory flows to are
s-confining also. The confined spectrum and the confining superpotential of the reduced
theories can be obtained by identifying the corresponding points in moduli space in the con-
fined description of the original theory and integrating out all massive fields. In practice,
this means identifying the correct gauge invariant fields which have vacuum expectation
values and integrating out fields which now have mass terms in the superpotential using
their equations of motion.

The reduced theories will always contain some gauge invariant fields in the high-energy
description which originally transformed under the now broken gauge generators. These
fields do not have any interactions and are irrelevant to the dynamics of the model. They
can be removed from the theory. In the confined description the fields corresponding to
these gauge singlets are only coupled through superpotential terms which scale to zero
when the VEVs are taken to infinity, or which are irrelevant in the infrared.

A non-trivial application of the sufficient condition is given by the flow from SU(4)
with an antisymmetric tensor and 4 "flavors" of fundamentals and antifundamentals to
Sp(4) with 8 fundamentals. The SU(4) theory is known to s-confine [56]. By giving an
expectation value to the antisymmetric tensor the gauge group is broken to Sp(4). All
components of the antisymmetric tensor field except for one singlet are "eaten" by the
super-Higgs mechanism, and the 4 flavors of fundamentals and antifundamentals become 8
fundamentals of Sp(4). Applying our sufficient criterion, we conclude that the Sp theory
is s-confining as well. Its confined spectrum and superpotential can be obtained from the
spectrum and superpotential of the SU(4) theory.

A non-trivial example of a theory which can be shown not to s-confine is SU(4) with three
antisymmetric tensors and two flavors. This theory satisfies our index condition, Eq. 4.8,
and is therefore also a candidate for s-confinement. By giving a VEV to an antisymmetric
tensor we can flow from this theory to Sp(4) with two antisymmetric tensors and four
fundamentals. VEVs for the other antisymmetric tensors let us flow further to SU(2) with
eight fundamentals which is known to be at an interacting fixed point in the infrared. We
conclude that the SU(4) with three tensors and Sp(4) with two tensors and all theories that
flow to them cannot be s-confining either. This allows us to rule out the following chain of
theories, all of which are gauge anomaly free and satisfy Eq. 4.8:

SU(7) SU(6) -- SU(5) SU(4) Sp(4)
-1 ] 2 [ (4.9)2040 00 3M 20O 20 3 2020 2 40

Note that a VEV for one of the quark flavors of the SU(4) theory lets us flow to an SU(3)
theory with four flavors which is s-confining. We must therefore be careful: when we find
a flow to an s-confining theory, it does not follow that the original theory is s-confining as
well. The flow is only a necessary condition. However, in all our examples we find that a
theory with a single gauge group and no tree-level superpotential is s-confining if it is found
to flow to s-confining theories in all directions of its moduli space.



4.4 All s-confining theories

In this section, we present our results which we obtained using the two conditions derived
in the previous section. We first created a list of all theories with a single gauge group and
matter content satisfying the index constraint. Then we studied all possible flat directions
of the individual theories and checked if they only flow to confining theories. We summarize
these results in the first table of each subsection. In the first column we list all theories
satisfying the index constraint. In the second column we indicate the result of the flows:
theories which can be shown to have a branch with an unbroken Abelian gauge group we
denote with "Coulomb branch", for theories which can be shown to flow to a reduced theory
with a non-Abelian gauge group which is not s-confining we indicate the gauge group of the
reduced theory and its matter content, all other theories are s-confining.

After identifying all s-confining theories in this way, we explicitly construct the confined
spectra for each s-confining theory. The group theory used to obtain these results can be
found in Refs. [66, 67, 68]. We present our results in tables where we indicate the matter
content of the ultraviolet theory in the upper part of the table, and the gauge invariant
infrared spectrum in the lower part. The gauge group and the Young tableaux of the
representations of the matter fields are indicated in the first column. The other groups cor-
respond to the global symmetries of the theory. In addition to the listed global symmetries,
there is also a global U(1) with a G2 U(1) anomaly which is broken by instantons.

Finally, we also give the confining superpotentials when they are not too long. We denote
gauge invariant composites by their constituents in parenthesis. The relative coefficients of
the different terms can be determined by demanding that the equations of motion following
from this superpotential reproduce the classical constraints of the ultraviolet theory. This
also constitutes an important consistency check: in the limit of large generic expectation
values for fields, (0) > A, the ultraviolet theory behaves classically and all its classical
constraints need to be reproduced by the infrared description. Checking that all these
constraints are reproduced and determining the coefficients is a very tedious exercise which
we only performed for some theories. Since we have not determined the coefficients of the
superpotential terms for several of the s-confining theories, it may turn out that some of
the terms listed in the confining superpotentials have vanishing coefficients.

A more straightforward and also very powerful consistency check is provided by the
't Hooft anomaly matching conditions. We explicitly checked that all global anomalies
match between the microscopic and macroscopic degrees of freedom in every theory. Other
consistency checks which we performed for a subset of the theories include explorations of
the moduli spaces and adding masses for some matter fields and checking consistency of the
results. More details on these techniques are described in Ref. [61].

4.4.1 The s-confining SU(N) theories

In this section, we present all s-confining theories based on SU(N) gauge groups. We
normalize the Dynkin index and the anomaly coefficient of the fundamental representation
to be one. With these conventions, the dimension, index and anomaly coefficient of the



smallest SU(N) representations are listed below.

Because the index of a representation of SU(N) grows like Nk- 1 where k is the number
of gauge indices, there are very few anomaly free representations which satisfy Eq. 4.8.
These representations are listed in Table 4.1. In the first column, we indicate the gauge
group and the field content of the theory. In the second column we give the flows which
allowed us to rule out s-confinement for a given theory. For those theories which do s-
confine we then list the spectra and the confining superpotential in the following tables.
For completeness, we also list those s-confining theories which are already known in the
literature.

SU(N) with (N + 1)(E + M) (SUSY QCD) [46]

SU(N) SU(N + 1) SU(N + 1) U(1) U(1)R
Q E 1 1 1SN+I

Q 1 El -1 N1

QQ
QN

QN

0
N

-N

2

N+1

N41

N+1

Wdyn = A 2N [()N+1

Irrep Dim p A
O N 1 1

Adj N 2 - 1 2N 0
N(N-1) N-2 N-42

S N(N+) N+2 N+42
N(N-1)(N-2) (N-3)(N-2) (N-3)(N-6)

6 2 2
S N(N+1)(N+2) (N+2)(N+3) (N+3)(N+6)

6 2 2
N(N-1)(N+I) N 2 - 3 N 2 - 93

N 2 (N+1)(N-1) N(N-2)(N+2) N(N-4)(N+4)
12 3 3

EIZO N(N+1)(N+2)(N+3) (N+2)(N+3)(N+4) (N+3)(N+4)(N+8)
24 6 6

N(N+1)(N-1)(N-2) (N-2)(N2-N-4) (N-4)(N2-N-8)
8 2 2

- (QN)(Q,)(QN)]



SU(N) (N + 1)(oE + ) s-confining
SU(N) B + NO + 4 s-confining
SU(N) B+B+3(0+0) s-confining
SU(N) Adj +0 + 0 Coulomb branch
SU(4) Adj +H Coulomb branch
SU(4) 3H + 2(0 + 0) SU(2): 80
SU(4) 4 + 0 + SU(2): = + 4
SU(4) 5E Coulomb branch
SU(5) 3( + 0) s-confining
SU(5) 2 + 2 + 40 s-confining
SU(5) 2( + B) Sp(4): 3H+ 20
SU(5) 20+ +20+D SU(4):3 + 2( + 0)
SU(6) 2 + 50+ ] s-confining

SU(6) 20+ +20 SU(4): 3 + 2(E]+0)

SU(6) + 4(0 + ± ) s-confining

SU(6) + + 3 0 + 0 SU(5): 2 + + 2 0 + l

SU(6) ý+E±+ Sp(6): + H + l
SU(6) 2 + E+ SU(5): 2( + +)
SU(7) 2( + 31) s-confining

SU(7) ++4M+20 SU(6):H +H+30 + 0

SU(7) + E + + Sp(6): + H+ R

Table 4.1: All SU theories satisfying Ej Lj - pI = 2. This list is finite because the indices
of higher index tensor representations grow very rapidly with the size of the gauge group.
We list the gauge group and the field content of the theories in the first column. In the
second column, we indicate which theories are s-confining. For the theories which do not
s-confine we give the flows to non s-confining theories or indicate that there is a Coulomb
branch on the moduli space.



SU(2N) SU(4) U(1) 2 U(1)R
1 1 0 2N+4 0
0 1 4 -2N + 2 0
1 0 -2N -2N + 2 2,-

Ol 4 - 2N -4N + 4

8 -2N + 8
0 2N2 + 4N

-4N 2N 2 - 2N

-8N 2N 2 - 8N

A

Q
Q

QQ
-2

AQ
AN

AN-1Q 2

AN-2Q
4

-2N
Q -4N 2 + 4N

1  [(AN)(QQ)4(AQ 2 )N-2 + (AN-1Q2)(Q 2(AQ N-1 +

(AN-2Q4)(AQ 2)N + ( 2N(AN)()(AN-2Q4) (Q 2N)(AN-Q2)2]

SU(2N + 1)

O
[]

SU(2N + 1) SU(4) U(1)R
1 1 0 2N + 5 0
l 1 4 -2N + 1 0

1 L -2N - 1 -2N + 1

l 3 - 2N -4N + 2
8 -2N + 7

-2N - 1 2N2 +3N+
-6N - 3 2N 2 -3N-

1 4(2N + 1) -4N 2 + 1

1T [(ANQ)(QQ)a(AQ) N - 1'
S 2N ) )(
(Q 2 N± )(ANQ)(AN- Q3)]

+ (AN-1Q3)(QQ)(AQ2)N +

SU(2N) with + 2N + 4 Ol [56]

SU(2N)

m]
El

1 8N

Wd,~

SU(2N + 1) with 0 + (2N + 1) 0+ 4 Ol [56]

A

Q
Q

QQ
-2

AQ
ANQ

AN-1Q3
-2N+1Q

Wdyn



SU(2N + 1) with B+ + 3([]+ M)

A

A
Q

Mk = Q(AA))kQ

Hk - A(AA)kQ 2

HI = A(AA)kQ 2

B1 = ANQ

B 3 = AN-1Q
3

B 3 = AN-1Q3
Tm = (AA)m

SU(2N+1) SU(3) SU(3) U(1)i U(1) 2
1 1 1 0 -3 0
1 1 -1 0 -3 0
l 1 0 1 2N- 1

3
1 E] 0 -1 2N-1 1

0
-1
1

N
-N

N-1
-N +I

0

0
2

-2
1

-1
3

-3
0

4N - 2 - 6k
4N - 5 - 6k

4N - 5 - 6k
-N -1
-N-1

3N
3N

-6m

where k = 0,...,N - 1 and m = 1,...,N. The number of terms in the confining super-
potential grows quickly with the size of the gauge group.
superpotential for the SU(5) theory.

Wdyn

Note that the term TIM2Mo is allowed by all symmetries, however its coefficient is zero,
which can be verified by requiring that the equations of motion reproduce the classical
constraints.

SU(2N) with B + R+ 3(E]f+ )

Therefore we only present the

A

A
QQ

Mik = Q(AA) GQ
-m = A(AA)kQ 2

;m = A(AA)kQ 2

Bo = A N

Bo = AN
B 2 = AN-1Q2

B 2 = AN-1Q2
T, = (AA) n

SU(2N)

0

SU(3) SU(3) U(1)1  U(1) 2  U(1)3  U(1)R
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El 1 0 1 2N - 2 1
3

1 0 0 -1 2N - 2 1
3

0 0
-1 2
1 -2
N 0
-N 0

N-1 2
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0 0
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-3N
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I
iH
A

3I

rr
' 

'

=



where k = 0,...,N-1, m = 0,...,N - 2 and n = 1,...,N - 1. The case of SU(4) is
different, because in SU(4) the two-index antisymmetric tensor is self-conjugate. Therefore
there is an additional SU(2) global symmetry. The corresponding table is

SU(4)

O I
o IHEl
M]

SU(2) SU(3) SU(3) U(1)I U(1) 2  U(1)R
El 1 1 0 -3 0
1 0 1 1 2 1

3
1 1 - 2 13

I=]

Ol 0 4 23
El 0 -2 2

3
1 2 1

3
-2 1 2

3
1 1 0 -6 0

The superpotential for the SU(4) theory is

Wd- = 1(T M2 - 12THHMo0A7~ 1\ - 24MoM2 - 24HH1M2),

where the relative coefficients are fixed by requiring that the equations of motion reproduce
the classical constraints.

SU(6) with + 4(0 + M)

A

QQ
Mo = QQ

M2 = QA 2 Q
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-All (MoBiB 1T + Ba3BMo

B1B 3 M2 + B BM2) ,

+ M23Mo + TM 2MO3 +

A

Q
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SU(5) SU(3) SU(3) U(1) U(1)R
A H o 1 1 0
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ELa
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Note, that the term (A4Q 2 )(A3)(AQ 2 )(QQ) is allowed by the U(1) symmetries but not
by the non-abelian global symmetries.

SU(7) with 2H+ 6M

Wdyn = 1l3 N 2H 2

4.4.2 The s-confining Sp(2N) theories

We now discuss the s-confining Sp(2N) theories. First, we again summarize the group
theoretical properties of the simplest Sp(2N) representations. Contrary to SU(N) groups
there is no chiral anomaly for Sp(2N) groups. The only requirement on the field content
is that there is no Witten anomaly, this is satisfied if the sum of the Dynkin indices of
the matter fields is even. Sp(2N) is the subgroup of SU(2N) which leaves the tensor
Jca = (1NxN 0 io 2 )'" invariant. Irreducible tensors of Sp(2N) must be traceless with
respect to J'O. One can obtain these irreducible representations by subtracting traces
from the SU(2N) tensors. The properties of these representations are summarized in the
table below. We use a normalization where the index of the fundamental is one. This
normalization is consistent with the Sp(2N) C SU(2N) embedding, under which 2N -+ 2N.
Thus with these conventions the index of the matter fields does not change under SU - Sp
decompositions. The adjoint of Sp(2N) is the two-index symmetric tensor.

Irrep Dim I
0 2N 1

H N(2N- 1)- 1 2N-2
LIZ N(2N + 1) 2N + 2

N(2N-1)(2N-2) - 2N (2N-3)(2N-2) 1

3 2
. 2N(2N-1)(2N+l) - 2N (2N) 2 - 4

With this knowledge one can again write down all anomaly-free theories for which the
matter content satisfies Eq. 4.8. These theories are summarized in Table 4.2. In the first
column, we indicate the gauge group and the field content of the theory. The second column
gives a possible flow to a non-s-confining theory or if the theory is s-confining, we state that
in the second column. The only s-confining theories based on Sp(2N) groups are the two
sequences that are already known in the literature. We give the spectra and dynamically
generated superpotentials of these theories in the tables below.



Table 4.2: All Sp theories satisfying Zj Yj - pa = 2. This list is finite because the indices
of higher index tensor representations grow very rapidly with the size of the gauge group.
We list the gauge group and the field content of the theories in the first column. In the
second column, we indicate which theories are s-confining. For the remaining ones we give
the flows to non-confining theories or indicate that there is a Coulomb branch on the moduli
space.

Sp(2N) with (2N + 4) El [54]

I Sp(2N) SU(2N + 4) U(1)R
Q ] 0 N

H 2
N+2

Wdyn = A2N+1

Sp(2N) with B + 6 L [59, 60]

Sp(2N) SU(6) U(1)
A H 1 -3 o
Q o N-1 1

-3k
2(N - 1) - 3k

Here k = 2, 3,..., N and m = 0, 1,...,N - 1. The number of
grows quickly with N. For Sp(4) the superpotential is

terms in the superpotential

Wdyn = 1 [(A2)(Q2)33 (2)(QAQ)2].
Wd -A-5+(

Sp(2N) (2N + 4)L s-confining
Sp(2N) B+ 6] s-confining
Sp(2N) Ei + 2 L Coulomb branch

Sp(4) 2 +40 SU(2): 8
Sp(4) 3H+20 SU(2): M + 4
Sp(4) 40E SU(2): 2 EI
Sp(6) 2H+20 Sp(4): 2 + 4
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Sp(6) + +E+ SU(2): FE +40
Sp(6) 2 S U(3): tE + -
Sp(8) 2H Sp(4): 5
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4.4.3 The s-confining SO(N) theories

SO(N) theories4 are distinct from the SU and Sp theories because contrary to those groups
SO(N) has representations which cannot be obtained from products of the vector repre-
sentations. These are the spinorial representations. A theory can be s-confining only if all
possible test charges can be screened by the matter fields. Spinors cannot be screened by
matter in the vector representation of SO. Thus, theories without spinorial matter cannot
be s-confining. This restricts the number of possible s-confining SO(N) theories, because
the Dynkin index of the spinor representation grows exponentially with the size of the gauge
group. The biggest group for which Eq. 4.8 can be satisfied with matter including spinor
representations is SO(14).

SO(N) theories (for N > 6) do not have either chiral or Witten anomalies. We do
not consider the N < 6 theories because they can be obtained from our previous results
by using the following isomorphisms: SO(6) - SU(4), SO(5) - Sp(4), 50(4) - SU(2) x
SU(2), SO(3) SU(2), SO(2) U(1).

The spinor representations of SO(N) have different properties depending on whether
N is even or odd. For odd N, there is just one spinor representation, while for even N
there are two inequivalent spinors. For N = 4k the two spinors are self-conjugate while for
N = 4k + 2 the two spinors are complex conjugate to each other.

We use a normalization where the index of the vector of SO(N) is 2. The reason is that
under the embedding SO(2N) D SU(N) the vector of SO(2N) decomposes as 2N -+ N+N.
If we do not want the index of the matter fields to change under this decomposition we need
to normalize the index of the vector to two. The fundamental properties of the smallest
SO(N) representations are summarized in the tables below. The adjoint of SO(N) is the
two-index antisymmetric tensor.

Since the vector and the spinors are the only representations that potentially have
smaller index than the adjoint, it is clear that candidates for s-confining theories contain
only vectors and spinors. For odd N we denote the field content by (s, v), where s is
the number of spinors and v is the number of vectors. For even N we use the notation

(s, a', v), where s and s' are the numbers of matter fields in the two inequivalent spinor

4 We do not distinguish between SO(N) and its covering group Spin(N).

SO(2N + 1)
Irrep Dim

E 2N + 1 2
S 2N  

2N-2

0 N(2N + 1) 4N - 2
__- (N + 1)(2N + 1) - 1 4N 6

SO(2N)
Irrep Dim IL

O 2N 2
S 2 N-1 2 N-3

S, (S') 2 N-1 2 N-3

H N(2N - 1) 4N - 4
wE N(2N + 1)-1 4N+4



representations and v is the number of vectors.
The SO(8) group requires special attention. The reason is that there is a group auto-

morphism which permutes the two spinor and the vector representations. Therefore only

relative labelings of the representations are meaningful. For example (4, 3, 0) and (0, 3, 4)

in SO0(8) are equivalent.
With this knowledge of group theory we can write down all theories which satisfy Eq. 4.8.

These theories are listed in Table 4.3. Almost all of these theories are s-confining. The only

spectrum that has been given in the literature [56] is for SO(7) with (5, 1). Below we list
the spectra and the confining superpotentials for the s-confining SO(N) theories. Most of

the confining superpotentials are very complicated. We only list those where the number
of terms in the superpotential is reasonably small.

SO0(14) with (1,0,5)

S

Q
Q2

S2Q3

S4Q2

S4 Q4

S 6Q3

S8

S8Q4

SO(14)
64

SU(5) U(1) U(1)R
1 5

8
Ol -8 0

LIZ -16 0

B -14 1
4 4L-I 4 1
2

S -12 1

B 6 4
1 40 1
] 8 1

Wdy = 1 [(SSQ4)2(Q2) + (S8Q4)(S 6Q3 )(S 2Q3 ) + (S8Q4)(S 4Q4 )(S 4Q 2)

+(S 8)2(Q 2)5 + (S8)(S 6Q3 )(S2 Q3 )(Q2 )2 + (S4Q2)4(Q2) + (S6Q3) 2(S4 Q2)(Q2 )
+(S 8 )(S 4Q4) 2(Q2 ) + (S8 )(S 4Q 2)2 (Q2 ) 3

+(S 6Q3 )(S 2Q3)(S 4Q2 )2 + (S6Q3)2(S4Q4)]

Note that several terms allowed by U(1) symmetries are not allowed by the full set of global
symmetries. For example, the SU(5) contraction in the term (SSQ 4)(S )(Q2)3 vanishes,
since it is not possible to make an SU(5) invariant from the third power of a symmetric
tensor and one field in the antifundamental representation. There are more examples of
such terms prohibited by non-abelian global symmetries in other theories in this section.



SO(14)
SO(13)
SO(12)
SO(12)
SO(12)
SO(11)

SO(11)
SO(10)
SO(10)
SO(10)
SO(10)
SO(10)
SO(10)
SO(10)
SO(10)
SO(9)
SO(9)
SO(9)
SO(9)
SO(8)
SO(8)
SO(8)
SO(8)
SO(8)
SO(8)
SO(8)
SO(8)
SO(7)
SO(7)
SO(7)
SO(7)
SO(7)
SO(7)

Table 4.3: All SO(N) theories which contain at least one spinor and satisfy E-j j - PG = 2.
This list is finite because the index of the spinor representations grows exponentially with
N. We list the gauge group of the theory in the first column and the matter content
in the second column. As explained in the text, for odd N (s, v) denotes the number of
spinors and the number of vectors, while for even N (s, s', v) denotes the numbers of the
two inequivalent spinors and vectors. In the third column, we indicate which theories are
s-confining. For the remaining ones we give the flows to non-confining theories or indicate

that there is a Coulomb branch on the moduli space.

(1,0,5)
(1,4)

(1,0,7)
(2,0,3)
(1,1,3)

(1,6)
(2,2)

(4,0,1)
(3,0,3)
(2,0,5)
(3,1,1)
(2,1,3)
(1,1,5)
(2,2,1)
(1,0,7)
(4,0)
(3,2)
(2,4)
(1,6)

(7,0,0)
(6, 1,0)
(5,2,0)
(5,1,1)
(4,3,0)
(4,2,1)
(3,3,1)
(3,2,2)
(6,0)
(5,1)
(4,2)
(3,3)
(2,4)
(1,5)

s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
SU(4) with 3 B 2 (O] + )
s-confining
s-confining
s-confining
SU(4) with 3 +2 (EO + )
Coulomb branch
Coulomb branch
SU(4) with 3 + 2 (O + M)
SU(4) with 3 + 2 (O + 0)
s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
s-confining
SU(4) with 3 H + 2 (0 + 0)
Coulomb branch



SO(13) with (1,4)

S
Q
Q2

S2Q3

S2Q2

S 4Q4

S4Q3

S4Q2

S 4Q
S4

S6Q3

S6Q2

SSQ 3

S8

SO(13)
64
DO

SU(4) U(1) U(1)R
1 1 1

El -2 0

[LI

1

0
1

1]

1

-4
-4
-2
-4
-2
0
2
4
0
2
2
8

Note, that one could add the operator S8 Q4 to the above list without affecting anomaly
matching. However, there is a mass term allowed for this operator, and by flowing to this
theory from S0(14) with (1, 0, 5) one finds that this mass term is generated. Thus S8 Q4

is not in the IR spectrum. Similar operators appear in many other s-confining SO(N)
theories. Since a mass term is always generated for such operators, we do not include them
in any of the forthcoming s-confining spectra.

S0(12) with (1,0,7)

S
Q

S 2Q2

S2Q6

S 4

S 4Q6

SO(12)
32
O

SU(7) U(1) U(1)R
1 7 1

4
0 -4 0

LIZ

1

-8
6

-10
28
4

Wd 1 9 [(S4Q6)2(Q2) + (S 4Q6)(S 2Q6)(S 2Q2) + (S 4 )(S 2Q2) 2(Q 2) 5

+(S4)(S 2Q6) 2(Q 2) + (S2Q 2)4(Q 2) 3 + (Q2)7(S4)2]



SO(12) with (2,0,3)

SO(12) SU(2) SU(3) U(1) U(1)R
S 32 Ol 1 3 1

Q O 1 0 -8 0

Q2 1 MI] -16 0

S2  1 1 6 1
1

S2Q2  I ] -10
S 4  ELI 1 12

S4 Q2  1 m -4 1
1S4Q 2'  [ -4 2

S6  1 1 18 3

S6Q2  L F 2 3

SSQ 2  1 ]m 8 1

SO(12) with (1,1,3)

SO(12) SU(3) U(1) 1 U(1) 2 U(1)R
S 32 1 1 3 1

S' 32' 1 -1 3 1

Q o O 0 -8 0

LI- 0 -16 0
1 0 -18 14
S 2 -10

S -2 -10
OL 0 -2 1

1 4 12 2

1 -4 12 1
2

1 0 12 2

1 2 -12 1

1 -2 -12 2

m 0 -4 1
2

0 -4 2

EL 2 4 1
2

Li -2 4

1 0 -6 3
4

O 0 10

r 2 2

m -2 2 3
4

1 0 24 1
D 0 8 1

Q2

SS'Q3

S2Q2

S'1Q2
SS'Q

S'4
sI4

S2 S'2

S3S'Q3

S'3 SQ3

S2 S'2Q2

s2s12Q
2 '

S 3 S'Q
S'3 SQ

53 S'3 Q3

S3 S'"Q
S 4S'2 Q2

S'4S2 Q2

S4 S'4Q2

S4 S/4 2

I



SO(11) with (1,6)

SO(11) I SU(6) U(1) U(1)R
32 1 3

L l -2 0

El

B
1

LI
1

SU(2)
O 1 1 0
1 L -4 12
1

El

ED

1

E1

1
1
1
1

LI
1

El

I111LI1

SO(10) I SU(4) U(1) U(1)R
S 16 LO 1 0

Q [0 1 -8 1
1

El

EL-

-16
-6
4

-2

S

Q
Q2

S2Q2

S2Q5

S4
S4Q5

S 2Q6

SO(11) with (2,2)

SO(11)
32
O

SU(2) U(I) U(1)R
S

Q
Q2

S2Q2

S2Q
S2

S4

S4'
S4Q2

S4Q2'
S4Q
S6Q2

S6Q
S8

S8Q
S4Q
S6

SO(10) with (4,0,1)

Q2

S2Q
S4

S6Q



Wd =1 [(6Q)2(S4) (S 6Q)(S 2 Q)(S 4)2 + (S 2 Q) 2(S 4)3 + (S4)4(Q2)j

SO(10) with (3,0,3)

SO(10)
S 16
Q El
Q2

S2 Q
S2Q3

S4

S4Q2

SU(3) SU(3) U(1) U(1)R
[] 1 1 0
1 LI -2 1

3
1 [E] -4

3
ELI [] 0
L 1 -4 1
- 1 4 0

2

Wdyn = [( S 4Q2)3 + (S 4Q2)2(S 2Q)2  + (S 4 Q2)2 (S 4 )(Q 2) + (S 2Q3 ) 2(S 4) 2

+(S 2Q) 2(Q 2) 2(S 4) 2 + (S 2Q) 4(Q 2)(S4) + (Q2) 3(S 4) 3 + (S 2Q) 6

+(S 4)(S 2 Q3 )(S 4Q2)(S 2Q) + (S 4Q2 )(S4 )(S 2Q) 2(Q 2)

+(S 4 Q2)(S4 Q)4 + (S2Q3)(S2Q)3(S4)]

SO(10) with (2,0,5)

S
Q
Q2

S2Q
S2Q3

S2Q5

S4

S4Q 4

SO(10)
16
EO

SU(2) SU(5) U(1) U(1)R
[] 1 5
1 LI -4 0

1 E -8 0
EL l 6 1

2

1I -2 2

I 1 -10 1

1 1 20 1
1 [l 4 1



SU(3) U(1)I U(1) 2 U(1)R
O 1 0 0
1 -3 1 0
1 0 -2 1

1

[1

1[

1

0
2

-2
0

-4
4
2

-2
-6
-6

-4
-2
1

-1

2
0
1
0
0

-1

SU(2) SU(3) U(1)I U(1) 2 U(1)R
OL 1 1 1 0
1 1 -2 1 1

2
1 0 0 -2 0
1

LIZ
1
IE

ELI
1

1

OL
1

OL

OL
10E

1
1
1

O1
1

1

0
2

-4
-1
-2
2
1
4

-1
-2
1

-4
0
0
2
4

-4
2
4

-2
0

-2

SO(10) with (3,1,1)

SO(10)
16
16
LI

S
Q
Q2

Q2
S2Q
ss

S3SQ
s2S

2

S4

S s
S4S2Q
S2Q

S3 g3 Q2

SO(10) with (2,1,3)

so(10)
16
16

S

Q
Q2

S2Q
S2 Q
ss

S2S2

S2Q3

S3 SQ

SSQ2

S2S2Q2

S3SQ 3



SO(10) with (1,1,5)

SO(10) SU(5)
16 1 1 5
16 1 -1 5 1

4
L E] 0 -4 0

S
S

Q
Q2

S2Q
-2Q

s 2 Q5

SYQ2

SSQ4

S2-S2

S2S 2 Q4

-8
6
6

10
-10
-10

2
-6
20
4

SO(10) with (2,2,1)

SO(10) SU(2)
SU(2) U(1)1 U(1)2 R

S 16 LI 1 1 1 0
S 16 1 El -1 1 0

1O 1 1 0 -8 1
1

1
O
1l
1

1

[O]

1OI
1
1

1
1

El

1
1

[01

1

1

COK

OE

1

1

0
2

-2
0
4

-4

0
2

-2
0
2

-2

0
4

-4

-16
-6
-6
2
4

4
4

-4
-4

-12

-2
-2

6
8
8

U(1)1 U(1)2 U(1)R

[LI
O

O
1
1

1

1

M

Q
Q2

S 2Q-g2Q
SQ

-4
S

S2S 2

S3 SQ

VS2Q

S6S 2

'



I SO(9) I SU(4) U(1)R
S 16 0I

S2

S
4

S6 III

= [(s6)2(s4) + (S6)(S4)2(S2) + (S')4 + (S4)3(S )2]
A13I

SO(9)
16
LI

Q2
S2Q
S2

S4

S 2Q2

S4Q2

S4Q

SU(3)

1

1
LIII
LI]

LI]

SU(2)
1

EL

El

11
I

[]

U(1)
1

-3

U(1)R
0
1
2

-6
-1
2
4

-4
-2
1

SU(2) SU(4) U(1) U(1)R
O 1 1 4
I [] -1 0

1

LIII

1

I

1

El

1
1

SO(9) with (4,0)

Wdu

SO(9) with (3,2)

SO(9) with (2,4)

SO(9)
16
Ol

S
Q
Q2

S2Q
S2

S2Q3

S2Q2

S4Q3

S2Q4

S4



SO(8) with (3,0,4)

SU(4) SU(3) U(1) U(1)R
S 1 3 14

1 L -4 0

LIZ 1 6
1 EI- -8 0

MH -2
1 I-1 4 1

W , = A [(S2Q4)2(s2) + (S2 Q4)(S 2Q2) 2 + (S 2Q2)3 (Q 2) + (S 2) 3(Q 2) 4

+(S2Q2)2(S2)(Q2)2]

SO(8) with (2,1,4)

SU(4) SU(2) U(1) U(1) U(1)R
LI 1 1 0 0 4
1 0 -2 1 0
1 1 0 -2 0

ELI
1
1

H
1
1
LI

EI7
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1
OL[]

2 0
-4 2
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-2 2
0 2
4 -4
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1
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OL
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1
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1Fý
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4
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2

-4

S 2Q2

S2Q4
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S 2

S12

S2 Q2

S2Q4

S12Q
4

SS'Q
SS'Q3

SO(8) with (3,3,1)

SO(8)
Q 8,
S 8,
S' 8c

Q2

S2

S,2
SS'Q
S3 S'Q
S'3 SQ
S2S,2
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SO(8) with (2,2,3)

SU(2) SU(2) U(1) 1 U(1) 2 U(1)R
Ol 1 1 0 4 0
1 I 1 -3 14
1 1 LI -1 -3 14

1
EDL

Q
S
S'
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S'2Q2
SS'Q3

S'212
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0
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-2
0
0
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-2
2
2
6

-12
-4

SO(7) with (6,0)

SO(7) I SU(6) U(1)R
S 8 Ol 16

ELI

E

Wd, = A [(s4)3 + (S4 )(S2)2 + (S2)6]A9 I

SO(7) with (5,1) [56]
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Wdyn = [(S4Q)2(S2) + (S4Q)(S 2Q)(S 4 )
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SO(7) with (4,2)

SO(7)
8
EO

SU(4) SU(2) U(1) U(1)R
O 1 1 0
1 0 -2 12
1
B

1
1

1

131
13

= 1[(S4Q)2(Q2) + (S 4Q)(S2Q)(S2Q 2) + (S 2Q)2(S 2Q2)(S2 )

+(S4)(S2Q2)2 + (S2Q)2(S2)2(Q2) + (S2Q2)2(S 2)2 + (S2)4(Q2)2]

SO(7) with (3,3)

SU(3) SU(3) U(1) U(1)R
[O 1 1 0
1 ] -1 1

3

1

EL

[17
1

1

(S2Q3 )(S2Q2)(S2Q) + (S 2Q2)3 + (S 2)3 (Q 2)3

+ (S2Q)2(S 2)(Q 2)2 + (S2Q)2(S2Q2)(Q2)]

The SO(N) theories with EC i - PG = 4

Our normalization for the indices of SO groups is somewhat non-standard. It follows from
demanding that the index is invariant under flows from SO(2N) groups to their SU(N)
subgroups. In the normalization where the index of the vector is one rather than two, it is
obvious that one can obtain a superpotential that is regular at the origin for E I - IcL = 1
or 2. In our normalization, this corresponds to E Yi - IG = 2 or 4. We have explicitly
checked that none of the E 1i - CG = 4 theories are s-confining by identifying flows to
non-s-confining theories.

The E 1' --C# = 4 SO(N) theories are examples of the special case where the confining
superpotential can be holomorphic at the origin without Eq. 4.8 being satisfied. This can
only happen when ,G and all ,i have a common divisor. Just like the previously mentioned
E Pi - ILG = 4 SO(N) theories, such theories are unlikely to s-confine. The reason is that
while Eq. 4.8 is preserved under most flows along flat directions, the property that IG and

S

Q
2

S2

S2Q
S2Q2

S4

S4Q

S

Q
Q2
S 2

S2Q
S 2Q2

S2Q3

SO(7)
8
EO

1 (S2 -32(S2) +

+(S2Q2)2 ( S 2) ( Q 2)



all Pi have a common divisor is not. Thus for most such theories one should be able to find
a flow to a non-s-confining theory. We expect that none of these "common divisor" theories
s-confine.

4.4.4 Exceptional groups

The analysis for exceptional groups G 2 , F4 , E 6 , E 7 , and E8 is surprisingly simple. The
s-confined spectrum of a G2 gauge theory with 5 fundamentals has already been worked
out in Ref. [57, 58]. The representations of G2 are real, thus the invariant tensors include
the two index symmetric tensor. Furthermore, there are two totally antisymmetric tensors
with three and four indices, respectively. Therefore, the confined spectrum is

G2 with 5 El [57]

G2 SU(5)
Q 7 L

U(1)R
-F-

M=Q2  E 2
5

A= Q 3
B=Q 4  F

Wdy [M5 + M2 A2 + MB + A2BB

The F4 , E6, E7 and E8 theories

Theories based on any of the other exceptional gauge groups can be shown to flow to theories
which are not s-confining. This is derived most easily by starting with the real group F4 . The
lowest dimensional representations of F4 are the 26 dimensional fundamental representation
and the 52 dimensional adjoint. Since any theory with adjoint matter has a Coulomb branch
on its moduli space, we can restrict our attention to theories with only fundamentals. By
giving an expectation value to a fundamental one can break F4 to its maximal subgroup
SO(9). Under SO(9) the representations decompose as follows: 26 -÷ 1 + 9 + 16 and
52 -4 16 + 36. The 9, 16, 36 are the fundamental, spinor, and adjoint of SO(9). When
giving an expectation value to a fundamental of F4 , the spinor component of its SO(9)
decomposition is eaten. Thus an F4 theory with N 1 fundamentals flows to an SO(9) theory
with Nf fundamentals and Nf - 1 spinors. For no Nf is this SO(9) theory s-confining,
therefore no F4 theory s-confines.

Using this result, it is easy to show that none of the groups E 6 , E 7 , and Es s-confine. The
lowest dimensional representations of E 6 are the (complex) fundamental and the adjoint.
By giving an expectation value to a fundamental, one can flow to F4 , whereas expectation
values for an adjoint lead to a Coulomb branch. Thus, E 6 theories cannot be s-confining
either.

By giving an expectation value to a field in the 56 dimensional fundamental represen-
tation of E7 one can flow to E 6 , while an expectation value for the adjoint again yields a
Coulomb branch. For Es the lowest dimensional representation is the adjoint, again leading
to a Coulomb branch. Thus none of the E 6 ,7 ,8 groups with arbitrary matter are s-confining.

T



4.5 Summary

In this chapter, we presented all s-confining N = 1 SUSY gauge theories based on a single
gauge group. These theories are important for the following reasons. First, by integrating
out vector-like matter one can find exact results for theories with smaller matter content.

The second possible application of our results on s-confinement is to composite model
building. Recently, several examples of models with quark-lepton compositeness have been
given [60, 69, 70]. All these models rely on the recent exact results for the infrared spectra of
s-confining theories. In these models the dynamically generated superpotentials can be used
to give a natural explanation of the hierarchy between the top and bottom quark mass [69].
A toy model based on Sp(6) with an antisymmetric tensor [60] has the interesting feature
that it generates three generations of quarks with a hierarchical structure for the Yukawa
couplings dynamically. We hope that the wealth of new s-confining theories listed in this
paper can be applied to build further interesting and realistic models of compositeness.

Finally, our results can also be applied to dynamical supersymmetry breaking. Ref. [61]
has several new examples of supersymmetry breaking models which illustrate different dy-
namical mechanisms. These models use either s-confining theories, or theories obtained
from them by integrating out flavors. Many other new models can be built using our exact
results.



Chapter 5

Dynamical Supersymmetry
Breakingi

In this chapter we will discuss several models of dynamical supersymmetry breaking. We
first review the physical motivation to consider dynamical supersymmetry breaking (DSB).
Next we discuss the general principles for building models of DSB. We apply these tools
in the following sections, where we analyze the theories based on the products groups
SU(n) x SU(m) x U(1) obtained by decomposing the field content of an SU(n + m) theory
with an antisymmetric tensor and n + m - 4 antifundamentals.

5.1 Why dynamical supersymmetry breaking?

As discussed in the Introduction, supersymmetry solves the hierarchy problem, i.e. it elimi-
nates all dangerous quadratic divergences that could destabilize the ratio M .-eh. However,MPlanchk
supersymmetry itself does not explain the origin of the hierarchy between these scales. On
the other hand, supersymmetry must be broken, and it is natural to expect that it is bro-
ken spontaneously. However, we have seen in Chapter 2 that within the MSSM it is not
possible to break supersymmetry spontaneously and maintain a viable model. Therefore,
the usual assumption is that there are two sectors of physics. One sector breaks supersym-
metry spontaneously, but it is not directly coupled to the fields of the MSSM (the visible
sector). The MSSM learns of supersymmetry breaking in the other sector only through
gravitational or gauge interactions. The weak scale is determined depending on the method
of communication of SUSY breaking by Meak = M for gravity mediation and by
Mweak = anMs (n = 2, 3) for gauge mediation, where Ms is the scale of supersymmetry
breaking, while a =- , with g being the gauge coupling. One can see that the above
formulae for Mwealk translate the question of why the weak scale is so small to the question
of why the scale of supersymmetry breaking is so small compared to the Planck scale.

This latter question however can be explained by assuming that supersymmetry is dy-
namically broken. Dynamical breaking means that supersymmetry is not broken at tree-
level (or in perturbation theory), but by non-perturbative effects due to strong dynamics.
In this case Ms oc A, where A is the dynamical scale of the asymptotically free gauge group.

1Based on research done in collaboration with Lisa Randall, Witold Skiba and Robert Leigh reported in
Refs. [74, 75].



Since
8fr

2

A = e g2 MPlanck,

Ms < MPlanck can be naturally explained due to the logarithmic running of the gauge
coupling.

Thus, to summarize, the motivation for dynamical supersymmetry breaking is that it

could naturally explain the smallness of the weak scale compared to the Planck scale.

5.2 The basics of dynamical supersymmetry breaking

In order to complete the program discussed in the previous section, one needs to actually

find models which do break supersymmetry dynamically. This turns out to be quite a
difficult task. In the following, we review some general arguments which will lead us in
looking for models of dynamical supersymmetry breaking.

5.2.1 Witten's argument

Witten suggested to consider the index Tr(-1)F = nB - nF, where nB is the number of
bosonic zero energy states while nF is the number offermionic zero energy states [71]. Since
supersymmetry is broken if and only if the ground state energy is non-zero, a non-vanishing
value of the Witten index indicates unbroken supersymmetry. However if supersymmetry is
broken, nB = nF = 0, and so the Witten index must be vanishing. Since the Witten index
can take only integer values, it does not change with continuous changes of the parameters
of the theory. Therefore, if one has a non-chiral theory, one can add a mass term to every
field and take the masses to infinity. This does not change the value of the Witten index and
we are left with a pure Yang-Mills theory. However, Witten showed that pure Yang-Mills
theories always have a non-vanishing Witten index and so non-chiral theories can not break
supersymmetry. Therefore when looking for models of dynamical supersymmetry breaking
one should look for chiral theories.

5.2.2 The ADS conditions for dynamical supersymmetry breaking

Affleck, Dine and Seiberg (ADS) showed a sufficient condition for dynamical supersymmetry
breaking [72]. They argued, that supersymmetry is dynamically broken, if the following two
conditions are satisfied

- there are no classical flat directions in the theory
- there is a spontaneously broken global symmetry.
Their argument was based on the observation that if there is a broken global symmetry,

then there must be a massless scalar in the theory. However, the scalar partner of this
field can not be massless since that would imply that there is a flat direction in the theory,
which contradicts the first assumption. Therefore they argued that supersymmetry must
be spontaneously broken as well.

5.2.3 The method of DNNS

Dine, Nelson, Nir and Shirman noted, that a convenient way to find new models of dynamical
supersymmetry breaking is by looking at an existing model and decompose the field content
under a subgroup of the original group [73]. This method is guaranteed to yield an anomaly
free field content and often turns out to produce new models of dynamical supersymmetry



breaking. However, no argument exists based on which one could decide when this method
will work and when not.

5.3 The SU(N) model of ADS

The first model known to break supersymmetry dynamically was the SU(N) theory with
an antisymmetric tensor A and N - 4 antifundamental fields Fi (with N being odd).

First consider the case of N = 5. Here there are no classical flat directions, since all
gauge invariant operators made out of A and a single F vanish. The theory has a non-
anomalous U(1) x U(1)R symmetry, and ADS argued based on anomaly matching, that one
of the U(1) is spontaneously broken in the ground state [72]. Therefore supersymmetry is
broken as well.

Supersymmetry is broken for larger N's as well. In this case we need to add a tree-level
superpotential

Wtree = AijAFiFj
in order to lift the classical flat directions, where Aij is a matrix of maximal (N - 5) rank.
If we consider the theory before adding the tree-level superpotential, then one has flat
directions. Along these flat directions, the SU(N) group is broken to SU(5) with the field
content 10+ 5, which is exactly the SU(5) theory considered previously. This SU(5) theory
breaks supersymmetry, and the vacuum energy is proportional to the scale of the SU(5)

2N-3
group, Evac oc A5. The scale A5 is determined by matching to be A5 -= ~ • where

4P is a generic VEV along the flat directions. Thus the vacuum energy is Eac 2N-10? 13
When the flat directions are lifted by the superpotential, supersymmetry is broken without
a runaway vacuum.

Now we can apply the method of DNNS to construct other models of dynamical super-
symmetry breaking starting from the presented SU(N) theories. First let us decompose
the SU(5) model to SU(3) x SU(2). The resulting field content is

SU(3) SU(2)
Q EI LI
u a 1D 1
L 1 El

Adding a tree-level superpotential to this theory

Wtree = QUL

lifts all flat directions. Considering the limit A3 > A2, we see that we have SU(3) super-
symmetric QCD with two flavors, and thus a superpotential

Wdyn = 1
(QU)(QD)

is generated by the SU(3) dynamics. This superpotential together with the tree-level su-
perpotential break supersymmetry dynamically. This is the famous 3-2 model of Affleck,
Dine and Seiberg [49].



One can decompose the SU(N) models similarly to SU(N - 1) x U(1) or to SU(N -
2) x SU(2) x U(1). Dine, Nelson, Nir and Shirman showed [73], that one can find a suitable
tree-level superpotential in both cases to lift the flat directions, and the SU(N - 1) group
in one case or the SU(N - 2) group in the other case has sufficiently few flavors to generate
a dynamical superpotential term. Therefore both of these theories break supersymmetry.

However, if one considers other decompositions of the SU(N) model, one does not get a
dynamical superpotential in any group factors. We will show in the following sections, that
these models nevertheless break supersymmetry [74, 75].

5.4 The 4-3-1 model

In the next two sections we analyze the theories based on the gauge group SU(n) x SU(3) x
U(1) [74]. Because the gauge dynamics are very different for n = 4 and n > 4, we first
consider the gauge group SU(4) x SU(3) x U(1). The particular models we explore are
based on an idea discussed in Ref. [73], where it was suggested to search for models which
dynamically break supersymmetry by taking a known model and removing generators to
reduce the gauge group. This method is guaranteed to generate an anomaly free chiral
theory which has the potential to break supersymmetry. There are several known examples
of theories with a suitable superpotential respecting the less restrictive gauge symmetries
of the resultant theory, in which supersymmetry is broken without runaway directions.
However, there is as yet no proof that this method will necessarily be successful.

Unlike previous models in the literature, neither of the nonabelian gauge groups gen-
erates a dynamical superpotential in the absence of the perturbations added at tree level.
Because neither factor generates a dynamical superpotential, there is no limit in which the
theory can be analyzed perturbatively. Therefore, we derive the exact superpotential for
the n = 4 case which we use to show supersymmetry is broken in the strongly interacting
theory.

The SU(4) x SU(3) x U(1) model is interesting for several reasons. First, the demonstra-
tion of supersymmetry breaking involves a subtle interplay between the confining dynamics
and the tree-level superpotential of the theory. Second, this model implements the mech-
anism of [76, 77] without introducing additional singlets or potential runaway directions.
Third, we can lift all the flat directions by a renormalizable superpotential. Fourth, none of
the gauge groups generates a dynamical superpotential; the fields are kept from the origin
solely by a quantum modified constraint.

In addition, the exact superpotential exhibits several novel features. First, fields with
quantum numbers corresponding to classically vanishing gauge invariant operators emerge,
and play the role of Lagrange multipliers for known constraints. Second, we find that
classical constraints can be modified not only by a constant, but by field dependent terms
which vanish in the classical limit. Third, fields which are independent in the classical
theory satisfy linear constraints in the quantum theory. By explicitly substituting the
solution to the equation of motion for these fields, we show that quantum analogs of the
classical constraints are still satisfied.

The SU(n) x SU(3) x U(1) theories (to be discussed in the next section) for n > 4 are
less tractable but nonetheless very interesting. We show that it is possible to introduce
Yukawa couplings which lift all classical flat directions. We then consider the low-energy
limit of this theory. The SU(3) gauge group without the perturbative superpotential is not
confining. However, the SU(n) confined theory in the presence of Yukawa couplings induces



masses for sufficiently many flavors that there is a dynamical superpotential associated with
both the SU(3) and SU(n) dynamics. This low-energy superpotential depends non-trivially
on both the strong dynamical scales of the low-energy theory and the Yukawa couplings of
the microscopic theory. We consider this model with and without Yukawa couplings which
lift the baryon flat directions. In the first case, the theory is too complicated to solve. The
form of the low-energy superpotential permitted by the symmetries is nonetheless quite in-
teresting in that it mixes the perturbative and strong dynamics. In the second case, we can
explicitly derive that supersymmetry is broken. In either case, there is a spontaneously bro-
ken global U(1) symmetry, so we conclude this theory probably breaks supersymmetry and
has no dangerous runaway directions when all required Yukawa couplings are nonvanishing.

We first describe the SU(4) x SU(3) x U(1) model classically. In particular, we show
that the model has no classical flat directions. Then we analyze the quantum mechanical
theory in the strongly interacting regime and show that the model breaks supersymmetry.
In the next Section, we discuss generalizations to SU(n) x SU(3) x U(1).

5.4.1 The classical SU(4) x SU(3) x U(1) theory

The field content of the model we study is obtained by decomposing the chiral multiplets
of an SU(7) theory with the field content consisting of an antisymmetric tensor and three
anti-fundamentals into its SU(4) x SU(3) x U(1) subgroup. The fields are:

A" (6, 1), Q,(1, 3)-8s, T aa(4, 3)_1, FPI(4, 1)_3, Qai(1, 3)4,

where i, I = 1, 2, 3 are flavor indices, while Greek letters denote SU(4) indices and Latin
ones correspond to SU(3). In this notation (n, m)q denotes a field that transforms as an n
under SU(4), m under SU(3) and has U(1) charge q.

We take the classical superpotential to be

Wct = A'F 1iFpO2 + T aQ aFa + Taa Q 2F, 2 + Taa 3 P•a3 +

QaQb2Qcl . abc. (5.1)

We will show shortly that this superpotential lifts all D-flat directions.
From the fundamental fields we can construct operators which are invariant under the

gauge symmetries of the theory. We first list those which are invariant under SU(4) x SU(3)
and subsequently construct operators which are also U(1) invariant. Later on it will be
important to distinguish operators invariant under the confining gauge groups but which
carry U(1) charge.

MiI = TcaQaiFa 0

M4I Ta QaFai -12

XIJ = A FOi Fp, 0
X14 = ApaOFEr6CTraT6bTCcEabc 0

PfA = E•peA A/"r  12 (5.2)

Yij = E,Pr6 AA'P T " Q jaiT 6b bj 12

Yi 4 E= ,PY Ap Traai Tb Qb 0

B = iFaIFp.ryKEIJKTaaT, bTycEabc -12

S= - QaQbjQ ckE kabc 0



4= 1 ai -bj ickEi abc 12

The right hand side column indicates the charges of the operators under the U(1) gauge
group. All other SU(4) x SU(3) invariants can be obtained as products of these operators.
The classical constraints obeyed by these fields are:

4 XI 4XJKEIJK - B PfA = 0

Cijk IJK (PfA MiIMjJMkK - 6YiMklXJK) = 0
Eijk IJK (PfA M4IMjJMkK - 2Yj kM4IXJK + 4Yj4MkIXJK) = 0

Y 4bi = 0

B4 - 6 ijk IJK Mi MjJMkK = 0

BEkijYij - 2 EkijEIJK MiIMjJXK4 = 0

M41b4 + Mbi; i = 0
ECiJYjk M 4I + 2 EijkMjIYk4 + 4 X1 46i = 0
EIJKEijk MiIMjJM4 KYk4 = 0. (5.3)

The completely gauge invariant fields can be formed by taking products of the above
U(1) charged fields. However, most of these combinations turn out to be products of other
completely gauge invariant operators. As an operator basis we can use the neutral fields
from Eq. 5.2 and EI = M4IPfA. These operators are subject to the following classical
constraints:

EIJK EJMi Kbi = 0

Yi4 b' = 0

EIJK CiJkMiiMjiEKYk4 = 0
EIJK Eijk MiI MiJYk4 MK l = 0 (5.4)

These constraints follow from Eq. 5.3. We have omitted the linear constraints following
from Eq. 5.3 which define additional unnecessary fields. These operators obeying the above
constraints parameterize the D-flat directions of the theory.

In terms of the invariants defined above we can express the superpotential as

Wal = X 12 + M 11 + M 22 + M 33 + 63. (5.5)

We now show that this superpotential suffices to lift all D-flat directions. It is easiest to
show this (using the results of Ref. [47]) by demonstrating that the holomorphic invariants
which parameterize the flat directions are all determined by the equations of motion (as
opposed to parameterizing the flat directions in terms of the fundamental fields). If all
holomorphic invariants are determined, we can conclude that all potential flat directions
are lifted.

We consider the equations of motion corresponding to the classical superpotential of
Eq. 5.1. The equation aw sets X12 to zero if we multiply by A. Forming all gauge invariant
combinations from W we obtain the following. Multiplying ow by Qj gives

Mj3 = 0,



similarly for aw we obtain
lQ,,1,2

M12 =0 M22  b3 =0 M32 -b 2 =0
M 2 1,=0 M11+b 3 =0 M 3 1 -bl=0.

Next, we multiply the same equations by EabcT)bT-YCA6PE,3 6p to obtain

X34 = 0 Y24 + 2X 14 = 0 Y14 - 2X 24 = 0.

Also, by multiplying ow by QaPfA we get

E = 0.

Next, from 0W-Qa we obtain thataQ.
6 = 0.

We obtain the remaining equations from .w They are:

M 13 - X23= 0 M 23 + X 13 = 0 M31 = 0

E 2 +4Y 14 =0 E 1 -4Y 2 4 =0 Y34 =0

The only solution to these equations sets all operators to be zero. Therefore, our theory
does not have flat directions.

In Ref. [72] it was argued that theories which have no flat directions, but preserve
an anomaly free R symmetry break supersymmetry spontaneously if the U(1)R symmetry
is spontaneously broken in the vacuum. This follows because there would be a massless
pseudoscalar, which is unlikely to have a massless scalar partner. The superpotential of
Eq. 5.1 preserves an R symmetry under which the R charges are R(A) = R(F3 ) = 0, R(F1 ) =
R(F2 ) = 1, R(Q 1) = R( 2 ) , R(Q3 ) = , R(Q) = -8 and R(T) = - . Although this

symmetry is anomalous with respect to the U(1) gauge group, if it is spontaneously broken,
the associated Goldstone boson is nonetheless massless so the argument of Ref. [72] should
still apply.

Notice that the classical equations of motion in our theory have a solution only where
all fields vanish. In the next section we show that the quantum theory does not permit such
a supersymmetric solution, so that supersymmetry is broken.

5.4.2 The quantum SU(4) x SU(3) x U(1) theory

In this section we will derive the exact superpotential of the SU(4) x SU(3) x U(1) theory.
The fact that it is possible to determine the exact superpotential of the theory will enable
us to prove that supersymmetry is dynamically broken.

Before proceeding, we list the global symmetries of the microscopic fields, which are



useful when constraining the form of the exact superpotential. The global symmetries are:

A

Q0
T
FP
Qi

48

U(1)A U(1)Q U(1)T U(1)p SU(3)p• U(1)q, SU(3)Q, U(1)R
1 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0
0 0 1 0 1 0 1 0
O 0 0 1 3 0 1 0
0 0 0 0 1 1 3 0
0 1 4 0 1 3 1 -2
2 0 3 3 1 0 1 0

The only invariants under all global symmetries including U(1)R are A = XIJXK4 6IJK/A 8

and B = BPfA/A8.
We now identify the proper degrees of freedom. To do so, it is convenient to first take

the limit A3 > A4 and construct SU(3) invariant operators which are mesons and baryons
formed from the SU(3) charged fields, and then to construct the SU(4) bound states of
these fields. This gives us the spectrum which matches anomalies of the original microscopic
theory, independent of the ratio A3/A 4.

Below the SU(3) scale, the theory can be described by an SU(4) theory with an anti-
symmetric tensor and four flavors. These four flavors are

Fa4 = cE••s,aT 8abT 6ScEa bc,

Fc = T Qa, i = 1,2, 3

F4a = T"aQa, (5.6)

The three remaining antifundamentals are FaI, I = 1, 2, 3, the original fields. The SU(3)
antibaryons are the b"s of Eq. 5.2, which are singlets under SU(4).

The four-flavor theory with an antisymmetric tensor has been described in Ref. [56].
The confined states of the SU(4) theory are

PfA = cE,•p 6A" A
6

Mij = Ff FPv
XIj = A"~ 1F,,FPj

Yij = Aa' F FFE~c,4•6

1
B = 2 ~FalFPfFyKF 6LE aPYES I K (5.7)

Here the indices i and I range from 1 to 4. Note that B, M 44 and Mi4 are fields which
vanish classically. However, anomaly matching of the microscopic theory to the low-energy
theory requires the presence of these fields. Fields other than B, M44 and Mi4 correspond
to operators introduced in Eq. 5.2. The low-energy theory consists of the fields listed in
Eq. 5.2 and the new fields B, M 4 4 , and Mi4.

In order to construct the superpotential it is again convenient to consider the limit A3 >
A4. Below the A3 scale, there is an SU(4) theory with four flavors and an antisymmetric
tensor together with the confining SU(3) superpotential of Ref. [46]. The superpotential for



the four-flavor SU(4) theory with an antisymmetric tensor has been described in Ref. [56].
We determined the coefficients in the superpotential of Ref. [56] by requiring that the
equations of motion reproduce the classical constraints.

In this limit, the superpotential has to be the sum of the contributions from SU(3) and
SU(4) dynamics. The exact superpotential is therefore of the form:

3W = b3+X12+M11+M22+M33+A__B

f(A, B) 1 ( 24 BXIJXKLEI J K L +6 Yij YklE i j k - 24 BBPfA +
3 4

PfAEijklEIJKLMilMjJMkKKMIL - 12 EijklYij MkIMJXKLEJKL), (5.8)

where f is an as yet undetermined function of the symmetry invariants A and B, and
i, I 1,...,4. Therefore, the symmetries together with the limit A3 > A4 restrict the
superpotential up to a function of A and B. However, a negative power series in A or B
would imply unphysical singularities, since there is no limit in which the number of flavors
in the SU(4) theory is less than the number of colors. On the other hand, a positive power
series in A or B would not correctly reproduce the limit where A4 > A3. In this limit
one has an SU(4) theory with an antisymmetric tensor and three flavors, which yields a
quantum modified constraint [64]. Observe the amazing fact that the B equation of motion
which involves the superpotential from both the SU(3) and SU(4) terms exactly reproduces
this SU(4) quantum modified constraint. This is only true with no further modification of
the second term. In fact, this is what permits us to fix the relative coefficient of the two
terms in parentheses. Thus we conclude that f(A, B) _ 1.

We stress again that each of the fields B, Mi4, and M 44 vanish classically. In the quantum
theory, the B field acts as a Lagrange multiplier for the three flavor SU(4) quantum modified
constraint. The Mi4 and M44 equations of motion are

eijkJIJK (PfAMilMjJMkK - 6YijMkIXJK) = 6A4 (5.9)
iJk EIJK (PfAM 4IMjJMkK - 2YjkM4IXJK + 4Yj4MklXJK) = 2A4 bi

The linear equations for bi and 64 can be understood by the fact that they appear as mass
terms for M 44 and Mi4. The equations of motion in Eq. 5.9 can be interpreted as quantum
modified constraints of a three flavor SU(4) theory with the scales related through the
b-dependent masses.

It is a nontrivial check on the superpotential of Eq. 5.8 that all classical constraints have
a quantum analog and vice versa. The quantum modified constraints involving bi and 64 are
derived by substituting in the solution to their equation of motion. The quantum modified
constraints are:

4 XI 4XJKEIJK - 1PfA = A4 (5.10)
fijkEIJK (PfAMilMjjMkK - 6 YijMkIXJK) = 6A4 64 (5.11)
Eijk IJK (PfAM4IMjJMkK - 2YjkM4IXJK + 4Yj4MklXJK) = 2A4 bi (5.12)
fIJK EijkMiMjjM4 KYk4 = 2 BM 4IXJKEIJK (5.13)
BEkijYj - 2 EkijEIJKMiI MjJXK4 = -2 Mi 4 MjIEki j XJKEIJK (5.14)

while the remaining constraints are not modified. The interesting thing to observe in the



above equations is that the quantum modifications do not simply involve addition of a
constant to the classical field equations. The quantum modification can be field dependent.
The classical limit is recovered in Eqs. 5.13, 5.14 because B and Mi4 are fields which vanish
classically. Without a tree-level superpotential Mi 4 is set to zero by the bi equations of
motion. However, Mi4 can be non-vanishing in the presence of a tree-level superpotential.
The quantum modifications in Eqs. 5.11, 5.12 do not contain classically vanishing fields,
but are proportional to A4 , which ensures the correct classical limit. This field dependent
modification of constraints is a new feature which is not present when analyzing simple
nonabelian gauge groups.

Note that five of our constraints (Eqs. 5.10, 5.11 and 5.12) can be interpreted as the
quantum modified constraints on the moduli space of an SU(4) gauge theory with an
antisymmetric tensor and three flavors. Such a theory is obtained in several limits. If
A4 > A3 one trivially has a three flavor SU(4) theory with an antisymmetric tensor. On
the other hand, if A3 > A4 and any single b is non-vanishing one also has a three flavor
SU(4) theory with its corresponding quantum modified constraint.

When deriving the constraints in Eqs. 5.10-5.14 from the exact superpotential we fre-
quently encounter expressions containing inverse powers of A4. Such terms are singular in
the limit when A3 is held fixed and A4 -- 0. This is true even for expressions containing
the fields B, Mi 4 and M 44 , since they vanish only in the limit when A3 -- 0. Therefore all
such terms must and do cancel.

5.4.3 Dynamical supersymmetry breaking in the 4-3-1 model

In the low-energy description of our model the SU(4) and SU(3) gauge groups are confined
and the only remaining gauge group is the U(1). This U(1) does not play any role in su-
persymmetry breaking; its purpose is to lift some classical flat directions. Unlike previous
examples of dynamical supersymmetry breaking, the superpotential can be completely an-
alyzed in a regime where there are no singularities, either due to a dynamically generated
superpotential present in the initial theory, integrating out fields, or particular limits. If
the theory breaks supersymmetry, it is simply of O'Raifeartaigh type [78]. In this section,
we show that this is the case; there is no consistent solution of the F-flatness equations for
the exact superpotential of Eq. 5.8.

We first assume that B 1 0. Then the w equation of motion implies

Yij = B XKLMilMVljJE JKL (5.15)

Plugging this expression into the w equation of motion, we obtain

-3 4 3 4P) + 2ABXST - EijklMiMMNMksMITXKLEMNKL = 0.

However, by using the = 0 equation in the above expression we arrive at a contradic-
tion.

Next we assume that B = 0, but B 5 0. We can now solve for X using the equation
aw 0:

XMN = ) + 48 MkMM (516)XMN AsB [( 53V 5N - 5NV3M) + 48 fijklyijMkMMIN] • (5.16)
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Then we multiply this equation by EijkLEIJMNMkIMIJ. The Yij equation of motion sets the
left hand side to zero, while the PfA equation of motion sets the second term on the right
hand side to zero. Therefore,

Eij klIMIMjJEIJ34 = 0.

Using this fact, the PfA equation of motion, and the expression for XMN in Eq. 5.16 we
get that = - -, which again means that the equations of motion are contradictory.B -- A5

3

Finally we assume that B = B = 0. Then the o equation of motion implies

eijklij MklMIJ = 0

for all I, J except I = 3, J = 4. Multiplying the wequation of motion by MijMj and
using the a equation of motion we get that

eijklMizMj2 = 0.

Using these results the ow3 equation of motion yields

8i3 8f iikl jkMy XKLE 3JKL = 0.
3 4

Multiplying this equation by Mi4 implies M34 = 0, which is in contradiction with the OW
Ob

equation of motion. Thus we have shown that this SU(4) x SU(3) x U(1) model breaks
supersymmetry dynamically. Since there are no classical flat directions, there should not
be runaway directions in this model.

Having presented a general proof of supersymmetry breaking, we now give a simpler
proof that applies only in a restricted region of parameter space. Assume that A3 is the
largest parameter in the theory. The effective superpotential just below the A3 scale is

W = + 7 Aa6FaiF,2 + AiFFa1 + A2F2 Fa2 + A3F3aFa3 +

A1 F(4F9ai - detFi), (5.17)

where we use the notation from Eq. 5.6 and we introduced explicitly the Yukawa couplings
7 and A1 ,2,3. In terms of the canonically normalized fields, A1,2,3 are mass parameters.

Next, we integrate out three of the four flavors to arrive at an SU(4) theory with one
flavor and a superpotential

1 -
W = ÷ + A1 Fa4 F&b4 . (5.18)

To describe the dynamics of the one-flavor SU(4) theory, it is useful to define the effective
one-flavor SU(4) scale A;, which is proportional to A •A2 A3A8A . Below the effective A4
scale there is a dynamically generated term, so the low-energy superpotential is

A3 PfA M,4W 3 PfA5M4 (5.19)

where M44 = F,4F4F. There are no solutions to the equations of motion. Note that the
potential runaway direction is removed by the U(1) D-flatness condition. Therefore su-



persymmetry is dynamically broken. Observe that supersymmetry breaking in this limit
has two sources. First the superpotential generated by the SU(3) and SU(4) gauge groups
together does not have a supersymmetric minimum. Second, a Yukawa term in the tree

level superpotential is confined into a single field which is also a source of supersymmetry
breaking. In fact, the tree-level Yukawa terms have three different important roles in this
analysis. They lift the flat directions, they yield mass terms for the SU(4) fields after SU(3)
is confining, and they also contribute to supersymmetry breaking by the linear term. The
fact that there is a quantum modified constraint in the A4 > A3 limit of the theory does
not seem to play a major role in the dynamics of supersymmetry breaking.

By symmetries, it can be shown that this simpler proof neglects power corrections
proportional to

y'2biPfA M 44 k

This reflects the fact that here we are studying the effective theory treating A3 as large.
The 64 equation of motion together with the fact that there are no flat directions imply
broken supersymmetry even with these corrections incorporated.

5.5 The SU(n) x SU(3) x U(1) theories

In this section we generalize the SU(4) x SU(3) x U(1) model to SU(n) x SU(3) x U(1), with
n even. There are several interesting features of the dynamics of these theories. Without a
tree-level superpotential the SU(3) group is not confining. However, the Yukawa couplings
of the tree-level superpotential become mass terms when the SU(n) group confines. These
mass terms drive the SU(3) group into the confining regime as well. Confinement can
change chiral theories into non-chiral ones. In this example Yukawa couplings become mass
terms. In fact, the quantum modified constraint associated with the SU(n) group of the
initial theory does not appear to play an essential role in the dynamics of supersymmetry
breaking. Another interesting phenomena is that even if we remove some of the couplings
from the superpotential, so that some flat directions are not lifted, these directions turn
out to be lifted in the quantum theory. In particular, once the Yukawa couplings turn into
mass terms, the SU(3) antibaryon directions are automatically lifted.

As in Section 5.4, we obtain the field content for these models by decomposing the
fields of the SU(n + 3) theory with an antisymmetric tensor and n - 1 anti-fundamentals
to SU(n) x SU(3) x U(1):

S A' (B, ,1)6 + Qa(1,3)-2n T"a(1, 3)3_,

(n - 1) P - F,,I(, 1)-3+ Qai(1, 3),, (5.20)

where i, I = 1,..., n -1.
In analogy to the 4-3-1 case, SU(n) x SU(3) x U(1) invariants are:

Mij = AT QaiF•a

Xzj = A"g• , Ilp J

X, = A,,_ -... AasPFp•ia .... Ta3a Ta2b Talcabc6
Yi = Ac ' ln-- 1~ ... AcA4°3TC1aaQ aiTalbQb

102



bij = QaQbiQcjEabc

EI = can ....x, A •n- ... Aa2' 1T QaFpI (5.21)

We consider the following superpotential:

W = X12 + X34 ...+ Xn-3,n-2 + 23 b45 + ... bn-2,1
M 11 + M 2 2 + ... M_1,n-1. (5.22)

Observe the relative shifts in the indices between the X and b operators. One can check
that not all flat directions are removed without such a shift in the indices.

To demonstrate that all flat directions are lifted, one can use the same method as
described in Section 5.4. In this example, we require looking not only at linear equations
in the flat direction fields, but also higher order equations, in order to demonstrate that no
flat directions remain in the presence of the tree-level superpotential above.

We first use the Qi and Fi equations of motion (contracted with Qk and Fj). One
will then find potential flat directions which are labeled by i = 1, 3, 5,..., 2[n/4] - 1 with
equal values of X2j-1,(2j-1+i)ll(n-2) = b2j,( 2 j+i)lJ(n- 2 ), where j = 1, 2, 3,..., (n - 2)/2 labels
nonvanishing X and b fields which are equal along the flat direction. Here, by [z] we denote
the greatest integer less than x, while we define ml In 1 + (m - 1) Mod n. There is another
set of potential flat directions of the form X2j,(2j+i)ll(n-2) = b2j-1,(2j-1+i)lI(n-2), where again
j = 1,2,3,...,(n- 2)/2 and i= 1,3,5,...,2[n/4]- 1. In the case when n = 4k and i= k,
two potential flat directions described above are equal to each other, so they represent just
one flat direction. Altogether, there are (n - 2)/2 potential flat directions. One of these
flat directions is lifted trivially by the A equation of motion. To see that the remaining
flat directions are lifted requires obtaining quadratic equations in the flat direction of fields
by suitably contracting the T equations of motion. These equations can be shown to have
only the trivial solution where all fields vanish. We have verified this explicitly in the cases
n = 6, 8, 10, and 12, but we expect this method to generalize.

One can also verify that the superpotential above preserves two U(1) symmetries, one
of which is an R symmetry which is anomalous only with respect to the U(1) gauge group.
From the quantum modified constraint it can be shown that at least one of these U(1) sym-
metries is spontaneously broken. Since the theory has no flat directions and spontaneously
breaks a U(1) symmetry, we expect that supersymmetry is broken.

There is a possibility however that in the strongly interacting regime there is a point at
which supersymmetry is restored. We now consider the quantum theory and argue that it
is likely that supersymmetry is broken.

Without a tree-level superpotential the SU(3) group is not confining for n > 4 since
Nf > N,. We choose to use fields transforming under SU(3) instead of the SU(3) invariant
operators. The D-flatness conditions can then be imposed explicitly. Although in principle
one could use holomorphic invariants to parameterize the D-flat directions, the naive appli-
cation of this method would lead to incorrect results at points of the moduli space where
these invariants vanish [80]. Although with careful choice of holomorphic invariants this
problem can be circumvented, in practice it is simpler to use the charged fields when the
gauge group is not confining.

The SU(n) group has three flavors and an antisymmetric tensor. Therefore SU(n) is
confining and gives rise to a quantum modified constraint as described in Ref. [64]. The
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SU(n) invariants are:

XIj = Aa-Fa FpJ

a= T"Fap

PfA = Ec&... Aanan"-I ... A 2

ya = A •- ... Aa'~' c.... Ta,,T abTlcabc (5.23)

together with the fields Qa and Qai.
The superpotential below the An scale is

W = a1 2 X 1 2 + ... + Can-3,n-2Xn-3,n- 2 + 23 QaQb2ca + ... +

n-2,1 QaQb,n-2 Qcl abc 1M Qal + +A n- 1 m,n-1 an-1

3n 2Eabcmm1, 2  3 X4 15  XI-fA -

yam XI2 3 .. .X,,_,,, h... I - ' + A ), (5.24)

where 77 is a Lagrange multiplier and we have explicitly included the coupling constants in
the tree-level superpotential. In terms of SU(n) invariants, some of the terms in the above
superpotential are just mass terms for (n - 1) flavors of SU(3), which drive SU(3) into the
confining phase. In the presence of these perturbations, non-perturbative SU(3) dynamics
will generate a superpotential. Similar results are found in Ref. [79]. We stress again that
in the underlying theory these interactions are Yukawa couplings and not mass terms.

To analyze the low-energy theory, we introduce an additional flavor of SU(n) with mass
I. We do this because the SU(n) quantum modified constraint or equivalently anomaly
matching shows that SU(3) must be broken below the scale An in the original theory. With
an additional flavor, the origin of moduli space is permitted and SU(3) can remain unbroken.
This permits us to derive the confining superpotential with two massless SU(3) flavors.
Although the correct theory is only recovered in the limit I --+ oo, we will analyze the theory
in the regime IL < An and hope one can extrapolate the conclusion that supersymmetry is
broken [64].

The superpotential with the additional massive SU(n) flavor is:

W = al 2 X 1 2  .... + n-3,n-2Xn-3,n 2
)23 aQb2Qc3Eabc ± ._. + bn-2,1 aQbn c abc +

A n-l,n-1 a - + ILm 4
Allm~Qa + -.. + A 1-m lQa,n-1 + +

A2-1 (PfAm m ma mb 3 m 4 XI,5 6 ... XI,_ In Eabcd EI ...In +

Yab m X,314 .. XInlI EabcdeI + BXI1 2 .. XI,_I EI1 ...I= +

ByabYcd Eabcd+ B+BPfA), (5.25)

where the variables are as defined in Eq. 5.23 with an extra SU(n) flavor and

B = TaiaTa2b T a3cF4 4 Ac5 a6 ... Aa.-la tabc Eal...an

y4 = ,I,... F, nEh¢,a ... IA•E•l •...a

ya 4 = T••aF.2 4 A3a4 ...Aa a a...a
yab abcyc. (5.26)
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The extra SU(n) flavor is denoted by F a 4 and FPan, and An is the dynamical scale of the
four-flavor SU(n) theory. Here we have not bothered to establish the correct coefficients in
the last term in parentheses, since they are irrelevant in the forthcoming analysis.

To arrive at the true low-energy theory, one would integrate out n - 3 flavors, at which
point a superpotential is generated involving A3 for the four flavor theory. Upon integrating
out the two remaining heavy flavors, one would generate a complicated superpotential,
involving both the Yukawa couplings and the dynamical scales An and A3. It is however
technically difficult to explicitly perform this procedure because of the nonlinear terms
induced by the baryon operators in the tree-level superpotential.

If we instead constrain the form of the low-energy superpotential with symmetries and
limits, we find that the analysis remains quite complicated, because many terms are per-
mitted by the symmetries and physical limits. We deduce the allowed terms by introducing
a parameter A3 which transforms under anomalous global symmetries associated with the
rotation of each field carrying SU(3) gauge charge in the initial microscopic theory. Al-
ternatively, we can define A3 for the two flavor theory, where all heavy flavors have been
integrated out. The parameters h9-ndet(Ail)/A2n-1 and A7 have the same charge under all
anomalous symmetries so we can describe the low energy dynamics in terms of either one.
We also see that if we consider A3 as a fundamental finite parameter of the initial theory,
singularities in the Yukawa couplings Ail are permitted when we express the result in terms
of the low-energy A 3, since the appropriate ratio is finite. In essence, the Yukawa couplings
become mass terms in the SU(n) confined theory, and appear in the matching of A3 across
mass thresholds.

Examples of terms permitted by all symmetries and limits are:

A P3 j (XJ )(n-4)/2PfA M4A 2n-1 (iA 2 ("I Pa;a4 y
nA3 (f•( ) 2 (Xl J)(n-6)/2PfA M

Ah"-1 (AiI) 4  (aya4)(yaMn)

where •ij's are the coefficients of the baryon operators QQiQj, and AiI of the TFIQi
terms in the tree-level superpotential, but the index structure is not specified. These terms
mix the effects of the strong dynamics with the tree-level superpotential, which is purely
a consequence of integrating out heavy fields. This does not violate the conjecture of
Refs. [62, 81], which states that the couplings of the light fields are not mixed into the
dynamically generated superpotential.

Because of the complicated superpotential, the analysis of the full theory is difficult.
We will therefore consider a simpler version of the theory, in which the baryon couplings,
Oij, are zero. This simplified superpotential does not lift all flat directions classically, which
might lead to runaway directions in the quantum theory. One can show that these remaining
classical flat directions can be parameterized by the baryon operators bij. However, in the
SU(n) confined theory, these fields are not flat, since the terms proportional to miI, which
are Yukawa couplings in the classical theory, are mass terms in the confined theory. In this
case, there is a potential for the baryon fields which drives them towards the origin, and
the baryon flat directions are lifted in the quantum theory. This is similar in spirit to what
was found in Ref. [76]. In that example however, a quadratic constraint becomes a linear
constraint so the flat direction is removed; here we simply see that the SU(n) confined
superpotential is such that the baryon fields are not flat. However there is a caveat to this
analysis which we discuss shortly.
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In this limit it is simple to integrate out the heavy flavors and arrive at the low-energy
theory. The resulting superpotential is

1  (a maMX 2
4  

3 .X-, EI...I-1 + BX 112 ... XI EI... InA2n-1, (,Y n IiX213 ... XI,_2I_+ I. _

+BYa4 ya + BBPfA) + im + A 2X 12 +. + An-3,n- 2Xn- 3 ,n-2

+ (5.27)(ya 4 y)(mb b) (ya 4 )(mbyb)

This superpotential clearly breaks supersymmetry since m 4 appears only in the term m .m4
Since the scales of the SU(n) theory with and without extra flavor are related by "PA2n-1
An•, this presumably implies that supersymmetry breaking is characterized by A2n - 1 in the
original theory.

Thus we just showed that if the SU(n) gauge group is confining, supersymmetry is
broken. Had supersymmetry not been broken, this would have been a good assumption,
since all operators involving fields transforming under the SU(n) are driven to the origin
by the classical potential. Because supersymmetry is broken, it is conceivable that the
true vacuum is in the Higgs, rather than the confining phase. Nonetheless, we still expect
supersymmetry to be broken since there are no classically flat directions in the theory. In
this case however, the b operators are not lifted by the superpotential. Once the effect
of supersymmetry breaking and the K5ihler potential are included, the b fields presumably
have a nontrivial potential. We have not analyzed whether or not this can give rise to
runaway directions, should the Higgs phase prove to be the true vacuum.

Having argued that supersymmetry is probably broken for /3j = 0, we hope that by
including the remaining couplings, while lifting the flat directions, does not introduce a
supersymmetric minimum. We expect that the arguments presented above indicate that
supersymmetry is broken in the full SU(n) x SU(3) x U(1) theories.

5.6 The general SU(N) x SU(M) x U(1) theories

In the previous two sections we showed that the SU(n) x SU(3) x U(1) theories break
supersymmetry. There we argued that supersymmetry breaking could be understood as
a collusion between separate dynamical effects from the two nonabelian gauge groups. In
the first example, the 4-3-1 model based on the gauge group SU(4) x SU(3) x U(1), the
exact superpotential could be found and the model was an O'Raifeartaigh model with both
groups contributing to the final form of the superpotential. In all cases, supersymmetry
breaking could be understood by taking a limit in which the gauge coupling of a confining
gauge group is the biggest coupling. In this limit, Yukawa couplings which were necessary
to lift flat directions turn into mass terms. Many flavors can be integrated out and the
gauge dynamics of the second nonabelian gauge factor generated a superpotential which
drives fields from the origin leading to the breaking of supersymmetry.

In the models considered in the previous sections, other mechanisms of supersymmetry
breaking could appear as well in the limit that one of the gauge couplings dominated. For
example, in the particular case of the 4-3-1 model supersymmetry breaking occurs in the
strong A3 limit through confinement, analogous to the mechanism of Ref. [82]. On the other
hand, if some of the tree level terms are removed, supersymmetry breaking appears due to
a quantum modified constraint [76]. Because of these additional descriptions, it was not
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clear that the quantum modified constraint was not essential to supersymmetry breaking.
In this section, we show that analogous models in which each of the two groups is in

one of a confining, free magnetic, or conformal phase (in the limit that we neglect the other
coupling) also break supersymmetry, through a conspiracy of dynamical effects from the
two gauge groups [75]. Naively, it would appear that such models should allow fields to go
to the origin. However, because of the tree-level superpotential and dynamics of one group,
the other group can generate a dynamical superpotential in the infrared which forbids the
origin and yields supersymmetry breaking.

It is interesting that models in which the theory must be analyzed at low energy in
the dual phase can break supersymmetry. It is not essential for the number of flavors
to be so small that a dynamical superpotential, a quantum modified constraint, or even
confinement occurs in the electric theory. This suggests the possibility of a much larger
class of supersymmetry breaking models because of the much less restrictive condition on
the size of the initial particle content.

The two models we present in this section are obvious generalizations of the SU(n) x
SU(3) x U(1) models considered in the previous section. Analogously to the n-3-1 models,
supersymmetry breaking can be understood as a result of Yukawa couplings and strong
dynamics which make flavors of the second gauge group heavy. In the resulting theory,
the origin is forbidden because of a dynamical superpotential from the second gauge group.
The mechanism is in some sense independent of the number of flavors in the initial theory.
We present two classes of models to illustrate this. In the first class of models, in which
one of the gauge groups is confining, supersymmetry breaking occurs through a conspiracy
of gauge effects. We then consider a model which must be analyzed in the dual phase.
The supersymmetry breaking dynamics for this model is remarkably similar to that of the
confining theory, as we will show below.

The fields of the first model can be obtained by decomposing SU(n + 4) model with an
antisymmetric tensor [49] into its SU(n) x SU(4) x U(1) subgroup. The field content is

-+ A(B, 1)8 + a(1,)- 2n + T(O, O) 4-n

n' -* FrI(,l1)- 4 + Q(1,),., (5.28)

where i, I = 1,..., n. We take the tree-level superpotential to be

Wtre = AFjF2 + AF3 F4 + ... + AFn-2Fn-1

+aQ 2 Q3 + aQ4 Q 5 + ... + aQn-lQ + TF 1 Q1 + ... + TFnQ,. (5.29)

A detailed analysis along the lines of Ref. [74] shows that this superpotential lifts all flat
directions. The relative shift of the indices in the AFF and aQQ terms is important.
Without this shift not all flat directions are lifted. This superpotential preserves an R-
symmetry which is anomalous only under the U(1) gauge group.

We analyze this theory in the limit where An > A4 . The SU(n) field content is an
antisymmetric tensor, four fundamentals and n antifundamentals which give confining gauge
dynamics. Below An, the effective degrees of freedom are the SU(n) invariants [56]

XIjj = A ' PFaIj

B = F,1a... FAnn'a• ..

(B 1 )a = Tc1aAC2 3 ... A.. -1caC. ...
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(B3)a = EabcdTa bT2cT a3d Aa4 a5 .. A -la- n Cea...•

MI = T"•'aI, (5.30)

plus the SU(n) singlets a and Qi.
The superpotential is the sum of the tree-level terms from Eq. (5.29) and the confining

superpotential [56].

W = X12 +...+X-,n,-+ aQ2Q3 +...+aQnlQ, +

M 1Q 1 +... + MnQn + A2n BaM4X,23 ...Xi,_zl II ' n

+BaM McMd Iy5 ... XI. Ine II '...I * abcd + BB a
3 a), (5.31)

where small Latin letters denote SU(4) indices.
Note that in the confined theory, some of the Yukawa couplings have become mass terms.

To deduce the infrared theory, we integrate out all massive fields. It is technically difficult
to integrate out the fields using the full superpotential from Eq. (5.31). For simplicity we
set the couplings of all aQQ terms to zero. We will argue based on symmetries that the
models with the additional baryon operators included still break supersymmetry. It should
be noted that the flat directions now present classically are lifted in the quantum theory
[76], which is presumably a valid supersymmetry breaking model as well.

Because we have integrated out n massive flavors, the SU(4) theory at low energy
has an antisymmetric tensor and only one flavor. This theory dynamically generates a
superpotential. The low-energy superpotential is therefore

1
Weff - X 12 + ... + Xn-2,n-1 + - Bm + , (5.32)

in LPfamj

where Pfa = a"bacdEabcd, m = B0B3a, and IA4 is the dynamical scale of the effective one flavor
SU(4) theory. The equations of motion have set most terms to zero in the An dependent
term. The B equation of motion would set m = 0. However, this is inconsistent with the

1

Pf m] 2 term in the superpotential, which drives m from the origin in a theory with no

flat directions. Therefore, we conclude that the equations of motion are contradictory, and
supersymmetry is dynamically broken.

We have argued that supersymmetry is broken in the theory with 7yi = 0, where 7-i is
the coefficient of the aQQ operators in the tree-level superpotential. It is clear that even
with nonzero 7'3, supersymmetry is still broken. From symmetries, it can be shown that
the neglected terms can correct the superpotential by a power series in

A = A 2n+ 1 (Pfa) (X ) ( )(m 2, (5.33)

where mil is the coefficient of the TFIQi operators. For small 7, these terms could only
give a sufficiently large contribution to cancel a nonzero F-term at field values larger than
An. In this case, the theory should have been analyzed in the Higgs phase, which is clearly
inconsistent with supersymmetry since there were no flat directions.

As an aside, we note that in the version of the theory without the aQQ terms in the
superpotential (and hence without the corrections of Eq. (5.33)), there is an additional
source of supersymmetry breaking. The terms X 12+. . .+Xn-2,n-1 in the superpotential lead
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A

p

M
H
B 1

SU(n - 3) Sp(2n - 8) SU(n) U(1) SU(n + 1)Q SU(n + 1)p
1 1 10 1 1
1 1 1E -5 1 1

El [3 1 0 1 1
El 1 1 5n 1 1

E 1 1 0 1 1 (5.36)
E 1 1 -5 1 1
1 EI 1 0 0 1
1 1 L 5 D 1
1 1 1 0 E 1
1 1 0 5(1 - n) 1 1

Table 5.1: The field content of the SU(n) x SU(5) x U(1) theory after dualizing the SU(5)
gauge group.

to supersymmetry breaking due to confinement, as described in Ref. [82]. Here we emphasize
the first argument for supersymmetry breaking, which generalizes beyond confining models,
as we describe below.

Next, we consider theories based on the gauge group SU(n) x SU(5) x U(1) (n even)
obtained by reducing the gauge group of the SU(n+ 5) theory with an antisymmetric tensor
and n + 1 antifundamentals. The mechanism of supersymmetry breaking will turn out to
be very similar to the previous models, despite the very different gauge dynamics.

The field content is

-H A(B, 1)10 + a(1, o)-2n + T(O, O)5-n

(n + 1)- - F(0, 1)-s + Qi(1, )n, (5.34)

where i, I = 1, ... , n + 1. The tree-level superpotential is

Wtree = AFPF2 +...+ AF,_.F, + aQ2Q3 +... + aQnQ +
TF 1 Q1 + ... + TF•+1 Qn+1 . (5.35)

Again a detailed analysis verifies the absence of flat directions.
The SU(5) gauge group has an antisymmetric tensor and n flavors while the SU(n)

has an antisymmetric tensor and five flavors. The SU(5) group is in the conformal regime
while the SU(n) group is in the free magnetic phase. Although it seems more obvious to
dualize the SU(n) which is in the free magnetic phase it is simpler to dualize the gauge
group SU(5), as it has an odd number of colors. This duality will increase the number of
SU(n) flavors by n - 3 which takes the theory out of the free magnetic phase.

The dual description of SU(5) with an antisymmetric tensor and n flavors is an SU(n -
3) x Sp(2n - 8) gauge theory[56] with the field content given in Table 5.1.

The SU(n-3) x Sp(2n-8) gauge group in Table 5.1 is the dual of the SU(5) gauge group,
while the SU(n) x U(1) is the remaining original gauge group unchanged by the duality
transformation. The SU(n + 1) x SU(n + 1)p global symmetries are the non-abelian global
symmetries of the original SU(n) x SU(5) x U(1) theory.

The superpotential consists of the terms corresponding to the tree-level superpotential
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of Eq. (5.35) and the terms arising from the duality transformation. It is given by

W = AF= F2 + ...+ AF,_1Fn + H23 + ... + Hnl + MiFl + ...+

Mn+lFn+1 + Mqlx + H12 + Blpq + zX2.  (5.37)

As in the SU(n) x SU(4) x U(1) models, some of the tree-level Yukawa terms are mapped
into mass terms in the dual description. To simplify the theory we again set the coefficients
of the AFF operators to zero, though in this case it is not difficult to leave them in. With
this simplification, one can easily integrate out the massive flavors of SU(n) since the F1
equations of motion set all M's to zero. There is just one SU(n) flavor remaining and thus
there is a dynamically generated term in the superpotential from the SU(n) dynamics. The
effective low-energy superpotential is

n~+1
W = H23 + H45 + . + H,, + H12 + aj2 + Ilp + (n _(5.38)

(MXk(n-4)/2Pf A)1/2

where AM = B1 q, i = Aqq and PfA = A" /2, while Ins is the effective SU(n) scale. This
superpotential looks very much like the one in Eq. (5.32), with M playing the role of m and
p the role of B. The equations of motion are again contradictory. We again conclude that
supersymmetry is broken.

The above analysis neglected the Sp(2n - 8) group that appears from dualizing the
SU(5) group. This group is however Higgsed by the VEV's of the I fields as a result of the
H equations of motion and the terms linear in H in the superpotential. Although instanton
terms can be generated in the broken Sp(2n - 8) group, these will not involve the fields
M, X, PfA or p and therefore do not affect the proof of dynamical supersymmetry breaking
given above. The Sp(2n - 8) dynamics seems to be irrelevant to the analysis of the model.

The dynamics of the general SU(n) x SU(m) x U(1) models (n, m > 5) obtained in the
same way is very similar to that of the SU(n) x SU(5) x U(1) model, if one dualizes the SU(n)
corresponding to odd n. We expect that a similarly constructed tree-level superpotential
lifts all flat directions. One can then show that the resulting low-energy superpotential is
in one-to-one correspondence to the superpotential of Eq. (5.38), with the remaining gauge
group being SU(m - 3) x Sp(2m - 8) x SU(m) x U(1) (m is even), which is obtained by
dualizing the original SU(n) group. Since the superpotential is exactly of the same form as
the one in Eq. (5.38) we conclude that the general SU(n) x SU(m) x U(1) models break
supersymmetry as well.

The similarities between the SU(n) x SU(4) x U(1) and SU(n) x SU(5) x U(1) models
is intriguing. In both models, the dynamics of the SU(n) group leads to additional flavors
of the second gauge group, in one case due to confinement, and in the other case, due to the
dual description. In both cases, some of the tree level terms are mapped into mass terms
due to dynamical effects in the SU(n) gauge group. After integrating out these massive
flavors the other gauge group has only a single flavor remaining besides the antisymmetric
tensor and produces a dynamically generated superpotential. This dynamical superpotential
together with a piece of the superpotential from the strong dynamics of the first group breaks
supersymmetry. Thus supersymmetry breaking in these theories involves a subtle interplay
between the gauge dynamics of both groups and the tree-level superpotential.

That these theories (and presumably the general SU(n) x SU(m) x U(1) models as
well) break supersymmetry suggests the existence of still more models of dynamical su-
persymmetry breaking. The flavor content of these models can be much larger than one
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would naively have anticipated by the requirement of a dynamical superpotential, because
Yukawa couplings or other interactions in the presence of strong dynamics can change the
phase of the theory in the infrared. The low-energy description might then have sufficiently
few flavors to break supersymmetry dynamically.
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Chapter 6

Conclusions

Supersymmetry is an exciting subject from both the point of view of particle phenomenology
and from the more theoretical point of view in field theory. Phenomenologists are interested
in supersymmetry because the MSSM and extended versions of it are the most compelling
theories of particle physics beyond the standard model. On the other hand, supersymmetric
field theories, due to the restrictions of the extra symmetry, are more tractable than non-
supersymmetric theories and thus can be used for laboratories of strongly interacting field
theories. Therefore supersymmetric theories are interesting even if it turns out that low-
energy supersymmetry is not realized in nature.

We have presented several topics from the subject of supersymmetric field theories,
touching on both the phenomenological and the theoretical aspects. First we outlined the
structure of the minimal supersymmetric standard model. We motivated the choice of
matter content and described supersymmetry and electroweak breaking. Next, we reviewed
the subject of doublet-triplet splitting in SUSY GUT theories. The doublet-triplet splitting
is one of the most severe problems of SUSY GUTs and needs to be addressed by every viable
model. We have presented a few possible models that solve this problem, and showed the
phenomenological constraints on such theories.

In the second half, we discussed the low-energy behavior of SUSY gauge theories. After
reviewing the seminal work of Seiberg, we focused our attention on confining theories. We
have shown how one can find all s-confining theories based on a single gauge group and
explicitely listed all examples. Next we discussed the issues of dynamical supersymme-
try breaking. After a few general arguments we constructed the SU(n) x SU(m) x U(1)
models obtained by the method of DNNS. We showed that these theories indeed break
supersymmetry.

The variety of topics presented here illustrates how important a role supersymmetry
is playing in current particle physics. Hopefully, this role will soon be enhanced by the
forthcoming generation of collider experiments and by a more systematic understanding of
the exact results in supersymmetric gauge theories.
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