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Abstract

Tunnel Boring Machine (TBM) performance depends on a number of factors. The TBM
can be viewed as a complex mechanical system. Each component of the system may be
critical i.e., the component failure causes the system failure. The research reported here
investigates influence of rock properties on the failure occurrence, and attempts to derive
quantitative characteristics of that influence. Another problem addressed in this study is
the likelihood of the failure occurrence in different geologic conditions. The research is
based on the data collected during the construction of the 9.5-mile Outfall Tunnel, which
is part of the Boston Harbor Project.
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Introduction

1.1 Purpose and Scope
Tunneling is subject to a variety of uncertainties. Driving a long tunnel with a Tunnel Bor-

ing Machine (TBM) produces an even greater variety of things that "might go wrong".

The main player in this game is geology. Before construction, the geologic conditions on

the tunnel level are unknown. Even during construction, the parameters affecting excava-

tion are only known to a limited extent. On the other hand, the Tunnel Boring Machine, a

man-made product, is subject to failures related or unrelated to ground conditions. By def-

inition, failure is an event whose occurrence results in the loss of ability to perform

(Knezevic et al, 1993)1. Ideally, a TBM operating twenty four hours a day, advances with

a certain rate depending on a number of factors, such as:

* rock properties: rebound hardness, abrasion hardness, total hardness, uniaxial com-
pressive strength, resistance to cutter penetration;

* mechanical and operational variables of the TBM: cutter load, cutterhead rotational
rate, available torque, muck cleaning efficiency;

* TBM operator skills;
* downtime occurrence and duration, where downtime is defined as any time when TBM

is not cutting rock.

Most of the above mentioned parameters can be estimated during design. The

expected performance parameters are estimated on the basis of the exploration data, case

histories and engineering judgement. The discussion of the TBM performance parameters

will be presented later in this thesis, but the essence of the question one asks when defin-

ing all those parameters is how fast can the TBM accomplish the excavation. It is in

answering this question, that understanding of downtime occurrences is of great impor-

1. For references see Appendix B

Chapter 1
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tance. The works of Priscilla Nelson ("TBM Performance in Sedimentary Rock", 1983)

and Peter Tarkoy ("Predicting TBM penetration rates in selected rock types", 1973)

addressed this issue by looking at the effects of geologic conditions on penetration rate,

advance rate and utilization, which are the major parameters defining a TBM performance.

A TBM downtime is a major component of these parameters.

The purpose of this research is to analyze the data collected during the excavation of

the Boston Harbor Project Outfall Tunnel, and to produce a probabilistic answer to the

question of what influence, if any, the physical properties of the surrounding rock mass

have on the downtime frequency. The data collected by the construction management per-

sonnel contain a complete shift-based record of the TBM performance, including the

information on each downtime occurrence, and its cause. The idea behind this research is

look at the tunnel boring machine as a system of components each of which being essen-

tial to the whole system contributes to downtime, and causes the whole system to shut

down. To find correlation between of each of these components and total hardness is the

main task of this research.

1.2 Thesis Organization
The scope of work leads to the following thesis organization. Chapter 2 will familiarize

the reader with the project, site geology, equipment technology, as well as the data used

for analysis. Chapter 3 will discuss the mathematical tools employed in qualitative analy-

ses. Chapter 4 will present the results of the analysis performed using the post-excavation

rock testing data. Chapter 5 will present the results of the analysis performed on the pre-

excavation data along with a comparison of these results with the ones obtained using the

post-excavation data. The practical consequences and the possibilities for data extrapola-

tion and prognosis will be discussed in Chapter 6.
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Chapter 2

Site Description and Data Structure

2.1 Outfall Tunnel: Design and Construction
The outfall tunnel will transport treated effluent from the new Deer Island wastewater

facilities to a location approximately 9.5 miles offshore in Massachusetts Bay. The outfall

tunnel is an important element of the Boston Harbor Project. (see Figure 2.1)
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Figure 2.1: Plan of the Boston Harbor showing Effluent Outfall Tunnel

' ` '

::::::::::::::::: :::·L:::::::::::E~~

IZi't : I



The outfall tunnel consists of the following principal components, listed in the order of

direction of effluent flow:

* The outfall conduit, an underground concrete box structure carrying effluent from the
disinfection facility to the shaft, constructed by the cut and cover method using dia-
phragm walls for temporary retaining walls.

* The outfall shaft, 30 ft. in diameter and approximately 430 ft. deep, sunk through soil
and rock, using diaphragm walls for initial support and lined with concrete.

* The main outfall tunnel, 24.25 ft. finished diameter, 43,026.5 ft. (8.15 miles) long to
the beginning of the diffuser area.

* Diffuser area tunnel, 6,600 ft. (1.25 miles) long, mined through and then backfilled
with grout to get a gradually diminishing cross sectional area for maintaining effluent
velocity.

* 55 riser offtakes connecting from the diffuser tunnel to risers.
* 55 riser pipes, 2.5 ft. in diameter, furnished with diffuser heads above the sea floor, to

carry the effluent from the tunnel to dispersal in the ocean (see Figure 2.2)

The upper part of the shaft through glacial till is lined with fiber reinforced concrete.

Through rock, the shaft is lined with unreinforced concrete. The depth of the tunnel was

determined such that the crown of the tunnel would be at least 100 feet below the top of

rock. This is equivalent to approximately three times the excavated tunnel diameter plus a

margin of about 20 feet. The tunnel is given a small up-slope grade of 0.05%, providing a

small advantage in control of water inflow.

The contractor was given two options for the final lining, a precast segmental concrete

lining erected under a shield, and a cast-in-place lining with a precast invert segment. The

contractor chose a fully precast lining using six tapered precast segments

The risers and diffusers were in place before the diffuser area tunnel was constructed.

Offtake adits were being excavated horizontally from the tunnel to the installed risers (Par-

sons Brinckerhoff Summary Report, 1990).

The outfall tunnel was mined using a Robbins Tunnel Boring Machine, made for this

project. The predominant rock was Cambridge Argillite.



2. Probe to Locate Riser: Tap1. Bore Tunnel Past Risers

3. Excavate Offtake,
Remove Portion of Riser &
Connect to Tunnel

4. Place Concrete in Offtake Tunnel

Figure 2.2: Diffuser Construction Sequence
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Figure 2.3: Map of Boston showing the limits of the Boston Basin (ticked line)

The Boston Basin sedimentary rocks were formed during the Late PreCambrian and

were subjected to folding and faulting during the collision between the North American

2.2 Site Geology

2.2.1 Regional Geology
Cambridge Argillite is one of the rocks that constitute the Boston Basin. The Boston

Basin is an east-northeast-trending, wedge-shaped, down-faulted body of sedimentary and

volcanic rock. Onshore, the basin is widest along the coast, where it measures about 15

miles north to south. Offshore, it extends to the east under Massachusetts Bay, where it

appears to widen still more (Barosh et al, 1989) (see Figure 2.3).



\ NH

MA

Figure 2.4: Map of tectonic provinces of Southeastern New England

Of the rock formations making up the Boston Basin Group, the Cambridge Argillite is

the only one observed along the tunnel alignment. The Cambridge Argillite is a grey, lay-

and Eurasian/African Plates in the Late Palezoic. During the Triassic separation of the

continents, the bedrock was rifted at high angles and intruded by numerous diabase dikes.

The lightest relief and source areas lay to the south and west of the basin. The sedimentary

rocks consist of detritus that has been eroded from the surrounding highlands and fault

scarps and that has been deposited as interfingering lithofacies (Barosh et al, 1989). A map

of the major tectonic provinces of southeastern New England appears in Figure 2.4.
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ered, slightly calcareous rock with bed thicknesses generally ranging from 0.05 to 3 inches

and occasionally up to 5 feet. Volcanic flows of ash fall tuffs, with an average thickness of

0.05 inch to about I foot, are occasionally interbedded with the argillite. Intruding the

Cambridge argillite are igneous dikes and sills, predominantly of diabase, with minor

amounts of basalt and/or andesite, and felsite (Parsons Brinckerhoff Interpretive Report,

1989).

2.2.2 Bedrock Geology Along the Outfall Tunnel
The bedrock geology along the alignment was evaluated from rock core samples.

Twenty five borings in 1988 and thirty one test borings in 1989 were drilled by Metcalf &

Eddy for this project. The lithologic percentages in the 1989 cores agree well with those in

the 1988 program and are as follows:

* sandy argillite and tuffaceous argillite - 31%;
* argillite - 56%;
* diabase, felsite, or andesite - 7.4%.

The principal structural feature observed in the argillite is bedding, which varies from

laminated to thick. In general, the bedding strikes northeast and dips 15-40 degrees south-

east.

The primary intrusive rock is diabase. The diabase occurs in either dikes or sills. Most

of the observed contacts are either gradational or fractured.

m



Figure 2.5: Geologic map of the Boston Area showing tunnels location

2.3 Tunneling in Argillite

Eight tunnels have been constructed through rock in the Boston area; all of them

encountered at least some argillite. The argillite crossed by these tunnels does not neces-



sarily represent the argillite encountered in the outfall tunnel, but some similarities can be

observed.

Water Supply and Drainage Tunnels: Water Supply and Drainage tunnels have been

constructed in the region at various times. These tunnels were constructed largely in argil-

lite. Igneous intrusions, mostly diabase dikes, were encountered extensively; three tunnels

with extensive geologic mapping (City Tunnel Extension (cte), City Tunnel (ct), Malden

Tunnel (mt)) (see Figure 2.5) encountered such intrusions at a rate of 3 to 6 per 1000 ft. on

the average. The intrusions were typically 5-10 ft. thick, the diabase in the dikes was often

fractured, and adjacent rock was often altered and fractured. The number of faults encoun-

tered in these tunnels was typically about 3 per 1000 ft. Almost all of them were thin and

remineralized (Parsons Brinckerhoff Geotechnical Interpretive Report, 1989).

Red Line Extension: The 3.1 miles Northwest Extension of the MBTA Red Line

beyond Harvard Square (see Figure 2.6) consists of two deep tunnel sections and a cut-

and-cover section. The primary rock type along the tunnel alignment is Cambridge Argil-

lite with lesser amounts of intrusive rocks that penetrate the country rock. Bedding charac-

teristics showed extreme variability, although the bedding generally dipped gently to

moderately (20 to 45 degrees) to the south. The bedrock varied from a massive dark to

medium gray fine-grained argillite to an argillite that exhibited rhythmic bands of light

gray layers alternating with medium to dark gray layers. The coarser grained and generally

lighter colored layers had well developed bedding structures. These structures included

graded sequences, cross bedding and ripple marks. The major joint set along the align-

ment, other than bedding plane joints, generally strikes north-northeast, with nearly verti-

cal dips. Jointing parallel to bedding was commonly developed striking nearly east-west

with gentle to moderate dips (Parsons Brinckerhoff Geotechnical Interpretive Report,

1989).

I
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2.4 Pre-excavation Exploration Program
As mentioned above, in addition to the "tunnelling experience in argillite" study, the

designer conducted its own exploration program, that was implemented by the Metcalf &

Eddy in 1988 and 1989. The program yielded a set of the rock properties which along with

the data already available became a basis for the preliminary design recommendations.

The following figures (Figures 2.7 through 2.16) show a complete geological profile con-

structed as a result of the pre-bid exploration. The figures also show the relative location of

the borings and the tunnel alignment. The offset of the borings from the alignment is quite

significant which points to one of the major limitations of the pre-excavation boring pro-

gram. The analysis of some of the limitations will be presented later in the thesis. The

comparison of the pre-excavation and the post-excavation data will also be addressed later

in the thesis.
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F
igure 2.9: G

eological Profile: Sta 200+00 to Sta 250+00



F
igure 2.10: G

eological Profile: Sta 250+00 to Sta 300+00
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igure 2.13: G

eological Profile: Sta 400+00 to Sta 450+00
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eological Profile: Sta 550+00 to 600+00



2.5 Data Structure

2.5.1 Rock Testing Data

2.5.1.1 Pre-excavation Test Boring Program
The capability to predict the TBM performance under the particular tunnel conditions is of

great importance to both the designer and the contractor. The following parameters are

conventionally used to define a TBM performance:

* Penetration Rate, ft./hour = TBM advance (Length of tunnel bored in ft. per shift) /
TBM Clock (Elapsed machine time recorded automatically through instrumentation in
hours per shift);

* Advance Rate in ft./hour = Penetration Rate x Utilization;
* Utilization in % = TBM Clock (Elapsed machine time recorded automatically through

instrumentation in hours per shift) / Shift Time (Excavation Shift time in hours per
shift), where the Elapsed machine time - time automatically recorded by the TBM data
acquisition system, which starts recording at the moment the TBM main cylinders are
pressurized, and stops recording at the moment the pressure drops to zero.

P.J. Tarkoy introduced two index tests, to be used during exploration as well as during

later testing programs to predict expected machine advance rates (Tarkoy et al, 1973).

Rebound Hardness (Hr): Rebound hardness has been used in the past to measure hard-

ness of metals (Shore Scleroscope) and the strength of curing concrete (Schmidt Ham-

mer). The relevance of rebound hardness in these applications is based on its ability to

measure relative amounts of energy expended on plastic vs. elastic deformation. Dynamic

energy reflected back into the instrument is measured.

Abrasion Hardness (Ha): The technique used to obtain abrasion hardness has been

developed in the Civil Engineering Rock Mechanics Laboratory at the University of Illi-

nois at Urbana-Champagne. A disk of rock, of NX diameter (2 1/8") and 1/4 inches thick,

is secured to the revolving turntable of the abrasion machine. As the turntable revolves, the

main component of travel of the rock specimen is parallel to the axis of the abrading wheel



Figure 2.17: P.J. Tarkoy Testing Procedure

m

ample

core
walls

causing it to be dragged along the surface of the rock. The abrasion hardness is defined as

the reciprocal of the average weight loss.

Total hardness is calculated as HI = Hrx ,J[~. The test sequence (Tarkoy et al, 1975)

used in the outfall tunnel is shown on Figure 2.17. This procedure was implemented by

Metcalf & Eddy during Outfall Tunnel pre-bid exploration program. The total hardness

values obtained from the program were used in this research.



Figure 2.18: Sketch showing CM coring program

Precast
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2.5.1.2 Construction Management Test Boring Program During Excava-
tion.
Large diameter cylinders (d = 8 inches) were drilled out from the tunnel wall (see Figure

2.18) every 250 feet along the tunnel. From each cylinder, two standard NX-diameter sam-

ples were re-drilled in the laboratory for each test sequence: one in a direction parallel to

the alignment, and the other in a direction perpendicular to the alignment. The following

rock properties were obtained:

* rock type;
* water content;
* porosity;
* unit weight;
* rebound hardness;
* abrasion hardness;
* total hardness;
* uniaxial compressive strength;
* elastic modulus;
* brazilian tensile strength;
* acoustic velocities

S·egments

'· ·



2.5.2 Downtime Data
Another dataset used for this research is the database maintained by the construction man-

agement (CM) personnel during the excavation of the tunnel. It summarizes the data col-

lected by the CM and the Contractor Shift Engineers on a shift basis and contains the

following information:

* Date (Day, month and year of the shift);
* Shift ("day", "swing", "graveyard");
* TBM Clock (Elapsed machine time recorded automatically through instrumentation);
* TBM Clock Downtime = Excavation Shift Time - TBM Clock;
* Shift End Time (Ending time in 24-hour format);
* Information on eight downtime occurrences, specifically:

1. Date of occurrence;
2. Shift of occurrence;
3. Time duration;
4. System that caused that failure;
5. Element of the system that caused the failure;
6. Breakdown nature (numeric code);
7. Was the downtime scheduled or not (yes/no).

Construction Management introduced the following TBM systems and system ele-

ments downtime categories:

* TBM (T) subdividing into following elements:
1. Cutters (CU);
2. Drive Motors (DR);
3. Electrical (EL);
4. Hydraulics (HY);
5. Lube System (LU);
6. Maintenance (MA);
7. Superstructure (SU).

* Lining System (L) consisting of the following elements;
1. Erector Arm System (ER);
2. Supply (SU);
3. Temporary Support (TS).

* Muck Removal System (M) incorporating the following elements;
1. Unspecified (AL);
2. Boretec Conveyor (BO);



3. Cutterhead (CU);
4. Horizontal Conveyor (HZ);
5. Rapat/Muck Jamming (RP);
6. Stacker Conveyor (ST);
7. TBM Conveyor (TB);
8. Transfer Conveyor (TR);
9. Vertical Conveyor (VT);
10. Other unspecified (UN).

* Utilities (U) consisting of the following elements:
1. Air (AI);
2. Trailing Gear (BA);
3. Dewatering (DE);
4. Electrical (EL);
5. Rail (RA);
6. Shaft (SH);
7. Ventilation (VE);
8. Water (WA).

* Survey (S);
* Miscellaneous (C) summarizing difficult ground condition (mainly at the face):

1. Gripper-Rock Reaction (RR);
2. Face Grouting (GR);
3. Grout Hole (GH);
4. Probe Drill (PH);
5. Inspection (IN).

* Personnel:
1. TBM Operator (TO);
2. Operators (OP);
3. Miners (MI);
4. Other (AL).

The TBM advance data are part of this database. A drawing showing the TBM profile

is presented on Figure 2.19. A sample of the CM database printout is shown on Figure

2.20.
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Chapter 3

Statistical Methods Used For The Analysis

3.1 Datasets Organization
All calculations were performed using the SAS programming language and statistical pro-

cedures. There were several steps leading to creation of the dataset which became the

basis for all types of analysis. A code was written to implement the algorithm shown in

Figure 3.1 (for unscheduled downtime only). As a result of code execution, the following

data were obtained:

* Start Station - distance from the shaft in hundred feet at the beginning of the shift;
* End Station - distance from the shaft in hundred feet at the end of the shift;
* Start Date - beginning of shift date;
* End Date - end of shift date;
* Start Time - beginning of shift time;
* End Time - end of shift time;
* TBM Clock - elapsed machine time;
* TBM Downtime - time during which TBM was not cutting rock;
* Shift Time;
* T-system Number of Failures (see Chapter 2);
* T-system Failure Duration;
* T-system, CU-element Number of Failures;
* T-system, CU-element Failure Duration;
* M-system Number of Failures (see Chapter 2);
* M-system Failure Duration;
* M-system, HZ-element Number of Failures;
* M-system, HZ-element Failure Duration;
* L-system Number of Failures;
* L-system Failure Duration;
* U-system Number of Failures;
* U-system Failure Duration;
* O-system Number of Failures;
* O-system Failure Duration.



Figure 3.1: Algorithm of Preliminary Analysis



Based on the field experience, the following downtime categories were selected as the

variables most likely to show some correlation with the total hardness:

* TBM mechanical system (T-system);
* Cutters (T-system, CU-element) - a component of the TBM mechanical system (T-sys-

tem), assumed to show behavior different from the T-system failure data;
* Muck removal system (M-system);
* Horizontal conveyor (M-system, HZ-element) - a component of the muck removal sys-

tem (M-system) assumed to show the behavior different from the M-system failure
data;

* Support installation system (L-system).

The statistical analysis tools allow the researcher not only to test the assumptions

made at the beginning of a research, but to obtain qualitative characteristics serving as an

evidence in favor or against the hypothesis. These will be presented in Chapters 4 and 5.

The second important task was to create a dataset that would contain the rock testing data.

The coring locations were spaced 250 feet along the tunnel, which makes the total hard-

ness data discrete. Therefore, to convert the discrete data into continuous information the

total hardness value was assumed to be constant within the midpoints of the adjacent loca-

tions. The borders of the interval were defined as follows:

if there are three consecutive ID-points (coring locations) ID(i-1), ID(i) and ID(i+1),

then

Left Border(i) = ID(i-1) + [ID(i) - ID(i-1)]/2

Right Border(i) = ID(i) + [ID(i+1) - ID(i)]/2.

Thus follows the total hardness data set format (see Figure 3.2):

* ID Station - point along the tunnel at which the rock sample was cored;
* Left Border - station corresponding to the closest to the shaft point along the tunnel

defining the window within which total hardness is assumed to be constant;
* Right Border - station corresponding to the closest to the face point along the tunnel

defining the window within which total hardness is assumed to be constant.



Figure 3.2: Rock Total Hardness Model

3.2 Data Analysis
Since purpose of this research is to find possible correlations between failure categories

and total hardness, the window, within which total hardness is assumed to be constant,

became the interval of interest for the analysis. The parameter that connects two datasets

used for the analysis is the location along the tunnel, namely the tunnel station. For the

downtime data set that is the start station and the end station. For the rock total hardness

data set these are the left and right borders of the interval. Each total hardness interval

includes several shift-based records, as shown on Figure 3.3:
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Figure 3.3: Graphic Illustration of the Combining the Hardness and Downtime Data Sets

To account for the non-uniform interval length, the total number of failures was nor-

malized by the interval length. This parameter was defined as Local Failure Rate (LFR) =

Number of Failures / Length of the Interval. Thus, the created data sets contain as many

records as the total hardness data set. Each record contains the ID station, the hardness

interval borders, the total hardness value, and the total number of failures for each failure

category. In searching for possible correlation between the categorized downtime and the

rock total hardness, total hardness values were divided into the following intervals:

1. O0 <= total hardness < 20;

2. 20 <= total hardness < 40;

3. 40 <= total hardness < 60;

4. 60 <= total hardness < 80;

5. 80 <= total hardness < 100;

6. 100 <= total hardness < 120;

7. 120 <= total hardness < 140;

8. 140 <= total hardness < 160.



lows:
I NF(i)

FailureRate= i=N

i= I

- ~ - - - D - Station of Coring
H - TotaL Hardness
Local Failure Rate() =
NF(D/L(I), where
I - local Interval numberj
NF - number of fitluresj
L - length of the
interval
Category Foalure Rate(j)
= SUMENF(I)3/SUMEL(I)],
where
J - hardness category
numberj
e.g., J=1, then
NF = NF(1)+NF(2)+NF(3)
L = L(1)+L(2)+L(3)
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Figure 3.4: Graphic Illustration of Local and Generalized Failure Rates

where NF - number of failures, calculated over the local total hardness interval,

defined above; L - length of the local interval; N - number of local intervals (see Figure

3.4). This parameter will be referred to as generalized failure rate (GFR). By plotting the
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generalized failure rate against the total hardness interval number (category number), one

can visually assess the correlation, and get an idea about the nature of a function that could

describe this correlation. Another use of the GFR rate is to calculate the residuals of local

failure rates as follows: R = LFR - GFR, and use them for detection of outliers.

After determining which downtime categories correlate with total hardness, regression

analysis was performed, and quantitative regression parameters were obtained (see

Appendix 2 for background information). The analysis of the occurrence probability of a

particular failure type was performed using the logistic regression procedure of the SAS

System.

The general sequence of data investigation described in this chapter was repeated sev-

eral times to compare different types of rock hardness data available:

* CM (Construction Management) test boring program
1. L-core data (samples drilled in a direction perpendicular to the tunnel alignment)

including Diabase samples;
2. L-core data for Argillite only;
3. E-core data (samples drilled in a direction parallel to the alignment) for all rock

types;
4. E-core data for Argillite only;

* Pre-bid exploration program data.

The results of the analysis along with the discussion of the outcomes are presented in

Chapters 4, 5, and 6





Results. Discussion of the outcomes

4.1 Introduction
The main problem addressed in this chapter is distinguishing those failure categories that

are impacted by the total hardness. One would also be interested in modeling a relation

with a function with the known mathematical properties. The following graphical repre-

sentations were produced using the technique described in Chapter 3:

* generalized failure rate (GFR) vs. rock hardness category - illustrates the failure rate
change for the total hardness value groups, as opposed to the individual total hardness
data points (see Chapter 3 for the total hardness group definition);

* residuals of LFR vs. rock total hardness - shows the dispersion of the individual data
points from the average (GFR in this case);

* local failure rate (LFR) vs. rock total hardness - actual failure data points distribution.

Based on the visual inspection of these plots, the failure categories showing the signs

of a correlation were subjected to a regression analysis. The set of plots described above

was produced for L-core data set (total hardness values obtained as a result of the index

tests performed on the samples drilled in a direction perpendicular to the direction of min-

ing) as well as E-core data set (total hardness values obtained as a result of the index tests

performed on the samples drilled in a direction parallel to the direction of mining). In

addition, to investigate the impact of the Diabase intrusions into mostly homogeneous

(Argillite) rock mass, two subsets were created out of each dataset: one containing all the

data points, and the other that contained only Argillite samples.

Chapter 4

m



4.2 L-core Data Set Analysis Results
As was described in Chapter 3, the entire range of the rock total hardness values was

divided into eight categories. The following histograms (Figures 4.1 and 4.2) show the

total hardness distribution along the tunnel in terms of the length.

150 -

100 -

50-

0- I

6
Rock Total Hardness Category

Figure 4.1: Rock Total Hardness Distribution Along the Tunnel (All Data)

These figures (Figures 4.1 and 4.2) can be interpreted as follows:

Length of Length of
Data Set Total Length Percent 20<=Ht< 120 Percent 0<Ht<20 Percent

Ht>120

All Data 41161 ft. 100 39894 ft. 97% 1267 ft. 3%

Argillite 38580 ft. 100 37816 ft. 98% 764 ft. 2%

Table 4.1: Total Hardness Distribution Along the Tunnel

ýW I
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Figure 4.2: Rock Total Hardness Distribution Along the Tunnel (Argillite Data)

The results are as follows:

1. T-system (TBM drive motors, electrical, hydraulic systems only) related failures
The GFR plots (see Figures 4.3 and 4.4) show that T-system failure rate tends to

decrease with increasing total hardness. The points representing the categories 1

(0<=hardness<20) and 7 (120<=hardness<140) do not seem to belong to the same popula-

tion as the other ones. These categories can be ignored or assumed to be outliers, since

they represent between 2% and 3% of the general population. Therefore, the model func-

tion would be monotonically decreasing and non-linear. Another observation is that the

Diabase data points behave in the same way as the Argillite data points of the same total

hardness.
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Figure 4.3: Generalized Failure Rates for T-system Failures (All Data)
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Figure 4.4: Generalized Failure Rates for T-system failures (Argillite Data)

The residuals of the individual local failure rate (see Figures 4.5 and 4.6) points show

that except for two unusually high value data points the data are consistent and GFR repre-
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sent the data well.
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Total Hardness

Figure 4.5: T-system LFR residuals (All Data)
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Total Hardness

Figure 4.6: T-system LFR residuals (Argillite Data)
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Figure 4.7: T-system Local Failure Rates (All Data)

0 20 40 60 80 100 120 140
Total Hardness

Figure 4.8: T-system Local Failure Rates (Argillite Data)
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The LFR plots (see Figures 4.9 and 4.10) show that there is a failure rate decrease as

the total hardness increases, which becomes more clearly expressed starting at Ht = 40.

Another observation is that the highest failure rate (after the elimination of the outlier)

belongs to the Argillite sample, since it appears on both figures.

2. CU-element (cutters only) related failures
The GFR plots (Figures 4.9 and 4.10) for cutter related failures lead to the conclusion

that downtimes caused by cutters increase with increasing total hardness, except for the

last data point which as in case of T-system failures, falls out of the general population.

The residuals plots (Figures 4.11 and 4.12) indicate that the variance or dispersion

increases with increasing total hardness, which supports the fact that as far as the cutters

are concerned, the harder the rock, the more uncertain the reliability of the cutters. Com-

paring the Figures 4.11 and 4.12 one would conclude that although Diabase samples have

generally greater total hardness values, the behavior of the Argillite and the Diabase sam-

ples of the same total hardness is very similar. Figures 4.13 and 4.14 present the LFR

plots. It can be concluded from the examining of those figures that the increasing total

hardness not only causes higher failure rate but also greater data dispersion thus increasing

the uncertainty.
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Figure 4.11: T-system, CU-element LFR Residuals (All Data)
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Figure 4.13: T-system, CU-element Local Failure Rate (All Data)
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3. M-svstem (muck removal system, excluding horizontal convevor) failures.
The GFR plots (see Figures 4.15 and 4.16) -how that failure rate decreases as rock

total hardness increases, except for the category 7 (Ht>120), which as in previous cases,

does not appear to belong to the same population as the rest of the total hardness data

points. They also suggest the non-linearity of the modeling function. This downtime cate-

gory as well as the T-system failures were subject to the so called Poisson regression anal-

ysis (see Appendix A). The residual plots (see Figures 4.17 and 4.18) show that the data

are consistent and have no obvious outliers, although the dispersion is significant. The

variance does not seem to change much as the hardness changes, which indicates that the

average failure rates (GFR) can, in fact, substitute the individual data points (LFR).

Finally, LFR plots show the actual data distribution (see Figures 4.19 and 4.20).
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Figure 4.15: M-system Generalized Failure Rates (All Data)
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Figure 4.16: M-system Generalized Failure Rates (Argillite Only)

Examining the Figures 4.16 and 4.17 leads to the following conclusions:

* total hardness values greater than 120 are unusually high as far as this analysis is con-
cerned, since they contradict with the general trend;

* Argillite sample data behavior is no different from that of the Diabase sample data
points.

Figure 4.19 shows that the point for category 7 on Figure 4.15 was computed as an

average of the three points having total hardness values greater than 120; two points were

Diabase and one - Argillite. Figure 4.20 clearly shows just one point having the total hard-

ness value greater than 120, and it is this point that produced the unusually high failure

rate value at point 7 (Figure 4.16). One would assume that the Diabase, being a generally

harder rock than Argillite, should cause more failures, but we do not see this here. Resid-

ual plots (see Figures 4.17 and 4.18) show that the error introduced as a result of the sub-

stituting the failure rates with their averages (GFR), is within plus/minus 2.
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4. M-system. HZ-element (horizontal conveyor only) failures.
GFR plots for this failure category (see Figures 4.21 and 4.22) show that except for

those already mentioned unusually high and unusually low data points corresponding to

the hardness categories 1 and 7, HZ-element failure rate is constant. Individual data points

are scattered around the value of 1. The muck removal system includes several conveyor

types (horizontal, vertical, transfer etc.,) but only horizontal conveyor data having been

separated from the population, showed constant failure rate, while the rest of the sub-

systems showed a non-linear decrease (see Figures 4.15 and 4.16). The horizontal con-

veyor transports the muck from the TBM to the tunnel shaft. It is an important part of the

muck removal system, but it evidently shows a behavior different from the rest of the sys-

tem. The reason is that the horizontal conveyor is engaged in the muck removal operation

after the TBM conveyors. Therefore, blocky angular pieces of muck causing the TBM

conveyors failure, would likely be removed before they reach the horizontal conveyor.

Also, the space constraints are much more serious for the TBM conveyors than for the hor-

izontal conveyor (see Figure 2.19). Thus, one could conclude that system components are

fairly independent and can be looked at separately. They also may behave quite differently

from each other. Having said that, the author would like to stress the point that as far as the

reliability of the complex system is concerned, and a tunnel boring machine is indeed an

example of one, it can be well represented as the sum of the individual subsystem reliabil-

ities. Thus far, the data not only support that conclusion, but also illustrate it.
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5. L-svstem (suD)ort installation systems) failures.
The GFR plots (see Figures 4.25 and 4.26) show no impact of the total hardness on the

L-system failure rate. However, failure rate decreases substantially as tunnel excavation

progresses (increasing station value). Figures 4.27 and 4.28 illustrate this phenomenon

called "learning curve". The same crew performing the same operation, and encountering

the same kind of problems, "learns" from the experience and does not repeat the same

mistakes. This downtime category was subjected to the "Poisson Regression" analysis.
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Figure 4.25: L-system Generalized Failure Rates (All Data)
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Figure 4.26: L-system Generalized Failure Rates (Argillite Data)

The following figures present the failure rate change with the tunnel progress i.e, TBM

advance. The qualitative parameter defining the progress is station.
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Based on the above, one can conclude:

* Tunnel Boring Machine failures have to be categorized by their cause in order to estab-
lish correlations to the rock properties;

* a Tunnel Boring Machine can be viewed as a mechanical system consisting of three
major subsystems, namely the TBM mechanical system, the TBM muck removal sys-
tem, and the TBM support installation system;

* when the algorithm for the analysis was constructed, the following assumptions were
made: 1) cutters (CU-element), a subsystem of the TBM mechanical system (T-sys-
tem), show behavior different from the rest of the T-system population; 2) horizontal
conveyor (HZ-element), a subsystem of the TBM muck removal system (M-system)
behaves differently compared to the M-system population;

* these assumptions have been proven to be true;
* data points for categories 1 and 7 in the GFR plots i.e., 0 < Ht <= 20 and 120 < Ht <=

140, do not follow the general trend, therefore the results obtained from the analysis
are true for any value of the total hardness between 20 and 120;

* failure rates obtained from the data points representing the Diabase samples show the
same behavior as the ones representing the Argillite samples with the same total hard-
ness for all downtime categories;



4.3 E-core Data Set Analysis Results
The discussion that follows is arranged in the order established for L-core results.
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Figure 4.29: Rock Total Hardness Distribution Along the Tunnel (All Data)
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The interpretation of the Figures 4.30 and 4.31 is presented in the Table 4.2:

Length of
Length of

Data Set Total Length Percent 20<=Ht< Percent O<Ht<20 Percent
Ht> 120

All Data 41878 ft. 100 40875 ft. 97.6% 1003 ft. 2.4%

Argillite 38249 ft. 100 38249 ft. 100% 0 ft. 0%

Table 4.2: Total Hardness Distribution Along the Tunnel (E-core)

The E-core drilling direction was parallel to the direction of the TBM advance, which

makes the results obtained from these data particularly interesting. There are only three

data points that are beyond the total hardness range between 20 and 120. That, plus the

fact that all correlations established for the L-core data, were observed within the same

total hardness range (20 <= Ht <= 120), lead us to believe that this range is indeed the

limit for the conclusions already made and yet to be made.

1. T-system (TBM drive motors, electrical and hydraulic systems) related failure
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Figure 4.31: Generalized Failure Rates for T-system (All Data)
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Figure 4.32: Generalized Failure Rates for T-system (Argillite Data)

The GFR plots (see Figures 4.32 and 4.33) show that failure rate decreases as the total

hardness increases, which corresponds to the result obtained from the L-core data set.

Total hardness values that are between 20 and 120 seem to define the population, which is

also analogous to the L-core analysis. The residual plots (see Figures 4.34 and 4.35) show

that the data are generally consistent, except for the couple of the data points representing

the events of anomalous nature, which were also captured in the L-core analysis. The LFR

plots (see Figures 4.36 and 4.37) show the same triangular shape distribution as the L-core

data.
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Figure 4.33: Residuals for T-system Related Failures (All Data)
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Figure 4.34: Residuals for T-system Related Failures (Argillite Data)
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2. CU-element (cutters) related failures

Figure 4.3
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Figure 4.38: Generalized Failure Rates for CU-element (Argillite Data)
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The GFR plots (see Figures 4.38 and 4.39) clearly show a fairly strong correlation

between cutter related failure rate and the total hardness. The correlation appears to be

stronger than the one observed in L-core analysis. This fact does support an assumption

that the index tests on anisotropic rock should be conducted in a direction parallel to the

direction of mining. The residual plots (see Figures 4.40 and 4.41) show the same phe-

nomenon of increasing data variance as observed in L-core analysis. The harder the rock

becomes the more uncertainty is introduced to the cutter behavior. The individual LFR

values shown on Figures 4.42 and 4.43 show, as in case of the L-core data, the increasing

failure rate with the increasing total hardness. The same conclusion can be made regarding

the data dispersion.
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Figure 4.39: T-system, CU-element LFR Residuals (All Data)
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Figure 4.41: T-system, CU-element Local Failure Rate (All Data)
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Figure 4.42: T-system, CU-element Local Failure Rate (Argillite Data)
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Figure 4.43: M-system Generalized Failure Rates (All Data)
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Figure 4.44: M-system Generalized Failure Rates (Argillite Data)
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3. M-system (muck removal system, excluding horizontal conveyor) failures.
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Figure 4.45: M-system LFR Residuals (All Data)
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Figure 4.47: M-system Failure Rates (All Data)
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Figure 4.48: M-system Failure Rates (Argillite Data)
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4. M-system, HZ-element (horizontal conveyor only) failures.
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Figure 4.49: Generalized Failure Rates for HZ-element (All Data)

4)
o
e~3

1
cr

a
a,
N

.II
rr

CC1
Le
4)
E
4)

Z4
Rock Total Hardness Category

Figure 4.50: Generalized Failure Rates for HZ-element (Argillite Data)
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The results are completely analogous to the L-core data analyses. GFR plots (see Fig-

ures 4.50 and 4.51) show that the horizontal conveyor data behavior is entirely different

from the rest of the M-system population failures. Specifically, Figure 4.51 shows that the

failure rate is constant and equal 1.
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Figure 4.51: M-system, HZ-element Failure Rates (All Data)
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5. L-system (support installation systems) failures.
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Figure 4.53: Generalized Failure Rates for L-system (All Data)
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Figure 4.54: Generalized Failure Rates for L-system (Argillite Data)
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GFR plots (see Figures 4.54 and 4.55) show no correlation between the L-system fail-

ure rate and the total hardness. Analogous to the L-core analysis, a fairly strong correla-

tion between the failure rates and location (station) can be observed. Figures 4.56 and 4.57

illustrate this observation. The assumption of the exponentially decreasing function was

tested by the means of the SAS System Poisson Regression procedure (see the following

sections).
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Figure 4.56: Failure Rates for L-system (Argillite Data)

The following can be concluded based on the examining the above presented figures:

* the analysis of the E-core total hardness based data set produced results similar to the
ones obtained from the analysis of the L-core data;

* a smaller data dispersion was observed, which suggests that the test results obtained
from the samples drilled parallel to the direction of the TBM advance, are more con-
sistent.
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4.4 Regression Analysis
Thus far, we have identified the relationships between the downtime categories and

total hardness. Regression analyses were used to study these relationships more closely

i.e., to obtain a set of mathematical parameters that characterize the strength of such rela-

tionships. The Poisson Regression requires integer numbers as an input i.e., the failure

counts as opposed to the failure rates. The data set was created for that reason using con-

stant interval length of 200 feet. Basis for the analysis was the E-core data set. The linear

regression procedure of the SAS System was used to model CU-system number of fail-

ures. The SAS System GLIM (generalized linear models) procedure (see Appendix A),

implementing the Poisson regression was used to model M-system and L-system number

of failures. At this point the author feels necessary to include a brief overview of the qual-

itative parameters produced by the SAS system procedures to assess the significance level

of the derived models:

* the null hypothesis (Ho) is a statement about the values of one or more parameters
(usually zero parameter value);

* the alternative hypothesis (Ha) is a statement that contradicts the null hypothesis
(non-zero parameter value);

* a type I error occurs when we incorrectly reject H0 ;
* a type II error occurs when we incorrectly fail to reject H0;
* the significance level of a hypothesis test is the maximum acceptable probability of

rejecting a true null hypothesis;
* the p value is the probability of committing a type I error;
* the regression model in general form is y=Po0+lx+E, where 30 - intercept, 1i - coeffi-

cient, and E - error;
* the null hypothesis is 3o=0 and 31=0;

* the value of R2 [R2=SSR/TSS, where SSR - sum of squares due to the regression, and
TSS - total sum of squares (see Appendix A)] is known as the coefficient of determina-
tion, and is measure of the relative strength of the corresponding regression;

* the F-statistic [F=MSR/MSE, where MSR - mean sum of squares due to the regres-
sion, and MSE - the residual mean sum of squares (see Appendix A)] will tend to have
values larger than those associated with F-distribution when H0 is true;

* the p value in this case is the probability of the F-statistic value being larger than F-
distribution value;

* the Chi-square-statistic will tend to have values larger than those associated with Chi-



square-distribution when Ho is true.
the p value in this case is the probability of the Chi-square-statistic value being larger
than Chi-square-distribution value (Freund et al, 1996).
The results are presented below:

1. CU-system Number of Failures:
Number of Failures = -0.6657 + 0.0383*(Total Hardness)
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Figure 4.57: Results of the Regression Analysis of CU-element Failures (All Data)

The solid line on Figure 4.57 presents the number of cutter related failures as predicted

by the regression. Figure 4.58 shows the result of the excluding the outliers from the

regression. Coefficients of determination were R2=0.1424 for the unmodified dataset and

R2=0.1948 for the modified one. The coefficient of determination gives the proportion of

variability in a response variable explained by regression.
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Number of Failures = -0.7233 + 0.0364*(Total Hardness)
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Figure 4.58: Results of the Regression Analysis of CU-element Failures (Truncated Data)

Goodness of fit was tested using the F-statistic. The P-value is the conditional proba-

bility of observing a value of the computed statistic larger than the observed value. A

small P provides evidence against the Null Hypothesis.

Model: Degrees of F-statistic: P > F:Freedom:

Unmodified 149 24.7369 0.0001

Modified 145 35.0714 0.0001

Table 4.3: Results of Goodness-of-Fit Test for Cutter Failures Linear Models

Table 4.3 presents an evidence of the established correlation between the cutter related

number of failures and the total hardness.
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2. T-system Number of Failures:
The Poisson Regression (see Appendix B) performed on the data set containing T-sys-

tem (excluding CU-element) related failures yielded the following results:

Number of Failures = exp(1.576 - 0.0066*(Total Hardness)
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Figure 4.59: Actual and Estimated Values for T-system Number of Failures

The model was tested using F-statistic:

MSR (mean sum MSE (residual/ F-distribution for
of squares due to error mean sum of F-statistic

regression) squares)

202.5 2.371 85.41 5.30

Table 4.4: Results of Goodness-of-Fit Test for T-system Failure Non-linear Model

F-statistic is much larger than the table value of F-distribution for p=0.005, therefore

the true p value is actually much less than 0.005. Another way to assess the significance of
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the regression coefficients is to calculate the 95% confidence interval lower and upper lim-

its:Regression Sum of Squares (RSS) - 432.999;

95% confidence 95% confidenceParameter Estimate
lower limit upper limit

intercept 1.412 1.014 1.81

hardness coefficient -0.049 -0.011 0.0013

Table 4.5: 95% Confidence Limits for T-system Failure Non-linear Model

The different signs of the lower and upper limit values suggest that the true value of

the hardness coefficient can in fact be zero, therefore the impact of the total hardness on

the T-system number of failures is very small. Although the correlation is weak, the model

presents an evidence in favor of the conclusion made earlier in the chapter about a better

performance of the TBM mechanical system in harder rock.
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Figure 4.60: Residuals of T-system Predicted Number of Failures
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The Figure 4.62 presents the residuals of the estimated values. The variance decreases

significantly as the total hardness increases, which supports the point that there is less

uncertainty introduced to the TBM mechanical system in harder rock.

3. M-system Number of Failures:
The results of the execution of the Poisson Regression procedure are presented below:

The model was tested using F-statistic:

MSR (mean sum MSE (residual/ F-distribution for
of squares due to error mean sum of F-statistic

regression) squares)

182.5 2.189 83.39 5.30

Table 4.6: Results of Goodness-of-Fit Test for M-system Failure Non-linear Model

F-statistic is much larger than the table value of F-distribution for p=0.005, therefore

the true p value is actually much less than 0.005. Another way to assess the significance of

the regression coefficients is to calculate the 95% confidence interval lower and upper lim-

its:

95% confidence 95% confidenceParameter Estimate
lower limit upper limit

intercept 1.412 1.046 1.778

hardness coefficient -0.009 -0.015 -0.0029

Table 4.7: 95% Confidence Limits for M-system Failure Non-linear Model

Figure 4.61 shows the number of failures estimated by the model, and Figure 4.62

shows the residuals. Despite the significant dispersion the regression model presents evi-

dence in favor of the conclusion made earlier: harder rock is a better environment for the

muck removal system of the TBM.
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Number of Failures = exp(1.412 - 0.009*Total Hardness)
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Figure 4.62: Residuals of the Estimated M-system
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Number of Failures = exp(1.936 - 0.0057*ID Station)
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Figure 4.63: Actual and Estimated Values of the L-system Number of Failures
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Figure 4.64: Residuals of the Estimated L-system Number of Failures
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Figures 4.63 and 4.64 present the estimated values of the L-system number of failures

and its residuals respectively. The regression parameters are as follows:

MSR (mean sum MSE (residual/ F-distribution for
of squares due to error mean sum of F-statistic

regression) squares)

105.5 1.414 74.61 5.30

Table 4.8: Results of Goodness-of-Fit Test for L-system Failure Non-linear Model

F-statistic is much larger than the table value of F-distribution for p=0.005, therefore

the true p value is actually much less than 0.005. Another way to assess the significance of

the regression coefficients is to calculate the 95% confidence interval lower and upper lim-

its:

95% confidence 95% confidenceParameter Estimate
lower limit upper limit

intercept 1.936 1.595 2.278

ID stat. coefficient -0.00575 -0.00704 -0.00446

Table 4.9: 95% Confidence Limits for L-system Failure Non-linear Model

The lower and upper limit values are very close to the estimated value, thus presenting

an evidence of a very strong location influence on the L-system number of failures.



4.5 Failure Occurrence Probability Investigation.
The question was raised how would one assess the probability of occurrence of a par-

ticular failure category e.g., cutter failures as opposed to muck removal system failures. A

code was written that implemented a simple task of assigning 1 to a dummy variable every

time there was a record (shift), where at least one failure of a particular category occurred,

assigning 0 otherwise. The SAS System Logistic Regression (see Appendix B) procedure

was executed twice for each failure category: first to investigate the total hardness impact

on the probability of failure; and second to investigate the location (station) impact on

probability of failure. Only production shifts were included in the analysis. The logistic
A+AlxX

regression produces a probability function as follows: p = A+AlxX , where p - proba-
1+e

bility; A - intercept; Al - coefficient; X - independent variable.

The results are presented below:

1. T-system failures
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Figure 4.65: Probability of T-system Failure Occurrence vs. Total Hardness



The probability of T-system occurrence (see Figures 4.65) stays essentially constant.

The p-value for the Al coefficient was 0.57, so one could with 57% confidence assume the

coefficient to be equal to zero.
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Figure 4.66: Probability of T-system Failure Occurrence vs. Station

Figure 4.66 shows virtually no impact of the location on the T-system failure occur-

rence. The p-value was 0.3647.
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2. CU-element failures
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Figure 4.67: Probability of CU-element Failure Occurrence vs. Total Hardness

Figure 4.67 shows that the probability of failure increases as the total hardness

increases. This result agrees well with the conclusions already reached about the total

hardness impact on that failure category. The Chi-square test for non-zero coefficient val-

ues yielded the following:

* Chi-square statistic - 57.8;
* Prob > Chi-square - 0.0001.

Hence there is strong evidence for the conclusion that the total hardness is one of the

most important factors influencing cutter performance.
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Figure 4.68: Probability of CU-element Failure vs. Station

Figure 4.68 illustrates the so called "fatigue" effect: probability of failure increases

with the tunnel advance. Cutters wear out as they reach their "life time" limit. The regres-

sion parameters were as follows:

* Chi-square statistic for the coefficient - 70.72;
* Prob > Chi-square - 0.0001.

These parameters are evidence of a strong correlation.

At this point the question was raised what combined effect would hardness and loca-

tion together have on the probability of cutter failure occurrence. The SAS System Logis-

tic Procedure allows one to analyze more than one independent variable. The results are

presented in Figure 4.69. And Table 4. 10 presents the regression parameters.
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Figure 4.69: Combined Effect of Total Hardness And Location On Cutters Failure Proba-
bility Of Occurrence

Variable Chi-Square-statistic Prob > Chi-Square

Intercept 191.4607 0.0001

Hardness Coefficient 41.4431 0.0001

Station Coefficient 54.7963 0.0001

Table 4.10: Regression Parameters For Cutter Failure Combined Model

As a result of the combined effect of the rock total hardness and "fatigue" factor, the

probability of the cutter related failure occurrence exponentially increases as shown on

Figure 4.69. The impact that the total hardness and location have is thus substantial. The

p-value is a strong evidence of that impact.
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3. M-system failures
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Figure 4.70: Probability of M-system Failure Occurrence vs. Total Hardness

The regression parameters were as follows:

* Chi-square statistic for the coefficient - 17.35;
* Prob > Chi-square - 0.0001.

Figure 4.70 is strong evidence in favor of the conclusion made earlier about the impact

that the total hardness has on the muck removal system failures. The softer rock presents

more uncertainty than the hard one. The p value of 0.0001 is evidence of a very strong

impact. However, Figure 4.71 shows that the location does not have an impact on the M-

system failure occurrence probability. The p value of 0.7324 supports this conclusion by

suggesting that there is 73% chance that hardness coefficient is zero.
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Figure 4.71: Probability of M-system Failure Occurrence vs. Station

4. Horizontal Conveyor Failures
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Figure 4.72: Probability of HZ-element Failure Occurrence vs. Total Hardness
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Figure 4.73: Probability of HZ-element Failure Occurrence vs. Station

The probability distribution of the horizontal conveyor failures (see Figure 4.72) sup-

ports the conclusions reached earlier in the chapter that this type of failure is independent

of the rock properties, has a constant failure rate of 1 and a constant probability of 0.13.

The regression parameters were as follows:

* Chi-square statistic for the coefficient - 0.0363;
* Prob > Chi-square - 0.8488.

The p-value of 0.8488 suggests that the impact of the total hardness is negligible.

However, Figure 4.73 presents evidence in favor of the conclusion that the location has a

great impact on the horizontal conveyor failure occurrence probability. Indeed, as tunnel

progresses, the "fatigue" effect becomes more and more expressed. The regression param-

eters were as follows:

* Chi-Square - 52.3038;
* Prob > Chi-Square - 0.0001.
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5. Support installation system failures
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Figure 4.74: Probability of L-system Failure Occurrence vs. Total Hardness
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Figure 4.75: Probability of L-system Failure Occurrence vs. Station
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Figures 4.74 and 4.75 show that both total hardness and location affect the L-system

probability of failure. The p-values of the Chi-square test define the strength of these cor-

relations. Table 4.11 presents the regression coefficients from two different models: one

investigating the effect of the total hardness and the other investigating the effect of the

location.

Variable Chi-Square Prob > Chi-Square

Total Hardness 5.3231 0.0210

Station 26.3775 0.0001

Table 4.11: Regression Parameters For L-system Failure Probability Models

The parameters suggest that the impact of the total hardness is much smaller than the

impact of the location.
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4.6 Comparison Of The Pre-Excavation And The Post-Excavation Data
Thus far, this chapter dealt with the total hardness values obtained as a result of the

post-excavation exploration program. However, the entire bidding process is based on the

somewhat limited pre-excavation data. It appeared interesting to conduct an analysis that

would compare the two sets in terms of their predictive capabilities. To do that a code was

written to do the following: create a data set that would combine the pre-excavation total

hardness values and the post-excavation total hardness values using ID station as a merg-

ing criteria e.g., if ID station in the pre-excavation data set was 442.08, the closest one in

the post-excavation data was used to obtain the total hardness. The SAS System Linear

Regression procedure was executed relating pre-excavation total hardness and post-exca-

vation total hardness. The ideal result if two were identical would be the 45 degrees line

through the origin. The actual results were as follows:

Pre-excavation Hardness = 2.3565 + 0.9318*Post-excavation Hardness
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Figure 4.76: The Linear Regression Fitting Procedure on the Pre-excavation and the Post-
excavation Total Hardness Data

The Student Residual Statistic was used to detect the observation that influences the

regression the most. It was the (134.0, 57.4) pair, that was considered an outlier and taken
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out of the analysis. Figure 4.76 shows the results of the initial regression analysis, and Fig-

ure 4.77 shows the resulting regression line after the detection of outlier, which is marked

by "x".

Pre-excavation Hardness = -1.13 + 0.9452*Post-excavation Hardness

U 0

U 0 0

m
UM

U
U

40 60 100Post-excavation Total Hard°ness 100

Figure 4.77: Modified Regression Model of the Post-excavation and the Pre-excavation
Total Hardness

The goodness-of-fit test performed on both procedure runs yielded the following

results:

Model R-square F-statistic Prob > F

Unmodified 0.2652 10.1060 0.0036

Modified 0.3543 14.8181 0.0007

Table 4.12: Model Comparison Statistics

Table 4.12 presents an evidence in favor of the modified model i.e., both F-statistic and

R-square values indicate the model improvement. As part of the SAS System Linear

Regression procedure, the Student t statistic was computed for each of the regression

parameters. The results are presented in Table 4.13:
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Parameter Estimate T-statistic Prob > ITI

Intercept -1.1306 -0.0753 0.9405

Coefficient 0.9452 3.8494 0.0007

Table 4.13: Modified Model Parameter Statistics

Using the results of the T-test performed on the modified model one can conclude that

there is 94% chance that the intercept is zero, and the coefficient of the regression is

approximately one. If so, the post-excavation total hardness can be estimated using the

pre-excavation exploration results.

4.7 Investigation of the Sample Size Effect
Pre-excavation exploration is usually limited by the number of borings that is feasible for

a particular budget. For example, the post-excavation data set has 154 records, while the

pre-excavation data set has 30 total hardness data points. To model this limitation, a code

was written that implemented the following tasks:

* varying the sample size, subsample the data set i.e., if the sample size is 10, the num-
ber of such subsets would be 154/10 = 15;

* iterating one record by one, create as many such subsets as the total sample size would
permit i.e., 154 divided by the sample size;

* for each subset, calculate the total number of failures for cutters and muck removal
system failures using the theoretical models derived as a result of the regression proce-
dure;

* for each sample size calculate mean (observed and theoretical), standard deviation
(STD) and coefficient of variation (CV) of the number of failures (NF).

The results are presented in Table 4.14:
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Sample Numb. Cutters Cutter Cutter Cutter Muck Muck Muck Muck

of Mean Mean STD Mean Mean STD of CV of
subsets of of of of

NF (0) NF (T) NF (T) NF (T) NF (0) NF (T) NF (T) NF (T)

10 15 257 229 1.54 10.09% 380 377 1.7 6.78%

20 8 254 229 2.65 9.23% 374 380 1.05 2.21%

30 5 257 230 2.17 4.71% 392 379 1.87 2.47%

40 4 258 230 2.72 4.73% 382 380 1.19 1.26%

50 3 257 230 3.28 4.28% 384 378 3.25 2.57%

Table 4.14: Sample Size Influence on Variance

Table 4.14 allows one to conclude that the magnitudes of the coefficient of variation

are not large. Thus, smaller samples can, in fact, be representative of the entire population,

in our case 154 records.

4.8 The Reliability Assessment of the TBM System

The investigation of the probability of failure discussed earlier in this chapter yielded

the results allowing one to look at the question of the system reliability. The reliability of a

system can be defined as its ability to perform i.e., it can be expressed as a probability of

non-failure. It has been shown that the TBM system can be looked at as a series system

consisting of the three major subsystems (the TBM mechanical system, the TBM muck

removal system, and the TBM support installation system). Each TBM subsystem in turn

can be viewed as a system of independent components, also "connected" in series. There-

fore, the failure of the single component causes system failure. In a series system, if the

probability of failure of component A is P(A), the probability of failure of component B is

P(B), and the probability of failure of component C is P(C), then the probability of the sys-

tem failure is:
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P(sys) = P(A) + P(B) + P(C) - P(A) x P[B] - P(A) x P(C) - P(B) x P(C) + P(A) x P(B) x P(C)

The reliability of the system is 1 - P(sys) (Dwass et al, 1970). This equation is based

on the assumption that A, B, and C are independent events. Another assumption made for

computation of the TBM system reliability is that the TBM mechanical system failure

probability can be replaced by the cutter failure probability, and the TBM muck removal

system failure probability can be replaced by the TBM muck removal system excluding

the horizontal conveyor failure probability, as far as the total hardness influence is con-

cerned. The system reliability is 1 - P(TBM system). Figure 4.78 presents the graphical

representation of the total hardness influence on the TBM system reliability:
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Figure 4.78: The TBM System Reliability as a Function of the Total Hardness

The reliability function reaches its maximum at the point of Ht-70, after which it

decreases. This is evidence for the conclusion that, generally, the TBM system is more

reliable in harder rock up to a point where the cutter failure becomes critical for the system



reliability. However, the cost and the time necessary for the cutter replacement are much

less than the cost and the time to repair any other TBM subsystem. So, one can still say

that as far as the time-to-complete-tunnel is concerned, the softer rock presents more prob-

lems. Also, as the technology advances, the possibilities to increase cutter "life" arise.
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Chapter 5

Pre-bid Exploration Data Analysis

5.1 Introduction
It is hard to overestimate the importance of the pre-excavation exploration. Those data are

the only available source for design and bidding. The obvious disadvantage of such a

source is that very often the boring locations have a substantial offset from the alignment,

both vertically and horizontally. One could ask a very legitimate question how well these

data represent the actual rock mass conditions. The variability of the stratification can be

substantial, and rock mass discontinuity may alter the general picture significantly. For the

Outfall Tunnel pre-bid the exploration program was conducted by Metcalf & Eddy. The

program was described in Chapter 2. The unique possibility to compare the results of the

same analysis performed on both pre-excavation and post-excavation data was used and

the results are presented in this Chapter 5. The subject of such a comparison are TBM

downtime categories, defined in Chapter 2, namely T-system failures (drive motors,

hydraulic and electrical subsystems), CU-element failures (cutters), M-system failures

(muck removal system excluding the horizontal conveyor), HZ-element failures (horizon-

tal conveyor), and L-system failures (support installation system). The linear regression

procedure of the SAS System was used for CU-element related failures. Poisson regres-

sion was used for T-system failures, M-system failures, and L-system failures.
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5.2 Results of the Regression Analysis
1. T-system, CU-element related failures:

Number of Failures = 0.7949 + 0.0077*Total Hardness
0 M
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·.
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Figure 5.1: Results of the Regression Analysis of CU-element Failures (All Data)

Number of Failures = -0.0025 + 0.0255*Total Hardness
U
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Figure 5.2: Results of the Regression Analysis of CU-element Failures (Truncated Data)

Truncated points are marked by "x".
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The variance analysis statistics are shown in table 5.1:

Coefficient
Model: F-statistic: Prob > F:of Determ.

Unmodified 0.0346 1.0030 0.3252

Modified 0.2386 8.1473 0.0084

Table 5.1: Results of Goodness-of-Fit Test for Cutter Failures Linear Models

Figures 5.1 and 5.2 present the results of the regression analysis performed on CU-ele-

ment data. There is strong correlation between the total hardness and number of failures,

which agrees with the results of the corresponding analysis performed on the post-excava-

tion data set. Figure 5.2 shows the same regression after the excluding of two outliers from

the analysis. The difference in F-statistic for both models indicates that due to the rela-

tively small sample size, data has become very sensitive: the elimination of two zero val-

ues changed the regression dramatically.
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2. T-system Failures:

Number of Failures = exp(1.343 - 0.0022*Total Hardness)

20 40 60 80 100 120
Rock Total Hardness

Figure 5.3: Actual and Predicted Values of T-system Failure Model
Circle markers denote actual values, inverted triangle markers denote predicted values.
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Figure 5.4: Residuals of the Predicted Values of T-system Number of Failures
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The summary of the SAS analysis of the regression parameters is presented below:

Parameter Estimate Asymptotic
Confidence Confidence

Standard Error Lower Upper

Intercept 1.343 0.268 0.791 1.895

Hardness -0.0022 0.0047 -0.0119 0.0075

Table 5.2: Regression Parameters for T-system Failure Model

Figure 5.3 shows almost no correlation between the total hardness and T-system num-

ber of failures. Since the true value of the coefficient for the total hardness lies between

negative and positive number (see Table 5.2: upper and lower limits of the 95% confidence

interval), one can consider an assumption of zero impact as reasonable. The corresponding

analysis performed on the pre-excavation data set yielded similar results.

120

g



3. M-system related failures:

Number of Failures = exp(1.551 - O.012*Total Hardness)
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Figure 5.5: Actual and Predicted Values of the M-system Failures Model
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Figure 5.6: Residuals of the M-system Predicted Number of Failures



The summary of the SAS analysis of the regression parameters is presented below:

Table 5.3: Regression Parameters for M-system Failure Model

Figures 5.5 and 5.6 show a good correlation between the total hardness and M-system

number of failures. There is an exponential decay function that describes the relationship,

which agrees with the results obtained from the post-excavation data analysis. Another

similarity observed is that the variance of the predictive model seems to decrease with

increasing total hardness (see Figure 5.6). Table 5.3 shows the SAS System regression

parameter estimation. The standard error for both intercept and coefficient has the same

order of magnitude as the estimates.
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4. L-system Failures:

Number of Failures = exp(2.0042 - 0.0064*ID Station)
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Figure 5.7: Actual and Predicted Values of the L-system Number of Failures
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Figure 5.8: Residuals of the L-system Predicted Number of Failures
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The summary of the SAS analysis of the regression parameters is presented below:

95% 95%Parameter Estimate Asymptotic
Confidence Confidence

Standard Error Lower Upper

Intercept 2.0422 0.3842 1.2552 2.8293

Hardness -0.00638 0.00145 -0.00936 -0.0034

Table 5.4: Regression Parameters for L-system Failure Model

Figures 5.7 and 5.8 indicate a strong correlation between the location and the L-system

number of failures. The results agree well with the results of the corresponding analysis

performed on the post-excavation data set. Residual values decrease to almost zero (see

Figure 5.8) as the TBM advances. Table 5.4 shows that the standard error is not large.



5.3 Analysis of Failure Probability
The SAS System Logistic Regression Procedure was executed twice for two explanatory

variables, namely the total hardness, and RQD - rock quality designation, a parameter

introduced by Deer to account for the rock mass discontinuities. The RQD values used for

the analysis were averaged over the tunnel height + - 25 feet. This average was entered

into the data set. The results are presented below:

1. T-system failures
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Figure 5.9: T-system Failure Probability vs. Total Hardness (Pre-bid Data)

The probability of T-system failure is essentially unaffected by the total hardness (see

Figure 5.9), since the Chi-Square test performed to investigate the influence of the explan-

atory variable on the model yielded Prob > Chi-Square = 0.4817 (see Table 5.5). The

results agree with the post-excavation data set analysis (see Figure 4.68).
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Figure 5.10: T-system Failure Probability vs. RQD (Pre-bid Data)

Figure 5.10 indicates that there is no correlation between the RQD and T-system num-

ber of failures. The results of the Chi-Square test (see Table 5.5) support that conclusion.

Prob > Chi- Prob > Chi-Prob > Chi- Prob > Chi-
Failure square for the square for theFaeuresquare for the square for theIntercept Coefficient

Category Intercept Coefficient(Hardness (Hardness
Model) (RQD Model) Model) (RQD Model)Model) Model)

T-system 0.0053 0.1981 0.4817 0.6826

Table 5.5: The Results of the Chi-square Test for T-system Pre-bid Models

126

-

--~-~



2. CU-element failures
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CU-element Failure Probability vs. Total Hardness (Pre-bid Data)

The cutter failure is an event that requires a one-to-one correspondence between the

location of failure and the total hardness value at that particular location. The bore holes

for the pre-excavation exploration program were located in some cases 1000 feet off the

alignment. That is why the influence of the total hardness in the pre-excavation data analy-

sis on the cutter number of failures is so small compared to the results of the post-excava-

tion data analysis, although the general trend is indeed the same. One can still observe the

increasing failure probability with the increasing total hardness (see Figure 5.11).
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Figure 5.12: CU-element Failure Probability vs. RQD (Pre-bid Data)

Figure 5.12 presents an evidence in favor of the conclusion that the cutter failures are

influenced not only by the total hardness, which is a property of the intact rock, but also by

the RQD, which is a property of the rock mass. Logically, the smaller the RQD value, the

easier it is to cut the rock. The Chi-Square test performed on the regression coefficients

yielded the Prob > Chi-Square = 0.0652 (see Table 5.6), which is an evidence of a strong

correlation.

Prob > Chi- Prob > Chi-Prob > Chi- Prob > Chi-

Intercept Coefficient square for theCategory Intercept Coefficient(Hardness (RQD Model) (Hardness
Model) (RQD Model) (RQD Model)Model) Model)

CU-element 0.0001 0.0017 0.3387 0.0652

Table 5.6: The Results of the Chi-square Test for CU-element Pre-bid Models
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3. M-system failures
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Figure 5.13: M-system Failure Probability vs. Total Hardness (Pre-bid Dat

Figure 5.13 clearly shows that the total hardness has an impact on the muck

system number of failures. Both the shape of the curve and the probability values

tical to the result obtained from the post-excavation data analysis (see Figure 4.2

could conclude that the correlation between the total hardness and the M-systen

probability is a rock mass property, even though the total hardness values were 4

from the intact rock testing.
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Figure 5.14: M-system Failure Probability vs. RQD (Pre-bid Data)

00

The correlation (see Table 5.7) between the rock quality designation (RQD) and the

muck removal system (see Figure 5.14) failure probability is an evidence in favor of the

conclusion that the rock mass discontinuities cause the non-uniformity and angularity of

the muck fragments, which in its turn cause the conveyor failure.

Prob > Chi- Prob > Chi-Prob > Chi- Prob > Chi-
square for the square for theFailure square for the square for theIntercept Coefficient square for theCategory Intercept CoefficientMo(Hardness (RQD Model) (Hardness (RQD Model)Model) Model)

M-system 0.5121 0.2238 0.0246 0.0100

Table 5.7: The Results of the Chi-square Test for M-system Pre-bid Models
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4. HZ-element failures
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Figure 5.15: HZ-element Failure Probability vs. Total Hardness (Pre-bid Data)
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Figure 5.16: HZ-element Failure Probability vs. RQD (Pre-bid Data)
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Figures 5.15 and 5.16 suggest that there is a very little correlation between the rock

properties, namely the total hardness and the RQD, and the horizontal conveyor failure

probability. The Chi-Square test for the coefficients yielded Prob > Chi-Square = 0.25 for

the total hardness, and Prob > Chi-Square = 0.21 for the RQD (see Table 5.8), which sup-

ports the conclusion made above. It also agrees with the results obtained from the post-

excavation data analysis (see Figure 4.75).

Prob > Chi- Prob > Chi-Prob > Chi- Prob > Chi-
Failure square for the square for theFaeuresquare for the square for theIntercept Coefficient CoefficientCategory Intercept Coefficient(Hardness (Hardness

Model) (RQD Model) Model) (RQD Model)

HZ-element 0.0628 0.9798 0.25 0.2114

Table 5.8: The Results of the Chi-square Test for HZ-element Pre-bid Models
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5. L-system failures
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Figure 5.17: L-system Failure Probability vs. Total Hardness (Pre-bid Data)

Figure 5.17 and 5.18 as well as the results of the Chi-Square test (see Table 5.9) for the

regression parameters suggest that both total hardness and RQD have no impact on the

support installation system failure probability.

Table 5.9: The Results of the Chi-square Test for L-system Pre-bid Models
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Figure 5.18: L-system Failure Probability vs. RQD (Pre-bid Data)
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Chapter 6

Summary and Conclusions

6.1 Summary
The Tunnel Boring Machine (TBM) is a system consisting of three major subsystems,

namely the TBM mechanical system (cutters, drive motors, electrical system, hydraulic

system), the TBM muck removal system (transfer conveyor, boretec conveyor, TBM con-

veyor, horizontal conveyor, vertical conveyor), and the TBM support installation system

(erector arm system, supply system). These subsystems are "connected" in series i.e., the

entire system works only if all the subsystems work or, conversely, only if any of the sub-

systems does not fail. Two factors were found to have an impact on the failure occurrence,

both in terms of the probability and in terms of the number of failures, namely the rock

total hardness, and location.

The location impact was expressed as:

* the "fatigue" effect on cutters and horizontal conveyor, which are the components of
the TBM mechanical system and the TBM muck removal system respectively. This
effect is shown on Figure 6.1.

* the "learning" effect on the TBM support installation system. This phenomenon is pre-
sented on Figure 6.2.

The total hardness impact was observed for the following TBM components:

* cutters - both the number of failures and the probability of failure increase with
increasing total hardness;

* muck removal system (except for the horizontal conveyor, effected only by location) -
both the number of failures and the probability of failure decrease with increasing total
hardness.
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Figure 6.1: The Illustration of the "Fatigue" Effect: Horizontal Conveyor Failure Proba-
bility
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Figure 6.2: The Illustration of the "Learning" Curve: L-system Failure Probability
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Another issue addressed in this thesis was the comparison of the pre-excavation and

post-excavation data. The comparison of the total hardness values led to the conclusion

that the pre-excavation total hardness data and the post-excavation total hardness data

were very similar. The analysis of the sample size showed that the effect of the smaller

pre-excavation sample was reasonably small (coefficient of variation in the order of 10%).

However, the fact that the pre-excavation borings were horizontally offset from the tunnel

alignment does influence the correlations. Figures 6.3, 6.4, 6.5. and 6.6 are examples of

this influence.Figures 6.3 and 6.4 show the cutter related failure probability for both data

sets. It is obvious that the offset effect is strong i.e., the curve flattened and the regression

parameters indicate a weaker correlation for the pre-excavation data (see Table 6.1).

Parameter Estimate Chi-square statistic Prob > Chi-square

Post-exc. Intercept 2.8476 171.15 0.0001

Pre-exc. Intercept 2.021 24.3952 0.0001

Post-exc. Hardness -0.024 57.8 0.0001

Pre-exc. Hardness -0.0057 0.9153 0.3387

Table 6.1: Regression Parameters Comparison for the Post-excavation and Pre-
excavation Cutter Related Failure Probability Models

The evidence suggests that the pre-excavation data did not provide sufficient enough

information about total hardness to capture the correlation between the total hardness and

the probability of failure. Cutter failure is so location dependent that any variation in the

total hardness values causes the correlation to weaken.



1.0

0.8

0.6

S0.4

0.2

0.0

0 100 200
Rock Total Hardness

Figure 6.3: Cutter Failure Probability vs. Post-excavation Total Hardness
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Figure 6.4: Cutter Failure Probability vs. Pre-excavation Total Hardness
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Figure 6.5: M-system Failure Probability vs. Post-excavation Total Hardness
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Figure 6.6: M-system Failure Probability vs. Pre-excavation Total Hardness

M

On the other hand, the muck removal system failure probability analyses yielded

almost identical results for the pre-excavation and pre-excavation total hardness (see Fig-

ures 6.4 and 6.5):
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data (see Table 6.2).

Parameter Estimate Chi-square statistic Prob > Chi-square

Post-exc. Intercept 0.1693 0.6552 0.4179

Pre-exc. Intercept 0.2256 0.4297 0.5121

Post-exc. Hardness 0.0143 17.3504 0.0001

Pre-exc. Hardness 0.0132 5.0549 0.0246

Table 6.2: Regression Parameters Comparison for the Post-excavation and Pre-
excavation M-system Related Failure Probability Models

Again, as in case of the cutter failures the bore hole offset weakens the correlation.

6.2 Conclusions
This results of this research allow one to draw the following conclusions:

* the Tunnel Boring Machine is a system, consisting of three major components (the
TBM mechanical system, the TBM muck removal system, and the TBM support
installation system), which are connected in series; this makes each component critical
i.e., in the event of the single component failure, the system fails;

* total hardness influences failure occurrence of the following TBM systems and sub-
systems: the cutters (CU-element of the T-system), and the muck removal system (M-
system), excluding the horizontal conveyor (HZ-element of the M-system);

* another factor influencing the TBM component failures was the "fatigue" factor,
which is a function of location; specifically, "fatigue" affects cutter and horizontal
conveyor related failures;

* another factor that has a substantial impact on the probability of failure is RQD which
is part of the pre-excavation data set: the cutter related failure probability increases
with increasing RQD, and the muck removal system related failure probability
decreases with increasing RQD, hence RQD affected the same failure categories as the
total hardness, namely the cutters and the muck removal system. This allows one to
conclude that both intact rock and rock mass properties are equally important in the
TBM performance assessment;

* the "learning" effect, which is also location dependent, was observed on failures
related to support installation, which shows the importance of the proper maintenance
and repair programs;

* the analyses performed on the data sets containing the Argillite data yielded the same
results as the data set containing Argillite and Diabase data i.e., the Diabase with the
same total hardness as Argillite did not cause a higher number of failures.

The regression parameters though indicate a weaker correlation for the pre-excavation



The TBM system reliability investigation (see Figure 4.78) leads one to conclude that

the TBM system seems to be performing better in harder and less fractured rock. Although

the cutter related failures do become critical after a certain threshold (approximately Ht =

70 for this research), having replacement cutters in place, more durable cutters, as well as

other maintenance improvements can minimize that effect.

6.3 Possible Extension and Application
The results discussed in this research allow one to better understand the origins of delay.

This allows one to improve the existing models for TBM performance prediction. All the

existing tunneling simulation programs schedule the delay occurrence based on theoretical

probability density functions (Weibull, Exponential, Normal, Log-Normal, Uniform etc.)

without any connection to the rock properties. The following technique establishes this

connection:

1. Using the derived probability density functions, one can schedule failure occurrence
as binary response variable i.e., 1 - failure; 0 - no failure.

2. Once the failure occurrence is scheduled, the number of failures can be estimated
using the derived regression functions;

3. The total number of failures over the certain tunnel distance can then be computed
and incorporated into the time-to-complete-tunnel estimation analysis.

Additional analyses could be performed to investigate the nature of the time-to-repair

and time-between-failures distribution. Once established these can be incorporated as fol-

lows: (the total unscheduled delay time for a such and such failure category) = (the total

number of failures for this category) x (mean-time-to-repair).

The final point is that any problem associated with the rock influence on the construc-

tion process should be solved using a probabilistic approach rather than a deterministic

one, for one has to account for the numerous uncertainties that nature introduces.
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Statistical Methods Used For The Analysis

A.1The Linear Regression
Let us define X and Y to be the predictor and the response, respectively, with observed

values (xi, Yi) of X and Y for i=1,2,...,n. Let us also define ei to be the statistical error for

the ith case, i=1,2,...,n. The simple linear regression model specifies the following:

yi = Bo+ Ij xx, + ei, i=1,2,...,n with E(ei)=O, var(ei)=o 2, cov(ei,ej)=0. In words, the model

says that the observed value yj can be determined from the value of xi through the specific

equation, except that ei, an unknown random quantity, is added on. The three quantities 0o,

i1, and a 2 are unknown. The ei's are unobservable quantities introduced into the model to

account for the failure of the observed values to fall exactly on a single straight line. Only

the xi's and the yi's are observed and these data are used to obtain estimates of the

unknown parameters, namely, o, 031, and 02. The following figure presents the quantities

used to compute Po , P1, and a 2:

Figure A.1: Definition of Statistical Symbols

The criterion function for obtaining estimators is based on the fitting errors or residu-

als, ~i = yi- ý, where ýi = Po + 01 x x, is the value on the fitted line at x=xi . The residuals

Quantity Definition and Alternative Forms Description

i x,/n Sample average for the xi's
j y/jn Sample average for the yi's
SXX . (x, - ) - x - ( x,)Z/n Corrected sum of squares for the

X;- -1.02  xi's
SDz SXXI(n- 1) Sample variance of the x*'s
SDz ,SXX/(n - i) Sample standard deviation
SYY . (y - W- )~ -" ~/fn Corrected sum of squares for the

Sy! - ,M y•2 .v's: also called the total sum of
squares

SDI SYYAn- Il Sample variance of the y''s
SDr ,Y Ywn- I- Sample standard deviation
SX Y [ (x, -. )X Y - ) Corrected sum of cross products

-T • Y.v - ,.•.
Szr SX YA(n- 1) Sample covariance

rxr SX Y/./(SXXX)SY Y) sxy/sxsy Sample correlation



give the vertical distances between the fitted line and the actual y-values. The least squares

estimators are those values 3o of 0o and 31 of pi that minimize the function

RSS(o,fII) = [Yi - (o + P, x xi)] 2 . When evaluated at po, pi , it is called the residual sum

of squares, or just RSS. The least squares can be derived as follows: P1 = (SXY)/(Sxx),

and 0o = Y- 1 xx.

The analysis of variance provides a convenient method of comparing the fit of two or

more models to the same set of data. The sum of squares due to regression is defined by

SSreg=SYY-RSS. If SSreg is large, then the simple regression model yi = Po + P, x x, + ei

should be a significant improvement over the model given by yi = Po + e . This is equiva-

lent to saying that the additional parameter in the simple regression model P1 is different

from zero. To formalize this notion, "large" has to be defined. This is done by comparing

the regression mean square (SSreg divided by its degree of freedom, which for simple

regression is 1) to the residual mean square. This ratio is called F. F - (SSY- RSS)/1 . For-
,2

mally, we can consider testing the null hypothesis (NH) against the alternative hypothesis

(AH)

NH: yi = Po + ei i=1,2,...,n

AH: yi = 3o + P, x x1 + e, i=1,2,...,n

The p-value is the conditional probability of observing a value of the computed statis-

tic (here, the value of F) as extreme or more extreme (here, as large or larger) than the

observed value given that the NH is true. A small p-value provides evidence against the

NH. Confidence intervals and tests of the parameter estimates can be based on the t distri-

bution: t = 0~o- P*0
2 1/2'

( 1/n + x /(SXX))
/ 2 '

NH: 0o=3*, [1;

AH: 0o!= 13
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A.2 Logistic Regression
Suppose that for each individual or experimental unit, the response, Y can take only one of

two possible values, denoted 0 and 1. We may write pr(Yi= 1) = 7'i; pr(Yi=O) = 1 - ;i for the

probabilities of "failure" and "success" respectively. To investigate the relationship

between the response probability nt and the covariate vector (x1,x2,...,x n) it is convenient to

construct a formal model thought capable of describing the effect on nC of changes in

(xl,x 2,1...Xn). We suppose therefore that the dependence of nt on (x1 ,x2,...,Xn) occurs
P

through the linear combination Yr = xjxpj for unknown coefficients P1,...,3n. The
j=1

logistic function links the response probability and the unknown coefficients 01,...,Pn:
p

g(rni) = log {n/(1 - ni) = rli =  xii x PSj; i=l,...,n.P
j=1

To estimate the parameters the likelihood function is introduced. The responses

yl,...,yn are assumed to be the observed values of independent random variables Y 1,...,Yn

such that Yi has the binomial distribution with index mi and parameter iri.The log likeli-

hood may be written in the form

1(P;y) = 11y i xxi X Pj- mi log( + exp x jx • .
i ji i

The likelihood equations for the parameters P are as follows (al)/(J) = xx(Y -g)

when written in matrix notation. In addition, the diagonal matrix of weights is in a form

W = diag{mi x nx (1 - 7i) }. Maximum likelihood estimates satisfy the equation:

X xWxXx=xx w x z, where zi = xi ,+ x d'. The revised estimate is
mi dXi

= (X x W X)-l x X Z (McCullagh et al, 1989).
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A.3 Poisson Regression
The Poisson distribution is the nominal distribution for counted data in much the same

way that the Normal distribution is the bench-mark for continuous data. Such counts are

assumed to take the values 0,1,2,... without an upper limit. The maximum likelihood esti-

mates of the parameters P3 in the linear predictor rl can be obtained by iterative weighted

least squares. In this regression the dependent variable is not y but z, a linearized form of

the link function applied to y, and the weights are functions of the fitted values g [for the
p

Poisson Regression rl = xx P3, and g=exp(r)]. The process is iterative because both
j= 1

the adjusted dependent variable z and the weight W depend on the fitted values, for which

only current estimates are available. The quadratic weight is defined by

W L0 = )0 x VO .where Vo is the variance function evaluated at go .(d2L
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