
Airline Fleet Assignment with Time Windows

by

Brian Rexing

B.S., Civil Engineering
Purdue University, 1995

Submitted to the Department of Civil and Environmental Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Transportation

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1997

@Massachusetts Institute of Technology 1997. All rights reserved.

Author S.
Department of Civil and Environmental Engineering

May 9, 1997

Certified by.

Associate Professor of
Cynthia Barnhart

Civil and Environmental Engineering
Thesis Supervisor

Accepted by.
Joseph M. Sussman

Chairman, Departmental Committee on Graduate Students

JUN 2 4 1997

m

m

Airline Fleet Assignment with Time Windows

by

Brian Rexing

Submitted to the Department of Civil and Environmental Engineering
on May 9, 1997, in partial fulfillment of the

requirements for the degree of
Master of Science in Transportation

Abstract

Current fleet assignment models allow no variability in the scheduled departure time
of flights even though exploiting this variability can result in more flight connection
opportunities and a more cost effective fleet assignment. We present a generalized
model that exploits this variability, simultaneously assigning aircraft types to flights
and scheduling flight departures.

We model this problem as a simple variant to current fleet assignment models,
assigning a time window to each flight and then discretizing each window, allowing
the model to select the departure time. As problem size can become formidable,
much larger than current fleet assignment models, we develop two algorithmic ap-
proaches for solving the model. Our direct solution approach is good for speed and
simplicity, while our iterative technique minimizes memory usage.

Using data from a major U.S. airline. we show that our model can solve real,
large-scale problems, and we evaluate the effects of schedule flexibility. In every
test scenario, the model produces a fleet assignment with significantly lower costs
than the basic model, and in a separate analysis, the model is used to tighten the
schedule, potentially saving aircraft.

Thesis Supervisor: Cynthia Barnhart
Title: Associate Professor of Civil and Environmental Engineering

Acknowledgments

I would first like to thank the people with whom I worked closely on this project,

most notably Professor Cynthia Barnhart. Her guidance, motivation, and peanut

M&Ms have made this project enjoyable and worthwhile. Thanks also to Tim Kniker

for his OR insights and computer-related assistance. Of course, much thanks goes

to United Airlines for funding this project and providing a source for understanding

operational issues.

I'd like to thank the friends I've met as a part of the many athletic teams I've

been on, particularly the club volleyballers, the Ashdown softball gang, and the

Course 1 football team. These friends, and the competitive outlet they provided,

always gave me something to look forward to during hectic weeks.

A special thanks to my best friends in Boston. I could not have asked for more

from an officemate than Paul Carlson. The academic and career tips he's given me,

as well as his model of discipline, will not be forgotten. Thanks to Bridgit Green

for making my last six months in Boston the best of my short stay.

Finally, I'd like to thank the most important people in my life-my family. I've

been able to learn from the intelligence of my father, the energy of my mother, and

the guts of my brother.

Contents

1 Introduction 9

1.1 Problem Description 9

1.2 Literature Review 11

1.3 Contribution 13

1.4 Outline 14

2 Mathematical Model 15

2.1 Basic Fleet Assignment Model 15

2.1.1 Network Representation 15

2.1.2 Formulation 16

2.2 Fleet Assignment with Time Windows Model 20

2.2.1 Network Representation 20

2.2.2 Formulation 21

3 Solution Approach 24

3.1 Network Preprocessing 24

3.1.1 Node Consolidation 25

3.1.2 Deleting Redundant Arcs 25

3.1.3 Islands 26

3.2 Iterative Solution Technique (IST) 28

3.2.1 The IST Algorithm 29

3.2.2 An Example 37

3.2.3 IST Details 40

4 Computational Experiences 44

4.1 Implementation and Data 44

4.2 Preprocessing Results 46

4.3 Algorithm Performance 48

4.4 Solution Analysis 50

5 Conclusions and Future Research 54

I

List of Figures

2-1 A two-airport flight network 16

2-2 Basic fleet assignment model 17

2-3 Time window flight network 20

2-4 Time line representation of a bank 21

2-5 Fleet assignment with time windows model 22

3-1 Deleting redundant flight copies 26

3-2 Time line with islands 27

3-3 Time window-expanded time line with islands 27

3-4 (a) Real-duration and (b) reduced-duration flight arcs 30

3-5 Flowchart of the iterative solution technique (IST) 31

3-6 Backward connection arcs 32

3-7 IST subproblem formulation 34

3-8 (a) Reduced-duration arc and (b) real-duration flight copies 34

3-9 Basic flight network 38

3-10 Iteration 1, Master Problem network 38

3-11 Iteration 1, Subproblem 1 network 38

3-12 Iteration 1, Subproblem 2 network 39

3-13 Iteration 2, Master Problem network 39

3-14 Iteration 2, Subproblem 1 network 40

3-15 Iteration 2, Subproblem 2 network 40

3-16 Backward connection arcs 41

3-17 (a) Single reduced-duration arc and (b) three real-duration flight arcs 42

m

1

3-18 "Super master problem" flight network 42

0

List of Tables

1.1 Flight connection example .

Notation for the basic fleet assignment model

Notation for the fleet assignment with time windows model

Notation for the IST subproblems

Six-flight, two-fleet example

Primary data sets

Preprocessing reduces problem size

Run times for DST and IST approaches (in minutes) .

Problem sizes, measured in non-zero elements (at final

IST)

P2-20.5 IST statistics

Solution improves as window width increases

Solution improvements for different copy intervals . . .

Re-fleeting and re-timing statistics

Minimizing the number of aircraft utilized

17

22

iteration for

... .. . 49

.. 50

. 51

. 52

.. 53

53

2.1

2.2

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Chapter 1

Introduction

1.1 Problem Description

Deciding when and where to offer flights is not the end of the airline schedule

planning process. Given these initial strategic decisions, the schedule planner must

resolve a series of issues before the schedule is actually operational. These issues

include, among others, assigning aircraft to flight legs, routing the aircraft to ensure

maintenance, and crew scheduling. The allocation of aircraft to flight legs, or fleet

assignment, is the first of these issues that is addressed.

Fleet assignment has a tremendous impact on an airline's profits, as it directly

affects flight operating costs and passenger revenues. Consider, for example, a large

aircraft flying a leg with very few passengers, versus a small aircraft serving a route

with high passenger demand. In the first case the prohibitive cost of flying the

large aircraft was unnecessary, while in the second case the airline lost potential

revenue, because passengers that would not fit on the aircraft were turned away.

Clearly, an efficient fleet assignment depends on accurate forecasts of operating costs

and passenger traffic. The traffic forecasts, together with known aircraft seating

capacities and expected fares, allow the calculation of spill costs, or lost revenue

due to under-capacity. With operating costs, spill costs, aircraft data, and schedule

data now known, we can define the basic fleet assignment problem:

Given a flight schedule with fixed departure times and costs (operating

plus spill) according to each aircraft type on each flight leg, find the least

cost assignment of aircraft types to flights, such that (1) each flight is

covered by exactly one fleet type, (2) flow of aircraft by type is balanced

at each airport, and (3) only the available number aircraft of each type

are used.

Although not discussed in this paper, other constraints may be added to this prob-

lem to improve the likelihood that the solution will be operational. These include

considerations for gate and maintenance availability, crew scheduling, and aircraft

noise.

This paper describes a daily fleet assignment problem, meaning we assume that

the airline's schedule repeats day after day. This assumption is not too restrictive, as

most U.S. domestic airlines fly the same schedule every day (with some exceptions),

and demand among flights typically varies in the same direction and relative mag-

nitude throughout the week. Some airlines deviate from this repeating schedule on

weekends, but re-fleeting for these exceptions is handled after the daily assignments

have been made.

Models that solve the basic daily fleet assignment problem have found wide

acceptance among airlines, but despite their importance, these models leave room

for improvement. One of the most noticeable weaknesses of current fleet assignment

models is their requirement that flight departure times be fixed. In reality, the

schedule used as an input to the fleet assignment model is not cast in stone; many

of the scheduled times will be tweaked in the weeks leading up to the day of departure

to improve such factors as gate availability and passenger connection times. It is also

not uncommon for schedulers to manually re-time flights in search of an improved

fleet assignment. The example in Table 1.1 illustrates how modifying the schedule

may allow a better fleet assignment. Notice that both flights A and B have the

same forecasted demand, and thus an assignment of the same type of aircraft to

both flights might be appropriate. But, since flight A's ready time (arrival time plus

minimum ground service time) is after flight B is scheduled to depart, the same

aircraft cannot cover both flights. However, if flight B could be re-timed to depart

Departure Ready
Flight Origin Destination Time Time Demand

A BOS ORD 0800 1000 150
B ORD DEN 0955 1200 150

Table 1.1: Flight connection example

after 1000, the connection could be made, and a single aircraft could cover both

flights, possibly improving the fleet assignment.

By adding time windows, which define by how much time any given flight can

shift, the set of feasible fleet assignment solutions grows substantially, and the opti-

mal solution is guaranteed to be at least as good as the basic (fixed departure time)

model. So then, the fleet assignment with time windows problem is the same as the

basic problem, except that time windows, rather than fixed departure times, are

given for each flight.

1.2 Literature Review

Because of their effectiveness in improving profits, not to mention the efficiency of

the planning process, airline schedule development models have been given much

attention. This is evident in Gopalan and Talluri [8], a survey of mathematical

models used during schedule development. Fleet assignment in particular is a well-

researched topic, with Daskin and Panayotopoulos [6], Abara [1], Berge and Hop-

perstad [3], Hane et al. [10], Subramanian et al. [12], Gu et al. [9], and Clarke et

al. [4] each presenting formulations to variations of the basic daily fleet assignment

model within the last eight years. Daskin and Panayotopoulos [6] present an inte-

ger program that assigns aircraft to routes (which they define as sequences of flight

legs originating and terminating at the same airport) in single-hub networks. La-

grangian relaxation is used to find an upper bound, and heuristics are used to find

specific solutions. Abara [1] presents a model that can be used for more general

airline networks, but the model has some limitations due to the choice of "feasible

turns" (connection arcs) as decision variables. The model size explodes unless lim-

I

its are placed on the connection opportunities. Another limitation is that different

flying times and turn times (minimum ground service times) are not allowed for

different fleets. Berge and Hopperstad [3] present a "fundamentally new operating

concept" for dynamically re-assigning aircraft as traffic forecasts change throughout

the planning horizon. Since the re-assignment problems involve only a common-

cockpit subset, or "family," of an airline's aircraft (so as not to destroy the crew

assignments), the problems are smaller than an airline's full daily problem. These

problems are formulated as multicommodity network flow problems on space-time

networks. To obtain quick solutions, two heuristic algorithms specifically designed

for these small re-assignment problems are suggested: one heuristic solves a sequence

of single-commodity flow problems, and the other begins with a feasible assignment

and performs multiple profit-improving aircraft swaps. Hane et al. [10] use a similar

multicommoditv network flow formulation to solve the basic fleet assignment prob-

lem, but their use of variable aggregation, cost perturbations, dual simplex with

steepest-edge pricing, and intelligent branch-and-bound strategies result in a rapid

solution to realistically-sized (2500-flight, eleven-fleet) problems. Gu et al. [9] study

the complexity and behavior of the model presented in the Hane paper, while in

Clarke et al. [4], a sequel to the Hane paper, it is shown that better operational

solutions to the fleet assignment problem can be achieved by adding variables and

constraints that model maintenance and crew issues.

Levin [11] was the first to propose a scheduling and fleet routing model with time

windows, however this model did not consider multiple fleet types. Time windows

were modeled by allowing departure times to occur at discrete intervals within the

time window. Much more recently, Desaulniers et al. [7] presented two formulations

to the fleet assignment and aircraft routing problem with time windows. These

equivalent formulations are solved by decomposing the problem and generating fa-

vorable flight paths with time-constrained shortest path subproblems. The models

are demonstrated to be effective on small (less than 400 flights/day) examples.

In this paper we consider large scale problems of fleet assignment with time windows.

The contributions of this paper include the following:

1. By discretizing each flight's departure time window, we model the fleet as-

signment with time windows problem as a simple variant of the basic fleet

assignment model. Ours is a generalized model and solution approach for

fleet assignment, in that time windows of zero width can be used (resulting

in the basic fleet assignment model) or flights can be given time windows of

varying width. Furthermore, the structural similarity between our model and

those models currently implemented at many airlines is a key attribute of our

approach.

2. We present two algorithmic approaches for solving the fleet assignment with

time windows model. Both approaches begin with network preprocessing,

some of which we designed specifically for our new model. Then, we demon-

strate that the model can be solved either directly or by using an iterative

solution technique. Our direct solution approach (DST) is good for speed and

simplicity, while our iterative approach (IST) minimizes memory usage (which

is valuable for larger problems and problems with added enhancements).

3. Using data from a major U.S. airline, we show that our model can solve real,

large-scale problems, and we evaluate the effects of schedule flexibility. We

take an in-depth look at the effects of network preprocessing, compare the

performance of our two algorithms, and show that allowing time windows can

save aircraft, as well as improve daily operating and spill costs. For example,

on a 2037-flight, seven-fleet problem with time windows of a maximum of

+/- 10 minutes on all flights, our model finds a solution that reduces fleet

assignment costs by over $67,000 per day beyond the optimal solution with

no time windows. In that solution, less than 6%, of all flights are moved from

their originally scheduled time. In a separate analysis on the same problem

instance, we find that the flight schedule can be flown with two fewer aircraft

1.3 Contribution

than are necessary when departure times are fixed. Although the operational

feasibility of these new solutions must be verified, the results are certainly

promising.

1.4 Outline

In Chapter 2 we describe the mathematical model and flight networks for fleet as-

signment with time windows. In Chapter 3 we detail the network preprocessing

steps and then motivate and describe the alternative solution techniques we have

designed. Chapter 4 presents results and computational experiences obtained in

solving fleet assignment problems for a large airline. Finally, in Chapter 5 we sum-

marize this research and suggest pertinent future research.

Chapter 2

Mathematical Model

In this chapter, we present the integer programming formulation to the fleet as-

signment with time windows problem. Because the formulation used is a simple

extension of the basic fleet assignment problem, we begin by describing this basic

formulation.

2.1 Basic Fleet Assignment Model

2.1.1 Network Representation

The flight networks are the foundation upon which the fleet assignment model is

built, for they ensure feasible flight connections, conservation of aircraft flow, and a

balanced number of aircraft of each type at each airport at the beginning and end of

each day. A different flight network is created for each fleet type, and it is made up

of parallel time lines-one time line for each airport. An example of a two-airport,

four-flight network is shown in Figure 2-1. Each time line is comprised of a series of

ground arcs that connect event nodes. Event nodes represent departures or arrivals

at an airport at a specific time. The parallel time lines are connected by flight arcs,

which are defined by their departure and arrival nodes. Wrap-around arcs, which

are just special-case ground arcs, connect the last event node to the first event node

at each airport. This guarantees flow balance.

To ensure that aircraft make only feasible flight connections, arrival nodes are

BOS

ORD

Figure 2-1: A two-airport flight network

not actually placed at the flight's arrival time; rather they are placed at the flight's

ready time. If we did not place arrival nodes at each flight's ready time, we might

allow aircraft to connect to departing flights before they are actually prepared to

leave. For example, in Figure 2-1, if flight B were put on the BOS time line at

its arrival time. an aircraft would then be allowed to flow across both flight B and

flight C. which is actually impossible. Turn times, which can be different for every

fleet type. are typically 30 to 40 minutes for domestic flights, depending on aircraft

size. Since we create a different network for each fleet type, we can model not only

this disparity in turn times. but also the differences in flying times among different

aircraft types.

2.1.2 Formulation

Once the flight networks have been built for each fleet, the basic fleet assignment

problem can be solved using the formulation given in Figure 2-2. Notation for this

formulation is given in Table 2.1. Stated simply, this formulation seeks to minimize

the cost to cover each flight with one aircraft type (constraints 1), making sure

aircraft flow is conserved at each node (constraints 2), while using no more aircraft

of each type than are available (constraints 3). The third constraint set counts

aircraft of each fleet type by summing the flow on all arcs of that fleet's network that

cross an arbitrarily chosen count time. A typical count time is 3:30 AM, because

F = set of flights
K = set of fleets

Sk = number of aircraft of fleet k
Gk = set of ground arcs in fleet k's network
Lk = set of nodes in fleet k's network

Cik = cost to fly flight i with fleet type k

Xik = 1 if flight i flown by fleet k, 0 otherwise

Ygk = number of aircraft on ground arc g in fleet k's network
bllik = 1 if flight i begins at node 1 in fleet k's network

= -1 if flight i ends at node I in fleet k's network, 0 otherwise
b2lgk = 1 if ground arc g begins at node I in fleet k's network

= -1 if ground arc g ends at node I in fleet k's network, 0 otherwise
dlik = 1 if flight i crosses the count time in fleet k's network, 0 otherwise
d2 gk = 1 if ground arc g crosses the count time in fleet k's network, 0 otherwise

Table 2.1: Notation for the basic fleet assignment model

Minimize E E CikXik
kEK iEF

subject to

E Xik = 1
kEK

Sbllikik + E b2lgkYgk = 0
iEF gEGk

1: dlikXik + 1> d2gkYgk • Sk
iEF gEGk

Xik E {0, 1}
Ygk > 0

Vi E F

VIE Lk, Vk E K

Vk e K

ViE F, VkEK

VgE Gk, Vk EK

Figure 2-2: Basic fleet assignment model

only wrap-around arcs and a few (red-eye) flight arcs cross this time. Decision

variables x define which fleet type covers each flight, so these variables must be

integer (constraints 4). The y variables are zero-cost ground arcs that are necessary

to preserve conservation of flow and to count the number of aircraft used. These

variables need not be defined as integer (constraints 5), as the integrality of the

flight variables ensures integral ground flow.

Objective Function Coefficients

Determining accurate cost coefficients is easily the most important, and difficult,

factor in obtaining an efficient fleet assignment solution. Each coefficient, as was

described in Section 1.1, is comprised of two parts: an operating cost and a spill

cost. The operating cost portion (fuel, maintenance, crew, etc.) is relatively easy

to estimate, however it can become more complicated as passenger-related costs are

added. Passenger-related costs are a function of the number of passengers carried,

which is a function of aircraft size.

Given an unconstrained demand for a flight, in order to calculate the expected

number of passengers carried on that flight for a given fleet type, we must calculate

the expected spill. Recall that spill is the number of passengers turned away by an

airline, because demand was greater than seating capacity. Before discussing the

possible methods for calculating spill, we define the following expressions:

spillik = expected number of passengers spilled from flight i if flown
by fleet k

Pi = mean unconstrained demand of flight i
ai = standard deviation of demand of flight i
capk = seating capacity of fleet k
maxLFi = maximum load factor allowed on flight i (< 1)
fz(xo) = the Gaussian (normal) probability density function

One approach for estimating spill is as follows:

spillik = max{0, Pi - caPk} (2.1)

In other words, spill is equal to zero unless the mean unconstrained demand is

greater than capacity. However, unless demand is deterministic, equation (2.1)

underestimates spill. Consider, for example, a flight that has a mean unconstrained

demand of 100 passengers and an aircraft with a capacity of 100 seats. Equation

(2.1) tells us that there is an expected spill of zero passengers. Assuming that the

demand actually varies from day to day, this estimate is clearly wrong, for any time

the demand exceeds 100, there will be spill.

A simple and artificial way to account for this stochasticity in demand is to place

a limit on the effective capacity of an aircraft as follows:

spillik = max{O, pi - maxLFi * capk} (2.2)

Using the example from above with a maximum load factor of 0.9, our estimate of

spill becomes 10 passengers.

However, the most realistic approach for calculating spill is to assume that de-

mand has a normal distribution, and calculate spill accordingly, as discussed in

Subramanian et al. [12] and shown in equation (2.3) below.

pidlik = fx(xo)(xo - capk)dxo (2.3)

Given our estimate of spill, we can determine a spill cost for each flight-fleet

pair. Spill cost is the expected number of passengers spilled multiplied by spill

fare-an estimate of the average revenue per spilled passenger on that leg. Spill

fare is another piece of data (in addition to mean unconstrained demand and its

standard deviation) that is difficult to estimate, yet has significant impact on the

fleet assignment solution. In our implementation we have assumed spill fare to be

equivalent to the average fare paid on that leg.

BOS

A B C "D

ORD

Figure 2-3: Time window flight network

2.2 Fleet Assignment with Time Windows Model

2.2.1 Network Representation

Time windows can be modeled with a simple, albeit computationally expensive, ex-

tension of the basic flight networks. By placing copies of a flight arc at specified

intervals within that flight's time window and requiring just one of the flight arc

copies to be covered, we allow the model to choose the departure time of the flight.

Figure 2-3 shows how the basic network of Figure 2-1 might look after being ex-

panded to permit flexible departure times for each of the four flights. The departure

and corresponding arrival time windows are indicated by the rectangles above (be-

low) the BOS (ORD) time line. The impact that time windows have can be seen in

this small example: a single aircraft may now cover flights B and C (by using the

first copy of flight B and the last copy of flight C), whereas this connection was not

possible in the basic model.

Because the scheduled time of some flights is more flexible than others, the width

of each time window is a parameter that can be different for every flight. Obviously,

wider time windows will allow more connections, but if a flight is moved too far

from its originally scheduled time, then the passenger demand for that flight may

change. Shuttle flights, arrival slot-controlled flights (e.g. at some international and

congested domestic airports), and flights that are members of banks are examples of

__ __ __

FGH I J

HUB

ABCDE

Figure 2-4: Time line representation of a bank

flights that may have a tightly constrained (possibly zero-width) time window. A

bank is a hub airport activity that allows passengers from many origins to connect

to flights that are departing to many different destinations. Figure 2-4 shows what

a small bank would look like at the hub airport. So as not to clutter the figure,

the basic network representation is shown (i.e. only one arc is shown for each

flight). One can see why bank flights may have tightly constrained time windows by

considering flight E. If flight E were allowed to arrive any later than its originally

scheduled time, some passengers may not have time to run across the airport and

board outbound flight F. So, flight E's time window may be, for example, [-10, 0]

meaning it can be re-timed up to ten minutes earlier, but cannot be re-timed any

later than its originally scheduled time.

The interval at which flight copies are placed within each time window is another

parameter that can affect the quality of the solution. To guarantee that flights are

allowed to depart at any time within their window, copies need to be placed at

one-minute intervals. However, it will be shown in Sections 4.3 and 4.4 that using a

narrow interval causes an explosion in the problem size, often without the benefit of

providing a substantially better solution than a broader (say five-minute) interval.

2.2.2 Formulation

The fleet assignment with time windows model is almost exactly the same as the

basic model, only it contains more variables and has slightly different coverage con-

m

Nik = number of arc copies of flight i in fleet k's network

Cnik = cost to fly copy n of flight i with fleet type k
Xnik = 1 if copy n of flight i flown by fleet k, 0 otherwise
bllnik = 1 if copy n of flight i begins at node 1 in fleet k's network

= -1 if copy n of flight i ends at node 1 in fleet k's network
= 0 otherwise

d1nik = 1 if copy n of flight i crosses the count time in fleet k's network
= 0 otherwise

Table 2.2: Notation for the fleet assignment with time windows model

Minimize E E E CnikXnik
kE K icE F nE Nik

subject to

E Xnik 1 ViEF (1)
kEK nENik

E S bllnikXnik + 5 b2lgkYgk =0 VI ELk, Vk c K (2)
iEF nENik gEC;k

E S dlnikXnik + E d2gkygk <_ Sk V k E K (3)
iEF nE lNik gEGk

Xnik {0, 1} Vi E F, Vn E Nk, V k E K (4)

Ygk > 0 Vg E Gk, V k E K (5)

Figure 2-5: Fleet assignment with time windows model

straints. Notation that is different from the basic model's notation is given in

Table 2.2, and the new model is shown in Figure 2-5. This model is structured the

same as the basic model, with the objective function minimizing cost, and the con-

straints ensuring flight coverage (constraints 1), conservation of flow at each node

(constraints 2), restricted aircraft utilization (constraints 3), and variable integrality

(constraints 4, 5). Notice that there is still one constraint for every flight (1), node

(2), and fleet type (3). However, there are far more nodes in the network when

time windows are used. As explained in Section 2.2.1, constraints on a flight's time

window width are modeled by only defining flights arcs that are within that flight's

time window.

Notice in the first constraint set that only one arc, among all copies and every

fleet, must be covered for each flight. By choosing a single arc copy, the model

/

effectively chooses the departure time of each flight. This model also allows the

user to apply a different cost coefficient to every flight copy. So, for example, one

can make it more expensive to fly a flight the further it is moved from its originally

scheduled time.

Chapter 3

Solution Approach

The LP matrix of the fleet assignment with time windows model can become pro-

hibitivelv large for realistically-sized problems. As such, preprocessing steps, de-

scribed in Section 3.1, are useful for reducing the model's size. After preprocessing,

it is often possible to solve the fleet assignment problem directly. However, the

direct solution approach requires that we include many unnecessary flight arcs. An

alternative strategy, described in Section 3.2, is to iteratively add necessary flight

arc copies to the model., thereby minimizing the model's size. For illustration of

the iterative algorithm solution procedure (Section 3.2.1), an example is detailed

(Section 3.2.2).

3.1 Network Preprocessing

Because of the cumbersome size of fleet assignment models, substantial efforts have

been made to prune the problem before the LP matrix is constructed and solved.

Hane et al. [10] provide an excellent description of techniques that can be used

before solving the basic fleet assignment model. Some of the same concepts are also

appropriate for the fleet assignment with time windows model-a model with many

more nodes and arcs than the basic model. Described below are three techniques that

we use to reduce the network size; specific results of the impact of these techniques

is given in Section 4.2.

m

3.1.1 Node Consolidation

Node aggregation, or consolidation, is one of the techniques described in Hane et

al. [10] that can also be applied to networks with flight copies. The idea here is

to replace one or more arrival nodes that are followed by one or more departure

departure nodes, with a single node. For example, in Figure 2-4 all ten nodes

and the nine ground arcs between them can be replaced by a single node without

introducing illegal connections. Rather than representing a specific instant in time,

this single node now represents a time range: from the ready time of flight A to

the departure time of flight J. If flight H were an arrival, then flights A-G would

be consolidated followed by a ground arc into a single node for flights H-J. Each

node (ground arc) removed translates into exactly one less row (column) in the LP

matrix.

3.1.2 Deleting Redundant Arcs

This is a technique that is unique to networks containing copies of individual arcs

(such as our time window flight networks). After nodes of the flight networks have

been consolidated, a set of redundant arcs can be defined as arcs of the same flight

that have the same cost and share the same tail node. Among these redundant

arcs, the first (earliest on the time line) copy dominates the later copies, because an

aircraft flowing across the first arc can make, at a minimum, the same connections

as any of the later-arriving flights.

Figure 3-1 shows a portion of a flight network, after node consolidation, contain-

ing a single flight with five arc copies between CMH and ORD. In this example there

are two sets of redundant copies: (1,2) and (3,4,5). Assuming these arcs all have

the same cost, arcs 2, 4, and 5 can be deleted from the network without affecting

the solution. That is, the flights arriving at CMH and the flights departing from

ORD have the same connection opportunities with or without these dominated arcs.

However, if costs among copies of a flight are not the same, then arcs within a redun-

dant set can only be deleted if they have both a later departure time and a cost not

less than another earlier arc within that set. In any case, each arc deleted equates

m

ORD

CMH

Figure 3-1: Deleting redundant flight copies

to three fewer variables and two fewer constraints in the model (before node consol-

idation). Not only is a flight arc (and its two end nodes) removed, but a ground arc

is implicitly removed from each airport's time line as two arcs are merged into one.

VWe should note that in our implementation, one arc copy is always placed at the

originally scheduled departure time of each flight, and this arc is never deleted. To

further favor flights that depart at the originally scheduled time, we reduce the cost

of these arcs by a very small amount.

3.1.3 Islands

Another of the techniques presented by Hane et al. [10] is to remove ground arcs

from sparsely-used airports when it is known that no aircraft will be on the ground

at that time. Removing these ground arcs leaves the time line with islands-periods

of time when there is at least one aircraft on the ground. Figure 3-2 is an example of

what a time line with islands might look like for the basic fleet assignment problem

(one arc for each flight). By counting the arrival flights and departure flights, we

can identify the maximum number of aircraft that might use each ground arc. For

example, here we see that if there are x aircraft on the ground in the morning, then

there must be x - 1 aircraft on the ground after the first departure. We continue

down the time line, adding to the count for each arrival and subtracting from the

count for each departure. The ground arc(s) with the lowest count can be removed.

In this example, x- 1 is the lowest count, and so the two ground arcs with that count

m

B

Figure 3-2: Time line with islandsA

Figure 3-2: Time line with islands

Figure 3-3: Time window-expanded time line with islands

are removed. In this case the wrap-around arc is the only ground arc that might

have aircraft flow. Notice that removing ground arcs not only removes variables

from the problem. but in some cases it also fixes the connections between flights.

In this case, if the model chooses the fleet of this time line to cover flight A, then it

must also cover flight B.

Figure 3-3 shows what Figure 3-2 might look like after flight copies are added

to model time windows. As one can see, there may be a different number of copies

for each flight due to differences in time window width and the effect of deleting

redundant copies of that flight. This example shows that the process of counting

arrival and departure arcs to identify islands becomes more difficult when there are

multiple copies of each flight. When counting arrivals and departures, one must

only count the last copy of each flight. Ground arcs that sit between the first and

last copies of flights should be given the same aircraft count as the previous ground

arc. This means that in Figure 3-3, the small ground arc between copies of flights

A and B gets a count of x - 1. Once again, it is found that the wrap-around arc is

the only ground arc which may have aircraft flow.

As mentioned previously, this technique should only be applied on time lines

z.A-

-1
z

..

Figure

3-2:
Time

line
with

islands

m

of little activity, for it is on these time lines that the assumptions of the counting

technique are most likely to be true. To guarantee that we are not eliminating

arcs that may be in the optimal solution, the counting technique described requires

that arrival flights connect to departure flights emanating from the same node. At

heavily used airports it is less likely that this is true; here it is best that we leave

the ground arcs and let the model choose the connections.

3.2 Iterative Solution Technique (IST)

After creating the flight networks and preprocessing, one option for solving the fleet

assignment with time windows problem is to input the entire LP matrix into an

LP solver and solve the problem directly. Advantages of a direct solution technique

(DST) include simplicity and quickness in solving most problems. However, despite

the gains made in preprocessing, DST has a disadvantage of including many un-

necessary flight arc copies. That is, there are many flight arcs that are not deleted

during the preprocessing phase that are unnecessary for achieving good solutions.

Stated another way, even if many of the flight's departure times are fixed (i.e. only

a subset of all flights are given time windows), the model can still achieve the same

optimal solution as it does when all flights have time windows. The difficulty lies

in identifying which flights need time windows and which flights can be fixed. The

IST algorithm, described in the following section, does just that.

The iterative approach is to first solve a fleet assignment problem with one arc

for each flight-fleet pair and then add arc copies to the model at each iteration.

Extra arc copies are added when it is thought that giving a flexible departure time

to these flights will have a positive impact on the solution. The final iteration is

reached when it is known that additional flight arc copies will not help to produce

an improved solution.

By using flight arc copies only when necessary, IST minimizes problem size

and memory usage. This is valuable because it allows larger (e.g. more fleets and

flights) and more complex (e.g. additional enhancements) problems to be solved.

For example. because of memory limitations it may not be possible to directly solve

an integrated fleet assignment with time windows problem and, say, the aircraft

routing problem. But, because IST uses only slightly more memory than the basic

fleet assignment problem, such a simultaneous solution may be possible. Barnhart

et al. [2] show that it is possible to simultaneously solve the basic fleet assignment

model and the aircraft routing problem. Certainly, simultaneous solution of multiple

airline scheduling problems is a current operations research trend. It is hoped that

this algorithm will help make fleet assignment with time windows a part of this

trend, as well as inspire creative iterative algorithms applied elsewhere.

3.2.1 The IST Algorithm

As noted above, the objective of IST is to obtain the optimal solution, but with

fewer flight arcs, thereby minimizing memory usage. The algorithm, summarized

in the flowchart of Figure 3-5, begins with the creation of flight networks (Step 0).

As in the basic fleet assignment problem, one arc is created for each flight in each

fleet's network. But, rather than using flight arcs of real duration,

arc durationreat = block time + turn time,

each flight arc is positioned to depart at the end of its departure time window and

arrive at the beginning of its arrival time window. Thus. each flight arc has a reduced

duration:

arc durationreduced = arc durationreat - time window width.

Figure 3-4, with time windows indicated by rectangles on the time line, shows how

a real-duration flight arc (3-4a) differs from a reduced-duration arc (3-4b). Notice

that by reducing a flight's duration in this manner, we allow the flight to make any

time window-feasible connection. That is, any flight that arrives and is ready in

BOS before the end of flight A's departure window can connect to flight A; likewise

flight A can connect to any flight departing from ORD after the beginning of flight

A's arrival time window. When this is done for all flights, every viable connection

between pairs of flights becomes "feasible." When the fleet assignment model with

BOS

Figure 3-4: (a) Real-duration and (b) reduced-duration flight arcs

reduced-duration flight arcs is solved, we obtain a solution that is "super-optimal,"

in the sense that it is a solution that is at least as good as the optimal solution to

the original fleet assignment with time windows problem, because all of the flight

connections of the original problem, plus many others not in the original problem,

are allowed. VWe call the model with reduced-duration arcs the master problem, and

its initial formulation is exactly the same as the basic fleet assignment model of

Figure 2-2 (except that flight times are now reduced).

As one might expect, the solution of the master problem (Step 1) is often infeasi-

ble for the original problem. However, if we find that the master problem's solution

is feasible for the original problem, then we know we have an optimal solution to

the original problem. This is because it is not possible to find a solution that is

better than the one found in the master problem, since the master problem allows,

at a minimum, every feasible solution to the original problem.

Step 2 of IST determines whether or not the master solution is feasible for the

original problem; if it is found that the master solution is not feasible, this step

provides information to change the master problem and make it more likely that a

feasible solution will be found in the next iteration. The Step 2 subproblems (one

for each fleet type) are as follows:

For each fleet type k,

1. Create a time window flight network (as described in Section 2.2.1)

with only the flights covered by fleet k in the master solution. As-

sign flight arcs a cost of zero.

ORD

0. Initialize Master Problem

Create flight networks with

one reduced-duration arc

for each flight-fleet pair.

1. Solve Master Problem

Solve the current problem with

reduced-duration and

real-duration arcs.

2. Solve Subproblems

For each fleet type, try to

restore feasibility of the

master problem solution.

W\as the

no master problem

solution feasible for

all fleets?

yes

Optimal

Figure 3-5: Flowchart of the iterative solution technique (IST)

3. Update Master Problem

For each "problem flight,"

replace the reduced-duration

flight arc with a cluster of

real-duration flight arc copies.

''

2. As shown in Figure 3-6, add backward connection arcs with penalty

costs.

3. Solve this subproblem (formulation in Figure 3-7) directly.

Each subproblem is essentially a single-fleet fleet assignment with time windows

problem. The only added complexity is the presence of backward arcs that are

added to each airport's time line, as shown in Figure 3-6. These backward arcs,

whose purpose is twofold, connect arriving flights to earlier departing flights. So

as not to explode subproblem size, we place a cap on the number of backward arcs

that can emanate from any single arrival node, as well as an upper bound on the

time span of a backward arc. One purpose of the backward arcs is to permit a

"feasible" solution to the subproblem by allowing arriving flights to back-up and

connect with earlier departing flights. The other purpose of the backward arcs is to

identify "problem flights" that are preventing a feasible solution. This is explained

later, and it becomes clear in the example of Section 3.2.2.

Table 3.1 shows the notation for the subproblem formulation that is given in

Figure 3-7. The major difference between this model and the formulation of Sec-

tion 2.2.2, besides the fact that each subproblem involves only one fleet, is the

objective function. Since fleet assignment costs are not an issue during this step

(that is the job of the master problem), the objective function minimizes penalty

costs, thereby minimizing use of backward arcs in each fleet-specific subproblem.

The constraints are the same: cover each flight exactly once (constraints 1), con-

serve aircraft flow at each node (constraints 2), use only the available number of

Figure 3-6: Backward connection arcs

Fk = set of flights assigned to be flown by fleet k (from master solution)
N, = number of arc copies of flight i

Sk = number of aircraft of fleet k
G = set of ground arcs
B = set of backward arcs

cb = penalty cost for an aircraft to use backward arc b

Xni = 1 if copy n of flight i is to be flown, 0 otherwise

yg = number of aircraft on ground arc g

Zb = 1 if backward arc b is used, 0 otherwise
blini = 1 if copy n of flight i begins at node 1

= -1 if copy n of flight i ends at node 1, 0 otherwise
b2ig = 1 if ground arc g begins at node 1

= -1 if ground arc g ends at node 1, 0 otherwise
b3lb = 1 if backward arc b begins at node 1

= -1 if backward arc b ends at node 1, 0 otherwise
dlni = 1 if copy n of flight i crosses the count time, 0 otherwise
d29 = 1 if ground arc g crosses the count time, 0 otherwise
d3b = 1 if backward arc b crosses the count time, 0 otherwise

Table 3.1: Notation for the IST subproblems

aircraft (constraint 3), and maintain integer aircraft flow (constraints 4, 5, 6). If

the optimal objective function value is zero, then no backward arcs are used, and

we know that the master solution is feasible for this fleet type (Lemma 1). If

feasibility can be restored to every fleet in this manner, IST terminates with the

optimal fleet assignment solution. However, if backward arcs are used in one or

more subproblems, we must adjust the master problem (Step 3) and re-solve.

The purpose of Step 3 of IST is to change the master problem so that in the

next iteration it will be more likely to provide a solution that is feasible for all

fleets. This is accomplished by replacing some of the reduced-duration arcs with

real-duration arcs, thereby removing some infeasible flight connection sequences in

the current solution. Figure 3-8 shows what a flight looks like in a fleet's master

problem network before (3-8a) and after (3-8b) it has been altered. Notice that

after making this change to the network, a flight that arrives and is ready in BOS

before the end of flight A's departure time window can still connect to flight A (by

using the last arc copy). Also, flight A can still connect to any flight that departs

ORD after the beginning of flight A's arrival time window (by using the first arc

x ni =1

nE Ni

E E blliXzni + E b21gyg +
iEFk nENi gEG

>E 1 dlnixnz + d2gy -
iEFk nEN2i gEG

•ni E {0, 1}

yg > 0

Zb {0. 1}

E b3lbzb = 0
ijEB

3 d3bzb • Sk
ijEB

Vi Fk

VIEL

ViE Fk, Vn E Ni

VgE CG

Vb E B

Figure 3-7: IST subproblem formulation

ORD

BOS

(b)

Figure 3-8: (a) Reduced-duration arc and (b) real-duration flight copies

Minimize Z CbZb
bEB

subject to

copy). But, since only one of flight A's arc copies can be covered (constraints 1,

Figure 2-5), both of those flight connections cannot be made. Some infeasible flight

sequences in the reduced-duration network are now illegal, thus the revised master

problem's optimal solution is more likely to be feasible for the original problem.

Once the master problem has been revised, the formulation is a mix between

the basic fleet assignment formulation and the time windows formulation. This is

because some flights have only one arc that must be covered, while other flights

(let's call them "problem flights") are made up of a cluster of arc copies, only one

of which must be covered. So then, given the following definition for each flight i,

Nik = 1 if i is a reduced-duration flight, and

Nik > 1 if i is a problem flight,

the master problem formulation is exactly the same as the fleet assignment formu-

lation of Figure 2-5.

Notice that if we replace every reduced-duration arc with real-duration copies

in the manner described above, the master problem becomes equivalent to the orig-

inal fleet assignment with time windows problem. Since the purpose of IST is to

avoid such a large integer program, we want to update the master problem more

intelligently. We do this by altering only flights that are part of an infeasible flight

sequence. When solving the subproblems, pairs of these flights are identified when-

ever a backward arc is used to connect them. For example, in Figure 3-6 if backward

arc 1 is used in the solution, then we know that flights A and B are "problem flights,"

because they are flights that prevent a feasible solution from being constructed dur-

ing the subproblem. After replacing the reduced-duration arcs with real-duration

copies for all problem flights and for all fleets, we return to Step 1, re-solve the

master problem and continue IST until a solution is found that is feasible for all

fleets.

Lemma 1 If the solution to the master problem is found to be feasible for the

original problem, then that solution is optimal for the original problem.

Proof

Suppose that we begin with the original problem (real-duration arc copies for

all flights), and we then replace one or more flights' arc copies with single reduced-

duration arcs. After doing this, the number of possible flight connections, and

consequently the number of feasible solutions, stays the same or increases. (See

discussion accompanying Figure 3-4.) Since the master problem is comprised only

of these real-duration arc copies or of single reduced-duration arcs, the set of feasible

solutions to the master problem always includes, at a minimum, the set of feasible

solutions to the original problem. And, because the objective function of the master

problem and original problem is the same, if the optimal solution to the master

problem is feasible for the original problem, then it must also be optimal for the

original problem. U

A key implementation detail of IST is that during subproblem network creation,

backward arcs may not be used to connect a pair of flights that have both been

identified as problem flights in a previous iteration. This is necessary to ensure that

the algorithm terminates in a finite number of iterations, as shown in Lemma 2. If

backward arcs were defined between a pair of previously-identified problem flights,

the subproblems might add no new information to the master problem, causing the

algorithm to stall.

The following property can now be stated:

Lemma 2 IST will terminate after a finite number of iterations with an optimal

solution to the original problem.

Proof

At each iteration, Step 2 of the algorithm either uses zero backward arcs, or it

uses one or more backward arcs. If no backward arcs are used for any subprob-

lems, then that iteration's master problem solution is feasible and optimal for the

original problem (Lemma 1). And, since backward arcs are not placed between two

previously-defined problem flights, if one or more backward arcs are used, then at

least one new problem flight will be identified. In the worst case, one new problem

!

Departure Ready Fleet 1 Fleet 2
Flight Origin Destination Time Time Cost Cost

A BOS ORD 0600 0900 10 25
B ORD BOS 0900 1400 10 25

C BOS ORD 1340 1640 10 25

D ORD BOS 1620 2120 10 25

E BOS ORD 1500 1800 10 15
F ORD BOS 1820 2320 10 15

Table 3.2: Six-flight, two-fleet example

flight will be identified at each iteration (two in the first iteration), and the master

problem will be equivalent to the original problem on iteration number F, where

F equals the number of flights. At this point, the master problem is guaranteed

to be feasible and optimal (assuming there exists a feasible solution to the original

problem). U

3.2.2 An Example

The following example should serve to clarify the steps (and transition between

steps) of IST. In Table 3.2, we consider a two-airport, six-flight problem. There are

two fleet types, but only one aircraft is available for each fleet (S 1 = S2 = 1). To

simplify the example, both fleets are assumed to have the same block and turn times,

no preprocessing steps are used, and all time windows have a 20-minute width with

flight copies placed at a 10-minute interval. Figure 3-9 shows what each fleet's flight

network looks like if this problem is solved using the basic fleet assignment model.

Notice that this problem is actually infeasible using the basic model with no time

windows, because three aircraft are required to fly this schedule. As in Figure 3-9,

none of the figures in this example are drawn to scale.

Iteration 1, Steps 0,1. Figure 3-10 shows what each fleet's network looks like for

the first iteration of the master problem: each flight departs at the end of its

departure time window and is ready at the beginning of its arrival window.

The master problem is solved, resulting in the following optimal solution: Fleet

1 flights = {A,B,C,D}; Fleet 2 flights = {E,F}; optimal objective function

ORD

BOS

Figure 3-9: Basic flight network

ORD

BOS

A B D FA C D E

Figure 3-10: Iteration 1, Master Problem network

value = 70.

Iteration 1, Step 2, Subproblem 1. Figure 3-11 shows Fleet l's subproblem flight

network. In an attempt to restore feasibility, we find that it is impossible to

fly these four flights with one aircraft without using backward arcs. Therefore,

this is an infeasible assignment. The optimal solution to this subproblem uses

the bold arcs; backward arcs are used to connect flight B to C and flight C to

D. Thus, flights B, C, and D are the "problem flights" that are preventing a

ORD

BOS

Figure 3-11: Iteration 1, Subproblem 1 network

/

AD1

E F

BOS

Figure 3-12: Iteration 1, Subproblem 2 network

ORD

BOS

Figure 3-13: Iteration 2, 'Master Problem network

feasible re-timing.

Iteration 1, Step 2, Subproblem 2. Figure 3-12 shows that Fleet 2 has no dif-

ficulty in covering flights E and F with one aircraft.

Iteration 1, Step 3 and Iteration 2, Step 1. Figure 3-13 shows what each fleet's

network looks like for the second iteration of the master problem. Notice that

the reduced-duration arcs of flights B, C, and D have been replaced by real-

duration copies. Flights B, C, and D were altered, because they were identified

as "problem flights" during Subproblem 1. Again, the model would like to as-

sign flights A, B, C, and D to Fleet 1, but it finds that this sequence is no

longer feasible. The optimal solution is as follows: Fleet 1 flights = {A,B,EF};

Fleet 2 flights ={C,D}; optimal objective function value = 90.

Iteration 2, Step 2, Subproblems 1 and 2. Figure 3-14 and Figure 3-15 show

that the second iteration master problem solution is feasible for both fleets.

Notice that in order for feasibility to be restored to Fleet 2, flight C must be

BOS

ORD

BOS

Figure 3-14: Iteration 2, Subproblem 1 network

ORD

BOS

Figure 3-15: Iteration 2, Subproblem 2 network

re-timed to depart at the beginning of its time window, and flight D must be

re-timed to depart at the end of its time window.

3.2.3 IST Details

This section points out some specific issues that are necessary for successfully im-

plementing the IST algorithm of Section 3.2.1.

Backward Arc Costs

To minimize the number of times the master problem is solved, we would like to

identify as many good problem flights as possible during each subproblem. The

more problem flights that we identify, the more likely it is that the next solution of

the master problem will be feasible for the original problem. On the other hand,

if we just randomly replace the reduced-duration arcs of the master problem with

real-duration copies, we may be expanding the size of the master problem without

positively affecting the solution. So, to identify as many good problem flights as

/

A BC D

Figure 3-16: Backward connection arcs

possible, we apply appropriate costs to subproblem backward arcs. The appropriate

cost function is anything greater than linear, with respect to the time that each

flight "backs up." For example,

costb = (backward time of arc b) 2

is a good cost function. By making cost increase greater than linearly with time,

the model is encouraged to choose many short backward arcs instead of a few long

backward arcs. In Figure 3-16, if cost were linear or less, and the model needed to use

a backward arc, it might use arc 1, identifying flights A and D as problem flights.

But, with a greater-than-linear cost function, it is more likely that arcs 2 and 3

would be used, identifying all four flights (A,B,CD) as problem flights. With four,

rather than two, problem flights identified, the next solution to the master problem

is more likely to be feasible for the original problem.

Reoptimization of the Master Problem

From one iteration to the next, as the arcs of problem flights are altered, the master

problem undergoes only marginal changes. So then, it would seem that we could

easily use a solution from the previous iteration as an advanced start basis. Unfor-

tunately, those seemingly minor changes to the master problem flight networks lead

to major differences in the LP matrix. For example, notice the differences between

Figure 3-17(a) and 3-17(b). In 3-17(b), three real-duration arc copies have replaced

the single reduced-duration arc of 3-17(a). The result is a network (LP matrix) that

(a) (b)

Figure 3-17: (a) Single reduced-duration arc and (b) three real-duration flight arcs

ORD

BOS

copy 1
copy 2
copy 3
copy 0

Figure 3-18: "Super master problem" flight network

includes many different nodes (constraints) and flight and ground arcs (variables).

Since many of the constraints (variables) from the previous iteration are now obso-

lete. the additional constraints (variables) cannot be added to the matrix in a row

(column) generation fashion; the entire LP matrix must be re-created. As such, we

cannot use the final basis of the previous iteration as a starting point for the next.

One option that we have explored is to create a "super master problem"-a

master problem that includes every arc and node that may potentially be a part

of the master problem. For example, the network of Figure 3-17 would look like

Figure 3-18 in the super master problem. If the flight between BOS and ORD

of this figure has not been identified as a problem flight, then copies 1, 2, and 3

are given a flow capacity of zero, while reduced-duration arc 0 remains a binary

variable. Likewise, if this flight is later identified as a problem flight, variable 0 is

then constrained to have zero flow, and copies 1, 2, and 3 are changed to binary

variables. This "super master problem" approach has the advantage of using the

same LP matrix at each iteration, and the final basis from the previous iteration

can be used for an advanced basis start. However, because this approach causes

matrix size to grow tremendously, and because the advanced basis start does not

improve branch-and-bound times, our implementation of this approach has not been

successful in improving upon the run times of the original IST.

Chapter 4

Computational Experiences

4.1 Implementation and Data

Before analyzing and evaluating our algorithms, we first detail the solution steps

used to optimize the performance of our algorithms. After the flight networks have

been created and preprocessed, the LP matrix is loaded, and the following steps are

used to solve each mixed integer problem (MIP):

1. Aggregate the matrix using optimizer's algebraic preprocessor

2. Perturb problem using the optimizer's perturbation scheme

3. Solve the LP using dual steepest-edge simplex

4. Remove perturbations

5. Reoptimize using dual steepest-edge simplex

6. Disaggregate the matrix

7. Reoptimize using dual steepest-edge simplex

8. Prioritize special ordered sets

9. Solve MIP using branch-and-bound

Problem Flights Fleets
P1 1621 7
P2 2037 7
P3 2037 11

Table 4.1: Primary data sets

This optimization procedure uses version 3.0 of the CPLEX callable library [5].

Step 1 reduces the problem size beyond that which was achieved using our network

preprocessing. Step 2 perturbs the variable bounds to improve the simplex algo-

rithm's performance, particularly in the face of degeneracy. Step 3 solves the LP

relaxation of our MIP using dual simplex with steepest-edge pricing. Hane et al. [10]

recommend this approach for basic fleet assignment, and our tests show that this

technique is also appropriate for our model with arc copies. In steps 4-7, a solution

to the LP relaxation of the original problem is obtained by removing perturbations,

resolving, and disaggregating the problem. In step 8 special ordered sets (SOS) of

the flight coverage constraints (constraints 1) are identified and prioritized. These

SOS are groups of binary variables of which only one can have a non-zero value.

Branch-and-bound uses these sets to make intelligent branching decisions. The sets

are constructed by ordering the variables such that aircraft seating capacity is non-

decreasing, and then they are divided such that half (or as near one-half as possible)

of the variable fractionality lies in one branch and half in the other. Branching pri-

ority is given to the set with the largest objective coefficient gap between the first

and last variables of that set.

For computational trials we use three data sets from a major U.S. airline (listed

as P1, P2, and P3 in Table 4.1). P1 was created from an entirely different flight

schedule than P2 and P3. The difference between P2 and P3 is the granularity of

fleet aggregation. For each of these data sets we vary the maximum time window

width and arc copy interval to analyze our model's performance over a range of

problem types and sizes. For example, we can compare LP matrix sizes, run times,

and solutions of P2 with twenty-minute time windows and a five-minute interval

(P2-20.5) versus P2 with forty-minute time windows and a one-minute interval (P2-

40.1). A twenty-minute time window means that the maximum that any flight can

shift from its originally scheduled time is ten minutes in either direction.

Our fleet assignment with time windows model is implemented in C and solved

on an IBM RS/6000, Model 370 workstation with 256MB RAM. All run times are

reported in minutes.

4.2 Preprocessing Results

In Section 3.1 we described the three major network preprocessing steps that are

used to reduce the effective problem size and to improve run times. The impact that

each of these steps has on problem size is shown in Table 4.2. Also shown in this

table is the collective impact that network preprocessing has on run times. Since

the relative effect of preprocessing was equivalent over each of the three primary

data sets, Table 4.2 details the effects on different time window scenarios of the

same problem (P2). Problem P2-0 refers to the basic fleet assignment problem (i.e.,

no time windows), while the other problems are named according to the example

instances of Section 4.1. The column "PP Used" lists the preprocessing steps that

were used before creating the LP matrix; "DC" refers to the copy-deletion step,

"NC" refers to node consolidation, and "I" indicates that islands were used. The

"elements" metric refers to the number of non-zero elements in the LP matrix.

"CPU min." measures run times, including the time to create networks, load the

problem, solve the LP, and solve the MIP with branch-and-bound.

When redundant flight copies are deleted, the number of rows, columns, and

non-zero elements of the LP matrix is greatly reduced, especially in cases in which

copies are placed at a narrow interval, such as P2-20.1 where copies are placed at

a one-minute interval. (Deleting copies of course has no impact on the basic fleet

assignment model as there is only a single arc for each flight in each fleet's network.)

In the two problems with flight copies at a five-minute interval, the problem size is

reduced by about 40% over all dimensions. This includes the removal of two ground

m

PP Used Dimension I P2-0 P2-20.5 P2-40.5 P2-20.1

rows 22,698 105,524 152,076 349,770
None columns 30,961 155,219 225,047 521,588

elements 73,101 363,542 526,754 1,219,879
CPU min. 41.3 * * *
rows 22,698 60,110 94,024 120,934

DC columns 30,961 87,088 137,959 178,324
elements 73,101 204,193 323,010 417,287
rows 7502 12,061 17,477 20,148

DC,NC columns 15,720 38,990 61,377 77,489
elements 42,570 107,948 169,811 215,568
rows 7502 12,061 17,477 20,148

DC,NC,I columns 14,534 38,435 61,076 77,102
elements 40,190 106,822 169,188 214,782
CPU min. 9.4 32.0 82.3 89.8

* No solution could be achieved due to insufficient memory

Table 4.2: Preprocessing reduces problem size

arcs and two nodes for each deleted flight arc. As expected, P2-20.1 is more heavily

affected-the problem size shrinks by 66% over all dimensions. This is explained by

the fact that at sparsely-used airports, a narrow spacing of flight copies results in

the creation of many redundant flight arcs.

Easily the most important preprocessing step is that of node consolidation. In

each of the three instances with time windows, over 80% of all rows, beyond the

level achieved by the copy-deletion step, are removed. Notice also that the number

of columns is reduced-by about 56% in the time window instances-the result of

ground arcs being merged into nodes.

Finally, we examine the impact of islands. By looking at problem size, it would

seem that the removal of ground arcs has little value as a preprocessing step. Less

than 600 ground arcs (columns) are removed from any of the time window problems.

This is less than one ground arc per airport-fleet time line, on average. However, by

limiting the number of feasible solutions, islands significantly reduce run times. In

fact, problems using islands typically solved about 10%-20% faster than the same

problem without islands. It should be noted that more than twice as many ground

arcs were removed in P2-0 than in the other three instances. This is due to the

m

fact that the number of time lines eligible for islands was much greater in the basic

problem than in the time window problems. In our implementation, a time line is

eligible for islands only if it consists of no more than six (consolidated) nodes.

The collective impact that preprocessing has is evident by comparing problem

sizes and run times of these instances before and after preprocessing. While P2-20.5

is 497% larger (measured in non-zero elements) than P2-0 before preprocessing,

that number drops to 266% after preprocessing. By the same token, P2-20.1 is

336% larger than P2-20.5 before preprocessing, but afterwards is only 201% larger.

Clearly, as raw problem size increases, so to does the impact of preprocessing. More

importantly, while our workstation was unable to even solve an unprocessed P2-

20.5, it was able to solve much larger problems in less than 90 minutes after network

preprocessing.

4.3 Algorithm Performance

In this section we detail the performance of our algorithms (DST and IST) on the

three data sets under different time window scenarios. More specifically, we compare

run times and problem sizes, and then take a closer look at the performance of IST.

Table 4.3 shows run times (including time to create the networks and solve the

LP and branch-and-bound) for DST and IST on fifteen problem instances. The

first row contains the run times for the basic problem, and the remaining rows are

ordered with instances containing an increasing number of flight arcs. IST is used

only on instances with time windows. With a few exceptions, a problem will be

solved most quickly when solved directly. The exceptions to this rule are instances

with relatively narrow time windows and very narrow flight copy intervals, such

as PX-20.1. IST was superior to DST for each problem under this time window

scenario, because while DST was bogged down with many unnecessary flight copies,

IST only had flight copies for a select few flights. This is supported in Table 4.4, that

shows problem sizes (taken at the final iteration for IST) for each of the instances.

Notice that for these PX-20.1 instances, IST matrices are only slightly larger than

P1 P2 P3
TW DST IST DST IST DST IST

0 12.0 n/a 9.5 n/a 40.2 n/a
20.20 40.0 62.4 31.6 31.1 125.1 180.2
20.5 71.0 104.5 33.6 42.9 140.5 252.8
40.5 135.6 529.1 85.5 138.3 ; 402.6 **
20.1 133.8 93.1 106.9 47.8 * 130.0

* No solution could be achieved due to insufficient memory
** Greater than 600 minutes

Table 4.3: Run times for DST and IST approaches (in minutes)

P1 P2 P3
TW DST IST DST IST DST IST

0 38,800 n/a 40,190 n/a 60,851 n/a
20.20 85,281 39,635 82,748 39,969 125,746 61,401
20.5 115,222 40,118 106,822 40.365 161,915 62,712
40.5 176,832 60,416 169,188 47,952 258,022 **
20.1 279,370 41,673 214,782 41,197 320,585 62,393

** Did not reach final iteration

Table 4.4: Problem sizes, measured in non-zero elements (at final iteration for IST)

the zero-time window matrix, while DST matrices are over five times larger.

Clearly, IST shows a poor performance in solving problems with wide time win-

dows (e.g. 40 minutes). It is weakest for these instances because when the master

problem is solved with reduced-duration flight arcs, it results in a solution that

is nowhere near feasible for the original problem. Consequently, many of these

reduced-duration arcs must be replaced with real-duration copies before the master

problem can identify a feasible solution. This not only requires many iterations, it

also makes each iteration bigger and slower. As evidence, note that the final LP

matrix of P1-40.5 was fifty percent larger than the matrices of the twenty-minute

scenarios.

The IST terminated in anywhere from four to eight iterations for the twenty-

minute time window scenarios, while the forty-minute scenarios typically required

a dozen or more iterations. As expected, the number of problem flights identified

decreased during each iteration. A typical problem (P2-20.5) is profiled in Table 4.5.

Master LP Master Prob. Best Sol'n Subproblems New Prob.
Iteration Elements Time (min.) Value Time (min.) Flights

1 39,009 7.7 29,262,285 0.5 52
2 39,832 9.8 29,267,445 0.5 16
3 40,091 7.0 29,268,557 0.5 5
4 40,275 7.6 29,270,542 0.5 1
5 40,365 8.4 29,272,062 0.5 0

Table 4.5: P2-20.5 IST statistics

Notice that the master problem size (measured by the number of non-zero elements

in its LP matrix) grows at each iteration-a function of the number of problem

flights added. The optimal objective function value also grows at each iteration,

until the solution is finally feasible in the fifth iteration. As one can see, the single-

fleet subproblems are consistently solved very quickly, representing a very small

percentage of total run time.

4.4 Solution Analysis

Before analyzing the fleet assignment solutions, it must be emphasized that because

a fleet assignment model is a planning tool, it is the solution, not run time, that is

most important. While not competitive with the basic model's run times (Table 4.3),

the time window model's run times are acceptable. Furthermore, because the size of

IST at each iteration is only slightly larger than a basic fleet assignment model, this

approach has the potential to handle additional constraints and other enhancements

that might further improve the final schedule. The following paragraphs show the

impact that flexible departure times can have on fleet assignment solutions.

As discussed in Section 2.2.1, time window width and flight copy interval are

the two parameters that can be juggled to impact solution quality (and problem

size). Tables 4.6 and 4.7 show the impact that these two parameters have on the

three data sets, respectively. In Table 4.6 we compare optimal objective function

values of the basic problem to scenarios allowing twenty-minute and forty-minute

windows, with copies placed at a five-minute interval. Notice that in each case the

width = 0 width = 20 width = 40
Daily Cost Improvement Improvement

Total 28,469,066 126,553 212,873
P1 Op. 25,792,433 163,751 243,789

Spill 2,676,632 -37,198 -30,916
Total 29,339,882 68,107 92,084

P2 Op. 26,081,053 12,777 5406
Spill 3,258,829 55,330 86,678
Total 29,236,233 65,442 95,811

P3 Op. 26,013,322 41,269 37,886
Spill 3,222,910 24,173 57,925

Table 4.6: Solution improves as window width increases

total daily improvements are significant ($65,442/day = $23.9 million/year) for the

twenty-minute windows, and the forty-minute windows allow an additional 35%-

68% improvement. The daily solution cost and improvement is broken down by

the two major components-operating cost and spill cost. These rows show that

improvements are not necessarily made up entirely of operating costs at the expense

of spill costs, or vice versa; indeed it is problem specific.

Table 4.7 compares improvements in the optimal objective function value when

using various flight copy intervals. As indicated in the first column, each of these

instances use twenty-minute time windows. Recall from Section 3.1.2 that a flight

copy is always placed at the originally scheduled time. In other words, even in

the twenty-minute interval case, there are always at least three arc copies of every

flight (before preprocessing). Notice that as copies are placed at a finer interval, the

solutions do not improve as much as one might expect. In fact, P2-20.1 results in

a solution that is worse than P2-20.20 and P2-20.5! This unexpected occurrence is

due to our branch-and-bound tolerance of $3000. Table 4.7 is certainly good news:

by placing copies at a very broad interval, we can quickly solve fleet assignment

with time windows problems and still obtain solutions that are nearly as good as

the finest-grain case. (The one-minute interval is the finest grain case, since flights

can only be scheduled to depart at whole minutes.)

While Tables 4.6 and 4.7 show that time windows permit an improved solution,

Flight Copy Interval (min.)
20 5 1

P1-20 122.743 126,553 126,882
P2-20 67,320 67,819 67,139
P3-20 65,442 65,442 *

* No solution could be achieved due to insufficient memory

Table 4.7: Solution improvements for different copy intervals

the schedule planner will certainly be interested in how the actual schedule changes.

When compared to the basic problem, how many flights are re-fleeted and re-timed?

Table 4.8 answers these questions for our data sets. A rather significant number of

flights-between ten and twenty percent of all flights-are assigned a different fleet

when using twenty-minute time windows. Notice that P3 has many more re-fleetings

than P2, even though these problems represent the same flight schedule. This is

because the number of viable re-fleetings is much greater in P3, since the fleet types

are disaggregated to a finer level. In each instance, the number of flights re-timed

is substantially less than the number of re-fleetings. Clearly, shifting the departure

time of just one or a few flights allows the model to profitably re-fleet sequences

of several flight legs. After all, it is the re-fleetings, not the re-timings, that are

responsible for objective function value improvements. Displayed in the bottom row

is the average (absolute value) time shift for those flights that were re-timed. Since

the maximum allowable shift for twenty-minute windows is ten minutes, the high

numbers in Table 4.8 (all are above 8.4 minutes) suggest that most re-timed flights

moved to one of the extremes of their time window. This is not unexpected since

all arc copies of a particular flight have the same cost (not including the arc at the

originally scheduled time). That is, we have provided no incentives for flights to

depart, for example, only five minutes away from their originally scheduled time

instead of ten minutes. However, as mentioned in Section 2.2.2 the arc copy costs

can be easily changed to make a flight more expensive as a function of the time

that it shifts away from its originally scheduled time. The drawback of such an

approach was alluded to in Section 3.1.2-flight copies with unequal costs may not

P1-20.5 I P2-20.5] P3-20.5

Re-fleeted 236 207 374
% Re-fleeted 14.56% 10.16% 18.36%

Re-timed 129 111 121
% Re-timed 7.96% 5.45% 5.94%

Avg. time shift 8.84 min. 8.41 min. 8.54 min.

Table 4.8: Re-fleeting and re-timing statistics

TW = 0 TW = 20
A/C Req'd Cost A/C Req'd Cost # Re-timed

P1 365 28,919,421 363 28,754,585 765
P2 428 29,394,172 426 29.338,177 590
P3 428 29,328,542 426 29,266,965 588

Table 4.9: Minimizing the number of aircraft utilized

be redundant, thus fewer arcs will be deleted.

Our final analysis, summarized in Table 4.9, answers the question of whether

or not time windows can allow an airline to fly their current schedule with fewer

aircraft. To establish a base case (T\W = 0), we first minimize the number of

aircraft required with no time windows. Then, we solve the same problem using

twenty-minute time windows. By tightening flight sequences, the model was able

to fly the same schedule with two fewer aircraft in each instance. Furthermore, the

daily fleet assignment cost was lower despite using two fewer aircraft! The final

column of Table 4.9 shows the number of flights that were re-timed to obtain this

new solution. Notice that these numbers are much higher than the corresponding

numbers in Table 4.8, indicating the importance of re-timing when trying to save

aircraft. Certainly, the operational feasibility of these solutions must be verified

with maintenance routing and crew scheduling models, but the potential economic

impact of this result is tremendous.

Chapter 5

Conclusions and Future

Research

We have described a generalized model and solution approach for large-scale fleet

assignment problems. Since their solutions directly affect flight operating costs and

passenger revenues, existing models that solve the daily fleet assignment problem

have found wide acceptance among airlines, and they have been well studied. How-

ever, there is one notable weakness of these models-fixed departure times. Fleet

assignment models are typically solved several months before the day of departure,

and in that time it is not uncommon for small manual re-timings to be made in search

of an improved fleet assignment or operational feasibility. By permitting flights' de-

parture times to shift within user-specified time windows, the model presented in

this thesis identifies the profitable re-timings optimally, rather than manually and

heuristically.

The fleet assignment with time windows problem is modeled as a simple variant

to the basic (i.e. no time windows) problem: each time window has flight arc copies

placed at discrete intervals throughout the window. By covering only one of these

arc copies with an aircraft, the model implicitly chooses the departure time of each

flight. It is important to note that time window size can be defined differently for

each flight, allowing the schedule planner to, for example, restrict the flexibility of

shuttle flights, arrival slot-controlled flights, and bank flights.

As one might expect, the additional nodes and arcs associated with the thousands

of extra flight copies make the LP matrix of our model considerably larger than that

of the basic model. Consequently, network preprocessing is a necessity. Fortunately,

methods described in earlier papers, such as node consolidation and islands, as

well as another step designed specifically for our model-deleting redundant flight

copies-can be used to reduce the problem to a tractable size. At that point, one

option for solving the problem is a direct solution technique (DST). This approach,

in which the preprocessed problem is simply loaded and solved, usually finds a

solution more quickly than our second approach-the iterative solution technique

(IST). IST finds an optimal solution to the fleet assignment with time windows

problem by repeatedly adding useful flight copies to a master problem that begins

with only one arc for each flight-fleet pair. This approach has the advantage of using

a minimal number of arc copies, performing more reliably, if not more quickly, than

DST on problems with many flights and fleets.

Using data from a large U.S. airline, both solution approaches were tested under

various time window width and interval scenarios. DST was indeed quicker in solving

most instances, but IST found the same solution by iteratively solving LP matrices

only marginally larger than that of a basic fleet assignment problem. Nearly all

instances were solved within three hours, an acceptable time for a planning model.

More important than run times are the solution improvements achieved via

schedule flexibility. When flight times were allowed to shift by up to ten minutes in

either direction, a solution improvement of at least $65,000/day over the basic case

was found in each of our test problems. In these solutions about 10%-20% of the

flights were re-fleeted, while less than 8% of the flights required a re-timing. Inter-

estingly, time windows did not need to be discretized into fine intervals to achieve

those improvements; a copy interval of five to ten minutes was sufficient in every

case. In a separate analysis, it was shown that the time window model can be used

to tighten the schedule and save aircraft.

In terms of solution quality, an airline can take a number of steps to improve

the performance of the model. As always, improvements in the accuracy of the

objective function coefficients, in particular the spill cost portion, are valuable in

obtaining quality fleet assignment solutions. Additionally, the new model must have

properly-defined time windows for each flight so that the solution is both acceptable

from a marketing perspective and operationally feasible. The first step in developing

these inputs should be to define time windows for special-case flights (e.g. shuttle

flights, bank flights, etc.). Then, as users become more familiar with the model,

they can explore the affects of various time window widths on the remaining flights

and evaluate the impacts of placing penalty costs on re-timed flights.

To continue the evolution of this model as a valuable planning tool, the airline

should look to enhance this model beyond just the basic problem definition and

constraints presented in this thesis. For example, one necessary step is to add

constraints that increase the likelihood of obtaining a feasible maintenance routing

and efficient crew pairing solution. Taking this one step further, it may be possible to

actually integrate two or more of these models into a single, larger model-achieving

a simultaneous solution to what are traditionally thought of as separate problems.

Because of memory limitations, IST would be a likely candidate to serve as the

backbone solver for such a model.

Those interested in improving run times of the model might want to study various

reoptimization schemes of IST. Since our goal in developing this solution approach

was to minimize memory usage, we spent little time in optimizing its speed. How-

ever, there are opportunities for doing just that. For example, one may examine

the possibility of only solving LPs until the final iteration, thereby avoiding master

problem branch-and-bound times. Another alternative, suggested in Section 3.2.3,

is to reoptimize the master problem at each iteration using an advanced basis start.

A deeper study of these and other techniques might result in quicker solutions.

Finally, we mention an application to which our fleet assignment with time

windows model has potential value: free flight. "Free flight" is the end objective of an

evolutionary air traffic control plan designed to give airlines greater control over the

flight paths flown by their aircraft. From the airlines perspective, one major benefit

of this process is that block times will be reduced. However, with this reduction in

flying times comes an uncertainty from the schedule planning perspective. That is,

how should the schedule change to take advantage of shorter block times? Flying the

existing schedule (using the same departure times) is an inefficient option, as there

will likely be a great deal of slack (under-utilized aircraft). Our time windows model

can re-time flights to tighten this slack, thereby freeing aircraft that might be used

for new routes or additional departures in existing markets. Hopefully, our model,

and the concepts behind our model, can be put to use in a number of settings.

Bibliography

[1] J. Abara. Applying integer linear programming to the fleet assignment problem.

Interfaces, 19, 1989.

[2] C. Barnhart, N.L. Boland, L.W. Clarke, and R.G. Shenoi. Flight string mod-

els for aircraft fleeting and routing. LSOG Working Paper, Massachussetts

Institute of Technology, Cambridge, MA, 1997.

[3] M.A. Berge and C.A. Hopperstad. Demand driven dispatch: A method for

dynamic aircraft capacity assignment, models and algorithms. Operations Re-

search, 41:153-168, 1993.

[4] L.W. Clarke, C.A. Hane, E.L. Johnson, and G.L. Nemhauser. Maintenance

and crew considerations in fleet assignment. Transportation Science, 30:249-

260, 1996.

[5] CPLEX Optimization Inc. Using the CPLEX Callable Library and CPLEX

\Mixed Integer Library, Version 3.0, 1993.

[6] M.S. Daskin and N.D. Panayoyopoulos. A Lagrangian relaxation approach to

assigning aircraft to routes in hub and spoke networks. Transportation Science,

23:91-99, 1989.

[7] G. Desaulniers, J. Desrosiers, M.M. Solomon, and F. Soumis. Daily aircraft

routing and scheduling. GERAD Technical Report, Montreal, Quebec, Canada,

1994.

[8] R. Gopalan and K.T. Talluri. Mathematical models in airline schedule devel-

opment: A survey. USAir Working Paper, Arlington, VA. 1995.

[9] Z. Gu, E.L. Johnson, G.L. Nemhauser, and Y. Wang. Some properties of the

fleet assignment problem. Operations Research Letters, 15:59-71, 1994.

[10] C.A. Hane, C. Barnhart, E.L. Johnson, R.E. Marsten, G.L. Nemhauser, and

G. Sigismondi. The fleet assignment problem: Solving a large-scale integer

program. Mathematical Programming, 70:211-232, 1995.

[11] A. Levin. Scheduling and fleet routing models for transportation systems.

Transportation Science, 5:232-255, 1971.

[12] R. Subramanian, R.P. Scheff Jr., J.D. Quillinan, D.S. Wiper, and R.E. Marsten.

Coldstart: Fleet assignment at Delta Air Lines. Interfaces, 24:104-120, 1994.

/

