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ABSTRACT

The Ashumet Valley area of Falmouth, Massachusetts has been one of the areas
most affected by activities on the Massachusetts Military Reservation. As a result of
many years wastewater disposal on the reservation, there is now a plume originating from
the wastewater disposal beds (known as the sewage treatment plant, or STP plume) that
contains high levels of dissolved solids, chloride, sodium, boron, detergents, and various
forms of nitrogen and phosphorus. Currently, the STP Plume extends more than 17,000
feet from the wastewater treatment plant.

This study focuses on the health of Ashumet Pond in Falmouth and Mashpee,
Massachusetts. As a result of the interception of phosphorus contaminated groundwater
by Ashumet Pond, the pond has seen a large influx of phosphorous in recent years. Be-
cause phosphorous is the limiting nutrient for biological production in the pond, any in-
creased phosphorous loading in the pond could cause an increase of the productivity in
the pond. If this productivity becomes too great, eutrophication can occur. Based on
steady-state predictions such as the Vollenweider equation, Ashumet Pond is estimated to
currently be in the oligotrophic-mesotrophic range. However, based upon predictions of
future phosphorus loadings to Ashumet Pond, the pond is estimated to become eutrophic
to hypereutrophic.

CE-QUAL-R1 was chosen for detailed numerical eutrophication modeling of
Ashumet Pond. CE-QUAL-R1 is a numerical model developed by the Army Corps of
Engineers that describes the vertical distribution of temperature and chemical and bio-
logical materials in a reservoir. CE-QUAL-R1 also includes a separate thermal analysis
model entitled CE-THERM-R1. CE-THERM-R1 can be used to quantify temperature
profiles that can then be used as inputs to CE-QUAL-R1. Once calibrated, CE-THERM-
R1 gives a reasonably accurate prediction of Ashumet Pond temperature profiles.

Predictions of Ashumet Pond trophic state based upon CE-QUAL-R1 modeling
are significantly lower than the level of eutrophication predicted by steady-state models.
There are many possible reasons for this discrepancy. Thus, because of the inconclusive
nature of the CE-QUAL-R1 modeling study, it is recommended that further study be un-
dertaken before such drastic action as constructing a barrier wall is begun.

Thesis Supervisor: Peter Shanahan, Ph.D.
Title: Lecture Professor of Civil and Environmental Engineering
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GLOSSARY OF TERMS

aerobic- containing oxygen and/or nitrate

bathymetric map- a map which shows contours of constant depth for a water body

calibration- the procedure by which a model is adjusted to be able to fit actual data

epilimnion- the top, warmest (and thus least dense) area of a surface water body

eutrophic- a condition of high nutrient content in a surface water body, leading to heavy
biological productivity

eutrophication- an increased growth of aquatic biota, particularly algae and macrophytes,
relative to the normal rate of productivity in the absence of perturbations to the system

Gaussian elimination- a procedure in which a matrix is solved by subsequently adding
and subtracting multiples of each row (each equation)

hydraulic residence time- the time, on average, in which a particle of water spends in a
particular water body

hydrodynamics- the study of water movement

hypereutrophic- a condition of extremely high nutrient content in a surface water body,
leading to intense biological productivity

hypolimnion- the bottom, coolest (and thus most dense) area of a surface water body

ionic- having a net electrical charge

limiting nutrient- the element required for organism growth that is present in the least
amount relative to the organism's needs

mesotrophic- a condition of intermediate nutrient content in a surface water body, leading
to medium biological productivity

metalimnion- the middle area of a surface water body characterized by intermediate tem-
peratures (and thus densities)

morphometry- the geometry of a water body

nucleotide- a monomeric unit of nucleic acid, consisting of sugar, phosphate, and nitro-
geneous base



oligotrophic- a condition of low nutrient content in a surface water body, leading to
minimal biological productivity

organic- containing the elements carbon and hydrogen

phospholipids- water-insoluble molecules containing a substituted phosphate group and
two fatty acid chains on a glycerol backbone. Lipids in general are important in the
structure of the cell membrane and (in some organisms) the cell wall

plume- an area of pollution in any environmental medium

Secchi disk- a small, circular object that is submerged in water bodies to give a measure
of clarity

stratification- a condition of layering in a water body caused by temperature differences
between different layers

steady-state- when conditions are not significantly changing over time

thermocline- the area in a stratified surface water body where temperatures rapidly de-
crease over a small depth



LIST OF UNITS, SYMBOLS, AND ABBREVIATIONS

Units

'C - degrees Centigrade

'F - degrees Fahrenheit

ýtg/L- micrograms (10'6 grams) per liter

einstein/L2- einsteins per unit area, where an einstein= 1 mole of photons

ft - feet

g/m2-yr- grams per square meter per year

kcal/kg- kilocalories per kilogram

kcal/m 2-sec- kilocalories per square meter per second

kg/year - kilograms (103 grams) per year

lbs/ acre-year - pounds per acre per year

lbs/year - pounds per year

m - meter

m/sec- meters per second

m3/year - cubic meters per year

mb- millibars

mg/L- milligrams (10- 3 grams) per liter

mg/m3 - milligrams (10'3 grams) per cubic meter

mgd - million gallons per day

Symbols and Abbreviations

d
dt- Time rate of change

E- Extinction coefficient [LU'], and in Equations 5.8-5.10

p- The fraction of solar radiation absorbed in a 0.6 m surface layer [dimensionless] in

Equation 5.9

p- Density of water [kg/m3 ] in Equation 5.7



p- Hydraulic flushing rate in Equations 4.8 and 4.9

z- Hydraulic residence time of the lake in Equation 4.6

a- The wind speed coefficient AA [dimensionless] in Equation 5.7

A- A concentration-dependent factor that includes transport and biological and chemical

rate effects in Equation 5.1-5.3

ACOEF(1), ACOEF(2), and ACOEF(3)= User specified constants in Equations 5.4 and

5.5

A,- The cross sectional area along the pond of the part of the plume that contains

phosphorus [L2] in Equation 4.4

Area(I)- The area of the Ith layer in Equations 5.4 and 5.5

b- The wind speed coefficient BB [dimensionless] in Equation 5.7

C- A concentration of a particular biological or chemical constituent in Equation 5.1-

5.3

Chl- Surface chlorophyll-a concentration in Equation 4.2

C,- The average concentration of phosphorus in the plume along the pond in Equation

5.3

es- Saturated vapor pressure at the water surface temperature [mb] in Equation 5.7

ea- Vapor pressure at the air temperature [mb] in Equation 5.7

Elevation- Elevation above the bottom of the pond in Equation 5.6

I- Solar radiation at the surface [einstein/L 2] in Equation 5.8

i- A counter variable used in Equation 5.1-5.3

i- Hydraulic gradient in Equation 4.4

10- Solar radiation at a given depth [einstein/L 2] in Equation 5.8

K- Hydraulic conductivity in Equation 4.4

L- Latent heat of vaporization [kcal/kg] in Equation 5.7

L- Mean annual phosphorus loading in Equation 4.8

L- Phosphorus loading rate per unit surface area in Equation 4.6

LC- Critical limiting phosphorus load in Equation 4.9

In - The natural logarithm

MMR- Massachusetts Military Reservation

N- Nitrogen



P - phosphorus

P- A concentration-independent factor that includes inflow and biological and

chemical transfers in Equation 5.1-5.3

P- Mean annual total phosphorus concentration in Equation 4.8

P- Steady-state phosphorus concentration in the lake in Equation 4.6

P- Total phosphorus concentration in Equation 4.9

P043- phosphate

q- Areal water loading rate in Equation 4.7

Qe- Evaporative heat loss [kcal/m2-sec] in Equation 5.7

Q,- The flux of phosphorus into the pond in Equation 4.5

Q,- The flux of water into the pond in Equation 4.4

R- Phosphorus retention coefficient in Equation 4.7

R- Phosphorus retention coefficient in Equation 4.9

SD- Secchi disk transparency in Equation 4.1

STP- Sewage treatment plant

TDS- Total dissolved solids

TKE- Turbulent kinetic energy

TP- Surface total phosphorus in Equation 4.3

TSI- Trophic state index

USGS- United States Geological Survey

V- Layer volume in Equation 5.1-5.3

W- Wind speed [m/sec] in Equation 5.7

WCOEF(1) and WCOEF(2)- User specified constants in Equation 5.6

Width- The width of the pond at a given elevation in Equation 5.6

Z(I)- The elevation of the Ith layer as measured from the bottom of the lake in Equations

5.4 and 5.5

Z- Depth [L] in Equation 5.8

Z- Average lake depth in Equations 4.6, 4.8, and 4.9

Zs- Secchi Disk depth [L] in Equation 5.9



1. BACKGROUND AND SITE DESCRIPTION

Since 1911 the Massachusetts Military Reservation (MMR), located on Cape Cod

(see Figure 1-1), has hosted various branches of the Armed Forces. At its peak as the

United States' primary staging ground for World War II, the MMR was home to over

10,000 soldiers. The industrial and military activities associated with use of the MMR

has had far-reaching impacts upon the environment of Cape Cod. In 1989, as a result of

widespread groundwater contamination in the area, the MMR was placed on the National

Priority List of Superfund sites.

The Ashumet Valley area of Falmouth, Massachusetts has been one of the areas most

affected by activities on the MMR. There have been two major sources of contamination

to the Ashumet Valley Region. The first source is known as Fire Training Area Number

1 (FTA-1). Through the use of FTA-1 for military fire training activities, there is a plume

emanating from this site that is composed of hydrocarbons from jet fuel, including ben-

zene, toluene, ethylbenzene, and xylene (BTEX), and chlorinated organics such as

trichloroethylene (TCE) and perchloroethylene (PCE).

The second major source of contamination to Ashumet Valley is from the MMR

Wastewater Treatment Plant, located approximately 1600 feet upgradient of Ashumet

Pond. Wastewater disposal began at this site in the 1930's. Since this time it is estimated

that nearly 10 billion gallons of wastewater have infiltrated to the groundwater that

eventually flows towards Ashumet Pond. As a result of this wastewater disposal, there is

now a plume originating from the wastewater disposal beds (known as the sewage treat-

ment plant, or STP plume) that contains high levels of dissolved solids, chloride, sodium,

boron, detergents, and various forms of nitrogen and phosphorus.
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2. INTRODUCTION

2.1 Goals

The main goal of this project is to provide a more complete and accurate estimate,

than has previously been done through steady-state models, of future Ashumet Pond

phosphorus concentrations. This detailed estimate will be provided by CE-QUAL-R1

modeling. Various estimates of future Ashumet Pond phosphorus loadings are input to

CE-QUAL-R1 in order to model the effect of the STP plume on the pond's productivity.

The estimates of pond phosphorus concentrations provided by the model are then com-

pared to steady-state predictions of phosphorus concentrations previously completed by

E.C. Jordan Co. (1988), K-V Associates (1991), and others. Once predictions of future

phosphorus concentrations are made, policy recommendations are given as to what

should be done (if anything) to stop the influx of phosphorus to Ashumet Pond from the

STP plume.

2.2 Ashumet Pond

This study focuses on the health of Ashumet Pond in Falmouth and Mashpee,

Massachusetts. Ashumet Pond is an example of one of the many "kettle-hole"

ponds on Cape Cod. The pond is formed by the intersection of the groundwater table

with a kettle depression formed by a melted glacier (K-V Associates, 1991). The

groundwater inlet to the pond is at Fisherman's Cove. Aside from the groundwater feed,

Ashumet Pond has a small inlet from drained cranberry bogs and no noticeable outlet.

Ashumet Pond maintains a large trout population, and is a popular place for fishing. In

addition, the pond is heavily used for swimming and boating. Because of this heavy rec-

reational use, the welfare of Ashumet Pond is a high priority for the many year-round and

seasonal residents of Cape Cod.



2.3 The MMR Wastewater Treatment Plant

The wastewater treatment plant on the MMR was built in 1936 with an average

capacity of 0.9 million gallons per day (mgd). In 1941, the plant was expanded to an av-

erage capacity of 3 mgd, with a peak capacity of 6 mgd (Shanahan, 1996). The sewage

treated at the this plant was alternately disposed of in 20 half-acre sand infiltration beds.

The original design called for only eight beds to be operational at any given time, with

occasional rotation of the beds. However, from 1977 to 1984 only the four infiltration

beds nearest to Ashumet Pond (see Figure 2-1) were used (LeBlanc, 1984b). In order to

dispose of treated wastewater, the infiltration beds were flooded with wastewater, which

then slowly percolated to the groundwater.

As World War II ended, the number of troops stationed at the MMR decreased.

Thus, flow to the treatment plant decreased significantly as well. In fact, the average

flow during the 1980's and 1990's was less than 0.3 mgd (Shanahan, 1996). As a result of

the large amount of unused capacity as well as the aging of the plant, the plant was de-

commissioned in December, 1995. A smaller plant was then brought online next to the

location of the old plant and use of the infiltration beds ceased.
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3. PROBLEM STATEMENT

The first recognition that groundwater was being contaminated by the wastewater

from the infiltration beds occurred in the 1970's. At this time, the Town of Falmouth

closed a public water supply well located 9,000 feet downgradient of the wastewater

treatment plant because water coming from the well was foaming. The foaming was de-

termined to be a direct result of detergents that had entered the groundwater from the

wastewater infiltration beds. In 1977, the U.S. Geological Survey (USGS) conducted a

study which showed that the plume of contaminated groundwater originating from the

wastewater treatment plant extended more than 11,000 feet downgradient of the disposal

beds and had a width of 2,500 to 3,500 feet (LeBlanc, 1984a).

Currently, the Ashumet Valley Plume extends more than 17,000 feet from the

wastewater treatment plant (see Figure 3-1). In addition to contaminants from the waste-

water treatment plant, the plume also contains high concentrations of chlorinated organic

solvents from FTA-1. However, the phosphorus in the groundwater has not traveled as

far as the other constituents of the Ashumet Valley Plume. This smaller travel distance is

because phosphorus is strongly adsorbed to soil particles, causing a retardation of phos-

phorus travel. It is widely believed that phosphorus adsorption in the subsurface is con-

trolled by metal oxides. Among metal oxides, ferric, aluminum, and calcium hydroxides

appear to be the most active in forming nearly insoluble compounds with phosphorus

(Shanahan, 1996). In fact, metal oxides bind phosphorus so strongly that it is generally

accepted among environmental engineers that phosphorus effectively does not move in

groundwater under aerobic conditions, and thus is not a concern in groundwater contami-

nation.

However, under anaerobic (or anoxic) conditions in groundwater, phosphorous can

be expected to be somewhat mobile. It has been shown that under anaerobic conditions,

phosphorus has a retardation factor of approximately five (E.C. Jordan Co., 1988). This

means that phosphorous will move five times slower than conservative substances

(substances that will not react with other chemicals in the groundwater). This approxi-



Omn i

VALLY IT
ASID O 193I DA

co&GsoD Fcen
TsO" N'it Note: For continuation ol

Figure 3-1. Ashumet Valley P



mation seems to be holding quite well for the Ashumet Valley Plume, as the phosphorus

plume is at least five times shorter than the plumes of conservative substances such as

chloride and sodium.

Nevertheless, this approximation does not hold everywhere in the plume because the

mobility of the phosphorus plume appears to be dependent upon the iron chemistry of the

groundwater. Near the infiltration beds there is an area in which the groundwater has be-

come anaerobic (without dissolved oxygen). This anaerobic condition has been caused

by the use of oxygen by microbes in degrading the wastewater plume. When conditions

are anoxic, iron becomes soluble. Thus, in the anaerobic area, most of the iron is dis-

solved and is being leached from the soil particles. This area is also referred to as the

iron zone because of the solubility of iron in this region. Because retardation of phospho-

rus flow appears to be mainly caused by binding with iron hydroxides, in areas where

most of the iron has been leached from soil particles, there are a decreased number of

sites for phosphorus adsorption. As a result of this decrease in available binding sites,

phosphorus is most mobile in this area. (Wetzel, 1983)

Figure 3-2 shows that there are zones of anoxic and suboxic conditions within the

wastewater plume. The suboxic areas are those regions where dissolved oxygen is be-

tween 0.1 and 1.0 mg/1. In both the anoxic and suboxic zones, manganese is also quite

soluble. Thus, high levels of dissolved manganese are found in both zones. As demon-

strated in Figure 3-2, the suboxic zone extends to the groundwater flowing to Ashumet

Pond. This zone is also referred to as the manganese zone because only manganese (and

not iron) is soluble in this zone. There is physical evidence of this zone of high dissolved

manganese near the pond. As the dissolved manganese contacts the water in the pond

(which contains a fairly high level of dissolved oxygen), the manganese precipitates,

causing a black deposit on the rocks near Fisherman's Cove.

As a result of the interception of phosphorus contaminated water by Ashumet

Pond, the pond has seen a large influx of phosphorous in recent years. Because phospho-

rous is a nutrient necessary for biological production, any increased phosphorous loading

in the pond could cause an increase of the productivity in the pond. If this productivity

becomes too great, algal populations in the pond could become overgrown. Such a
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condition can result in a lake with depleted dissolved oxygen as algae die and decom-

pose. Without sufficient dissolved oxygen, aquatic life cannot survive. In addition, an

overgrown lake will become green from the algae and can begin to have odor problems as

a result of hydrogen sulfide production. This problem of a lake whose productivity is too

great is called eutrophication.



4. THE EUTROPHICATION PROBLEM

4.1 Phosphorus and the Eutrophication Process

The term eutrophication generally refers to an increased growth of aquatic biota

relative to the normal rate of productivity in the absence of perturbations to the system.

In surface waters, eutrophication normally relates to algal growth. The most important

elements necessary for supporting algal growth are carbon, nitrogen, and phosphorus.

Typical aquatic algae require these elements in the ratio of 1 part (by weight) phosphorus

to seven parts nitrogen to 40 parts carbon (Wetzel, 1983). According to Liebig's Law of

the Minimum, the growth of any organism will be limited by the element that is present

in the least amount relative to its needs. This element is referred to as the "limiting nutri-

ent." In a vast majority of surface waters, it has been shown that phosphorus is the lim-

iting nutrient (Wetzel, 1983).

In general, if the total nitrogen to total phosphorus ratio exceeds between 8:1 and

15:1, the system is, in all likelihood, phosphorus limited. If the ratio is below approxi-

mately 4:1, the system is nitrogen limited. Ratios in between these two ranges indicate

no clear limiting nutrient (E.C. Jordan Co., 1988). In 1985-1986, Ashumet Pond was

found to have a total nitrogen to total phosphorus ratio of 47:1 (K-V Associates, 1986).

Thus, Ashumet Pond is clearly phosphorus limited. Because phosphorus is the limiting

nutrient in Ashumet Pond, its abundance will have the greatest effect upon the productiv-

ity of the pond, and thus will be the focus of this study.

There are many different forms of phosphorus that are present in surface waters.

These different forms are generally broken up into organic and inorganic fractions.

Greater than 90 percent of phosphorus in fresh waters is in the form of organic phos-

phates and cellular constituents of biota. However, the most important form of phospho-

rus for uptake by algae is inorganic soluble phosphorus. Inorganic soluble phosphorus

concentrations are typically quite low in fresh waters. The percentage of inorganic solu-

ble phosphorus in total phosphorus is fairly constant among different lakes at approxi-



mately 5%. Though, the form of phosphorus that is truly available for algal uptake is

ionic orthophosphate (PO 4
3-). The percentage of ionic orthophosphate in most waters is

significantly less than 5%. (Wetzel, 1983)

Phosphorus is important to algae because it is used for almost all phases of metabo-

lism. Of particular importance in surface waters is the use of phosphorus in the energy

transformations that occur during photosynthesis. Furthermore, phosphorus is required

for the synthesis of nucleotides, phospholipids, and sugar phosphates. Thus, because of

the relative lack of abundance of phosphorus and its importance in algal growth proc-

esses, phosphorus has always been important to the study of surface waters. (Wetzel,

1983)

4.2 Surface Water Hydrodynamics

In order to understand the problem of eutrophication, it is necessary to compre-

hend the thermal structure and hydrodynamics of surface water bodies. Most lakes in

temperate climate zones have characteristic annual cycles, with variations in temperature

and dissolved oxygen with depth. During the winter, a lake is usually mixed from top to

bottom, with temperatures remaining constant at approximately four degrees Celsius (the

temperature at which water is most dense). However, as springtime approaches and the

lake surface is warmed by the atmospheric temperature and by solar radiation, the surface

is warmed faster than the deeper waters. Therefore, the process of stratification begins

where the epilimnion, or surface water, is composed of warmer and less dense water

while the hypolimnion, or deeper water, is colder and thus more dense. In between these

two layers is the metalimnion, characterized by a thermocline, which is an area in which

temperature drops rapidly with depth. During the summer, stratification becomes

stronger with larger temperature differences between the hypolimnion and epilimnion.

Finally, stratification begins to break down in the fall due to atmospheric temperature

changes and reductions in solar radiation, until the lake is once again isothermal.



This yearly stratification cycle has important implications for chemical and bio-

logical fate and transport in a lake. In a stratified lake, the epilimnion is well mixed by

wind, however the hypolimnion is not in contact with the surface and thus does not cir-

culate as much. Furthermore, because of the strong density gradient between the hy-

polimnion and epilimnion, water does not often circulate between the two layers. As a

result, there is very little transport of chemical and biological constituents between the

two layers. Because the hypolimnion is not in contact with the surface, and little diffu-

sion of dissolved oxygen occurs between the layers, the hypolimnion can become devoid

of oxygen during a seasonal period of stratification.

4.3 Measures of Trophic State

4.3.1 Vollenweider Criteria

In 1966, R.A. Vollenweider first proposed criteria for relating phosphorus concen-

trations to trophic conditions in surface waters. He defined trophic states ranging from

nutrient poor, or oligotrophic ("poorly fed"), to nutrient rich, or eutrophic ("well fed").

The middle range between these two states is mesotrophic. Vollenweider made these de-

lineations on the basis of the total steady-state phosphorus concentration in the lake as

follows:

Trophic State
Oligotrophic
Mesotrophic

Eutrophic
Hypereutrophic

Total Steady-State Phosphorus Concentration
<10 pig/L

10-25 [pg/L
25-60 ýpg/L
>60 pg/L

A typical lake will become more eutrophic with geological time. The speed at which

this transition occurs varies from lake to lake and can be greatly accelerated by human

activity. Such human activity can include inflow from septic systems, runoff from farm-

lands, and urban runoff. All of these processes contribute nutrients to a surface water and



can speed the eutrophication of a lake in a process known as "cultural eutrophication." It

is also important to note that most lakes (including Ashumet Pond) undergo a yearly cy-

cle in which productivity is highest during the summer season. As a result of seasonal

variation in productivity, Vollenweider has defined the phosphorus concentrations used in

his scale to be those at steady-state. Although steady-state never really exists in a lake,

phosphorus loads will generally be repetitive over a number of years. Therefore, a yearly

average phosphorus load can be used as an approximation to steady-state (Wetzel, 1983).

4.3.2 Trophic Level Index

The trophic state of a pond can also be evaluated using the Trophic Level Index

which was developed by the Massachusetts Division of Water Pollution Control

(Commonwealth of Massachusetts, 1976). The Trophic Level index assigns a given

number of severity points for certain water quality criteria in order to rate the trophic

status of a pond. The trophic condition of the pond can be evaluated as follows:

Trophic Score I TroDhic Condition of Pond I Production Level
0-6

6-12
12-11

Oligotrophic
Mesotrophic

Eutrophic

Low
loderate
High

Table 4-1 gives the breakdown of severity points assigned based upon water quality crite-

ria and gives the ranking of Ashumet Pond as determined by K-V Associates for 1985-

1986 and HAZWRAP for 1993. As shown in this table, Ashumet Pond was in the meso-

trophic range for both 1985-1986 and 1993. It is unknown whether the decrease in total

severity points from 1985-1986 to 1993 represents an actual improvement in the pond's

trophic status, or whether it simply has to do with natural variations related to a storm

event or some other abiotic factor (HAZWRAP, 1995).



Breakdown of Severity Points (HAZWRAP, 1995)

Degree of Severity Ashumet Pond Ashumet Pond
Parameter Severity Points 1985-1986 1993

Hypolimnetic >5.0 0 3 3
Dissolved Oxygen 3.0-5.0 1

(mg/L) 1.0-3.0 2
<1.0 3

Transparency >15 0 2 1
(Secchi depth, ft.) 10-15 1

4-10 2
<4 3

Phytoplankton 0-500 0 3 3
(aerial standard 500-1000 1

units, ASU) 1000-1500 2
>1500 3

Epilimnetic 0-0.15 0 2 0
Dissolved Inorganic 0.15-0.3 1

Nitrogen (mg/L) 0.3-0.5 2
>0.5 3

Epilimnetic 0-0.01 0 1 1
Total Phosphorus 0.01-0.05 1

(mg/L) 0.05-0.10 2
>0.1 3

Aquatic Vegetation Sparse 0 0 0
Medium 1

Dense 2
Very Dense 3

Total 11 8

4.3.3 Carlson's Trophic State Index

Another common measure used to rate the trophic status of a pond is Carlson's

Trophic State Index (TSI). Rather than rating trophic state on a nomenclatural scale as

the other scales do, Carlson's TSI gives trophic state on a numerical scale. This scale

goes from 0-100, with 0 being the least trophic state (corresponding to an oligotrophic

lake) and 100 being the most trophic (corresponding to a hypereutrophic lake). Carlson's

index gives trophic condition on the basis of chlorophyll-a concentration, Secchi disk

Table 4-1.



transparency, and total phosphorus. In deriving the equations that give TSI as a function

of each of these parameters, Carlson related each of these parameters to the other two.

The advantage of relating each parameter is that, unlike other scales, the computed TSI

value should be the same no matter which equation is used. In other words, if one plugs

in Secchi disk transparency, chlorophyll-a concentration, and total phosphorus into their

respective equations, each equation should give the same TSI value. The equations are as

follows:

TSI(SD) = 10(6- In (SD) - (4.1)

In 2

/ In 48)P

TSI(TP) = 10 6 - T (4.3)In 2

Where,

SD= Secchi disk transparency [m]

Chl= Surface chlorophyll-a concentration [mg/m3]

TP= Surface total phosphorus [mg/m3]

It is important to note that when deriving these equations, Carlson used only summer val-

ues (July and August) for each parameter. The reason for using just summer values is

that these values provide the best agreement between the parameters in the regression

model. Additionally, summer is the season when the most sampling is likely to occur.

Carlson states that if all parameters do not give approximately the same TSI value, that

this situation "demands investigation" (Carlson, 1977). As demonstrated in Table 4-2,

Ashumet Pond ranks in the middle to low range of the TSI in both 1985-1986 and 1992-

1994. This range roughly correlates to an oligotrophic to mesotrophic rating. Carlson's

TSI thus yields approximately the same general ranking for Ashumet Pond as do the



Table 4-2. Water Quality Data for Ashumet Pond and Associated TSI values.
(Shanahan, 1996)

Secchi Disk Total
Chlorophyll-a Transpar- Phosphorus

Station (mg/m 3) TSI(Chl) ency (m) TSI(SD) (mg/m 3) TSI(TP)
1985- 1 2.20 38 3.56 42 14 42
1986 2 2.77 41 N/A N/A 27 52

Average 3 1.39 34 2.70 46 13 41
4 1.60 35 3.49 42 12 40

1992- 1 11.63 55 3.80 41 16 44
1994 2 10.75 54 3.94 40 14 42

Average 3 8.36 51 3.33 43 12 40
4 10.61 54 3.61 41 11 39

Vollenweider scale and the Trophic Level Index. Additionally, TSI values determined

using each of the three different water quality parameters correlate fairly well. Differ-

ences in values using each parameter may be related to measurement inaccuracies.

4.4 Predictions ofAshumet Pond Phosphorus Loading

Because pond phosphorus concentrations are critical in determining the overall

trophic state of a lake, it is important to have a good idea of how much phosphorus is

coming into the lake. Once phosphorus inputs have been quantified, there are a number

of methods by which these inputs can be used to predict pond phosphorus concentrations.

Two general ways to predict phosphorus concentrations are with a steady-state model or

with a more complicated time varying mathematical model. These two methods are dis-

cussed in Section 4.5 and Chapter 5 respectively.

4.4.1 Background groundwater

Ashumet Pond receives varying amounts of phosphorus from a number of

sources. The first major source of phosphorus to Ashumet Pond is background ground-



water. In groundwater near the Ashumet Pond area that is free from sewage or deter-

gents, an estimation of 0.005 mg/L of phosphorus was made (K-V Associates, 1986).

Thus, for estimation purposes a value of 0.005 mg/L of phosphorus in background

groundwater was used for a low estimate, and 0.01 mg/L was used as a high estimate by

E.C. Jordan Co. (1988). With an estimated groundwater flow of 2.64x10 6 m3/year, this

estimate results in a low value of 0.016 mg/m2-year of phosphorus. With an areal loading

of 82 ha, the total expected phosphorus loading from background groundwater is between

29.1 and 58.2 lbs/year (E.C. Jordan Co., 1988). K-V Associates (1991) estimates a back-

ground groundwater loading of 22 lbs/year based upon a phosphorus concentration of

0.005 mg/L and without explanation of the flow rate used.

4.4.2 Direct Precipitation

The next source of phosphorus to Ashumet Pond is direct rainfall on the pond.

For non-polluted rainfall, a phosphorus concentration of 0.03 mg/L is estimated (Wetzel,

1983). Based on a total annual rainfall of 46.06 inches and a pond phosphorus loading of

between 1 and 10 mg/m2-year, K-V Associates (1991) estimates a loading of 50 lbs/year

of phosphorus from direct rainfall.

4.4.3 Watershed Runoff

Runoff from the watershed surrounding Ashumet Pond is another important source

of phosphorus. E.C. Jordan Co. estimates watershed runoff to be 2.41x10 6 m3/year.

Based on the assumption of a phosphorus concentration in runoff water of 0.25 mg/L, the

phosphorus loading to Ashumet Pond contributed by surface runoff is 13.3 lbs/year.



4.4.4 Storm Drainage

A significant amount of storm water from the MMR storm drainage system enters

Ashumet Pond. The estimate for storm water is that 7.14x10 4 m3/year directly enters the

pond (E.C. Jordan Co., 1988). K-V Associates (1986) states that the phosphorus concen-

tration in this storm water drainage is approximately 0.25 mg/L. These two estimates

give a phosphorus loading of 39.2 lbs/year. K-V Associates (1991) gives a runoff value

of 49 lbs/year of phosphorus entering the pond which apparently lumps watershed runoff

together with storm drainage (it is not clear if this is indeed the case). This value is lower

than the E.C. Jordan Co. (1988) estimate of 52.5 lbs/year from watershed runoff and

storm water drainage.

4.4.5 Discharge from Cranberry Bog

The abandoned cranberry bog near Ashumet Pond contributes water to the pond in

two ways. The first way is from groundwater that flows through the bog and enters the

pond as surface water flow (the only surface water inlet to Ashumet Pond). It is esti-

mated that 7.92x 104 m3/year enters the pond in this manner. Additionally, because the

water table is essentially at the surface in the cranberry bog, any precipitation that falls on

the bog will directly enter the surface water stream that flows to the pond. Based on a

bog area of 5.3 ha and an annual rainfall of 46.06 inches, direct precipitation on the cran-

berry bog is estimated to contribute 2.83x104 m3/year to Ashumet Pond. Thus, the total

inflow due to the cranberry bog is 1.08x10 5 m3/year. E.C. Jordan Co. (1988) uses a range

of possible phosphorus concentrations in water from the cranberry bog of between 0.025

and 0.053 mg/L. Thus, the cranberry bog contributes 6.0 to 12.6 lbs/year of phosphorus

to Ashumet Pond. K-V Associates (1991) uses a much higher flow rate for cranberry bog

inflow and thus estimates the phosphorus loading from the bog to be 47 lbs/year.



4.4.6 Septic Tank Discharge

Another source of phosphorus to Ashumet Pond is septic tanks from homes in

Falmouth that are upgradient of the pond. At present there are 32 homes upgradient of

the pond and within 300 ft. According to the Town of Falmouth bylaws, phosphorus dis-

charge from septic tanks within 300 ft of the shoreline should be estimated at 0.25

lbs/person-year (Town of Falmouth, 1986). Assuming an average of 4 persons per

household (E.C. Jordan Co., 1988), total phosphorus loading from septic tanks is esti-

mated to be 8 lbs/year. According to E.C. Jordan Co. (1988), this shoreline area is cur-

rently 60% developed. If full development of the area were to occur in the future, 13

lbs/year of phosphorus could be contributed to Ashumet Pond by septic systems. K-V

Associates (1991) places this estimate at 27 lbs/year.

4.4.7 MMR STP Plume

The final source of phosphorus loading to Ashumet Pond is the MMR STP plume.

There are a number of different estimates for present and future loadings from the waste-

water plume. The estimate done by E.C. Jordan Co. (1988) assumes annual groundwater

flow into the pond to be 1.87x10 5 m3/year. At the time of the E.C. Jordan Co. study,

groundwater entering the pond at Fisherman's Cove had a phosphorus concentration be-

tween 0.1 and 0.3 mg/L. However, in the anoxic zone of the wastewater plume, concen-

trations of between 1.0 and 2.0 mg/L were assumed by E.C. Jordan Co. Based on this

information, phosphorus loading from the wastewater plume in 1991 was calculated to be

between 41.2 and 124.7 lbs/year. It was also estimated that when the zone of highest

phosphorus concentration reaches the pond, loadings could range from 412 to 825

lbs/year.

The next estimate was done by K-V Associates (1991). Based upon an assumed

phosphorus concentration in the plume of 0.09 mg/L, a loading to the pond of 82 lbs/year

was determined. No estimate of future pond loading was determined.



Another estimate of present pond loading was made by Walter et al. (1995). First,

they determined the flux of water entering the pond from the area of the wastewater

plume using Darcy's Law:

Q, = KiA, (4.4)

Where,

Q,= The flux of water into the pond [L3/T]

K= Hydraulic conductivity [L/T]

i= Hydraulic gradient [dimensionless], and

A,= The cross sectional area along the pond of the part of the plume that contains

phosphorus [L2].

Next, the mass flux of phosphorus into the pond was determined by multiplying the flux

of water into the pond by the average concentration of phosphorus in the plume along the

pond:

Q, = QwCp (4.5)

Where,

Q,= The flux of phosphorus into the pond [M/T]; and

C,= The average concentration of phosphorus in the plume along the pond [M/L3 ].

In this way, Walter et al. determined the average flux of phosphorus into the pond from

1993-1994 to be 67 kg/year (147 lbs/year).

The most recent estimate of Ashumet Pond phosphorus loading was made in 1996 by

Shanahan. This estimate was based upon the fact that the peak phosphorus concentration

in the plume is approximately three times greater than the concentration that is currently

at the edge of the pond. Thus, in making this estimate, Shanahan multiplied the loading

given by Walter by approximately three. Table 4-3 gives a summary of the different

Ashumet Pond phosphorus loadings broken up by source.



Table 4-3. Estimates of Ashumet Pond Phosphorus Loading in lbs/year

E.C. Jordan E.C. Jordan
Co., 1988 Co., 1988 E.C. Jordan E.C. Jordan K-V Asso-

Present Present Co., 1988 Co., 1988 ciates, Walter et Shanahan,
Source Best Case Worst Case Future Best Future 1991 al., 1995 1996

Case Worst Case
MMR STP 41.2 124.7 412 825 82 147 451

Plume
Background 29.1 58.2 29.1 58.2 22 58.2 58.2
Groundwater

Direct Precipi- 18.1 63.5 18.1 63.5 50 63.5 63.5
tation
Storm 39.2 39.2 39.2 39.2 49 39.2 39.2

Drainage
Watershed 13.3 13.3 13.3 13.3 Included 13.3 13.3

Runoff in above
Discharge from 6.0 12.6 6.0 12.6 47 12.6 12.6
Cranberry Bog

Septic Tank 8.0 8.0 13.0 13.0 27 8.0 8.0
Discharge

Total 154.9 319.5 530.7 1024.8 277 341.8 645.8

4.5 Steady-State Eutrophication Predictions for Ashumet Pond

As early as 1939 it was recognized that a relationship exists between the amount

of nutrients input to a water body and the level of production in that water body. In 1947,

Sawyer first stated that if certain critical levels of nitrogen and phosphorus were ex-

ceeded, a lake would show signs of eutrophication. Finally, in 1968, Vollenweider re-

lated quantified inputs of nitrogen and phosphorus to the expected trophic condition of a

water body. (Wetzel, 1983)

It is from the work of Vollenweider and others that we can now predict, with reason-

able accuracy, the trophic level of many water bodies (mainly those in temperate cli-

mates) by knowing the concentrations of essential nutrients such as nitrogen and phos-

phorus. Today, there are many methods that exist for predicting trophic status. Never-

theless, these methods can be grouped into two major categories. The first method is

through the use of simple, steady-state equations that relate phosphorus loading to steady-

state phosphorus concentration (and thus, to trophic level), given certain morphometric

parameters. The advantage to this method is that these equations give a quick and inex-



pensive indication of the status of a water body. However, if the proper data is collected,

more complicated, time varying, numerical models can give a more accurate prediction of

trophic levels. This section will focus on steady-state predictions of the phosphorus con-

centration in Ashumet Pond. The use of CE-QUAL-R1, a more in-depth numerical

model, in relating nutrient loading to trophic status in Ashumet Pond will then be de-

scribed in Chapter 5.

4.5.1 Vollenweider Equation

One of the most commonly used equations for predicting the steady-state phos-

phorus concentration in a lake is the Vollenweider equation:

L1
P L 1 (4.6)

Z 1
-+ -

Where,

P= Steady-state phosphorus concentration in the lake [M/L3]

L= Phosphorus loading rate per unit surface area [M/T-L2]

Z= Average lake depth [L]; and

,= Hydraulic residence time of the lake [T].

Despite being quite simplistic, the Vollenweider equation has been proven in many stud-

ies to be an excellent predictor of steady-state phosphorus concentrations for a large

number of lakes. The morphometric parameters necessary for steady-state phosphorus

concentration predictions of Ashumet Pond are as follows: Mean depth is 23 feet (7 me-

ters), surface area is 203 acres (82 hectares), and hydraulic residence time is 1.8 years (K-

V Associates, 1991; Shanahan, 1996). Table 4-4 gives predictions for the steady-state

phosphorus concentration in Ashumet Pond using the Vollenweider equation for the vari-

ous estimates of phosphorus loading given in Section 4.4. Additionally, Table 4-4 shows

the corresponding trophic status of Ashumet Pond according to the Vollenweider criteria



described in Section 4.3.1. It is important at this point to again note that steady-state

never really exists in a surface water body. The concentrations predicted by such equa-

tions as the Vollenweider equation are more like yearly averages.

Table 4-4. Steady-State Phosphorus Concentration Predictions for Ashumet Pond
Based on the Vollenweider Equation and Corresponding Trophic Status.

Areal Predicted Steady-
Phosphorus Phosphorus State Phosphorus

Loading Loading Concentration Corresponding
Estimate (lbs/year) (g/m2-yr) (ýtg/L) Trophic Status

E.C. Jordan Co., 154.9 0.085 9.3 Oligotrophic
1988 Present Best

Case
E.C. Jordan Co., 319.5 0.179 19.7 Mesotrophic

1988 Present Worst
Case

E.C. Jordan Co., 530.7 0.29 31.9 Eutrophic
1988 Future Best

Case
E.C. Jordan Co., 1024.8 0.566 62.2 Hypereutrophic

1988 Future Worst
Case

K-V Associates, 277 0.152 16.7 Mesotrophic
1991 (Present)

Walter et al., 1995 341.8 0.189 20.7 Mesotrophic
(Present)

Shanahan, 1996 645.8 0.357 39.2 Eutrophic
(Future)

4.5.2 Vollenweider-Dillon Relationship

Another model that is used to predict trophic state is the Vollenweider-Dillon Rela-

tionship. This relationship was developed in 1974 (Dillon, 1974). The Vollenweider-

Dillon Relationship predicts mean annual total phosphorus concentration based upon

mean annual phosphorus loading, hydraulic flushing rate (defined as the inverse of the

hydraulic residence time), mean depth, and the phosphorus retention coefficient. The hy-

draulic flushing rate for Ashumet Pond is approximately 0.56 years-'. The phosphorus



retention coefficient is a measure of phosphorus which will be retained in a lake and rep-

resents a balance of phosphorus inputs and losses (E.C. Jordan Co., 1988). The empirical

relationship developed by Kirchner and Dillon (1975) is:

R = 0.426 exp(- 0.271q) + 0.574 exp(- 0.00949q) (4.7)

Where,

R= Phosphorus retention coefficient [dimensionless]; and

q= Areal water loading rate [m/year].

The areal water loading rate for Ashumet Pond has been estimated as 4.23 m/year

(E.C. Jordan Co., 1988). This loading rate gives a phosphorus retention coefficient of

0.687. The Vollenweider-Dillon Relationship for mean annual total phosphorus concen-

tration is then:

L(1- R)P = (4.8)
Zp

Where,

P= Mean annual total phosphorus concentration [M/L3]

L= Mean annual phosphorus loading [M/L 2-T]

Z= Mean depth [L]; and

p= Hydraulic flushing rate [T-].

Table 4-5 gives the predictions for mean annual total phosphorus concentration based

upon the Vollenweider-Dillon Relationship for the different phosphorus loading predic-

tions. Furthermore, Table 4-5 shows the corresponding trophic status of the pond as de-

termined by the Vollenweider criteria. It is demonstrated in Table 4-5 that the Vollen-

weider-Dillon Relationship gives consistently lower predictions for mean annual phos-

phorus concentration than the Vollenweider equation gives for steady-state phosphorus

concentration.



4.5.3 Larson-Mercier Relationship

A third commonly used relationship for determining trophic status is the Larson-

Mercier Relationship developed in 1976. In developing their relationship between phos-

Table 4-5. Mean Annual Total Phosphorus Concentration Predictions for Ashumet
Pond Based on the Vollenweider-Dillon Relationship and Corresponding Trophic

Status.

Areal Predicted Mean
Phosphorus Phosphorus Annual Phosphorus

Loading Loading Concentration Corresponding
Estimate (lbs/year) (g/m 2-yr) (tg/L) Trophic Status

E.C. Jordan Co., 154.9 0.085 6.9 Oligotrophic
1988 Present Best

Case
E.C. Jordan Co., 319.5 0.179 14.4 Mesotrophic

1988 Present Worst
Case

E.C. Jordan Co., 530.7 0.29 23.4 Mesotrophic
1988 Future Best

Case
E.C. Jordan Co., 1024.8 0.566 45.6 Eutrophic

1988 Future Worst
Case

K-V Associates, 277 0.152 12.3 Mesotrophic
1991

Walter et al., 1995 341.8 0.189 15.2 Mesotrophic

Shanahan, 1996 645.8 0.357 28.7 Eutrophic

phorus loading and trophic status, Larson and Mercier developed "critical limiting loads."

Based on the following formula, critical limiting phosphorus loads can be determined at

which a lake will have a certain phosphorus concentration:

1
Le = 8.9pZPI

1-R

Where,

(4.9)



Lc= Critical limiting phosphorus load [lbs/year-acre]

p= Hydraulic flushing rate [years -' ]

Z= Mean depth [m]

P= Total phosphorus concentration [.tg/L]

R= Phosphorus retention coefficient [dimensionless];

and 8.9 is a unit conversion factor.

Based on this relationship, the critical phosphorus load can be determined for any total

pond phosphorus concentration. Larson and Mercier set a critical level of 20 pg/L of to-

tal phosphorus above which a lake is considered to be eutrophic and a level of 10 ýig/L of

total phosphorus above which a lake is considered mesotrophic. Below 10 ptg/L the lake

can be considered oligotrophic. With a phosphorus retention coefficient of 0.687, a mean

depth of 7 meters, and a hydraulic flushing rate of 0.56 years-', Ashumet Pond will be-

come mesotrophic with a phosphorus loading of 1.11 lbs/year-acre and eutrophic with a

loading of 2.21 lbs/year-acre according to the Larson-Mercier Relationship. Ashumet

Pond has an area of 203 acres, and will thus become mesotrophic with a phosphorus

loading of 225 lbs/year and will become eutrophic with a loading of 449 lbs/year. Table

4-6 shows the various estimations of Ashumet Pond phosphorus loading and the corre-

sponding trophic level of Ashumet Pond based upon the Larson-Mercier Relationship.

Table 4-6. Trophic Level of Ashumet Pond Based Upon Loading Estimates.

Phosphorus
Loading Corresponding

Estimate (lbs/year) Trophic Status
E.C. Jordan Co., 1988 Present Best 154.9 Oligotrophic

Case
E.C. Jordan Co., 1988 Present Worst 319.5 Mesotrophic

Case
E.C. Jordan Co., 1988 Future Best 530.7 Eutrophic

Case
E.C. Jordan Co., 1988 Future Worst 1024.8 Eutrophic

Case
K-V Associates, 1991 277 Mesotrophic

Walter et al., 1995 341.8 Mesotrophic
Shanahan, 1996 645.8 Eutrophic



5. DETAILED NUMERICAL EUTROPHICATION MODELING

5.1 Model Introduction

The CE-QUAL-R1 model was developed in 1986 by the U.S. Army Corps of Engi-

neers from research done at the Waterways Experiment Station (U.S. Army Corps of En-

gineers, 1986). This model was chosen for this study because it is a proven and widely

used method for eutrophication modeling. Additionally, a one-dimensional model such

as CE-QUAL-R1 has been shown to give an accurate representation of seasonally strati-

fied ponds such as Ashumet. CE-QUAL-R1 is a numerical model that describes the ver-

tical distribution of temperature and chemical and biological materials in a reservoir

throughout a specified time period. CE-QUAL-R1 is one dimensional and is horizontally

averaged. Thus, temperature and water quality constituents are only computed in the

vertical direction. Furthermore, constituents are uniformly mixed in each layer. Inflow-

ing and outflowing water are placed in appropriate layers based upon density. Because

CE-QUAL-R1 was developed for reservoir management, outflows can take place on a

scheduled basis, or they can be continuous. Additionally, these outflows can be modeled

as occurring via flow over a weir, flow through ports, or a combination of both.

Transport of heat or matter between thermally stratified layers of water can occur

either through entrainment or turbulent diffusion. Entrainment is a result of kinetic en-

ergy inputs from wind shear and from convective mixing. Turbulent diffusion is calcu-

lated through the use of wind speed, inflow and outflow magnitudes, and density differ-

ences.

An important feature of CE-QUAL-RI is that it models the interaction of many dif-

ferent biological and chemical constituents. Furthermore, CE-QUAL-R1 can model these

interactions in both aerobic and anaerobic waters, an important advantage for heavily

stratified water bodies that will tend to become anaerobic in the hypolimnion during a

prolonged period of stratification. Another feature of CE-QUAL-R1 is that it includes a

separate thermal analysis model entitled CE-THERM-Ri. CE-THERM-R1 can be used



to quantify temperature profiles that can then be used as inputs to CE-QUAL-Ri. CE-

THERM-Ri is discussed further in Section 5.4.

5.2 Model Operation

Each biological or chemical constituent in the model is described mathematically by

a differential equation that describes conservation of mass in each horizontal layer, i. The

general equation for each of the n layers is:

d
dtViCi = AjjCj. + Ai2C i + Ai3Ci+, + Pi for i= 2,3,...n-1 (5.1)

Where,

C= A concentration of a particular biological or chemical constituent

V= Layer volume

A= A concentration-dependent factor that includes transport and biological and

chemical rate effects; and

P= A concentration-independent factor that includes inflow and biological and

chemical transfers.

It is demonstrated in Equation 5.1 that each layer is only influenced by the layers imme-

diately above or below it. Thus, the bottom layer can only be influenced by the layer

above it:

d
V,C, = A11C, + A,2C 2 + P, (5.2)

dt

Additionally, the top layer can only be influenced by the layer below it:

d VnCn = An1Cn-, + An2Cn + Pn (5.3)

Once defined, these equations form a tridiagonal matrix that is integrated for each user-

defined computational interval by Gaussian elimination.



5.3 Model Assumptions and Shortcomings

One major simplification built into CE-QUAL-R1 is the one-dimensional assump-

tion. In making this simplification, the model can not address variations in water quality

throughout the length and width of the water body, only the depth. In addition, all in-

flows are assumed to be instantaneously mixed and then placed into fully-mixed hori-

zontal layers based upon density.

Another cause of possible error in the model is that all processes are described via

the use of conservation of mass as given by Equations 5.1-5.3. However, conservation of

mass may not always be met because the differential equations used are solved numeri-

cally and not in closed form. Such numerical solutions may result in the occurrence of

small errors. These errors should not be significant for purposes of trophic state predic-

tions.

Because the ecological interactions in any water body are extremely complex and not

completely understood, CE-QUAL-R1 makes many simplifying assumptions to make

dealing with such interactions manageable. Additionally, it would be unrealistic for a

user to collect data for all species present in a water body. Thus, many species are placed

into functional groups. For instance, all zooplankton, fish, and organic sediments are

grouped together into one model compartment each. All algal species are placed into one

of three compartments. In this way, data collection and model computation are both

made manageable.

There are also two conditions that are not specifically modeled by CE-QUAL-R1.

These two conditions are an anaerobic environment and ice cover. The model only fo-

cuses on a few key chemical species under anaerobic conditions, and does not attempt to

model the complexity of interactions during such conditions. Additionally, the model

does not account for ice cover. However, periods of ice cover are not generally key peri-

ods in determining the health of a lake because lake temperatures are too low for most

biological processes to be occurring.



A final shortcoming of CE-QUAL-R1 is realized when trying to adapt the model

to a groundwater fed pond such as Ashumet. Because CE-QUAL-Ri was developed as a

reservoir model, it is designed to handle outflows over a weir or through ports such as a

reservoir would have. Moreover, the model is designed to have inflow from one or two

tributaries. In order to successfully model the groundwater inflow and outflow of

Ashumet Pond, a number of "tricks" must be employed. Inflow to Ashumet Pond can be

modeled as coming from either one or two tributaries. In the case of Ashumet Pond, the

bulk of inflow is from groundwater. Thus, Ashumet Pond inflow is modeled as occurring

from only one tributary. Furthermore, it has been shown that for a groundwater fed pond,

the greatest amount of inflow occurs near the shore (in the shallowest region of the pond)

and inflow volume decreases in an approximately exponential manner away from the

shore (McBride and Pfannkuch, 1975; Cherkauer and Zager, 1989). CE-QUAL-Ri im-

mediately places inflow into the layer of most similar density (as calculated from tem-

perature and solids concentration). Because groundwater temperature is approximately

constant at 58 0F (14.4°C) throughout the year, the inflowing groundwater will be more

dense than the lake water at some times and less dense at others. Quite often, though, the

groundwater inflow will be more dense than the top layers of the pond and less dense

than the bottom layers, and thus will be placed somewhere in between. Based upon CE-

THERM-R1 thermal modeling of Ashumet Pond, it has been determined that modeling

Ashumet Pond groundwater inflow as occurring from one tributary with a constant tem-

perature of 14.4°C provides a remarkably accurate estimate of actual groundwater inflow.

The outflow from Ashumet Pond is modeled as occurring at multiple ports, evenly

spaced in the vertical from top to bottom. Because the bottom of the pond is at different

depths depending on distance from the shore, groundwater recharge will occur at different

depths as well. If enough ports are specified so as to effectively have a continuous outlet

structure, Ashumet Pond's groundwater outflow should be modeled quite well. Thus, the

maximum of eight outflow ports, each with a height of 2.48 m are used so as to cover the

entire 19.8 m depth of the pond. As can be recognized from this section, the hydrody-

namics of Ashumet Pond can be modeled quite well, even with a model such as CE-

QUAL-R1 that was not designed specifically for groundwater-fed ponds.



5.4 CE-THERM-Ri Modeling

5.4.1 Introduction

In order to be able to successfully model the biological and chemical interactions

that are occurring within the pond, it is first necessary to understand the hydrodynamics

of the pond as they relate to thermal and water budgets. Thus, when modeling biological

and chemical interactions, it is necessary to have continuously updated thermal, inflow,

and outflow data. Because it is simply not feasible to collect inflow, outflow, and tem-

perature profile data continuously throughout the year, it is desirable to have a model that

will supply this information. In this regard, CE-THERM-R1 is a valuable tool for sup-

plying continuous data as needed by CE-QUAL-R1.

5.4.2 Data Set Compilation

A large amount of the work that went into modeling Ashumet Pond was in com-

piling a data set that would accurately represent conditions in the pond. Among the most

important inputs to CE-THERM-R1 are morphometric parameters (so that the model can

reproduce the geometry of the pond), inflow and outflow data (flow rates, specification of

the mode of water withdrawal and recharge, temperature, and solids content), mixing pa-

rameters, solar radiation information (such as the light extinction coefficient), solids set-

tling rate, initial solids content, and meteorological data. An example data set for CE-

THERM-Ri is given in Appendix A.

The morphometry of a lake is represented in CE-THERM-R1 by two sets of pa-

rameters; area coefficients and width coefficients. The area coefficients are used to give

the area of the water body as a function of depth. There are two options provided in CE-



THERM-R1 for this specification. The first option gives area as a function of elevation

by the following formula:

Area(I) = [ACOEF(1) * Z(I)]ACOEF( 2) (5.4)

The second option for area specification as a function of elevation is given by Equation

5.5:

Area(I)= ACOEF(1) + ACOEF(2)* Z(I)+ ACOEF(3)* [Z(I)] 2  (5.5)

Where,

Area(I)= The area of the Ith layer

ACOEF(1), ACOEF(2), and ACOEF(3)= User specified constants; and

Z(I)= The elevation of the Ith layer as measured from the bottom of the lake.

A bathymetric map such as that shown in Figure 5-2 was used to determine which

equation should be used to represent the area of Ashumet Pond, and then to give the val-

ues of each parameter. In order to find the area as a function of depth, a planimeter was

used to trace out the areas inside each contour of constant depth. The areas were then

scaled up to the scale of the map. Figure 5-1 is a graph of area as a function of elevation

for Ashumet Pond.



annnnn

800000

700000

600000

c 500000

400000

300000

200000

100000

0
0 2 4 6 8 10 12 14 16 18 20

Bevation from bottom (m)

Figure 5-1. Area as a Function of Elevation for Ashumet Pond

As can be seen from this figure, a least-squares regression curve was fit to this

data, giving area as a function of elevation in the form of Equation 5.5. Thus, from

Equation 5.5, ACOEF(1)= 0, ACOEF(2)= 2362, and ACOEF(3)= 1958.9.

The next important piece of morphometric data that must be supplied to CE-

THERM-R1 is pond width as a function of elevation. This specification must be made in

the form of the following equation:

Width = [WCOEF(1) * Elevation]WCOEF(2) (5.6)

Where,

Width= The width of the pond at a given elevation

WCOEF(1) and WCOEF(2)= User specified constants; and

Elevation= Elevation above the bottom of the pond.

From a cross-section of the center of Ashumet Pond (see E.C. Jordan Co., 1988), width

was determined as a function of elevation as given in Figure 5-3.



Figure 5-2. Bathymetric Map of Ashumet Pond (K-V Associates, 1991)
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Figure 5-3. Width as a Function of Elevation for Ashumet Pond

The best fit to the data given in Figure 5-3 was determined to be a straight line. Thus,

from equation 5.6, WCOEF(1)= 50.263 and WCOEF(2)=I.

A third parameter necessary for representation of pond morphometry is the pond

length. For modeling purposes, the pond length was taken as being the distance from

north to south, which is approximately in the direction of flow. In this direction, the pond

length is 1356 m.

The final important morphometric parameter to be input to Ashumet Pond was the

initial number of layers. It is suggested in the CE-QUAL-R1 manual (Army Corps of

Engineers, 1986) that a 1 m average layer thickness be used. Thus, because Ashumet

Pond is 19.8 m deep at its deepest point, 19 layers of initial thickness 1 m, and a 2 0 th layer

of an average thickness of 0.8 m were used. As Ashumet Pond experiences fluctuations

in water level, the number of layers used to represent the pond will be varied by the

model.

The modeling of both the inflow and outflow of Ashumet Pond are discussed in

Section 5.3. Because Ashumet Pond is almost completely groundwater fed (it has a



small, intermittent surface inflow from an abandoned cranberry bog), the pond was mod-

eled as having one inflow tributary. Because precipitation is a significant fraction of the

total inflow to Ashumet Pond, it is accounted for in the total inflow rate. Additionally,

the rate of groundwater inflow was modeled as being constant throughout the year (a

good assumption for a groundwater fed pond). As discussed in Section 5.3, this repre-

sentation of Ashumet Pond is a good approximation to reality. Accounting for all

sources, the net inflow to Ashumet Pond is given as 4.18x106 m3/year, or 0.133 m3/s.

As discussed in Section 5.3, eight outflow ports (the maximum allowed by CE-

THERM-Ri), each with a height of 2.48 m were used to approximate the groundwater

outflow from Ashumet Pond. The total outflow from the pond was approximated as be-

ing 3.13x10 6 m3/year. This outflow was assumed to be constant throughout the year and

was assumed to occur evenly through all eight outflow ports. Thus, the outflow from

each port was given as 0.0125 m3/s.

Mixing parameters are an essential input to CE-THERM-R1 in that they relate to

how materials and heat are transferred between layers. The first important mixing pa-

rameter is the sheltering coefficient. This coefficient is used to modify the turbulent ki-

netic energy (TKE) supplied by wind to the top layers of the lake. The necessary input to

CE-THERM-R1 for this sheltering coefficient is the fraction of the total water surface

area that is exposed to the wind. If there are abrupt changes in relief near the edge of the

water (such as a cliff), or if there are many trees near the edge, portions of the surface will

essentially be sheltered from wind. In the case of Ashumet Pond, the area surrounding

the pond is relatively flat with very few trees in close proximity. Thus, the sheltering co-

efficient was taken to be unity. Additionally, through modeling of Ashumet Pond, it was

discovered that, in this situation, CE-THERM-R1 is almost completely insensitive to this

parameter within its reasonable bounds.

Another necessary input parameter for mixing is the penetrative convection frac-

tion. This parameter is the fraction of TKE produced by natural convection that is avail-

able for entrainment and deepening of the upper mixed layer. It has been shown that the

model is almost insensitive to this parameter in modeling of Ashumet Pond. Thus, 0.3,



the value recommended by the CE-QUAL-R1 manual (Army Corps of Engineers, 1986)

is used.

In order to determine the extent to which solar radiation affects the thermal struc-

ture of a water body, CE-QUAL-R1 requires a few crucial input parameters. The first of

these parameters is the dust attenuation coefficient. This coefficient represents the degree

to which solar radiation reaching the water body is mitigated through scattering and ab-

sorption by dust particles. The value of 0.06 recommended by the CE-QUAL-R1 manual

was used because this parameter will generally not vary much except in extreme condi-

tions of high dust or persistent haze (which are not an issue for Ashumet Pond).

Next, a wind speed function is used to calculate evaporative and convective heat

fluxes that are affected by wind. These wind speed coefficients (called AA and BB) are

utilized by CE-QUAL-R1 in the following equation for evaporative heat loss (U.S. Army

Corps of Engineers, 1986):

Qe = pL(a + bW)(e s - ea) (5.7)

Where,

Qe= Evaporative heat loss [kcal/m 2-sec]

L= Latent heat of vaporization [kcal/kg]

p= Density of water (kg/m3)

a= The wind speed coefficient AA [dimensionless]

b= The wind speed coefficient BB [dimensionless]

W= Wind speed [m/sec]

es= Saturated vapor pressure at the water surface temperature [mb]; and

ea= Vapor pressure at the air temperature [mb].

The CE-QUAL-Ri manual references many different empirical values for the coefficients

input to the wind speed function. However, CE- THERM-Ri was found to be quite sen-

sitive to the values of these coefficients. Thus, these coefficients were adjusted until a

suitable fit to available temperature profile data was found. The best data fit was ob-

tained with the first coefficient (AA) equaling 1.00x10-9 and the second coefficient (BB)

equaling 1.75x10 -9.



One of the most crucial model inputs for determining the effect of solar radiation

on a water body's thermal structure is the extinction coefficient. The extinction coeffi-

cient is used in the Beer-Lambert Law to determine the amount of solar radiation ab-

sorbed as a function of depth in the water body (Schwarzenbach et al., 1993). The Beer-

Lambert Law is:

I= Io0e- (5.8)

Where,

I= Solar radiation at the surface [einstein/L2]

I0= Solar radiation at a given depth [einstein/L2]

E= Extinction coefficient [L-], and

Z= Depth [L].

The extinction coefficient is extremely dependent on the clarity of a water body. Thus,

the extinction coefficient can be directly related to the Secchi Disk depth by the empirical

formula which was obtained from a regression analysis (Williams, 1980):

E= 1.1 Zs-0.73 (5.9)

Where,

,= Extinction coefficient [L-']

Zs= Secchi Disk depth [L].

The inputs to CE-THERM-R1 only require an initial extinction coefficient applicable to

the beginning of the model run. As CE-THERM-Rl models Secchi Disk depth, the ex-

tinction coefficient is adjusted based upon Equation 5.9. From data collected on March

21, 1986 (E.C. Jordan Co., 1988), an initial extinction coefficient of 0.5 m-' was used.

A final parameter affecting solar radiation absorption is the fraction of solar ra-

diation that is absorbed in a 0.6 m surface layer. This parameter is obtained once the ex-

tinction coefficient is determined, based upon the following formula, obtained from re-

gression analysis (Army Corps of Engineers, 1986):

,p= 0.271n(e)+ 0.61 (5.10)



Where,

p= The fraction of solar radiation absorbed in a 0.6 m surface layer [dimensionless]

In= The natural logarithm; and

e= Extinction coefficient determined from Equation 5.9 [L-']

With the extinction coefficient given by Equation 5.9, a value of 0.42 was used for the

fraction of solar radiation absorbed in a 0.6 m surface layer.

Because CE-THERM-R1 models the behavior of solids in a water body, both the

suspended solids settling rate and initial solids concentrations (both in the pond and en-

tering the pond) must be specified. Lane (1938) states that for particles of diameter 0.002

mm, a settling rate of 0.86 m/day is appropriate. Because particles in Ashumet Pond are

thought to be in this size range, a value of 1 m/day was used for settling rate.

Using data obtained from Walter et al. (1995), a value of 146 mg/L was used for

total dissolved solids (TDS) concentration in the groundwater that enters the pond. Based

on data obtained from K-V Associates (1987b), initial pond concentrations for TDS were

taken to be 42 mg/L near the surface and 49 mg/L near the bottom of the pond. Addi-

tionally, initial suspended solids concentrations were taken to be 1.9 mg/L near the sur-

face and 5.0 mg/L near the bottom.

The final major input requirement for CE-THERM-R1 is meteorological data for

the year to be modeled. Included among the necessary meteorological data is the fraction

of cloud cover, dry bulb temperature, dew point temperature, barometric pressure, and

wind speed. All of these data were input on a daily basis. The data used was "Summary

of the Day- First Order" data obtained from the National Climatic Data Center World

Wide Web page (http://www.ncdc.noaa.gov) for Logan Airport in Boston, Massachusetts.

5.4.3 Model Calibration

As it is quite important for CE-QUAL-R1 modeling to be able to accurately repre-

sent the hydrodynamics of Ashumet Pond, calibration of CE-THERM-R1 is the first step



in the modeling process. CE-THERM-R1 can simply be calibrated by comparing tem-

perature profiles predicted by the model to those taken in the field. In this calibration

procedure, a number of different model parameters were adjusted until model-predicted

temperature profiles were sufficiently similar to actual profiles. Data for 1993 was used

to calibrate CE-THERM-R1 because the greatest number (four) of temperature profiles

are available in that year for comparison (HAZWRAP, 1993). Because the model re-

quires initial conditions, the first temperature profile was used to provide initial tempera-

ture conditions. Thus, model simulation was begun on the date that the first temperature

profile was performed (April 15), leaving only three temperature profiles available for

model calibration. Figures 5-4a-c show model predicted temperatures as compared to

measured temperature profiles for the three available temperature profiles performed in

1993.
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As can be seen in Figures 5-4a-c, CE-THERM-R1 gives a reasonably accurate

prediction of Ashumet Pond temperature profiles. In general, the model predicts tem-

peratures to be slightly higher than they were in reality for 1993. This is especially the

case for the last profile which was performed in December. However, this is not a cause

for concern because temperatures, and thus productivity, are quite low during the winter

months. Thus, the crux of the model is to predict conditions during the summer when the

productivity is the highest, causing the greatest concern for water quality. Furthermore,

the model was also run using 1994 data. When compared to 1994 data, the model often

gives temperature predictions that are lower than those that were measured. In addition,

the meteorological data used is for Boston, which can be somewhat different from

weather conditions on Cape Cod. This data difference might explain some of the differ-

ence in model predicted results and actual temperature profiles. Thus, for the reasons

given above, it is apparent that the model is not giving results that are chronically skewed

in one direction. An example output from CE-THERM-R1 is given in Appendix B.

5.5 CE-QUAL-Ri modeling

5.5.1 Introduction

As discussed in Section 5.1, CE-QUAL-R1 provides detailed modeling of aquatic

organisms. For the purposes of this study, however, the focus of model predictions will

be on algal species. A major feature of CE-QUAL-Ri is that it is a eutrophication model,

and as such is able to predict algal populations under a variety of different conditions.

Because the main goal of this project is to determine the effect of the STP plume on the

future trophic state of Ashumet Pond, the model was run under a variety of different

phosphorus loading conditions. Predictions of the effect of the STP plume on total

Ashumet Pond phosphorus loading are shown in Section 4.4.7. Because many of these



predictions differ significantly, the model was run under a variety of these different

loading scenarios (see Table 4-3).

CE-QUAL-R1 models algal populations in a simplified manner. The

model provides three compartments to represent phytoplankton instead of modeling each

species (or even each algal group) individually. Despite this simplification, CE-QUAL-

R1 can provide an understanding of potential eutrophication problems due to simulated

algal biomass magnitudes and timing of algal blooms. The algal compartments are

picked in such a manner as to represent the dominant species of the lake. In this way, the

major species that will be affected by increased nutrient loads can be modeled quite well.

For this reason the first and second compartments were chosen to represent blue-green

algae and green algae, respectively. The third compartment for algae is reserved for a

species that is silica limited. Thus, this compartment represents diatoms.

5.5.2 Analysis of results

For reasons discussed previously in Section 4.2, there is a significant seasonal

variation in algal populations. Peak algal populations (as measured in terms of total

amount of biomass) in the summer are often an order of magnitude higher than algal

populations throughout the rest of the year. Figures 5-5a and 5-5b show this seasonal

variation in algal populations at the top of the lake for the present best case phosphorus

loading of 0.0167 g/m3 determined by E.C. Jordan Co. (1988).
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to peak around the beginning of summer (May and June). Interestingly, algal compart-

ment number one has another peak around day 260 (towards the end of August).

There is also a wide variation in algal populations throughout the depth of a lake.

Because algae require sunlight to undergo photosynthesis, there are much greater algal

populations in the top of a lake where sun can easily penetrate, compared to the bottom of

a lake which is generally devoid of sunlight. As mentioned previously, the major concern

for water quality is the peak algal concentrations that occur in the summer months. Fur-

thermore, when analyzing the effect of various phosphorus loadings on a pond, it is only

necessary to compare algal populations in the top layer of the pond. Although the other

layers of the pond will also experience variations in algal populations with phosphorus

loading, the effects upon the algae in the top layer should be representative of the overall

change in species populations.

Because Ashumet Pond is currently phosphorus limited, it would be expected that

any additional phosphorus load to the pond would result in increased productivity. Such

a result is easily observed when analyzing the output from CE-QUAL-R1. Figure 5-6a

shows the increase in maximum yearly populations (on a mass basis) of the first and sec-

ond algal compartments (which roughly correspond to green and blue-green algae, re-

spectively) with an increase in the phosphorus concentration of water entering Ashumet

Pond. Figure 5-6b shows the same analysis for the third algal compartment (roughly cor-

responding to diatoms), as well as the total of all three algal compartments.
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It is quite clear from Figures 5-6a and 5-6b that algal populations in Ashumet Pond will

increase significantly with an increased loading of phosphorus (assumed to all be in the

form of orthophosphate and thus available for algal uptake). In fact, there is almost a lin-

ear relationship between inflowing phosphorus concentrations and maximum yearly algal

populations in the top layer of the pond.

0.02 0.04 0.06 0.08 0.1

Inflowing phosphorus Concentration (mg/L)

. Max. Algael Population
. Max. Algae2 Population

K U

Ur

U

0.
0
C

U)

0
(U ..J

M-0CLE

E

x(X
M

**

* *U

* Max. Algae3 Population

* Max. Total Algae Population

0.12

i

I



In order to achieve the stated goal of comparing Ashumet Pond trophic state pre-

dictions given by steady-state models with the results of CE-QUAL-R1 modeling, it is

necessary to be able to correlate algal biomass with trophic state. Unfortunately, there is

no simple way of directly making this correlation. The main reason for this complexity is

that different ponds will have different assimilative capacities for biomass. Furthermore,

different algal species will have different effects upon the overall well-being of a pond.

However, chlorophyll-a can be used as an intermediary in the transition from algal

biomass to trophic state. Because chlorophyll-a is produced by algae when they undergo

photosynthesis in the growth process, chlorophyll-a concentrations in the water are a

good indicator of biomass. Additionally, chlorophyll-a is largely responsible for the

green color associated with a eutrophic lake. Thus, a high concentration of chlorophyll-a

is usually a sign that a lake is becoming eutrophic. Because chlorophyll-a is such a good

indicator of trophic state, and because of the relative ease with which it can be measured,

chlorophyll-a is often used in trophic state studies. As discussed in Section 4.3.3, Carlson

(1977) gave a direct quantitative relationship between chlorophyll-a concentrations and

the trophic state of a water body as represented by the Trophic State Index, or TSI.

Ratios of biomass to chlorophyll-a concentrations vary seasonally and from water

body to water body. However, there have been good, general relationships proposed to

correlate these two water quality parameters. One of the simplest correlations was per-

formed by Dolan et al. (1978). In this study, chlorophyll-a concentrations were compared

to total phytoplankton biomass during on many different days in 1974 for Saginaw Bay,

Michigan. The ratio of these two parameters was found to vary quite significantly with

the season. The results of this study are shown in Table 5-1 for different days from April

through December.

The next step in relating phytoplankton biomass to a corresponding trophic state

is to convert biomass data as predicted by CE-QUAL-R1 to coinciding chlorophyll-a

concentrations. For this purpose, the ratios of chlorophyll-a to biomass given in Table 5-

1 have been linearly interpolated to provide ratios on a daily basis. Finally, using this

daily ratio, chlorophyll-a data have been generated that correspond to biomass data given



Table 5-1. The Ratio of Chlorophyll-a Concentration (in ýtg/L) to Total Phytoplank-
ton Biomass (in mg/L) (Adapted from Dolan et al., 1978)

Date Sample Size Mean Standard Error
4/17 23 6.42 1.14
4/28 35 3.29 1.12
5/13 32 2.75 1.12
6/3 34 5.58 1.13

6/18 35 9.12 1.14
7/8 30 32.14 1.19

7/25 31 15.49 1.08
8/13 32 11.94 1.06
9/18 34 18.92 1.08
10/6 34 10.70 1.06

11/11 20 7.03 1.09
12/17 10 9.03 1.21

in model output. It is important to note that Carlson's Trophic State Index (see Section

4.3.3) only uses chlorophyll-a data obtained during the summer months. Thus, the only

biomass data used in calculating chlorophyll-a concentrations is data for the summer

months. The results of this conversion to chlorophyll-a concentrations is shown in Figure

5-7.
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As can be seen from Figure 5-7, there is not much variation in summer averaged

chlorophyll-a concentrations with increasing phosphorus load. There is however an up-

ward trend in chlorophyll-a as would be expected. The reason that there is actually a de-

crease in chlorophyll-a concentration at the highest phosphorus loading has to do with the

timing of the peak algal populations at this loading. With such a high loading, algal

populations peak at an earlier date (around mid-June) than do algal populations under

smaller phosphorus loadings. As can be seen from Table 5-1, there is a sharp increase in

the ratio of chlorophyll-a concentration to biomass from mid-June through July. Thus,

when algal populations peak around early July, chlorophyll-a concentrations associated

with this peak will be much higher than chlorophyll-a concentrations associated with a

peak in mid-June. Therefore, because algal populations peak around mid-June for the

highest populations, the chlorophyll-a concentrations associated with this peak are

smaller than those associated with lower phosphorus loadings which induce algal peaks at

later dates.

Finally, the chlorophyll-a concentrations shown in Figure 5-8 can be related to

Ashumet Pond trophic state using Carlson's Trophic State Index. Figure 5-8 shows Carl-

son's Trophic State Index values as a function of phosphorus influx to Ashumet Pond as

predicted by CE-QUAL-R1.
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As would be expected on the basis of the chlorophyll-a data, there is not much variation

in TSI values with changes in phosphorus influx to Ashumet Pond.

5.5.3 Conclusions

As discussed previously, values of the TSI in the 50's roughly correspond to a

mesotrophic pond. Although this result is consistent with steady-state estimates of

Ashumet Pond trophic state under present loading conditions, it is significantly lower

than the level of eutrophication predicted under heavy future loading scenarios by the

steady-state models. There are many possible reasons for this discrepancy. The first rea-

son could be simply that Ashumet Pond has a greater assimilative capacity than would be

predicted on the basis of steady-state models alone. The next reason for this inconsis-

tency could be that the ratios that were used to correlate biomass to chlorophyll-a are not

accurate for Ashumet Pond. In fact, the data used (Dolan et al., 1978) are quite site spe-

cific and were only done for one particular year. Because these data were never repli-

*

fin



cated, their universality is very much in doubt. If such a correlation of chlorophyll-a to

biomass could be obtained specifically for Ashumet Pond, then the conversion from bio-

mass to chlorophyll-a could be made with much more confidence. However, when bio-

mass and chlorophyll-a data collected from Ashumet Pond (HAZWRAP, 1995a;

HAZWRAP, 1995b; HAZWRAP, 1995c; CDM Federal Programs Corporation, 1995a;

CDM Federal Programs Corporation, 1995b) were analyzed for such a correlation, none

was apparent. This lack of correlation with site-specific data casts even more doubt upon

the validity of a conversion from biomass to chlorophyll-a for Ashumet Pond.

A further explanation for this inconsistency could be that Ashumet Pond is indeed

not phosphorus limited during some portions of the year, as suggested by previously ob-

tained data (see Section 4.1). In fact, with heavy phosphorus loading from the STP

plume, ratios of N:P in the pond will steadily decline. Thus, if N:P ratios drop low

enough (i.e., phosphorus concentrations in the pond become high enough), the pond

could very well become nitrogen limited. In this case, increased phosphorus loading

would have little or no impact upon the trophic state of the pond. This theory of nitrogen

limitation could be tested by comparing total nitrogen to total phosphorus numbers pre-

dicted by CE-QUAL-R1. Yet, such a comparison of total nitrogen and total phosphorus

predictions is not possible because CE-QUAL-R1 only gives predictions for biologically

available phosphorus (e.g., orthophosphate) not for total phosphorus. CE-QUAL-R1

does, though, predict whether nitrogen, phosphorus, or light is limiting in each layer of

the pond for each time period. Under all phosphorus loading conditions described in

Section 4.4, phosphorus is predicted to be limiting in the top layers, and light is predicted

to be limiting in the lower layers. However, as discussed in Section 3.2.1, there is not a

definite division between an N:P ratio that indicates phosphorus limitation, and that

which indicates nitrogen limitation. If Ashumet Pond were indeed nitrogen limited in

some layers, it would not be strongly nitrogen limited (i.e., the N:P ratio would be on the

border of nitrogen and phosphorus limitation). Therefore, the nutrient limitation given by

CE-QUAL-R1 might not be entirely accurate, as the ratio used by the model to determine

the limiting nutrient might not strictly hold in this case.



All of these possible reasons may contribute to the discrepancy between steady-

state model predictions and CE-QUAL-R1 predictions. However, in this case it is diffi-

cult to determine the cause of the problem because a rigorous calibration and verification

of the CE-QUAL-R1 model was not attempted. In the course of calibration and verifica-

tion it could be determined, on the basis of parameter adjustment, which type of model is

most applicable to Ashumet Pond. Additionally, the model that is most capable (if any)

of accurate predictions would be determined in the verification procedure by comparing

model predicted data to newly obtained data. Nonetheless, such a calibration and verifi-

cation procedure is out of the scope of this project, and would have required much addi-

tional time that was not available.



6. RECOMMENDATIONS

Because the CE-QUAL-R1 modeling study yields substantially different results

than the steady-state modeling study, it is recommended that further study be undertaken

before such drastic action as constructing a barrier wall is begun. A first step for such

further study is to determine whether or not Ashumet Pond will remain phosphorus lim-

ited under heavy loadings from the STP plume, as discussed above. If it is determined

that Ashumet Pond may indeed be nitrogen limited during some or all parts of the year,

then it will be apparent that the steady-state models discussed in this paper are not appli-

cable to Ashumet Pond. In this case, further detailed numerical modeling may in fact be

warranted.

Regardless of the results of this first step, the second step for further study is the

rigorous calibration and verification procedure discussed above. In the calibration step,

another detailed eutrophication model such as the U.S. Army Corps of Engineers' (1978)

Water Quality for River-Reservoir Systems (WQRRS) model should be used. By input-

ting parameters similar to those used in the CE-QUAL-R1 model, it can be determined

whether the CE-QUAL-R1 model is yielding erroneous results. If results from the

WQRRS modeling match the results from CE-QUAL-R1, then it can be stated with much

confidence that the inconsistency in results between CE-QUAL-R1 and the steady-state

models is not due to problems with CE-QUAL-R1.

However, such a result does not then mean that the steady-state models are giving

accurate predictions. In order to make this determination, a verification procedure must

be undertaken. In the verification procedure, steady-state model results are compared to

newly collected data to determine whether the steady-state models can accurately predict

future conditions. In order to determine if these models have predictive capabilities under

high phosphorus loading conditions, one must wait until high loading conditions are ex-

perienced. Unfortunately, by the time these high loading conditions are seen, Ashumet

Pond may already be quite eutrophic.



If the further study and data collection necessary for model calibration and verifi-

cation are not possible (under budget constraints or the like), it is recommended that a

"wait and see" approach be utilized. Because detailed numerical modeling has failed to

show that the STP plume will have a detrimental effect upon Ashumet Pond, it is best not

to assume that the pond will become eutrophic in the near future on the basis of steady-

state predictions alone. Although steady-state predictions such as the Vollenweider

equation have been demonstrated to be quite predictive in many instances, they are far

from being applicable to all cases. It may very well be the case that such steady-state

models (for any number of reasons discussed above) may not be applicable to the present

and future condition of Ashumet Pond. The advantage of the "wait and see" approach is

that if the steady-state models are proven to hold under increased phosphorus loading

conditions, there will still be time to contain the plume before the zones of heaviest phos-

phorus loading reach Ashumet Pond. If, however, the steady-state models are predicting

significantly more eutrophic conditions than the pond is experiencing, then steady-state

models can be deemed inaccurate for this case. In this case, expensive containment op-

tions that would be recommended on the basis of steady-state predictions alone will not

need to be exercised.
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Appendix A. Example CE-THERM-R1 Data Set
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Appendix B. Example CE-THERM-R1 Output



THIS IS 'CE-THERM-R1',THE THERMAL ANALYSIS PORTION OF 'CE-QUAL-R1'

CE-QUAL-RI IS A RESEARCH TOOL FOR RESERVOIR ECOSYSTEM ANALYSIS USED BY THE WATER QUALITY MODELING GROUP, WATERWAYS
EXPERIMENT STATION. NOTE THAT ORGANIZATIONAL AND PROCEDURAL CLARITY HAVE PRIORITY OVER COMPUTATIONAL EFFICIENCY
VAX VERSION. LAST UPDATE = JAN 27, 1986.

1993 ASHUMET POND
TRIAL DATA SET

LAST UPDATED: FEBRUARY 25, 1997

DATA SUMMARY:
START DAY

INITIALIZATION DAY 105
8
NUMBER OF TRIBUTARIES 1

EMP.WIND COEF,BB0.17E-08

MIXING PARAMETERS .......

EXTINC.COEF,1/M 0.500
AREA COEFFICIENTS .......

WIDTH COEFFICIENTS......

STOP DAY

LATITUDE,DEG

MIN.LAYER THKNS,M

'PEFRAC'

INFLO CRIT(KG/M3) 0
ACOEF(1)

WCOEF(1)

365 COMP.INTERVAL,HRS 6

41.60 LONGITUDE,DEG 70.50

0.4 MAX.LAYER THKNS,M 1.6

0.30 'SHELCF' 1.00

.0100 SURFACE RAD.FRACT. 0.400
0.000 ACOEF(2) 2362.000

50.263 WCOEF(2)

OUTPUT INTERVAL,HRS 720 NUMBER OF OUTLETS

TURBIDITY FACTOR

INIT.POOL HGT,M

'CDIFW'

PUMPBACK COEF
ACOEF(3)

1.000 TSSETL,M/DAY

0.1 EMP.WIND COEF,AAO.10E-

19.8 EFF.RES.LENGTH,M 135

0.10E-04 'CDIFF'

0.00
1958.700

0.10E-

EXTINS,1/M-MG/L 0.0

1.0

INITIAL GEOMETRIC ATTRIBUTES AND TEMPERATURE PROFILE:

LOWER UPPER

SURFACE SURFACE
ELEVATION ELEVATION

M M

19.00
18.00
17.00
16.00
15.00
14.00
13.00
12.00
11.00
10.00

19.80
19.00
18.00
17.00
16.00
15.00
14.00
13.00
12.00
11.00

LAYER LOWER

THICKNESS SURFACE
M AREA

M2

0.80
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

751969.
677135.
606218.
539219.
476138.
416973.
361726.
310397.
262985.
219490.

UPPER

SURFACE
AREA
M2

814656.
751969.
677135.
606218.
539219.
476138.
416973.
361726.
310397.
262985.

LAYER

VOLUME
M3

626483.
714225.
641350.
572392.
507352.
446229.
389023.
335735.
286364.
240911.

TOTAL

VOLUME
UP TO
LOWER

SURFACE
M3

4904582.
4190357.
3549007.
2976614.
2469263.
2023034.
1634010.
1298275.
1011911.
771000.

LAYER TEMPERATUR

WIDTH
M

975.10
929.87
879.60
829.34
779.08
728.81
678.55
628.29
578.02
527.76

DEG C

0.00
8.10
7.99
7.89
7.78
7. 68
7.57
7.47
7.36
7.26

LAYER

NUMBER

20
19
18
17
16
15
14
13
12
11
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6.2 249.0 5.0 0.00

DAILY INFORMATION

HOUR DAY SIM.INT. ELEV INFLOW TEMP OUTFLOW TEMP IF REGULATION
M M3/S C M3/S C TARGET T. C.

2502 104 1 19.8 0.1 14.4
2508 104 2 19.8 0.1 14.4
2514 104 3 19.8 0.1 14.4

STATUS AT END OF SIMULATION HOUR 2520

0.1
0.1
0.1

PORT FLOW
M3/S

6.9
6.8
7.0

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

CLOUD COVER 0.78 AIR PRESSURE,MB 1017.05 WIND SPEED,KPH

S/W RAD,KC/M2/HR 2.1 L/W RAD,KC/M2/HR 267.8 VAPOR PRESSURE,MB

SURFACE ELEVATION,M: 19.8 EL.ABOVE MSL,M. 44.1

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TRIBUTARY INFLOW
M3/SEC

1 0.13

OUTFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:
PORT

1
2
3
4
5
6
7

TEMPERATURE
DEG C

14.4

LAYER

19
17
14
12

9
7
4
2

PORT FLOW
M3/S

0.0 2 0.0
0.0 2 0.0
0.0 2 0.0

THIS IS JULIAN DAY

24.40 DRYBULB TEMP,DEGC,

12.8 SAT.VAP.PRES,MB

TOT.DISS.SOLIDS SU
G/M3

32.8

PORT FLOW MORE?
M3/S

3 0.0 YES
3 0.0 YES
3 0.0 YES

105, CALENDAR DAY 15APR

12.8 DEWPOINT TEMP,DEGC, 10

10.5 EVAP.RATE,M/HR 0.00

TOTAL EVAP., M. 0.

SPENDED SOLIDS
G/M3

1.4

OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.10 TEMPERATURE,DEG C 7.1 TOT.DISS.SOLIDS,G/M3 229.9 SUSP.SOLIDS,G/M3

0.00 0.00 0.0000 1.0

TOTAL OUTFLOW,M3/SEC



TOT.DISS. SUSPENDED S/W LAYER
0 5 10 15 20 25 30 35 TEMP.

DEG. C

7.7
7.7
7.6
7.6
7.6
7.5
7.5
7. 4
7.3
7.2
7.2
7.1
7.0
6.9
6.7
6.6
6.5
6.4
6.3
6.3

SOLIDS SOLIDS RADIATION INFLOW OUTFLOW COEF.
G/M3 G/M3 KC/M2/HR M3/SEC M3/SEC M2/HR

1.6
1.6
1.6
1.7
1.7
1.7
1.7
1.9
2.3
2.8
3.2
3. 4
3.6
3.8
4.0
4.2
4.4
4.7
5.2
6.2

1. 11
0.66
0.39
0.23
0.14
0.08
0.05
0.03
0.02
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.01
0.01
0.01
0.00
0.01
0.00
0.01
0.00
0.00
0.00
0.01
0.01
0.00
0.01
0.00
0.00
0.01
0.00
0.00

206.9
207.0
207.1
207. 2
207.4
207.7
208.7
212.4
230.0
240.7
244.3
245.6
246.2
246.6
247.0
247.4
247.8
248.1
248.5
248.8

1.3079
0.9780
0.7734
0.8013
0.6938
0.5226
0.3155
0.0967
0.1097
0.1044
0.0928
0.0820
0.0732
0.0658
0.0597
0.0548
0.0503
0.0465
0.0395
0.0000

ELEVATION
M

19.8
19.0
18.0
17.0
16.0
15.0
14.0
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
2.9
1.9
0.9

DAILY INFORMATION

HOUR DAY SIM.INT. ELEV INFLOW TEMP OUTFLOW TEMP IF REGULATION
M M3/S C M3/S C TARGET T. C.

2520
2526
2532
2538
2544
2550
2556
2562
2568
2574
2580
2586
2592
2598
2604
2610
2616

105
105
105
105
106
106
106
106
107
107
107
107
108
108
108
1.08
109

19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8
19.8

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

PORT FLOW
M3/S

7.1
7.2
7.4
7.7
7.8
8.0
8. 1
8.2
8.3
8.3
8.5
8.6
8.7
8.7
8.8
9.0
9.1

PORT FLOW
M3/S

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

PORT FLOW
M3/S

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

D
D
D
D
D
D
*D
*D
*D
*D
D
D
D
D
D
D

D*

MORE?

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

LAYER DIFFUSION UPPER
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CLOUD COVER 0.08 AIR PRESSURE,MB 1008.63

S/W RAD,KC/M2/HR 16.6 L/W RAD,KC/M2/HR 257.0

WIND SPEED,KPH

VAPOR PRESSURE,MB

18.33 DRYBULB TEMP,DEGC, 15.3 DEWPOINT TEMP,DEGC, 6

9.7 SAT.VAP.PRES,MB 19.7 EVAP.RATE,M/HR

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.8 EL.ABOVE MSL,M. 44.1

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TOT.DISS.SOLIDS
G/M3

29.1

SUSPENDED SOLIDS
G/M3

1.3

OUTFLOWING QUANTITIES

TOTAL OUTFLOW,M3/SEC

FOR THIS COMPUTATION INTERVAL:
PORT

0.10 TEMPERATURE,DEG C

LAYER OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

13.1 TOT.DISS.SOLIDS,G/M3 216.3 SUSP.SOLIDS,G/M3

TOT.DISS. SUSPENDED
0 5 10 15 20 25 30 35 TEMP. SOLIDS SOLIDS

DEG.C G/M3 G/M3

17.1
17.1
17.1
17.1
17.1
17.1
14.6
14.0
13.6
13.4
13.2
12.1
11.8
11.4

208.7
208.7
208.7
208.7
208.7
208.7
197.3
209.0
210.1
210.3
210.4
211.3
211.7
213.3

0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

S/W
RADIATION
KC/M2/HR

8.37
5.06
3.07
1.86
1.13
0.63
0.36
0.21
0.13
0.07
0.04
0.03
0.01
0.01

LAYER LAYER DIFFUSION UPPER
INFLOW OUTFLOW COEF. ELEVATION
M3/SEC M3/SEC M2/HR M

0.00
0.00
0.00
0.00
0.00
0.00
0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.02
0.00
0.01
0.00
0.00
0.01
0.00
0.01
0.00
0.00
0.01

0.5002
0.5002
0.0595
0.0222
0.0237
0.0010
0.0024
0.0034
0.0045
0.0050
0.0006
0.0022
0.0016
0.0005

19.8
18.8
17.8
16.8
15.8
14.8
13.6
12.5
11.5
10.4
9.4
8.3
7.3
6.1

TRIBUTARY

1

INFLOW
M3/SEC

0.13

0.00

TEMPERATURE
DEG C

14.4
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3762
3768
3774
3780
3786
3792
3798
3804
3810
3816
3822
3828
3834
3840
3846
3852
3858
3864
3870
3876
3882
3888
3894
3900
3906
3912
3918
3924
3930

156
157
157
157
157
158
158
158
158
159
159
159
159
160
160
160
160
161
161
161
161
162
162
162
162
163
163
163
163

19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6
19.6

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

14.2
14.2
14 .1
14.1
14.3
14.5
14.4
14.4
14.6
14.7
14.6
14.7
14.9
15.0
15.2
15.2
15.4
15.6
15.6
15.6
15.7
15.8
15.6
15.6
16.0
16.3
16.1
16.1
16.4

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

TATUS AT END OF SIMULATION HOUR 3936

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

THIS IS JULIAN DAY 164, CALENDAR DAY 13JUN

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

CLOUD COVER

S/W RAD,KC/M2/HR

0.05 AIR PRESSURE,MB 1019.30 WIND SPEED,KPH

26.8 L/W RAD,KC/M2/HR 302.4 VAPOR PRESSURE,MB

18.80 DRYBULB TEMP,DEGC, 23.4 DEWPOINT TEMP,DEGC, 13

15.1 SAT.VAP.PRES,MB 24.1 EVAP.RATE,M/HR

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.6 EL.ABOVE MSL,M. 44.0

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TOT.DISS.SOLIDS
G/M3

25.4

SUSPENDED SOLIDS
G/M3

1.1

OUTFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:
PORT OUTFLOW,M3/SEC

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

TRIBUTARY INFLOW
M3/SEC

0.13

0.00

TEMPERATURE
DEG C

14.4

LAYER



0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

TOTAL OUTFLOW,M3/SEC 0.10 TEMPERATURE,DEG C 16.5 TOT.DISS.SOLIDS,G/M3 210.5 SUSP.SOLIDS,G/M3

TOT.DISS.
0 5 10 15 20 25 30 35 TEMP. SOLIDS

DEG.C G/M3

20.2
20.2
20.2
20.2
20.2
20.2
20.2
20.2
19.6
19.5
19.4
13.6
13.3
12.2
11.6
9.1
8.4
8.4

207.0
207.0
207.0
207.0
207.0
207.0
207.0
207.0
206.7
206.7
206.5
139.4
154.6
204.3
213.5
228.0
231.8
231.8

SUSPENDED
SOLIDS
G/M3

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1

S/W
RADIATION
KC/M2/HR

15.31
9.40
5.83
3.63
2.26
1.32
0.73
0.43
0.24
0.14
0.07
0.04
0.03
0.02
0.01
0.00
0.00
0.00

LAYER LAYER DIFFUSION UPPER
INFLOW OUTFLOW COEF. ELEVATION
M3/SEC M3/SEC M2/HR M

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.13
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.01
0.01
0.00
0.00
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.01
0.01
0.00
0.01
0.01

0.5507
0.0915
0.0290
0.0190
0.0290
0.0199
0.0237
0.0292
0.0344
0.0369
0.0005
0.0018
0.0005
0.0010
0.0005
0.0011
0.1684
0.0000

19.6
18.9
17.9
17.0
16.0
15.1
14.0
12.8
11.8
10.6
9.6
8.3
7.3
6.3
5.3
3.7
2.4
1.4

DAILY INFORMATION

HOUR DAY SIM.INT. ELEV INFLOW TEMP OUTFLOW TEMP IF REGULATION
M M3/S C M3/S C TARGET T. C.

PORT FLOW
M3/S

PORT FLOW
M3/S

PORT FLOW
M3/S

19.6 0.1
19.6 0.1
19.6 0.1
19.6 0.1

0.0

18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

3942 164
3948 164
3954 164
3960 165

14.4
14.4
14.4
14.4

0.1
0.1
0.1
0.1

16.5
16.5
16.7
16.9

MORE?

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

YES
YES
YES
YES
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0.0 2 0.0
0.0 2 0.0
0.0 2 0.0
0.0 2 0.0
0.0 2 0.0
0.0 2 0.0
0.0 2 0.0

STATUS AT END OF SIMULATION HOUR 4320
93

THIS IS JULIAN DAY 180, CALENDAR DAY 29JUN

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

CLOUD COVER

S/W RAD,KC/M2/HR

0.23 AIR PRESSURE,MB 1013.50

24.3 L/W RAD,KC/M2/HR 301.9

WIND SPEED,KPH

VAPOR PRESSURE,MB

13.03 DRYBULB TEMP,DEGC, 23.2 DEWPOINT TEMP,DEGC, 14

16.0 SAT.VAP.PRES,MB 30.4 EVAP.RATE,M/HR

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.5 EL.ABOVE MSL,M. 43.9

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TOT.DISS.SOLIDS
G/M3

23.3

SUSPENDED SOLIDS
G/M3

1.0

OUTFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:
PORT LAYER OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

TOTAL OUTFLOW,M3/SEC

0 5 10 15

0.10 TEMPERATURE,DEG C

20 25 30 35

18.1 TOT.DISS.SOLIDS,G/M3 189.5 SUSP.SOLIDS,G/M3

TOT.DISS.
TEMP. SOLIDS
DEG.C G/M3

0.0 19.10
0.0 9.31

0.00
0.00

0.1406 19.5
0.1406 19.0

4278
4284
4290
4296
4302
4308
4314

19.5
19.5
19.5
19.5
19.5
19.5
19.5

0.1
0.1
0.1
0.1
0.1
0.1
0.1

14.4
14.4
14.4
14.4
14.4
14.4
14.4

0. 1
0.1
0. 1
0. 1
0. 1
0. 1
0. 1

17.6
17.7
17.9
18.0
17.9
17.9
18.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0

YES
YES
YES
YES
YES
YES
YES

TRIBUTARY

1

INFLOW
M3/SEC

0.13

0.00

TEMPERATURE
DEG C

14.4

SUSPENDED
SOLIDS
G/M3

24.2
24.2

S/W
RADIATION
KC/M2/HR

0.0

211.7
211.7

LAYER
INFLOW
M3/SEC

LAYER
OUTFLOW
M3/SEC

DIFFUSION
COEF.
M2/HR

UPPER
ELEVATION

M

0.00
0.00
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4470
4476
4482
4488
4494
4500
4506
4512
4518
4524
4530
4536
4542
4548
4554
4560
4566
4572
4578
4584
4590
4596
4602
4608
4614

S 4620
4626
4632
4638
4644
4650

186
186
186
187
187
187
187
188
188
188
188
189
189
189
189
190
190
190
190
191
191
191
191
192
192
192
192
193
193
193
193

19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.4
19.4
19.4
19.4

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0.1
0.1
0.1
0. 1
0.1
0. 1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

14.4
14.4
14. 4
14.4
14.4
14.4
14.4
14.4
14.4
1]4 4
144 4
14. 4
144 4
14. 4
14. 4
144 4
14. 4
14. 4
144 4
144 4
144 4
144 4
144 4
144 4
144 4
14. 4
144 4
14. 4
14. 4

144 4

14 414 .4
14.4
14 .4
14.4
14.4
14.4
14 .4
14.4
14 .4
14 .4
14 .4
14.4
14.4
14 .4
14 .4
14 .4
14 .4
14.4
14.4
14.4
14 .4

0.1
0.1
0.1
0.1
0.1
0.1
0. 1
0.1
0. 1
0.1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0.1
0.1
0.1
0. 1
0. 1
0.1
0. 1
0.1
0.1
0.1
0.1
0. 1
0. 1

18.2
18.2
18.4
18.6
18.5
18.6
18.7
18.9
18.8
18.9
19.0
19.1
19.0
19.1
19.3
19.3
19.3
19.3
19.5
19.5
19.3
19.3
19.4
19.5
19.3
19.3
19.4
19.3
19.1
19.1
19.2

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

STATUS AT END OF SIMULATION HOUR 4656

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

THIS IS JULIAN DAY 194, CALENDAR DAY 13JUL

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

CLOUD COVER

S/W RAD,KC/M2/HR

0.12 AIR PRESSURE,MB 1015.27 WIND SPEED,KPH

22.6 L/W RAD,KC/M2/HR 321.3 VAPOR PRESSURE,MB

18.32 DRYBULB TEMP,DEGC, 26.8 DEWPOINT TEMP,DEGC, 13

15.6 SAT.VAP.PRES,MB 33.7 EVAP.RATE,M/HR

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.4 EL.ABOVE MSL,M. 43.8

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TEMPERATURE
DEG C

TOT.DISS.SOLIDS
G/M3

SUSPENDED SOLIDS
G/M3

0.13 14.4 21.6

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

TRIBUTARY INFLOW
M3/SEC

0.00

0.9



OUTFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:
PORT LAYER

19
16
14
11
8
6

OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

TOTAL OUTFLOW,M3/SEC 0.10 TEMPERATURE,DEG C 19.1 TOT.DISS.SOLIDS,G/M3 187.4 SUSP.SOLIDS,G/M3

TOT.DISS. SUSPENDED S/W LAYER LAYER
0 5 10 15 20 25 30 35 TEMP. SOLIDS SOLIDS RADIATION INFLOW OUTFLOW

DEG.C G/M3 G/M3 KC/M2/HR M3/SEC M3/SEC

25.9
25.9
25.9
25.9
25.9
25.9
25.9
25.9
24.2
21.5
16.2
14.7
14.6
13.8
12.7
11.9
11.7
10.0
9.8

217.3
217.3
217.3
217.3
217.3
217.3
217.3
217.3
212.5
195.7
108.8
67. 2
61. 0

128.4
180.3
201.7
203.9
220. 5
223.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.1
0.2

9.40
5.94
3.79
2.43
1.47
0.86
0.54
0.33
0.22
0.13
0.08
0.05
0.03
0.02
0.01
0.01
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.13
0.00
0.00
0.00
0.00
0.00

0.01
0.01
0.01
0.01
0.00
0.01
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.01
0.00
0.01
0.01
0.01
0.00

DIFFUSION
COEF.
M2/HR

0.5398
0.5398
0.5398
0.0634
0.0243
0.0253
0.0081
0.0005
0.0005
0.0005
0.0005
0.0068
0.0005
0.0005
0.0005
0.0023
0.0005
0.0017
0.0000

DAILY INFORMATION

HOUR DAY SIM.INT. ELEV INFLOW TEMP OUTFLOW TEMP IF REGULATION
M M3/S C M3/S C TARGET T. C.

PORT FLOW
M3/S

PORT FLOW
M3/S

PORT FLOW
M3/S

1 0.0 2 0.0 3 0.0 YES

0.0

19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

UPPER
ELEVATION

M

19.4
18.1
17.2
16.3
15.4
14.4
13.3
12.4
11.4
10.5
9.5
8.7
7.7
6.4
5.5
4.1
3.2
2.4
1.2

MORE?

4662 194 19.4 0.1 14.4 0.1 18.9
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4980
4986
4992
4998
5004
5010
5016
5022
5028
5034
5040
5046
5052
5058
5064
5070
5076
5082
5088
5094
5100
5106
5112
5118
5124
5130
5136
5142
5148
5154

207
207
208
208
208
208
209
209
209
209
210
210
210
210
211
211
211
211
212
212
212
212
213
213
213
213
214
214
214
214

19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0. 1
0.1
0.1
0.1
0. 1
0.1
0. 1
0.1
0.1
0.1
0. 1
0.1
0.1
0.1
0.1
0.1
0.1
0. 1
0.1
0.1
0.1
0.1
0.1

14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4

0.1
0.1
0.1
0.1
0.1
0. 1
0. 1
0. 1
0.1
0.1
0.1
0.1
0. 1
0.1
0. 1
0.1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0.1
0. 1
0. 1
0. 1
0. 1
0.1
0.1
0. 1

END OF SIMULATION HOUR 5160

17.8
18.0
18.0
18.0
18.1
18.2
18.3
18.3
18.3
18.5
18.4
18.4
18.6
18.7
18.6
18.7
18.7
18.8
18.8
18.8
18.8
18.9
18.8
18.8
18.9
19.0
19.1
19.1
19.1
19.1

THIS IS JULIAN DAY 215, CALENDAR DAY 3AUG

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

CLOUD COVER

S/W RAD,KC/M2/HR

0.32 AIR PRESSURE,MB 1013.40 WIND SPEED,KPH

14.1 L/W RAD,KC/M2/HR 318.6 VAPOR PRESSURE,MB

14.73 DRYBULB TEMP,DEGC, 25.8 DEWPOINT TEMP,DEGC, 20

23.4 SAT.VAP.PRES,MB 34.0 EVAP.RATE,M/HR

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.3 EL.ABOVE MSL,M. 43.6

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TEMPERATURE
DEG C

14.4

TOT.DISS.SOLIDS
G/M3

18.9

SUSPENDED SOLIDS
G/M3

0.8

OUTFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1
STATUS AT
93

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

TRIBUTARY

1

INFLOW
M3/SEC

0.13

0.00

I m I -m I I



PORT LAYER

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

TOTAL OUTFLOW,M3/SEC 0.10 TEMPERATURE,DEG C 19.3 TOT.DISS.SOLIDS,G/M3 170.0 SUSP.SOLIDS,G/M3

TOT.DISS.
0 5 10 15 20 25 30 35 TEMP. SOLIDS

DEG.C G/M3

D

D *
D *

D *
D *
D *
D *
D *
D *
D*

D
D*

D *

26.0
26.0
26.0
26.0
26.0
26.0
26.0
23.4
23.1
22.2
18.0
15.8
15.1
14.5
14.5
14.3
12.9
12.1
11.9
10.7

223.7
223.7
223.7
223.7
223.7
223.7
223.7
221.8
221.0
211.8
126.9
83.5
70.9
43.7
43.5
67.4

162.8
193.3
199.5
213.5

SUSPENDED
SOLIDS
G/M3

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.2

S/W
RADIATION
KC/M2/HR

6.59
4.22
2.73
1.78
1.11
0.67
0.43
0.28
0.19
0.12
0.09
0.06
0.04
0.02
0.01
0.01
0.00
0.00
0.00
0.00

LAYER LAYER DIFFUSION UPPER
INFLOW OUTFLOW COEF. ELEVATION
M3/SEC M3/SEC M2/HR M

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.07
0.06
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.01
0.01
0.00
0.01
0.01
0.00
0.00
0.01
0.00
0.00
0.01
0.01
0.01
0.00
0.01
0.00
0.01
0.00

0.2254
0.0151
0.0044
0.0038
0.0042
0.0047
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0048
0.0005
0.0005
0.0005
0.0005
0.0005
0.0000

19.3
18.2
17.3
16.4
15.6
14.6
13.6
12.7
11.8
11.1
10.2
9.5
8.8
7.9
6.9
5.9
4.8
3.2
1.9
1.1

DAILY INFORMATION

HOUR DAY SIM.INT. ELEV INFLOW TEMP OUTFLOW TEMP IF REGULATION
M M3/S C M3/S C TARGET T. C.

PORT FLOW
M3/S

PORT FLOW
M3/S

PORT FLOW
M3/S

5160 215 4 19.3 0.1 14.4 0.1 19.3

0.0

20
19
18
17
16

<O 15
14

13
12
11
10
9
8
7
6
5
4
3
2
1

MORE?

OUTFLOW,M3/SEC

0.0 2 0.0 3 0.0 YES



5166
5172
5178
5184
5190
5196
5202
5208
5214
5220
5226
5232
5238
5244
5250
5256
5262
5268
5274
5280
5286
5292
5298
5304
5310

- 5316
o 53220

5328
5334
5340
5346
5352
5358
5364
5370

215
215
215
216
216
216
216
217
217
217
217
218
218
218
218
219
219
219
219
220
220
220
220
221
221
221
221
222
222
222
222
223
223
223
223

19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14. 4
14.4
14.4
14.4
14.4
14. 4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

END OF SIMULATION HOUR 5376

19.1
19.2
19.2
19.2
19.0
19.0
19.0
19.0
18.9
18.8
18.9
18.9
18.7
18.7
18.7
18.8
18.6
18.6
18.7
18.5
18.4
18.4
18.6
18.6
18.5
18.5
18.6
18.6
18.5
18.5
18.6
18.6
18.5
18.5
18.6

THIS IS JULIAN DAY 224, CALENDAR DAY 12AUG

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

CLOUD COVER

S/W RAD,KC/M2/HR

0.34 AIR PRESSURE,MB 1016.65 WIND SPEED,KPH

9.8 L/W RAD,KC/M2/HR 290.2 VAPOR PRESSURE,MB

14.05 DRYBULB TEMP,DEGC, 20.6 DEWPOINT TEMP,DEGC, 16

18.9 SAT.VAP.PRES,MB 29.9 EVAP.RATE,M/HR

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.2 EL.ABOVE MSL,M. 43.6

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

INFLOW TEMPERATURE TOT.DISS.SOLIDS

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

1
STATUS AT

93

0.00

m -0 1 -1

TRIBUTARY SUSPENDED SOLIDS



M3/SEC

0.13

OUTFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:
PORT

DEG C

14.4

LAYER

G/M3

17.8

OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

TOTAL OUTFLOW,M3/SEC 0.10 TEMPERATURE,DEG C 18.6 TOT.DISS.SOLIDS,G/M3 167.6 STUSP.SOLIDS,G/M3

TOT.DISS.
0 5 10 15 20 25 30 35 TEMP. SOLIDS

DEG.C G/M3

23.9
23.9
23.9
23.9
23.9
23.9
23.9
23.9
23.9
22.3
18.7
16.4
15.4
14.6
14.5
14.3
13.0
12.2
12.2
11.8
11.2

227.1
227.1
227.1
227.1
227.1
227.1
227.1
227.1
227.1
202.9
134.1
90.6
70.2
42.0
36.1
61.5

157.4
190.3
191.7
198.8
207.8

SUSPENDED S/W
SOLIDS RADIATION
G/M3 KC/M2/HR

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.2

4.80
3.09
2.01
1.32
0.83
0.51
0.33
0.21
0.15
0.10
0.07
0.05
0.03
0.02
0.01
0.00
0.00
0.00
0.00
0.00
0.00

LAYER LAYER DIFFUSION UPPER
INFLOW OUTFLOW COEF. ELEVATION
M3/SEC M3/SEC M2/HR M

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.13
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.01
0.00
0.01
0.00
0.01
0.00
0.00

0.1896
0.1896
0.0204
0.0071
0.0031
0.0049
0.0065
0.0091
0.0005
0.0005
0.0005
0.0005
0.0005
0.0015
0.0005
0.0005
0.0005
0.0012
0.0005
0.0005
0.0000

19.2
18.2
17.3
16.5
15.7
14.7
13.7
12.9
12.0
11.3
10.5
9.8
9.2
8.4
7.3
5.8
4.4
2.8
1.9
1.0
0.6

DAILY INFORMATION

G/M3

0.8

0.0
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5976
5982
5988
5994
6000
6006
6012
6018
6024
6030
6036
6042
6048
6054
6060
6066
6072
6078
6084
6090

249
249
249
249
250
250
250
250
251
251
251
251
252
252
252
252
253
253
253
253

19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1
19.1

0.1
0. 1
0. 1
0.1
0.1
0. 1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0. 1
0.1
0.1
0. 1
0. 1
0.1
0. 1
0. 1
0. 1
0. 1

18.8
18. 6
18.5
18.6
18.5
18.5
18.4
18.4
18.4
18. 3
18.3
18.3
18.3
18.3
18.3
18.3
18.1
17.8
17.6
17.6

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

STATUS AT END OF SIMULATION HOUR 6096

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

THIS IS JULIAN DAY 254, CALENDAR DAY 11SEP

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

CLOUD COVER

S/W RAD,KC/M2/HR

0.13 AIR PRESSURE,MB 1020.78

0.0 L/W RAD,KC/M2/HR 261.6

WIND SPEED,KPH

VAPOR PRESSURE,MB

19.02 DRYBULB TEMP,DEGC, 16.6 DEWPOINT TEMP,DEGC, 8

10.9 SAT.VAP.PRES,MB 24.9 EVAP.RATE,M/HR

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.1 EL.ABOVE MSL,M. 43.5

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TOT.DISS.SOLIDS
G/M3

14.0

SUSPENDED SOLIDS
G/M3

0.6

OUTFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:
PORT

1
2
3
4
5
6
7
8

LAYER

24
21
18
14
10
8
5
3

OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

TRIBUTARY INFLOW
M3/SEC

0.13

0.00

TEMPERATURE
DEG C

14.4



0.10 TEMPERATURE,DEG C 17.5 TOT.DISS.SOLIDS,G/M3 144.7 SUSP.SOLIDS,G/M3

TOT.DISS.
0 5 10 15 20 25 30 35 TEMP. SOLIDS

DEG.C G/M3

20.8
20.8
20.8
20.8
20.8
20.8
20.8
20.8
20.8
20.8
20.8
20.8
16.9
15.5
15.0
14.7
14.6
14 .4
14.4
14.4
13.5
13.1
12.6
12.5

227.1
227.1
227.1
227.1
227.1
227. 1
227. 1
227. 1
227.1
227.1
227.1
227.1
82.2
52.2
40.6
33.2
30.7
27.3
27.3
30.8

118.4
147.5
171.3
176.7

SUSPENDED S/W
SOLIDS RADIATION
G/M3 KC/M2/HR

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.1
0.1
0.1
0.1
0.2

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

LAYER LAYER
INFLOW OUTFLOW
M3/SEC M3/SEC

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.06
0.04
0.03
0.00
0.00
0.00
0.00
0.00

0.00
0.01
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.01
0.00
0.01
0.00
0.00

DAILY INFORMATION

HOUR DAY SIM.INT. ELEV INFLOW TEMP OUTFLOW TEMP IF REGULATION
M M3/S C M3/S C TARGET T. C.

6102
6108
6114
6120
6126
6132
6138

254
254
254
255
255
255
255

19.1
19.1
19.1
19.1
19.1
19.1
19.1

0.1
0.1
0.1
0.1
0.1
0.1
0.1

14.4
14.4
14.4
14.4
14.4
14.4
14.4

0.1
0.1
0.1
0.1
0.1
0.1
0.1

PORT FLOW
M3/S

17.3
17.3
17.3
17.3
17.2
17.1
17.3

PORT FLOW
M3/S

0.0
0.0
0.0
0.0
0.0
0.0
0.0

PORT FLOW
M3/S

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

DIFFUSION
COEF.
M2/HR

0.5946
0.5946
0.5946
0.5946
0.5946
0.5946
0.5946
0.5946
0.5946
0.5946
0.5946
0.0005
0.0005
0.0015
0.0025
0.0081
0.0041
0.1136
0.0054
0.0005
0.0007
0.0005
0.0010
0.0000

UPPER
ELEVATION

M

19.1
18.4
17.5
16.7
15.9
15.0
14.1
13.3
12.6
12.0
11.3
10.7
10.2
9.6
8.9
8.1
7.1
6.1
5.3
4.4
3.1
1.9
1.0
0.5

MORE?

YES
YES
YES
YES
YES
YES
YES

TOTAL OUTFLOW,M3/SEC 0.0
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0.0 2 0.0
0.0 2 0.0
0.0 2 0.0
0.0 2 0.0
0.0 2 0.0
0.0 2 0.0
0.0 2 0.0
0.0 2 0.0

STATUS AT END OF SIMULATION HOUR 6816
93

THIS IS JULIAN DAY 284, CALENDAR DAY 11OCT

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

CLOUD COVER

S/W RAD,KC/M2/HR

0.75 AIR PRESSURE,MB 1015.12

0.0 L/W RAD,KC/M2/HR 244.1

WIND SPEED,KPH

VAPOR PRESSURE,MB

18.58 DRYBULB TEMP,DEGC, 7.4 DEWPOINT TEMP,DEGC, 4

8.8 SAT.VAP.PRES,MB 14.9 EVAP.RATE,M/HR

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.0 EL.ABOVE MSL,M. 43.4

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TOT.DISS.SOLIDS
G/M3

10.2

SUSPENDED SOLIDS
G/M3

0.4

OUTFLOWING QUANTITIES

TOTAL OUTFLOW,M3/SEC

FOR THIS COMPUTATION INTERVAL:
PORT

0.10 TEMPERATURE,DEG C

LAYER OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

12.7 TOT.DISS.SOLIDS,G/M3 192.7 SUSP.SOLIDS,G/M3

0 5 10 15 20 25 30 35
TOT.DISS.

TEMP. SOLIDS
DEG.C G/M3

SUSPENDED S/W
SOLIDS RADIATION
G/M3 KC/M2/HR

12.7 192.7 0.0 0.00

LAYER LAYER DIFFUSION UPPER
INFLOW OUTFLOW COEF. ELEVATION
M3/SEC M3/SEC M2/HR M

0.13 0.00 0.5460 19.0

6768
6774
6780
6786
6792
6798
6804
6810

282
282
282
282
283
283
283
283

19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4

0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1

14.5
14.0
13.8
13.7
13.4
13.1
12.9
12.9

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

YES
YES
YES
YES
YES
YES
YES
YES

TRIBUTARY INFLOW
M3/SEC

0.13

0.00

TEMPERATURE
DEG C

14.4

0.0
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AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

CLOUD COVER

S/W RAD,KC/M2/HR

0.04 AIR PRESSURE,MB 1022.35

0.0 L/W RAD,KC/M2/HR 213.2

WIND SPEED,KPH

VAPOR PRESSURE,MB

17.92 DRYBULB TEMP,DEGC, 7.0 DEWPOINT TEMP,DEGC, -1

5.8 SAT.VAP.PRES,MB 10.2 EVAP.RATE,M/HR

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.0 EL.ABOVE MSL,M. 43.4

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TOT. DISS.SOLIDS
G/M3

6.5

SUSPENDED SOLIDS
G/M3

0.3

OUTFLOWING QUANTITIES

TOTAL OUTFLOW,M3/SEC

FOR THIS COMPUTATION INTERVAL:
PORT

0.10 TEMPERATURE,DEG C

LAYER OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

7.1 TOT.DISS.SOLIDS,G/M3 183.5 SUSP.SOLIDS,G/M3

TOT.DISS. SUSPENDED S/W
0 5 10 15 20 25 30 35 TEMP. SOLIDS SOLIDS RADIATION

DEG.C G/M3 G/M3 KC/M2/HR

7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1
7.1

183.5
183.5
183.5
183.5
183.5
183.5
183.5
183.5
183.5
183.5
183.5

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

LAYER LAYER DIFFUSION
INFLOW OUTFLOW COEF.
M3/SEC M3/SEC M2/HR

0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00

0.4779
0.4779
0.4779
0.4779
0.2873
0.2172
0.1783
0.1533
0.0953
0.1564
0.2219

TRIBUTARY INFLOW
M3/SEC

0.13

0.00

TEMPERATURE
DEG C

14.4

0.0

UPPER
ELEVATION

M

19.0
18.0
17.1
16.3
15.5
14.6
13.7
13.0
12.2
11.6
11.0
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8028
8034
8040
8046
8052
8058
8064
8070
8076
8082
8088
8094
8100
8106
8112
8118
8124
8130

334
334
335
335
335
335
336
336
336
336
337
337
337
337
338
338
338
338

19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

END OF SIMULATION HOUR 8136

14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4

0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0. 1
0.1
0.1
0.1
0. 1
0.1
0. 1
0.1
0. 1
0. 1
0. 1
0. 1

THIS IS JULIAN DAY 339, CALENDAR DAY 5DEC

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

CLOUD COVER

S/W RAD,KC/M2/HR

0.36 AIR PRESSURE,MB 1006.80

0.0 L/W RAD,KC/M2/HR 206.1

WIND SPEED,KPH

VAPOR PRESSURE,MB

21.10 DRYBULB TEMP,DEGC, 5.0 DEWPOINT TEMP,DEGC, 2

6.8 SAT.VAP.PRES,MB 8.8 EVAP.RATE,M/HR

TOTAL EVAP., M.
62
SURFACE ELEVATION,M: 19.0 EL.ABOVE MSL,M. 4

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TOT. DISS. SOLIDS
G/M3

3.3

SUSPENDED SOLIDS
G/M3

0.1

OUTFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:
PORT

1
2
3
4
5
6

LAYER

24
22
19
15
11
8
5
2

OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

5.0
5.0
4.9
4.8
4.8
4.8
4.8
4.8
4.8
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
5.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

STATUS AT
93

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

TRIBUTARY INFLOW
M3/SEC

0.13

0.00

TEMPERATURE
DEG C

14.4



5.0 TOT.DISS.SOLIDS,G/M3 175.6 SUSP.SOLIDS,G/M3

TOT.DISS. SUSPENDED S/W
0 5 10 15 20 25 30 35 TEMP. SOLIDS SOLIDS RADIATION

DEG.C G/M3 G/M3 KC/M2/HR

5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.1
5.0
5.0
5.0
5.0
5.0
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9

175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.4
175.5
175.6
175.6
175.7
175.8
175.9
175.9
176.0
176.0
176.1
176.1
176.1
176.1
176.2
176.2

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

LAYER
INFLOW
M3/SEC

0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

DAILY INFORMATION

HOUR DAY SIM.INT. ELEV INFLOW TEMP OUTFLOW TEMP IF REGULATION
M M3/S C M3/S C TARGET T. C.

PORT FLOW
M3/S

PORT FLOW
M3/S

PORT FLOW
M3/S

19.0 0.1 14.4 0.1 5.0

STATUS AT END OF SIMULATION HOUR 8142

0.0 2 0.0 3 0.0 YES

THIS IS JULIAN DAY 339, CALENDAR DAY 5DEC

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

20.40 DRYBULB TEMP,DEGC, 4.4 DEWPOINT TEMP,DEGC, 0

LAYER
OUTFLOW
M3/SEC

0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00

DIFFUSION
COEF.
M2/HR

0.8799
0.8493
0.7425
0.6522
0.5829
0.5195
0.4761
0.4386
0.3924
0.3752
0.3629
0.3568
0.3528
0.3525
0.3577
0.3697
0.3884
0.4099
0.4393
0.4701
0.5185
0.5948
0.7145
0.0000

UPPER
ELEVATION

M

19.0
17.6
16.8
16.0
15.2
14.3
13.3
12.6
11.8
11.2
10.5
10.0
9.4
8.8
8.2
7.4
6.5
5.7
5.0
4.2
3.6
2.8
1.8
0.8

8136 339

MORE?

TOTAL OUTFLOW,M3/SEC 0.10 TEMPERATURE,DEG C 0.0

CLOUD COVER 0.15 AIR PRESSURE,MB 1009.00 WIND SPEED,KPH



S/W RAD,KC/M2/HR 0.0 L/W RAD,KC/M2/HR 204.0

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.0 EL.ABOVE MSL,M. 43.4

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TOT. DISS. SOLIDS
G/M3

3.3

SUSPENDED SOLIDS
G/M3

0.1

OUTFLOWING QUANTITIES

PfT)pnT. r)TTIPVT.C~W Ml /Q •r

FOR THIS COMPUTATION INTERVAL:
PORT

n in MVMDVVPnTrln nVt- r

LAYER

24
22
19
15
11

8
5
2

OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

A 0 TrVI 'TC!C CrnTTMC' r/IM" 1-7r- A CTIC'n OnTTTfl r/IA•A

TOT.DISS.
10 15 20 25 30 35 TEMP. SOLIDS

DEG.C G/M3

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
4.9
4.9

175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.6
175.8
175.9

TRIBUTARY

1

INFLOW
M3/SEC

0.13

TEMPERATURE
DEG C

14.4

SUSPENDED
SOLIDS
G/M3

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

S/W
RADIATION
KC/M2/HR

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

LAYER
INFLOW
M3/SEC

0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

LAYER
OUTFLOW
M3/SEC

0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00

DIFFUSION
COEF.
M2/HR

0.7753
0.7753
0.7753
0.7753
0.7753
0.7753
0.7753
0.3202
0.2260
0.2311
0.2398
0.2457
0.2520
0.2593
0.2691
0.2833
0.3019

UPPER
ELEVATION

M

19.0
17.6
16.8
16.0
15.2
14.3
13.3
12.6
11.8
11.2
10.5
10.0
9.4
8.8
8.1
7.4
6.5

n\ (

VAPOR PRESSURE,MB 6.4 SAT.VAP.PRES,MB 8.7 EVAP.RATE,M/HR 0.00



176.0
176.0
176.0
176.1
176.1
176.1
176.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0

DAILY INFORMATION

HOUR DAY SIM.INT. ELEV INFLOW TEMP OUTFLOW TEMP IF REGULATION
M M3/S C M3/S C TARGET T. C.

PORT FLOW
M3/S

PORT FLOW
M3/S

PORT FLOW
M3/S

8142 339 1 19.0 0.1 14.4 0.1 4.9

STATUS AT END OF SIMULATION HOUR 8148

1 0.0 2 0.0 3

THIS IS JULIAN DAY 339, CALENDAR DAY 5DEC

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

CLOUD COVER 0.19 AIR PRESSURE,MB 1010.87

S/W RAD,KC/M2/HR 165.0 L/W RAD,KC/M2/HR 207.7

WIND SPEED,KPH

VAPOR PRESSURE,MB

19.80 DRYBULB TEMP,DEGC, 5.1 DEWPOINT TEMP,DEGC, 0

6.4 SAT.VAP.PRES,MB 8.6 EVAP.RATE,M/HR

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.0 EL.ABOVE MSL,M. 43.4

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TOT.DISS. SOLIDS
G/M3

3.2

SUSPENDED SOLIDS
G/M3

0.1

OUTFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:
PORT

1
2
3
4
5
6
7

LAYER

24
22
19
15
11
8
5
2

OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

* D

4.9
4.9
4.9
4.9
4.9
4.9
4.9

0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.01
0.00

0.3224
0.3501
0.3792
0.4256
0.4997
0.6168
0.0000

5.7
5.0
4.2
3.5
2.8
1.8
0.8

MORE?

0.0 YES

TRIBUTARY INFLOW
M3/SEC

0.13

0.00

TEMPERATURE
DEG C

14.4



4.9 TOT.DISS.SOLIDS,G/M3 175.3 SUSP.SOLIDS,G/M3

0 5 10 15 20 25 30 35
TOT.DISS.

TEMP. SOLIDS
DEG.C G/M3

4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
5.0
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9

175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.6
175.8
175.9
175.9
176.0
176.0
176.0
176.0
176.0

SUSPENDED S/W
SOLIDS RADIATION
G/M3 KC/M2/HR

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

66.73
43.31
28.67
19.20
12.29
7.75
5.23
3.55
2.61
1.89
1.42
1.09
0.82
0.58
0.40
0.26
0.17
0.12
0.08
0.06
0.04
0.02
0.01
0.01

LAYER LAYER DIFFUSION
INFLOW OUTFLOW COEF.
M3/SEC M3/SEC M2/HR

0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.01
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00

0.6932
0.6932
0.6932
0.6932
0.6932
0.6932
0.6932
0.6932
0.6932
0.6932
0.6932
0.6932
0.6932
0.2430
0.1535
0.1877
0.2186
0.2451
0.2760
0.3062
0.3527
0.4260
0.5412
0.0000

DAILY INFORMATION

HOUR DAY SIM.INT. ELEV INFLOW TEMP OUTFLOW TEMP IF REGULATION
M M3/S C M3/S C TARGET T. C.

8148 339 2 19.0 0.1 14.4 0.1 4.9
1
STATUS AT END OF SIMULATION HOUR 8154

93

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

PORT FLOW
M3/S

PORT FLOW
M3/S

PORT FLOW
M3/S

0.0 2 0.0 3

THIS IS JULIAN DAY 339, CALENDAR DAY 5DEC

19.20 DRYBULB TEMP,DEGC, 5.8 DEWPOINT TEMP,DEGC, 0

UPPER
ELEVATION

M

19.0
17.6
16.8
16.0
15.2
14.3
13.3
12.6
11.8
11.2
10.5
9.9
9.4
8.8
8.1
7.4
6.5
5.7
4.9
4.2
3.5
2.7
1.8
0.8

MORE?

0.0 YES

TOTAL OUTFLOW,M3/SEC 0.10 TEMPERATURE,DEG C

0.24 AIR PRESSURE,MB 1012.75 WIND SPEED,KPHCLOUD COVER



S/W RAD,KC/M2/HR 187.0 L/W RAD,KC/M2/HP 211.5

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.0 EL.ABOVE MSL,M. 43.4

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TOT.DISS. SOLIDS
G/M3

3.2

SUSPENDED SOLIDS
G/M3

0.1

OUTFLOWING QUANTITIES

TOTAL OUTFLOW,M3/SEC

FOR THIS COMPUTATION INTERVAL:
PORT

0.10 TEMPERATURE,DEG C

LAYER OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

5.0 TOT.DISS.SOLIDS,G/M3 175.3 SUSP.SOLIDS,G/M3

0 5 10 15

* D

20 25 30 35
TOT.DISS.

TEMP. SOLIDS
DEG.C G/M3

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9

174.8
174.8
174.8
174.9
174.9
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.0
175.1
175.3
175.6

SUSPENDED S/W LAYER LAYER DIFFUSION
SOLIDS RADIATION INFLOW OUTFLOW COEF.
G/M3 KC/M2/HR M3/SEC M3/SEC M2/HR

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

75.49
49.00
32.43
21.72
13.90
8.76
5.91
4.01
2.95
2.14
1.61
1.23
0.92
0.65
0.45
0.29
0.19

0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.00

0.6177
0.6177
0.6177
0.6177
0.6177
0.6177
0.6177
0.6177
0.6177
0.6177
0.6177
0.6177
0.6177
0.6177
0.4677
0.1534
0.1691

TRIBUTARY

1

INFLOW
M3/SEC

0.13

TEMPERATURE
DEG C

14.4

0.0

UPPER
ELEVATION

M

19.0
17.6
16.8
15.9
15.1
14.3
13.3
12.5
11.8
11.2
10.5
9.9
9.4
8.8
8.1
7.4
6.5

8.6 EVAP.RATE,M/HR 0.00VAPOR PRESSURE,MB 6.4 SAT.VAP.PRES,MB



175.7
175.8
175.9
175.9
176.0
176.0
176.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

DAILY INFORMATION

HOUR DAY SIM.INT. ELEV INFLOW TEMP OUTFLOW TEMP IF REGULATION
M M3/S C M3/S C TARGET T. C.

8154
8160
8166
8172
8178
8184
8190
8196
8202
8208
8214
8220
8226
8232
8238
8244
8250

339
340
340
340
340
341
341
341
341
342
342
342
342
343
343
343
343

19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.1

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4
14.4

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

5.0
5.0
4.9
4.9
4.9
4.9
4.8
4.8
4.8
4.7
4.6
4. 5
4.5
4.5
4.6
4.6
4.6

PORT FLOW
M3/S

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

PORT FLOW
M3/S

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

PORT FLOW
M3/S

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

STATUS AT END OF SIMULATION HOUR 8256
93

AVERAGE METEOROLOGICAL QUANTITIES FOR THIS COMPUTATION PERIOD:

THIS IS JULIAN DAY 344, CALENDAR DAY 10DEC

CLOUD COVER

S/W RAD,KC/M2/HR

0.95 AIR PRESSURE,MB 998.22 WIND SPEED,KPH

0.0 L/W RAD,KC/M2/HR 235.0 VAPOR PRESSURE,MB

22.63 DRYBULB TEMP,DEGC, 4.9 DEWPOINT TEMP,DEGC, 5

8.9 SAT.VAP.PRES,MB 8.5 EVAP.RATE,M/HR

TOTAL EVAP., M.

SURFACE ELEVATION,M: 19.1 EL.ABOVE MSL,M. 43.4

INFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:

TOT.DISS.SOLIDS
G/M3

SUSPENDED SOLIDS
G/M3

4.9
4.9
4.9
4.9
4.9
4.9
4.9

0.13
0.09
0.06
0.04
0.03
0.02
0.01

0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.01
0.00

0.1894
0.2165
0.2444
0.2884
0.3590
0.4716
0.0000

5.7
4.9
4.2
3.5
2.7
1.8
0.8

MORE?

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

TRIBUTARY INFLOW
M3/SEC

TEMPERATURE
DEG C

0.00

1i.



0.13 14.4 2.7

OUTFLOWING QUANTITIES FOR THIS COMPUTATION INTERVAL:
PORT

1
2

LAYER

23
21

OUTFLOW,M3/SEC

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

TOTAL OUTFLOW,M3/SEC 0.10 TEMPERATURE,DEG C 4.6 TOT.DISS.SOLIDS,G/M3 173.6 SUSP.SOLIDS,G/M3

TOT.DISS.
0 5 10 15 20 25 30 35 TEMP. SOLIDS

DEG.C G/M3

4.8
4.8
4.8
4.8
4.7
4.7
4.7
4.7
4. 6
4.6
4.6
4. 6
4.6
4.6
4.6
4.6
4.6
4.6
4.5
4.5
4. 5
4.5
4. 5

173.2
173.2
173.2
173.3
173.4
173.5
173.5
173.6
173.7
173.7
173.7
173.8
173.8
173.8
173.8
173.9
173.9
173.9
173.9
173.9
173.9
173.9
173.9

SUSPENDED S/W
SOLIDS RADIATION
G/M3 KC/M2/HR

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

LAYER LAYER DIFFUSION UPPER
INFLOW OUTFLOW COEF. ELEVATION
M3/SEC M3/SEC M2/HR M

0.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.01
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.01
0.01

1.1275
1.0859
1.0031
0.9521
0.9072
0.8936
0.8400
0.8404
0.8322
0.8239
0.8203
0.8200
0.8227
0.8289
0.8394
0.8552
0.8751
0.8951
0.9198
0.9431
0.9771
1.0253
0.0000

19.1
17.6
16.7
15.9
15.1
14.2
13.3
12.5
11.7
11.1
10.4
9.9
9.3
8.7
8.0
7.3
6.4
5.5
4.8
4.0
3.3
2.5
1.5
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