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Abstract

Synthetic aperture radars (SARs) provide the coverage rate and all-weather operability needed for
wide-area surveillance. SAR-based automatic target recognition (ATR) systems need fast and ef-
fective discriminators to suppress vast amounts of natural clutter from, while admitting the much
more limited set of man-made object data to, their classification processors. Recent research, using
mm-wave SAR data, has demonstrated that multi-resolution processing offers a useful discriminant
in this regard. Other work, with ultra-wide-band foliage-penetrating SAR data, has shown that
adaptive-resolution imaging can exploit the aspect-dependent reflectivity of man-made objects. Nei-
ther these studies, nor other related works, have taken a principled approach-one based on the
physical characteristics of the reflecting surfaces and SAR operation-to multi-resolution SAR image
formation and optimal target detection. The present thesis is a first step toward such a fundamental
assessment.

Using physical optics formalism, we consider multi-resolution SAR image formation for a 1-D,
continuous-wave, down-looking sensor. We find that the carrier-to-noise ratios (CNRs) for diffuse
(natural clutter) and specular (man-made objects) reflectors have different multi-resolution signa-
tures. In particular, a diffuse reflector and a specular reflector of the same size have identical
normalized CNRs when their SAR returns are processed over the full dwell time. However, these re-
flectors show substantially different behavior when processed over shorter time intervals. In addition,
the "broad-side flash" phenomenon is clearly present in our specular CNR analysis.

Two relevant target detection problems are examined and discussed in detail. We see that the
fundamental differences in the reflection behaviors of specular and diffuse targets directly impact
the structure and performance of their Neyman-Pearson optimal detectors.

Thesis Supervisor: Jeffrey H. Shapiro
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

Radars have long been used, for both military and non-military purposes, in a wide variety of

applications such as imaging, guidance, remote sensing, and global positioning [3, 26]. The basic

principle of radar is to transmit an electromagnetic waveform which, after propagation through a

medium (e.g., the atmosphere), scatters, or reflects off an object and then propagates back to the

radar's receiver. Partial information about the object's location, velocity, geometry, and material

composition may then be inferred from the received signal. For the case of locating a target in

azimuth and elevation, the resolution of a real-aperture radar is limited by its transmitter's diffraction

width, because, from the received waveform, it is generally not possible to distinguish two targets

that are both located within this "footprint". For an antenna of aperture a operating at wavelength

A and range L, the footprint is approximately AL/a in width. Laser radars, or ladars [16], are used

to seek improved resolution by operating at the infrared (IR) frequency band which has a smaller

wavelength than that of conventional, microwave radars.

Another way of achieving better resolution from radars is signal processing. A synthetic aperture

radar (SAR) [8, 5] takes advantage of a known relative motion between the radar and the target

to coherently integrate a returned signal, such that the processed signal approximates one received

through an aperture whose size equals the distance covered by the motion of the radar over the same

time period. This reduces the size of the effective footprint at range L, which in turn improves the

resolution. Indeed, the resolution achieved by SAR can be made independent of the radar-to-target

range L, a property which is desirable in many cases.

1.1 Motivation

A major use of SAR's high resolution capability is to image terrain as the sensor front-end for

an automatic target detection and recognition (ATD/R) system [20]. ATD/R systems typically

employ a multi-stage architecture comprising imaging, detection, classification, and recognition sub-



systems [30]. However, achieving the best overall performance requires that each stage fully exploits

the capabilities of its predecessors.

In particular, because classification and recognition algorithms tend to be computationally inten-

sive, it is crucial that the detection stage provides an efficient means for screening out vast amounts

of natural background, such as grass and bushes, in which the far more limited number of man-made

objects, such as tanks and planes, are embedded. One fundamental difference between the natu-

ral and man-made objects is their surface roughness relative to the wavelength of a microwave or

millimeter wave radar. Man-made objects, due to the metallic material used, usually have smooth

surfaces whose fluctuations in height are on a microscopic scale compared to the wavelength. This

kind of targets are termed "specular" and the spatial coherence of the impinging radar beam is

preserved in the reflected beam. Natural objects have rough surfaces whose fluctuations in height

may greatly exceed a wavelength. These are termed "diffuse" and they turn a spatially coherent

impinging radar beam into a spatially incoherent reflected radar beam.

Motivated by the same goal of separating man-made targets from natural clutter, Chaney et

al. [4] introduced an adaptive signal processing algorithm to exploit the aspect-dependence of man-

made targets, those that exhibit a "broad-side flash."' Improved resolution and dynamic range

in the resulting SAR images were claimed. Irving et al. [15] employed a multi-resolution (MR),

recursive imaging algorithm and devised a discriminator for distinguishing man-made targets from

natural clutter based on the MR image models of these two types of targets. This discriminator

out-performed the conventional one used in the Lincoln Laboratory ATR system. However, neither

these studies, nor other related works, have taken a principled approach - one based on the physical

characteristics of the reflecting surfaces and their interaction with SAR operation - to MR-SAR

image formation and optimal target detection. The present thesis is a first step toward such a

fundamental assessment.

Using the physical optics formalism established in [21], this thesis investigates in depth a small

repertoire of geometrically simple specular and diffuse targets that are motionless on the target

terrain, and explores some of their differences by analyzing their target models, their contributions

to the radar return, and their MR 1-D continuous-wave SAR images. The aspect-dependence of

man-made targets shown in [4] is clearly present in the analysis for our specular mirror. Due to

the differences in the targets' MR signatures, this class of multi-resolution processor may serve as a

discriminator for different target returns.

In addition to deriving MR SAR-image statistics for specular and diffuse objects, we also pose

and solve several simple but relevant Neyman-Pearson detection problems involving this collection

of targets. The receiver operating characteristics (detection versus false-alarm probability) of these

1 The radar receives maximum return when it is at a location, along its flight of path, closest to the scattering main
lobe of the target. For a plane mirror, that would be along its principle axis, or the surface normal at the center of

the mirror.



processors are evaluated. They serve as the ultimate performance limits for more realistic detection

problems in which the exact target categories and geometries are unknown.

We shall now demonstrate the basic principles of a continuous wave (CW) 1-D SAR on which

this thesis is built. Then, we will close this chapter with an outline of the thesis.

1.2 Basic 1-D SAR Principles

As shown in Figure 1-1, we are interested in a down-looking radar (the radar's line-of-sight is

perpendicular to the target reference plane, z = 0) flying at a constant transverse velocity over the

target terrain. The transmitted field is a transverse-polarized wave that propagates in the direction

of the line-of-sight, -2.

~=~5---,

.. o.......... ......:::::::::::::....

• .. o•.- .o.........• ,..o.-.° :.....o,.-. .. ,*.. -.....-.°. :.o.. -....
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L
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by the known relative motion between the radar and a point target. This same frequency chirp is............

present on the radar returns for all stationary targets, such as the ones presented in Chapter 3, and is

exploited by SAR post-reception processing for high-resolution image formation or target detection

(Chapter 4 and 5.)

Without lost of generality, we pick our coordinate system such that our point target is situated

at (0, y) on the target terrain (z = 0 plane.) The radar is moving at a constant transverse velocity

along the trajectory,

fa0 (t) = Vt + L2 = vt& + 09 + Li. (1.1)

We can then write the range equation to describe the time-dependent distance between the radarWe irs exmie... .... .. .... X .............imared o te ada reur

by th know reltive otio betwen th radr anda pont ..................... .chrp i

................................... ...... .. ..... p esen ed i C h pter3, a d i

exploited by SA....... ................ ...................... .............. V. tdetectio



and the point target.

t-(t) = (vt)i + yý + Li (1.2)

I (t)I = /(vt) 2 + y2 + L(1.3)

(vt)2 + y2

L + 2L (1.4)

where the paraxial approximation (vt)2 + y2 < L2 has been used.

For now, we neglect the details of the radar system such as the antenna beam patterns, etc.

We can directly argue for there being a chirp on the return from this point target in the following

physical way. We are using a CW transmitter whose output is a sinusoid cos(21vt - 0) for some

appropriate phase shift 0. The return from the point target will be another sinusoid delayed by
2 rt(t)- where c is the speed of light, and hence proportional to cos 2 2rt(t) --

c c

where ' is another phase shift. The instantaneous Doppler frequency shift of this signal is thus,

1 0 v216(t)(1.5)
27r ct C

2 (L (vt)2 + y 2  (16)
at A 2L

2v 2

= t (1.7)
AL

which is a linear chirp centered at the time when the plane flies right above the target. In complex

envelope form, this chirp corresponds to a quadratic-in-time phase shift, exp [j kt2] (where k = 2

is the wave number), a term which will be seen often in all the radar returns analyzed in Chapter

3. Due to the range equation used (1.4), this linear chirp is only an approximation of the actual
L

Doppler chirp, as seen in Figure 1-2. The approximation is reasonably good for Itj < -v. Since we

only care about a target's presence when it is within the illumination of the radar's footprint, i.e.,

within the dwell period of L- corresponding to the time the plane takes to fly a distance the size of

the footprint, we see that this linear chirp approximation is good for a > 4A, an assumption easily

satisfied by a microwave radar.

The resulting dwell-limited bandwidth of the return will then have a chirp bandwidth of

BW D(t2av 2av) (1.
2a -VD(t) ALav  (1.9)

2v
2= -(1.10)
a

How well we can resolve the signal in time (or how well we can resolve the target in space) is



Doppler Chirp Frequency and its Linear Approximation

-2L -1L OL 1L 2L
t = x/v V
t = x/v

Figure 1-2: Linear approximation to motion-induced Doppler frequency chirp

approximately inversely proportional to the bandwidth of the output signal,

1 a AL
tre- = - <-

BW 2v av (1.11)

The last inequality is true because of the Fraunhofer far field assumption of the radar. This is the

SAR processing that we have used to improve the along-track resolution of our target:

a AL
Xres V--tres =- < --

2 a (1.12)

This has an interpretation of that we have synthesized an aperture the size of the footprint, which

is much larger than the physical aperture itself. The synthesized aperture helps focus the antenna

to give a high resolution.

So far our presentation of the 1-D SAR principles is heavily based on the assumption of a

target of negligible size, hence point target. The other target models explored in this thesis will

more realistically be finite-size. We shall come to an understanding of how the size, together with

possibly other target geometric parameters, will affect the effectiveness of SAR processing.

1.3 Thesis Outline

In Chapter 2, the geometry of the radar operation and the structure of our radar system model will

be stated. Our notation for its system parameters will be laid out. The general diffuse and specular

target models will be proposed, and their underlying physical interpretations will be explained and

2vA
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A
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compared.

In Chapter 3, we will present a collection of diffuse and specular targets, in a handbook-like

manner, by specializing the general models introduced in Chapter 2. Their individual radar-return

signals will be used to develop an understanding of the influence of target geometry and surface

characteristics on the signals.

Chapter 4 presents a derivation of the conventional SAR image formation filter. This derivation is

generalized to a coherent post-reception integration to obtain an integration-time-dependent Carrier-

to-Noise Ratio (CNR). This is what we call the MR signature for a target. The fact that different

targets show different signatures tells us that the target returns can be discriminated by their MR

behaviors. This serves as the motivation for our detection problems in the following chapter.

Chapter 5 poses two target-discrimination problems involving a subset of the targets presented

in Chapter 3. The first one involves the absence or presence of a specular mirror in extended diffuse

clutter. The second one involves the absence or presence of a diffuse target. In both detection

problems, the radar return is corrupted by receiver noise. The Neyman-Pearson optimal processors

(maximum detection probability subject to chosen false alarm probability) required are found and

their receiver operating characteristics are evaluated. The problems are simplistic because we assume

prior knowledge of the target's location, the type of target, and the target's geometry. Nevertheless,

by comparing the performances of the optimal receivers and that of the conventional receivers in var-

ious situations, we can learn when and why the conventional receivers yield sub-optimal performance

so as to give directions for improvements in future SAR system design.

In Chapter 6, we will summarize the thesis and conclude with several comments about multi-

resolution SAR image formation and target discrimination. Several possible extensions to this work

will be discussed.



Chapter 2

Radar System Model

In this chapter, we will first go through a detailed description of the radar system - from the

transmitted field through propagation to the target region, target interaction, propagation back to

the radar, return reception, and post-reception processing. A detailed explanation and discussion of

the general diffuse and specular target models will follow.

2.1 Radar Model

Our radar will be assumed to be monostatic-the transmitter and receiver share the same antenna.

Although the transmitter, the atmospheric effects, the target, and the receiver front end might all

be sensitive to the vector/polarization characteristics of the radar's radiation, we will choose scalar

wave modeling for its mathematical tractability in this first analysis of specular and diffuse targets.

For portability in an airborne setting, the radar's dimensions are usually small such that the

target terrain is in the Fraunhofer far field of the radar antenna, and, except for applications such as

the foliage-penetrating SAR, the radar is usually in the Fraunhofer far field of the target's reflective

surface. Therefore, only the far field in the vicinity of the radar's principle axis is of interest. This

paraxial limit assumption is necessary for the validity of scalar wave modeling (especially scalar

wave diffraction [18].)

2.1.1 Radar Motion

Our airborne radar will be mounted on a plane flying at a constant transverse velocity V = vi + 0O

at some fixed height (Figure 1-1), such that our radar motion can be described by

F (t) = Vt + Lý = vtk + 00 + Lý. (2.1)



We call i the azimuth or along-track direction, ý the across-track direction, and ±2 the radar's

line-of-sight.

2.1.2 Radar Transmitter

The transmitter model is characterized by the real-valued field at the exit pupil (z = L plane),

Etr (p, t), in JWatts/m2 , as a function of the transverse coordinates p' = [x' y']T and time t,

Etr(fP', t) = R {Etr(pi', t) exp[-j2irvt]} (2.2)

Etr(p',t) = V/~~Uant(', t) (2.3)

where

Ptr = transmitted power

Uant (p', t) = normalized (square-integral unity)

transmitted spatial antenna beam pattern

The time dependence of Uant (P', t) is merely due to the motion of the radar transmitter traveling

at a velocity V:

Uant(P', t) = Uant(,' - it) (2.4)

where Unt (p') is the fixed spatial antenna beam pattern in the radar's rest-frame. We use a

normalized, continuous wave (CW) collimated elliptical-Gaussian beam to model the finite aperture

dimensions ax and a, of the transmitter antenna.

2 2
U t(')= - exp [- (- - (2.5)V xay ax/ ay

We will assume that the actual antenna aperture, A, does not appreciably truncate the Gaussian

beam pattern, i.e.,

SIUnt(p/')12dp' ] IUant(p')12dp' = 1 (2.6)

In the subsequent development, the limits in the integration over the radar antenna as above will

be dropped and the approximation sign will be taken as an equal sign for notational convenience.



This confirms that our CW transmitter has a constant power of

I Etr(p',t) 2dp ' = Iv an(P 2d Ptr. (2.7)
IA z=L

We have used an elliptical beam because we would like to examine the separate effects of the

along-track and across-track dimensions of the antenna's beam pattern, which are usually different

in SAR practice because, for the same desired resolution, a 1-D SAR has different antenna width

requirements in the azimuth and across-track directions. [21]

2.1.3 Propagation to Target Region

During the propagation of the transmitted waveform from the radar to the target terrain, the

coherent beam will generally suffer from the effects of atmospheric extinction and turbulence [21].

Since atmospheric effects are not the emphasis of this thesis, we will use a free-space propagation

model [18], which is sufficient for operation in good weather, to describe the illuminating field at the

target plane z = 0,

E(p, t) = E ( t - )hL(' - d' (2.8)
z=L C

hL(/P') - exp UjkL + j (2.9)

where c is the speed of light, A is the transmitted beam's wavelength, k = 27r/A = 27rv/c is the wave

number, and hL(p') is the space-invariant impulse response (or Green's function) for propagating

the transmitted waveform through a distance L of free-space in the paraxial limit.' We have used

; = [x y]T for the transverse coordinates at the z = 0 plane to distinguish them from i' = [x' y']T

at the z = L plane.

With the far field approximation

ka 2  ka2
2L < 1, 2 < 1 (2.10)2L 2L

we get

pL
Eil (P, t) hL(p) Etr( - -) (2.11)AL c

hL (P)Etr( (L, t) (2.12)

where Etr( -, t) is the transverse (2-D) spatial Fourier transform of Etr(P', t) evaluated at -L, and

1The paraxial approximation is I~'-fP << L, and therefore, j7' - p_2 + L2  L+ 2 . We are only interested
in the field within the radar footprint on the target plane where it is sufficiently illuminated by the radar. So there
is little loss of generality imposed by assuming paraxial propagation from the radar to the ground.



we have neglected the radar lag time (the c time delay, during which the radar moves a distance

C, because it is generally too small to affect the transmitter beam pattern.) The spatial-invariance

of our system in conjunction with the radar's motion (2.4) now allows us to write

Eil(p, t) = Eil (( - bt, t = 0) (2.13)

= hL(P - Vt)Etr(,P - & t = 0) (2.14)AL

Finally, because of the reciprocity of free-space, the same model can be used to calculate the received

field at the radar, Erec(T', t), from the reflected field at the target plane, Erf (fi, t), once the latter

has been found:

Erec(P',t) = ] Erf I(,t - -)hL(p' - p)dp (2.15)
fz=0 C

2.1.4 Target Model

Unless the field strength is extremely high, which is not true in general radar practice, the reflected

field will be a linear functional of the illuminating field (or incident field)

Eri(fi, t) = j T(f, il)Eil (il, t)dpil (2.16)
Jz----

where T(, fil) is the (possibly space-varying) complex reflection impulse response of the target,

relating the contribution of the incident field at pil to the reflected field at p in a linear fashion. We

have assumed that the target is independent of time and the radar's carrier frequency.

This T(f, f1) can be random, deterministic, or a combination of both. It is a special case of the

R1 matrix presented in [24] for general linear target interactions. One common specialization of this

complex reflection impulse response is to assume that the reflected field at p depends only on the

illuminating field at p, i.e. the spatial counterpart of a "memoryless" time-domain system:

T(f, pi) = T(p)6(p - pi) (2.17)

Erfl,(P, t) = T(p)Eil (p, t) (2.18)

This is also known as the multiplicative model.2 We will discuss the target model in greater depth

in the next section.

2 Note that T(p) is dimensionless, but T(P, il) has the unit 1/m 2



2.1.5 Receiver Model

The receiver antenna converts the received field to an electrical signal:

y'(t) = L dp'Erec(P', t)Uant (fi', t). (2.19)

Notice that the same antenna pattern is used in the receiver as that of the transmitter because our

Uant (p', t)

Erec(P',t)

1(t)VLo (t)

w(t)
receiver noise

Figure 2-1: IF Signal model

radar is monostatic. This return signal is then beat in a heterodyne mixer with a local oscillator

(LO) waveform, VLO(t), of frequency vLO = V - VIF. VLO(t) has the complex envelope

VLO(t) = VLO exp[j27rvlFt] (2.20)

corresponding to the real valued waveform

VLO(t) = R{VLo exp[-j27r(v - vIF)t]} (2.21)

That leads us to the IF beat signal

y(t) = R{y(t) exp[-j27r'IFt]} (2.22)

The heterodyne mixer shifts the signal from the transmission (or radio) frequency (RF), v, to the

processing frequency (or intermediate) frequency (IF), VIF. For analytical convenience, we have

normalized out the heterodyne mixing gain, such that y(t) does not depend on the LO voltage. This

output signal y(t) is then passed through a bandpass filter H(f) whose main function is to select

out the signal component of the electrical signal at the beat (IF) frequency. We have used f to

represent the processing frequency in Hz centered at the IF frequency VIF such that f = v - VIF.



The functional form of H(f) dictates what application-dependent post-reception processing is done

with the target return signal. This H(f) will be specified for different situations in the later chapters.

The following model for the normalized radar return and receiver noise is used in all that fol-

lows [25],

r(t) = R{r(t) exp[-j27rVlFt]} (2.23)

where

r(t) = y(t) + w(t) (2.24)

y(t) = dp'Erec(P', t)Uant (', t) (2.25)

ly(t) - y(t) * h(t) (2.26)

lw(t) - w(t) * h(t) (2.27)

1(t) = r(t) * h(t) = ly(t) + lw(t). (2.28)

Here, r(t) is the normalized complex envelope of the IF target return plus receiver noise; and w(t)

is the receiver noise, which is usually dominated by thermal noise, and is modeled by a zero-mean,

circulo-complex white Gaussian noise with spectral density No [27].

After substituting (2.3, 2.15, 2.16, 2.12) into (2.25), we find that the radar return is given by

y(t) = =dp•  dpT( , pfi)/tr hL(pl)ant It - hL ()ant ( t)

(2.29)

where Uat(-, t) is the 2-D spatial Fourier transform of the normalized antenna spatial beam pattern

at time t. Further, neglecting the lag time -, and using the space-invariance of our system (2.4,2.14),

hL(P)iant (AL, t) = hL(P - ;t)font i -L (2.30)

we arrive at

y(t) ~j d 1  dpT(odpdl 0 l )hL( 1 - V hL(P - t)t pnt L- At

(2.31)

or, for the multiplicative target model (2.18),

2y(t) = T h• 't) -p t) (2.32)y(t) =-- 1 =dpT(i)hL(P -;)Unt A



The radar model established in

Figure 2-2.

this section is summarized by the system block diagram shown in

Uant ,, t)

1 (t)

w(t)
receiver noise

Figure 2-2: Radar system block diagram

2.2 Target Model

The most general linear target interaction model was given by (2.16), but in practice, the multiplica-

tive model (2.18) is often sufficient and used. We will first discuss the multiplicative model because

its physics can be more easily interpreted. The general linear model will be needed because the

multiplicative model cannot explain the reflection behavior of multiple-bounce specular reflectors,

introduced in the next chapter.

2.2.1 Multiplicative Model

The multiplicative target model T(p) is a complex-valued, spatially-varying reflection coefficient

that, via

Erfl(i, t) = T(p)Eil(fi, t), (2.33)

relates the +i-going reflected field, Efrf, at the ground reference plane (z = 0) to the -2-going

illumination field, Eil, at the same plane. The multiplicative model assumes that the reflected field,

Erfl (P, t) depends only on the incident field, Eil (P, t) at the same transverse coordinate pf (spatially

memoryless.) Although simplistic, the model agrees with Snell's law of reflection and can be adapted

to represent specular, diffuse, or a combination of both reflections.



(Directional)
Incident field

Reflected field

z~p) phase delayz(fi) ..... k~~p

Figure 2-3: Input-output relation for a multiplicative target model

There is a simple physical interpretation to this multiplicative model: the relative height of the

target surface (relative to the target plane z = 0), z(gp), produces a phase delay due to the wave

traveling from the nominal range z =0 to the surface and back, i.e., exp[j2kz(p)]. This phase term

modulates the square root of a non-negative, nominal reflective intensity T(p) to give

T(1 5) = /T exp[j2kz(fl)]. (2.34)

This interpretation is valid for targets that are in the paraxial limit and do not have steep edges

with respect to the target reference plane.

The specularity or diffuseness of a target depends on the surface smoothness of the target in

comparison to the radar wavelength. What would be diffuse for a laser radar with a wavelength of

one to ten microns might closely resemble a purely specular target for a millimeter wave radar.Diffuse Model..

A diffuse, or speckle, target will have large surface height fluctuations (or roughness) which con-

tributes to the stochastic nature of the reflection coefficient T p) We shall model such a surface
.. ...... -..........................-...
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using the moments [24, 25, 6]

< T(p) > = 0 (2.35)

< T(p)T(pi) > = 0 (2.36)

< T(f)T*(fi) > = A2 d()6( - pl) (2.37)

where < - > represents ensemble average, and Td(pi) is the mean diffuse reflectivity (intensity of

reflection) at transverse position p. With the target height interpretation (2.34), both ' i) and

z(p) are now random quantities - in such a way that the averages in (2.35) and (2.36) vanish.

Equation (2.37) says that the random reflectivity is uncorrelated in space and has no directional

information in it (the 6 function gives uniform response to all spatial frequencies, i.e. it is isotropic.)

Together, this set of equations state that a diffuse target turns a spatially coherent illuminating

beam into a spatially incoherent reflected beam.3

Incident field
(highly directional)

m m

plane

Figure 2-4: Rough surface gives diffuse reflections

From the radar's perspective, the received field will be a summation of scattered field contribu-

tions from a large number of small facets on the rough surface. Thus, via the central-limit theorem,

we can assume that T(p) is a circulo-complex Gaussian process [27] insofar as the received field

is concerned. The phase of the reflectivity LT(p) = exp[j2kz(fi)] is uniformly distributed between

3This statement can be more rigorously shown by taking the spatial Fourier transforms of (2.37).

d/ P dpi <T(p)T*(p1) > e-j~f12p1 1 /A2Td( )e-j2x(-1)"Pd (2.38)

where Sl, s = [sX1 sy ]T , [sx s•]T are transverse spatial frequency vectors, and therefore

< >(s)÷*(81) >= \2td(g_- g1) (2.39)

where r(.-) and 7-d(') are the spatial Fourier transform of T(-) and Td (p) respectively. This implies ir(g) is a wide-sense
stationary (WSS) stochastic process with spectrum of Td(p). Therefore, the Fourier transform of (2.33)

Er 1 (9, t) = Jf ( _- 91)*l (91, t) d 1  (2.40)

implies passing the input field kil (1i, t) through a WSS random linear spatial-frequency-invariant system T(g) such
that the output Erfl (i, t) is also a WSS random process in the spatial frequency 9.



0 and 27 and is uncorrelated with the magnitude IT(f)l = T-), which is Rayleigh distributed.

This process is white but not homogeneous (2.37) unless Td(fi) is a constant.

In addition, the diffuse model can be interpreted as one limit of the Gaussian-Schell model to be

discussed in Appendix A, in which the A2 factor in (2.37) can also be accounted for.

Specular Model

A specular, or glint, target is defined to be one that preserves the spatial coherence of the incident

beam in the reflected beam after reflection. The complex reflection coefficient of such a target is

T(fi) = V-() exp (jk2z (i)+ j) . (2.41)

Now, the height profile z(p) is deterministic and smoothly varying relative to the radar's wavelength.

The extent of the target is the region over which the reflective intensity 7Ts (p) is not negligible.

These two terms completely characterize the geometry of the target. Note that the target height

interpretation is precise under the paraxial limit.

Incident field
(highly directional)

Reflected field

(highly directional)

I IIi i I iI. "[':'[::: ": -[~i:~~lij~li~::~:l .I ..... I .......... O

Reflectivity T(,i) ... t.: : target reference plane

Figure 2-5: Smooth surface gives specular reflections

In general, the nominal altitude of the radar from the target reference plane cannot be known

down to sub-wavelength resolution. There will therefore be a random but constant phase error

0, which has a uniform probability density over [0, 27r), for the unknown absolute altitude of the

airplane. This is reasonable as long as this phase, generally a function of time, either does not

change much or can be accurately tracked using an Inertial Navigation System (INS) or the Global

Positioning System (GPS), etc. [14] throughout the dwell time, i.e., the time interval in which a

target is illuminated by the radar footprint.

We shall summarize this section with several comments about the specular and diffuse models.

* How a specular target transforms the coherence and directionality of the impinging beam is

captured in the phase function of the specular model, whereas the statistical characterization

of the diffuse target (2.35-2.37) guarantees loss of coherence or directionality of the reflected

beam.



* Strong height fluctuations in the diffuse target can overwhelm the geometric interpretation of

the phase (2.34), which assumes no steep edges in the target. But the diffuse model is still

sufficient to characterize the collection of random phase delays at the target, which can be

used to argue that the diffuse model has already incorporated some multiple-scattering effects

in the target through the randomness of its phase delay. This simple specular model, however,

explicitly ignores multiple scattering. Both models fail to treat any shadowing behavior.

* In our system, the radar is always down-looking, and our targets are modeled for that mode

of operation. But in the general case, a more sophisticated model has to be used if the radar

operates at a different look-angle or if the objects have steep edges.

* It is possible for a target to exhibit both specular and diffuse reflections. In that case, the

complex reflection coefficient will have both deterministic and random components:

T(fi) = Ts(p) + Td(p) (2.42)

* Specification of a purely diffuse target implies substituting a particular diffuse reflectivity

function for Td(Pf) in (2.37) whereas specification of a purely specular target involves modeling

both the specular reflectivity T,(fi) and the target geometry z(p) in (2.41).

We have to emphasize that neither the target height interpretation (2.18) nor the limiting case of

the Gaussian-Schell model (Appendix A) is a rigorous derivation of our diffuse and specular models.

But these interpretations give reasonable physical insight into what the models, while mathematically

tractable, do and do not represent.

2.2.2 General Linear Model

The general impulse response model will be needed to model a dihedral and a trihedral, where the

multiplicative model becomes insufficient. There is no general interpretation of the possibly space-

varying linear impulse response model and we will defer discussion of it until the next chapter when

we have specific target behaviors that we wish to model.



Chapter 3

Target Signatures and Returns

In this chapter, we shall study the signatures of a repertoire of targets - both diffuse and specular

- by specializing the functional forms of the general models we developed in the previous chapter

(2.16, 2.18). We then examine their radar returns to gain an understanding of the influence of target

geometry and surface characteristics on the returns. These target models and returns will be used

heavily in the later development of various methods of radar return processings.

We will start with two types of diffuse targets - uniform clutter and finite-size diffuse target,

because they are simple and because the general diffuse model was studied in [21]. Then we will

move on to a finite-size specular mirror, which has a number of geometric parameters. Finally, we

will study some multiple-bounce specular reflectors: a dihedral and a trihedral.

Without losing any generality for our analysis of the target signatures and their returns, we have

conveniently picked our coordinate system such that all the targets are situated at the origin on

the target reference plane (z = 0.) This, however, will affect our assessment of target detection

performance in the later chapters because it implies that we have prior knowledge of the location of

the target.

3.1 Uniform Clutter

We would like to model natural clutter (such as grass background) whose extent is much larger than

the man-made targets of interest. Instead of assuming any arbitrary (thus possibly unreasonable)

geometric shape to this natural clutter, we will assume that it is statistically uniform throughout

the entire target region. It is within this natural clutter that our man-made, specular targets may

be embedded.

The uniform diffuse clutter is characterized by

< T(p)T*(p)>) >= A2T6(p- P1). (3.1)



Using (2.32, 2.8, and 2.5), the average power of the return signal from such a clutter is

< ly,,uc(t)12 > = Ptr ax rc --Tu CtrCuc (3.2)

where the constants

Ctr Ptzr a, 27rL 2 (3.3)

L2
Cuc A2uc kaxa (3.4)

have been chosen for our later convenience. This diffuse clutter return is a wide-sense stationary

random process because its correlation function is easily shown to be

< Yuc(t)Yuc(u) > = CtrCuc exp ( (t - u)2 (3.5)

=< Iyu(t)I2 > exp - (t u)2 (3.6)

which is a function of only the time difference t - u. The power density spectrum of the uniform

clutter return is

Sy. (f) = CtrCuc exp V(2 rf (3.7)

The bandwidth of the spectrum is proportional to v, because the chirp slope is proportional to

v. Also, the bandwidth is a decreasing function of the antenna's aperture size, because a large

antenna has a narrow beam pattern in the down-looking direction and hence receives little high

chirp-frequency power.

3.2 Finite-size Diffuse Target

For man-made clutter, such as houses, and natural diffuse objects, such as trees and shrubs, the

targets have finite extents. For mathematical tractability, we shall use an elliptical Gaussian to

model the finite dimensions of these targets.

( 2x2 2Y2 )

<T(fi)T*(fi1) >= A7dtexp ( 2  22 " i-P1). (3.8)

We have assumed elliptical symmetry and perfect alignment of the principal axes with the airplane's

along- and across-track directions not because this is generally true, but because this allows us to

examine the the along-track and across-track effects separately.



The average power of the radar return from this finite diffuse target is

< Yd(t) 2 > = CtrCdt exp - (3.9)

Cdt = A27dtr Px Py (3.10)
2

Atdt = k(3.11)

The duration of the intensity Gaussian, Atdt, can be considered as the time resolution for locating

the target. We see that the the diffuse target, being an isotropic scatterer, gives a return of a

duration equal to the period over which it is illuminated,

L
Atdt L = Tdw (3.12)

kaxv

i.e., the full dwell time of an unresolved target p < ) ) , aas was seen in Chapter 1 for the

point scatterer case. Furthermore, the correlation function of the diffuse target return is

<Ydt (t)yt(u) >= Ctr Cdt exp k 2pL (t - u)2

ep [ (k2a 2 .k2 2 2 2 22 u2] (3.13)

2L2 L 2L2 L

which can be thought of as a combination of a stationary component ((t - u)2 term), and a non-

stationary component (t2 , u2 terms) due to the finite illumination period. The stationary component

can be decorrelated by increasing the target size, because more facets of random heights on the target

surface are contributing to the target return such that a small change in the receive antenna's beam

pattern, due to the radar motion in a short period of time, gives an uncorrelated "snapshot" of the

widely fluctuating target surface.

The average energy received from the diffuse target return is

<E > = < Ydt(t) 2 >dt = CtrCdtVAtdt (3.14)

= Ptreka aU-3/2dt 7r d 2 (3.15)
L3 v 2

It is a product of the transmitted power Ptr, radar return duration Atdt, and a dimensionless

constant comprising the parameters of both the radar and the target.



3.3 Specular Mirror

For our man-made targets, we will use a multiplicative specular reflector model.

Tsm(pf) = i exp - - +j2k +jk 2 + +jy2  3.16)
PX Py RX R,

1 2 3 4 5

This specular mirror has

1. a positive specular reflectivity Tsm

2. finite dimensions px, py, satisfying the far field assumption k < 1, < 1

3. a tilt vector • = [x, ,Y]T, with |¢j <« 1, | | <« 1 as the tilt slopes with respect to the 1

and ý axes They can also be interpreted as the tilt angles between the mirror and the target

reference plane (since tan 4 k 0 for 01 <« 1 as in Figure 3-1.)

4. radii of curvature, Rx, Ry, along the & and ý axes. Because of the finite target dimensions, the

curvature terms only exists for approximately jxi 5 px and ly| 5 py. As shown in Figure 3-1,

if R, > 0, R, > 0, the mirror is a convex n paraboloid. If R, < 0, R, < 0, the mirror is convex

U. If Rx, R, have opposite signs, the mirror is a saddle. To avoid the degeneracy of having

the mirror larger than the spheres that circumscribe the curvatures, we also have the place the

restriction of 2 px < Rx, 2py < Rv.

5. a random phase, with a uniform density over [0, 21r), for the uncertainty in the absolute altitude

of the radar

m m.in m...Ii.I.i.Im . .. ...... z :i = 0iI: <. 0 target reference plane

R, > 0.
·;
:

- -. ~. • ~"..0........... z 0
Rx < 0 target reference plane

Figure 3-1: Geometry of the specular mirror

Similar to the diffuse target, this mirror has elliptical symmetry and perfect alignment with the

radar's axes, again assumed to permit separation of the effects of the along-track and across-track

target parameters. The above model is closely related to the thin lens model of Fourier optics [9].



Because specular models are spatially coherent, we can also analyze the target by taking the

Fourier transform of our input/output relation (2.18)

Erf (, t) = Tsm ( - S1)E il(S, t)dS1 (3.17)

which becomes a convolution in the spatial frequency domain of the illuminating field with the

specular mirror's signature Tsm(s),

sm() = Tsm(fi)e-j27rPd (3.18)

= fix 1 + j 1 +:k exp - A(sx )P2 x I

exp - r(sy - 2 )py 1 + j )1  (3.19)

where

PX = _ Py (3.20)
1±+ ( _k2 p•2

are the effective target dimensions because the curvatures of the target effectively reduce the tar-

get's surface area facing the down-looking radar. These effective dimensions do not depend on the

directions (signs) of the curvatures, and converge to the actual target dimensions for planar mirrors,

i.e.,

lim Px = Px, lim p, = p, (3.21)
R, --+oo RY,-+±o

The specular mirror's spatial frequency signature is a complex Gaussian of widths Px, Py centered

at the frequencies 2 and respectively. We see that the larger the effective size of the mirror,

Px, ty, the sharper this Gaussian is, corresponding to the fact that a directional incident plane wave

would stay directional after reflection (convolving with a sharp function results in little blurring or

spreading.) The direction of this wave, however, will be shifted by the center frequencies of this

Gaussian, corresponding to Snell's law of reflection (the factors of 2 in the center frequencies are a

result of the sums of the angles of incidence and the angles of reflection, which are equal to Ox and

O, for the two transverse coordinates.)

We shall examine the radar returns of this specular mirror by using (2.32, 2.8, and 2.5). Before

we present the most general results, we will first investigate the return of a special case to gain

insight into the physics.



3.3.1 Target Return (Special Case: No Curvature, Large Mirror)

In the case of a flat specular mirror

R, -+ oo, R -+ 00oo (3.22)

that is large compared to the radar aperture

2p2 >» a , (3.23)

the specular mirror return is

r[kv2  2  (t - ti)2 + 1
ysm(t) = CtrCm exp ]j (t - 2t) 2  + (3.24)

22 L2

At' = 2  (3.25)
k2v 2 2p~

t L = (3.26)
v

t = -L (kpx) 2  (3.27)
v L

VC8'mi= VTsrpx pexp [ (koxaxa)2 - (koypp,)2 (3.28)

We have lumped all the constant phase terms into our unknown phase 'I, since we do not care

about the absolute phase. The density of b' will stay uniform over [0, 27r). We see that the radar

return is proportional to some radar transmission parameters (3.3), the square root of the target's

specular reflectivity, Tm, and the target's area, 7rpxpy. The time dependent part of the signal

comprises a chirp of instantaneous frequency -2 (t - t~), (hence centered at the chirp time center

t'), and an intensity Gaussian of width At'm centered at tý. It is common knowledge that the larger

a plane mirror, the better it preserves the directionality of an incident plane wave. This mirror is

large enough (3.23) such that the peak of the reflected beam obeys Snell's law of reflection exactly,

and occurs at the time tý when the radar illuminates the mirror at normal incidence. However,

the mirror is far from being an infinite plane mirror which does not spread the incident beam after

reflection - the mirror's finite size gives this peak a width At'm inversely proportional to the mirror's

azimuth dimension px. This width is much narrower than that of a diffuse target return (3.11, 3.23),

hence the "broadside flash" phenomenon when the radar is at a position such that its line-of-sight

is aligned with the mirror's surface normal. (Figure 3-2)

The chirp time center is negligible compared to the intensity time center, |t'• < Itfl, but is only
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Figure 3-2: A tilted mirror offsets the broadside flash and the chirp center

negligible itself if t' < At',, or equivalently,

kI|ax (P) < 1 (3.29)

Because of the separation of the chirp center and the intensity center in the radar return, it is

possible in principle to estimate the target's tilt angle based on the difference between the intensity

and the chirp centers. If these two centers do not separate, it would be impossible to tell apart

a weakly reflecting target right along the radar's line-of-sight, or a strongly reflecting tilted target

whose normal tilts toward the radar when it is far from the radar's line-of-sight.

The fact that the reflected beam is incorrectly directed by the mirror's tilt for the always-down-

looking radar causes the exponential attenuation (in .) The attenuation due to the azimuth tilt

Ix I is limited by the receive antenna gain in the azimuth direction of normal incidence to the mirror

when the radar is along the mirror's normal. Because the radar is confined to the same across-track

coordinate as the mirror, the attenuation due to Iy is limited by the mirror's back-scattering gain

in the across-track direction back along the direction of incidence. These attenuations are increasing

functions (more severe attenuations) of ax and py, because the larger these parameters, the sharper

me



the receiver and back-scattering beam patterns are, respectively, and the more weakly the radar

receives an incorrectly directed beam.

3.3.2 Target Return (General Case)

ysm(t) = VCtrCsm exp (t - tc)2 - t + ji ' (3.30)

L2

k2v2 (22 + aj)
_ L 22 (1 ka k (3.32)
=v 2f2 ++a, 2L R,

S zL kf2, (ka 2  kpx kp2 \te = + t + (3.33)v L \2L L R,

Jv6 = i mr p exp - (kepE 2 - +G 2 (ky f,,y)2 (3.34)

Aside from the expressions for ti and tc, the curvatures enter the radar return only through ox, iy
(3.20.) The effective target area is now 7r-/, pyy.

Because the mirror is not necessarily large, the way the mirror reflects the incident beam does

not obey Snell's law completely and the intensity time center becomes an increasing function of the

target's effective azimuth dimension fi, approaching asymptotically to the geometric limit of OL

as pf increases (if we assume the p term is negligible for the moment.) One can interpret this as

saying that the effective normal of the mirror points somewhere between the up-looking direction

and the actual normal, which is perpendicular to the tilt slopes. Now this effective normal causes

the tilt attenuation to be an effect of the combined gain patterns of both the mirror and the receive

antenna (the 0, exponential in VC/-).

Neither of the P curvature terms in ti and tc is negligible in general,' but the difference between

the intensity and the chirp centers,

xL 2ti - t =- (3.35)
v 2pi + aj

is not an explicit function of R,.

1The conditions for them to be negligible are

IolL 2P2 ka2 kpI2 kp2-< At,m - k lax <1v 2 1 + ai \ 2L Rx L

I0.IL k X kp. kp2
< Atm -= kI01a- << 1v L R, L



3.3.3 Target Return Frequency and Energy

We can infer from the squared magnitude of the Fourier transform of the radar return

yL 2 2 Ie + a k 2 (t -
IYsm(f) 12 = CtrCsmýv2 exp f + (ti )

Vv 22 L (i-t) (3.36)

V
2

that the energy of the radar return has a bandwidth of 2 and is centered at the frequency
2ýi + ax

2v- (ti - tc). This is because the azimuth tilt of the target separates the chirp center and the

intensity center of the return, causing it to include a different portion of the Doppler frequency chirp

(Figure 3-3).

Radar Return Signal Energy and Frequency Chirp
2

1.5

1
0.5 E

0

-0.5

Figure 3-3: The radar return from a tilted target includes a shifted portion of the Doppler frequency
chirp

Note also that both the time duration Atsm and the bandwidth are decreasing functions of the

target's effective azimuth dimension fri. This occurs because a larger effective target size leads

to a narrower far-field diffraction pattern, which is traversed more quickly by the moving radar.

Furthermore, this shorter radar-return time duration means that less frequency-chirp is incurred

because the chirp bandwidth is proportional to the duration of the return. What prevents the

time duration and the chirp bandwidth from both shrinking completely to zero (thus, violating the

uncertainty principle) is our far-field assumption: the target cannot be infinitely large.
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The total energy of the radar return is

E, = JYm(f)12df = lysm(t)l 2dt (3.37)

= CtrCsm /-Atsm (3.38)
3 2 a2 )2

= Ptr ka TsmPpzppy exp [2(koxisxax)2 2(k )2

4L 3v2S + a2 p 2f 2 + a
(3.39)

3.4 Multiple-bounce Reflectors

Another important type of man-made specular target is the multiple-bounce reflector [31]. Specifi-

cally, we will study a right-angled dihedral and a right-angled trihedral because their special scatter-

ing properties discussed below make them integral reference devices for calibrating radar systems.

We will first present the trihedral model.

3.4.1 Right-angled Trihedral

A right-angled trihedral (3 plane mirrors meeting at 900) is also called a corner reflector. It is a

3-fold coherent reflector which, due to a triple-bounce effect shown in Figure 3-4, has the special

property that no matter what angle of incidence a beam comes into interaction with the trihedral,

the three-bounce reflection within the trihedral turns the illuminating beam directly backwards

along the direction of incidence. If we define a "backscattering gain pattern" as the ratio of received

Figure 3-4: Triple-bounce effect of a trihedral

energy to transmitted energy as a function of the incident angle and the transmitter-to-receiver angle

(one subtended by the lines-of-sight of the transmitter and receiver as shown in Figure 3-5), then

a trihedral has a high backscattering gain pattern independent of the incident angle a but highly

dependent on the the transmitter-to-receiver angle 6. The gain is the highest at 3 = 0 and close to

zero otherwise. That is, the strength of the scattered beam from a trihedral has a broad incident

beam angle, a, but a narrow transmitter-to-receiver beam angle 3.
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Transmitter

Receiver

Figure 3-5: Scattering gain pattern

In other words, a right-angled trihedral's scattering behavior is such that it reverses incident

plane wave's direction. Because spatial Fourier transforms of the illumination and reflected fields

basically represent the plane-wave components of these fields, an ideal trihedral can be characterized

by an impulse response model,

Erf I(p, t) = T(Pf, )Eit(fip, t)dfid (3.40)

which produces

Eryfl(, t) oc Eit (-1 , t), (3.41)

where Erf (, t), Eil(9, t) are the transverse spatial Fourier transforms of Erfi(p, t) and Eil (P1, t)

respectively, with 9 representing a plane wave's transverse direction. However, a plane wave has

infinite spatial extent, and to satisfy such a condition of reflection implies that the reflecting surface

is also of infinite extent. To address this problem, we propose the following model:

Tp(, ) = exp [-LE + j 6(p + pl) (3.42)
PT

where PT represents the finite size of the reflector (we no longer use separate P, and py because the

separate along-track and across-track effects on the targets are already quite apparent by now), and

0 is an appropriate phase shift as in the specular mirror.



The resulting approximation to (3.41) can be seen in

Ei1 (pl, t) = f t (9, t)ej 2'1#' d§ (3.43)

Erf (A, t) = dfilT(fi, fip) J Eti (9, t)ej 2
7'P1 d§ (3.44)

- dfil V/3h exp [- 1P j+ ] b(p + Pi) fE il(t(, t)ej21P1*' d§ (3.45)

- 7j~exp[ l +· ] ~f Ei 1(-g, t)ej2"lpd§. (3.46)

Therefore, if the point of incidence of the illuminating wave is within the extent PT of this trihedral,

the incident wave will be completely reversed after reflection, otherwise, attenuated.

The radar return from this trihedral is

Y3h(t) = /Ctrh exp J[ -2t 2 + (3.47)

S= V hrp (3.48)

L2
At? = (3.49)

k2a2v2

We see that the trihedral return has the same full-dwell duration as that of a point scatterer or a

diffuse target because all these reflectors' backscattering patterns are independent of the illumination

direction.

3.4.2 Right-angled Dihedral

A right-angled dihedral is a 2-fold reflector (2 plane mirrors meeting at 900) that turns an incident

beam directly backwards in the same manner as a trihedral only in the direction perpendicular to

its crease, but acts like a plane mirror in the direction along its crease.

Figure 3-6: Double-bounce and single-bounce effects of a dihedral



Provided that a dihedral is located in an orientation such that 0 is the angle the across-crease

direction of the dihedral makes with i-axis, we expect

Eri(p, t) = §2h exp [--fi + jJ] fE (Qi , t)ej2 7-Pl' d (3.50)

where

Q R(0)FR(-o) = = Q- (3.51)

)= scos 0 - sin cos - 0 (3.52)
R() = in 0 cos = 0 (3.52)

- cos 20 - sin 20

- sin 20 cos 20 (3.53)

We have used R(+0) to transform the radar's transverse coordinates to and from the coordinate

system of the dihedral, and used F to flip the spatial frequencies of the illuminating beam in the

across-crease direction of the dihedral. This can be achieved with the model:

T2h(A fil) = V-exp 2 + j  6( - Qp). (3.54)

Then

ErL(P,,t) = dplVT2h exp [- p12 +j 6(l - Qp) iE(, t)ej2""d.Pld (3.55)

= v exp - l 2 +j] J (, t)ej2"" PQd (3.56)

- V2hexp [-i12 + ] J E (Q9, t) ej2,".Pd (3.57)

and we have arrived at the desired scattering behavior (3.50): if the point of incidence of the

illuminating wave is within the extent PT of this dihedral, the incident wave will be completely

reversed in the across-crease direction after reflection, otherwise, attenuated.

The radar return of a dihedral is

Y2 h(t) = CrC2hexp [( 2t2) 2 +i (3.58)

2 = ý2h,7rp2 (3.59)

At2 = (3.60)
2h k2v2 (a2 + p (1 - cos 20))

Two special cases of this dihedral are noteworthy. When 0 = 0, the crease lies perpendicular to



L
the azimuth 1. The return duration is the full dwell for an unresolved target kL, just like the

trihedral. When 0 = 7r/2, however, the dihedral acts only like a plane mirror: the return duration
L

is then short, Ati =
k of the dihedral as an untilted plane mirror with effective dimension2p

We can also think of the dihedral as an untilted plane mirror with effective dimension

1 - cos 20
TPT = p 2 = PT sin 0. (3.61)

But this shortening of the effective dimension due to misalignment of the dihedral's across-crease

direction with the azimuth does not show up in C.2h.

In this chapter, we have studied a number of simple target models: a uniform clutter, a diffuse

target, a specular mirror, a trihedral, and a dihedral. The target returns of these models are

summarized in the following table.

Target Return Duration Target Parameters Note

L
Point Scatterer Atpt =

ka.v

L2
Uniform clutter oo Cuc = A 1TUcr

Diffuse Target Atdt = L Cdt = A 2 7Tdt P
kav 2

L _-L 2ý2
Specular Mirror At,• = sm =+ 2sm Tsm2Ps pxPyP ti - 2= + a2

L
Dihedral At2h -- C2h = T2h 2P4

k 2p) sin
2 9 + a~v

L
Trihedral At3h -3h - T3h 2Ph

Sk 2p + av

Table 3.1: Summary of target returns



Chapter 4

Synthetic Aperture Radar and

Multi-resolution Processing

We have examined the return signals of the individual targets in the previous chapters by assuming

that they are all located at the origin of the target terrain. In practice when we do not have this

prior information about their locations, we may use the peak power in the return signal, i.e. Iy(t) 2,

to locate these targets. How well we can locate a target depends on how narrow, or high-resolution,

the peak in the return is. We note that the diffraction-limited resolution in time of some of these

target return signals are at the maximum dwell time Td,,, = L , corresponding to a resolution in

space vTd,,, = , which is a rather large uncertainty for many applications. The specular mirror

does have a narrower time resolution due to its spatial coherence. But in either case, the resolution

can be improved by coherently integrating a return over the dwell time - by compensating for the

motion-induced frequency chirp, we can obtain a much sharper peak, or a higher resolution.

We shall now revisit SAR processing that we first introduced in Chapter 1 using the target

models, radar system, and target returns that we developed in the last 2 chapters.

4.1 Conventional SAR Processing

First, we would like to use our radar system formulation to rigorously re-derive results from Chapter

1 to demonstrate SAR's resolution enhancement capabilities for a point target. In particular, we

will examine the target return of a point target derived from our planar, uncurved specular mirror

model by shrinking the mirror to a negligible size,

Tpt () - Tsm(/f- Po), 2p 2 < a 2(4.1)



That is, the point target is located at po = [xo 0 ]T, where xo is an unknown parameter that we want

to estimate. Using (3.30), we get

Ypt = Itexp J L - o2 +2At2J (4.2)

where

Atpt = Tdw = (4.3)
kaxv

and Cpt is a constant that does not concern us. The target return peaks at xo/v corresponding to

where the the target is. In the presence of additive white Gaussian receiver noise w(t) in the radar

return, as is usually the case, optimal estimation (minimum variance unbiased estimation) of the

location of the target from this signal would involve a matched filter [28] (Figure 4-1), because such

a structure optimizes the output signal-to-noise ratio for a signal-in-Gaussian-noise problem. In the

11 (t)arg 
max{.}

- ht (t) 1 1(2 Peak Detector -m-- x -0 o

T T
w(t) v

Figure 4-1: Optimal receiver for estimating the target's location

diagram,

( kv 2  k2 a 2 2

hpt(t) = exp -j L 2L2 v2) (4.4)

c ypt(-t) (4.5)
Io=o

is our matched filter, which is proportional to the unshifted, time-reversed, and complex-conjugated

version of the target return. io is the location estimate.

Reference [21] took a different approach to arrive at the same filter, which we shall call the

"conventional imager" from now on, because it is conventionally used to process the target return

to obtain a high-resolution SAR image (Figure 4-2.)

hei(t) - hpt(t) = exp -j L 2 2 (46)

Physically, this filter matches the frequency composition of the point target return exactly and



therefore maximizes the peak magnitude of its expected output,

< l(t) > = lypt (t) = ypt(t) * hci(t) (4.7)

ly, (t) 2  CtrCpt Td exp 2v (t - 2 . (4.8)

The peak of Ilypt (t) 2 occurs at t = xo/v, which is shown in [28] to give xo as the expected location

estimate (i.e. the estimator is unbiased.)

y(t)
CW-SAR
Image

w(t)

Figure 4-2: Conventional-Imager Receiver Structure

If we define resolution as the width of the Gaussian, Ilypt (t)12, because it roughly represents how

well we can locate this peak, then

tres = < Tdw (4.9)

The last inequality is true because of the Fraunhofer far field assumption on the radar. The filter

hi(t) can also be interpreted as a bandpass filter centered at the IF frequency (f = 0) such that

it allows the time-dependent Doppler chirp frequency within the dwell time of the target return

to pass through, resulting in a high-bandwidth target return signal. Because of the ability of this

filter to utilize the chirp or Doppler history imparted by the known motion of the radar to the

target to obtain a narrow peak in its output, it is also known as the "chirp compression" filter. The

along-track resolution of our target is now

Sa L
Xres ' Vtres = < (4.10)

which is a great improvement over the diffraction-limited resolution of the size of the radar footprint.

Another interpretation of this SAR is that we have synthesized an aperture approximately equal

to the distance that the plane covers during the dwell, vTd,,, which is much larger than the physical

aperture itself. The effective footprint cast by our synthetic aperture, a limitation to our resolution,
L

is reduced to approximately k(Td) = ax.k (vTd,)



4.2 Multi-resolution Processing

If we use a different period than Tdw in the filter, should the resulting output have a different

bandwidth and therefore, a different and possibly finer resolution? To answer this question, we

will need to examine the consequences of varying the integration duration, and hence the synthetic

aperture size in (4.6).

hmr(t; K) = exp - 2( )2 t2 ; K > 0 (4.11)

kv 2  2
=exp -J L 2T2n t 

t 2 ; Tint K Tdw (4.12)

where r. is the ratio of how much of the full dwell time we use for the coherent integration. We call

this general chirp-compression filter the "multi-resolution" filter because, as we have conjectured,

a different output resolution can be obtained by varying r, or the synthetic aperture. To formally

show this, we need to define a carrier-to-noise ratio performance measure as in [21].

< Ily,(t)|2 >CNR(t; r) _ (4.13)
< Ilw(t)12 >

ly(t) = y(t) * hmr(t; r) (4.14)

lw(t) - w(t) * hmr(t; a) (4.15)

CNR(t; a) =< (4.16)
No Tdw f

This CNR is applicable to all target returns by substituting the corresponding y(t). It is the ratio

of the instantaneous mean power of the target return to the instantaneous mean power of the white

Gaussian noise of spectral height No. The CNR can be interpreted as the normalized signal strength,

an indication of how well we can detect and estimate the signal from the instantaneous output ly (t)
of the filter [28].

For the Gaussian-shaped target models we have assumed, the CNR is also a Gaussian shape.

CNR(t; K) CtrCtargetTint (vt - x t (-)) 2  (4.17)
No exp - xes (K) j

where Ctarget is one of the target-dependent constants listed in Table 3.1. We will define the

synthetic-aperture-dependent resolution of the chirp-compressed signal output to be the spatial

width of CNR(t; K), i.e., xres(r).

For now, let us finish the resolution analysis of our point target with the CNR - it will be centered



at xt = xo, where the target is located.

CNRpt (t; ) = CtCt 2iTd exp t - x) 2  (4.18)No r2 + 1 AX
2  

K2+1
AX2  ax K (4.19)Pt 4 r2 + (ka- )2

Now we are ready to examine the effects of varying the integration duration on the CNR res-

olution. In Figure 4-3, we see that the resolution is a function of the integration time and the

Resolution and peak CNR of a Point Scatterer

peak CNR -

a=2 .001
2L
S 2L .005

= 0.01 ...........

a= 0.02 -----

nl

0.01 0.1 1 10
K = Tint/Tdw

Figure 4-3: Resolution and peak CNR of a point scatterer as a function of integration duration

transmitter's along-track Fresnel number (k.ýa). The latter indicates how far the target is from the

radar; (\2L) < 1 is required for our far-field assumption. The asymptotic (unprocessed) resolution

with a small synthetic aperture approaches the footprint size on the terrain. Even then, we achieve

marked improvement with only 0.1 of the full-dwell synthetic aperture.

If we use an integration duration longer than the dwell time, we obtain a slightly finer resolution,

but at the cost of degradation in CNR. For optimal estimation of the location of the point target,

we would like to use the full target return duration (Atpt = Tdw) as the integration duration such

that the highest CNR is achieved. This makes good sense. If the integration time is shorter than

Atpt, then we are not using all the available target return energy for the chirp-compression. On the

other hand, if the integration time is longer than Atpt, then we are letting unnecessary noise enter

our processed signal through the extra chirp bandwidth in the filter. This brings up the radar issue

of resolution versus accuracy [1]. We can obtain a higher resolution for our estimate with a longer

integration time, because resolution is a system performance limit calculated in the absence of noise

(i.e., width of < Ily(t)| 2 >.) However, a long-integration estimate might not be close to the true
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value of the estimated parameter (i.e. accurate) because, at a low CNR, Ily(t) 2 can be overwhelmed

by the high level of noise and the peak of the former may be misplaced (Figure 4-4.)

Input waveform to estimator Output peak of estimator

Output peak (high CNR)

Output peak (medium CNR)

Output peak (low CNR)

Figure 4-4: Receiver output for estimating target's location: high noise level (low CNR) shifts peak
of receiver output from where the true value lies

In all situations with a specular target return and additive white Gaussian noise, the best CNR

is achieved if we match the integration time with the duration of the target return, because this is

a result of the matched filter that classical detection and estimation theory establishes.

To summarize this section, we note that multi-resolution processing of the radar return offers a

way to vary the CNR behavior (4.17) of our processed signal according to the length of the integration

time used. Although there is probably only one best CNR achieved by the matched integration time

(e.g. with the target return duration), we shall show in the next section that how this CNR changes,

i.e. how xt (r), Xres () change, with respect to the integration time, is target dependent. This is a

strong parallel to the work of Irving et al. [15], which shows that a similar multi-resolution imaging

scheme, essentially one that uses a discrete collection of r to image the return, leads to a useful

discriminant of clutter and man-made targets.

4.3 Target Multi-resolution Signatures

In this section, we shall assume returns from some of the targets presented in Chapter 3, and show

that their multi-resolution CNR behaviors are different. This is evidence that various targets, having

different multi-resolution signatures, can be discriminated from each other. We will first present a

general result about the SAR resolution which we will use later on to carry out the calculations for

different targets.



4.3.1 A General Resolution Calculation

We need to look at the width of the Gaussian in Ily(t)12 or the CNR to figure out the resolution

of a target. Ultimately, we must convolve y(t) with hmr (t; K). However, because convolution is

associative (for smooth waveforms), we can use (2.32, 2.8, 2.5, and 2.26) to carry out the time

integration first, and defer the spatial integral over the target reference plane. For a multiplicative

target model, we find that

2(t) = kT k a y 2  P(vtx )2 (4.20)ly(t)= O diTdw T•dfT~) exp py- - X)

2 _2+ 2, ) "ka2 K
P= ka2L ,2+ J (4.21)

This has the additional interpretation of passing a spatial function or random process T(fi) (de-

pending on whether the diffuse or the specular target model is used) through a linear system that

transforms the spatial information of the target to a time signal.

We can arrive at a similar result for a general linear impulse response target model by using (2.31)

instead of (2.32). With the aid of a transform from x, xl to the sum-and-difference coordinates,

!(x + x), x - x1 , we are able to re-use the same time-integration for obtaining (4.20) and write

ly(t) = Ctrdw, Kp d2 +P-)

ex k 2a (y2+Y)ka (+ x-x2 a P vt ] (4.22)
exp I 2L 4L 2 (y+ 2L 4L 2  2 2

which is in an extremely convenient form for our trihedral.

For our diffuse model, we can use (2.37) to further write

< ly(t)12 >= Ckra\2T • +2 21a 2
<I|1,(t)I2 > tr 2  2 + i A2Td(f) exp j- 2Y - 2R{P}(vt-x)2

(4.23)

4.3.2 MR Signature Comparison: Variations across Targets

We shall now use the above equations to calculate the multi-resolution (MR) CNR behavior of our

targets. In this subsection, we will only present the general formulae for the shift and resolution

for each target. We will defer the more detailed comments about the individual targets to the next

subsection.



Diffuse Target

xtt = 0 (4.24)

2Ax2t(r) 1
= 1 + (4.25)

(4.26)

Specular Mirror

skm( ) khps '{P}P2 + Rlp{p2 kp}.. (n) (4.27)
PI Pi2p4 + R{P}p2 1+ )2)

2A m( ) pI 2p + 1 + ( ) 2 + 2R{P}p 2

p IP p2p 4 + {p}p f 2+ ( )2)

Right-angled Trihedral

xt3h = 0 (4.29)

2AX h(s) 1A ) (4.30)
p R{P}p2

Right-angled Dihedral

x2h =0 (4.31)
2As (K) (r+ 1+ R{P}p2 sin 2 92Ax2h ( sin20+ • (4.32)

P~ IPl2p4 sin2  { + 2{P}p2

In Figure 4-5, we have plotted the MR signatures of our four finite-size targets: diffuse, specular

mirror, trihedral, and dihedral, for some nominal combinations of Fresnel numbers - and target

sizes p,. We see that, even when the targets have the same dimension p,, processing the radar

return signals with different integration times leads to different resolutions for different targets. As

a result, target discrimination based on the SAR images of different resolutions is possible.

Note that in all cases, as the integration time, or r, approaches zero, our filter hmr (t; r) ap-

proaches an impulse and ly(t), essentially unprocessed, approaches y(t). i.e., the resolution would

be the diffraction-limited target return duration. As we can infer from our analysis in Chapter 2,

in a low r regime, the diffuse target and the trihedral have the same duration or resolution, in fact,

the broadest among all targets. For the diffuse target, this is because it is an isotropic scatterer; for



the trihedral, while it does not scatter isotropically, has a broad backscattering pattern - one that

is independent of the direction of illumination. In the same low-n regime, the specular mirror, being

the one that preserves the most directionality of the impinging beam among all targets, will yield

the narrowest target return width. The dihedral's behavior, depending on its orientation (which is

0 = ir/4 for this example) lies between that of the specular mirror and the trihedral.

As . increases and before it approaches 1 (full dwell), the resolutions of these targets undergo

significant changes. The specular mirror's resolution merges with that of the diffuse target: they

both exhibit the same target-limited resolution, whereas the trihedral's resolution is only limited by

the size of the radar's aperture, and is exactly that of a point target. i.e. The dwell time limits

the chirp bandwidth in the trihedral return and thus the resolution, which is on the order of the

radar's aperture size (Table 4.3.2). The dihedral, again, lies in between the specular mirror and the

trihedral.

The following table is a summary of the target's MR signatures.

Table 4.1: Target MR signature: resolution for K = 1 (full dwell time), compared with original target
return duration
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4.3.3 MR Signature Comparison: Variations due to Target Geometry

In this subsection, we will examine the MR signatures of each type of target individually. We would

like to show that, within each type of target, the MR signatures are affected by different geometries

of the target. This may be used as another MR target characteristic to help discrimination, as well

as to possibly estimate the target's geometric parameters.

Diffuse Target

The MR resolution of a diffuse target is a monotonically decreasing function of the integration time.

In the low-K region, the diffuse target resolution is dwell-limited, as shown in Figure 4-6, and is

independent of the target size. Only the trihedral or the point target (which is only an idealization)

would have such a full dwell back-scattering duration. When processed with the full dwell, the

diffuse target resolution is target-limited, which is different from how a trihedral or a point scatterer

would give aperture-limited (or chirp-limited) resolution in that regime. In fact, the larger the diffuse

target, the bigger this difference in resolution is at the full-resolution image.

In practice, one would not use hm,,(t, K = 0) because of broadband noise. However, because of

this distinction at these two limits, it is possible to tell this diffuse target apart from an untilted,

uncurved specular mirror by using the MR processor at K <« 1 and K = 1. Provided that we have

techniques to contend with speckle fading [6] that degrades the SAR image, it is possible to estimate

the diffuse target size based on the full-dwell SAR image.
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Specular Mirror

The diffraction-limited resolution of the specular mirror's unprocessed return (r, = 0) is finer than

that of the diffuse target because of the coherent behavior of the specular mirror. However, at r = 1,

it has the same target-limited resolution (Figure 4-7 (c)). Again, we could possibly estimate the size

of the specular mirror based on the full-resolution image.

Note that the resolution of our specular mirror does not depend on the tilt. This is apparent

from the fact that the target return duration of our specular mirror Ati (3.31) is independent of the

tilt.
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all circumstances (Figure 4-7 (b) and (d)), the curvature of a mirror seems to affect the effective

target size only (3.20). At a low K, the higher the curvature, the smaller the effective target size,

the less directional the reflected beam is after interaction with the specular mirror. This results in

a broad target return width is (wider than the diffraction-limited resolution for a large mirror.) At

a high K, the fact that the curvature reduces the effective target size actually helps the resolution.

(This effect does not depend on the sign of the curvature (4.28).)

In addition, the best resolution of a curved mirror clearly is achieved at some K < 1. This

minimum resolution appears to be an increasing function of the curvature, (Figure 4-7 (b)), but

a decreasing function of the target size (Figure 4-7 (a)) (which is probably due to the fact that

with '- held constant, increasing p, actually decreases the radius of curvature Ri.) Why the MR

signatures show this curvature dependent effect is not quite understood at the writing of this thesis,

but we may be able to exploit this effect to detect curved specular mirrors.

Note that the best CNR is probably not achieved at K = 1 due to the mismatch of the target

duration At and the dwell time.

The shift in the peak CNR also shows MR dependence. In particular, the aspect-dependence, or

the broad-side flash phenomenon [4] is present at low K but vanishes at high K (Figure 4-8, Table 4.2).

This can be explained from the fact that at high K, our SAR becomes very focused due to the large

synthetic aperture, and the effective antenna beam pattern becomes sharply pointed right below the

down-looking radar. The broad-side flash received at the normal incidence of the tilted plane mirror

assumes an off-down-looking direction from the radar's perspective and therefore will not show up.

Table 4.2: Specular mirror MR signature: offset for n = 1 (full dwell time), compared with original
target return offset

Both the tilt and the curvature dependent MR behavior of the specular mirror may very favorably

help us detect its presence.

Trihedral

The resolution of a trihedral is completely independent of the target size in all regions of K. But

our trihedral model is very idealized and does not include cut-off effects at the boundaries, or tilt,

or the possible translation of the incident beam.



Dihedral

A dihedral is really not any different from a specular mirror with no tilt and no curvature because

its behavior can be summarized by obtaining the effective target size iT = PT sin 0 according to the

target's orientation (3.61), and substituting this value for the dimension of a specular mirror. The

interesting behavior of the dihedral probably lies in a 2-D SAR radar system when the across-track

effects become crucial as well. In addition, a dihedral has different polarization properties due to its

double-bounce scattering nature that will not appear in our scalar wave analysis.
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Trihedral Resolution
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Figure 4-9: MR signature: resolution of trihedrals with different dimensions
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4.3.4 Summary

In this chapter, we have explored in detail the MR signatures of different targets, which help us

realize that various targets can be discriminated merely by processing the return signal with a

varying integration time. Most importantly, some of these differences in MR target signatures are

lost in conventional SAR images processed with the full dwell time. Certain adaptations to the

conventional imaging method are therefore necessary for target discrimination. Several questions

remain to be answered.

1. What are the target discrimination problems that we want to pose to address common situa-

tions in radar system practice?

2. What are the proper ways to utilize the MR filter in order to achieve the best performance in

target discrimination?

3. Would the MR filter be optimal for the above problems? If not, what are the structures of the

optimal filters and how well do they perform compared to the MR filter?

An optimal target detection scheme based on the MR resolution signature difference would involve

processing the radar return at several resolutions, Ki, i = 1, 2,..., n in order to obtain the widths

of the resulting output signal for use in later decision rules. In order to utilize this information

optimally, we need to have some statistical information about the widths. This presents a difficulty

because these widths are only theoretical characterizations based heavily on the assumption of the

Gaussian shape of our signals, and not straightforward experimental quantities whose probability

densities or statistical moments can be easily obtained independent of the measurement procedure.

If we are to study this MR filter further, we could take the approach of further assuming some

experimental definition of the CNR resolution defined theoretically in this chapter, and apply a

statistical model for the measurements of these widths in additive white Gaussian noise to obtain

the optimal decision rules therefrom. Alternatively, we could train some assumed adaptive or learning

signal processing structure to exploit these target-dependent MR signature differences as done in [15],

and achieve a certain performance improvement in target discrimination without understanding the

system's underlying limitations.

Parameterized by only r, the MR filter does have the benefit of generality which may help simplify

its implementation, but at the same time it may be sub-optimal. Therefore, neither approach seems

as satisfactory as posing some practical yet tractable detection problems, and solving for their

optimal detectors without constraining ourselves to using the MR filter. We shall proceed in this

direction in the next chapter.



Chapter 5

Target Detection Problems

In the following sections, we shall pose different hypothesis testing problems that address some

common situations in practice. In all of the cases, we assume that the geometric parameters and the

location of our targets are known. Although not entirely realistic, this will allow us to assess how

much improvement an optimal method of target-return processing, probably one different from both

the conventional and the MR filters, can be obtained under idealized circumstances. That is, we will

present the optimal receiver structures for these detection problems and compare their performance

against those of the conventional and the MR filter and hence gain intuition into what needs to be

improved in the latter. The performance of the optimal processors should serve as the theoretical

limits (under the assumption of the validity of our target models) of how well any other receivers

can perform in either an idealized or generalized setting.

5.1 Detection of a Specular Mirror in Uniform Clutter

The first problem we will address is the one that motivates this thesis. We have a vast extent of

natural clutter (probably grass) in which a specular man-made target could possibly be embedded.

5.1.1 Idealized Binary Hypothesis Test

We will model the grass with our uniform diffuse clutter model, and we will pick our coordinate

system such that the possible man-made target, modeled by our specular mirror, is located at the

origin of the target terrain. The uniform diffuse background clutter is present under both hypothesis

Ho and hypothesis H1. In our null hypothesis Ho, the specular mirror is absent, and in hypothesis

H1, the specular mirror is present.



Ho : T(p) = Tc(P) (5.1)

H 1 : T(A) = Tsm() + Tuc(p)

where both Tuc (p) and Tsm(pf) are defined in Chapter 3. In reality, there probably should be a hole

in the uniform clutter where our man-made target is located. But since a large area, at the size of

the radar footprint, of the uniform clutter is being imaged, this hole of the size of a man-made target

in the far field probably would not make much difference to the uniform clutter's contribution to the

radar return at any point in time, and therefore the optimal decision system is rather unaffected by

this simplification in modeling.

Without going through the same calculations from the previous chapters, we will work directly

with the radar return r(t) contributed from the possible target and clutter under each of the hy-

potheses. In addition, we will have receiver noise with the same statistics under both hypotheses.

Ho : r(t) = yc(t) + w(t) (5.2)

Hi : r(t) = ysm(t) +yuc(t) +w(t)

where

y,,(t) = return from uniform diffuse clutter

ysm (t) = return from specular mirror located at origin

w(t) = receiver noise

ysm(t) is precisely (3.30) and is a deterministic signal except for its random absolute phase. w(t)

and yc(t) are statistically independent, zero-mean circulo-complex Gaussian noise sources and have

the following power density spectra:

Sw(f) = No (5.3)

aSy. 2 )rexp - a f (5.4)

where f = v - VIF is frequency in Hz centered at the IF frequency VIF. The uniform clutter acts as

a colored noise, and has a bandwidth proportional to '1-. This is a simple binary detection problem:

there is a random-phased known signal under one hypothesis and identical colored noise under both

hypotheses.



5.1.2 Optimal Processor

We would like to process our return r(t) in such a way that the probability of detection PD =

Pr{say H, given H, true} is maximized subject to the constraint that the probability of false alarm

PF = Pr{say H, given Ho true} does not exceed a specified level. This is the Neyman-Pearson

criterion for a binary hypothesis testing problem, whose optimal decision rule is known to be a

likelihood ratio test (LRT) [28]. To implement the LRT for detecting our specular mirror return

(deterministic) from the combined colored noise, we need a whitening filter H,(f) whose output

will be matched-filtered with the pre-whitened expected return ysm(t) * h,(t) [28], where h,(t) is

the impulse response of H,(f) (Figure 5-1.) The whitening filter has to satisfy'

IHw(f)12 = (5.6)Sw (f) + Sy., (f)

r(t) hw(t) Threshold IHHi

Yhm(t)

Figure 5-1: Optimal processor as a whiten-correlator system

The resulting LRT is

say H,

1112= > 7Y (5.7)
say Ho

where the threshold is chosen to achieve the desired false-alarm probability. We can also cast this

optimal processor into a form that is used in the IF filtering model [28]: where the first two blocks

constitute our IF filter H(f) (centered at the frequency VIF) in our IF model.

1A possible filter is

H1 (f) (5.5)
Na + jVCtCsm Va exp -[ (7rf)2]

but this is not unique or causal. The idea of causality should not concern us now because off-line processing is
assumed.
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Figure 5-2: Optimal processor as a filter-sample system

The probability of false alarm of such a receiver is

PF = exp var( I Ho or Hi) (

The probability of detection is completely characterized by the effective signal-to-noise ratio dopt2,

Po = Q dep, 2op (5.9)
D = Q , var(l I Ho or HI)(

= Q(V2dot, r-2 1nPF) (5.10)

where Q(a, b) is Marcum's Q-function [13]

Q(a,b) = zexp 2 + Io(az)dz (5.11)

and I,(x) is the modified Bessel function of the first kind.

l tdO (5.12)
Io(x) = exp[x cos ] (5.12)

The effective signal-to-noise ratio for this optimal processor is

2_ < I Hi> -< I Ho >I2
=Opt var(11 Ho or HI) (5.13)

[lYsm(f)12 Hwl(f)12df (5.14)
]Hw(f)4 Ys(f)12d(5.14)J[Sw(f) + S,,(f)] IHf(f)I4  s 24

S m(2 df (5.15)
SNo + Sy•, (f) 

(515)
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Normalizing the frequency f in Hz to a dimensionless quantity f', we get

dot2 = SNRsm -n (5.16)

where

SNR,, = Specular mirror signal-to-receiver-noise ratio

- IYsm(f)1 2df = 2 J ym(t)i2dt = OtC, nmVAttm (5.17)

(5.18)

DNR = Diffuse background (uniform clutter) to receiver noise ratio

SSy (f = 0) C_ rCuc V5a.
No N v 2 (5.19)No No v 2

= Ptr aa 3/2T(
- Lc (5.20)

No L2V
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Figure 5-4: Detection probability versus effective signal-to-noise ratio

We see that do,, 2 is proportional to the signal-to-receiver-noise ratio SNR,, (which can be increased

by increasing the transmitted power, establishing proper orientation of the target, etc.) and an

integral which represents how much the combined receiver and diffuse background noise corrupts

the specular signal energy (Figure 5-5). If the hypothesis testing problem is one of detecting the

specular mirror return in white receiver noise only without the diffuse clutter return (DNR = 0),

SNRS• would be the performance index d2 to be used in combination with Marcum's Q-function

(5.10) to evaluate PD given PF.

Because the integral in (5.16) cannot be evaluated in closed form for an arbitrary value of DNR,

we will first present the results of some limiting cases for which we can simplify the do0p 2 expression.

Large Tilt

When the target is very tilted, it acquires a large chirp frequency shift. i.e. the numerator of the

integrand in (5.16) is insignificant at all frequencies for which the clutter spectrum differs significantly

from zero. At frequencies where the mirror's power spectrum is significant, there is only receiver

noise to contend with.

2

dopt2 -+ SNRsm, when k|4,la, > 1 + (5.21)2pz2



Typical Power Spectra of Specular Mirror Return and Uniform Diffuse Clutter Return
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Figure 5-5: Comparison of specular mirror and uniform clutter return in the frequency domain

Note that SNRam is a decreasing function of the tilt IO x (5.18).

High Clutter Energy, Small Tilt

The DNR is frequently quite high, perhaps on the order of 100 [14] because the large diffraction

footprint of the radar gives a strong return that results from the reflection off the large area of

uniform clutter. This means that we can neglect the receiver noise and obtain

d2 SNRm + a,2 exp (kxa )2 2ý,
d DNR 23 22 + a

(5.22)
a2

when DNR > 1 and kloxlax <1+ a

Interestingly, the advantage we gain from having a tilt in our mirror by deflecting the signal energy

from the clutter energy, i.e., the positive exponent above, is exactly the same as the attenuation

suffered by the mirror from the tilt exp -(k4xax) 2 2~3 (5.16). However, this high clutter

energy regime is only valid for a low tilt because the clutter is band-limited and the receiver noise

will limit the performance of our optimal processor at a high tilt.

Large Target

When the target is large, the mirror's return will have a much smaller bandwidth than that of the

clutter. The mirror's signal essentially only sees the noise at the shifted frequency of the mirror's

-31
Ira,



return.

dopt2SNRsm 2 > 2 (5.23)
1 + DNR exp[- (kx ax) 2] x a

General Case

We would like to see how our target geometric parameters affect our detection performance, i.e. the

effective signal-to-noise ratio dopt2 . From (3.39) and (5.16), the across-track parameters py, Oy, Ry

enter the effective signal-to-noise ratio only through the energy Ey,,. (and not the integral in (5.16),

which is due to the radar-system dynamics in the along-track direction.) How they influence dopt2

is obvious. We will investigate how dopt2 fares against the along-track parameters pa, Ox, Rx. First

we write explicitly

dopt 2 = dopt 2 (px I x, R) (5.24)

SNRsm = SNRsm(px, ,, Rx) (5.25)

and we compare dopt2 to a particular signal-to-noise ratio,

SNR m = SNRsm(px = ax, 5 = O, Rx - foo) (5.26)

because SNR m is a quantity independent of the target's along-track parameters. From (3.39) and

(5.16),

dopt2 Px ,Rx) _ px 3 fi2 1 [ )2 2 x 2

SNR, a 2x + a ~ r 2fi + aJ

exp - (f + k 22 _ 2) (5.27)

2 a
2

+ DNR exp 2 f 2 df

=dopt2xx R1 + , 2 (5.28)
SNRm m R)

dopt2 (,, a x -- +00)
We will show only the special case results of an uncurved target, SNRx ) because

SNROm
the general case with a curved target is only a simple extension thereof.

From (5.27), we see that the tilt affects dopt2 in two competing ways: the exponential coefficient

due to the fact that the tilted mirror does not point to the radar's line-of-sight (vertical direction);

the integral which describes the benefit of the shift of chirp frequency in the specular mirror return

(away from the spectrum of the uniform clutter) due to the displacement of our broadside flash.

The former is a decreasing function of the tilt I• ,; the latter is an increasing function of the tilt



(Figure 5-5).
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Figure 5-6: Normalized dopt as a function of tilt Io I-

Figure 5-6 shows that these two competing factors roughly annihilate each other at a small tilt

angle, and then the advantage of the chirp frequency shift is finally subdued in the receiver-noise

limited high-tilt region.

For a small specular mirror (p. small compared to as), it will take a high tilt for dpt2 to attenuate

because a small specular mirror's return is less directional (having a wider backscattering pattern)
than that of a larger specular mirror, hence mitigating the attenuation due to the mismatch of

the radar's look angle and the mirror's normal direction (3.28). The result is that the curves in

Figure 5-6 appear flatter for smaller mirrors, and the curves for larger targets roll off faster at high



tilts.

The same phenomenon can be seen in Figure 5-7: the vertical spacing between curves is much

smaller in the small P, region than that in the large Px region because a large mirror is more effective

in giving a directional return.

In addition, a large tilt yields a downward-bending curve as the mirror size increases, indicating

the disadvantage of tilt as the mirror is large enough to deflect the impinging beam from the down-

looking radar by the Snell's law of reflection. We also see that the directionality effect of the specular

mirror fully reaches the geometric optics limit at approximately

2p 2

PX 3.0ax, 2 + 0.95 (5.29)

and the reflection does not become much more directional for a larger mirror. Therefore, large

mirrors of all tilt levels give parallel curves merely because SNRsm is an increasing function of the

mirror's area.
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5.1.3 Conventional Processor: Full-dwell-time Imager

The conventional imager-receiver introduced in the previous chapter (4.6) has the structure shown

in Figure 5.1.3. In order to maximize the probability of detection given any probability of false

r(t) hi(t) (t) 2 sample at / Threshold Ho/H1
t=o

Figure 5-8: Conventional imager-receiver

alarm, we shall sample the output of hci(t) at its peak, 1 - 1(t = 0), corresponding to where the

target would be if it were present. The performance of this receiver in terms of its PD and PF is

also characterized by (5.8), (5.10) and Marcum's Q-function, but the effective SNR takes on a new

value, dci2

d _ 2  <IlH 1 > - <IlHo°> 12
d =i (5.30)var(1 I Ho or H1 )

_ I <I H, > 12 (5.31)
< I Ho >

2

SYam"(t)hci(-t)dt (5.32)
- s(5.32)

J[Sw(f) + S,(fi )He(f)l 2

SNRsm •32i + ax
1 + DNR ax

2 2
exp [(koxax)2 (2i - 23L+ aa 2f + aJ

(5.33)

and Hci(f) is the Fourier transform of hci(t). We would like to see how much performance advantage

we gain from using the optimal processor instead of the conventional one. That is, we are interested

in

do 2  1 + 1 DNR a2

dci2 - V 2 + a2

22 2 2fexp 2 X2 2(kX 2
exp + a- 2fi3 + aJ

(5.34)

In the following plots, we see that the optimal processor out-performs the conventional imager-

receiver in two major ways. From Figure 5-9, it is clear that the performance gain of the optimal



receiver over the conventional one is generally an increasing function of the target size,2 due to the

chirp bandwidth mismatch between the conventional-imager filter and the specular mirror return.

From Figure 5-10, we see that the performance gain is also an increasing function of the tilt, because

the conventional receiver suffers from not being able to shift its chirp frequency band to match that

of the target return. The combination of these two effects imply that the conventional receiver is

severely sub-optimal for detecting a large tilted specular mirror.

We are also going to explore how the curvature affects our detection performance. The effect of

increasing curvature is essentially one of reducing the effective size of the mirror. In the case of a

high tilt, this implies we lose performance gain as the curvature increases. In the case of an untilted

mirror, we lose performance gain only for a large mirror (p, = 4a , P 8a. in the plots) because

of the effect explained by the footnote on the previous page and the graph in Figure 5-9 (c).

2There is an exception for the low-tilt small-target region - the performance gain decreases a little as the target
size grows, until the target reaches the size roughly equal to that of the aperture. In order to understand this, let us
consider a specular mirror without tilt. When the target is of negligible size, i.e. 2p42 < a , the bandwidth of the target
return is approximately the same as that of the uniform clutter, •-, and occupies the same bandwidth around the
center frequency (f = 0.) Increasing the target size in this region would shrink the target signal's bandwidth, causing
it to be more concentrated around f = 0 where the uniform clutter's energy is the strongest. This reduction in the
effective SNR due to an increase in clutter energy inclusion is inevitable for the optimal receiver, and dP continuesdci
to decrease until the target size reaches a point (almost the size of the aperture for this case) when the advantage of
the optimal processor over the conventional processor from correctly matching the chirp bandwidth supersedes the
disadvantage the optimal processor suffers from due to more clutter energy inclusion, and the performance gain d
increases again beyond this point. Note that this effect is more prominent under a high DNR. Also, this is an effect
of d and not an effect of dot, i.e. only the relative performance between the optimal and the conventional receiver
for detecting a specular mirror of the same size shows up as a decreasing function of Pz over this region; the actual
value of do,t is an increasing function of p, in the same region as shown in Figure 5-7.
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5.1.4 Adaptive (Optimized) Multi-resolution Processor

The conventional imager's performance suffers severely due to its inability to account for either the

mismatch of the integration time with the specular mirror return duration, or the separation of

the chirp and intensity time centers of the specular mirror return. We would like to modify our

multi-resolution receiver to address these issues. We now define the adaptive MR filter as,
[ kV2 

2tk22 •2 2Vhmr.(t) = exp -v (t - t)2 k2L2 2  1 t2] (5.35)

L 2L2  r2

where ti and t, are given by the specular mirror return (3.30) and K is chosen to match the return

duration Atsm,

ax
K= (5.36)

such that in the absence of the uniform clutter, this adaptive MR processor would exactly match

the specular mirror return (up to a constant scale) and therefore would be the optimal processor.

i.e. The only difference between this adaptive MR processor and the optimal processor is that we

have omitted the whitening filter in the former. We can also think of the adaptive MR processor

as the best processor one could use without sufficient knowledge about the clutter to build such

a whitening filter, because in reality, we may not have much prior information about either the

clutter's geometry or its statistics. So, by omitting the whitening filter, we avoid the danger of

degrading our signal-to-noise ratio by incorrectly filtering the radar return.

(t sample at Threshold H i

t=O

Figure 5-12: Adaptive multi-resolution receiver structure

This way, we find the effective SNR using

di 2  I <lI H> - <lHo >12 I <IIHi > (2
var(1l Ho or Hi) < e lHo >



where 1 = 1(t = 0). Then

2

dmr 2 =- (5.38)
[Sw(f) + Sy (I)lYsm()i 2 df

SNRsm (5.39)
2p + ax 2.4

1+DNR exp +(ka)2 x 2
2[( + 2a2 (a 2 + a2)(2 + )

How much uniform clutter degradation is incurred on the specular mirror return depends on the tilt

(numerator of the above expression). But when the clutter is absent (DNR < 1), dmr 2 approaches

SNRSm.

The improvement of using the optimal processor over the adaptive MR processor is not dramatic.

In particular, for either a specular mirror with a high tilt or a large effective dimension, the clutter

will behave like white noise (the frequency spectrum of the clutter is essentially flat for the frequency

band of the specular mirror return (Figure 5-5), and the advantage of using the whitening filter in

the optimal filter over the adaptive MR processor is greatly reduced.

In conclusion, the optimal processor has prior information about the target geometric parameters

to best match the target return's chirp bandwidth and shift, as well as the noise statistics of the

clutter to compensate for the detection. However the whitening filter in the optimal filter may not

be essential, depending on the geometry of the specular mirror.
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5.2 Detection of a Diffuse Target

After comparing how well an optimal system and the conventional/MR receivers perform for detect-

ing the man-made target in uniform diffuse clutter in the presence of receiver noise, we would like to

repeat the problem for a man-made clutter. At the time of this writing, we have not solved some of

the challenging technicalities involved in evaluating the performance of the optimal system for this

problem. We shall take the reasonable compromise of examining a special case when the uniform

diffuse clutter's energy is negligible compared to the receiver noise (DNR <c 1), and therefore we

can omit the diffuse clutter in the target model for our problem.

5.2.1 Idealized Binary Hypothesis Test

In an idealized situation, our man-made clutter, or diffuse target is located at the origin of the target

terrain. Receiver noise with identical statistics is present under both hypothesis Ho and hypothesis

Hi. Under our null hypothesis Ho, the diffuse target is absent, and under hypothesis H1, the diffuse

target is present.

Ho : T(p) = 0 (5.40)
HI: T(p) = Tdt(fi)

where Tdt(p) was defined in Chapter 3. The received radar return is

Ho : r(t) = w(t)

HI : r(t) = Ydt(t) + W(t)

where

Ydt (t) = return from diffuse target located at origin

w(t) = receiver noise with spectral height No

With the diffuse target replacing the specular mirror, the problem formulation is exactly in

parallel with that in the previous section. The only exception is that we have left out the uniform

diffuse clutter. This hypothesis testing problem is about detecting a non-stationary Gaussian signal
from white Gaussian noise.

5.2.2 Optimal Processor

The optimal Neyman-Pearson processor for this type of detection problem is derived in [27]. We
shall apply the general results to our problem without proof.



Receiver Structure

A time-varying linear filter is required to optimally detect the non-stationary random signal. In our

particular case, the impulse response of this filter cannot be represented by a closed form expression.

We have to resort to a characterization using the Karhunen-Lobve (K-L) expansion.

< Ydt(t)Yt(u) > = CtrCdt exp k2p (t - u)2

(5.42)exp[ (k2a 2v 2  2 k 2) a 2 2 2 2-2 )) t U2]
2L 2  L 2L 2  L

00

n=o

where the {•n(t)} are orthogonal and have unity-square integrals,

m (t) 0 (t)dt = 1, m=n (5.44)0, m A n

and the expected energy is

<Ed >= < dt(t)t(t) > dt = A (5.45)
n=O



The results are3

C d L (a + p - ax 2p + a)n/2An = CtrCdtN , r-kv (a + pi + ax 2p + a)(n+1)/2

[ p2 2 --1/2

p 2p a2+na a a +

_ kv 1 ax 2pi +
•b (t) = 2nn[ 7rL 2nn! 7r

and {Hn(x)} are the Hermite polynomials [10]

d() =

n = 0, 1,2,...

- ax 2p 2 + a

S+ as 2xp+ai +

(5.46)

(5.47)

exp kv - k2 a, arv2)L 2L2

(5.48)

(5.49)

We see that the eigenvalues An form a decaying geometrical sequence proportional to the energy of the

diffuse target return. Their decay rate, the term inside the parentheses in (5.47), is a monotonically

increasing function of the target size p, and has the asymptotic values

lim a2 + p2 - a p+a 2  1/2lim axXax 2 =0

2 + p 2 1/2
a +p -ax 2p +a 1

lim 2p= 1
p-4oo a2 + p 2 + ax X2 + a

(5.50)

(5.51)

Therefore, given a fixed expected energy < Eydt >, P, affects how the energy of the target return

is distributed among the different eigenfunctions ,n(t). We see from the stationary part of (5.42)

that an increasing px shortens the correlation time of the target return Ydt (t). It is no surprise that

a large px implies that the energy of the return is spread out among many of the eigenfunctions

(An decays slowly) because this is just the uncertainty principle carried over to a non-stationary

stochastic signal.

3By using (8.957.1) or (7.374.8) in [10], we can solve the Fredholm equation in question,

CtrCdt exp [ 2 (t -U)2 k a t2 +u2)] 0n(u) du = An (t)'

Then,

n (t) = exp [kvt2 bn(t)

The An are arranged in decreasing order forming a geometric sequence.



The likelihood ratio test can now be written out in terms of the K-L expansion, i.e., as a sum-

mation of weighted and magnitude-squared independent complex Gaussian random variables

p(r(t) I H) 1 An 2>
£= ln <r2  Y (5.52)

p(r(t) Ho) No An + No Ho2  (5.52)

where

rn = r(t)4 (t)dt (5.53)

and the threshold 7 is chosen to satisfy the desired false alarm probability. There are several ways

to implement a system to compute this likelihood ratio. We will state two ways here.

The first implementation is a rather straightforward estimator-correlator which has the interpre-

tation of correlating the return signal with a minimum-mean-squared-error (MMSE) estimate of the

target return ydt(t), given by the output of the filter hdt(t, u). That is, 4

r(t)
HI

<Ho
Ho

Figure 5-15: Estimator-correlator realization for optimal detection of diffuse target in white receiver
noise

H1

=1 r*(t)hdt(t, u)r(u)dt du H 0  (5.54)
No Ho

where

hdt (t,u) = Z A+ N--• t ) O •n (u )  (5.55)
n=O

Another way to compute £ is by filtering the returned signal with the functional square-root of

hdt(t, u)

gdt(t,u) = A_ + N n(t)W0* (u) (5.56)
n=0O

4 The optimal filter hdt(t, u) chosen here is not only time-varying but also non-causal, but again, we are not
concerned about causality because off-line processing can be assumed. There is also a causal counterpart of this

estimator-correlator receiver structure listed in [27].



Then taking the squared magnitude and integrating the output, we get

H1
1 d d(ztrtdt< 2>
0  dz gd ( 7.No Ho

(5.57)

HI

r(t) gdt(t,U) No Ho

Figure 5-16: Filter-squarer-integrator realization for optimal detection of diffuse target in white
receiver noise

Since the eigenvalues converge to 0 geometrically, we may make approximations by truncating

all the above summations at an n such that that the resulting error in the energy (5.45) from such

an approximation is bounded by a chosen tolerance. We may simplify the actual implementations

of hdt (t, U) or gdt (t, U) this way.

Performance of Optimal Receiver

The log-likelihood ratio (5.52) is a

distributed random variables,

< Ir 12 IHo >

< Ir121 H1 >

= No,

= No + An,,

weighted sum of Irnl2, which are independent, exponentially

Plrn12 (X Ho)

Plrn12 (x Ho)

_ 1

No

No

x> 0

No + An), x > 0 (5.58)

Equivalently, let

1 A , 2
No No + A,

(5.59)

such that

00oo

n=O

< In I Ho >

< i, I H0 >
No + An'
Xn,
No

pe, (x I Ho)

pe, (x Ho)

No + Anexp
An

o + An
A~n X

x>0

X > 0

(5.60)

(5.61)

Again since the eigenvalues AX are a decaying geometric sequence, we can approximate the log-



likelihood ratio by a finite summation.

N

£ e (N) E Z In (5.62)
n=0

The resulting detection and false alarm probabilities are (Appendix B),

S 1 N e-(5.63)

PFD =P (x Ho)dx p(y)(x H)dx= e (5.6i=0 j=0

where

No + An No
Nan A On n (5.65)

are the inverses of the conditional means of In.

For comparison, we will also use the Gaussian approximation expressions developed in [27].

PF exp (s) -- s(s) + -I(s) erfc,[si ] (5.66)

PD 1 - exp (s) + (1 - s)(s) + 2 p(s) erfc,[(1 - s)x/i)] (5.67)

for 0 < s < 1 only, where

erfc.(x) = 0 exp - dy (5.68)

p(s) = (1 -s) In 1 + - In 1 + (1 -s) (5.69)

and A(s), p(s) are the derivatives of p(s) with respect to s. By varying s between 0 and 1, we can

obtain an approximate ROC curve for the region of PD > 0.5 and PF < 0.5. (Extension of this

Gaussian approximation to all regions of PD and PF does exist but is not applied here.)

For our detection results in the following figures, we define a relevant quantity

SNRdt < EYdt > n (5.70)SNRdt No o
n=o

which is the signal-to-noise ratio of the diffuse target.
which is the signal-to-noise ratio of the diffuse target.



ROC for Detection of Diffuse Target
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Figure 5-17: Receiver Operating Characteristic for detection of diffuse target return from white
receiver noise.

We see from Figure 5-18, especially in the high SNRdt cases, that for a known SNRdt and a

fixed desired probability of false alarm, there is an optimal size of the target that yields the highest

detection probability. Referring back to (5.47) and (5.51), we see that this phenomenon is related

to the diversity problem in communication systems for reliably transmitting orthogonal signals over

the optimal number of channels given a power or energy constraint of the transmitted signals [17].

Physically, although a small diffuse target gives a more coherent return than a large one, its intensity

is more subject to the risk of random fading due to the smaller possible number of reflecting facets

(on the order of a wavelength) on its surface. In order for the target to be "seen" from the radar,

it needs to have an appreciable surface area such that very likely, at least a significant portion from

the collection of its facets would contribute to the return's intensity. As the target size increases

further, however, the loss of coherence in the target return makes the return behave more like the

white receiver noise and detection probability is sacrificed. What exactly the optimal target size

is for a particular choice of SNRdt and PF might be highly subject to the modeling error of the

Gaussian-shape intensity assumption of our target.

We can conclude from Figure 5-19 that due to speckle fading, it would take a very high SNRdt

to yield a very low miss probability PM = 1 - PD for detection of a small diffuse target. This is not

the case in detection of a specular mirror in the previous section.



We now proceed to compare the performance of the optimal processor with that of both the

conventional processor and the multi-resolution processor. Since we are already familiar with both,

and the former is a special case of the latter, we shall go over the MR processor first for convenience.



Optimal Detection Probability
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
Oa 8a. 10a_

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
Oa

Optimal Detection Probability

2a. 4ax 6a.
Target size p,

(c) SNRdt = 25

8a.

1

0.95

0.9

S 0.85

0.8

0.75

n7

10a,
.aI
Oax

N.

·..

I I .
2a~ 4a~ 6a

2a. 4ax 6ax
Target size Px

(b) SNRdt = 10

Optimal Detection Probability

--SI _-

,i / ,i . . ° ,-

i / --

.,-..... ..----- - --
II ,

' I

2a 4a I6Ia,

2ax 4ax 6a,
Target size Px

(d) SNRdt = 50

PF = .500 PF = le - 4 --
PF = .100 PF = le - 5 -----
PF = .010 ----- PF = le-6 --

PF = .001 ---------- PF = le - 7 --- ---

Figure 5-18: Optimal detection probability versus size of diffuse target p,

2ax 4ax 6ax
Target size px

(a) SNRdt = 5

I I I I

.---
"--,- .,

"%.

. '- ---... _-

, "% • -.•...................

8ax 10ax

/ ,--- . . . . . .. .. . . ... . .. . . .

s
t 

o .......................--- · ..........~~ ~~

, ,,..··• ,,,. o-

I II- - -,

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
Oa 8ax 10a.

l l I a

Optimal Detection Probability

1xX

1

,



Optimal Detection Probability

1 10
SNRdt

(a) Px = .25ax

Optimal Detection Probability

SNRdt

(c) px = 4ax

.9999

.999

.99

.9

.7

.5

.3

.1

.01

.001

le-4

le-5

le-6

100 0. 1

Optimal Detection Probability

1 10
SNRdt

(b) Px = lax

100

Optimal Detection Probability
.99999

.9999

.999

.99

.9

.7
5
.3

.1

.01

.001

le-4

le-5

le-6

0.100 .1
SNRdt

(d) Px = 8ax

PF = .500 - PF = le - 4 -----
PF = .100 ----- PF = le - 5 ---
PF= .010 -----. PF = le- 6 -- -- --
PF = .001 ---------- PF = le - 7 --- ---

Figure 5-19: Optimal detection probability versus SNR of diffuse target
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5.2.3 Adaptive (Optimized) Multi-resolution Imager

In using our multi-resolution imager, we would like to constrain ourselves to forming a SAR-image at

one particular K that would give the best performance, and we always sample at t = 0 corresponding

r(t)t r,) 1(t; ) sample at i ) IThreshold Ho/Hi

Figure 5-20: Multi-resolution imager with integration period KTdw

to where the target is located and to the peak of < jly(t)12 >.

Since our return r(t) is a Gaussian process, the conditional densities of our sufficient statistic are

exponential,

pIt() (x Ho) = exp - , > 0 (5.71)

1 x

p() (x)(X H) = exp ( , x > 0 (5.72)

where (using (4.23), (4.21))

4y(~) _< Ilydt(t = 0; )j2 > = Eyd 2 Tdw (1 + I p}p'/ 2  (5.73)

£,(K) =< Ilw(t = 0; )~|2 > = NovWKTdw (5.74)

and with standard detection results [28],

PF = exp (5.75)

PD = exp ( ) ( (PF) 4(n)+tw() (5.76)

Given any PF, PD is maximized by minimizing the exponent of the above expression,

2 1/4

lopt = arg max PD = 2p2 + a2 (5.77)

such that we are filtering the return with

hmr(t; Kopt) = exp v2 •a,2 2  (5.78)

Within a constant, this is exactly the first eigenfunction of our K-L expansion 0o(t) (5.48). This has



the intuitively pleasing interpretation that the adaptive MR processor tries to mimic the optimal

filter hdt (t, u) by using only the first term of the expansion (The functional form of hmr (t; n) forbids

the MR processor mimicking any of the other eigenfunctions, regardless of any K used.) That is,

£(Kopt) = Jr(t)O*(t)dt 2 (5.79)

= r*(t) o(t)4~(u)r(u) dt du (5.80)

which is clearly proportional to the first term expansion of (5.54) or the first term in (5.52). There-

fore, we can anticipate that if very few of the eigenvalues of our kernel (5.42) are significant compared

to the receiver noise energy, corresponding to either a low SNRdt or a small p, or both, the MR

processor will perform nearly as well as the optimal filter. The MR processor is exactly optimal for

a point target.

When we substitute K0ot back into (5.76), we get

1 + SNRdt 2a+

PD = (PF) a(5.81)

We shall now use this result to compare the performance of the optimal diffuse target processor and

that of the MR processor in the following plots.

The performance gain of the optimal processor over the MR processor is a monotonically in-

creasing function of the target size p, confirming our conjecture (Figure 5-21). In Figure 5-22, we

see that as SNRdt increases, the detection probability of the MR processor approaches that of the

optimal processor. This is because at a certain SNRdt the optimal processor's detection probability

slows down its improvement with respect to an increase in SNRdt (Figure 5-19) compared to that

of the MR filter. Also, the MR processor is essentially optimal for a high false alarm probability,

because the MR processor can achieve the high PF with the first eigenfunction alone in the target

return where the most signal energy is.
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Optimal vs MR Detection Probabilities
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5.2.4 Conventional Processor: Full-dwell-time Imager

The conventional processor is only a special case of the MR processor.

r(t) (t) (t)sampleat Threshold Ho/Hi

Figure 5-23: Conventional imager with full dwell time integration period Td,

When we substitute K = 1 into (5.76), we obtain

1 + SNRdt p2
PD = (PF) I i] (5.82)

Note that the conventional imager processor is essentially optimal for a small target, because ropt

in the previous section approaches 1 as the target size approaches 0. We also see for a large diffuse

target, the conventional processor is moderately worse than the MR processor.
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5.3 Summary

In this chapter, we have explored in depth two idealized detection problems relevant to actual

practice. As in all theoretical assessments, we do not expect reality to give us the benefit of all the

assumptions and idealizations we made, but we hope to understand and develop intuition for the

fundamental issues in actual practice through the simpler theoretical problems, and to answer some

of the questions quantitatively. In particular, we shall discuss the possible inherent limitations of

the conventional and the MR SAR processors via these two detection problems.

With a directional transmitted beam, the specular mirror's smooth surface gives a directional

reflection, or a narrow-angle target return. This is the first way in which the conventional SAR

imager is disadvantaged - it processes the signal with the full dwell time of the target (the filter has

full-dwell bandwidth) and allows more noise at high chirp frequencies to degrade the signal. The

MR processor can easily adapt to solve this problem by varying the integration time.

Second, the combined uniform clutter and receiver noise is colored, and neither the conventional

imager or the MR processor can perform the function of the whitening filter needed in the optimal

system to best combat the colored noise. This is, however, not a big issue for a large target because

its return will be narrowband in frequency and essentially sees the clutter as white noise over the

frequencies of interests. For a small target, the whitening effect is probably not negligible but the

performance that the optimal processor gains over the MR filter due to the mismatch in the target

return duration is now small. Therefore, the MR filter is sub-optimal but not very much so.

Third, a specular mirror with tilt gives rise to aspect dependence in the target return. The

tilt can significantly deflect the reflected beam from the radar's line-of-sight and shifts the chirp

frequency content of the return. The result is the separation of the chirp center from the intensity

center of the return. The conventional imager cannot address this problem and the result is a large

attenuation of the processed signal and poor detection performance. This is the biggest problem

to improve upon for SAR systems with detection of specular targets in mind. The adaptive MR

processor can account for this problem and is essentially optimal for a highly tilted or large mirror.

The optimal processor for diffuse target detection also depends on the size of the target as in

the specular case, and the optimal scheme utilizes with the fact that a larger target decorrelates the

target return. The MR processor adapts by mimicking the optimal filter as best it can, rather than

simply matching the target return's duration. Due to the incoherent nature of the diffuse-target

return, the performance difference between the optimal receiver and either the conventional or MR

processor is generally not as significant as that for a specular mirror with tilt.

We further notice that given a fixed SNR, the target size does not affect the optimal detection

probabilities of a specular mirror in the absence of diffuse clutter (5.16), but there is an optimal

target size of which a diffuse target can be detected most reliably.

The performance of the conventional and the MR processor are summarized in Table 5.1. The



conventional imager is only optimal for a point or small target in all cases.

Target Performance of conventional im- Optimal condition for adaptive
ager for large target MR processor

Diffuse target fair point or small target;
(without clutter) or high false alarm probability;

or low SNRdt
Untilted mirror bad large mirror;
in clutter or low clutter energy
Tilted mirror severely poor large mirror;
in clutter or high tilt;

or low clutter energy

Table 5.1: Conditions for optimality of the adaptive MR processors

We have obtained a number of exact expressions in this chapter for analyzing these two detection

problems and they should serve as the foundation for future extensions on similar detection problems.



Chapter 6

Conclusion

In this thesis, we have proposed a repertoire of diffuse and specular target models, and examined

their target returns in a continuous wave 1-D SAR setting. We have first seen that a multi-resolution

(MR) SAR processor can exhibit certain properties in targets of interest that cannot be shown by the

conventional imager. At the same time, by posing and solving two optimal detection problems, we

also come to realize what fundamental shortcomings the SAR processor inherits from the structure

that is derived largely from the assumption of a point scatterer.

In any case, the MR processor can be considered as a general system that can be easily imple-

mented by extending on the architecture of the conventional imager, and can, in both detection

problems we considered, improve the performance over the conventional imager significantly. It is

interesting to note that in these detection problems, the MR processor adapts by best matching

itself to the optimal processors, which for the diffuse target detection problem, is not the obvious

means of simply matching the target return duration (which the conventional imager has already

done!) The optimal integration durations used for the specular mirror and the diffuse target are

different because there are inherent differences in target characteristics between the two. In both

detection problems, the optimal receivers call for a shorter-than-dwell-time integration duration -

an integration duration longer than the dwell time would obviously include parts of the radar return

in which only the receiver noise and not the target return is present. What exactly the optimal

durations are depend on the target geometry and whether the target is diffuse or specular. This

motivates, at least for the single target detection problem, a system similar to the one in [15] which

can be trained to recognize the different MR signatures of targets.

6.1 Directions for Future Work

For future extensions, we can work on three aspects of our research: more elaborate target models,

radar models, and signature assessments.



We have examined a small number of simple reflectors by themselves and would like to construct

a scenario in which a combination of these targets are present simultaneously. As discussed in

Chapter 2, both specular and diffuse targets are only the extreme cases for a target and there exist

composite targets with both specular and diffuse components that are yet to be explored.

We could extend our stripmap analysis to a 2-D SAR or a spotlight mode SAR system because,

as one can expect, many targets should display different properties when the impinging waves of

the radar come from various directions. Polarization, which we have failed to account for with our

scalar wave analysis, will be a crucial factor in the actual characteristics of a dihedral because of

the double-bounce nature of its reflection. In addition, radar frequency would also give the same

targets different scattering properties. Perhaps optimal imaging or detection schemes of combining

information from several radar systems can also be examined.

We still have to pose and solve other relevant hypotheses testing problems - such as the diffuse

target in uniform clutter versus the uniform clutter itself, and specular versus diffuse targets with the

uniform clutter present under both hypotheses. We could also pose and solve generalized detection

and estimation problems in which the parameters of the targets are not known a priori. Finally, we

can try applying our preliminary results to either synthesized [29] or real SAR data [11] to test their

validity.



Appendix A

Gaussian-Schell Model

The Gaussian-Schell Model of coherence [19] can be used to give another interpretation of the diffuse

model.

We define the degree of coherence of a target as below.

< T(p), T* (pil) > (A.1)
< T(pf)T*(p) >1/2< T(fi)T*(f 1 ) >1/2

It a measure of how far fil has to be away from p to let T(p) give little information about what

T(p1 ) is (or vice versa.) As a physical necessity, the coherence generally has to ultimately decrease

with increasing separation between p and fit. The Schell model assumes that within a target of

finite size, such a coherence function is parameterized by only the difference transverse vector pf - f

(i.e. an extension of homogeneity for finite-size targets.) The Gaussian-Schell model further assumes

that p((p, Pl) is a spatial Gaussian, which forces the coherence to decay monotonically for increasing

distance separation |p - Pl .

((p, pi) = exp I- 2 (A.2)

where Pc is called the coherence length of the target, because the complex reflection coefficient T(p)

becomes incoherent when the separation Ipi - pil is greater than Pc. Now

< T(fi)T*(l) > =< T()T*(fi) >1/2< T(fi1)T*(fil) >1/2 exp (- _2l .12 (A.3)

Let

< T(p)T*(p) > = T(p), where T(p) > 0 (A.4)
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because the magnitude-squared of the reflection coefficient is always a positive function. Now (A.3)

becomes

< T(p)T* (Pt)>fi =exp p -- /511P2  (A.5)

In all applications, we need to observe the target terrain through some deterministic system, probably

a linear system. Let us restrict ourselves to a linear space-invariant system which transforms the

spatial information in T(p) to a time signal because this is what our synthetic-aperture radar system

does.

Id(t) = T(i)g(t, p)dp (A.6)

where g(t, fi) is a combination of our diffraction and propagation model hL (f) as well as the radar

return processing filter h(t). In addition to knowing that ld(t) will be zero-mean because it is

integration over the zero-mean random process T(p), we are interested in the correlation function

of Id(t) because this is necessary for processing using classical detection and estimation theory.

< ld(t)ld(U) > = J T(fi)g(t,fi)df T*(fi)g*(u,51)dfl ) (A.7)

= < T(f)T* () > g(t, p)g* (u, pi) dp dpi (A.8)

Sg (t, fi)g* (u, il) dfi dfi (A.9)

Because a diffuse target fluctuates widely and randomly in surface height (over p), the coherence

length Pc will be very short, on the order of the transmitted wavelength. The functions T(pi) and

g(t, p) at any two points in space farther apart than Pc will give very little contribution to the

integrals. At the same time, both T(pi) and g(t, p) are relatively smooth functions of pI compared to

the Gaussian, so we can approximate them with their values at the middle points of p and pi.

< ld(t)*(U) > exp -12 )g(t, p+)g*(u, f+) didi 1

(A.10)

where

P+ = -(P + P1). (A.11)



With the additional change of variables

P- = P - Pi (A.12)

p+, f_ become the sum-and-difference coordinates to which we can transform our integration. This

transformation can be easily shown to have a unit Jacobian. We find that

<ld(t)l*(U) > J T(P+) exp (- !'2) g(t, P+)g*(u, pf+) d pi+ di (A.13)

S7r 2T(+)g(t +)g*(u, p+) dp+ (A.14)

Thus we realize that the end result would be approximately the same if we have replaced (A.5) with

< T(i)T*(pI) > A2T(p)6(p - p1i) (A.15)

right from the start.

As a final comment, this derivation from the Gaussian-Schell model, as with any other model

which contains a 6-function should be treated with care. In particular, the model only exists in the

limit after integration because the function 6(p - f1) is infinite when 5 = pi.
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Appendix B

Statistics for a Finite Sum of

Exponential Random Variables

The objective of this appendix is to derive the density for the truncated log-likelihood ratio used in

detecting a diffuse target in white receiver noise. We will also give a closed-form expression for the

detection and false alarm probabilities.

The truncated log-likelihood ratio is

N

f(N) = i4 (B.1)
i=O

where £i is an exponential random variable with density

p, (x) = aie- o" ,z  a20 (B.2)

That is I(N) is a sum of N independent exponentially distributed random variables with means
1-. Because of the independent summation, the moment generating function of £(N) can be easily

ai
shown to be the product of the moment generating function of each individual Ii [7],

Mt(N)(S) = p(N)(x)e -8 dx (B.3)

N

=l ai (B.4)
i=s + ai=0
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For our particular interest, the ai are distinct, or aci aj for i $ j. We can then collect residues of

(B.4) and write

N

MMN)(s) mi (B.5)M(N) (S) s + ai
i=0

where the residues mi are

N

II i
j=o

mi = - N (B.6)

If(aj - as)
j=0
jAi

After taking the inverse transform of (B.5), the density of f(N) can be concisely written as( N N -a)
Pt(N)(X) a e 0 (B.7)

i=0 0 =o II (aj - a1
j=0
isi

Furthermore, using (B.7),

Pr {(N) > 7} = pi(N)(x)dx (B.8)

ii= = (aj - a)

j=0
j 1i

=- e- c'a" (B.10)
i=0 j=0

which is in a form that can be computed with good numerical stability as long as no two means ai

and aj are too close together.

We can extend the result to handle repeated means by modifying the residue series expansion in

B.5. The resulting density will be a weighted sum of exponential and erlang densities.
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