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Abstract

In this thesis a numerical solution is developed for the computation of the second-
order steady-forces acting on a ship with forward speed in the presence of incident
waves under the Neumann-Kelvin flow assumption.

The computation of these forces is achieved by integration of pressures over the
ship hull and also through the use of momentum-flux relations, in the frequency
domain.

The solution of the first-order problem is obtained through the use of an exist-
ing time-domain computer program, where the computation of the velocities and the
velocity potential in points in the fluid region using the source formulation was im-
plemented as part of this work. Global and local quantities are Fourier-transformed
to the frequency-domain, and the second-order steady-forces coming from first-order
quantities computed.

The boundary-value problem for the second-order Neumann-Kelvin steady poten-
tial is formulated and a solution attempted for the diffraction case under the low-speed
assumption. The contribution coming from this second-order steady potential is found
not to be significant for the computation of the total second-order steady force, in
the cases analyzed. In connection with the momentum-flux approach, it can be seen
that there will be no contribution coming from the second-order steady potential to
the second-order steady horizontal forces.

Results are presented for the Wigley hull, a hemisphere and a shallow circular
cylinder. Comparisons are made with other theories and data from other publications.

Thesis Supervisor: J. Nicholas Newman
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Chapter 1

Introduction

1.1 Background

The use of vessels for the transportation of goods, or the exploration of the sea floor

in the search for minerals or other scientific purposes, requires a good understanding

of the forces acting on them and the consequent behavior of these floating bodies,

while operating in the sea with or without the presence of incident waves.

In quantifying the resistance force ships have to overcome when trying to speed

through the oceans, the use of the Froude hypothesis, separating the total resistance

in two components, the flat-plate drag and the residual drag, gave great insight to

this problem, and was latter justified by Prandtl's boundary layer theory.

The flat-plate drag represents friction effects between the hull and the sea water

and is supposed to be a function only of the Reynolds number R. The residual drag

encompasses the viscous form drag, which is related to the change in the flow and

pressure field due to the action of viscosity, and the steady wave force associated with

the energy transferred from the ship to the fluid, in order to sustain the steady wave

pattern created by this uniform velocity forward motion. The residual drag under

this hypothesis is supposed to be a function of F (Froude number) alone. This is not

true for the viscous form drag but for actual prototype and model scales and shapes

used today this approximation gives a satisfactory correlation.

The effect of uniform currents always can be modeled as a change of the vessel



constant velocity. Other forces are generated by the action of the wind, which was

earlier used to power the ships but now (unless in some leisure sailboats) has to be

overcome by thrusters power or mooring forces (depending on the particular concept).

The action of incident waves have the most obvious effect of generating oscillatory

forces and motions, but also acts in more subtle ways, giving rise to forces proportional

to higher and lower harmonics and steady drift forces, that may cause trouble in the

station keeping of research vessels as well as affecting the steady resistance drag acting

over vessels with forward constant velocity.

Flat-plate friction forces are not hard to compute, and empirical methods based

on the ship wetted area and Reynolds number are known to give very good results.

Viscous pressure forces drives a lot of effort in search of solutions (mainly computer

intensive numerical approaches) for the Navier-Stokes equations, and reasonable engi-

neering solutions are still in demand. The same approaches can be used for frictional

and viscous-pressure wind forces.

The steady wave problem has been studied in connection with the ideal-fluid as-

sumption, leading to the solution of the linear Laplace equation in the fluid domain

with mathematically nonlinear boundary conditions on the water and body surfaces.

Engineering solutions valid for all body shapes and forward velocities are still elusive,

and indeed contradicts the main assumption of ideal flow, as we will have strong vis-

cous effects with boundary-layer separation. Over this steady incident flow (or some

approximation of it) we may linearize the boundary conditions and get approximate

solutions for the unsteady wave velocity and pressure fields and consequent forces,

including the steady ones. This is our goal on this thesis, where many assumptions

will be made in pursuing a workable solution.

The study of steady wave forces over stationary structures is not recent, going back

to the work of Maruo [23] in 1960 computing the horizontal forces over a stationary

floating body using momentum-flux relations. In 1967 Newman [27] extended this

momentum approach to include the yaw moment.

Over the last decade, the use of the panel method (also known as boundary element

method or integral equation method) for solving three-dimensional zero-velocity wave-



body problems has drawn the attention of many researchers, and we may cite the work

of Korsmeyer et all [18] as a good representative of the work that has been made. The

related computer programs that were developed typically solved the first order linear

hydrodynamics problem and made it possible to get wave velocities and pressures

on points over the body surface and in the fluid domain due to the unsteady wave

potentials, more specifically diffracted and radiated waves generated by the presence

of a fixed- or free-floating body with arbitrary geometry.

Introducing wave nonlinearity in the Stokes perturbation scheme that the wave

amplitude is of order 6 but the wavelength and the body characteristic dimension is

of order one, we can compute second order steady forces integrating the second order

steady pressures over the bodies and adding the corrections to the first order steady

pressures due to first order motions of the boundaries and bodies around their mean

positions. This turned out to be a very attractive approach (see Lee and Newman [20]

and Pinkster [38] ) as it enables the computation of all steady forces and moments

acting over the bodies. The use of more panels than the momentum approach in

order to achieve convergence of the results is in general a rule.

The momentum approach may also be extended to the case when the control

surface is a compact one around the floating body, and in this context the six second

order steady forces components may be computed evaluating the momentum flux over

this surface (Zhao and Faltinsen [43] and Ferreira and Lee [7]). This method at first

seems to retain the best of the two previous ones, because we achieve the convergence

of results as fast as using the momentum approach and may compute the six loads

as with the pressure integration method. Its main drawback is when you need to

compute potentials and velocities at too many points on the compact control surface

to achieve convergence, because it can get computationally expensive.

The ship with finite forward velocity problem, associated with incident, scattered

and radiated waves is in general approached with assumptions about the slenderness

of the floating body. The steady wave flow may be approximated by the Neumann-

Kelvin flow (see Bingham [2]), in conjunction with the use of a Green function satisfy-

ing the free-surface boundary condition. Another option is the so called double-body



flow approach (as in Nakos [26]), in combination with the Rankine Green function.

Special concepts of vessels for the exploration and production of hydrocarbons

at large depths, like semisubmersibles, T.L.P. or spar-buoy platforms, having motion

resonances out of the frequency range of the oscillatory wave forces are commonplace

in today's oil industry. These platforms may have resonances close to the sum or

difference frequency of sinusoidal incoming waves, creating the necessity of a better

understanding of this nonlinear waves interaction mechanism. As the difference fre-

quency excitation may induce large excursions, it is reasonable to assume the motion

as equivalent to a small forward velocity, and the corresponding damping force, which

will be proportional to the square of this forward velocity, will be negligible. On the

other hand, following Grue & Palm (1993), we can say that for realistic ocean struc-

tures a forward velocity of 1 m/s may change the magnitude of the drift force on the

order of 50% compared to the zero forward velocity case, and therefore it is necessary

to quantify the influence of this small drift velocity on the steady forces.

This interaction between very small forward speed (or steady current in the op-

posite direction) and waves has been studied by Grue & Palm [8] [9] [11] (1985, 1986,

1993), Nossen et all [34] (1991), Zhao & Faltinsen [41] [42] [43] (1988, 1988, 1989),

and Wu & Eatock Taylor [40] (1990). Also this problem has been studied by Agnon &

Mei [1] (1985) and Newman [33](1993), by using two different time scales associated

with first and second order motions.

One also may note that those are not exhaustive situations. Blunt (offshore struc-

tures type) bodies in the presence of not so small currents adding up to its own

horizontal velocities will require special treatment or a compromised solution, when

one will have to check (in a model experiment for example) when the slender assump-

tion or the small velocity approach is more appropriate or even if none of the above

will hold and a more comprehensive view of the problem will be required.



1.2 Overview

Our goal is the computation of the second-order steady forces acting on a ship with

forward speed under the Neumann-Kelvin hypothesis. We will also discuss the equa-

tions for an arbitrary choice of incident basis flow, and some specific choices such as

the double-body approach. This is not only for a comparison with the Neumann-

Kelvin approach but also for a discussion of the difficulties involved in implementing

these different approaches in connection to the strategy we will use to solve the hy-

drodynamic problem.

In Chapter 2, the hydrodynamic problem is presented. We start by introducing

the problem of a ship advancing with forward speed and the coordinate systems we are

going to use in the formulation of the mathematical problem. This problem, as most

things in nature, is nonlinear. Many assumptions will be needed in order to achieve

a solution for the problem, from the nature of the fluid (inviscid, incompressible,

without important surface-tension effects) to the amplitude of the subsequent wave

height and unsteady ship motions.

A solution based on a velocity potential will be developed, and this potential

expanded as a series with terms in powers of a small parameter 6. Different lineariza-

tions of the first-order linear problem are discussed, with the difference consisting of

the choice of how the steady flow around the ship due to its forward speed is treated.

Chapter 3 contains the discussion of the solutions to the hydrodynamic problems.

The first-order linear solution is obtained using the approach previously proposed by

Bingham [2] and Korsmeyer [17]. The transient integral equation approach used is

described as well as the potential decomposition, when the hydrodynamic problem is

subdivided in the incident plane-waves problem, the scattered-waves problem and the

problem of the radiated waves. The sum and composition of all solutions obtained

will define the total potential of velocities.

The definition of the equation of motions will be the next step, which will be

required for the computation of the amplitudes of the linear ship motions in its six

degrees of freedom. All those computations are carried out in the time domain, as



a way to avoid the difficulties inherent to the numerical computation of the Green

function representing a periodically pulsating and steadily-translating source. The

second-order steady force will be computed in the frequency domain, enabling us to

know the contribution that will come from each wave component with distinct periods

of oscillation. With this information, the designers of floating structures may look

for hull shapes that will perform best in a certain range of wave periods, which in

turn will be chosen as the ones which carry most of the energy of the sea where the

floating structure is going to operate.

We Fourier transform integrated quantities such as added mass or exciting forces

to the frequency domain, as well as local quantities like velocity potentials or fluid

velocities, which will be needed for the computation of the second-order steady forces.

Then we will establish the Neumann-Kelvin second-order steady potential prob-

lem, using the integral-equation formulation as defined in Appendix A. Each wave

frequency will generate different body and free-surface boundary conditions. The

solution of this steady problem will come in the time domain, as the large time

asymptotic of the transient problem with constant in time boundary conditions.

Chapter 4 contains the formulation of the frequency domain second-order steady

force using two different approaches, namely by the integration of the pressures over

the floating structure hull and through the computation of the momentum flux over

a compact surface surrounding the hull and a region of the water surface.

In Chapter 5 we will show the results obtained by our approach and how it com-

pares with results obtained using other linearizations and different ways of solving

the hydrodynamic problem. In doing that we will begin the comparisons with the

Wigley hull, which is a slender, mathematically defined, surface-piercing hull geom-

etry. We compare results for zero speed with the well tested WAMIT code, to show

that the Fourier-transform approach used is able to give good results for second-order

quantities computed in the frequency domain. For higher Froude numbers we com-

pare the results with another extensively tested program, the SWAN code, described

by [26]. Comparisons using non-slender bodies such as a circular sphere and cylinder

were carried against results obtained by Zhao and Faltinsen [43] using the low-speed



double-body approach.

Chapter 6 contains a discussion about the work developed and the results obtained,

as well as some concluding remarks and a suggestion of possible improvements.



Chapter 2

The Hydrodynamic Problem

2.1 Introduction

Throughout this work we will disregard the compressibility and surface tension of the

fluid as well as viscous effects. The former assumptions are easy to justify in as much

as our analysis is restricted to Mach numbers much smaller than one and wavelengths

much bigger than a few inches (see Lighthill [21]), but the latter assumption depends

on other flow characteristics. In general if we are looking at a slender and smooth

ship hull at moderate speeds, this hypotheses will be true and viscous effects may be

disregarded.

General blunt bodies moving with finite forward speed in the presence of arbi-

trarily chosen waves will certainly cause the viscous effects not to be confined to a

small boundary layer close to the hull, but the detachment of this boundary layer

from the hull surface with global consequences for the flow itself and the distribution

of pressures. Zhao and Faltinsen [42] have made some experimental work for the half-

sphere case and showed that for Keulegan-Carpenter numbers less than 3 or 2 and

no currents the boundary layer does not separate. As they increased the current the

flow separation will occur for smaller Keulegan-Carpenter numbers until U/Um = 1,

Um being the maximum wave orbital velocity, when separation will always take place.

So the hull geometry, the Keulegan-Carpenter number and the ratio between U and

Um will be important parameters for this assumption. They also tried to quantify the



influence of the non-dimensional frequency we D/g, D being the body characteris-

tic length (diameter for the sphere case) and g the acceleration due to the gravity,

on the flow separation phenomena. They could not quantify it, seeming from their

experiment that it does not played an important role. A simple statement that can

be made is that the blunter the body, the smaller the Froude number should be in

order that viscosity may be ignored.

We are going to approach the hydrodynamic problem by first stating the nonlinear

boundary-value problem and then making some assumptions in order to linearize

this problem. We follow the development presented on Newman [30], but we will

present the final equations for different basis-flow cases and show the expansion of

the potentials in terms of a small parameter.

2.2 The Coordinate Systems and Fluid Domain

Region

We will use three Cartesian coordinate systems: 1o = (xo, yo, zo) is fixed in space and

defined as having zo = 0 on the mean free surface with the xo and yo axis lying in this

plane; Y, = (xs, y,, z,) is fixed on the ship at all times; and X = (x, y, z) moves with

the same mean forward velocity U as the ship. The I coordinate system is equal to

x0 at the beginning of the motion and has the x component in the same direction as

the ship mean forward velocity.

The fluid domain region is confined by the free surface Sf, which is defined by

0o(0o, t) - zo = 0, iqo(Xo, t) being the wave elevation; the instantaneous ship position

Sb; and Soo defined by R = x0 + y0 + z02 -- o and which bounds the lower half

space up to Sf.

The three coordinate systems and the problem boundaries are shown in Figure 2-1

with the presence of a ship hull on its actual position (Sb) and on its mean position

(Sbm). We also should note that when the independent variables (Yo, x~, Y and t

representing time) appear as subscripts, partial differentiation is implied. The free-
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Figure 2-1: The three coordinate systems, the problem boundaries and the ship hull
on the mean (dotted lines) and actual (solid lines) positions.

surface boundary condition and fluid pressure are better defined on the fixed reference

frame 10 and this is where we are going to define the nonlinear hydrodynamic problem.

The Cartesian coordinate Y, is ideal for representing the ship geometry, the boundary

conditions on the ship surface and also to compute pressures over the hull. Y is a

coordinate system that, if we make the assumption that the motions of the ship

besides its forward displacement are small, remains close to Ys at all times, having

the advantage over s, of being an inertial reference frame. It is easy to see that when

we linearize the problem and under a "small motions" assumption, we will be able to

transfer boundary conditions and hydrodynamic quantities from Y, (where we defined

Sb) to I (where we defined Sbm), and through the use of Taylor expansions make the

necessary corrections up to the order we want, as long as Sb is a smooth surface. This

approach will be taken when we will linearize the problem.

i



2.3 The Nonlinear Problem

Under the previous assumptions we will define a velocity potential in the fixed ref-

erential frame given by (10o, t), where t denotes time, and the velocity vector as

V( 0o, t) = Vo( 0o, t) which obeys the continuity equation, so Laplace equation

V2D = 0 (2.1)

governs the velocity potential in the fluid domain for all times, according to Kelvin's

theorem for ideal fluids under conservative fields (see Newman [29]).

The pressure will be defined using the alternative form of the Bernoulli equation,

which is valid for unsteady irrotational flows, with the potential redefined in order

to eliminate the function of time that may appear on the right hand side but has no

influence on the velocity vector,

( ) = - + V + g z . (2.2)

Where p(1o, t) is the fluid pressure, p, is the atmospheric pressure, p is the fluid

density and g is the acceleration due to gravity.

The boundary condition on the submerged ship hull surface will be given by

V o - = VSb - n on Sb (2.3)

where ni is the normal vector, pointing out of the fluid domain, and Vsb is the instan-

taneous velocity of the actual submerged hull surface.

From 2.2, knowing that p = Pa on r0o(5o, t) = zo, we will have

ro = (I + on zo = o0 . (2.4)

Imposing the pressure from (2.2) to remain constant over the free surface, we will



have

Dt + + zo = 0 on zo = 1o (2.5)

or:

Ott + 2V • - VOt + -VO -V(V .- VO) + gzo = 0 on zo = yo. (2.6)
2

We should point out that S1 is not known a priori. Now we need to impose a

boundary condition on the surface at infinity or, in the time domain, to impose two

initial conditions. Calling the starting time of the fluid motion as to, which will be

taken to be zero for the radiation problem and negative infinity for the diffraction

problem, they will be given by the fluid initially at rest conditions, which determine

that for t < to,

0 =0

ot = 0 on zo = 0. (2.7)

The translation of these initial conditions into the frequency domain give the

radiation conditions. This states that besides the incident wave there will only be

disturbances made by the presence of the body, so the waves generated in the radiation

or scattering problems will always propagate outwards.

2.4 Velocity Potential Decomposition

The problem defined in the previous section, despite the assumptions made regarding

the flow being inviscid and incompressible, presents great difficulties because of the

nonlinear terms in equation (2.6) and of the moving boundaries Sb and Sf.

Knowing that the ship forward velocity (or the incident current velocity) is a

finite quantity, without further assumptions it will only make sense to think about

linearizing the perturbation potentials about this flow, which will be steady in the

moving X frame.



Redefining the potential in the steadily-moving referential frame i, we may write

(<o, t) = 4(£+ Ui, t) -_ (, t). (2.8)

As x represents a reference system moving with constant forward speed Ui, we will

also have that the partial time derivative taken in 0o will be translated as

O (~(, o,t ) ( O-D = -1 - U (x) ¢(, t). (2.9)

We will consider the total potential as being composed of the sum of an unsteady

potential p(£, t), representing a linear perturbation, on top of a possible nonlinear

steady basis flow ýB(1). In most cases this basis flow is only an approximation to the

actual solution of the steady problem, since its computation presents mathematical

and numerical difficulties due to its nonlinear free-surface boundary conditions. We

will define q( 5) as a linear steady potential that will correct our basis flow choice

eB( ). In this work a solution for this problem will not be sought, but this can be

found in Bingham [2] for the Neumann-Kelvin flow or Nakos [26] for the double-body

flow. As this correction is considered to be small, unlike the basis flow 4B(x), it will

not affect the boundary conditions for the unsteady potentials.

So will have the total potential decomposed as

(, t) = +B() () (, t)
6

=•B() + () + E k(,t) +s(Xt) I(,t) (2.10)
i=1

in the moving reference frame X. qk(x, t) is one of the six components of the radiation

potential, each component representing the waves generated by the ship as it moves

in one of the six possible rigid body degrees of freedom. Oi(xF, t) is the incident wave

potential and qs(x, t) is the scattered wave potential, generated by the presence of

the body as the incident wave passes by. The sum OD(', t) = 0i(', t)+ OS(', t) will

be referred as the diffraction wave potential, and p(5, t) represents the sum of all

unsteady potentials.



Throughout this work we will choose to treat this problem as having solutions in

terms of series expansions in powers of a small parameter E. This approach enables

us to include nonlinear effects proportional to powers of the wave amplitude without

really solving a nonlinear equation.

As stated by Wehausen and Laitone [39], this parameter should be defined in such

a way that this expansion will give us some insight into the nature of our problem

and as E -* 0, the solution will approach in some sense a known solution. Here as

in the classical Stokes perturbation scheme e will be the ratio between wave height

and wavelength. It is also true that once the mathematical form of the solution is

defined, the physical meaning of E will bear no consequence on the algebra. The

velocity potential and wave elevation will have the following power series expansion

in terms of E:

( = +(1) E+ 2 (2) + E3 (3) + . .

( = (0) + e77(1) + E2r (2) + ... (2.11)

and now we are ready to linearize the problem presented in the previous section. We

will then be able to solve the problem for o(1) as all other terms will be multiplied by

higher e factors and will be negligible in comparison to y(1). Going to the next order,

p(2) will be solved by disregarding all terms of order equal or greater than e3, and

substituting the solution for p(1) in the problem, since this is already known. We will

then arrive to a inhomogeneous linear equation for p(2), although the whole problem

is nonlinear. By doing that recursively we may get higher order solutions that will

represent corrections to the previous solutions obtained. In practice going beyond the

first order solution takes great effort, as Ogilvie [36] pointed out.

When we do not use the superscripts (1), (2),..., it is clear that we refer to the

whole series (2.11), but most of the time only the first term will be included, all others

giving contributions to higher order terms that are implicitly being disregarded.

We will define ý also as expandable in powers of a small parameter 6, but the



definition of 6 will come with the proper choice of the basis flow. Then we will have

-= +6(1) + 2(2)+ 63(3) + .... (2.12)

2.5 Linearized Free-surface Boundary Condition

2.5.1 Plane incident wave

The total potential in the moving coordinate system I will be given by 4(£, t) =

€B(X) + q((, t), knowing that $B(x) = -Ux is the exact solution so O(2) = 0. As

we do not have the presence of a floating body, ck(x, t) = 0 and Os(', t) = 0. Under

the assumption of small E we will Taylor expand the free surface condition (2.6) and

enforce it on the plane zo = 0 instead of on the actual free-surface elevation. Retaining

only first order terms, we will use (2.9) to get

0I tt - 2UOI xt + U2I xx + goI z + O(e 2 ) = 0 on z = 0 (2.13)

in the moving reference frame I. The first-order solution (which in this particular

case also satisfies the second-order problem) to this boundary-value problem will be

given by
= igA exp[Ko(z - ix cos 3 - iy sin 3) + iwet] (2.14)

where qI is the first-order incident wave potential, i = /--I1, A is the wave amplitude,

Ko the wave number or Ko = 27r/A, A being the wave length, wo is the wave frequency

in the space-fixed reference frame 1 0, we is the wave frequency in the moving reference

frame Y, and 3 is the angle between the direction of wave propagation and the x0 or

x axis. Ko and wo are related through the infinite depth dispersion relation

I w2
K 0 = , (2.15)

g



and wo, Ko, and we, the "encounter frequency", are related by

we = wo - KoU cos/3. (2.16)

2.5.2 General Basis Flow

Now we are going to consider the presence of a floating body moving with mean

velocity U io, or in the presence of a current with velocity -U 2, which is equivalent.

We are going to assume that the total potential in the moving reference system I will

be given as

¢(5, t) = XB() + y(5, t), (2.17)

where 9(5', t) stands for the sum of all unsteady potentials.

We can not linearize the steady flow over the z = 0 plane because U is finite

and there is no reason to suppose the wave elevation not to be of 0(1). Using

Bernoulli (2.2) we will have the steady wave elevation in the moving reference frame

as

V(x, y)= 2g v 2 - u 2)  on z = , (2.18)

and the steady nonlinear free-surface condition, from (2.6), will be

VB O V(VOB VOB) + g sz = 0 on z = r. (2.19)

Considering also the unsteady potentials we will have the total wave elevation given

by

q(x, y)= - , + (IV -o2 _ u2 + • + O Z = ,

(2.20)
and by using D/Dt(p) = 0 on z = y(x, y), we will get the new nonlinear free-surface



condition as

tt +2VtB 7(P + vq$. V(V'7 • V') + 2v(V7 •v ) v +

9gB z + -V(VqB Vq-B) 'V-B + g9z, on z = i7. (2.21)2

Now we are ready to linearize our unsteady potential over the mean steady wave

elevation T(x, y), since we have that (rl(x, y) - V(x, y)) will be O(p). So we will get

,tt +2VyB 'V• + VyB 'V(VB V(P) + 2V(V B. B). V-

d 1 ýt + VýB 'V.
az 2 gýB ' V (VýB ' VýB) + 9ýB z ( + VýB 'VýB z) +

9g- z + 2V(VB " V B) . V-B + 9gz + O(S2), on z = 4. (2.22)

It is not an easy task to satisfy this boundary condition on the mean free surface

and indeed there is not a complete solution for this problem in general. The alternative

problems that we can solve will come with the introduction of more assumptions and

some compromises to this rather general approach.

2.5.3 Neumann-Kelvin Free-surface Condition

In 1898 Michell [25] proposed the thin-ship approximation, supposing that ships have

the beam much smaller than draft and length, so the body boundary condition may be

enforced on the center plane of the ship and the free-surface boundary condition (2.6)

may be linearized about the incoming flow. The resulting linear free-surface condition

is also known as the "Neumann-Kelvin" free surface condition. The Neumann-Kelvin

formulation in the context of ship motions was proposed by Chang in 1977 [4] and

actually suggests that we linearize the free-surface and body boundary conditions

over the uniform incoming current but enforce the body boundary condition on the

actual body surface.

Under the integral-equation method, we will have to perform integrations over

all the boundary surfaces that define our problem, which in this case are the body



and the whole free surface. If we employ as the Green function the potential of a

translating and pulsating source, we will be able to replace the integral over the free

surface with an integral over the ship waterline plus a convolution in time, which can

be advantageous. This is the approach used in the work of Liapis [15], Beck [16],

Korsmeyer [17] and Bingham [2].

We will also follow along this line, so bB = -Ux, and ý will be given by (2.12). In

the work cited above Bingham showed that the steady potential under the Neumann-

Kelvin assumption can be regarded as the limit as t -- o0 of the unsteady impulsive

surge potential. 6 is considered to be small in the sense that it will not be a order

one quantity and q can be disregarded by comparison to the basis flow. So the total

first-order potential will be given by q(1) -= (1) + 9(1) and will give the unsteady

first-order free-surface condition, equivalent to (2.13):

( g+pz + O(E2) + O(E) = 0, on z = 0, (2.23)

and the steady first-order free-surface condition as:

U2 92 ao
g +_+ + QO(2) + O(E6) = O, on z = 0. (2.24)

g aX2 az

We can see that in this approximation, once we assume that the disturbance imposed

by the presence of the body in the basis flow is an infinitesimal perturbation, no

further assumptions need to be made. But this is a strong statement by itself and

one should be aware of that when trying to generalize this approach to non-slender

body shapes.

2.5.4 Double-body Free-surface Condition

Proposed first in connection with low Froude numbers, the idea here is to regard

the double-body flow as the zeroth order approximation of the steady ship problem.

Following this approach we can mention linearizations proposed by Ogilvie [35] in

1968, Newman [28] in 1976, and Maruo [24] in 1980. In 1977, Dawson [6] followed



the same path with a more pragmatic and less rigorous approach that, due to the

easier numerical implementation received a lot of attention and gave promising results.

Nakos [26] in 1990 made an exposition of the assumptions involved and got results

for the unsteady and steady potentials in the frequency domain using the Rankine

panel method.

Calling the double-body potential 4 DB, substituting =B = qDB in (2.22), and

noticing that at z = 0, DB z = 0 we will have the free-surface boundary condition

for the unsteady potential p given as

utt + 2V4DB VýP + VODB 'V(VeDB VP) + DV(V•D.DB VDB). V

+g pz - 5DBzz t + VDB ' V. ) + O(e2) + O(E6) = 0, on z = 0.

(2.25)

Once again & is considered to be small in the sense that it will not be an order

one quantity and q will be disregarded by comparison to the basis flow. Still in

connection with this approach we may ease the requirements on the body slenderness

by assuming the floating body to possess very small forward velocity. As U << 1, the

problem is also linearized with respect to the forward velocity, and terms proportional

to Un, n > 1 will be disregarded as higher order terms. Grue & Palm [8] [9] [11] (1985,

1986, 1993), Nossen, Grue & Palm [34] (1991) and Zhao & Faltinsen [41], [42], [43],

(1988, 1988, 1989) followed this approach. The linearized free-surface condition will

now be given as

ptt +2VDB V~ t + g9' - DBzz(t + O(E2 ) + O(e6) + O(U 2) = 0, on z = 0,

(2.26)

which is similar to (2.25), without the quadratic double-body velocity terms. Here

we will compare results obtained by Zhao & Faltinsen [43] for the circular cylinder

case at very small forward velocity with our own results under the Neumann-Kelvin

assumption, but we will not pursue this approach.



2.6 Linearized Body Boundary Condition

The steady body boundary condition will be given by

= 0, on Sbm. (2.27)an

and it is with respect to this basis flow that the linearization will be made. We will

linearize the body boundary condition (2.3) knowing that the unsteady linear motion

of the ship will be proportional to the wave amplitude, of order e. Defining this

motions as

-(t) = ((t) + Q(t) x •, (2.28)

where ((t) is the linear rigid body displacements (surge, sway and heave motions)

and Q(t) is the angular rotations (roll, pitch and yaw motions). Transferring the

boundary condition from Sb to Sbm, correcting for the gradients not being computed

on xs but on Y, collecting the first-order (proportional to s) terms, and doing some

vector algebra (see Newman [30]) we will arrive at

an =5·n+Rx n-4)+8n

(. [- (if V) Vqs] + O I [- (i' - V) (' X VqB)] on Sbm. (2.29)

Following Ogilvie and Tuck [37], we will define the m-terms as

{m 1, m 2,M 3 } = - (n- V) VB

{m 4 , i 5, m 6 } = - (ni- V) (5 X VqB), (2.30)

Zi+3 = Qi, and ni+3 = ( )i, where i = 1, 2, 3. Then we will finally be able to write

= -ii- ni + im i = 1, ... ,6 on Sbm. (2.31)
an

This is the linear boundary condition to be used for all the different approaches.



Under the Neumann-Kelvin assumption B = -U x and we will arrive at

m = m 2 =m3 =m4 = 0

m5 = Un 3

m6 = -Un 2, (2.32)

and using the double-body approach the m-terms will be given by (2.30), with ODB

instead of 'B.



Chapter 3

Solutions of the Hydrodynamic

Problems

When we expand our problem as a set of linear problems of increasing orders in

terms of a small parameter, results from lower order problems will enter as boundary

conditions on the higher order problems. As we will see latter, we need the solution

of the first-order problem not only to set the boundary conditions for the second-

order steady problem but also because most of the terms of the second-order steady

forces come from the first-order potentials and velocities. Indeed, for the zero forward

velocity case, the second-order steady force will be a function of the first-order linear

potential alone. For the computation of the first-order time-domain potentials we

have used the low-order panel method' solution developed by Bingham [2], as a

continuation of the work initiated by Korsmeyer [17], and which is incorporated in

the FORTRAN code TIMIT.

We do not have an efficient and reliable procedure for the computation of the

Green function equivalent to a pulsating and translating source in the presence of a

free surface in the frequency domain, but we always can solve the linear problem in

the time domain and transform to the frequency domain.

We will outline how the problem is solved in the time domain, under the Neumann-

lalso known as boundary-element or integral-equation method



Kelvin assumption, using the code TIMIT. For the calculation of second-order steady

forces in the frequency domain we will need to know some first-order quantities also

in the frequency domain.

We will also show the importance of knowing the second-order steady potential

when the ship has forward speed, and how to compute it. There will be a first-order

inhomogeneous part on this problem (the forcing function) acting on the free surface

which will be a function of the frequency, and so this second-order steady potential

will also be frequency dependent. The form of this problem is similar to the steady

first-order problem, and the approach to solve it is also based on computing the steady

potential as time goes to infinity, with the only difference that now the problem has

an inhomogeneous boundary condition on z = 0.

3.1 Integral Equations

Our low-order panel method uses a free-surface Green function, presented by Haskind

in 1946 [13], as its fundamental solution which satisfies the initial boundary-value

problem without the presence of a floating body, and is given by

G(x; -, t) = G(0) (; ) + H(7; , t), (3.1)

where G(0 )(£; 0) is the Rankine part of the Green function with a mirror with respect

to z = 0, and H(7; [, t) is the unsteady part of the Green function, that gives the

wave-like behavior.



They are defined as

G(0) (- '

H(X;,t) = 2 dk 1 -cos(t gk)]e kZJo(kR),

where

r' = (_x - +(y - + (Z + •

R = (2 - ut) + (y - )2

Z = (z +).

One problem with this definition of the Green function is that its time-domain rep-

resentation contains all frequencies and we will never be able to correctly represent

this feature in time, since numerical algorithms are essentially discrete. Helping us to

overcome this undesirable feature is a low-pass filter inherent to the low-order panel

method being employed, which is regulated by the depth of the source Green function.

Linear waves have an exponential decay and as the source point goes deeper less high

frequency waves will be excited by its presence.

We can see this trend in Figure 3-1, where in the upper half of the picture we

represent the steady potential due to a source point located at Z = z/(U2/g) =

0.1, and the lower half plane represents the same steady source located at Z =

z/(U2/g) = 0.01. The steady-state Green function field was evaluated as suggested

in Newman [31] following the classical analysis of ship waves by Lord Kelvin [14],

Gst(X) = lim G,(X + T, Y, Z, -7) dr. (3.2)
T--+oo T

The waves move away from the source path, given by the line from (-00, 0,0) to

(0, 0, 0). We may see in the upper-half plane that up to a certain distance (which is

a function of X and the Z-coordinate of the source), the diverging waves have been
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Figure 3-2: XZ-plane cut of the Green function field shown in Figure 3-1 for Y=0.2.
We can see the high-frequency components being eliminated as the depth of the source
is increased. The definitions given in Figure 3-1 also apply here.

bring high-frequency wave components that will not be filtered out and which may

be not well resolved in time and with respect to the panels dimensions. This is not a

problem in the zero-speed frequency-domain approach, because then we have absolute

control over the range of the chosen frequencies and subsequent wavelengths, but in

the time domain it will lead to numerical inaccuracies.

Knowing the mathematical definition of the impulsive, constant forward-speed

free-surface Green function, and being able to efficiently evaluate it using the routines

developed by Newman (1992) [32], we can define the first-order integral equation of

our initial boundary-value problem following Bingham [2], applying Green theorem

to the time derivative of the unsteady potential <(P, T) and to the Green function

and integrating over the time history.
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After some manipulation we will arrive at

S bbm

-G'((; ', t - 7) (,(i, T) - UE(5, T)) = 0. (3.3)

Equation (3.3) is written in a form known as the potential formulation or boundary

element direct formulation. To compute the second-order steady potential and the

second-order steady forces, we need to calculate velocities and potentials over the body

surface and in the fluid domain and this will be done using the integral equation.

When computing velocities using a low-order panel code, the use of the so called

source formulation or boundary element indirect formulation is advisable, to avoid

taking numeric spatial derivatives of the potential. We can derive the integral equa-

tion for the source formulation approach defining the source strength to be

1
U= (• -~p') (3.4)

4w

where a' is the potential that represents the solution of the flow the he region interior

to the body, and has boundary conditions

9'(£, t) = 9(~F,t) on Sbm

-- U + g z' = 0 on Sf. (3.5)

The difference in the integral equations representing o and f' is only with respect to

the definition of the normal vector on the Sbm surface, which will point in the opposite

direction.



Adding both integral equations we will get the source formulation

p(,(t) = fbd (G(o)(;()()) + dt dT J (G,,(£; t - T)a(, T))

U 2 t -9i dTI dl (2D Z )2 (G.(x; t - r)_ o(, )) . (3.6)
g to 0

We should change (3.6), which is a fine relation for computing the potential at

any point in the fluid domain but not very useful for solving for the source strength,

operating with in' V,, where the lower index x denotes the coordinate system where

the normal and the derivatives will take place:

-V ~dt)(,t d- G,,( )(,--)&)ojtX))

d dl (2D )2 (GfX,(; ,t - ) ••(, T)). (3.7)
g to 0

Now the boundary Sbm should be discretized into a series of panels which in our case

will be considered to be triangular or quadrilateral flat panels, but in the general case

any surface made of interpolating functions consisting of polynomials, circular arcs,

etc will do. By using the method of collocation, the discretized form of equation (3.3)

or (3.7) will be applied to a number of particular nodes within each element where

values of the potential and its normal (3.3) or values of the potential and the source

strength (3.7) are associated. Integration over each panel is carried out analytically

or numerically, depending on the integrand and interpolating functions used. Finally,

imposing the prescribed boundary conditions, we will arrive at a system of linear

algebraic equations, that can be solved using direct or iterative methods, to obtain

the potential from (3.3) or the source strength from (3.7).

To compute the fluid velocities using the source formulation we can operate

on (3.6) with VX, and get an expression valid for any point in the fluid domain.

Using the potential formulation would imply a similar operation in (3.3), but we

would have to compute second space derivatives of the Green function which is not



desirable, and not robust numerically.

3.2 First-order Potentials

The discrete form of equations (3.3) and (3.7) can be solved for each time step to give

the transient solution (unsteady potential or source strength) for each of the unsteady

radiation and diffraction potentials, as well as the solution of the first-order steady

potential, which will be the infinite-time limit of the radiation surge problem.

Depending if we are solving the diffraction problem or the radiation problem we

will have not only different Neumann boundary conditions, but also the potentials

will be decomposed in different ways and we will have to adopt specific forms of the

integral equations for each potential. This subject is covered in detail for example in

Liapis [15], King [16], Bingham et al [12], Bingham [2] and Korsmeyer et al [19].

For the solution of the diffraction problem, we have to solve equation (3.3) with

the body boundary condition given in (2.3), or

VOs n i = -Vqi. n on Sbm, (3.8)

where in the moving reference system we can represent the first-order incident wave

potential as an integral over the frequency range of the waves given in (2.14),

O(, t) = Re dwe Lexp[Ko(z - ixcos p - iy sin •) + i wt]. (3.9)
0o 7" WO

The encounter frequency relation (2.16) may be written as

2 U
We = Wo - cos , (3.10)

g



and if we multiply this equation by U cos / and define the non-dimensional frequency

as 0~ cos L , we will have the non-dimensional encounter frequency
as = g

We = o + 062

We = Wo - 2

for cos 3 < 0

for cosf > 0,

(3.11)

(3.12)

and for cos / = 0, J=cw -", so that

we = Wo for cos / = 0. (3.13)

We can visualize the relation between the encounter frequency and the absolute

frequency for the different wave headings in Figure 3-3.

-0.5

-1

-1.5

-3
0.5 1 1.5 2

(0o

Figure 3-3: Relation between the non-dimensional absolute frequency wo and the non-
dimensional encounter frequencies wen, n = 0,..., 3. The case n = 0 occurs when
cos f < 0. Cases n = 1, 2 or 3 represent the three possible encounter frequencies
when cos f > 0. When cos / = 0 (beam seas), this relation becomes trivial and the
solution is actually given by w,0 = w 0.

-2



The curve representing w,o (0o) is given by (3.11), and all waves with this encounter

frequency w 0o(Wo) will move in the direction given by the heading angle 5 with respect

to the moving reference system.

The second curve ei1(~o) is defined by equation (3.12) for Zo < 1/2. The waves

having encounter frequency given by 0el(0o) have phase velocity C, = We/Ke and

group velocity Ceg = ' (= w,/(2 K,) for the deep water case) bigger than the ship

speed U. In the moving reference system they will overtake the ship.

An interesting situation occurs with the encounter frequencies contained in ~,2 (00),

which is also defined by equation (3.12), but for aJo in the range 1/2 < Uo < 1. These

waves have a phase velocity greater than the ship speed, which means that for some-

one on the ship reference frame it would look like these waves are overtaking the ship,

but their group velocity is less than U, meaning that the ship moves faster than their

energy. So if we look at a wave packet in this situation, it would be represented as

undulations on the free surface that overtake the ship but are continuously disappear-

ing as it moves faster than their energy. Simultaneously, new undulations will show

up to take their place inside the space region moving with the group velocity of the

wave packet.

Finally we have the waves with encounter frequency given by 0Se3(0O), also defined

by equation (3.12), and of group and phase velocities smaller than U. Those waves

are being overtaken by the ship, and the negative frequency of encounter means that

their phase velocity relative to the ship has changed sign, and they appear to be

going in the -Y-direction. If we only compare the absolute value of the encounter

frequency, we can see that the range of encounter frequencies covered by je1 (l 0 ) and

W, 2 (W0 ) will also be covered by ~je3( 0o ).

Figure 3-4 shows impulsive waves in a moving reference frame with speed given

by a Froude number Fr = U/J/-g = 0.25. The first three curves from the top

represent the free-surface undulation of an impulsive incident wave with a heading

angle / = 180 degrees. The three curves are for a non-dimensional time i = t gl1

equal to -20, 0 and 20. We can see in t = -20 that as the higher frequency waves

(smaller wavelengths) have smaller group velocity, they are organized closer to the
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Figure 3-4: Impulsive incident wave elevations for head seas (first three plots), time
equal to -20, 0 and 20. The following seas impulsive wave elevations come on the next
nine curves, each set of three instantaneous shots for each component with different
group and phase velocities relative to the ship speed, Fr = 0.25. The first three wave
elevations are scaled by a factor of 5, and the last three by a factor of 4, with respect
to the six waves in the middle.
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point given by T = x/L = 5, where the ship will reach in 20 units of time to encounter

the impulsive wave, as shown in the second curve, and which it will soon leave behind,

as we can see in the third curve.

The next three curves are the wave elevation for the waves with encounter fre-

quency we1l(w 0 ), belonging to an impulsive incident wave with heading angle 0 = 0

degrees. The waves are clearly overtaking the ship.

The interesting w~2(00) case is represented by the next three curves and is clearly

being overtaken by the ship, although it would seem otherwise for someone on the

ship.

Finally the last three curves represent the waves with encounter frequency given

by W,3(W0) which will move much slower than the ship and the undulations on the

free surface due to its presence.

Knowing the behavior of the incident wave in the moving reference frame and

how we can get the same frequency of encounter for different waves representing

distinct physical problems, we may define a better representation for the incident

wave potential then (3.9), separating the following seas case from the head or beam

seas (n = 0), and splitting it into the three regions numbered from 1 to 3:

a) cos p < 0, n = 0:

i(Y, t) = Re j dwe [ -g e Ko(zxP-xcos-iy sin)+i wet . (3.14)0 7r WO

b) cos p > 0, O < 0 < U cos, n = 1:- 2g

iR( ,t) = Re dwo i 1 - 2 wo
7 WO 9

e Ko(z-i (s+U t) cos0-iy sinf)+iwot . (3.15)

c) cos/3 > 0, < < os , n = 2:

U Cog i Ucos

2(, t) = -Re gdwo 1 -2wo

Ko(z-i (x+Ut) cos,3-iy sinr)+i wot] . (3.16)



d) cos# > 0, u < wo < 00, n = 3:
9

0I3(X,t) = -Re dwo ig 1 - 2 wo s

e Ko(z-i (x+Ut) cosf-iy sinf)+iwot]. (3.17)

For cos P > 0, the total incident wave potential is

3

1(f, t) = q ,mn(, t). (3.18)
n=l

For the solution of the radiation problem we consider the ship to be advancing

with mean forward speed U and moving impulsively in each mode k. A]k represents a

set of canonical potentials due to an impulse in the nth derivative of the ship impulsive

motion in mode k. Here we will use n = 2, which defines an impulsive acceleration,

but the choice of n is arbitrary. The body boundary condition will then be given as

ni. V•](], t) = nkAk(t) + mkxk(t), (3.19)

remembering that ik and Xk are defined to match the impulsive motion applied to

the body. For n = 2, impulsive acceleration, we will have ik = 6(t),the Dirac delta

function, so xk = h(t), the Heaviside step function, and xk = r(t), the ramp function.

We may decompose our canonical radiation potential as

n = ) k(t) + () Xk(t) + , t), (3.20)

where AFk() and .Mk(x) are waveless solutions independent of time, and 0k[ 1(, t) will

give the transient behavior of the solution, or the memory of the radiation problem.



The boundary value problems for each of these auxiliary potentials can be obtained

by applying the boundary conditions (2.13) to (3.19), and they will be given as

V 2A = O

/V2k = 0
n - Vj,= n k

V2Mk = 0

Mk=0

n IVMk = mk

in all the fluid region

on z = O

on Sbm,

in all the fluid region

on z =0

on Sbm,

with the corresponding integral equations given as

2 r Ak + ff d (NkG) - nkG()) = 0,

2 r Mk + m d (Mk - mkG(o)) = 0.

The same substitution for the transient part of the radiation potential will lead to

the following set of boundary conditions (exemplified for the impulsive acceleration):

V2•k•2 = 0

0 p[2 = (, k =0 )

-U k = -gFt 8 2 8az az

in all the fluid region

on z = 0, t = 0

on z = 0, t > 0,

with the integral equation for the memory potential coming from the substitution

of the potential decomposition (3.20), boundary conditions for jAk(X), Mk () and

and

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)



4(5, t), and the integral equations of the auxiliary potentials (3.3). Thus

2r(((, ,t) + G ) - d d(( )G - ))

U t

g ; t - T) (r

- I dT (k H(; , t) - Hn(X; , t)M k (&)) (3.26)

3.3 First-order Equations of Motion

Applying Newton's law to the linear floating body problem whose hydrodynamic

potentials were described in the last section will give

6

Mjk 2,= F j = 1,...,6, (3.27)
k=1

where Mjk is the rigid body mass matrix of the floating body and Fi stands for the

external forces. Assuming that the floating body is in hydrostatic equilibrium, which

means that the volume forces (weight and buoyancy forces) are in balance 2, we will

compute the first-order impulsive hydrodynamic surface forces under the assumption

of ideal fluid laid down in Chapter 2, integrating the first-order terms of Bernoulli

equation (2.2) over Sbm. So we will have for the diffraction potential the impulse-

response function given as

KjD(t) = d -- U ( Xi(-F, t) + s(F, t))n j = 1,..., 6. (3.28)

As the ship performs small unsteady motions around its mean positions it will expe-

rience the reaction of the forces coming from the radiation potentials, which will be

2Actually we should say that the weight, buoyancy and any hydrodynamic steady forces will be
considered to balance each other



given as

FIj = d( - U ck) nj = 1,..., 6, (3.29)

and knowing that the radiation potential has been decomposed as in (3.20), we can

define one term proportional to the acceleration as ajk, one term proportional to the

velocity as bjk and the term proportional to the displacement as cjk and also the

radiation impulsive-response function Kik:

ajk = p dSnbm d yn

bjk = psbm dI Mk -U x n j

Cjk = p bmd ( 1n(0) U n

S(t) = p bm t n (3.30)

Defining Cjk as the linearized hydrostatic restoring matrix we will write (3.27) as

6 t) d n xAk
:(Mjk ajk)k bk + ( + + cjk)xk + dr Kk (t - r) (Td

k=1 
-Oc

= dr KjD(t - 7)C(7), j = 1,...,6, (3.31)
--00

We can see that by defining C(t), we will define the excitation force through the

convolution on the right hand side, and we will be able to compute the response k (t),

Xk(t) and Xk(t).

3.4 Frequency-domain Representation

We want to compute the steady second-order forces in the frequency domain, and in

order to accomplish that we need to have a lot of information from the first-order

linear time-domain problem Fourier transformed to the frequency domain. Having

solved the time-domain problem, we can get this information for an arbitrary number



of frequencies, as long as their range remains inside the range of frequencies that are

well represented by our impulsive forcing functions and subsequent ship responses.

We will need to solve the equations of motion in the frequency domain and get

the frequency-domain response amplitude operator (RAO), which will be the ship

response to a unit amplitude incident wave inside the chosen range of frequencies.

The quantities we need to Fourier transform in this step are added mass, potential

damping and exciting force. Those quantities are computed for the ship as a whole

and we will call them integrated quantities or global quantities.

To compute non-integrated quantities in the fluid region, like fluid velocities and

pressure, which we will call local quantities, we will have to get their representation

in the time domain and also transform them to the frequency domain, as we will do

in the next subsections.

3.4.1 Global Quantities

We need to define the radiation and diffraction forces in the frequency domain before

transforming them from the time domain. In the frequency domain our first-order

equation of motions, here represented in the time domain in (3.27), would be written

as its Fourier transform

-7 (Mik + ajk)k + bik + (Cjk + Ck)Xk + t d K[n] (t - •) dn-(·) =
f0o dr n

[ dT KD (t - 7) ((T) (3.32)

or, calling the Fourier transform of Xk as Xk,

-We(Mjk + ask) k (We) + iWe bjk Xk(We) + (Cjk + Cjk) k (We)+

dt dr K' [ (t - 7) (7) e -
-oo o to J drK- iL e

f d dr" I ijDTI,( - 7) () e--



Noting that K]](t) is a causal function, changing variables defining s = t - 7, we will

be able to write

-wL(Mjk + ajk) Xk(We) + i Webjk ik(W~) + (Cjk + Cjk)k( We)+
K00 d k

-oo koo dr
Js 3 k S[ eJ] d k ( -)eiWeT

= j ds KjD(s)e - e0sj dr ((r)e -Wet

or, changing the variable s for t, and once again remembering the causality of KI(t),

and calling the Fourier transform of the incident wave elevation as the complex vari-

able Ai(we),

-wV(Mjk + aik) ik(We) + We bjk Xk(We) + (Cjk + Cjk)Xk (We)+
I-Wt

S( dt KjD(t)e eiwt AI(We). (3.33)

A desirable frequency domain representation of the equation of motions would be

given as

6 [-w'(Mjk + Ajk(We)) + iWe Bjk(We) + Cjk] ,k(W,) = FD(We) AI(We),
k=1

j = 1,...,6, (3.34)

where Ajk(we) is the frequency domain added mass, Bjk(we) the frequency-domain po-

tential damping and FD(We) is the diffraction exciting force. Equating the quantities

in (3.33) and (3.34), we will be able to write

A cj, Re [(iwe)n 0-

Ajk(We) = ajk- - Re dt K (t) -iwet

Bjk(We) = bjk - Im dt K (t) -i2 tW
[(o We (o 3

FD (We) = dt KjD (t)e -i . (3.35)



We could have included cjk in the definition of a frequency-domain forward-speed

restoring coefficient C(') but since the frequency-domain approach usually does not

use this representation and we can always include this term with the added-mass

coefficient, this was the final choice.

3.4.2 Local Quantities

As defined in (3.20), in the time domain we represent the radiation potential as

SM () () + dr n] dn xk
qk(x, t) = Ark(x)x(t)+ Mk()7(t) + J dT 4(,t- T) d-() (3.36)J-oo dT

so its frequency-domain representation will be given as

F(q ,t)) : (t) + MAk( )(t)) +

0 dt • kn] dn e -ieT) t (3.37)

Applying the Fourier transforms and changing variables in the same way as in the

last section, we will have

q$(X,) We) = WeXfk (We) + M•k(') k(We) +

(i) (io d •n](, t)e-it ik(We). (3.38)

We can see a comparison of computed values for the radiation potential on the free

surface in the frequency domain using the TIMIT and the WAMIT codes, in the six

degrees of freedom, in figures (3-5) to (3-10). TIMIT results were computed for ship

speed ranging from Fr = 0 to Fr = 0.25. The radiation velocity is evaluated by

operating with V in (3.36) and following the same development as for the radiation

potential, so

Vck(',we) We VVk(') ik(W) + Vk Mk( )k(we) +

( i0 0) d t V O p t)n ]1 e) ( 3 .3 9 )
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Figure 3-5: Non-Dimensional radiation surge potential at the point = 0.4, = 0.2
and 4 = 0.0. Results from WAMIT and TIMIT codes, Fr = 0 to Fr = 0.25.
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Figure 3-6: Non-Dimensional radiation sway potential at the point f = 0.4, f = 0.2

and = 0.0. Results from WAMIT and TIMIT codes, Fr = 0 to Fr = 0.25.
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Figure 3-8: Non-Dimensional radiation roll potential at the point f = 0.4, L = 0.2
and j = 0.0. Results from WAMIT and TIMIT codes, Fr = 0 to Fr = 0.25.
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For the diffraction potential our frequency-domain representation will be given as

F(OS(0)+ 0, ( -,t)) =

L dt j dr (¢s(F, t - r) + I(X, ,t - r)) C(7) e - t, (3.40)

but we know the closed form of the incident potential in the frequency domain, so

there will be no need to compute its Fourier transform and the final representation

will be given as

i(x,we) = i exp[Ko(z + -izx cosfl - iy sin p) + iwet] (3.41)
WO

s(,tweO) = dt s(t)e i 7, (3.42)

and the scattered wave velocity as

V)qs(Fe) = dt Vqs(t)e -'et. (3.43)

We can see that the potential representation in the frequency domain is smoother

in the diffraction problem then in the radiation problem. This happens because (1)

in the diffraction problem the incident wave potential, which is very smooth, will

give the main contribution when compared to the scattered potential, and (2) in

the radiation problem we will have that waves radiated from the body with group

velocity less than the ship forward velocity will not reach the point where the potential

is being computed. This means that waves with a nondimensional frequency greater

than w /-g = 1/(4Fr) will never reach the point if they have to move against the

current. This fact will contribute with some more spikes to the frequency domain

representation of the radiation potential.
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Figure 3-11: Non-Dimensional diffraction potential at the point E = 0.4, L = 0.2 and
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Chapter 4

Second-Order Steady Forces

4.1 Pressure Integration

Under the irrotational, ideal flow assumption, after obtaining the velocity potential

that describes the flow around our body, the most natural way of computing hydrody-

namic forces is by integrating the hydrodynamic pressure over its surface. This means

taking an integral over the instantaneous wetted body surface (Sb). The transfer from

this surface to the mean wetted surface (Sbm) will be made, using Taylor expansions

under the small wave amplitude and small body-motions approach.

This approach will be followed, and the computation of forces by the integra-

tion of pressures will be outlined for the Neumann-Kelvin case, expanding Ogilvie's

development [36] for the non-zero forward-velocity case.

Consistent with the Neumann-Kelvin approach, Bernoulli equation (2.2) will be

given as

= -p ýP+Výo-V -~ +gz , (4.1)2 (9 X



and we will have the wave elevation up to second order, under the Neumann-Kelvin

flow and the small wave amplitude hypothesis, as

_ 6 1 [ '( 1)

1 [ 0(1)
+2

+ O(~3)

Uc p )] + 62 { ( V2(1) (2)
+ ýot - (2))

(1) - u (1) ( + A(1) 1)+ ) U 2  (1) (1)ýOzt ( ot ýxz X zt ) o ýx

on z = 0. (4.2)

We are going to define the first-order ship motions as

= {(1,62,63} = {surge, sway, heave}

= ý11) + 21) + ý3) +.

S= {~4, 5,' 6} = {roll, pitch, yaw}

= _(1) 2)+ (3) + . . ., (4.3)

and, following Ogilvie [36], we see that we can relate the position vectors on 5, and

x through

Sx -) +e2 (H )) + 0(e3), (4.4)

where H is a rotation matrix including second-order corrections to the vectorial prod-

uct, first-order rotation, and is defined as

1
H =

2
-2ý4 5

-2(4 6

0 0
(4 2i) 0

-266 (45 )
(4.5)

rl(x,y,t)

X= 3 +E (+



We can also relate the normal vectors, defined in the body fixed moving reference

frame (n',) and in the steady moving reference frame (47) through

i= {n, n2,n3} = , + f (• •) +e• (Hi i ) + O(e3)
SX - {n 4, n 5 , n6} Xs x x, xn 8)

2 [ x ( .) + H (,[ x 8)] + O(e3). (4.6)

Integrating the pressures over the hull surface we will get the total force acting on

the floating body, which will be given as

F(we) = ni, p dS. (4.7)

We have already Fourier transformed the potentials and velocities from the time

domain to the frequency domain, and we know that given two complex quantities A

and B, with a time dependency as e iwt

Re (Ae t)Re(Beiwt) = -Re (ABe i2wt + AB*), (4.8)
2

where B* denotes the complex conjugate of B, so it is easy to compute the steady

part of the terms coming from the first-order solution. Here we will show the second-

order terms contributing to the force and moment and it should be implicit that the

second-order steady contribution is to be collected from the second-order force and

moment using (4.8), and disregarding the contribution to the sum-frequency forces.

The integral in Equation (4.7) is to be taken over the instantaneous ship surface

Sb, not known a priori, and we want to evaluate it on the known surface Sbm. We

can use relations (4.4) and (4.6) to account for the proper relative positions of the

surfaces. Equation (4.4) can be seen as a relation between the position vectors in

x and S. or as a function relating a point on the mean surface Sbm and the actual

surface Sb. The same consideration goes for equation (4.6), with respect to the body

normals n' and n',. It is easy to see that in Figure 4-1, where c, is a position vector

in the frame of reference fixed on the ship.



1/. C-

Z Sb

Y

Figure 4-1: The two coordinate systems showing the two possible interpretations of
equation (4.4).

Equation (4.4) can be interpreted as transforming i, into x (up to second order),

described in the moving reference frame with mean ship speed. The other interpreta-

tion of (4.4) is given when we look at ' in the same figure, which will be a position

vector over Sbm having the same coordinates in the mean ship speed reference frame as

X, in the body fixed reference frame. In this case the equation will transform a point

on Sbm to its place over Sb, correct up to second order on <p. Both position vectors

(0a and X) are described on the mean ship speed reference system. Our first-order

pressure was computed with respect to the body mean position. Taylor expanding

the pressure to the actual instantaneous position we will have

PlSb = PISbm + V( - ,) V PlSbm + 0(e 3). (4.9)



Substituting (4.1) and (4.4) in (4.9) we will get

PIS, = -p gZ+e ( tU•-u ~) + E1 IVVI +o(e:)

-p [E (+ x .) + E2 (H ) + O('3)]

vg z + -e t- u j + 1 IVVI2 + Od~ e )  (4.10)

or looking at the order of each term, and dropping the s subscript of X, as it is clear

that our interpretation of (4.4) actually refers to a position vector over Sbm being

transformed to Sb,

PISb = -pgz-ep [-41) -U- (6 3 +- G4 - 5 X)]

_ (2 P (2) _ UV 2 + 1 IVVI 2 + + x (1) U )]

- pg (H x. k) + O(e3). (4.11)

Substituting (4.6) and (4.11) in (4.7), also dropping the subscript s from X, and

the normal n',, and grouping the terms by order, we will have the force as

F(we) = p bmdS [ + e (x )+e2 (H )]

gz - e lo 1) U +g (z3 4+ •4, -A5 +)]

_ &2 [(x2)_ U (2) + IV 2 + (+ x V ((1) - U ))]

-2 g x k)+ i pdS + O(e), (4.12)
ASbM 

4.2



and the moments, using the definition of {n4, n 5, n6 } in (4.6), as

M(We) = PI dS ix n-+e [ x n+Q x (x n')]

+E [ Q× ( n × •) + H (x x n-)]I
{gz - [(1)- U cp~) + g (•3 + ~ Y - )]

6 2 [VV2 + V 1)

-g (Hx .k) + (, 2) u W2)]

+ J ( x ni) p dS + O(e,), (4.13)
ASbm

where the corrections fflsh ,, p dd' and ffasbm,, (" x i) p dx stand for the integrals

having to be taken over Sb, going up to where the water surface intersects the instan-

taneous body surface as we can see in Figure 4-2. Integrating only over Sbm, makes

our integrals stop at z, = 0, not taking into account the O(e) missing part.

PD p

,cP1 :5

Sbm 1b

Figure 4-2: The two coordinate systems showing the differences on the boundary over
the still waterline we should include on the integral over the mean wetted ship surface
(dotted lines) to be mathematically equivalent to the actual (solid lines) position.

ý3



This correction is mathematically expressed as

IfI f p dS
Sbm

e,(x i) +O(62)]S pW dl dz [i +iWL f

{gz+eg Eot - ýs )]-u x + (6 +~4 649X + 0(62) (4.14)

and similarly, the correction for the moment,

IJ A£S x n-) p dSm M

C(P-6 -Y+X 65)

-p jw d l -  dz ({
L ( x )] + o

+ix (5 x in)] + O(E2)}

gz+6g Eot
- So-u O +(ax

x n +E [ X ni

+ O(2)}.

(4.15)

The second-order terms coming from the line-integral corrections (4.14) and (4.15)

that will contribute to the second-order steady force are

ISfa p dS

JJAsb( x -) p dS

= -pg dwdl •(r- 3 -y4" xý ) 2

WL
(4.16)

=-pg d l (x x n) ( - - y4 + zs)2WL
(4.17)

Inspecting (4.12) and (4.13), we can define the second-order hydrostatic forces to

= -P9 fbm
dS [(Hx ) + (x -) (3 + .~4- ~x)+

(H n-) z] = -k pg (64 6Apxf + , 5(6Aw pyf), (4.18)

where A, v is the waterplane area and xf and yf are the centers of flotation on the

and

~( e(We

+ Y - ~5 2)



waterline plane. For the moments we will have

M ) (2)hat (we) dS x -+ Qx (x x n)] (63

-PS JIsbm dS ( x n-) (H x k)

-Pg JJIbm

= •pg {[ - ( + ,,) + Xb 5 + [(L1 - L-22 56 •

-2L 1 2 64 6 + Awp( 6265 - Xf 636 )-A.wp63 2 - AwpYf6264]

+ pg V(2+ ý 2)+ [(L11 - L22) 4 6 + 2L1 2 5 6

+Awp33 1 + Awpyf (61'4 - '3'6) - Apxl5]}

+k pg [-(L11 - L22)~64 5 + L12(42 - 2)

+Awp.Z 3ý 4 + Awp.yf 335 ] , (4.19)

where V stands for the displaced volume, Xb, Yb and zb as the coordinates of the

center of buoyancy, and Lij as the integral ffAwp xixj dS. Now we can represent the

second-order terms contributing to the total steady force as

Ux )) dS-,JIfst n'

-P "Sb

P JSbm

-P Jsbnm

v((1)

2(1 JV V ) 12 dS

-ýx )] dS

-P9 ( -C - 43 + 552 dl + F (We),

and to the second-order steady moments as

x in ) I vý,(1)12) dS

m

-Pg L( • )(77 -- 3 - Y4 + 5 )2 dl + (we)

ý4 Y -65 X)

F()(2We)

M '(2) (w)

X)] .IdS

(4.20)

= P bm
-P Jsbm

-P fSb x2)] dS

(4.21)

= -pg J,,

dS [H (x x n-) +x (' x n-)]

(£ x n) Up) dS-p JJsb

(x- x n-) + x V · o (1 V - U ýo dS
x ,(x + x × ( × ,n')] [ý') - u i)+ g ( 4 + ý,4 -

SX n)"- [ý11) -_ U( ý(1)+9 (63 +-4 Y



Another way to display the second-order forces and moments is by using the def-

inition of the first-order forces and moments, enabling us not to recompute some

terms that have already been evaluated when solving the first-order problem. Sub-

stituting (4.6) and (4.11) in (4.7) it is easy to collect the terms contributing to the

first-order forces,

P(1)(We) = IP(L) - U ) + g (3 +4 -5 x) dS

-pg J9 J (i )x dS, (4.22)

letting us state that

-P s[) U •x ) [ -u p' + (3 + s4 Y -s 5)] dS =
Sx F(1)_ pg9 X s Z ( x 7) dS =

x (') -pgv [- -6 5j + ([ + 6)] , (4.23)

to finally get an alternate way of representing the second-order steady forces as

-F nj+6xi) -VO dn -Up )l dS-Jbm p [(&- n x V ((p - u •(pM))] dS
-Pg . ( - Y3 - 4 5 2 dl

+ x (') - pg A,, (4 6 Xf + 5 6 f ) k. (4.24)

The second-order steady moments can be redefined following the same lines. Noting

that the first-order moment is given as

~( (W•) = -PI f (x x ,n) [c(P) u + (ý3 + 3 4Y - 5 X)] dS

- JJg {(x )z + [ x (Xx i)] z} dS, (4.25)_Pgfsbm ('X Z+['



which will enable us to get the relation

IP Jjbm

-= -(1) x -() - pg

Using the expression (4.22) for the first-order forces we will also be able to write the

relation

e1) x (1) = -P fSb

(4.27)
-P9g Sbm,

Finally, using (4.26)and (4.27) we may rewrite the second-order steady moments (4.21)

as

bm (

-P fS ,

') (Up )) dS - p

( -)x [ ( + x lV - Up dS

( x n)(q7 - ý - y4 2+ 5) dl
VL(d

+_t[1) x i ( 1) + s'M(1) x

+pg [-V6 166 + VW•45Xb - V6566Zb- "V (4 - Yb - L1266 - 226

+pg [-V 2,6 + VW4 •Zb + (2 _ ( 2) Xb + L1 265.6]

+pg (V616 4 + V •625 + 6V56xb - V•,4 6yb) k.

QxISbxm

Sx (x x n-) [p ) - U ý(1) + g (3 + 4 6 -Y s )] dS

(4.26)

JJSbm
x n') dS

(4.28)

[(x ) z + x ( x n') z] dS
f2')x (1) pg xIx (yb( Xb()$ + xZ .

(X n) [ - V 1 - (3 6 + -4 - s2)] dS

x (6 x nx z dS.

xM (2) L;e IVp('))1



4.2 Momentum Flux

An alternate approach for integrating pressures over the ship wetted surface is to

use momentum conservation relations over a control surface encompassing the ship

and moving with its same mean forward speed. By computing the momentum flux

through this control surface we will be able to tell the steady forces and moments.

As we said in the first chapter, early work using this approach was restricted to

information about the planar forces and yaw moment. At that time there were no

general solutions for the unsteady flow close to the floating body, but asymptotic

computation of the potential and fluid velocities far from the ship were possible, so

defining a control surface at great distances from the body was the way of choice. The

planar forces and yaw moments have in common the fact that some integrals over the

mean free surface that show up when we employ this approach will not contribute for

those components, and we can avoid the computation of hydrodynamic quantities in

the near field.

Under our approach, the evaluation of the potential or fluid velocities far from

the body is not an advantage, because we are computing first order quantities in

the time domain to subsequently Fourier transform them to the frequency domain.

Higher frequency waves, which travel with small group velocities, will require the

solution of long transient problems to reach our control surface making this whole

idea computationally too expensive.

Defining a compact surface close to the floating body and using the momentum

flux relations over it in order to compute steady second-order forces and moments is

much more feasible. This approach, which we have already used (Ferreira and Lee [7])

in connection with the WAMIT program, gave convergence of the drift forces faster

than using the pressure integration method with equivalent number of panels over

the body surface. To be fair in this comparison we have to remember that each field

point on the control surface will be roughly as computationally expensive as an extra

body panel, and a proper balance between the number of panels and number of field

points should be found in order that this method becomes attractive.



The required number of control points over the outer surface was found to be

approximately of the same order of magnitude than the number of panels over the

body. Although theoretically we may refine the number of points on the outer surface

just by computing the time history of the potential and velocities on new chosen

control points, improving our numerical quadratures in the same computer run, this

is not numerically an easy task, and has not yet been implemented. Each outer

surface refinement requires a new run of the simulation program.

In Figure 4-3 below we show the body consisting of a half sphere inside the compact

surface, which is defined as the sum of So, the surface defining an outer region bellow

and around the body up to the actual free surface Sf, and Sf itself, the actual

free surface that goes up to the body instantaneous surface Sb. We should note

that the compact surface is represented as a "mesh" only for visualization purposes,

being actually a set of chosen points where some quadratures will be performed, and

which do not play any role in the solution of the potentials. The definition of those

quadratures will be the development of this section.

The total linear momentum of the fluid inside the compact surface is given by

M(t) = p JJJ V dv, (4.29)

where V is the fluid volume contained between the compact surface and the ship hull,

and the total angular momentum is

A(t) = p JJ x V dV . (4.30)



SF
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Figure 4-3: The compact surface (So + Sf = Sfo) surrounding the floating body Sbm
(here a half sphere), without a 30 degrees sector on So for better visualization.

Using the transport theorem to compute the rate of change of the total momentum

in the moving coordinate system, we will have

= p JJVVpt dV + p f Job Vc U,, dS,

= p v x x Vt dV + PJJSf ob
Sx V'p U,, dS,

where Uns is the normal component of the surface Sfob = Sf + So + Sb velocity, in

the moving reference frame. We can refer to Euler equation in the moving reference

dM(t)

and

dA(t)
dt

(4.31)

(4.32)

ý;O



frame F to get

pVpt + p [(V( - U )- V] Vp = -V (p + pg z),

letting us write

dM=(t)
dt J/JJ ((Vm - U )

+P JJsfobVp U,, dS,

= -p f ( x (Vp - U ). V) Vp + I x V

+p Sf obI

( E
+gz)

x x VV U,,s dS.

Observing that

((Vp - U) -V) Vp 0fi)

w+eVi - (Vap -Ui) (k,

we will be able to rewrite (4.34), using the Gauss theorem, as

=-P VyI. '·(ifp-V itUz^ dt
U= A

so(aa
PJJ~f~(L)

= IL'b= J-pS ob

%+ -. (Vp - U )

k - V Us + n'

+gz)
P

Un) + i ( + g z) dS,

L1Oy)

where U, = i~. U + Us, is the normal velocity due to the motion of the moving

reference system combined with the normal velocity relative to this system. This is

(4.33)

and

+gz) dVp

dA(t)
dt

(4.34)

dV

(4.35)

-,4

dM(t)
dt

+gz) dS

dS

(4.36)

( xI'll)- (Vv - U Z) z- + V



the normal velocity of the surfaces with respect to the fixed reference system, and

we can see that the same result would have been obtained in case we had derived

the momentum time rate in the fixed reference system. By analogy, the angular

momentum time rate will be given as

dt = -p (b x V)(. - VP - U) + ( x 'i) P+ g z dS. (4.37)

For periodic incident waves we should observe that dS(t) and (t) will have zerodt dt

mean over one period, as Ogilvie [36] pointed out, because any different result would

reflect on an infinite amount of momentum inside our control volume as time goes to

plus or minus infinity. Defining the forces and moments acting over the actual body

hull as

Fb = J p dS

Ab =- (x x •)p dS, (4.38)

knowing that the pressure on the free surface is equal to the atmospheric pressure,

which we define arbitrarily to be zero, disregarding the hydrostatic term on the outer

integral because it will give no net contribution, and also that Un = n' Vp over Sf

and Sb, we may rewrite (4.36) and (4.37) as

Fb = -pg Jz dS - p ) +V V -Un dS, (4.39)

and

Ab = -pg ( x i')z dS

-p IL( x ) () + ( x Va ) (t U)] dS. (4.40)

The first integral in (4.39) and (4.40) is to be taken over the actual hull surface Sb

and free-surface elevation Sf. Once more we do not want to do that, and the transfer



of this integral from Sb to Sbm and from Sf to the mean free surface Sf, is desired.

Taylor expanding z over the hull from Sb, to Sb, we will get

zlS = ZISbm + ( - ) ZISbm .

Substituting (4.4) in (4.41),

z sb - ISbm+ [6(+ X x, )+62 (H ,) + O(e3)]

(4.41)

(4.42).k.

Now, using also (4.6), we can relate the integral of the z-term over Sb and Sbm with

the hydrostatic force Fhst(We) as

Fhst = - pg//Jz dS

S-Pg JSbMdS (n'z) - epg

_2 pg Sbm

hSbm

+ 4 Y - ý5 x)+

(H n') z] + O(63 ),

and collect the second-order terms that contribute to the steady problem.

ing (4.43) as

Fhst -( + e P( + e2(2) + 0(3),
= hst " - hst -I- • • hst " -

and for the moments

Mb = i + m +E S+ 2Mhst + 0(.3),

we will have those terms as F2 st given by (4.18), and Mt, given by (4.19).

The next step is the transfer of the integrals over Sf to Sf m. We have that

ZIs = ZSf + 1'sf, -Oz

= z's,, m

(4.43)

Writ-

(4.44)

(4.45)

(4.46)

dS [ ' ( + 6Y X) + (3 X 5

dS n [(H k) + ( X n) (ý3



and we know rIls,, from (4.2). The integration over the mean free surface will only

contribute to the vertical force, as well as roll and pitch moments. We may now

rewrite the integral over the free surface as

-P9gJJsf z dS

-p9 Jf z dS =

-= -pf dS (pt - U ~xIV + p2

-p f dS n [ t zt + U2 °x ýxz

-u (W•W •z + WPZt )1

+ dS n'(pt - U .),)
ASjm

(4.47)

-p sfm dS ( -Uf+ IV,ý 2

+p k I dS [7 (szt - U z)I] + k dS (J - U J)
(4.48)

Similarly we will have for the moments contributions given by

- Pg s(x) zdS = -p sydS (zx,)

+p I dS (x x n) [7 (zt - U ý0)] + dS (x x

The integrals over ASfm stand as correction terms on the

free surface due to the lateral motions of the ship, as can be

which will be given as

- U , + IV 2

) n(pt - U )>), (4.49)

integrals over the mean

seen in Figure 4-4, and

(4.50)

for the forces and, for the moments, as

(4.51)Msm, = p dl [( x n) ((+ x)(pt - U ))].

lFs,= Pp dl [n- -(E + & x a )(pe -U z) ,Ims r Vt-UO)



Ship actual waterline position

Figure 4-4: View from the waterline of a ship in its mean position and translated and
rotated from its actual position. The ship motion is considered to be of O(E) and so
a correction term represented as the line integral is necessary.

The last term we need to compute on (4.39) is the integral to be taken over the

outer surface So. Substituting p from (4.1),and once more collecting the terms that

will give a contribution to the second-order steady force, we will have

-P sf (p) +V (p U)] dS=
- - +U -gz - + Vp •U dS

+ S (.,- U ) dS. (4.52)

Ship mean waterline position



We will rewrite the right hand side of (4.52) as

-p -pt- 12 z) +VýdS+ sJ (ot - gz) dS
o gz d As

JJS ___

-P VsoVU - U dS-p 1 s0 Výu - U dS (4.53)

Here the correction terms represented by the line integrals taken over the intersection

of the outer surface So and the mean free surface (contour ASo) exist because the

outer surface So ends at z = 0, while the real surface ends at z = y, which is an error of

order E. The second order correction that will come from this integral, which contains

first order quantities integrated over this first order strip, will give a contribution to

the forces mathematically translated as

Fsol dl dz ( -gz) = - r dl - U2 , (4.54)

and

IF P o2dld V UO - U . (4.55)

Investigating the contribution coming from the third integral in (4.53) we note an

advantage in separating the contribution to the vertical force and the contributions

to the horizontal forces. Expanding the terms we will have

-P 1so VU - U a dS =

pUIffs(9,nz- ni) dS+pUlJj ( zlxn S fz) dS=

pU (IJSovert Vp dl dz + Jsohor7oV - dl dr

+pU si o (z ne - nz) dS, (4.56)

and we can see that if there is no circulation in the fluid, which is our case, the

mean planar forces are determined from the first-order quantities only. So the total



contribution from the outer surface integral to the steady second-order force will be

given as

dS - g fr
-P (s IVo2 - Vp ý) dl ( (' - U2 2)

+pU kj (2)nX - pt) nz) dS - p dl V U - U

and similarly, the contribution to the moments as

-P Jf so

-pfo dl q

< n)I 2
r

[
- (x x Vý) ,,]

OU (2)- -2i(
(X x VW(2)) Un

(X x V(p) U•- a(x

dl (I x -) (cp

dS

n)]

We can now collect all terms that will contribute to the total second-order steady

force computed using the momentum flux formulation, from equations (4.44), (4.48),

(4.50), and (4.52), to finally get:

Jt -- m [ IVsoI2
+ 02 (ýOzt - U2 SPxz)] dS

-kP- g [(3 4- 5 ]) ] dl + PUkLso

-P IL (IV 0 12 Vp ý)11S. (_ 2 dS- pg

((2) n - A2) nz) dS

dl n (4 - U2 ý)

(4.59)-p dl 7 Vp Un -aUn) ,nOs'ii,-U-T

-
axJ (4.57)

- U2 )

(4.58)

dS - -



and for the moments, collecting the contributions from equations (4.45), (4.49), (4.51)

and (4.58):

b2"' We Sfm [t n IVP ( zt - z) dS

Ifp I
-pg (£x)[(- X V,()) _ xU ]d

Js( x / n Vd

-p odl x V U. - U O(X x ) , (4.60)

We can notice that this expressions are equivalent to the one Grue and Palm[10]

obtained for the slow speed double-body case horizontal steady forces, and the free-

surface integral is similar to the expression Zhao and Faltinsen[43] obtained, if we

consider the steady basis flow to be given by the Neumann-Kelvin approximation

and include the second-order steady potential contribution. Equation (4.59) also

imply that for a fluid with no circulation the second-order steady potential is not

necessary for the computation of the second-order steady horizontal forces, using the

momentum flux computation. This will not be true for the computation of the vertical

force or the moments.



4.3 Second-order Steady Neumann-Kelvin Prob-

lem

The computation of second-order steady forces for the zero forward-speed problem

only requires information of first order quantities. However, as we have seen in the pre-

vious sections, and it is apparent from looking at the pressure definition in Bernoulli

equation (2.2)

p = -P (t + V.P -VP - U + g z , (4.61)

the second-order steady force acting on a ship with forward speed also has a contri-

bution from the term

E2 p i U dS, (4.62)

where p(2) is the steady second order potential. In the following subsections we will

define the boundary conditions that must be satisfied by this second-order potential

and the integral equation that we can build from using these boundary conditions in

connection with Green's identity.

4.3.1 The Boundary Value Problem

The boundary value problem satisfied by the second-order steady potential is obtained

by collecting the second-order terms coming from the boundary conditions. The first-

order quantities are supposed to be known at this stage.

The second-order problem we are going to solve is defined in the frequency domain,

in the sense that for each frequency we will be able to define different steady boundary

conditions that will define a second-order steady potential solution. This steady

boundary problem may be solved as the large time limit of a transient surge radiation

problem with these boundary conditions. The computation of the second-order steady

forcing from the first-order frequency domain solution only requires the use of (4.8).



Taking the second-order terms in the Laplace equation we will have

V2 O(2) = 0, in the entire fluid region, (4.63)

while the body boundary condition follows from the steady part of the second-order

terms in (2.29), or

0ý0(2)
= B(M), on Sbm, (4.64)

where, for the freely-floating problem, B(Y) can be computed following the same lines

of Ogilvie [36], but for now we will concentrate on the fixed-body (diffraction) problem

when

B(P) = 0. (4.65)

The steady second-order free-surface boundary condition can be obtained from (2.21),

substituting the qB definition for the Neumann-Kelvin flow and linearizing over the

plane z = 0 or equivalently we can look at the zero velocity free-surface boundary

condition as discussed for example in Ogilvie [36], and given by

(2) (2) 1 ( 2 1 ( (1)a ( (1 ) , onz=0,
+toto +j= + 0ý0 2 ong z gOto g

(4.66)

and transform to the Neumann-Kelvin case substituting

S= a- U (4.67)
Sto at Ux

which will finally give the second-order steady-potential free-surface boundary condi-

tion as

U2 + (2)
- + = 71(F), on z = 0, (4.68)

g az



where

1 (2 U V ( 1) " V( 1 ) - •(1) W() + U p(pV(1) z

g2 ((t ý +ztt + U V ztt+ 2 U t PO

-2 U2  (1) 1 U22 (1) (1)+ U3 (1) (). (4.69)

We will also have that, at large distances from the body

V( (2) _ 0, I '| 00. (4.70)

4.3.2 Discrete Integral Equation

The boundary value problem shown in the last section is similar to the steady-state

limit of the transient surge first-order problem, with the exception of the inhomoge-

neous right hand side in the free-surface boundary condition (4.68) and a different

right hand side of the body boundary condition (4.64). The derivation of an integral

equation for this problem follows the same steps of the first order, and the details are

presented in Appendix A.

The potential formulation integral equation will then be given as

2 ir 0(t) + J di [q(t) G., (0) - Ot (t) G(0)]

-If[0 Gn(t - 7) - qnt(7-) G,(t - -r)]
U t--f d _f dl'n [0(r) (G,,(t- r)- UGeC(t- r))
9 to ()

-G +(t - -) (0,(7) - V¢j(7))]



and the source formulation, with the details also presented in Appendix A, as

(,t)= Jbm d( (G(O)(-; + 'd7r iL dýG.(Y; nt - 7)o u ))

U2 t -
- I dr dl ( 2 D )2 (G,(; (t - 7) ( ))g to 0

+ j'dr Jj- W(i() G(t - 7)) = 0. (4.72)

As we said before, the steady problem can be considered as the infinite time limit

of the radiation surge problem. The difference is that the boundary conditions over

the body surface are much simpler, as it does not involve the m-terms nor the terms

proportional to the normal unit vector over the body surface. The constant in time

body boundary condition given by (4.64) will only require us to compute the gradient

of (4.72), and we will not need to decompose the source strength in a manner similar

to what has been used with the radiation potential (3.20).

Looking at (4.72) we see that the forcing function H(ý) is constant in time and

not a function of the field point coordinate X, but of the source point coordinate (,

and therefore constant with respect to the applied gradient. We will then have

- J(G(O)(- a( t)) + dr Jj ck(Gnr(x; ,t - T)o,( r-))
ans Sbm

U 2 t --- I dr I dl ( 2 D -)2 G,(; ,t - T)) O( 7)g to 0

+jf drj d (H() G,(t - r)) = B(F) (4.73)

as the equation that needs to be solved in order to compute the large time asymptotic

limit for the source strength a(, r).

The first problem encountered on the computation of the solution of the steady

second-order potential was the computation of the forcing function 7I(ý). The higher

order derivatives were computed using the central-difference approach in a finite dif-

ference scheme, but the forcing is not being properly computed. To look further into

the problems we are having, we defined the second-order low-speed potential problem

under the Neumann-Kelvin approach.



4.3.3 The Low-Speed Diffraction Second-Order Potential

Under the low-speed assumption, we will assume, as Grue & Palm [8] [9] [11] (1985,

1986, 1993), Nossen et all [34] (1991), and Zhao & Faltinsen [41] [42] [43] (1988, 1988,

1989) did in connection with the double-body flow, that terms proportional to U2

may be considered to be of a higher order and will not affect the solution of the

problem.

Calling the low-speed second-order potential as (2)(), we will have our boundary

value problem given as

V2 (2) = 0,

-

0

i9ýý = 0,

Oz __-l (2 U V .
(1) * Vý (') - v1) s4lz) + U cp(1) ý(1))

- ((t1) t + U 1) Aztt + 2 U , cpt t)

V(i 2) - 0,

where only the steady

corresponding integral

in the entire fluid region,

on Sbm ,

on z = 0,

| | 00, (4.74)

part of the right hand side is to be taken into account. The

equation is given as

2 7r (2) + JJI+s d( (ý 2)G( ,) - RZ(2)) = 0, (4.75)

-0 a (2)
where 7R() represents aI" on Sbm and Sfm, as given by (4.74).

It is easy to see that far from the body, when the waves have a dependency on z

like ekz, and on x like e- ikx, that R(6) will have no real part. In order to exemplify the

numerical problems we have encountered on the computation of the forcing function

we will plot the real and imaginary part of p(1) and o('), since the combination of the

potential and this second derivative was the dominant term on the forcing.

For the computation of the forcing function at each point shown in the plots, over

the free-surface, we used a central difference scheme with 5 points to compute the

second derivatives of the potential over the plane z = 0. The p(') terms were obtained



through the use of the Laplace equation.

From the spikes that show up in the forcing function plots we have a clear indica-

tion that the computation of the potential and velocities over the free-surface is not

accurate enough to allow the computation of the second-order derivatives.

As a consequence of the forcing function not being well represented, the compu-

tation of the second-order steady force coming from the second-order potential was

not accurate, but nevertheless we accepted the results obtained as an indication that

this contribution is small and can be disregarded in general. The idea is that the

error in the representation of the forcing function shows up as the spikes, and so if

it were not for these spikes the forcing function would be much smaller, leading to

the computation of a second-order steady potential, velocities, and ultimately forces,

smaller than the computed response. We can see in the Figures 4-15 and 4-16 that

the steady forces coming from the second-order steady potential to be only a small

fraction of the second-order steady force coming from the first-order potential, giving

support to the idea that we may disregard this contribution.
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Figure 4-5: Real part of c(1) over the free surface. We = 1.0, Fr = 0.10 and / = 180
degrees. Wigley hull is located between -0.5 < x/1 < 0.5.
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Figure 4-6: Imaginary part of p(1 ) over the free surface. We = 1.0, Fr = 0.10 and
p = 180 degrees. Wigley hull is located between -0.5 < x/1 < 0.5.
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Figure 4-7: Real part of pI) over the free surface. w, = 1.0, Fr = 0.10 and / = 180

degrees. Wigley hull is located between -0.5 < x/l < 0.5.
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Figure 4-8: Imaginary part of p(•) over the free surface. We = 1.0, Fr = 0.10 and

p = 180 degrees. Wigley hull is located between -0.5 < x/l < 0.5.
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Figure 4-9: The total forcing function over the free surface. we = 1.0, Fr = 0.10 and
0 = 180 degrees. Wigley hull is located between -0.5 < xl1 < 0.5.
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Figure 4-10: Real part of p(l) over the free surface. we = 3.0, Fr = 0.10 and ~ = 180
degrees. Wigley hull is located between -0.5 < x/l < 0.5.

Figure 4-11: Imaginary part of p(l) over the free surface. we = 3.0, Fr = 0.10 and
0 = 180 degrees. Wigley hull is located between -0.5 < x/1 < 0.5.
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Figure 4-12: Real part of (p1z) over the free surface. w, = 3.0, Fr =
degrees. Wigley hull is located between -0.5 < x/l < 0.5.
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Figure 4-13: Imaginary part of p ) over the free surface. we = 3.0, Fr = 0.10 and
f = 180 degrees. Wigley hull is located between -0.5 < x/l < 0.5.
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Figure 4-14: The total forcing function over the free surface. We = 3.0, Fr = 0.10 and
p = 180 degrees. Wigley hull is located between -0.5 < x/l < 0.5.
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potential. Fr = 0.10 and P = 180 degrees.
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Figure 4-16: Comparison between the contribution from the second-order steady
potential and the total second-order steady heave force coming from the first-order
potential. Fr = 0.10 and p = 180 degrees.
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Chapter 5

Results

This chapter contains the second-order steady force results for different floating body

geometries. We want to show the advantages of using the approach just described

here as well as check the limits of its applicability.

We will first present results for the Wigley hull, which is a slender body that has

been extensively tested and had results computed using many different programs.

Going to examples when we will try to stretch the slender body assumption, we

will start with the circular floating hemisphere.

Finally we will try comparisons with a shallow cylinder, which besides not being

slender, has sharp corners close to the free surface which may represent a numerical

challenge since we know that the velocity will go to infinity as R - 1/ 3 as we approach

a 270 degrees corner in the bidimensional case.

For each case studied we will first compare results with WAMIT, an extensively

tested 3-D panel method computer program described in [3] which computes first and

second-order forces including the steady ones for the zero-velocity problem.

For the Wigley hull we will also compare results with SWAN, a forward speed

Rankine panel method described in [26] and that also has extensive use in the com-

putations of loads and responses of ocean-going ships and floating structures.



5.1 The Wigley Hull

We are going to use here the modified Wigley hull, as in Bingham [2], with a ratio

of the length (L) to the breadth (B) equal to 10 and of the length to the draft (T)

equal to 16.

This hull is mathematically described as

(2 (1 - (3)2(1 - (12)(1 + 0.2C~) + 3(1 - (38)(1 - 12)4

-< -1 53 < 0 (5.1)

with

{x, y, z} = {((C L)/2, ((2 B)/2, (3 T} (5.2)

The discretization of the hull was made using 128, 512 and 1080 panels. As the

program takes advantage of the hull symmetry about the plane y = 0, only half of

the body needs to be discretized. The meshes can be visualized for the whole body

in Figures 5-1, 5-2, and 5-3.

Figure 5-1: Wigley hull mesh with 128 panels. Actual numerical model uses the
symmetry with respect to the xz-plane.



Figure 5-2: Wigley hull mesh with 512 panels. Actual numerical model uses the
symmetry with respect to the xz-plane.

Figure 5-3: Wigley hull mesh with 1080 panels. Actual numerical model uses the
symmetry with respect to the xz-plane.



5.1.1 The diffraction problem

Computing the second-order steady force for the diffraction problem alone, is equiva-

lent to computing this force without allowing the ship to oscillate due to the presence

of the incoming waves, but only to move with forward velocity.

The computations were done using the pressure integration method and compared

against results obtained by WAMIT. In all simulations we have used a total time

history equal to 22.5 g/L with a time step equal to 0.05 g/L. The results for the

diffraction second-order steady forces are shown below, for a heading of 180 degrees

and 135 degrees. In Figures 5-4 to 5-6 we can see that the agreement between our

results (called TIMIT results from now on) and WAMIT results were excellent.

We should note that for the heading equal to 135 degrees case, with results in

Figures 5-7 to 5-12, the convergence between TIMIT and WAMIT results were not

as fast, although it is clear that they do converge. The problem now is numerically

more challenging, since the slenderness of the Wigley hull will, with front and rear

edges, will create sharp corners for flows due to incident waves with headings different

than 180 or 0 degrees. The velocities computed on panels too close to those edges

present discrepancies compared to WAMIT velocities, but as we increase the number

of panels the relative weight of these panels on the total force decreases and we can

see the results converging. We should conclude that as we go to higher frequencies

we must increase the number of panels over the hull. We should also say that then

we will have panel centroids closer to the free-surface which may require smaller time

steps. In the following examples the chosen time step of 0.05 g/L was good enough

for all three meshes.

Some of the results show inconsistencies like positive steady force in surge when the

wave is heading in the negative direction, for high frequencies, and this fact should be

seen as an indication that the results for this mesh is not converged at those higher

frequencies. We can see that increasing the number of panels, and consequently

obtaining more converged results, will eliminate this behavior.
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Figure 5-4: Wigley hull. Surge diffraction second-order steady force. Comparison
with WAMIT. Heading = 180.

In Figures 5-13 to 5-18 The influence of the ship speed on the diffraction second-

order steady force are shown in the following plots, for a heading equal to 180 degrees,

with the ship moving ahead or going backwards. Another way of looking at this

problem is to consider the ship fixed and suppose the presence of currents in the same

direction as the waves (head seas) and in the opposite direction (following seas).

In the following seas case we have stopped the computation of the second-order

steady forces as the group velocity got close to the ship velocity. There is a physical

problem when the ship moves with the same speed as the waves group velocity and

the Fourier transform of the hydrodynamic quantities would also require a long time

record, which would be infeasible. The sharp increase of the steady forces as we

approach these frequencies should be regarded as a consequence of this problem.
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Figure 5-5: Wigley hull. Heave diffraction second-order steady force.
with WAMIT. Heading = 180.
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Figure 5-6: Wigley hull. Pitch diffraction second-order steady force.
with WAMIT. Heading = 180.

Comparison

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

· · · · · · · · ·

I-

I-

I
t-

I-

I-

I I I I I I I I

-

-

-

-

-



-- TIMIT, Press. Int., 128 panels, Fr = +0.00
------- TIMIT, Press. Int., 512 panels, Fr = +0.00
........ TIMIT, Press. Int., 1080 panels, Fr = +0.00

+ WAMIT, Press. Int., 128 panels
x WAMIT, Press. Int., 512 panels
K WAMIT, Press. Int., 1080 panels

I I I I I I I I I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

o (L/g) 1/2

Figure 5-7: Wigley hull. Surge diffraction second-order steady force.
with WAMIT. Heading = 135.
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Figure 5-8: Wigley hull. Sway diffraction second-order steady force.
with WAMIT. Heading = 135.
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Figure 5-9: Wigley hull. Heave diffraction second-order steady force. Comparison
with WAMIT. Heading = 135.
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Figure 5-10: Wigley hull. Roll diffraction second-order steady force. Comparison
with WAMIT. Heading = 135.
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Figure 5-11: Wigley hull. Pitch diffraction second-order steady force.
with WAMIT. Heading = 135.
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Figure 5-12: Wigley hull. Yaw diffraction second-order steady force.
with WAMIT. Heading = 135.
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Figure 5-13: Wigley hull. Surge diffraction second-order
Froude numbers, Ship moving ahead. Heading = 180.

0

-0.002

-0.004

-0.006

-0.008

-0.01

steady force. Different

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0e (Ug)'1

Figure 5-14: Wigley hull. Surge diffraction second-order steady force. Different
Froude numbers, Ship moving backwards. Heading = 180.
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Figure 5-15: Wigley hull. Heave diffraction second-order steady force. Different
Froude numbers. Ship moving ahead. Heading = 180.
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Figure 5-16: Wigley hull. Heave diffraction second-order steady force. Different
Froude numbers. Ship moving backwards. Heading = 180.
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Figure 5-17: Wigley hull. Pitch diffraction second-order steady force. Different
Froude numbers. Ship moving ahead. Heading = 180.
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Figure 5-18: Wigley hull. Pitch diffraction second-order steady force. Different
Froude numbers. Ship moving backwards. Heading = 180.
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5.1.2 The freely-floating body problem

In this problem, besides moving with constant speed and being in the presence of

incident waves, the ship is free to oscillate due to this incoming waves and therefore

will also radiate waves.

We show in Figures 5-19 to 5-27 a comparison of the first-order body motions in

waves against WAMIT, since these motions are an important factor for the compu-

tation of the second-order steady forces. We can see that the Fourier transforming

technique gives poor hydrodynamic results close to an absolute frequency of zero.

This happens because our time history will never be sufficient long to have enough

information at very small frequencies. Ship motions having hydrostatic restoration

(heave, roll and pitch) will show good results because the hydrostatic forces will dom-

inate the problem in the low frequency range. In this range, degrees of freedom where

the motions do not cause hydrostatic restoring forces (surge, sway and yaw) will show

unreliable motion computations. We can also comment on the peak that shows up in

the sway response in Figure 5-23, since this is unusual. This is related to the strong

roll resonance that occurs due to the very small potential damping in roll, which is

non-physical since actually there would be damping from other sources, as viscous

effects. The roll and sway motions are coupled, and as a result we have this peak in

the sway motions.
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Figure 5-19: Wigley hull. Surge absolute motion. Comparison with WAMIT. Head-
ing = 180.
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Figure 5-20: Wigley hull. Heave absolute motion. Comparison with WAMIT. Head-
ing = 180.
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Figure 5-21: Wigley hull. Pitch absolute motion. Comparison with WAMIT. Head-
ing = 180.
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Figure 5-22: Wigley hull. Surge absolute motion. Comparison with WAMIT. Head-
ing = 135.
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Figure 5-24: Wigley hull. Heave absolute motion. Comparison with WAMIT. Head-
ing = 135.
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Figure 5-25: Wigley hull. Roll absolute motion. Comparison with WAMIT. Head-
ing = 135.
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Figure 5-26: Wigley hull.
ing = 135.
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Figure 5-27: Wigley hull.
ing = 135.
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The results for the diffraction and radiation second-order steady forces, checking

the convergence of the method in comparison with WAMIT are shown in Figures 5-28

to 5-36 below, for a heading of 180 degrees and 135 degrees. We can see that the

convergence of the results as a function of an increase in the number of panels was

again very satisfactory.

Figures 5-37 to 5-44 show the influence of the ship speed on the diffraction and

radiation second-order steady-force, with Figures 5-39 and 5-40 showing the compari-

son of our code against the program SWAN, for head and following seas (actually the

ship moving backwards), and we can see that the results also compared quite well.

It is clear that the following seas forces are quite small when compared to the head

seas situation, and we are actually only showing that the forces under this condition

are small. Very small oscillatory behavior of these small steady force as a function

of the frequency when we go to large absolute frequencies, like those in Figure 5-38,

should be regarded as difficult of the present mesh to accurately represent the physics

involved and not as a fundamental problem with the formulation. We may also note

that the surge second-order steady force that we are comparing against SWAN re-

sults is also know as added resistance in waves, because it represents the additional

resistance the ship has to overcome to keep its forward speed constant in spite of the

presence of waves. And although they represent the same value, they have opposite

signs, since a positive resistance represents a negative force.
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Figure 5-28: Wigley hull, free to move in waves.
Comparison with WAMIT. Heading = 180.
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Figure 5-29: Wigley hull, free to move in waves. Heave second-order steady force.
Comparison with WAMIT. Heading = 180.
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Figure 5-30: Wigley hull, free to move in waves.
Comparison with WAMIT. Heading = 180.
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Figure 5-31: Wigley hull, free to move in waves. Surge second-order
Comparison with WAMIT. Heading = 135.
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Figure 5-32: Wigley hull, free to move in waves. Sway second-order steady force.
Comparison with WAMIT. Heading = 135.
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Figure 5-33: Wigley hull, free to move in waves. Heave second-order steady force.
Comparison with WAMIT. Heading = 135.
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Figure 5-35: Wigley hull, free to move in waves. Pitch second-order steady force.
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Figure 5-37: Wigley hull, free to move in waves. Surge second-order steady force.
Different Froude numbers, ship moving ahead. Heading = 180.
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Figure 5-38: Wigley hull, free to move in waves. Surge second-order
Different Froude numbers, ship moving backwards. Heading = 180.
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Figure 5-39: Wigley hull, free to move in waves at Fr= +0.20. Surge second-order
steady force. Comparison with SWAN code. Heading = 180.
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Figure 5-40: Wigley hull, free to move in waves at Fr= +0.30.
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Figure 5-41: Wigley hull, free to move
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Figure 5-42: Wigley hull, free to move in waves. Heave second-order steady force.
Different Froude numbers. Ship moving backwards. Heading = 180.
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5.2 The Floating Hemisphere

The floating hemisphere under consideration has radius equal to one, and the pan-

elization of the hull was made using 368 and 992 elements. As the program takes

advantage of the hull symmetry, only half of the body was discretized.

The meshes can be seen in Figures 5-45 and 5-46 below. First we will show

Figure 5-45: Floating hemisphere represented by a mesh with 368 panels. Actual
numerical model uses the symmetry with respect to the xz-plane.

that the computations made for zero Froude number are consistent with the results

calculated by the WAMIT code. These results can be seen in Figure 5-47. We

can see a good agreement between TIMIT and WAMIT for the second-order steady

forces using both the pressure integration method and momentum flux computation

approach, when the hemisphere has 368 panels. For all cases we have used a total

time history equal to 36-g/R with a time step equal to 0.08Vg/R. For the outer

mesh, where the control points used for the momentum flux computations are located,

we have used 416 points and a radius equal to 1.4/R and a draft equal to 1.2/R.

The case with 992 panels, which was only computed using the pressure integration

method, since the momentum flux computation would take a very long CPU time due
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to the local quantities needed to be computed on the outer mesh, is not converged,

and this is probably due to the time step being too large. Since we can see from the

WAMIT results and this TIMIT simulation that 992 panels would not be enough for

having good results on this comparison, we used the results from the momentum flux

computation, which are converged as we can see from the WAMIT results with 368

and 992 panels.

We will now see how good are the computed second-order steady forces for small

Froude numbers when the Neumann-Kelvin hypothesis of the body being slender will

not be fulfilled, for the hemisphere case. We compared our results against computa-

tions done by Nossen, Grue and Palm [34] using a slow (quadratic terms of the basis

flow potential were disregarded) double-body approach, and with the current having

speed equivalent to a Froude number equal to 0.04 in Figure 5-48. We also compared

our results for the second-order steady force on a fixed hemisphere against results

published by Zhao and Faltinsen [42], which uses the same approach as Nossen et

al, with the difference that Zhao and Faltinsen solve an internal problem using the

Rankine Green function and match with a multipole expansion at some distance away

from the body, while Nossen et al use a slow-speed approximation for the free-surface

Green function. A comparison with our results is shown in Figure 5-49 below. We

should note that the Froude number now changed to 0.032. We can see a reasonably

good agreement with Nossen et al, and a not so good agreement with the Zhao and

Faltinsen's result, even for the zero speed case.
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Figure 5-46: Floating hemisphere represented by a mesh with 992 panels. Actual
numerical model uses the symmetry with respect to the xz-plane.
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Figure 5-47: Floating hemisphere with R = 1, Surge diffraction second-order steady
force. Comparison with WAMIT. Heading = 180.
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Figure 5-48: Floating hemisphere with R = 1, Surge diffraction second-order steady
force. Comparison with results from Grue and Palm. Heading = 180.
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124



5.3 The Circular Cylinder

The shallow circular cylinder has a radius R equal to 1 and draft T equal to 0.25.

The discretization of the hull was made using 288 panels and 1080 panels. Due to its

symmetry, only half of the body needs to be discretized. The meshes are shown in the

Figures 5-50 and 5-51 below. For the outer mesh, associated with the computation

using the momentum flux approach, we have used 416 points and an outer radius

equal to 1.4/R and a draft equal to 1.2/R.

We can see in Figure 5-52 computations for the zero Froude number case against

the WAMIT code. In all simulations we have used a total time history equal to

24rg/R with a time step equal to 0.05V g/R. The results agree well with the WAMIT

code and we can see that the pressure method using 1080 panels give a second-order

steady force which is close to the one got using the momentum flux computation.

We then compared our second-order steady forces against those from Zhao and

Faltinsen [43] for zero current speed and for a current equivalent to a Froude number

equal to 0.0478. The results, as we can see in Figure 5-53 agree reasonably well. One

explanation for the good agreement in this case is that in some sense the shallow

cylinder agree with respect to the Neumann-Kelvin hypothesis in the sense that the

flow can to a great extent divert to underneath the cylinder without having to go

sideways.

In Figure 5-54 we compare results from pressure integration and momentum flux

computations, both using TIMIT, and we can see a reasonably good convergence,

indicating that the contribution coming from the second-order steady potential is

small, as we concluded from the analysis in Chapter 4.
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Figure 5-50: Floating circular cylinder with T/R = 1/4, represented by a mesh with
288 panels. Actual numerical model uses the symmetry with respect to the xz-plane.

Figure 5-51: Floating circular cylinder with TIR = 1/4, represented by a mesh with
1080 panels. Actual numerical model uses the symmetry with respect to the xz-plane.
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Figure 5-52: Floating circular cylinder with T/R = 1/4, Surge diffraction second-
order steady force. Comparison with WAMIT. Heading = 180.
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Figure 5-53: Floating circular cylinder with T/R = 1/4, Surge diffraction second-
order steady force. Comparison with results from Zhao and Faltinsen. Heading = 180.
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Figure 5-54: Floating circular cylinder with T/R = 1/4, Surge diffraction second-
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momentum flux computation. Heading = 180.
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Chapter 6

Discussion

A numerical solution has been developed for computing the second-order steady forces

acting on a ship with forward speed in the presence of incident waves. The assump-

tions include potential flow, small wave amplitudes and body motions, and use of the

Neumann-Kelvin hypothesis that the unsteady problem is linearized with respect to

the uniform incoming flow.

A description of the boundary-value problem is made, and other choices of lin-

earization are presented. The first-order problem is formulated as an initial boundary-

value problem, an then reformulated as the solution of an integral equation, using the

free-surface Green function.

In addition to the more common head-seas condition, the following-seas case is

considered, with the decomposition of the incident wave in three separate regions

which are defined according to the signs of the phase and group velocity of the waves,

with respect to the steadily moving reference system.

The frequency-domain representation of the global and local quantities were de-

rived, and implemented together with the computation of the potential and velocities

inside the fluid region, using the source formulation. The latter information is needed

in the momentum flux computations.

The equations for the computation of the second-order steady forces and moments

are then presented. These are implemented in the code TIMIT in two complementary

approaches, (1) integrating pressures over the body and (2) computing the momentum
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flux over a compact surface surrounding the floating body.

It is necessary in principle to compute also the solution of the second-order steady

Neumann-Kelvin boundary-value problem. The problem is formulated in the fre-

quency domain, and it is shown that the boundary conditions are functions of the

frequency of the incident and radiated waves. An integral equation formulation is

proposed for the solution of this problem, as the large-time asymptotic of the equiva-

lent time-domain problem with constant boundary condition for each frequency. Due

to the numerical problems in the computation of higher order derivatives of the po-

tential, the convergence of the above problem is very poor for the discretization of the

free-surface we have used. An alternate problem, valid for small forward speed, was

defined in order to estimate the order of magnitude of the second-order steady force

coming from the second-order steady potential. For the Wigley hull, despite the un-

satisfactory approximation of the forcing function on the free surface, it is suggested

that this contribution is small in comparison with the contribution from the other

terms and can be disregarded. Comparisons made between the pressure integration

results with momentum flux computations also indicates that this conclusion is true.

The main contributions of this work are the numerical proof that Fourier trans-

forming local quantities from the time to the frequency domain is a valid approach,

as well as the subsequent computation of the second-order steady forces using these

local quantities and the Neumann-Kelvin approach.

Prior to this work Fourier transforming from the time domain had only been used

for integrated quantities. It was unclear if good results could be computed in the

frequency domain for local quantities, such as fluid velocities, particularly at points

close to a sharp edge or the free surface. Indeed our results for the oblique case showed

that there is some difficulty to correctly represent the potential and velocities at the

panels located close to the edge. This effect is stronger as we increase the frequency

and diminished as we decrease the panels size. Increasing the number of panels that

defines the mesh, we will see that this fluctuations are restricted to panels close to

the edges of the Wigley hull. Another consequence of increasing the number of panels

is that the relative weight of the panels where those fluctuations occur will decrease,
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since we will have a higher proportion of panels that will be situated not so close to

the edges.

It became also clear that when refining the meshes we should keep the aspect ratio

of the panels close to 1, mainly if the panel is located close to the mean free surface.

Large aspect-ratio panels, which are a common place in the frequency domain through

the use of the cosine-spacing approach, are not attractive near the free surface in the

time domain. We need to filter out high-frequency waves that will not have their

wavelengths well resolved, and one easy approach is to keep the panels approximately

square close to the free surface.

The integrated second-order steady forces always converge with an increase of the

number of panels, time length of simulation and a decrease of the time step. But

these refinements are intertwined, and an increase of the number of panels will bring

more high-frequency wave components which will require smaller time steps.

The solution of the first-order problem can be very computer expensive. One

run time increases with the square of the number of panels and time. We can also

add the number of the field points to the number of panels to have a notion of its

cost. A run with 64 panels on half body and 200 time steps took 20 minutes cpu

time on a DEC-Alpha station 5/333. This went to around 4 hours for the circular

cylinder with 144 panels on the half body, 209 control points for the momentum flux

computation and 300 time steps. The hemisphere with 194 panels on the body, 209

control points in the fluid domain and 400 time steps, which took 11 hours. The

499 panels case of the hemisphere, without any control points and the same 400 time

steps took 17.6 hours. If we used finer meshes such as are used in frequency-domain

programs like WAMIT, and knowing that with the space refinement we may need

more time refinement we may be talking about months of cpu time. But computers

do get faster, the program is not fully optimized as it stands now, and we could see

that the results obtained although not using the fine discretization we would hope

are quite good on an engineering basis.

We only ran the momentum approach formulation on the least refined meshes.

Convergence for the momentum approach is known to be faster than for the pressure
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integration, and this was once more confirmed. The pressure integration results were

always in close agreement with the computer program WAMIT, for the zero speed

case. This was always the first check of the convergence of the solution. WAMIT

computes the solution with data from the geometry and frequency. By achieving

convergence with this program, we can be sure that the time step being used is

small enough and the transient time response was carried long enough so as to get

convergent solutions, for the range of frequencies used.

The results obtained for the Wigley hull, the hemisphere, and the cylinder sup-

ported the approach used in this work.

With the Wigley hull comparisons we could see that the pressure integration

method presented a convergence rate comparable with the WAMIT program, and

with the mesh with 512 panels we were able to obtain results that compared quite

well with the SWAN code for the surge second-order steady force.

The comparisons made for the hemisphere case brought a situation when the

pressure integration method presented a low convergence rate. We could not go on

refining the mesh to achieve converged results under the pressure integration ap-

proach because the cpu time required would be impractical. As we have highlighted

before, if we were using the WAMIT code we could have speeded this convergence

rate through the use of the cosine spacing distribution of elements, while this is not

possible using our time domain approach. The momentum flux computation approach

was employed and gave results which were converged based on the comparison with

WAMIT, and which agreed reasonably well with the results computed from Nossen,

Grue and Palm [34]. A comparison was also made against results obtained by Zhao

and Faltinsen [42], and the results were only similar, not agreeing too well. It should

be observed though that the results were not very good even for the zero current ve-

locity case, which suggests that the results from Zhao and Faltinsen are not accurate.

The shallow cylinder case presented reasonably good convergence rates for the

pressure integration method and excellent convergence rates for the momentum flux

computation approach. For this case the agreement was very good in comparison

with results published by Zhao and Faltinsen [43]. Through a comparison between
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the results obtained from the pressure integration approach and the momentum flux

approach we can see that the second-order steady force contribution from the second-

order steady potential should is relatively small, as suggested by the earlier investi-

gations done in Chapter 4.

Another conclusion that can be taken from this exposition is that the resulting

program is not trivial to use. In comparison with frequency domain codes, it is clear

that there are more parameters to adjust. Besides the number of points used in the

mesh definition, the time history length of the unsteady problem, and the time step

used, are also very important and should be checked for convergence. Checks with

results from a frequency domain code to ensure properly convergence for the zero

speed case should be made. A good insight into the theory behind the problem is

advised. It is the author's opinion, though, that this should always be the case.

The Green function employed on the solution of the first order problem is very

useful in the sense that it enables us not to need to discretize the free surface, avoiding

problems like the satisfaction of the dispersion relation, the time integration, and

having to devise a scheme that is stable and accurate. On the other hand, trying to

implement other choices of basis flow turns out to be much more complicated, since

panelization of even a small part of the free surface close to the floating body will

imply the evaluation of the transient Green function between two points on the free

surface and this is numerically difficult, since the Green function itself will consist

of an oscillatory kernel that will not decay as the wave number increases, because

both the source and field points will have zero vertical coordinate. One solution for

implementing other basis flows would be the use of a mixed solution, employing the

Rankine Green function inside a region close to the body and matching this interior

solution with an outer solution based on the transient Green function. This is similar

to the solution obtained by Zhao and Faltinsen [41] [42] [43], but in this case instead

of the transient Green function they used a multipole expansion inside the body.

A path that is being followed by some and that looks very promising is the use

of higher order panel methods, particularly in connection with the use of splines as

basis functions. Computations made by Maniar [22] showed excellent results in the
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frequency domain and early results from Danmeier [5] in connection with the time

domain approach are very promising. One problem though is that the centroids

are replaced by control points nearer the free-surface and may require a separate

filter, to ensure the correct representation of all the waves coming into the problem.

This higher-order approach would enable us to more properly represent higher order

derivatives of the potential, improving the computation of the boundary conditions

for the second-order steady problem and giving more accurate results for this problem.

Thus it can be expected that the use of higher-order panel methods in conjunction

with the techniques developed in this thesis will lead to more accurate results and

faster convergence rates, with a consequent decrease of the cpu time.
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Appendix A

Second-Order Problem Integral

Equation

We may obtain the integral equation for the second-order problem by getting the in-

tegral equation for the unsteady ship velocity case, described in the global coordinate

system and after that restrict the resulting expression for the steady forward velocity

in the moving reference system, or by defining the problem in the moving coordinate

system, establishing the boundary value problem and, through the use of Green's

identities, arrive at the final form of the integral equation. In this appendix we will

follow the first path, obtaining the integral equations for the steady and unsteady

problems.
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A.1 The unsteady-forward-speed ship problem

The boundary value problem for the unsteady-forward-speed ship problem can be

established as

V2 O(-, t) = 0

'Otte(, t) + oz(£, t) = IF(70,t)
i .Vq(1, t) = B(i, t)

V( (,t) --+ 0

in the whole fluid domain

on S (t)

on Sb(t),fort > to

on Soo for finite time

(2x, y, 0, to) = 0

t(x, y, O, to) = 0.

The Green's function G(, ý; t -

by (3.1). Applying Green's second

from now on the spatial parameters

7) we are going to use for this problem is given

identity on Ot(I; t), G(-, ; t - r) and omitting

x and ý, assuming them implicitly, we will have

2 7 , (r) + < [0(,) G, (t - -) - 00 ,(r)G(t - 7)] = 0.
Jst,(T)+sf(T)+soo

(A.7)

Integrating in time from r = to to 7 = t, and also integrating by parts, we will have

2 1 ,(r)dr+ ±I dý [(t) G, (0) - , (it) G(0)]
(to)+ sto)s,(

J1 J db)+f(0) [O(to) Gn (t - to) - Okn~(to) G(t -t)

- 1 Jdr d [ 0(r) GGnr(t - T) - Ont(r) Gr (t - )] = 0.
to sb(,r)+sf (T)

(A.8)
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Writing Green's second identity for 7 = to,

2 r q(to) + Jb(to)+S do)
J JSb(to)+Sf (to )- [O(to) G,, (t - to) - n, (to) G(t - to)] = o

we see that we can take this terms out of (A.8) in order to get

2 7 0(t) + (I' [q(t) G., (0)"'M(t

- j dr I', +dýJSb (T) +Sf (T)-)

- q(t) G(0)] +I dI

[0(,) G,,r(t - r) - qn(r) GT(t - r)] = 0. (A.10)

Concentrating on the last term of equation A.10, we will have

S11 = - dr /Jd [O(r) Gn,(t - r) - n,(7r) G,(t - 7)] = 0,

applying the free-surface boundary conditions satisfied by the potential and by the

green function, we will have

drj d(

dr J dýffJsf (0

a (0(r) Grr(t - 7) - ¢,(r) G,(t - 7))
at

(-t(r) G,(t - r)). (A.12)

Now we will apply a two-dimensional form of the transport theorem given by

s, (-) at
(A.13)IF(t4+OO

to the first integral of expression (A.12),

id t

g dt itodrj dJ s (-) (0(r) Gr,(t - r) - Sr(r) Gr(t - r))

I' drJ d (0 (r) Grr(t - r) - O(r) Gr(t - r)) U(r). 2 D
g to (A)

(A.14)
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[O(t) G, (0)]
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Is, 2
1

g S (7-)
(4(t) G,(O) - ¢,(t) G,(O))

Sjd_ (O(to) G,,(t - to) - m(to) G,(t - to))

dT dT(J (4(T) GTr(t- T) - q$(T) G,(t - T)) U(r).' 2D.

(A.15)

Knowing that G,(O) = (t(to) = 0,(to) = 0, and using the boundary condition on the

free-surface for G,,(0),

= - Sf ((t) Gn, (0))

I Tdr Id (O(T) GTr(t - T) - O,(7-) Ga(t
g 'o (-)

Substituting (A.16) in (A.12), and the resulting equation in (A.10) we will finally

arrive at

[O(t) Gn, (O) - On,(t) G(O)]

d'r dý ( (,r)
+ drf d(

o (7)

÷/2 TIId

[0(T) Gn )(t - T) G- (nC (T) G,(t - T)]

G,,(t - T) - q7(r) GT(t - T)) U(T).n•2D

which represents the second-order integral equation for the forward unsteady-speed

problem.
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- 7)) U(T).z2D-

(A.16)

2 7 0(t) + f/Sb

(7((-) G,(t - r)) = 0, (A.17)



A.2 The steady-forward-velocity problem

In translating equation (A.17) from the previous arbitrary velocity case to the more

particular steady velocity case, it is worthwhile to define the problem with respect to

a moving coordinate system fixed with respect to the ship mean position. By doing

that we will have to make the following substitutions in equation (A.17):

u(t) = U

U(t).ii 2D = Un 1

Sb(t) = Sb

r(t) =

7-(%,t) = 'H( (-)
S - U , (A.18)

at 0t z X

so we will have

2 i 0(t) + JJ d' [q(t) Gn (0) - So, (t) G(o)]

-U I dr d [0(7) G (t - T) - nt (7 -) GT(t - T)]+ U j' d-JJdr [dý (r)G,,(t-r)- q~G~(r)G~(t -r)]

- dr [dl [(r) (Grt(t - 7) - 2UGTC(t - 7-) + U2GeC(t -)

- (O (7) - U¢(7r)) (GT(t - 7) - UGý(t - 7))]

+ dr d (71(r) G,(t - 7) - U-t(r) G (t - r)) = 0, (A.19)

calling the line integral term as Iyr, we may rewrite it as

U 2 t

- tU2 t d dl n [Gý(t - U) (- - U( ) (r))

- 0(r) (GQ(t - r) - UG (t - r))]. (A.20)
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Concentrating on the second integral of IF, which we are going to call If2, we will

use Stokes' theorem applied over the free-surface plane in order to transform this line

integral into an integral over the free-surface. So we may write

IT2 = J drj dl n [G,(t - r) (Or(r) - UOQ(r))

- (r) (Gý,(t - r) - UGE(t - r))]

= u dr J < (U ) [GE(t - 7) (OT(r) - Uq(r))

- 0(r) (Gg,(t - 7) - UGVE(t - r))]
S dr d( ) [G (t - r) ( (r) - U (r))

-¢(r) (GsýT(t - r) - UGmj(t - r))

+a G(t- r) (r(r) - U¢(r))

- c i (r) (Gl, (t - r) - UGls(t - r))]. (A.21)

Using the free-surface boundary conditions for 0(r) and G(t - r) in the moving

coordinate system, and deriving the latter with respect to ý, we may write

U2  U 1 U
-g (r) - 9,(7) = - rr(r) + - r (7r) - On, (r) + 7I(F), (A.22)
g g g 9

and

U2  U
G-U G(t - 7) + -GEa(t - 7) =

9 g
1 U1 G(t- r)- U G(t- r)+ Gý,,,(t - r).
9 9

(A.23)
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Substituting (A.22) and (A.23) in (A.21), we will get

(- + (t- )]

+U dr JJ d (H(t)GC, (t - 7)) (A.24)

or

IT2 = U drJ d (Gene(t - 7) q() - G,(t - r) +,1 (-))

+U dT d (G+(t - r)dET (r) + GE(t - 7)S(r)9 9
-Ga,(t - r)€(,-) - Ga(t - r)¢,(r)) (G,,,(t- )q)€() - G,(t - )€,(-))

+u I dr ff d ( ( i x)G 'nt(t - 7)). (A.25)

Integrating the second integral in (A.25) by parts we will arrive at

U = dr ( d G, (t - 7j -J) )- G(t - 7) ) e

+U d, d# (,(,)Gi·g(t -s))

+U] d - (G (t - 7)qr(r) - GIT(t - 7) ( r)

- Gf(t - 7) ,(H ) - Gn,(t - 7)€(r)))0. (A.26)

Applying the initial boundary conditions on the free-surface of null a(to), €,(to),

G(O), and G,(0), and noting that this also implies that GI(0) and G44(0) will be zero

at this initial moment, we will be able to disregard the contribution from the last

integral.
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Substituting (A.26) in (A.19) and the result in (A.19), noting that applying

Green's identity to q(to) and G (t - 7) we will arrive at

Jb+d (Gn(t - T) O(T) - G(t - 7) n,()) = 0, (A.27)
b+S!

and doing the cancelations we will finally get

2 r (t) + J d< [(t) Gn, (0) - .(t) G(0)]

-U d-r din1 [0(r) (G~(t- )- UGw (t- -))

-GT(t - 7) (- (7) - Uq (7)))]

+ dT d(i (~ ) G,(t - 7)) = 0, (A.28)

which represents our second-order integral equation, with a steady forcing function

on the free-surface given by 7H(7-).

Another way to write this integral equation is integrating by parts the O(7) G,,(t-

7) term in the line integral to get

2 ir Q(t) + JA d< [q(t) Gn (0) - O, (t) G(0)]

- dr dl br [2 0(7-) G,,(t - 7) -U ((r)G G(t - 7 - T()G(t - 7))]
U- jI ' d7-fdlnh [2qOr()G(t-Tr) +U(q5(r)G -(t-r ) -

+If dr11f d (7H(T)GT(t- r)) = 0, (A.29)
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A.3 The source formulation approach

An alternate way to write down the integral equation is through the use of the so-

called source formulation. In the form of the integral equation used in the last section,

also known as the potential formulation, we will have a distribution of sources (the

Green function G(ý, t)) and dipoles (Gs, (,, t)) over the boundary surfaces. The source

formulation makes use only of a distribution of sources over the problem surfaces, and

this formulation can be derived from the potential formulation through the definition

of an auxiliary internal problem in the case we are studying (body in a semi-infinite

flow), as has been noted in Chapter 3.

As Bingham [2] showed for the first-order integral equation, we may define a

potential 0'(X, t) which solves the same boundary value problem as ¢(Y, t), with the

normal vector pointing outwards from the ship hull, and in our case assuming Fi(Y)

to be zero over the internal free-surface. The internal-problem integral equation will

then be given as

2 r q'(t) - JJ d# [Q'(t) G,,() - ,t (t) G()]

U+ 1  -) (dr l 2 ( (t ) -+ U ()G)(t )- 7) - ])

=0, (A.30)

Defining the "source strength" to be a(, t) = (O a- 0'), and adding (A.29)

to (A.30), we will have the source integral equation given as

(t) = +JJb d& [((t) G(0)] + dr f d [o G,(t -7)]

U2  t
+r drg dlnd G,(t-r)(0, -m,). (A.31)

Writing the spatial derivative in a coordinate system with unit vectors tangent and

normal to the hull at the waterline, we can see that only the normal component will
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contribute, since q = q' at all times over the hull surface, and we will have

(t) = + d [a(t) G(0)] +
U2  td n (t ).

4 7r g to r7

t d  fJ 0 dr IL~
(A.32)
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