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Abstract

In the Black-Scholes model, stocks and bonds can be continuously traded to replicate the
payoff of any derivative security. In practice, frequent trading is both costly and impractical.
Static replication attempts to address this problem by creating replicating strategies that
only trade rarely.

In this thesis, we will study the static replication of exotic options by plain vanilla
options. In particular, we will examine barrier options, variants of barrier options, and
lookback options. Under the Black-Scholes assumptions, we will prove the existence of
static replication strategies for all of these options. In addition, we will examine static
replication when the drift and/or volatility is time-dependent. Finally, we conclude with a
computational study to test the practical plausibility of static replication.
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Chapter 1

Introduction

In 1994, the municipality of Orange County, CA, declared itself bankrupt after $1.7 billion

in losses. As a result, many public services from hospitals to schools had to adopt austerity

measures. The next year, Barings, a major British bank, became insolvent after losing over

$1 billion. A 233 year old institution that had helped finance the Napoleonic wars was

forced to seek an outside savior. Both of these catastrophes involved the mismanagement of

financial instruments known as derivatives. Such diasters beg the following questions: what

are derivatives, why would anyone use them, and how did they cause so much damage.

A derivative is a contract whose value is derived from the behavior of an underlying real

asset such as a stock, currency, or bond. In their more primitives forms, derivatives have

existed for hundreds of years. The 17th century Amersterdam stock exchange (as described

by de la Vega[19]) was rich in derivatives. However, the most explosive growth in derivatives

has occurred just recently. In the past twenty-five years, the uses, types, and volume of

derivatives has increased tremendously. This extraordinary growth is due, in large part, to

revolutionary pricing and hedging strategies that were developed in the 1970's.

As with most things in life, if properly used, derivatives can be beneficial, and if abused,

derivatives can wreck havoc. Derivatives allow investors and institutions to tailor their

exposures in sophisticated manners. They allows entities to reduce their risks and manage

their cash flows. However, derivatives can be used to create speculative positions. In

some cases, such speculation is warranted for well-informed investors or managers seeking

high returns. If taken to extremes, excessive speculation can create devastating downside

potentials, where moderate changes in the underlying securities can create enormous losses



in the corresponding derivatives. In both Orange County and Barings, individuals took

extremely speculative positions. If their guesses would have been correct, they would have

made huge gains (or made up huge losses). As it turned out, fate was not so kind.

The current widespread use of derivatives owes much to mathematical models that have

been developed over the past twenty-five years. In 1973,' papers by Black and Scholes[5],

and Merton[36] introduced a new method for analyzing derivatives. This method was based

upon a mathematical model that, coincidentally also yields the heat equation as found in

physics. Since then, their model has found multiple interpretations using methods from

such diverse areas as combinatorics and measure theory.

What these theories did was provide pricing formulas and hedging strategies for deriva-

tives. Today, large financial banks such as J.P. Morgan, Goldman Sachs, and Morgan

Stanley uses these theories to manage their derivative portfolios. These banks buy/sell

derivatives from/to their corporate, government, and individual clients. In general, the

clients are reducing their risk exposures, which means the financial banks are assuming

risk. The banks, in turn, employ hedging strategies to virtually eliminate this risk. Essen-

tially, these banks are providing a service (i.e. a market for derivatives) and are compensated

via commissions and/or transaction costs. From these activities, the banks bear little or

minimal risk (if properly managed).

Hence, the importance of the recent mathematical models was to provide pricing formu-

las and hedging strategies. The traditional methods of Black, Scholes, and Merton have a

serious drawback. Their dynamic trading strategies, theoretically, require continuous trad-

ing. Practically, such a strategy is obviously impossible. Some kind of a discretization is

necessary, which results in hedging errors and exposures. Furthermore, frequent trading is

highly undesirable due to transaction and monitoring costs.

In this thesis, we study a relatively new approach called static replication. The purpose

of static replication is to avoid continuous trading and instead, only trade infrequently. Such

an approach has its pros and cons over the dynamic method. In the following chapters, we

will review dynamic methods and describe static replication strategies for some types of

derivatives. In addition, we will explore the computational plausability of static replication.

It is the hope and purpose of this thesis to present static replication as a viable alternative

'Coincidentally, trading began on the Chicago Board of Options (a major market for derivatives) the

same year.



to dynamic replication. In certain situations and markets, static replication can be the best

way to hedge a derivative exposure.

1.1 Organization of Thesis

The rest of the introduction describes options, which are a particular type of derivative.

We introduce the pricing and hedging of options and give a simple example of arbitrage.

Next, we give a brief description of the two main types of replication schemes (dynamic and

static) and discuss previous work. Those readers familiar with option theory may wish to

skip directly to Chapter 3.

Chapter 2 presents background material. It describes the Black-Scholes model and

presents several derivations of the Black-Scholes option pricing formula. In addition, we

give background terminology and briefly list alternative models.

Chapter 3 is the beginning of our contributions. We introduce the concept of static

replication and derive static replication schemes for single barrier options. We present

several different derviations, which we hope will provide additional intuition.

Chapter 4 expands static replication to barriers more complex than the single barrier.

In particular, we examine partial barriers, forward-starting barriers, double barriers, and

roll-down barriers. In addition, we show a decomposition of lookback options into barrier

options. Hence, we can apply static replication techniques to lookbacks.

Chapter 5 examines static replication with time-dependent drift. We first show that

barrier options with non-flat barriers and/or time-dependent volatility can be converted

into equivalent barrier options with flat barriers and time-dependent drift. Under time-

dependent drift, we demonstrate the impossibility of some simple static replication schemes

and show the existence of more complicated static replications.

Chapter 6 is a computational study of static replication. We examine out-of-the-money

barrier options and test their static replication under some simple scenarios. We also study

the volatility senstivity of static replication. Chapter 7 concludes.

1.2 Options

Derivatives come in many different types including forwards, futures, swaps, and options.

In addition, many instruments have imbedded derivatives such as callable bonds, convert-



ible securities, and mortgage loans. In this thesis, we will focus on options. For further

information on other types of derivatives, we suggest the following references: Hull[31] and

Nelken[39].

1.2.1 Plain Vanilla Options

An option is a contract that one party sells to another. The owner has the option to execute

some transaction within some time frame. For example, a European call option gives the

owner the right to buy a stock at a given price (the strike) at some time in the future (the

maturity). It is strictly a right, and not an obligation. If the market price is below the

strike, the owner will not execute the transaction. On the other hand, if the market price

is above the strike, the owner can buy the stock at the strike and immediately sell it in the

market. Thus, the payoff of a European call option is (see Figure 1-1):

max(S - K, 0)

where S is the stock price at maturity and K is the strike price. A European put option

gives the owner the right to sell a stock at a given price at some time in the future. By

analogy, the payoff of a European put option is (see Figure 1-1):

max(K - S, 0).

European calls and puts are the simplest type of options and are often referred to as

plain vanilla (or simply vanilla) options. Their payoff depends only upon the stock price at

maturity.

1.2.2 Uses of Options

The main purpose of options is hedging. They can also be used for speculative purposes.

Small changes in the underlying stock price can cause large changes in the option's value.

In that sense, options can be interpreted as a highly leverged positon. Furthermore, options

provide an indirect market for volatility. Market makers often quote option prices in terms

of Black-Scholes volatility. This facet will become more apparent in Chapter 2.

In the classical hedging example, put options are used for downside protection. Suppose
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Figure 1-1: Payoffs for European Calls and Puts.

Carol is an investor in the stock market. Her money is in an index fund, and after the crash

of 1987, she is concerned about the potential of another crash. She prefers the stock market

over bonds, since she knows that the historical return is much greater. Of course, Carol

realizes that the stock market is risky and is willing to bear some risk, but she would like

to limit her losses to 10%.

One potential strategy is a stop-loss order. Suppose the price of Carol's fund is 100. If

the price ever drops below 90, Carol will immediately sell. This strategy will limit Carol's

losses to 10%. Carol can give this stop-loss order to her broker, and under normal market

conditions, she will be protected. However, in a crash, Carol's order will probably not be

executed at 90. The price will drop so fast, that Carol's broker will not be able to sell her

portfolio at 90 and Carol could lose much more.

Carol really wants insurance against a crash. By buying a put option with a strike of

90, she will get her desired protection. In Figure 1-2, we illustrate the payoff of the index

fund, the put option, and Carol's portfolio of the index fund and the put option. The index

fund is shown in the upper left and consists of a straight line. The put option is non-linear

payoff that has positive payoff when the stock price drops. The combined portfolio has

limited downside, but unlimited upside. The cost of this insurance is the cost of the put

option (pricing will be discussed later). This simple example2 illustrates how options can

2Our discussion comparing stop-loss strategies and options is deceptively simplistic. Even with continuous

Call Option



be used as insurance. Insurance is just one application of hedging with options. Many

financial organizations have much more complicated exposures and will use options in far

more sophisticated ways.

Index Fund

Va

100

Price

Put Option

Price

Total Portfolio

Value

90

Price

Figure 1-2: Value Profiles of Various Portfolios.

1.2.3 Exercise Types

The exercise of an option refers to the execution of the transaction specified by the option.

Exercise types fall into three main catagories:

1. European. These options can only be executed on a fixed date.

price movements and perfectly liquid markets, there are important differences between stop-loss (start-gain)
strategies and options. For a more detailed discussion, see Carr and Jarrow[12].

Va



2. American. These options can be executed at any time up to the expiration date, if

any. Perpetual American options are those that never expire.

3. Multi-European. These options fall between American and European options. The

owner may execute at a fixed set of exercise dates.

Of these different types, European options are the simpliest and the best understood. For

both European and Multi-European calls and puts, closed form solutions exist. Currently,

no closed form solution exists for American options. This question is still an active area of

research as seen in Broadie and Detemple[6] and Carr[8]. In this thesis, we will exclusively

focus on European options.

1.2.4 Exotic Options

Beyond calls and puts, a wide variety of other options exists. Collectively, these options are

called exotic options. In this section, we briefly describe some of the various types.

* Digitals. These options are similar to European calls and puts. At maturity, they

pay $1 if the stock price is above a certain level and pay zero otherwise.

* Binaries. These options are similiar to digitals, except that they pay $1 if the stock

price ever goes above a certain level during the life of the option.

* Barriers. These options have an associated barrier. If the stock price ever reaches

the barrier, the option is altered. If the barrier is never reached, the option retains its

original character. A simple example is a knock out call option. Initially, the option

is identical to an European call. However, if the barrier is ever reached, the option

knocks out and becomes worthless.

* Lookbacks. The payoff of these options is a function of the maximum or minimum

price realized during the life of the option. For example, a lookback put pays the

difference between the maximum realized price and the price at maturity.

* Asians. The payoff of these options depend upon the average (arithmetic or geomet-

ric) stock price during the life of the option. For example, one type of Asian option

pays the average price over the life of the option.



An important feature of many exotic options is path-depedency. Plain vanilla options

are path-independent. Their payoff only depends upon the price at maturity. Except for

digitals, all of the above options are path-dependent. American options are also, in general,

path-dependent.

1.3 Pricing

In this section, we introduce the pricing and hedging of options. We will describe the basic

theory, which was first presented in Black and Scholes[5] and Merton[36]. Building upon

this idea, we will introduce the central theme of this thesis: static replication.

1.3.1 Arbitrage Pricing

The most fundamental question about options is: what should their price be? Prior to

1973, most models used the economic concept of equilibrium to determine price. The

price was determined by supply and demand. The equilibrium price was the price that

cleared the market by creating an equal number of buyers and sellers. To find the point of

equilibrium, we must first determine investors' demand and supply for options. At what

price would a rational investor want to buy/sell an option? From this viewpoint, two factors

are critical. First, what does the investor expect the option to be worth? The investor has

some probability distribution about the underlying stock price and uses that to compute

a payoff distribution. Second, what are the investor's risk preferences? Most investors are

risk averse and are willing to trade some expected value for protection against extreme

movements.

In 1973, Black, Scholes, and Merton introduced the concept of arbitrage pricing. One

of the amazing implications of this model was that the two previous fundamentals for

determining price, investor expectations and risk aversion, are irrelevant! This result was

so unusual, that most economists had difficulty accepting the Black, Scholes, and Merton

approach. In fact, Black, Scholes, and Merton had to cast their results in an equilbrium

model in order to get them published.

The driving force behind the Black-Scholes model is the preclusion of arbitrage. Arbi-

trage corresponds to a free lunch. It literally means a non-zero probability of gain with no

chance of loss and no initial investment. A trivial example of arbitrage is as follows. Sup-



pose one US dollar (USD) is worth 1.5 German Deutschmarks (DM) and one USD is worth

105 Japanese Yen. Then, it must be that one DM is worth 105/1.5 = 70 Yen. Otherwise,

by trading the various currencies, an investor could make unbounded, riskless profits.

In Black-Scholes option pricing, arbitrage takes the following form. Starting with an

initial portfolio of the underlying stock and bonds, we will give a self-financing trading

strategy such that the portfolio will exactly replicate the payoff of the option at maturity.

A self-financing strategy is one that uses only internal funds without any capital inflows or

outflows. Since we perfectly match the option payoff, the price of the option must, at all

times, match the price of the replicating portfolio; otherwise, there would be an arbitrage

opportunity. Since the portfolio consists of fundamental securities, we can always price the

portfolio, and hence the option. In the following, we illustrate another simple example of

arbitrage. The complete Black-Scholes argument is given in Chapter 2.

1.3.2 Forward Arbitrage

A forward contract is a simple type of derivative. It is an agreement to purchase an item

at a future date at the forward price. There is no option: the parties must execute the

transaction on the given date at the stated price. Furthermore, the forward price is set, so

that forward contract is worth zero at initiation. For example, consider a forward contract

on gold. Suppose the current price of gold Go is $100 per ounce. For a one-year forward

contract, what should the forward price be? Let K denote the forward price, then the payoff

of the forward contract is:

where G1 denotes the price of gold one year from now.

Before we can determine the forward price by arbitrage, we first need some assumptions.

We will assume there are no credit issues. Both sides of the forward contract have excellent

credit rating and there is no probability of default. Thus, both parties can borrow and

lend at the riskfree interest rate r, which we assume is 10% per year. Furthermore, we will

assume that gold can be held for a year at zero cost. Security and/or storage costs are

negligible.

We can construct a portfolio (consisting of gold and riskfree bonds) that will exactly

match the payoff of the forward contract. Let our portfolio be:



* Buy one ounce of gold.

* Short one year bonds with a face value3 of K.

In one year, the value of this portfolio will be G1 - K, which exactly matches the forward

contract. Thus, if we sold a forward contract and hedged with the above portfolio, our payoff

in one year would be zero, regardless of the future price of gold. Since the forward contract

cost zero, the portfolio must also be worth zero. To prevent arbitrage, a portfolio that has

zero payoff in the future must be worth zero today. At initation, the price of the portfolio

is:
K K

Go - K = 100- -
1+r 1.1'

since the bonds must be discounted by the riskfree rate. Therefore, the forward price K is

$110.

We have shown the forward price must be $110. The only information we used was

the current price and the riskfree interest rate. Observe what information is conspicuously

absent: investor expectations about the price of gold and risk preferences. Two parties

may completely disagree about what will happen to price of gold, yet they must agree upon

the forward price. Carol may think that gold is a great buy, and gold will be over $200 a

year from now. Ana, another investor, may think gold is a terrible buy and gold will be

under $70 in a year. Yet, both of them would agree that the forward price is $110. Their

expectations are irrelevant. Similarly, their risk preferences have no influence on the price.

Forward arbitrage is one of the simplest types of arbitrage. The Black-Scholes method-

ology applies the same idea to replicate option payoffs. However, the replicating strategy

becomes more complicated. It requires continuous rebalancing of the portfolio. In forward

arbitrage, the portfolio requires virtually no rebalancing. Only at initiation and maturity

does the portfolio need to be rebalanced.

1.4 Types of Replication

The Black-Scholes replication of options uses a strategy of continuous rebalancing the un-

derlying stock and riskless bonds. This technique can be used to price and hedge both

3 The face value of a bond is how much it pays at maturity.



plain vanilla and exotic options. This type of replication is called dynamic, since it requires

continuous rebalancing.

The central theme of this thesis is static replication. Static replication is replication

with very few trades. In particular, we will focus on replicating exotic options with plain

vanilla options. The advantage of this approach is that our portfolio does not need to be

continuously rebalanced. Instead, our rebalancing is event-driven. Upon the occurence of

certain events, our portfolio will be rebalanced. In later chapters, we will examine both

types of replication in more detail. For now, we summarize

1. Dynamic Replication. Uses the underlying stock and bond as replicas and requires

continuous rebalancing. Can be applied to all types of options.

2. Static Replication. Uses plain-vanilla options as replicas and requires event-driven

rebalancing, which is rare in most cases. Is applicable to certain types of exotic

options.

1.5 Previous Work

Option pricing theory can trace its origins back to Louis Bachelier's 1900 dissertation[l]

on the theory of speculation. As those in the finance profession are proud to point out,

Bachelier derived the basic mathematics of Brownian motion five years before Einstein's

derivation in 1905. Unfortunately, this work was lost for over half a century.

In 1973, modern option theory was born. Independent of Bachelier's work, Fischer

Black, Myron Scholes, and Robert Merton published their seminal works ([5], [36]). Today,

these ideas are well-studied, and many excellent textbooks are available (such as Hull [31],

Merton [38] and Wilmott et al [44]). Starting in the late 1970's, exotic options were studied

intensively in several articles (e.g., [24], [23], [3] and [30]). For a more complete survey, we

suggest the following to references: Nelken[39], Rubinstein[42], and Zhang[45].

Static replication was introduced by Bowie and Carr[7] and Derman, Ergner, and

Kani([17], [18]). Bowie and Carr examined single barrier static replication under the con-

dition that the interest rate equals the dividend rate. Derman et al created an algorithm

for hedging single barriers in a binomial model. Carr, Ellis, and Gupta[11] extended these

results to a symmetric volatility structure and several other instruments.



The contributions of this thesis are as follows. We study static replication in the more

general case where the interest rate differs from the dividend rate. In doing so, we introduce

several new techniques for determining static replication strategies. Furthermore, we exam-

ine some new structures beyond Carr, Ellis and Gupta and improve the static replication

schemes for other instruments. Some of schemes in Carr et al require exotic options; all

of our schemes exclusively use plain vanilla options. We also extend static replication to

time-dependent drift (and/or volatility) and perform computational studies on the practical

plausibility of static replication.



Chapter 2

Background

In this chapter, we present background material regarding the Black-Scholes model and

Arrow Debreau securities. The presentation of the Black-Scholes model serves two purposes.

It provides a summary of the mathematical approaches used in option's pricing, and it gives

many of the necessary tools for understanding future chapters. Although static replication

differs from the dynamic approach, they still have many connections. Arrow Debreau

securities are a basic method of replication. They represent a fundamental decomposition

of European options.

2.1 The Black-Scholes Model

The most celebrated formula in mathematical finance is the Black-Scholes formula for pric-

ing options. It has tremendous theoretical and practical implications. A entire new line of

research was created, and literally every financial institution that deals with options uses

some variant of the Black-Scholes method. In this section, we present the Black-Scholes

model and look at several of the various interpretations.

2.1.1 Assumptions

The Black-Scholes model is based upon the following set of assumptions. For simplicity, we

will assume the underlying instrument is a stock.

1. The market for both stocks and bonds is always open. There are no transaction costs

and continuous (in time) trading is possible. In addition, there is full divisibility of

stock and bond units.



2. There are no credit issues. Short sales are permitted along with full use of proceeds.

Investors can borrow or lend via the bond market.

3. The stock price S follows a geometric diffusion process:'

dS/S = A(S, t)dt + adZ (2.1)

where A(S, t) is an arbitrary bounded function, a is a constant and dZ is a Wiener

process.2 If A(S, t) = a, then S follows geometric Brownian motion.

4. The interest rate for bonds is a constant r, which is continuously compounded. In

addition, the stock pays a continuous dividend rate p.

Within this framework, we have the necessary tools to price options. We will use the

assumption of no arbitrage to derive the Black-Scholes pricing formula. There are multiple

derivations of this formula, and we will present the three most important: the differen-

tial equation method, the binomial model, and the risk neutral probability measure. Our

presentation will follow the historial development. The original derivation in 1973 used dif-

ferential equations. In 1979, Cox, Ross, and Rubinstein[16] proposed the binomial model,

which introduced the risk neutral probabilities. Harrison, Kreps, and Pliska (see [26], [27],

and [28]) subsequently formalized this notion using measure. In this thesis, we will present

a simplified sketch of the various interpretations.

2.1.2 Differential Equation Method

The differential equation method was the original method used to derive the Black-Scholes

formula. Our presentation is based upon those given in Hull[31] and Merton[38].

We will begin by presenting a slightly informal derivation. In doing so, we will make

additional assumptions, which will make the derivation more intuitive. Later, we will show

how the derivation can be done directly without these additional assumptions.

1For those unfamiliar with the notation, it is really quite simple. We are writing the percentage change

(dS/S) as the sum of deterministic drift component A(S, t)dt and a random component adZ.
2 A Wiener process dZ is the limiting process (as dt -+ 0) of e-'di where c is normally distributed (with

mean zero and standard deviation one) and Vi is a scaling factor. Note that a Wiener process is Markov. In

addition, Wiener processes have many other interesting properties. For an introduction to Wiener processes,

we suggest Chapter 9 of Hull[31].



Suppose we have a European option C with maturity T and payoff V(S). Since the

underlying process is Markov in S and t and the payoff only depends upon S, we can

specify the price of the option as C(S, t). We know at maturity that:

C(S, T) = V(S). (2.2)

Assuming C is twice-differentiable, we can apply Ito's Lemma,3 to obtain:

1dC = -Css (dS) 2 + CsdS + Cdt
2

(2.3)

w e2 e s C s = awhere Css = c Cs , and Ct- . From (2.1),
where ~ ~ a Css = os-•, •#,

1
dC = CssS20r2dt + CsSA(S, t)dt + CsoSadZ + Ctdt

2

Now, suppose we have a portfolio P consisting of

* 1 option

* w shares of the stock (w will be specified later)

The value of our portfolio is:

P=C+wS

(2.4)

(2.5)

The dynamics of P are:

dP = dC + wdS + wSpdi

= [CssS2a2 + CsSA(S,
2
+[CsSo, + wSardZ

(wSpdt is from dividends)

t) + C, + wSA(S, t) + wSp]dt

Recall that we get to choose w. Let w = -Cs. Then, (2.7) reduces to:

dP = [ CssS2 + Ct - CsSp]dt2

Thus, the change in P is completely deterministic. We have chosen w to eliminate the

3Ito's Lemma is the fundamental rule for differentiating stochastic processes. Equation (2.3) is essentially
the statement of Ito's Lemma. In addition, the following multiplication rules apply: (dZ)2 = dt, (dt)2 = 0,
and dZdt = 0. For further discussions, we suggest Chapter 3 of Merton[38].

(2.6)

(2.7)

(2.8)



stochastic component dZ. Therefore, this portfolio must change at the riskless rate. In

other words,

dP = rPdt (2.9)

== ssS2 o 2 + C, - CsSp = rC - rCsS (2.10)

Rearranging and noting boundary conditions, we have

SCssS 2U2 + (r - p)CsS + C, = rC (2.11)

C(S, T) = V(S) (2.12)

The preceding equation is the Black-Scholes differential equation. It is identical to the heat

equation from physics. Fortunately, this equation has been extensively studied and the

solutions for many initial and boundary conditions are known. In particular, the solution

for a European call option where V(S) = max(S - K, 0) is:

Se-P(T-t)N(dl) - Ke-r(T-t)N(d2) (2.13)

where d In(S/K)+(r-p+ )(T-t)

and d2 = dI - aV•- t

N(-) is the cumulative normal distribution with mean zero and standard deviation one. For

a European put option, the Black-Scholes price is given by:

Ke-'(T-t)N(-d 2 )- Se-P(T-t)N(-dl) (2.14)

At this point, we would like to make a few comments about the preceding derivation.

First, note that A(S, t) never enters (2.11) or (2.12). Therefore, the true drift of the stock

process can never be part of the pricing formula as seen in (2.13) and (2.14). This fact is

consistant with our claim that investor expectations are irrelevent. However, we do require

agreement upon a. Second, we made the assumption that C(S, t) existed and that it was

twice differentiable. Finally, our arbitrage argument was that a portfolio with no risky

component must grow at the riskfree rate. This reasoning differs slightly from our previous

arbitrage arguments, but it is, in fact, equivalent. We now present a slightly modified



derivation that does not require an additional assumption and uses a self-financing trading

strategy in the arbitrage argument.

Given the differential equation (2.11) and boundary condition (2.12), we find a solution

C(S, t). At t = 0, we form a portfolio P with initial wealth C(S, 0). Our trading strategy

is as follows:

* Always hold Cs(S, t) shares of stock.

* Invest all remaining wealth in riskless bonds.

Let's examine the dynamics of our portfolio. We hold Cs shares of stock and P - CsS

dollars in bonds. Therefore,

dP = CsdS + CspSdt + (P - CsS)rdt (2.15)

= [CsA(S, t)S + CspS + (P - CsS)r]dt + CsaSdZ (2.16)

Since C satisfies (2.11), it is twice differentiable and we can apply Ito's Lemma to

describe its dynamics (which are given in (2.3)).

Let's define a new variable Q = P - C, which represents the deviation of P from C.

The dynamics of Q are:

dQ = dP- dC (2.17)

= [CsA(S, t)S + CspS + (P - CsS)r]dt + CsaSdZ

-[1CsS 2 a2 + CsSA(S, t) + C,]dt - CsSadZ (2.18)

= rPdt - [ C s s S0,2 + (r - p)CsS + C,]dt (2.19)
2

= r(P - C)dt (2.20)

= rQdt (2.21)

Thus, dQ = rQdt is an ordinary differential equation with solution:

Q = Q(0)er" (2.22)

By construction, Q(0) = 0, so we have Q = 0. Thus, P perfectly tracks the value of C. In

particular, P will match C at maturity, so our portfolio will exactly match the option payoff



by the initial conditions. Therefore, arbitrage restrictions imply that the option value is P.

This derivation is technically superior to the first. However, it requires us to "guess"

the Black-Scholes differential equation. This concludes our discussion on the differential

equation method. All options must satisfy (2.11). Different options are specified by their

initial and/or boundary conditions.

2.1.3 Binomial Model

The binomial model was introduced in 1979 as a discretization of the general stochastic

process described in (2.1). This method has important practical applications, since it can

provide numerical solutions. For those unfamiliar with stochastic processes or differential

equations, this method provides a nice combinatorial interpretation of the Black-Scholes

model.

We begin with a two period model. Suppose the current (period 0) stock price S is 100.

In period 1, the stock price can either be uS or dS where u > 1 and d < 1 (see Figure 2-1).

For concreteness, we let d = 1/u and set u = 1.25. Denote the state where the stock price

ends at uS = 125 as the up state. The down state is when the price ends at dS = 80. We

also assume the interest rate is r = 5% between periods and the stock pays no dividends.

Option Payoff

uS (up state) PU

dS (down state) Pd

Figure 2-1: One Period Binomial Model.

Our goal is to price to a European call C with strike K = 100 which matures in period

1. The payoff of the European call is either 25 or 0. We will try to create a portfolio that

matches this payoff. Let P consist of:

* x shares of stock

* Bonds with face value y



In both states, we want our portfolio to match the option payoff. In the up state,

Pu = uSx + y = 125x + y = 25 (2.23)

Similiarly, for the down state,

PD = dSx + y = 80x + y = 0 (2.24)

We have linear system of equations, which we can solve with x = 5/9 and y = -400/9.

Thus, we have a replicating portfolio. In period 0, the option C is worth

y -400/9
C = SX + = (5/9)(100) + 1.05 = 13.23 (2.25)

1+r 1.05

Observe that we never used the probability of entering the up or down state. This fact is

similiar to the absence of A(S, t) in (2.11) and (2.12). Investor expectations are irrelevant

to option pricing. However, our choice of u and d is pertinent (which is analgous to the

choice of a in (2.1)).

In fact, if we solve (2.23) and (2.24) symbolically, we have:

Pu - Pd UPd - dP (2.26)
S(u - d) u - d

and

C= [P I(1 r) - d)+ Pd (1+ )) (2.27)

We let p = (1+r)- and q = +r) Note that p + q = 1. Arbitrage restrictions4 require

u > 1 + r > d. Therefore, p and q resemble probabilities and are called the risk-neutral

probabilities. Using the risk-neutral probabilties, the expected stock price is:

(1 + r) - d u - (1 + r)p(uS) + q(dS) = uS + dS = (1 + r)S (2.28)u-d u-d

Thus, the expected stock return (under the risk-neutral probabilities) equals the riskfree

4The return of the stock can neither dominate nor be dominated by the riskless return. For example, if
the stock strictly dominated the riskless return, one can create arbitrage by longing the stock and shorting
bonds in equal dollar amounts. Such a portfolio costs zero today and is guaranteed to have positive future
value. The symmetric argument applies if the stock return is dominated.



rate (which is why these probabilities are called risk-neutral). Rewriting (2.27), we have

C = ( 1  [pP + qPd] (2.29)( + r

In other words, C is the discounted expected value of the future payoffs, where the expected

value is computed using the risk-neutral probabilities. This computational trick gives a

simple, intuitive method to price options. Note that the risk-neutral probabilities are derived

by arbitrage arguments. They are completely artificial probabilities.

The next step is to extend the binomial model to multiple periods (see Figure 2-2).

Since stock movements are Markov, the tree recombines, and the total number of nodes is

polynomial in the number of time steps. At each level, we can repeat the previous argument

and assign risk-neutral probabilities to every branch. If u and d are the same throughout

the tree, the risk-neutral probabilites are consistent throughout the tree. Our risk-neutral

distribution from the start of the tree to the leaves will be the binomial distribution. Using

this distribution, European option prices are the discounted expected value of the payoff at

maturity. For example, suppose we have an n period tree. The stock price at the leaves

will be SF = ukdn-kS for k = 0,...,n and the payoff of the call is max(SF - K, 0). Thus,

the call option will have a price of:

S= ( )pkq n-k Mmax(ukdn-kS - K, )  (2.30)

where ( ) is the discount factor and (")pk n-k is the risk-neutral probability.

To derive the Black-Scholes formula, we need to take the limit of the tree as it approaches

the diffusion process in (2.1). For simplicity, let's assume A(S, t) = a is a constant. We

introduce P, 4 as the "real" probabilities of the corresponding up and down moves. The real

probabilities are necessary to match the diffusion process.

Let dt corresponds to the time between steps in the tree. Then n = T/dt, where T is

the time to maturity. We choose:

u = eV , d = 1/u (2.31)

e• , =- 1 -_ (2.32)I u-d 1



u3S

S

uS

dS

d3S

Figure 2-2: Multi-Period Binomial Model.

Then, the expected drift is

jpuS + 4dS = eadtS (2.33)

and the variance is

Pu2 S2 + 4d2S2 - (e dtS)2 = (eadt(e V _ + --o ) - e2dt - 1)S2 = o~S 2dt + o(dt) (2.34)

where o(.) denotes higher order terms. In the limit as dt --* 0, we see that the instantaneous

expectation and variance match those in the diffusion process.5 Using the above limiting

process, we find that (2.30) becomes (2.13).6

2.1.4 Risk Neutral Probability Measure

In the preceding model, we introduced the risk-neutral probabilities. This clever observation

was formalized in a series of papers by Harrison and Kreps[26] and Harrison and Pliska[27].

A detailed discussion of these results are beyond the scope of this thesis. Instead, we will

5 For a more detailed proof of convergence, see [21], [31], or [32].
6 As a further technical detail, we would need to include dividends in the binomial model.



simply state the relevent result.

Recall that in the Black-Scholes model, the stock price follows the diffusion process given

by (2.1). This diffusion corresponds to probability distribution (measure) of the future stock

prices. The results of Harrison and Kreps state there exists an equivalent 7 measure, in which

the price of all options is simply their discounted expected value in this new measure. In

particular, this new measure can be described by the following diffusion:

dS/S = (r - p)dt + adZ* (2.35)

where r is the riskfree interest rate and p is the dividend rate.

This process is simply geometric Brownian motion with a drift of r - p. Since geometric

Brownian motion follows a lognormal distribution, the distribution is:

1 [(In(ST/S) - (r - p - 1a2)T)2 2.36)
p(ST, S, T) = ST 2T exp 2 2T (2.36)

where p(ST, S, T) is the probability distribution of starting at S at time 0 and ending at ST

at time T.

This method gives us an incredible tool for pricing options. To price an option, we

assume the stock price follows the process given in (2.35) and then calculate discounted

expected value. The diffusion in (2.35) can be completely different from the true diffusion

in (2.1), but we will, nevertheless, get the arbitrage-free option price.

For example, we can apply this method to price a call option. Let S be the current

price, T be the time to maturity, and K be the strike. Then, the price of the call is:

C = e-r T  p(ST,S,T)max(ST - K, )dST (2.37)00
= e- TJ p(ST,S, T)(ST - K)dST (2.38)

SSe-PT (NIn(S/K) + (r - p + 172 /2)T

-Ke-rTN ln(S/K) + (r - p - oT 2/2)T (2.39)
A v m ipes (2.39)

7 An equivalent measure is one which preserves null sets (i.e. those sets with measure zero).



2.2 Black-Scholes Terminology

Option theory has its unique language of terminology and jargon. In the following, we

define some of the more common terms. In later chapters, we will use some of these terms.

* The Greeks. This term collectively refers to a portfolio's sensitivity to changes in

various parameters. Each sensitivity is associated with a Greek letter.8 Let II denote

the price function for a portfolio.

- Delta - sensitivity of portfolio to changes in the underlying stock.

as

where S is the underlying stock price. Note that A corresponds to the number

of shares held in the Black-Scholes replicating portfolio in section §2.1.2.

- Gamma - sensitivity of delta to changes in the underlying stock.

F A 02 11
OS OS2

Gamma is a measure of how fast delta changes. In practice, gamma is sometimes

used to refer to second order and higher changes. 9

- Vega - sensitivity of portfolio to changes in volatility. A (an upside down V) is

often used to represent Vega.
8II

A= Oa

- Theta - sensitivity of portfolio to changes in time.

0II
0=- Ot

For options, 0 measures the decay in time value (defined below).

- Rho - sensitivity of portfolio to changes in the interest rate.

aII

r
sTechnically, vega is not actually a Greek letter, but it seems like it should be one.
9In the continuous model, only first and second order changes are significant (see (2.3)). Under any

discretization, higher order effects can matter, especially during violent price changes such as a crash.



When hedging, we would like to make all our Greeks as close to zero as possible.

Any deviation from zero represents an exposure. For example, in a delta neutral

portfolio (A = 0), our portfolio is unaffected by changes (up to first order effects)

in the underlying stock. Note that the Black-Scholes replicating portfolio is a delta

neutral portfolio.

* Delta Hedging. Common phrase used to describe the actual process of performing

the Black-Scholes replication. The term delta refers to the fact that the portfolio is

delta neutral.

* Intrinsic Value and Time Value. These terms are associated with European

options. The intrinsic value of a call option is max(S - K, 0), where S is the current

stock price and K is the strike. For a put option, the intrinsic value is max(K - S, 0).

The difference between the option price and its intrinsic value is called the time value.

* Implied Volatility. In practice, the instananeous volatility of a stock is the only

unobservable parameter of the Black-Scholes formula. All other parameters (stock

price, strike, maturity, interest rate, and dividend rate) are directly observable from

the market or specified in the contract. Given the market price, we can reverse

engineer the volatility necessary to match the Black-Scholes formula.

Implied Volatility = a such that BS(a) = Market price

where BS(-) refers to the Black-Scholes formula for the particular option.

In reality, the Black-Scholes model is only an approximation. However, implied volatil-

ity is still used to quote prices. It provides a quick, simple (but imperfect) benchmark

for comparing options.

2.3 Alternative Models

Beyond the Black-Scholes model, many variations or extensions have been studied. In the

section, we list several of the variants and briefly describe them.

* Stochastic Interest Rates. In the Black-Scholes model, we assumed the interest

rate was constant. We now allow the interest rate to be stochastic which may or may



not be correlated to the underlying stock. Such a model was studied by Merton[36].

Essentially, the same dynamic replication argument still holds.

* Jump Diffusion. In the Black-Scholes model, we assumed the stock process was

a pure diffusion process and hence continuous. In the jump diffusion model (due

to Merton[37]), we allow the price process to have discontinuities (i.e. jumps). In

general, it is impossible to hedge against jumps, so the perfect dynamic replication

argument is no longer possible.

* Nonconstant, Deterministic Drift and Volatility. Here, we allow the drift (i.e.

r - p) and instantaneous volatility of the risk-neutral process to be a function of the

current spot and time. This type of model has been studied by Duprie[22], Derman

and Kani[20], and Rubinstein[40]. The main motiviation for these models is to model

the so-called "volatility smile".10

* Stochastic Volatility. Volatility is stochastic with possible correlation to the under-

lying stock. It is impossible to perfectly replicate an option using just the stock and

bonds. However, by introducing another hedge instrument, namely other options, we

can again perform perfect replication as in Kani[33].

2.4 Arrow Debreau Securities

In this section, we will define Arrow Debreau securities"1 and demonstrate their construction

from call options. Arrow Debreau securities form a basis for European options and are a

convenient means to represent such options.

In a discrete setting, Arrow Debreau securities pay $1 in a particular state of the world.

The continuous analog is a security AD(K) that has a payoff function:

b(K - S) (2.40)

where b(x) is a Dirac delta function and S is the stock price at maturity. The above security

10 The volatility smile is the empirical observation that the implied volatilities of options varies across
strikes (fixing all other parameters). If the Black-Scholes model were accurate, the implied volatility would
be constant across strikes.

"These securities are named after the economists Arrow and Debreau who introduced state-contingent
claims. This material in this section is based upon p. 441-50 of Merton[38].



has nonzero payoff only if S = K.

We will use Arrow Debreau securities to replicate European options. For example, if we

want to construct a portfolio that pays $1 if S E (A, B), our portfolio will be:

dK shares of AD(K) for K E [A, B]

where dK is the infinitesimal differential of K. The payoff of this portfolio is the sum of

the individual payoffs:

(K - S)dK if S(AB), (2.41)
A 0 otherwise

Similiarly, we can replicate a call option strike k with the portfolio:

(K - K)dK shares of AD(K) for K > K

We now discuss the pricing of Arrow Debreau securities. Consider the following option

portfolio (which is often called a butterfly spread):

* Long 9 calls with strike k - E

* Short 2 calls with strike i'

* Long - calls with strike _k + E

The payoff of this portfolio is shown in Figure 2-3. By construction, the area under the

triangle is always 1. Thus, as we take the limit as E -+ 0, the payoff approaches a Dirac

delta function.

Let C(K) denote the price of a call with strike K. Then, the price of our portfolio is:

C(K - E) - 2C(k) + C(K + E) 02C(K)- (2.42)E2  ak 2

as E --+ 0. Thus, the price of an Arrow Debreau security is the second derivative of the call

pricing function with respect to strike. Since Arrow Debreau securities must have positive

price, C(K) must be convex. This derivation is model independent.

In the Black-Scholes model,

1 (ln(K/S) - (r- p - 12T)2
AD(K) = /2 2T exp 22T (2.43)

where S is the current stock price and T is the time left till maturity.
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Figure 2-3: Creating an Arrow Debreau Security from a Butterfly Spread.





Chapter 3

Single Barrier Static Replication

We are now ready to present this thesis's contributions. In this chapter,' our study of static

replication begins. For starters, we will define static replication and compare it to dynamic

replication. Subsequently, we will derive the static replication of single barrier options.

3.1 Static Replication

The main insight of Black, Scholes, and Merton was that one could replicate option payoffs

with a portfolio of the underlying stock and bonds. Unfortunately, this method requires

continuous trading. Static replication attempts to address this problem. We loosely define

static replication to encompass the replication of complex securities via simplier securites

without continuous trading. Clearly, there is a wide spectrum of trading strategies that

are not continuous. Some trading strategies may require a single trade, while others may

use an arbitrary number of trades. In the next section, we will classify the types of static

replication.

Thanks to the Black-Scholes model, plain vanilla options are well-understood, and fairly

liquid vanilla option markets exist for many securities. In this thesis, we will focus on repli-

cating exotic exposures using plain vanilla options. Specifically, we will statically replicate

barrier options, variants of barrier options, and lookbacks. In these strategies, trading is

event-driven. As certain events happen, some form of trading is required. This feature will

become more transparent as we examine specific static replication schemes.

'This chapter is partially presented in Carr and Chou[9] and Chou, Moallemi, and Sundaram[14].



The purpose of this strategy is two-fold. First, we hope to gain insight into exotic

options by using this non-traditional method of replication. In addition, static replication

gives a new tool for creating valuation formulas for many exotic options. These alternative

derivations will, hopefully, provide added intuition. Second, static replication, in certain

situations, may be the best way to hedge an exotic exposure. There are both advantages

and disadvantages to static replication over dynamic replication.

The most immediate advantage is frequency of trading. In reality, continuous trading

is impossible. Even if it were, the associated transaction costs would make this strategy

untenable.2 The usual approach is to make a discrete approximation of the Black-Scholes

replication. With any discretization, the replicating strategy becomes exposed to changes in

delta (i.e. gamma). For options with high gamma (such as barrier options), this problem is

serious. In static replication, there is no gamma exposure. Furthermore, dynamic replication

is extremely suspectible to changes in volatility. When replicating with only the stock and

bond, unexpected changes in volatility are completely unhedged, since the stock and bond

are insensitive to volatility. However, by hedging with options, volatility exposure can be

partially offset, since the hedge instrument is sensitive to volatility.

One disadvantage of static replication is higher transaction costs. In almost all situa-

tions, the market for the underlying stock is far more liquid than the vanilla option mar-

ket. This effect is partially mitigated by fewer transactions and the fact that the notional

amounts for dynamic replication are often much larger than for static replication. To obtain

a meaningful comparison, we must look at total volume of trades. Another disadvantage

is that many static replication schemes may require a large number of different options to

obtain perfect replication. In dynamic replication, there are only two hedge instruments.

With static replication, there are an arbitrary number of hedge instruments (i.e. vanilla

options of different strikes and maturity). Finally, static replication schemes do not exist 3

for all types of exotic options (e.g., Asians). Most of the schemes in this thesis focus on

barrier options and options that can be interpreted as barriers (e.g., lookbacks).

There is one problem that is common to both dynamic and static replication. Both

schemes are vulnerable to sudden, drastic changes in the underlying stock. In dynamic

2In fairness, the Black-Scholes model assumes no transaction costs. The problem of finding optimal
replicating strategies with transaction costs has been the topic of several papers (e.g., Leland[35] and Hodges
and Neuberger[29]).

3In our static schemes, we do not permit continuous trading.



replication, the result is a large gamma exposure. In static replication, an event-driven

trade may be missed.

3.2 Types of Static Replication

We will divide static replication strategies along two criteria. The first is the maximum

number of trades. We use the following classification:

* n-stage. The maximum number of trades (excluding the initial trade) is at most n.

For example, a strategy that uses at most one trade is a one-stage static replication.

* Quasi-static. The maximum number of trades is not finitely bounded. It is hard

to call such a strategy static, so we denote it by quasi-static. Although we may

trade infinitely often, we still prohibit continuous trading. For example, trading on

an uncountable set of times with measure zero may be infinite, but it far less frequent

(in a theoretical sense) than trading continuously.

Our second criteria is based upon the number of maturities. At any given time, our

replicas consist of vanilla options, which may have different maturities. We classify static

strategies by the maximum number of different maturities that can held at one time.

* Single. At any single time, replicas of only one maturity can be held.

* n-tuple. Replicas of up to n different maturities can be held at the same time.

We will find the preceding classification scheme very convenient for describing static

strategies. Clearly, the most desirable strategy is a one-stage single-maturity strategy. For

some complex exotic options, such a strategy is impossible. As we shall see, there are

situations where we can tradeoff between number of trades and the number of maturities.

3.3 Barrier Options

In this thesis, we will spend a substantial amount of time on barrier options. The purpose

of this section is familiarize the reader with the basic conventions associated with barrier

options.



A single barrier option is like an European vanilla option with a twist. Associated with

each option is barrier. If the price, at any time, reaches the barrier, the option fundamentally

changes. There are two main kinds of barrier options:

1. Knock outs (or simply outs). Upon hitting the barrier, the option becomes worthless.

At maturity, its payoff is identical to a plain vanilla option assuming the option never

knocks out.

2. Knock ins (or simply ins). This option is the opposite of a knock out. If the barrier

is never hit, the option's payoff is zero. Upon hitting the barrier, this option becomes

identical to a plain vanilla option.

Additional termnology:

* Up - if the barrier is above the current stock price.

* Down - if the barrier is below the current stock price.

Combining these terms, we are able to name barrier options as up-and-out calls, down-and-

in puts, etc.

One important observation is in-out parity. A portfolio that consists of knock in and a

knock out is identical to a plain vanilla option:

Knock in + Knock out = Plain Vanilla

Hence, it suffices to study either knock ins or knock outs and then apply in-out parity.

Binary options have a similiar terminology. For European binaries, knock outs are

called no-touch, and knock ins are called one-touch. Recall that European options pay $1

at maturity. In addition, there is an American variant of a one-touch. Upon hitting the

barrier, the American binary pays $1 immediately.

3.4 Constructing the Static Replication

Currently, we have several derivations for the static replication of single barrier options.

To a large extent, the various derivations correspond to the different interpretations of the

Black-Scholes model. We present these derivations in sections §3.4.1, §3.4.2, and §3.4.3.



The first method uses the risk neutral probability measure, the second follows from the

differential equation method, and the third method is based upon the binomial model.

In previous work, Bowie and Carr[7] solved the static replication in the special case where

r = p, which is known as zero cost of carry.4 Derman et al[181 presented an algorithmic

approach to replicate barrier options using vanilla options of the same strike, but different

maturity. Our methods uses vanilla options with the same maturity, but different strikes.

3.4.1 Symmetry in Probability Space

This derivation relies upon a symmetry found in the lognormal distribution given in (2.36).

It can best be summarized by the following lemma:

Lemma 3.1 In the Black-Scholes model, suppose X is an European option with maturity

T and payoff:

X(ST) = f (ST) if SE (A, B),

0 otherwise.

For H > 0, let Y be European option with maturity T and payoff:

Y(ST) I (T)P f(H2/ST) if STE (H 2 /B,H2 A),

0 otherwise

where the power p = 1 - P and r, p, and a are the interest rate, dividend rate ando
2

instantaneous volatility.

Then, for r < T with the stock price at H, options X and Y have the same price.

Proof. For r < T, let t = T - r. By risk-neutral pricing, the price of X at stock price

H and time t is:

Px = e-r  f(ST)p(ST, H,t)dST

e-"t B( 1 I ex (In(ST/H) - (r - p - .o)t)2
= e f(ST) exp] dS

Let S = s. Then, dST = - dS and

H/A n(HS) - (r - p - 2)t)2
Px = e-t  f(H2/S) exp 2 2t 2 dS

HB term r - p is the drift of the risk-neutral process and is referred to as the cost of carry.

4In (2.35), the term r - p is the drift of the risk-neutral process and is referred to as the cost of carry.



H
2 /A 1 (ln(S/H) - (r - p - 1a2)t)2]

= e-"t (S/H)Pf(H/S) exp dS
JH2/B sv'zF~i 2a 2 t

where p = 1 - P By inspection, Px exactly matches the risk-neutral price of Y. I

Esssentially, this lemma allows us to reflect payoffs along barrier H, while preserving the

option's price when the stock price is at H. This reflection incorporates both the geometric

nature of the diffusion and the drift. The choice of p seems somewhat magical. In the

Appendix, we give an informal derivation of p. Note that if the payoff of X is entirely above

H, then the payoff of Y is entirely below H.

In the following theorem, we derive the static replication for down-and-in claims.

Theorem 3.2 In a Black-Scholes economy, let W be a down-and-in claim with barrier H,

maturity T, and payoff at maturity f(ST). Then, there exists a one-stage single-maturity

static replication strategy for W, where the replicas mature at time T and have payoff at

maturity:
0 if ST > H,

f (ST) =II S (3.1)
fT(ST)+ ()f ) if S <H,

Proof. Suppose we have a down-and-in claim. If the barrier is never reached, it will

expire worthless at maturity. Upon reaching the barrier, it becomes identical to a European

claim. To replicate this exotic, we want a portfolio of vanilla options to imitate this behavior.

If the barrier is never reached, our portfolio should be worthless at maturity. At the barrier,

it should be equivalent to the appropriate European claim.

A down-and-in claim can have payoffs both above and below the barrier. For payoffs

below the barrier, the requirement that the in-barrier be touched is superfluous, and so we

can replicate with European options. For payoffs above the barrier, we use Lemma 3.1 to

reflect these payoffs below the barrier. The reflected payoffs are constructed to have a value

matching that of the original payoffs whenever the stock price is at the barrier. Thus, we

can also replicate the reflected payoffs with vanilla options to complete our static hedge.

By applying the above argument, the static replicating portfolio is:

(0 if ST> H,
f(ST) jf(ST) +( f f( ) if ST < H, (3.2)



Barrier Security Adjusted Payoff
No-touch binary put 1 for ST > H

-(STIH)P for ST < H
One-touch binary put (European) 0 for ST > H

1 + (ST/H)P for ST < H
Down-and-out call max(ST - K,, 0) for ST > H

-(ST/H)P max((H 2 /ST) - Kc, 0) for ST < H
Down-and-out put max(K, - ST, 0) for ST > H

-(ST/H)Pmax(Kp - (H 2 /ST),0) for ST < H

Table 3.1: Adjusted Payoffs for Down Securities.

where the power p= 1- 2(r-d) . Note that the ( f term corresponds to the reflected

payoff. I

We call f(ST) the adjusted payoff for the down-and-in security. As an immediate corol-

lary, we can derive static replication for down-and-out claims.

Corollary 3.3 In a Black-Scholes economy, let W be a down-and-out claim with barrier

H, maturity T, and payoff at maturity f(ST) for ST > H. Then, there exists a one-stage

single-maturity static replication strategy for W, where the replicas mature at time T and

have payoff at maturity:

f(ST) if ST > H,

f(ST) (P fH) if ST<H.
(3.3)

Proof. Apply in-out parity. The sum of the adjusted payoffs for an down-and-in claim

and down-and-out claim must equal the payoff of the European claim. One can also observe

that this portfolio has zero value at the barrier and pays f(ST) if the barrier is never reached.

I

Using a symmetric argument, we can show that up-and-in claims have one-stage single-

maturity strategies with adjusted payoff:

(S {0(ST) + (H)P f ST
f (S T = 0

if ST > H,

if ST < H,
(3.4)



For an up-and-out claim, the adjusted payoff is:

fS - ()Pf(EH) if ST> H,f (ST) a H sT (3.5)
f(ST) if ST < H.

To summarize, our one-stage single-maturity static replication strategies for a single
barrier option are:

1. Upon initiation, purchase a European portfolio that matches the adjusted payoff.

2. At the first passage time of reaching the barrier, liquidate the current portfolio.

(a) For knock outs, the portfolio will be worth zero.

(b) For knock ins, use the proceeds to buy the corresponding European option.

In Table 3.1 and Figure 3-1, we show the adjusted payoff for some common securities.

Upon inspection, the adjusted payoffs are usually not piecewise linear. Thus, an exact

replication using a finite number of European puts and calls is usually not possible. However,

as Figure 3-1 makes clear, the payoffs are close to linear. Furthermore, a few special cases

are worth mentioning. When r = p, then p = 1 and all payoffs are linear. The resulting
ýL
2

payoffs are identical to the results given in Bowie and Carr[7]. Also, for r - p = 2 -, then

p = 0 and the binary payoffs are linear. In particular, a one-touch binary can be exactly

replicated by two digitals.

Given the adjusted payoff, the value of the replicating portfolio can be determined by

risk-neutral valuation:

V(S, T) = e- , T f(ST)p(ST, S, T)dST. (3.6)
0

For example, the price of a down-and-in call (with K > H) is:

erT 1 /K(sT/H)P(H2/ST - K)p(ST, S, T)dST (3.7)

(H)P He-PTN(el) - He- N(e2)] (3.8)

where el = In(H/(SK))-(r-p+a2)T and e2 = el - av'. For K < H, the price is:

Se- N(di)-Ke-rN(d2)-Se-TN(fl)+KerTN(f2 )+ () [Se- N(gi) - Ke-rN(g2)]

(3.9)



Adjusted Payoff for One-touch Binary Put (European)

5 90 95 100 105
Final Stock Price

Adjusted Payoff for Down-and-out Call

110 115 15 90 95 100 105
Final Stock Price

Adjusted Payoff for Down-and-out Put

70 80 90 100 110 120 130 85 90 95 100 105
Final Stock Price Final Stock Price

(r = 0.05, p = 0.03, a = .15, K, = Kp = 110, H = 100)

110 1

110 115

Figure 3-1: Adjusted payoffs for down securities.

where d = In(S/K)+(r-p+" 2 )T f = In(S/H)+(r-p+ Ie2 )T In(H/S)+(r-p+I'2 )T
1aV1T a Vg 1T a =

d2 = d - aV/T, g2 
= g1 - ave, and f2 = f1 - avIT.

3.4.2 Derivation from Pricing Formula

In this section, we derive static replication in another manner. Suppose that a pricing

formula for a barrier security is known, either because it exists in the literature (e.g.,

Rubinstein[41]), or because it has been derived using dynamic replication arguments. We

then show how this formula can be used to generate a static hedge using vanilla options.

For simplicity, we again work with down securities only. We essentially work backwards

from the results of last section. Thus, we assume we know the formula D(S, T) for a down

security as a function of the current stock price S and the time to maturity r. The first step

1

0.5

a.

-0.5

-1
-----CF

I I I I I

Adusted Payoff for No-touch Binary Put

-1 Fi



is to find the value of the replicating option portfolio for any initial stock price by simply

removing the restriction that stock prices are above the barrier:

V(S, T) = D(S,T), S > 0. (3.10)

The second step is to obtain the adjusted payoff which gave rise to this value. Since values

converge to their payoff at maturity, simply take the limit of the value as the time to

maturity approaches zero:

f (ST) = lim V(S, T),
TI0

S > 0. (3.11)

We illustrate this procedure with a down-and-in call struck at K, > H. From Merton[36],

the valuation formula is:

-S T ( ) p-.2 n ( L p + O72/2)T=Se-' N

Hj
(Sp(r - p -2/2T

IKee-rT () N( ,S > H.

Removing the requirement that S > H, letting T 1 0, and denoting

by 1(-) gives:

the indicator function

lim DIC(S, T; H)
T0O

= S-)1(> Kc) -KIf () S

H S
S)P(5~(~~

(H 2> \
1y> Ke,

Thus, using in-out parity, the adjusted payoff for a down-and-out call agrees with Table 3.1

(recall Kc > H).

To show how this approach can be used to generate adjusted payoffs for other securities,

consider the valuation of an American binary put, which pays $1 dollar at the first passage

time to H. From [41], the valuation formula is:

ABP(S,T; H)= - + y N ) , (3.12)

DIC(S, T; H)



for S > H, wherey - ,e E 2 + 2. Removing the requirement that S > H and

letting T 1 0 gives the adjusted payoff as (see Figure 3-2):

lim ABP(S,T; H) = [( + - 1(S < H).

Adjusted Payof for One-touch Binary Put (Amedican)

2

15

0.5

0

o0

85 90 95 1oo 105 110 115
Final Stock Price

(r = 0.05, p = 0.03, a = .15, H = 100)

Figure 3-2: Adjusted payoff for American binary put.

The derivation from the pricing formula follows naturally from the differential equation

interpretation. All pricing formulas must satisfy the Black-Scholes differential equation

(as given in (2.11)). Different options are created by imposing different initial value and

boundary conditions. In this section, we are essentially transforming a Dirichlet problem

(incomplete initial value problem with boundary conditions at the barrier) into a Cauchy

problem (complete initial value problem). For single barrier options, both types of problems

give rise to unique solutions. Given the final solution, it is straight forward (as illustrated

above) to transform between the two types of problems.

3.4.3 Forward Chaining in the Binomial Model

In this section, we derive static replication from the binomial model. The basic technique is

called forward chaining.5 Consider a segment of the binomial tree as shown in Figure 3-3.

5Forward chaining was actually the first derivation of the static replication. It was originally presented
in [14] and is based upon ideas in [13] and [15].

- I I I I I



State B

P /Payoff PB

State A

Payoff PA

q State C
Payoff PC

Figure 3-3: Forward Chaining. Determining PB from PA and Pc.

Typically, the payoffs of states B and C are known, and we use the risk-neutral probabilities

to determine the payoff in state A as:

PA = R[[PPB + aPc].

where R is the one-period interest rate and p, q are the risk-neutral probabilities. However,

we can also reverse the process. Suppose we know the payoffs in states A and C. By

re-arranging the previous equation, we have:

1
PB = -[RPA - qPc].

This relationship is derived from arbitrage. If this condition were violated, an arbitrage

opportunity would exist.

In Figure 3-4, we illustrate the binomial model for an up-and-out claim with barrier H.

Along the barrier, the payoffs are zero. Below the barrier, we have payoffs of xl, X2 , ... at

expiry. Our goal is to derive corresponding payoffs yi, Y2, ... such that if we price any node

along the barrier, the payoff of that node should be zero.

Now, consider node A1 along the zero barrier. The payoff at A 1 is zero. Using risk-

neutral pricing, we have

0 = 1 •[p2 + 2pq(0) + q2x2 1 ==2 ' Y1 ( 2 X1

The payoff at A2 is also zero, so

0 = -[p4 Y2 + 4p3 qyl + 6p 2 2(0) + 4pqbx1 + q4x2]



Y2

Y1

A2 Al
Knockout value V

Figure 3-4: Zero Barrier Reflection.

Y2 - ()x 2

By iterating this process, it follows that

Yi = -_ )Xi.

Let f(ST) be the payoff at expiry if the spot price at maturity is ST. Suppose ST > H

and ST = Su'dn- ' where S is the intial price. Also, suppose H = Suhdn- h . Then, the

corresponding reflected price below the barrier is H2 and

f(ST) = - 2 (ih) f(H2/ST).
p

In the continuous time limit (see Appendix), it follows that

S2(-h)PP
(STH)P

where p= -1 -) and

f(ST) H- f(H /ST).
) - ( 7 ýý J\TIUI·/

For downward reflections, an identical result can be derived. Now, suppose ST < H and

u



ST = Su'dn - i Again, the corresponding reflected price is ý- and

() 2 (h-i)

f (ST) = - f(H 2 /ST). (3.13)

Taking continuous limits, we find

f(ST) ST - f(H 2/ST).

Using these limits, we can derive Corollary 3.3. The other static replication results follow

immediately.

3.5 Static Replication with Barrier Payoff

In some barrier options, the option pays a rebate upon reaching the barrier. In fact, we have

already seen examples of such options. An American down-and-in binary put pays $1 at the

first passage time to barrier. The European down-and-in binary put pays $1 at maturity

if the barrier is ever reached. This payment is equivalent to paying e- ' (T-r) at the first

passage time to the barrier, where r is the first passage time and T is the maturity date.

In this section, we will find the static replication for a barrier option that has an arbitrary

continuous payoff upon reaching the barrier. We begin with the following theorem, which

calculates the static replication for a large class of exponential payoffs.

Theorem 3.4 Let yp = r - p - 1r 2 and k > -r - P In a Black-Scholes economy, let W

be a claim with maturity T that pays ek(T-7) at the first passage time r to the barrier H and

pays nothing if the barrier is never reached. Then, there exists a one-stage, single-maturity

static replication using replicas that mature at time T and payoff:

( if S, > H,
(ST) = Q(ST,H,k) if ST < H.

where

Q(ST, H,k) = (STIH)al + (ST/H)' 2,

a 2 2(r + k)
a =--+ -+

1 2 "4 0.2



- p2 2(r + k)

2 2 4  2+

Proof. As in previous static replication strategies, we will liquidate our portfolio at the

first passage time to the barrier. Using risk-neutral pricing, the value of our portfolio at

the barrier at time r (let t = T - 7) is:

e - r  Q(ST, H, k)p(ST, H, t)dST =

0/y
- 2  + a, 022

° 2  + 2 U2e exp[( )aLt]N( +( ()) + exp[(p + •2a2  _ ))a2t]N

Observe that a = -~ - a2, thus

i + a l 2 = - +(Il a 2o
2 ).

and
O 1 

-2 2•2  
-
2

(p + 2 )a-t = (p + 2 )a2t.

Therefore,

e- r t  Q(ST,H, k)p(ST, H,t)dST = exp (a a + pa - r) tJ = ek(T)

At the barrier, our portfolio will match the desired payoff. Since our replicas are in-the-

money only below the barrier, our portfolio will expire worthless if we never reach the

barrier. g

From the replicas of the exponential payoffs, we can derive the replicas for an arbitrary

polynomial.

Corollary 3.5 Let r be the first passage time to the barrier H. In a Black-Scholes economy,

let W be a claim with maturity T which pays tn where t = T - r. Then, there exists a one-

stage, single-maturity static replication using replicas that mature at time T and payoff:

() = 0 if ST > H
f (ST) = a(SHk= H



Proof. From Theorem 3.4, we have:

e- rt Q(ST, H, k)p(ST, H, t)dST = ek t

dk e-rtH Q(ST,H,k)p(ST,HI,t)dS = dek"

== e- r t j (dnQ(ST Hk)) p(ST ,H,t)dST = te kt

-rt e- ( dd"nQ(ST, H, k)) )p(ST,H,t)dST= t

By inspection, we have created our desired replicas. g

As an example,

dQ(ST, H, k) (In(S/H + (SH) 21n(STH)
dk k=O n1 + (ST/H) 22

where al, a 2 are from Theorem 3.4 and

FL2  2r 2 2 2r
a4 ' a 4

Corollary 3.6 In a Black-Scholes economy, let W be a claim with maturity T which pays

f(r) at the first passage time to barrier 7. Then, there exists a one-stage, single-maturity

static replication using replicas that mature at time T.

Proof. From Corollary 3.5, we can statically replicate all polynomial payoffs. By the Stone-

Weierstrass theorem, 6 the set of polynomials is dense over the set of continuous functions

on the compact set [0, T]. Therefore, we can statically replicate any arbitary continuous

payoff. I

Combining Theorem 3.2 and Corollary 3.6, we have the following very general result:

Theorem 3.7 In a Black-Scholes economy, suppose we have an exotic option W with down

barrier H and maturity T. The exotic option W will pay at either the first passage time

or at maturity (which ever comes first). At the first passage time r, the option W pays

6As given on p. 159 of Rudin[43].



f(r) where f is continuous. At maturity, W pays g(ST) for ST > H. Then, there exists a

one-stage, single-maturity static replication strategy.

Proof. We can break W into two barrier options: X and Y. Option X is a down-

and-out claim with payoff at maturity g(ST). Option Y is an option that pays at the first

passage time f(r) and pays nothing if the barrier is never reached. The portfolio of X

and Y exactly replicates W. Using Corollary 3.3 and Corollary 3.6, we can replicate both

X and Y, respectively. Note that their adjusted payoffs have the same maturity, and any

rebalancing only occurs at the first passage time to the barrier. Thus, we have a one-stage,

single-maturity static replication. I



Appendix

Informal Derivation of Reflection Coefficient in Lemma 3.1

We informally derive the statement of Lemma 3.1 from first principles. We consider Arrow-

Debreau securities, since they form the building blocks for all European options.

Suppose we have dST Arrow-Debreau securities AD(ST) which have maturity T. Our

goal is find a corresponding set of Arrow-Debreau securities which will match the price of

AD(ST)dST at all times the stock price is H. Hence, we want to find Q(ST) and F(ST)

such that

AD(ST)dST = Q(ST)AD(F(ST))dF(ST),

where the Q(ST) represents a scaling factor.

Let t be the time remaining till maturity (t < T). Then,

1
exp

1
Sexp

ST

(In(ST/H) - pt)2 dST

(In(ST/H) - pt)2
T dST)2•r2t J

- n(ST) - (In(ST/H) - p t ) 2

- In(ST)- 2i2t

-2a In(ST)t - In2(ST/H) + 2p In(ST/H)t

for S = H at all times before T

(ln(F(ST)/H) - pt)2 dF(ST)
I- 2u dF(ST)

F(ST)/H) - pt) 2

222t F'(ST)dST

- In (Q(ST)F'(ST) _ (ln(F(ST)/H) - pt)2

F(ST) 2a2t

= 22 ( Q(ST)F'(ST) - In2(F(ST)/H) +
-- 2a1n \ F(ST)

where 1 = r - p- a2 .

This relation must be invariant under t. Therefore, the derivative with respect to t must

be zero. Hence,

-202 In(ST) + 2q ln(STIH)

- Q(ST)

= 22n Q(STF(ST) +

= (S/F(ST))-+' (ST)F'(ST)

2y ln(F(ST)/H)

(3.15)

For any differentiable F(ST), we can find Q(ST) which makes the relationship invariant

under t. By substituting Q(ST) back into (3.14), we get:

In 2 (ST/H) = In 2(F(ST)/H)

1
Q(ST) (ST exp

= Q(ST) exp I
F(ST) I

2p ln(F(ST)/H)t

(3.14)

(3.16)



Clearly, the only two solutions are: F(ST) = ST and F(ST) = H'/ST. The first solution is

trivial. Using the second solution in (3.15), we obtain:

Q(ST) = -(ST/H)2p/O'

which matches Lemma 3.1.

Continuous Time Limit of Forward Chaining in the Binomial Model

In this section, we compute the continuous time limit of forward chaining in the binomial

model.

Theorem 3.8 In the binomial model described in section §2.1.3, if we take the limit as the

binomial model approachs a continuous diffusion process, then

( 2(h-i) ST 1-2(r-d)/o2

where h, i are chosen such that

H = Suhdn-h, ST = Su'd" -

and S is the initial stock price.

Proof. We choose u, d, and R such that the binomial distribution converges to the

lognormal distribution (as demonstrated in Duffie [1994], Ingersoll [1987], Merton [1992] or

Wilmott, DeWynne and Howison [1993]). One possible choice is

u = e" a , d = 1/u = e-"~ , R = erdt

as dt - O0. Then,
e(r-p)dt - e-avr'i e _ e(r-p)dt

p = eo _ - e-oVd ,q = eOGd - e-av/t

and
q ea - _ e(r-p)dt

p e(r-p)dt e-aldt

The Taylor's series for e" is

e = 1 + x + - + o( 2)2



where o(-) denotes lower order terms. So,

q e i + e- Tti - 2e (r - p)t

p= 1+

S 2 dt - 2(r - p)dt + o(dt)
= 1+

av/ + o( d)

= 1 + (1 - 2(r - p)/1 2)Vd+ o(-d)

Observe that

ST _ hidi-h = (e ordi)2(h-i) = (1 + UV- + O(V/-)) 2(h- i )

H

For this term to converge to a constant, 2(h - i) must be bounded (above and below)

by a constant multiple of 1/v -•. Therefore, in the continuous limit,

(q) 2(h-i) = (1 + a(1 - 2(r - p)/a 2) di + + (V/-))2(h- i)

= (1+ + •+ o(V))2(h-i)(1-2(r - p)/a ')

(S 1-2(r-p)/I



Chapter 4

Complex Barrier Static Replication

In this chapter, 1 we continue our study of static replication. Our goal is to extend static

hedging from single barrier options to more complex barrier options. In particular, we will

examine the following types of barrier options:

1. Partial Barrier Options: For these options, the barrier is active only during an

initial period. In other words, the barrier disappears at a prescribed time. The payoff

at maturity may be a function of the contemporaneous stock price when the barrier

disappears.

2. Forward Starting Barrier Options: For these options, the barrier is active only

over the latter period of the option's life. The barrier level may be fixed initially, or

alternatively, may be set at the forward start date to be a specified function of the

contemporaneous stock price. The payoff may again be a function of the stock price

at the time the barrier becomes active.

3. Double Barrier Options: Options that knock in or out at the first hitting time of

either a lower or upper barrier (i.e. barriers below and above the current stock price).

4. Roll-down (Roll-up) Options and Ladder Options: These options are issued

with a sequence of barriers, either all below (roll-down) or all above (roll-up) the

initial stock price. Upon reaching each barrier, the option strike is ratcheted. For

roll-downs and roll-ups, the option is knocked out at the last barrier.

'This chapter is largely presented in Carr and Chou[10].



5. Lookback Options: The payoff of these options depends upon the maximum or

the minimum of the realized price over the lookback period. The lookback period

may start before or after the valuation date but must end at or before the option's

maturity.

We will show that the last two categories above may be decomposed into a sum of single

barrier options. Consequently, they can be statically hedged using the results of the pre-

vious chapter. Furthermore, the decomposition is model-independent. Thus, as new static

hedging results for single barrier options are developed, these results will automatically hold

for these multiple barrier options.

The structure of this chapter is as follows. The first two sections examine the static

replication of partial barrier options and forward starting barrier options respectively. The

next section is concerned with static hedging of double barrier options. Finally, the hedging

of rolldowns, ladders and lookbacks is examined in the final two sections.

4.1 Partial Barriers

A partial barrier option has a barrier that is active only during part of the option's life.

Typically, the barrier is active initially, and then disappears at some point during the

option's life. One could also imagine the opposite situation, where the barrier starts inactive

and becomes active at some point. We denote these options as forward-starting options and

discuss them in section §4.2.

We will present two different hedging strategies. In the first method, we will rebalance

when the barrier disappears. This method is very general, in that the payoff of the option

can depend upon the contemporaneous stock price when the barrier disappears. In the

usual situation where the payoff depends only on the final stock price, we can apply a

second hedging method, which is superior to the first method. The second method does

not require rebalancing at the point where the barrier disappears. Instead, we will perform

a static hedge with European options that mature with the barrier option and at the time

the barrier disappears.

We will examine down-barriers. Nearly identical methods can be employed for up-

barriers. In the following, we derive the replication of partial barrier options.

Theorem 4.1 In a Black-Scholes economy, let W be a partial barrier option with maturity



T2, which knocks out at barrier H. Let T1 denote the time where the barrier expires. The

payoff of W at time T2 may depend upon the stock price S1 at time T1. Then, there exists

a two-stage single-maturity static replication.

Proof. At time T1, either the option has knocked out or it becomes a European claim with

some payoff at time T2. Using risk-neutral pricing, we can always price this European claim

as V(S1).

Define the adjusted payoff at time T1 as:

(S·) =I V(S 1) if S1 > H,
f-(O ()P V(H21/S) if S1 < H

Thus, our hedging strategy is as follows:

1. At initiation, purchase a portfolio of European options that gives the adjusted payoff

f(S) at maturity date T1 .

2. If the barrier is reached before time T1, liquidate our portfolio. From single barrier

techniques, our portfolio is worth zero.

3. At the time T1, if the barrier has not been reached, use the payoff to purchase the

corresponding European claim maturing at time T2.

We describe the hedging strategy for an in-barriers in the following corollary.

Corollary 4.2 In a Black-Scholes economy, let W be a partial barrier option with maturity

T2, which knocks in at barrier H. Let T1 denote the time where the barrier expires. The

payoff of W at time T2 may depend upon the stock price S1 at time T1. Then, there exists

a two-stage single-maturity static replication.

Proof. We can apply in-out parity. The adjusted payoff at time T1 is:

0f(s) = O if S1 > H,

f V(Si) + ()P V(H2/1S) if S < H

Our hedging strategy is as follows:

1. At initiation, purchase a portfolio of European options that pays off f(Sl) at time T1.



2. If the barrier is reached before time T1, then rebalance our portfolio to have payoff

V(S 1) at time T1 for all S1. By single barrier techniques, the value of the adjusted

payoff term (-)P V(H 2 /S 1) exactly matches the value of the payoff V(S1)1s,>H.

3. At time T1, if the barrier has not been reached, our payoff is zero. Otherwise, we will

receive payoff V(S 1), which allows us to purchase the appropriate European claim

maturing at T2.

The preceding hedging strategies used rebalancing points at the first passage time to

the barrier and time T1. We now present a second method that will only need to rebalance

at the first passage time. However, we require the payoff at time T2 to be independent of

S1. In addition, our replicating portfolio will use options that expire at both time T1 and

T2.

Theorem 4.3 In a Black-Scholes economy, let W be a partial barrier option with maturity

T2, which knocks out at barrier H. Let T1 denote the time where the barrier expires. The

payoff at maturity does not depend upon the stock price S1 at time T1. Then, there exists a

one-stage double-maturity static replication.

Proof. Let the payoff of W at time T2 be g(S 2) where S2 is the stock price at time

T2 . Suppose we have a portfolio of European options with payoff g(S 2) at time T2 . We can

value it at time T, (by using risk-neutral pricing) as V(SI). For times before T1, the payoff

g(S2) at time T2 is always equivalent in value to the payoff V(Si) at time T1. Thus, we will

apply our barrier option techniques to the V(SI) payoff while really holding onto the g(S 2)

payoff.

Suppose our partial barrier is a knock out option. Then, we really want our payoff at

time T1 to be: { V(S 1) if S, > H,
f(SO) = -(-)P V(H 2/Sl) if S, < H

Unfortunately, our current payoff is (equivalent) to V(SI) for all S1. Thus, we'll simply add

a portfolio of European options to make up this difference. Let our adjusted payoff at time

T1 be:

f(S) =I0 if S 1 > H,

f(S') -V(Si) - (sf)P V(H 2/S,) if S, < H



Our hedging strategy is as follows:

1. At initiation, purchase a portfolio of European options that:

* Provide payoff g(S 2) at maturity T2.

* Provide payoff f(S1) at maturity T1.

2. Upon reaching the barrier before time T1, liquidate all options. Our portfolio will be

worth zero.

3. If the barrier is not reached before time T1, our payoff will be g(S 2) at time T2 as

desired. Note that it is impossible for the options maturing at time T1 to pay off

without the barrier being reached.

Interestingly, the options maturing at T1 never finish in-the-money. If the barrier is

reached, they are liquidated. Otherwise, they expire out-of-the-money at time T1. Thus,

our only rebalancing point is the first passage time to the barrier.

Corollary 4.4 In a Black-Scholes economy, let W be a partial barrier option with maturity

T2 , which knocks in at barrier H. Let T1 denote the time where the barrier expires. The

payoff at maturity does not depend upon the stock price S1 at time T1. Then, there exists a

one-stage double-maturity static replication.

Proof. Apply in-out parity. Our replicating portfolio is simply a portfolio of European

options that provide payoff -f(S1) at time Ti. If we ever hit the barrier before T1, the

value of our portfolio matches the value of a portfolio of European options that pays off

g(S 2) at time T2. The options maturing at T1 are sold and the proceeds are used to buy

the options maturing at T2. Otherwise, our replicas will expire worthless. We only need to

rebalance at the first passage time to the barrier, if any. *

As an example, consider a down-and-out partial barrier call with strike K, maturity T,

partial barrier H, and barrier expiration T1. Using the first hedging method, our initial

replicating portfolio will have maturity T1 and payoff (see Figure 4-1):

{ C(S1) if S1 > H,
f(SI= (4.1)

-(,) C( ) if S 1 <H



where C(Si) is the Black-Scholes call pricing formula for a call with stock price S1, strike

K, and time to maturity T2 - T1. As an alternative method to price this option, we can

Adjusted Payoff for a Partial Barrier Call

Spot when Partial Bardnier ends

(r = 0.05, p = 0.03, o = .15, H = 90, K = 100, T2 - T1 = .5)

Figure 4-1: Adjusted payoff for a Partial Barrier Call Using First Hedging Method.

take the discounted expected value of f at time T1. We find the price to be:

e-PT2SM(al, b2, Y) - e-T2KM(a2, b2, 7)

- (S)P
[e-pT2(H 2/S)M(CI, di, Y) - e-'TKM(c2, d2, -)]

where M(a, b, -) denotes the standard cumulative bivariate normal with correlation y =

T1/T 2 7, and

In(S/H) + (r - p + a2/2)T1

_ ln(S/K) + (r - p + a 2/2)T 2

= ln(H/S)
el -

, 2 = al - aV•,

Sb 2 = bl - av'T,

+ (r - p + o2/2)Ti

In(H2/SK) - (r - p + c,2/2)(T 2 - T1) + (r- p + 2/2)T,

In(H /SK) - (r - p - a2/2)(T2 - T)+ ( - p - 2/2)Tl
uIV/T

The payoff of this option is independent of S1, so we can also apply the second hedging



method. The portfolio of options maturing at T2 is just a call struck at K. The portfolio

of options maturing at T1 has the payoff (see Figure 4-2):

f(S) 0 if S1 > H,
(S-) C(S1 ) - (.)p C(H2/SI) if S1, HI H~Pif 1 <

The value of the

at T1 and T2.

barrier option can be given by the sum of the values of the options maturing

Adjusted Payoff When Parihal Barder Ends Adjusted Payoff at Matudrity
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75 80 85 90 95 100 105 110 115 120
Spot When Partial Banrrier Ends

(r = 0.05, p = 0.03, o = .15, H

75 80 85 00 05 100 105 110 115

-70 75 80 85 90 95 100 105 110 115
Spot at Matudty

= 90, K = 100, T2 - T, = .5)

Figure 4-2: Adjusted payoffs for a Partial Barrier Call Using Second Hedging Method.

4.2 Forward Starting Options

For forward-starting options, the barrier is active only over the latter period of the option's

life. The barrier level and payoff at maturity may be fixed initially, or alternatively, may be

set at the forward start date to be a specified function of the contemporaneous stock price.

As we shall see, forward start options are very similar to partial barrier options.

Again, we will present two different methods. The first method is more general and

can be applied to cases where the barrier and/or payoff depend upon the contemporaneous

stock price. This method possibly requires rebalancing when the barrier appears and at

the first passage time to the barrier. The second method requires that the barrier and

payoff be independent of the stock price when the barrier appears, but requires at most one

rebalancing.
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Theorem 4.5 In a Black-Scholes economy, let W be a forward starting option with ma-

turity T2 and barrier H. Let T1 denote the time when the barrier appears. The payoff at

maturity may depend upon the stock price S 1 at time T1. Then, there exists a two-stage

single-maturity static replication.

Proof. Consider a forward-starting option maturing at T2, and let the barrier appear at

time T1. At time T1, the exotic becomes identical to a single barrier option. Using existing

single barrier techniques, we can price the exotic at time T1 as V(S 1).

Create a portfolio of European options that pays off V(S 1) at time T 1. At time T1, the

payoff from these options will be used to buy a portfolio of options maturing at T2 which

replicates a single barrier option. Thus, our hedging strategy always requires rebalancing at

time T1. The subsequent single barrier replication may require an additional rebalancing. I

An important special case arises if V(S 1) may be written as S1 x n(-), where n(.) is

independent of S1. This situation arises for barrier options where the strike and barrier are

both proportional to Si. In this case, the hedge is to buy n(.)e -6 T1 shares at time 0 and

re-invest dividends until T1. The shares are then sold and the proceeds are used to buy

options providing the appropriate adjusted payoff at T2.

We now discuss the second method, which is applicable when the barrier and payoff are

independent of S1. As before, we will examine down-barriers and leave it to the reader to

apply the same techniques to up-barriers.

Theorem 4.6 In a Black-Scholes economy, let W be a forward starting option with matu-

rity T2 and barrier H. Let T1 denote the time where the barrier appears, which causes the

option to knock out. The payoff at maturity does not depend upon the stock price S1 at time

T1. Then, there exists a one-stage double-maturity static replication.

Proof. Let g(S2) denote the payoff at time T2 and let H be the barrier. At T1, our situation

is identical to a single barrier option, so we would like our adjusted payoff at time T2 to be:

out(S2) = g(S 2) if S2 > H,

(S = -()g(H2/S 2) ifS 2 < H.

We can value the adjusted payoff °out(S 2 ) at time T1 (using risk-neutral pricing) as



V(S 1). Ideally, we would like our portfolio at time T1 to be worth:

f(S)=i V(SI) if S, > H,
0 if S, < H.

The payoff of zero below the barrier arises because our forward-starting option is defined

to be worthless if the stock price is below the barrier when the barrier is active. Thus, we

will add options maturing at time T1 with payoff:

Afou

t () = 0 if S2 > H,

= -V(S) if S2 < H.

Our hedging strategy is:

1. At initiation, purchase a portfolio of European options that:

* Provide payoff ou"t(S 2 ) at maturity T2.

* Provide payoff fout (S 1) at maturity T1.

2. If the stock price at time T1 is below H, our exotic has knocked out, so liquidate the

portfolio.

3. Otherwise, we hold our portfolio. If we hit the barrier between time T1 and T2, we

liquidate our portfolio. Otherwise, we receive payoff g(S 2).

By construction, whenever we liquidate our portfolio, we will have zero value. The maximum

number of rebalancings is at most one. g

Corollary 4.7 In a Black-Scholes economy, let W be a forward starting option with matu-

rity T2 and barrier H. Let T1 denote the time where the barrier appears, which causes the

option to knock in. The payoff at maturity does not depend upon the stock price S1 at time

T1. Then, there exists a one-stage double-maturity static replication.

Proof. We can apply in-out parity. Our replicating portfolio at time T is:

i0 if S2 > H,

(S) g(S) + (s)Pg(H2/S2 ) if S2• H.

and at time T1

fin(S) = 0 if S2 > H,
V(Sl) if S2 _ H,
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Adjusted Payoff for Forward Starting No-touch Binary
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(r = 0.05, p = 0.03, a = .15, H = 100, T2 - T, = .5).

Figure 4-3: Adjusted payoff for Forward Starting No-touch Binary Using First Hedging
Method.

where V was defined previously as the time T1 value of the payoff §out at time T2.

At time Ti, if S1 < H, then the value of the down-and-in claim is that of a vanilla claim

by definition. Our replicating portfolio consists of options maturing at both Ti and T2. By

design, these options have a total value equal to the value of the vanilla claim. However,

the short position in the options maturing at T2 and struck below H must be changed to

the appropriate long position, and the options maturing at T, provide exactly the necessary

funds.

In the opposite case where Si > H at T1, then the fin'(S) replicas expire worthless.

However, we now have the same replicas as in single barrier replication, and we can again

apply single barrier replication techniques. Again, we only need to rebalance once. g

For example, consider a forward starting no-touch binary option with down barrier H,

maturity T2 , and barrier start date T1. Using the first method, the portfolio of options with

maturity Ti has payoff (as shown in Figure 4-3):

f(SI) = NTB(Sl) if S1> H,
0 if S 1 < H

where NTB(Si) is the price of a Black-Scholes price of a no-touch binary with stock price

S1, time to maturity T2 - Ti, and barrier H.

I _1
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Figure 4-4: Adjusted payoffs for Forward Starting No-touch Binary Using Second Hedging
Method.

Since the barrier and payoff are independent of S1, we can also apply the second method.

The portfolio of options with maturity T2 has payoff (see Figure 4-4):

1out if S2 > H,
H(-Sa)P if S2 < H.

and the replicating payoff with maturity T1 is:

fou(S) =(S 0 if S 1 > H,

-NTB(S 1) if S, < H.

where we extend the NTB(.) formula to values below H.

4.3 Double Barriers

A double barrier option has both an up and a down barrier. Double barrier calls and

puts have been priced analytically in Kunitomo and Ikeda[34] and Beaglehole[2], and using

Fourier series in Bhagavatula and Carr[4].

In analogy with the single barrier case, our goal is to find a portfolio of European options,

so that at the earlier of the two first passage times and maturity, the value of the portfolio

exactly replicates the payoffs of the double barrier option.

I % Adjusted Payoff at Maturity



Theorem 4.8 In a Black-Scholes economy, let W be a double knock out barrier option with

down barrier D, up barrier U, and maturity date T. There exists a one-stage single-maturity

static replication.

Proof. Ideally, we would like to reflect the payoffs as in (3.3) and (3.5). However, we only

know the adjusted payoff for the narrow region (D, U). To generate the adjusted payoff for

the other regions, we will use multiple reflections.

We begin by dividing the interval (0, oo) into regions as in Figure 4-5. We can succinctly

define the regions as:

Regionk= ((U)k

To specify the adjusted payoff for a region i, we will use the notation:

f(i)(ST).

We begin with f(0)(ST) = f(ST)

Region -3 Region -2 Region -1

D 2 /U

Region 0 Region +1

D I
Spot

U2/D

Figure 4-5: Dividing (0, oo) into regions.

From Lemma 3.1, we see that for a reflection along D, the region k (e.g. k=-2) would

be the reflection of region -k - 1 (e.g. -k-l=+l). Similarly, for reflection along U, region

k would be the reflection of region -k + 1.

Let's define the following two operators:

RoD((ST)) = ) f(D 2/ST) and Ru(f(ST))= -( f(U 2/ST)

It follows that

f(k)(ST)= RD((-k-1)(S)),

Region +2 Region +3

for k < 0



and

f(k)(ST)= Ru(f(-k+1)(ST)), for k > 0.

Note that Ru and RD bijectively map between the corresponding regions. Also, we are

taking the negative of the reflection, so that the valuation of the payoffs will cancel. By

induction, we can completely determine the entire adjusted payoff as:

f(ST) for k = 0,

RD o R o RD .. ,(f(ST)) for k < 0,
f(k)(ST) = k operators

Ru o RD o Ru. .(f(ST)) fork > 0.
k operators

A portfolio of European options that delivers the above adjusted payoff replicates the

payoff to a double barrier claim. If we never touch either barrier, then the adjusted payoff

from region 0 matches the payoff of the original exotic. Upon reaching a barrier, the values

of the payoff above the barrier are cancelled by the value of the payoff below the barrier.

Therefore, our portfolio is worth zero at either barrier at which point we can liquidate our

position. I

Corollary 4.9 In a Black-Scholes economy, let W be a double knock in barrier option with

down barrier D, up barrier U, and maturity date T. There exists a one-stage single-maturity

static replication.

Proof. To find the adjusted payoff for a knock in claim, we apply in-out parity. The

adjusted payoff is given by:

0 for k = 0,

f(ST) - RDo R o RD.. (ST)) for k < 0,
f(k)(ST) = k operators

f (ST) - Ru o RDo Ru.. (f(ST)) for k > 0.

k operators

As an example, consider a no-touch binary option, which pays 1 at maturity if neither



Adjusted Payoff for a Double No-touch Binary
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Figure 4-6: Adjusted payoff for Double No-touch Binary.

barrier is hit beforehand. Then, f(ST) = 1, and the adjusted payoff is (see Figure 4-6):

(S) = ( ) ( D )•J in region 2j + 1,

(L)yp in region 2j

where j is an integer. Two special cases are of interest. For r = d, we have p = 1, and the

adjusted payoff become piecewise linear. For r - p = a12 , we have p = 0, and the adjusted

payoff is piecewise constant.

To compute the price of the double no-touch binary option, we simply compute the price

of the adjusted payoff in each region and sum over all regions. The price can be found by

taking discounted expected value in the risk-neutral measure. If the current stock price is

S, the price of region k is:

V(S, - (L)P ( )iP e-rT N(In )-z) l - N( n(x)-T)] in region k = 2j + 1,
()I e-rT [N( In(rP)+ ) - N(In(xPT)+T• ] in region k = 2j,

where , = k-  
X S= and p = r - p - •

The price of the no-touch binary is the sum of the prices for each region.

NTB(S)= E V(S,k).
k=-oo



Although this sum is infinite, we can get an accurate price with only a few terms.

Intuitively, the regions far removed from the barriers will contribute little to the price.

Therefore, we only need to calculate the sum for a few values of k near 0. In Table 4.1, we

illustrate this fact.

3 Month Option (T = .25) 1 Year Option (T = 1)

(S = 100, r = 0.05, p = 0.03, a = .15, U = 110, D = 90)

Table 4.1: Price Convergence of No-Touch Binary Pricing Formula.

4.4 Roll-down Calls and Ladder Options

The static replication of rolldown calls and ladders was examined by Carr, Ellis, and

Gupta[11]. In this section, we review their decomposition into single barrier options and

then apply our techniques for barrier replication.

A rolldown call consists of a series of barriers: H1, H2, . . ., H,, which are all below the

initial stock price. At conception, the roll-down call resembles a European call with strike

Ko. If the first barrier H1 is hit, the strike is rolled down to a new strike K 1. Upon hitting

each subsequent barrier Hi, the strike is again rolled down to Ki. When the last barrier is

hit, the option knocks out and becomes worthless.

Observe that a roll-down call can be written as:

n-1

RDC = DOC(Ko, H 1) - "[DOC(K,, Hj+i) - DOC(Ki, HS)]
i=1

This replication is model independent and works as follows. If the H1 is never hit, then

the first option provides the necessary payoff, while the terms in the sum cancel. If H1

is reached, then DOC(Ko, Hi) and DOC(KI, H1) become worthless. We can re-write the

Regions Used to Price Price
0 < k < 0 0.80687

-1 < k < 1 0.62712
-2 < k < 2 0.62718
-3 < k < 3 0.62718
-4 < k < 4 0.62718
-5 < k < 5 0.62718

Regions Used to Price Price
0 < k < 0 0.47052

-1 < k < 1 0.03541
-2 < k < 2 0.07713
-3 < k < 3 0.07635
-4 < k < 4 0.07636
-5 < k < 5 0.07636



portfolio as:

n-1

RDC = DOC(K1, H2) - [DOC(Ki, Hi+,) - DOC(KI, Hi)]
i=2

Thus, our replication repeats itself. If all the barriers are hit, then all the options knock

out.

The hedging is straight forward. For each down-and-out call, use (3.3) to find the

adjusted payoff. By summing the adjusted payoff, we can ascertain our total adjusted

payoff. Every time a barrier is reached, we need to repeat the procedure to find our new

adjusted payoff. Thus, the maximum number of rebalancings is the number of barriers.

As an example, consider a rolldown call with initial strike K0 = 100. Suppose it has

two rolldown barriers at 90 and 80 (i.e. H1 = 90, H2 = 80). Upon hitting the 90 barrier,

the strike is rolled down to the barrier (i.e. K 1 = 90). If the stock price hits 80, the option

knocks out. Then, our replicating portfolio is:

DOC(100, 90) - DOC(90, 80) + DOC(90, 90)

Each of these options can be statically replicated. The sum of the corresponding adjusted

payoffs is (see Figure 4-7):

Tl( (902 1 S0" 802 S+ T 902
(ST) = (ST-100)+- 90) ) (902 9 0)

90 ST 80 ST 90 ST

We will need to rebalance this adjusted payoff upon hitting the barriers at 90 and 80.

Ladder options are similar to roll-down calls, except that instead of knocking out at the

last barrier, the strike is rolled down for the last time. They can also be statically hedged.

4.5 Lookback

At first glance, a lookback option appears quite different from a barrier option. In this

section, we will show how a lookback can be be decomposed into a portfolio of European

binary options. For each binary option, we can create the appropriate adjusted payoffs.

Thus, we can create the adjusted payoff of a lookback by combining the binary adjusted

payoffs. This combined adjusted payoff will give us pricing and hedging strategies for the



Adjusted Payoff for Roll-down Call

Spot at Maturity

(r = 0.05, p = 0.03, a = .15)

Figure 4-7: Adjusted payoff for Roll-down Call.

lookback.

For simplicity, consider a lookback option that pays off min(S).

Theorem 4.10 In a Black-Scholes economy, let W be a lookback option with maturity T.

The payoff at maturity is the minimum realized price during the life of the option: min(S).

Then, there exists a quasi-static single-maturity replication.

Proof. Let m be the current minimum price. At expiry, the lookback will payoff

m - bin(K)dK (4.2)

where bin(K) is the payoff of a one-touch down binary struck at K. Thus, our replicating

portfolio is a zero coupon bond with face value m and dK one-touch binary options struck

at K.

We can calculate the adjusted payoff of the lookback by adding the adjusted payoffs of

the bond and binaries. The adjusted payoff of the bond is its face value, and the adjusted

payoff of a one-touch binary with barrier K is (from (3.1)):

f(S 0 if ST > K,

1 + (ST/H)P if ST < K



Consequently, the adjusted payoff of a lookback option is:

flb(ST) = m - fbi(K)(ST)dK (4.3)

where fib(') and fbin(K)(-) are the adjusted payoffs for lookback and binary options respec-

tively.

Note that the adjusted payoff of a binary struck at K is zero for values above K.

Therefore:

fom fbin(K)(ST)dK = { 1 [ + (-)P] dKo~0

for ST < m

for ST > m.
(4.4)

The integral term depends upon the value of p. In particular:

KST P]

for p = 1

for p 1
(4.5)

where c = r - p. Combining (4.3), (4.4), and (4.5), we find the adjusted payoff of a lookback

for p $ 1 (see Figure 4-8) to be:

flb(ST) = S{ - ST((m/ST)2ec/ 2 - 1)

and for p = 1, the adjusted payoff is:

fib(ST) = ST
m

- STln(m/ST) for ST < m

for ST > m
(4.7)

For p = 0 (i.e. 2c = a2 ), the above payoff simplifies to:

(4.8)

In this case, the adjusted payoff is linear. Note that in all cases, the adjusted payoff is a

function of m. g

r[1 +
m - ST + ST In(m/ST)

dK = l((M2  1)
m - ST + ST•((m/S)2c/T - 1)

for ST < m

for ST > m
(4.6)

fib (ST) = 2ST - m for ST < m

m for ST > m.



Adjusted Payoff for a Lookback
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Figure 4-8: Adjusted payoffs for Lookback (r = 0.05, p = 0.03, a = .15, m = 100).

4.5.1 Hedging

As shown in (4.2), a lookback is actually a continuum of binary options. Our hedging

strategies require us to rebalance every time we hit a barrier, which happens every time the

minimum changes. Therefore, to hedge a lookback, we will need to rebalance an infinite

number of times.

This strategy is a quasi-static strategy. Rebalancing is certainly less frequent than in a

continuous rebalancing strategy. In fact, the set of points where the minimum changes is

almost certainly an uncountable set of measure zero2 . In any practical implementation, the

problem will be discretized, and rebalancing will occur at strikes of high liquidity.

4.5.2 Lookback Variants

Lookbacks comes in many variants, and our techniques are applicable to many of them.

In the following list, we give several variants and show how they may be hedged. Let

mT = min(S) denote the minimum realized stock at expiry, and let ST denote the price at

expiry.

* Lookback call. The final payoff is ST - mT. The replication involves buying the

underlying and shorting the lookback.

2In Harrison[25], it is shown that the set of times where the running minimum of a Brownian motion
changes value is (almost surely) an uncountable set of measure zero.
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* Put on the Minimum. The final payoff is max(K - mT, 0). Let m denote the

current achieved minimum. The replicating portfolio is:

max(K - m, 0) + j bin(S)dS

The adjusted payoff is:

futn = fib(with m = K) if m > K,

K - m+ fib if m < K

where fib is the adjusted payoff of a lookback from (4.6). In the first case, we substitute

m = K in the formula for the adjusted payoff. Note that the adjusted payoff is fixed

for m > K. Our hedge is static until the minimum goes below K, after which we need

to rebalance at each new minimum.

* Forward Starting Lookbacks. These lookbacks pay m 1 2, the minimum realized

price in the window from time T1 to the maturity date T2. In this situation, we can

combine the methods from forward-starting options and lookbacks. At time T1, we

can value the lookback option with maturity T2 as LB(S 1).

At initiation, we purchase a portfolio of European options with payoff LB(S 1) at time

T 1. At time T1, we use the proceeds of the payoff to hedge the lookback as previously

described. If LB(S 1 ) = S1 x n(-) where n(-) is independent of S1, then the initial hedge

reduces to the purchase of n(-)e -dT 1 shares. Once again, dividends are re-invested to

time T1 at which point the shares are sold and the lookback is hedged as before.

A similar analysis can be applied to the lookbacks that involve the maximum. We leave

it to the reader to solve the analagous problem.



Chapter 5

Replication with Time-Dependent

Drift

In this chapter, we will study static replication where the drift is time-dependent.' By

drift, we mean the expected change in the risk-neutral process (r - p) as given in (2.35).

We should emphasize that we are looking at strictly time-dependent drift. The drift is not

stochastic.

Static replication with time-dependent drift is equivalent to several other interesting

problems. We will demonstrate that a non-flat boundary condition can be converted into

an equivalent situation with a flat boundary and time-dependent drift. In addition, the

issue of time-dependent volatility is reducible to time-dependent drift. Thus, we will focus

our efforts on time-dependent drift with the knowledge that our results will generalize to

non-flat boundaries and time-dependent volatility.

This chapter is organized as follows. We begin by showing the equivalence of flat bound-

aries and time-dependent volatility to time-dependent drift. Subsequently, we will study

static replication with time-dependent drift.

5.1 Non-Flat Boundaries

In this section, we examine non-flat boundaries. By a change of variable, we can convert a

non-flat boundary into a flat boundary with a different drift component. We will assume the

1Technically, the Black-Scholes model assumes constant drift. However, the model can easily be extended
to time-dependent drift (see Merton[36]).



boundary curve is both positive and differentiable over a compact set. These assumptions

are necessary to prevent infinite drifts.

Again, we will examine securities with down-barriers. The same techniques can be

applied to up-barriers. We will consider very robust down-barrier claims. In particular, we

allow the down-barrier claim to have an arbitrary continuous payoff at the first passage time

to the barrier and, if the barrier is never reached, the down-barrier claim has an arbitrary

payoff at maturity. Note that down-barrier claim only has one payoff: either at the first

passage time or at maturity.

Theorem 5.1 In a Black-Scholes economy with an underlying stock S, let W be a down-

barrier claim on S with an arbitrary non-flat boundary, which is positive and differentiable.

Then, there exists a derivative security Q and a down-barrier claim X on Q such that

W and X are equivalent (i.e. the payoff of W and X are the same in all states of the

world).

Proof. We specify the payoff of W by:

g(ST)

if ST = B(T) and r < T,

if ST > B(T).

where f is the payoff at the boundary, g is the payoff at maturity,

which is positive and differentiable over [0, T].

Let Qt = D(t)St where D(t) = BT). Since B(t) is positive,

itself is a derivative security. By the Black-Scholes methodology,

the underlying stock and bonds.

Then, let X be a down-barrier claim on Q with payoff:

= g(QT)

and B(.) is the boundary,

D(t) exists. Note that Q

Q can be replicated from

if QT = H and r < T,

if QT > H.

where H = B(T). Thus, X has a flat barrier. By inspection, W and X have the same

payoff in all states of the world. I

As stated, the preceding theorem does not seem remarkable. The interesting case arises

when Q and S are conveniently related. In particular, exponential barriers are one such

special case.



Corollary 5.2 In a Black-Scholes economy, let W be a down-barrier claim with maturity

T and exponential barrier Hek(T-t). Then, there exists a one-stage single-maturity static

replication for W.

Proof. Let S be the underlying stock for W. The risk-neutral diffusion of S is given by:

dS,/S, = cdt + odZ

where c = r - p.

Apply the construction from Theorem 5.1. Thus, D(t) = e- k(T- t ). By Ito's Lemma, the

dynamics of Q are:

D(t)dS, + StD'(t)dt
StD(t)

= (c + t))dt + odZ
D(t)

(c + k)dt + adZ.

Hence, Q follows a lognormal diffusion. From Theorem 3.7, there is a one-stage single-

maturity static replication of X. Observe that QT = ST, and all replicas have maturity T.

The replicas for X (with underlying Q) can be used as replicas for W (with underlying S).

Therefore, the static replication from Theorem 3.7 can be applied to replicate W. N

As an example, consider a down-and-in call on the underlying stock S with boundary

B(t) = He- ('r - )(T - t) and strike K > H. Then, Qt = e(r-P)(w-t)S t (i.e. Q is the forward

price of S). The barrier for Q is H, the risk-neutral drift is c + k = 0 and adjusted payoff

(from Theorem 3.2) is:

f(Q) = I0  if QT > H,

K max(H 2/K - QT, 0) if QT < H.

The forward price equals the stock price at maturity, so we have the identical replica for S.

To summarize, the down-and-in call on S with boundary He- ( r - p)(T - t) is equivalent

to a down-and-in call on the forward price with a flat boundary H. Furthermore, this

down-and-in call can be statically replicated with a single European put.

The observant reader will notice that the key property of exponential boundaries is:

D(t) is a constant. Thus, the drift of Q remains constant, which preserves the symmetry in
D(t)



the lognormal propagator. This feature is unique to exponential boundaries. In general, the

conversion of a non-flat boundary to a flat boundary will introduce time-dependent drift.

5.2 Time-Dependent Volatility

We can convert between time-dependent volatility and time-dependent drift by using time-

scaling. In essence, we stretch or shrink time, so that the volatility of the risk-neutral

diffusion becomes constant. However, to maintain the same distribution, we will need to

modify the drift. Usually, this entails making the drift time-dependent.

Suppose we have the following risk-neutral diffusion process:

dSt/St = c(t)dt + a(t)dZt

We assume that a(t) > 0 for all t. Our goal is to rescale time, so that the volatility is a

constant r > 0. Define the monotone increasing function F(t):

F(O) = 0; dF(t) = 2 dt&2

F represents our rescaling of time. Clearly, F is strictly monotone increasing and continuous,

and thus, a bijection. Let

e(F(t))= 2(t) c(t)

Then,

dSF(t)/SF(t) = 6(F(t))dF(t)+ ±dZF(t)

For notation convenience, we write T = F(t). Then, our new diffusion process is:

dST/ST = e(T)dT + &dZT (5.1)

One special case occurs when -t) is a constant. In that case, E(.) is a constant. The

diffusion in (5.1) has both constant drift and volatility. Thus, we can apply existing static

replication techniques.

Remark: The drift component c(t) is the difference betwen the interest rate r(t) and the



dividend rate p(t). It is natural to rescale r(.) and p(.) such that:

-2 -2

f(F(t))- r(t); fi(F(t)) p(t)

Under this rescaling, f(.) is the appropriate discount factor under time measure T.

5.3 Time-Dependent Drift

In this section, we will examine time-dependent drift. In the preceding sections, we showed

that options with non-flat barriers and time-dependent volatility could be converted to

equivalent options with flat barriers and constant volatility. Thus, it suffices to examine

time-dependent drift with a flat barrier and constant volatility.

We will demonstrate that one-stage single-maturity replication is impossible for time-

dependent drift. Nevertheless, we will show many-stage single-maturity and one-stage

multiple-maturity static replications are possible for time-dependent drift. These schemes

are very similiar to the static replication of partial barriers and forward starting barriers.

5.3.1 Impossibility of One-Stage Single-Maturity Static Replication

We prove the impossibility of one-stage single-maturity static replication for piecewise con-

stant drift. Since any non-constant drift is the limiting process of a piecewise constant

process, this impossibility results holds for any arbitrary non-constant drifts. We begin

with the following theorem regarding piecewise constant drift.

Theorem 5.3 In a Black-Scholes economy with piecewise constant time-dependent drift,

let W be a barrier option with a barrier H. If the drift differs in at least two points, then

there does not exist a one-stage single-maturity replication.

Proof. For our purposes, it suffices to consider only the last two regions of piecewise

constant drift. Let To and T1 denote the last two times when the drift changes, and let

T2 denote the maturity of W (see Figure 5-1). We denote the drift between time To and

T1 by cl and the drift between time To and T1 by c2. We will prove that no one-stage

single-maturity replication can exist starting at time To. Since it is possible to reach To

without reaching the barrier, there cannot exist a one-stage single-maturity replication for

W.



To TT2

Figure 5-1: Time Seperation for Piecewise Constant Drift.

We proceed with proof by contradiction. Suppose a one-stage single-maturity replication

exists for W. Clearly, the replicas must have maturity at time T2. Let R denote the replicas

that occur at time T2.

Now, suppose we reach time T1 without reaching the barrier. For the remaining time,

the drift is constant c2. We know the unique static hedge portfolio for replicating the barrier

option (as given in Chapter 3). Therefore, R must match this portfolio. Since we never

traded, this R must be our portfolio at time To. Note that R is independent of cl. Clearly,

this is impossible. It is easy to verify that our replicas will fail at times between To and T1.

Therefore, no one-stage single-maturity replication can exist. I

This result has suprising implications regarding tree methods (i.e. the binomial model).

We can incorporate non-constant drift into the binomial model in several ways. One method

(due to Dupire[22]) is to use trinomial trees. Another method is to vary the vertical spacing

of the tree (a variant of Derman and Kani[20]). In these modified trees, we can apply

the forward chaining methodology from section §3.4.3. For any given tree, we will always

find adjusted payoffs that provide exact replications.2 However, the adjusted payoffs fail

to converge. As we take finer refinements of the tree, we will observe the adjusted payoffs

to exhibit non-convergent behavior (such as wide oscillations or unbounded growth). The

important lesson to be learned is that ideas or methods which work in a tree may not

necessary work in the continuous limit. It is always necessary to verify convergence.

For some added intuition, the Appendix demonstrates how the construction of the static

replication given in the Appendix of Chapter 3 fails when the drift is time-dependent.

2 Finding the adjusted payoffs involves solving a linear system of equations which has full rank. Therefore,
an unique solution exists.

Drift= 

ci

Drift= 

c2



5.3.2 Existence of Static Replication Schemes

In this section, we will show the existence of static replication schemes for barrier options

under time-dependent volatility. In particular, we will focus on piecewise constant time-

dependent drift. As before, we will consider down options and leave it to reader to generalize

to up options.

Theorem 5.4 In a Black-Scholes economy with n-period piecewise constant time-dependent

drift, let W be a down knock out option with barrier H. Then, there exists a n-stage single-

maturity static replication.

Proof. We will use induction. Our inductive hypothesis is the statement of the theorem

with one additional strengthening. If the option does not knock out, then the number of

trades is at most n - 1.

For n = 1, we can simply use Theorem 3.2. If the option does not knock out, then there

are zero rebalancing.

For n > 1, let T2 denote the maturity of the W and let T1 denote the time when the

drift last changed. Hence, the drift is a constant c from time T1 to T2 . Consider a barrier

option with maturity T1 and the following payoff:

SV(Si) if S1 > H,
f(S)= 0 ifS(5.2)0 if S, < H

where V(S 1) is the price of W of at time T1 with spot S1. Since the remaining drift is

constant, we can price W using standard methods.

Let W' be a down knock out barrier option with maturity T1, barrier H, and payoff

f. Since W' has n - 1 periods of piecewise constant volatility, we can apply the inductive

hypothesis. Thus, we can apply the static replication of W' until time T1. If W' has

knocked out, then W has also knocked out. Otherwise, if W' reaches time T1 without

reaching the barrier, we can uses the payoff of W' to construct the static replication of W

in the remaining period. W' used at most n - 2 rebalances, so we can trade once at T1 and

again at the first passage time to the barrier, if necessary. The total number of rebalances

is at most n. g

Using in-out parity, we get the following corollary.



Corollary 5.5 In a Black-Scholes economy with n-period piecewise constant time-dependent

drift, let W be a down knock in option with barrier H. Then, there exists a n-stage single-

maturity static replication.

We can also perform a static replication using one-stage multiple-maturities.

Theorem 5.6 In a Black-Scholes economy with n-period piecewise constant time-dependent

drift, let W be a down knock out option with barrier H. Then, there exists a one-stage n-

maturity static replication.

Proof. We will use induction. Our inductive hypothesis is the statement of theorem with

the following additional strengthening. The maturity of our replicas only occur at times

where the drift changes or at maturity. For n = 1, apply Theorem 3.2.

For n > 1, let To denote the current time and T1 be the time when the drift first changes.

Thus, the drifts starts at a constant co and changes at time T1 to a constant cl.

Suppose we alter the drift, so that the drift between To and T1 was actually cl. Then, we

would have an n - 1 period piecewise constant drift. We can apply the inductive hypothesis

to create a one-stage (n - 1)-maturity static replication under this altered process. Let R

denote the set of replicas. Note that the replicas in R mature after time T1.

Now, let's return to the true drift process which has drift co from time To to T1. If we ever

reach time T1, then we can uses the replicas in R to form a one-stage n - 1 maturity static

replication. However, at times before T1, the replicas in R are not appropriate. By adding

an additional replica which matures at time T1, we will provide the necessary correction.

Let

g(S1) = V(S1)

where V is the value of the replicas in R at time T1 with spot S1.

For the reflection in Lemma 3.1 to be valid, we would like our payoffs to be:

f (SI) g(S 1 ) if S, > H,

-) (SI/H)Pg(H2 /S 1) if S1 < H

Therefore, let R' be a portfolio of European options with maturity T, and payoff:

f(SI) =i0 if S, > H,

S-(S 1IH)Pg(H/SI,) - g(H) if S, < H



We have constructed f such that the portfolio of R and R' will have value f(S 1) at time

T1. Therefore, if we ever reach the barrier before time T1. Our combined portfolio is worth

zero and we can liquidate.

If we reach time T1 without reaching the barrier, R' will expire out-of-the-money, and we

will be left with R, which are create a static replication after time T1. Hence, our replication

strategy uses n-maturities. n

Again, we can use in-out parity to obtain:

Corollary 5.7 In a Black-Scholes economy with n-period piecewise constant time-dependent

drift, let W be a down knock in option with barrier H. Then, there exists a one-stage n-

maturity static replication.

Hence, we have showed two different static replications for piecewise constant drift.

Among the schemes, there is a clear tradeoff between more replicas at different maturities

and additional rebalances. As the number of piecewise constant period increase, the com-

plexity of our replication grows. In practice, we will need the drift to be fairly stable, or

else static replication will not trade substantially less than dynamic schemes.



Appendix

Impossibility of Replicating Arrow-Debreau Securities under Time Depen-

dent Drift

We follow the argument given in the Appendix of Chapter 3. Suppose that p is time

dependent. Differentiating (3.14) with respect to t and setting equal to zero, we get:

-2a021n(ST) + 21(t)ln(ST/H) + 2p'(t)tln(STIH)

S2a 21 Q(ST) F'(ST)
= ·2e F(ST) + 2p(t)1n(F(ST)/H)2p'(t)tln(F(ST)/H)

Solving for Q(ST), we get:

Q(ST) = (ST/F(ST))-1+(P(t)+p'()t)/ 2  1 (5.3)
F'(ST)

By definition, Q(S) must be time-invariant. Therefore,

p(t)+ IL'(t)t = k

for some constant k. It is easy to show the only solution is I(t) = k (i.e. the drift must be

constant). Thus, we cannot statically replicate Arrow-Debreaus with time-dependent drift

as we did in the Appendix of Chapter 3.



Chapter 6

Approximate Replication

In this chapter, we will examine static replication as a practical technique. Up till this

point, we have been interested in perfect replication (i.e. a strategy with zero hedging

error). Unfortunately, this perfection has a cost, in that the exact replicating portfolio is

often impractical or impossible to achieve in reality. We will attempt to trade off some of

this perfection for a more pragmatic strategy.

6.1 Problem Statement

For simplicity, we will examine the static replication of a down-and-in call, whose strike is

above the barrier (i.e. an out-of-the-money barrier). This option is, perhaps, the simpliest

option we would care to examine. Thus, we would hope that its static replication is practical.

In Chapter 3, we derived the perfect static replication for the down-and-in call. For

r $ p, the payoff is non-linear, and thus, we would need an infinite number of European

options to exactly replicate this payoff. Given the transaction costs for options, we prefer

not to use many vanilla options to replicate a single barrier option. Our first task is to

see how well can replicate using only one vanilla option. Our next goal is to test to the

stability of our replication under a change in volatility. All replication schemes are sensitive

to volatility, and we would like to address our exposure. During changes in volatility, static

replications may have advantages over traditional dynamic methods.



6.2 Replication Error

In this section, we consider the important question: how do we measure replication error?

To help motivate our choice, let's review our hedging strategy. The only time we trade

is at the barrier. In addition, our replicating portfolio has non-zero payoff only below the

barrier.' Thus, the only points of interest are our rebalancing points (i.e. when the stock

price reaches the barrier). If we never reach the barrier, both our hedge portfolio and the

down-and-in call expire worthless.

To measure replicating error, we use the following:

E = max e-rtIDIC(H,T - t) - Hedge(H,T - t)l (6.1)
O<t<T

where H is the barrier, T is the time to maturity, and DIC(S, t) and Hedge(S, t) are the

values of the down-and-in call and hedge portfolio with stock price S and time t.

This measure represents the discounted maximum hedging error. The profit/loss (P/L)

of our hedging strategy is strictly bounded by this number. This choice was further mo-

tivated by two other factors. First, we wanted to take a worst case approach. By using

the maximum deviation, we can put strict bounds on our P/L. Second, this approach re-

quires the fewest additional assumptions. Other measures (such as average or expected

P/L) would require assumptions regarding the "true" probability distribution.

Note that when the stock price equals the barrier, the down-and-in call becomes a

European call. If our hedge portfolio is a single put, our measure becomes:

E = max e-rtlCall(H, Kc, T - t) - N -Put(H, Kp, T - t)l (6.2)
O<t<T

where N denotes the put notional and Kc, Kp are the strikes of the call and put.

6.3 Finding the Optimal Replica

We restrict our replicating portfolio to a single put option, which is specified by the notional

and strike. The optimal replica is the put option that minimizes our replication error, which

is currently specified by (6.1). In the next section, we will use another measure of replication

1Recall that we are looking at out-of-the-money barrier options.



Evolution of True Replica as Cost of Carry Changes
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Figure 6-1: Adjusted Payoffs.

error.

By in-out parity and Table 3.1, the adjusted payoff of a down-and-in call (with an

out-of-the-money barrier) is:

(ST) ()P ((H2/ST) - Kc) if ST < H2 /Kc,

0 if ST > H2 /Kc.

where p = 1 - 2(r-

We denote the difference between the interest rate and the dividend rate (r - p) as the

cost of carry (CoC). In Figure 6-1, we plot the evolution of the adjusted payoff for different

costs of carry. For zero cost of carry, the adjusted payoff is linear, and perfect replication is

possible using a single vanilla put. We will be primarily interested in non-zero cost of carry,

where perfect replication requires an infinite number of options. In particular, our replicas

will be single European put, which is specified by a notional and strike. Note that Bowie

and Carr[7] showed the existence of tight upper and lower bounds using single puts (see

Figure 6-2). Clearly, the lower bound is valid, since it is dominated by the actual replica.

In our strategy, we are only interested when the stock price is above the barrier. For those

prices, the upper bound holds.

In Figure 6-3, we plot the replication error (as defined in (6.1)) as a function of the



Payoffs of True Replica and Upper/Lower Bounds
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Figure 6-2: Adjusted Payoffs of Upper/Lower Bounds and True Replica.

replica, which we restrict to be a single put. Our optimal replica corresponds to the global

minimum. Two dimensional minimization is a numerically difficult problem, and naive

attempts to use MATLAB's optimization package were only partially successful. We were

always able to find a point near the global minimum, but the answer was very sensitive to

the initial guess. The standard MATLAB procedures had a difficult time locating the exact

global minimum. This fact is all the more curious, since the graph does not appear to have

local minimums, but rather only one global minimum.

To avoid these difficulties, we use a common technique from high dimensional optimiza-

tion. We reduce the problem to a one dimensional problem and then show the optimal

solution is near the one dimensional solution. Our search space is sufficiently reduced, so

that we can use a brute force search to find the global minimum. In many cases, the one

dimensional solution is, for all practical purposes, the global minimum.

Our reduction is as follows. We restrict our replicating put to have the same Black

Scholes price as the down-and-in call. For a given strike, we set the notional such that:

S= DIC(S, Kc, T)
Put(S, Kp,T)

This new minimization has only one parameter: the strike. Upon finding the strike that



Replication Error for Different Replicas
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Figure 6-3: Replication Error for Various Linear Replicas.

minimizes the difference, we note the following arbitrage relationship:

N -Put(S, KH,T) - E < DIC(S,K,T) N Put(S, KH,T) + E

where E is the replication error of the one-dimensional optimal solution. To avoid arbitrage,

the price of the down-and-in call must be within the replication error of the price of the

replica.

Given a replica with replication error E, the global best replica must have a smaller

replication error. Therefore, to find the global minimum, we only need to search for replicas

whose price is in the range:

(DIC(S, K, T) - E, DIC(S, K, T) + E)

This area is sufficiently small that a brute force search can be applied.

In Figures 6-4 and 6-5 and Table 6.1, we present the results of this optimization. In

Figure 6-4, we show how the optimal replicas evolve as the cost of carry adjusts. In Figure

6-1, the true replicas have the same "strike" (i.e. zero crossing) and they curve upward as

the cost of carry increases. For the optimal replicas, the notational (i.e. slope) increases,

but the strike decreases as the cost of carry increases. In Table 6.1, we explicitly give the
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Figure 6-4: Payoffs of Optimal Linear Replicas.

replication error for various parameter settings. Note that the replication error is expressed

as a percentage of the Black Scholes price of the down-and-in call and is usually a small

percentage of the option's price.

In Figure 6-5, we compare the true replica against the optimal replica for CoC = 5%.

Clearly, the optimal replica is not the best linear approximation2 to the true replica. In

fact, by simply looking at the graph, one would not expect these two payoffs to be closely

related. The key point to remember is that we are only concerned when the stock price is

at the barrier.

Finding the optimal replica is indeed a fruitful exercise. For example, the optimal

replica demonstratively outperforms the upper and lower bounds. In Figure 6-6, we plot

the difference in price (between the call and the replica) as a function of first passage time

to the barrier for the optimal replica and upper/lower bounds. Clearly, the optimal replica

is vastly superior.

The preceding results seem to indicate the static hedge strategy is indeed feasible. Given

a liquid vanilla option market, it is possible to statically hedge our down-and-in call with a

very small replication error. Since our replica is a single put option, our transactions costs

2Using typical linear approximation methods such as unweighted least squares.
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T .15 .2 .25
.25 2.4% 1.8% 1.4%7
.5 2.8% 2.2% 1.7%
1 3.8% 2.9% 2.5%

(CoC = 3%, Kc = 103)

T .15 .2 .25
.25 1.4% 1.0% 0.8%7
.5 1.8% 1.6% 1.2%
1 2.6% 2.2% 1.9%

(CoC = 3%, Kc = 106)

T .15 .2 .25
.25 3.5% 2.7% 2.1%
.5 4.3% 3.3% 2.8%
1 5.8% 4.5% 3.9%

(CoC = 5%, Kc = 103)

a
T .15 .2 .25
.25 2.1% 1.7% 1.5%
.5 2.8% 2.4% 2.0%
1 4.2% 3.4% 3.0%

(CoC = 5%, Kc = 106)

(Initial Stock Price = 103)

Table 6.1: Replication Error (as a percentage of the down-and-in call's price).

Comparison of True Replica and Optimal Single Replica
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Figure 6-5: Payoffs of True and Optimal Linear Replicas.
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Figure 6-6: Relative Performance of Replicas.

should be modest. Next, we examine volatility sensitivity.

6.4 Shifts in Volatility

In this section, we will examine the exposure of our static hedge to a shift in volatility.

Fundamentally, the diffusion process of the underlying stock is being altered (i.e. the value

of a in (2.1) changes). Thus, we are leaving the Black Scholes model3 in order to better

model "reality." For simplicity, we will make a rather tenuous assumption. In particular,

we will assume the implied volatility of options always matches the instantaneous volatility

of the stock price.4 Thus, as the volatility changes in the diffusion processs, the option price

changes as well. One possible interpretation of this scenario is that volatility risk is not

priced in the market, and changes in volatility are completely unpredicted. Furthermore,

this assumption imposes that implied volatilites are constant across all options. In some

markets, this statement is blantantly false.

3In the Black Scholes model, volatility is assumed to be constant.
4Historically, implied volatilities are often higher than realized volatilities. This fact is often attributed

to additional costs the hedger must bear such as volatility risk, gamma risk, and transaction costs.



Given this interpretation, static replication has another important advantage over dy-

namic approaches. In dynamic schemes, the replicas are the stock and bonds, which have no

volatility sensitivity (assuming a simple delta hedging scheme). Thus, the hedger bears the

full volatility risk.5 In static replication, the replicas are other options, which have volatility

sensitivity. In some cases, the volatility exposures of the replica and original security will

offset, which in effect, reduces the hedger's exposure.

Finally, we need to further characterize the possible changes in volatility. We will take

a rough, but robust, approach and allow volatilities to changes arbitrarily within a given

range. In other words, volatilities are allowed to freely jump within some bounds. By

allowing volatility to change so radically, our approach is a worst case approach, and our

errors should be reliable bounds.

6.4.1 Zero Cost of Carry

Zero cost of carry is a very special situation. When r = p, the adjusted payoff (as given

in (6.3)) is independent of o. Thus, the replica is immune to shifts in volatility. In other

words, static hedging has no volatility exposure whatsoever. Indeed, zero cost of carry is

an ideal condition. Not only does the adjusted payoff match that of a European put, but

the replica is immune to volatility shifts.

For most underlying securities, zero cost of carry is rare. One possible occurence would

be in foreign exchange, when two countries have similiar interest rates. Another possibility

are options on forwards. By construction, forwards have zero of cost of carry. In addition,

if the cost of carry is close to very small (especially when compared to 02), the benevolent

properties of zero cost of carry are closely preserved.

6.4.2 Non-Zero Cost of Carry

In Figure 6-7, we plot the adjusted payoffs for different values of implied volatility. We

consider volatility shift of ±10% from the initial value of 15%. To create perfect replication,

our payoff would have to match the adjusted payoff of the current volatility. Since volatility

changes, this task is impossible." In our model, even with an arbitrary number of European

5The hedger could try to reduce his risk by hedging his vega exposure with other options. In doing so, he
uses options to hedge volatility, and stocks and bonds to hedge his remaining exposure. In static replication,
we attempt to hedge all his exposures (vega, delta, gamma) with a single replica.

6Recall the uniqueness of the adjusted payoff.



Adjusted Payoffs for Different Volatilities
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(r = 0.05, p = 0.0, T = .25, K, = 103,)

Figure 6-7: Adjusted Payoffs as a Function of Volatility.

replicas, it is impossible to create perfect replication. 7

Again, we need a measure of our replication error. We will use

E = max max e-r•tDIC(H,T - t,a) - Hedge(H,T - t, a)l (6.4)
min <_•am O<t<T

where amin,, ma are lower and upper bounds on volatility and DIC(.), Hedge(.) are pricing

formulas for the down-and-in call and the hedge portfolio.

In Table 6.2, we give two numbers for each parameter setting. The first number is the

replication error (6.4) of our optimized replicas from §6.3 (i.e. the same replicas used to

generate Table 6.1 are used in Table 6.2). We express this number as percentage of the

price of the down-and-in call. The second number is a crude measure of volatility exposure

to an unhedged option:

max(IDIC(S, T, ami,) - DIC(S, T, a)I, IDIC(S, T, max) - DIC(S, T, a)I) (6.5)
DIC(S,T,a)

7In fact, it is still an open question: what is the optimal replica (allowing for non-linear adjusted payoffs)?
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a
T .15 .2 .25
.25 9.6% 24% 6.0% 19% 4.0% 17%
.5 11% 18% 6.8% 15% 5.5% 14%
1 14% 14% 9.4% 13% 6.9% 12%

(CoC = 3%, Kc = 103)

T .15 .2 .25
.25 15% 34% 6.7% 26% 4.6% 22%
.5 13% 24% 7.3% 19% 5.4% 17%
1 15% 17% 9.5% 15% 7.2% 14%

T .15 .2 .25
.25 18% 23% 10% 19% 6.9% 17%
.5 19% 17% 12% 15% 9.0% 14%
1 24% 14% 16% 12% 12% 11%

(CoC = 5%, Kc = 103)

T .15 .2 .25
.25 22% 34% 12% 25% 7.9% 21%
.5 22% 23% 13% 18% 9.4% 16%
1 25% 16% 16% 14% 12% 13%

(CoC = 3%, Kc = 106) (CoC = 5%, Kc = 106)

(Initial Stock Price = 103)

Table 6.2: Replication Error (with volatility changes) and Maximum Volatility Exposure.

This number corresponds to percentage exposure (maximized over feasible volatility shifts)

due to volatility changes at the given stock price.

As expected, our errors are much worse than without volatility shifts. For CoC=3% or

T = .25, the original optimized replicas perform reasonably well. There is a roughly 50%

reduction in the volatility exposure over the pure volatility exposure. However, for CoC=5%

and T > .5, the replicas did not provide much in terms of volatility exposure. Often, the

replicating error was substantially worse that the given exposure. This fact indicates that

for high cost of carry, a linear replica may be insufficient.

One way to improve our replicating error is to optimize our replicating put while as-

suming the possibility of volatility shifts. In Table 6.3, we present the replicating error for

replicas that are optimized under measure (6.4). Overall, the new replicating errors are

marginally better (a few percentage points).

This concludes our computational study of replicating a (out-of-the-money barrier)

down-and-in call with a single put. These preliminary results do indicate that static repli-

cation may be a feasible strategy, especially in low cost-of-carry markets. Certainly, there

is substantial room for additional tests and experiments, which we leave for future research.



T .15 .2 .25
.25 9.4% 5.5% 3.9%
.5 10.4% 6.8% 4.9%
1 12.5% 8.4% 6.2%

(CoC = 3%, Kc = 103)

a
T .15 .2 .25
.25 11.1% 6.5% 4.3%
.5 11.5% 7.2% 5.2%
1 13.5% 8.7% 6.5%

(CoC = 3%, Kc = 106)

T .15 .2 .25
.25 16.2% 9.8% 6.7%
.5 17.9% 11.2% 8.1%
1 21.7% 14.2% 10.6%

(CoC = 5%, Kc = 103)

T .15 .2 .25
.25 19.2% 10.7% 7.3%
.5 19.8% 12.1% 8.7%
1 23.1% 14.9% 11.0%

(CoC = 5%, Kc = 106)

(Initial Stock Price = 103)

Table 6.3: Replication Error Using Volatility Optimized Replicas.
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Chapter 7

Conclusions

In this thesis, we studied the static replication of barrier-type options using plain vanilla

options. The advantages of static replication over the traditional dynamic methods are

fewer transactions and a possible reduction in volatility exposure.

We classified static replications schemes based upon the number of rebalances and num-

ber of maturities in the replicating portfolio. Using this classification, we showed static

replications for single barrier, partial barrier, forward-starting barrier, and double barrier

options. In addition, we showed how rolldown and lookback options could be decomposed

into barrier options, which allowed us to apply static replication methods to these options.

For some options, we showed several static replications schemes, which traded off the num-

ber of rebalances against the number of maturities in the replicating portfolio.

In addition, we showed how to convert options with non-flat barriers into equivalent

options with a flat barrier by modifying the drift. For exponential barriers, this transfor-

mation simply added a constant to the drift. Furthermore, we showed how time-scaling

could be used to convert from time-dependent volatility to time-dependent drift. Under

time-dependent drift, we showed the impossibility of one-stage single-maturity static repli-

cation, but also showed the existence of other types of static replication.

Finally, we presented a computational study of static replication. Under the right condi-

tions, we found static replications schemes that were simple (used only one option) and had

very small hedging errors. Further studies need to be completed to test if static replication

is truly pragmatic.
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