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Abstract

In this thesis we address the relationship of geometric and chemical structure of
conjugated molecules and polymers to electronic and optical properties. It is a cen-
tral question to the problem of characterization and optimization of the nonlinear
responses of these materials, which are potential candidates for devices in the new
technology of opto-electronics and photonics. Specifically, the effects of conforma-
tional disorder on conjugated polymers are studied with an analytical model as well
as in simulations. The implications on the conjugation length and the scaling of
cubic nonlinearities with the number of double bonds are compared with recent ex-
periments, in which, for the first time problems with solubilities and synthesis have
been overcome and the saturation observed.

The effects of an applied field on polyenes with donor-acceptor end groups, where
the second order response does not vanish, are examined, to elucidate the origins
of a recent proposition, namely that the internal field of the molecule (due to the
donor-acceptor as well as the applied electric field) controls its structure and hence
the optical response in a simple manner. Both finite and infinitely long systems are
studied. The effect of this field to the eigenvalues and eigenstates is dramatic in the
infinite system. For finite even membered rings, we find that the field favors the
bond alternating chain, and that the critical length where this configuration becomes
the stable one, decreases with the field. Only the odd membered radicals, show the
simple behavior of structure and optical response proposed.

Finally, a theoretical study of harmonic light scattering (HLS), a reliable and
advantageous technique for the measurement of the second polarizability of molecules
in solution is presented. The consequences of observing HLS from centrosymmetric
molecules are discussed. We propose it is a third order effect, involving -y with the



third field produced by the solvent.
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Chapter 1

Introduction

The quest for suitable materials to be used in devices in opto-electronics and photon-

ics has been of interdisciplinary interest, in chemistry, physics, and materials science.

Since photons can carry information faster, more efficiently and over larger distances

than electrons, systems that use light as a carrier of information are of great interest to

information and communication technologies. Materials which exhibit high nonlinear

optical (NLO) responses are potential candidates for such devices, because they offer

the possibility of high speed processing, transmission and storage of data. The non-

linear optical effects, second and third order effects, provide possibilities for optical

frequency conversion, optical switching, and optical memory operations [1, 2, 3, 4, 5].

In particular, organic conjugated molecules and polymers have been special can-

didates as elements in solid-state devices due to their high second and third order re-

sponses [6, 7]. They have emerged as a dominant class of photonic materials because

they exhibit large and ultra-fast NLO responses, associated with their delocalized 7r

electrons. In addition, they offer advantages to their inorganic counterparts such as

thermal and chemical stability, and more possibilities for molecular engineering due

to their versatility, either at the backbone or by suitable substitution of side groups

or side chains.

Nonlinear optical processes occur when a medium is subjected to an intense electric

field E, which polarizes the medium [8, 9]. If the molecule or material lacks a center of

symmetry, it is the second-order NLO effects that are of interest; otherwise the first



nonvanishing contribution comes from the third-order contribution. In the dipolar

approximation, the induced polarization by an external field is usually written as

P =a-E+/ý :EE + y EEE

where 3 is a third rank tensor referred to as the hyperpolarizability and y a fourth rank

tensor, the second hyperpolarizability. P and y constitute the molecular nonlinear

responses.

The focus of research then falls broadly in two categories: the systematic charac-

terization of the nonlinear optical properties of materials, as well as the development

of reliable experimental techniques for the accurate measurement of NLO properties.

The first category encompasses designing optimization strategies of the nonlinear re-

sponses. Central to the problem of optimization lies the question of the relation

between structure, both chemical and geometric, to the electronic and optical prop-

erties, linear and non-linear. Understanding the relationship between geometric and

electronic structure enhances the optimization of design strategies. Excellent reviews

of theoretical approaches from solid state to quantum chemistry descriptions to the

study of the excited states and the spectroscopy of conjugated systems are found

elsewhere [10, 11].

In particular, for second order effects (in systems without a center of symmetry),

maximum 0 is believed to occur in systems with large difference of dipole moment

between the first excited and the ground state. Thus, the state-of-the art molecules

were of the form D-wr-A, where an electron donating group, D, was separated from an

electron accepting group, A, by a 7r conjugated system. On the other hand, for third

order effects (centrosymmetric systems), the structural requirements are different.

The focus has been on the extent of the 7r conjugation, the effective conjugation length.

In both cases, the fundamental question then becomes what limits the magnitude of

the nonlinear response.

In this thesis, two essential issues, central to each of the two subcategories just

mentioned have been addressed: (a) effects of geometry and conformation changes



to the electronic properties of conjugated systems and thus implications to the effec-

tive conjugation length and subsequently to optical properties, and (b) a systematic

theoretical study to investigate a recent proposition [12] that / could be correlated

with a molecular structural parameter, the bond length alternation, which would then

provide the best way to tune / systematically in donor acceptor systems. Finally,

the last chapter deals with an experimental technique, reintroduced recently for the

measurement of 3, namely hyper-Rayleigh light scattering. As such, this work falls

in the second broad category of research defined above.

In Chapter 2, the effect of conformational disorder on the electronic and optical

properties of conjugated polymers is studied. The magnitude of the cubic nonlinearity

y and its scaling with the number of double bonds of polyenes, the model conjugated

system, lie at the heart of understanding the behavior of these systems. Only recently

have problems with synthesis and solubilities of conjugated polyenes been overcome

and the saturation of y with chain length been observed for the first time [13]. The

onset of this saturation occurs for chain lengths considerably longer than predicted

from previous theory, which considered idealized planar, all-trans molecules. We find

that, even if deviations from planar configurations are small, the large angular breaks,

although rare, are determinative. As a result, the conjugated chain can be described as

a succession of relatively long, almost planar segments separated by abrupt breaks or

flips. It is these flips that dominate the optical properties. Our calculated probability

distribution for the segments agrees with results from numerical simulations. When

we compare our predictions to the experiment we find that our theory provides better

agreement than previous models.

In Chapter 3, the effect of the internal molecular field produced by donor-acceptor

groups on the chemical and electronic structure of substituted polyenes is investigated.

Large systems are considered through an analytically tractable model. The effect of

this field to the eigenvalues and eigenstates is dramatic. It is found to drive the

chemical and electronic structure through a structurally observable parameter, the

bond order alternation. When we study finite systems, we find that the results of

Ref. [12] hold only for odd membered radicals.



In Chapter 4, harmonic light scattering (HLS) of centrosymmetric molecules in

solution is studied. The motivation lies in recent propositions of HLS as an ad-

vantageous technique for the determination of the hyperpolarizability / of nonlinear

optical materials [14, 15, 16]. Unlike the most frequently used method of electric-field

induced second harmonic generation (EFISHG), it offers the possibility of experi-

mentally measuring the first hyperpolarizability 0 of molecules with no ground state

permanent dipole moment or of ionic molecules in solution. In the first category lies

a new class of molecules which are promising candidates for materials for NLO appli-

cations: octupolar molecules; in the second category lie synthetic polymers with NLO

chromophores and natural proteins. Both categories are of interest for maximizing the

microscopic and macroscopic nonlinear response. We study HLS of centrosymmetric

molecules, whose / vanishes identically, and propose that it arises from contributions

of the second hyperpolarizability y and the reaction solvent field. The consequences of

this for the determination of / for all types of molecules are discussed. The possibility

of hyper-Raman scattering is also examined.
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Chapter 2

Conformational Disorder of

Conjugated Polymers: Effects on

the Conjugation Length and

Nonlinear Optical Properties

2.1 Introduction

Conjugated polymers have interesting and, potentially, technologically important

electrical and optical properties, such as high conductivity when oxidized, electro-

luminescence, and large, as well as ultrafast, non-linear susceptibilities [1, 2]. Modern

technology focuses on such properties as electrical conductivity and nonlinear op-

tical responses. Organic based nonlinear optical materials are intended for optical

switches, light emitting diodes, amplifiers for optical communication and miniature

harmonic generators.

The prototype of such conjugated polymer molecules are the polyenes, ranging

from small molecules such as hexatriene, octatetraene to carotenes and, finally, to

polyacetylene. Because of their relative simplicity these molecules have been the

focus of much experimental and theoretical work. The optical properties of short



polyenes have been experimentally studied in a series of early papers by Kohler and

co-workers [3], and those of polyacetylene by Heeger et al. and others ([4] and refer-

ences therein). Intermediate sized molecules have been rarely studied: experimentally

because of the difficulty in their synthesis or solubility, and of their instability, and

theoretically, because of computational expense.

In spite of the large body of work, the physical mechanisms underlying certain

observed properties are still poorly understood. It is well known that these systems

owe their remarkable properties in the delocalized r electrons surrounding the chain

backbone, rendering them to virtually 1 dimensional systems. The chains consist of

a series of carbon-carbon bonds (e.g. polyacetylene, polydiacetylene) or of a series

of aromatic rings (e.g. polyphenylenevinylene, polythiophene, polypyrrole). The

electrons occupy two types of orbitals. The a bond electrons, tied in the covalent

C-C bonds along the backbone provide the structural stability and rigidity of the

chains; they play very little part in the optical or conducting properties. Each carbon

atom in the backbone contributes a Pz orbital involved in the i bonds, which form the

extended 7 electron system, responsible for the different properties of the conjugated

polymers in comparison to saturated ones. It is widely accepted that the 7r electron

delocalization length or conjugation length, not necessarily equal to the actual chain

length, governs the electronic and optical properties of conjugated systems. This

length is related to the average overlap between the 7r electron orbitals. Nevertheless,

the processes which limit or enhance delocalization remain unclear. Furthermore,

there is no quantitative agreement on the dependence of properties on the conjugation

length.

Theoretical studies of electronic structure and spectra of short polyenes have been

carried out by a number of workers [5] using a variety of semi-empirical methods

ranging from the Hueckel model (i.e. non-interacting 7 electrons) to the Pariser-Parr-

Pople (PPP) model (interacting 7 electrons including extended interactions). While

the fully interacting model gives an excellent description of the main features of the

electronic structure, it is difficult to carry out for systems larger than 10-20 double

bonds, and for geometries other than particular ones such as planar all-trans. The



Hueckel model can be solved for any size and geometry in a rather straightforward,

albeit tedious manner. However, one can only expect qualitative results from this

approach. These considerations have led to the polyenes becoming a "laboratory" for

studying one dimensional systems, both theoretically and experimentally.

Ideally, we would like to study the evolution of the optical and electronic properties

of oligomers as a function of the number of double bonds. The goal is to guide chemical

synthesis of new materials for specific technological applications. Unfortunately, this

has been hampered by the inability to synthesize polyene oligomers of known size

and good solubility. The latter property is important for the study of single molecule

properties, independent of intermolecular interactions that occur in films and which

have been absent in all theoretical studies.

Recently remarkable progress in synthesis has led to the discovery of routes to

soluble polyenes with double bonds numbering from , 25 to > 1000. The evolution

of properties with N, the number of double bonds may now be studied. Most emphasis

has been put on understanding the behavior of the third order nonlinear response:

its magnitude and its scaling with the conjugation length.

The general relation between the induced polarization P and the applied electric

field E is

P = XE

where the macroscopic susceptibility X is a material dependent parameter. In non-

linear response, X becomes a field dependent parameter. The polarization induced in

the sample by an external electric field is usually expressed in a power series

P = X(1) - E + X(2) - EE + X(3) - EEE.

X( 1) refers to the linear response and X(3) corresponds to the macroscopic susceptibil-

ity of interest, as centrosymmetric systems have a vanishing X(2) due to symmetry.

It is the first nonlinear susceptibility that is always allowed. It is usually probed

by techniques such as Third Harmonic Generation (THG) where light is emitted at

frequency 3w, from incident radiation of 3 pulses of frequency w. The correspond-



ing microscopic quantity is the molecular second order hyperpolarizability 'y. From

experiments on small polyenes, it is known that the -y of polyenic systems increases

with chain length. Theories show a power law dependence for small N,

- = cN'

where a varies from 3 to 6 according to the model(e.g. [6]). For large N, y is predicted

to grow linearly with N, that is 7/N becomes a constant, but there is no agreement

on the length where saturation occurs.

The first demonstration of the saturation of the third non-linear optical suscepti-

bility, 'y, with increasing N, has been recently reported [7]. Comparison of theory and

experiment is difficult because most theoretical studies have been limited to planar

all-trans polyenes, while we expect molecules in solution to exhibit "disorder" in the

following sense: conformational twists around the single bonds of the backbone will

lead to changes in electronic structure and loss of conjugation. There are two limiting

theoretical models for this effect: (1) relatively few, strongly disruptive twists leading

to a picture of fully conjugated segments of shorter length [8, 9, 10], and (2) relatively

many, weakly disruptive twists leading to a wormlike chain [11, 12, 13]. The concept

of conjugation length can then be defined for both theoretical models. From theory,

we know that, in the case of planar all-trans chains, there is a saturation length, Ns,

at which an optical property, for example 'y, becomes proportional to N. Thus, for

all-trans chains longer than N,,

7(Ns) N

so that the chain acts like N/N, segments of a chain of length N,. For real chains

with imperfections (twists), we may define a conjugation length by comparison to the

perfect all-trans chain; that is a real chain of length N may have the properties of

N/Nc segments of all-trans chains of length NC(Nc < Ns). A more likely realization

is that an ensemble of real chains of length N will have the properties of a proba-

bility distribution PN(L) of all trans-chains of varying length, L. Depending on the



theoretical model one chooses (worm-like coil or disruptive twists), one will find a

different pN (L).

Another problem in the comparison of theory and experiment has been the size

of systems studied. The extrapolation of short-chain results for long chains has been

questioned-also the interpolation from the infinitely-long limit has not proved suc-

cessful.

In this Chapter, we present theoretical studies on long chains to investigate the

effects of conformational disorder on the optical properties, such as y, of long polyene

oligomers. The interplay between conformational and electronic degrees of freedom

is studied, in an effort to elucidate the connection between chain length and conju-

gation length and answer an important question: which process limits delocalization

of 7 electrons. Although we only consider optical properties, the role of chain con-

formation may also be of significance in understanding the transport properties of

conjugated polymers. The relation between the way charges are stored (to achieve

high conductivity doping is essential) and chain conformation is not yet well under-

stood [14].

We study the conformational behavior of a conjugated polyene chain with allowed

rotations around the single bonds. Here, we take into account the electronic transfer

and steric repulsions of the system as the most relevant to our purpose. We propose

that the chain distorts in a fashion to form numerous almost planar segments (or

'flips'), separated by local breaks caused by large relative angles. Specifically, a

number of consecutive double bonds are nearly coplanar with those adjacent until

the following one lies in a plane forming an angle of much greater magnitude than

the previous one. Then we expect its adjacent double bonds to form another planar

segment until a further flip occurs. We.obtain the distribution of such flips, as well as

that of the length segments in the chain, both analytically and numerically. Our model

differs to that of Rossi et al. [10], where they consider a purely phenomenological

Hamiltonian of conjugation and steric interactions to obtain conjugation lengths for

different types of conjugated polymers.

The effects of conformational disorder on the electronic properties of conjugated



polymers has been the focus of various studies [8, 10, 12, 15, 16]. In some cases, the

extent of the effect has been shown theoretically to be small [17], and, since deviations

from planar configurations on these systems are small, they have therefore been ig-

nored. Since small deviations from planarity have little effect on the conjugation, and

large deviations have a great effect, then for the study of non-linear optical properties,

the large deviations, although rare, are determinative. This leads to a model for the

optical properties of the conjugated chain that can be described as relatively long, al-

most planar segments (perhaps "wormlike") separated by abrupt breaks in planarity

("flips"). It is the flips that dominate the optical properties. This is different in spirit

to the work of Soos and Schweizer [11], who consider the chain as "wormlike" without

large rotational defects that break the conjugation. This alternative description chal-

lenges the idea of one effective length as adequate characterization of the properties

of conjugated systems. Our work also differs to that of Kohler et al. [18], where dis-

tributions of conjugation length were varied to best fit measured absorption spectra.

Here, we derive a probability distribution of segments beginning from a microscopic

Hamiltonian, that we believe contains the most relevant interactions of our problem.

This picture leads to an improved explanation of optical properties of long chains as

seen in recent experiments [7].

The previous works considering conformational models are briefly summarized:

Ref [10] considers a purely phenomenological hamiltonian and does not consider op-

tical properties, while the work in Ref [15] involves simulations of a Hueckel Hamilto-

nian which includes rotational degrees of freedom. The focus is mainly on spectrum

modifications and, opposite to Ref. [10] on the fermionic part. Finally, in the work

of Ref [11] only the weak disorder limit is considered, so that only dipole transition

moments are affected and not the energy levels.

We consider systems with alternating single and double bonds. Rotation around

each single bond is allowed; a plane or platelet is associated with each double bond.

Although we choose polyacetylene to illustrate the model, we are not confined to

this system. Any monomeric unit, such as a ring, can be the building block of the

platelet. Each platelet forms an angle 0 with the reference plane of the perfectly
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Figure 2-1: Model system: adjacent platelets form a relative angle 0.

planar chain; adjacent platelets form a relative angle 0 (Figure 2-1). A tight binding

model with modified transfer integrals (to accommodate rotations) is used to describe

the electronic behavior of the system. A torsional potential takes into account steric

effects arising from the rotation of platelets. Electron correlations are ignored at this

level. We show that the 'fragmented' chain constitutes a meaningful picture for these

systems, and apply it to the calculation of optical properties such as the absorption

spectrum, the linear polarizability, a, and the second hyperpolarizability, y. We also

study the effect of conformational disorder for this system through numerical simula-

tions, using a Metropolis type algorithm. We compare our analytical results to those

from the simulations as well as to experiments and show good agreement.

The Chapter is structured as follows: in Section 2.2 we present the microscopic

model Hamiltonian of conjugation and steric interactions. We derive from this Hamil-

tonian the phenomenological term used by Rossi et al. [10] to model torsional motion.

In Sections 2.3 and 2.4 we discuss the picture of the fragmented chain. In Section 2.3

we calculate the number of flips in the chain from the phenomenological model, as well

as the probability distribution of the length of the conjugated segments between flips.

In Section 2.4 we discuss our numerical simulations performed with the original mi-

croscopic Hamiltonian and compare with the analytical results. Finally in Section 2.5

we calculate optical properties based on the results of our model in Section 2.3 and

compare with experiments.

(P



2.2 The model

We study the conformational behavior of a conjugated chain with allowed rotations

around the single bonds, taking into account both the electronic transfer terms and

steric repulsion interactions in the system as the most relevant to our purpose. It is

widely accepted that, due to steric interactions, delocalization of electrons is hindered,

although the manner and extent of this is yet to be fully understood. As noted above,

we propose that a long chain does not distort in a continuous wormlike manner, but

rather, in a disjointed fashion, forming numerous smaller than original length, almost

planar segments (also referred to as 'strings'), separated by sudden, local breaks (or

'flips') caused by large relative angles. Specifically, a number of consecutive platelets

are coplanar (to within a small angle) with those adjacent until the next one lies in

a plane forming an angle of much greater magnitude than the previous ones. Then

the adjacent platelets form another almost planar string until a further flip occurs,

producing a distribution of angles between platelets mainly concentrated around zero,

occurring in clusters, with a few outside of that range. Thus the long chain can be

considered to be a collection of quasi-planar segments separated by large angle flips.

The optical properties are dominated by the distribution of segment lengths; thus the

precise distribution of angles within a segment is unimportant. To substantiate the

proposed picture, we calculate the probability distribution of such breaks or 'flips', as

well as the number and length of planar segments or 'strings' in a chain of total 2N

carbon atoms,and we compare the results with numerical experiments on the same

systems. Within this picture, we are able to account for aspects of the experimental

behavior of the third order polarizability -y of such conjugated systems [7]. The

implication of such an approach suggests that the idea of a single effective length

for a given chain is inadequate. The chain behaves in effect, not as one of smaller

than original length, but as a collection of smaller ones. In this study we neglect

interactions between those segments. Also, the length of these segments may not

be constant, but may change together with the configuration of the chain with time

evolution. However, the ensemble of chains has a stationary probability distribution.



Our simulations, discussed in Section 2.4 are in good quantitative agreement with

this model. Note the similarity of this picture to that of Schweizer who studied linear

optical properties and phase transitions in polymers [13].

We now introduce the microscopic Hamiltonian of our system. A chain of 2N

atoms with one unpaired electron per atom is considered. The chain is treated as a

one dimensional system with 2N sites, each occupied by an atom. The most rele-

vant interactions for our problem are the steric interactions between adjacent groups,

which tend to keep adjacent platelets away from planarity, and the delocalization

of electrons, which favors the planar conformation. The electron-phonon coupling

interaction is explicitly neglected, although bond dimerization is imposed. Electron-

electron interactions are not considered at this stage; however we expect that they

reduce delocalization, thus making the steric effect even more important and our

picture more relevant.

The Hamiltonian

N

H = - [tdCna,lCn,,2 + ts COS(on - On+1)Cno, 2Cn+1a,1
a n=1

N

+ h.c.] - 1 Vo cos(0, - 0n+i) (2.1)
n=1

describes the conjugation and the steric effect. Each of the N unit cells contains two

carbon atoms - a double and a single bond of fixed length. The standard fermionic

operators cn,a (Cnu,a) create(annihilate) an electron of spin a on position a of unit

cell n. t, and td are the electron transfer integrals for single and double bonds respec-

tively. They can be obtained from experimental observation of the band gap through

an electron-phonon coupling model like that of Su-Schrieffer-Heeger [19]. Notice that

transfer across a single bond depends on the relative orientation of the neighboring

platelets. Vo represents an effective steric hindrance energy parameter. If the inter-

action is favorable, as for example in hydrogen bonding cases, Vo > 0; if the steric

interactions are repulsive, then either Vo < 0 or we can consider a term of the form

cos(w - AO) = - cos(AO).

Our model stresses the competition between conjugation and steric interactions.



We should emphasize though that, in contrast to Rossi et al [10], we begin from a

microscopic description instead of using a phenomenological model . Rossi et al study

the role of conformational disorder of such systems with the use of effective potentials,

N

HR = E -E, cos 2(0, - 0n+1) - E, cos(On - 0,n1) (2.2)
n=l

= Hconj + Hster.

The form of the conjugation term agrees with our intuitive understanding: it exhibits

a minimum when the platelets are aligned, and a maximum when they are perpen-

dicular to each other. By a simple change of variables On = On - On+l, with Jacobian

equal to unity, we can transform both Hamiltonians to relative angle of platelets

variables, {i}.

We now derive the phenomenological Hamiltonian (Eq. (2.2)) from the microscopic

Hamiltonian (Eq. (2.1)). Starting from the electronic part of our model(Eq. (2.1)),

through a perturbation expansion for small angles, we derive the angular dependence

for the conjugation energy. Since the first term of Eq. (2.2) represents the change in

conjugation energy caused by a conformational change, this provides justification for

the use of such widely used phenomenological potentials and relates it analytically

to the ratio of transfer integrals. We also show numerically, for all angles, agreement

with the E, value and with the cos(2q) functional dependence.

We assume that all the platelets are aligned with each other except for the two

in position np and np+l i.e.all ,n are set to zero except for those two such that they

form an angle On, = On, - On,+1. Note that if the minimum energy angle is not q = 0,

but qeq, we can expand around !eq instead of 0 = 0. The subsequent argument is

unaffected. Assuming the angles are small enough to allow for an expansion of the

cos q, the first term of the Hamiltonian can be expressed in the following manner:

H = Ho + V (¢)



N

Ht t tH = - {tdc~,lCn,2 + tsCn,2Cn+la,l + h.c.}
a n=l

-2sp Cnpa,2Cnp+10,1 + h.c.

where Ho is the standard tight binding Hamiltonian with known exact analytic solu-

tions for periodic boundary conditions. V(¢) can be viewed as the perturbative effect

of conformational disorder on conjugation and is thus related to the phenomenologi-

cal term of HR. After making the approximation for small angles and requiring it to

hold for all angles ¢,

ts. 2 th.cl< GoIVIGo > = < Gol •• n,2 npa,2Cnp+lo,1 + >

= 2Ec¢2 ' Ec(1 - cos 2¢)

where IGo > is the ground state eigenfunction of the standard Hamiltonian Ho. Ex-

ploiting the periodic boundary conditions, Ho can be diagonalized with the following

operators keeping in mind that there are two carbon atoms per unit cell

Ck ,a a= 1 n e-ikncna,a

k = 27rj/N, j = 0, 1,.., (N - 1)

and a = 1, 2 stands for the position of a carbon atom in the unit cell. Ho now becomes

Ho = - Z(ck,1, Ck, 2 ( 0 td+ te-ik Cka,1

ktd+ taseik 0 ck,2

and can be brought to diagonal form with the standard transformation

T = e i k COS Oka -e i k sin Oka

sin Oka coS Ok i

with
ti sin ktan ak = - sin k (2.3)

td+ ts cos k



and Ok, = 7r/4. The Hamiltonian Ho can be expressed in terms of new operators

H = -_ EEko,ibL,,bko,i
a i=1,2 k

with

Eko,j = (-l)j(td2 + ts2 + 2ttdCOS k) 1/ 2

bkao2
bkU2

T-1 (Ckal
Cka,2

The ground state (Go >= Hk ,,I bk<,10 > where 10 > is the vacuum state, and

bt,1 (Cta, eiak c ,2). By expressing V in terms

obtain the energy correction

of the new operators bka, we

Ec = E cos( k+ k).
k

From Eq. (2.3),

COS ck -

sin ak =

+ cos k
ta

[1 + t2 + 2tstd cos k]/ 2

- sin k
2 1/2 '

[1 + 2 + 2 tstdcos k]t'

Using the trigonometric identity for sums of cosines,

t

2N •k [1

+ cos k

(ti)2 + 2A cos k]1/2

Approximating the sums with integrals, we obtain

t8  1 td td 2  tds
Ec = [ K(r)+ (1 + ) E(r) - (1 + )K(r))]

4e + 1 tsh ts ts

where E(r) and K(r) are the complete elliptic integrals of the first kind and second

and



kind respectively with argument

2[- ]1/2

ts

As the physically relevant range occurs when the ratio r approaches one, we consider

this limiting behavior of the elliptic integrals. For r close to one, K(r) approaches

'n(l __), and E(r) -1n(1 --- ) - 1. After some algebra, we find

+1td
K(r) = ln4 + In( t ) = In4 + 2coth-l( .)

t,

Similarly, E(r) = ln4 + 2tanh-l() - 1. Finally, we set t = , and we obtain

t, ln4 + 2 coth- l ( t )
Ec = t [ + t + 2t 2(lrn4 + 2 coth-l(t)) - t(1 + t) 2]. (2.4)

47 1 + t

We notice immediately the dependence of the conjugation energy per units of td on the

ratio, t, of the transfer integrals. According to standard mean field theories (e.g. [19])

this ratio depends only on the band gap E, and band width Wg of the system

td/ts 1 + Eg/Wg
1 - E /W,

We are thus able to connect our microscopic model to a phenomenological one whose

parameters can be obtained from experimental data. By using the "standard" values

for E, = 1.4 eV and Wg = 10 eV (and t, = 2.15 eV, td = 2.85 eV) for polyenes, we

obtain for Ec/N = 0.015 eV. To check the validity of our approximations, we numer-

ically performed the same calculation with the original Hamiltonian, and obtained

the same value for E,.

Having made the above connections, we can use the HR Hamiltonian of Eq. (2.2)

to study the chain under conformational disorder. Estimates for the effective steric

potential parameter in solution are based on NMR spectroscopy and in the gas phase

on Raman spectroscopy, as well as ab initio or semiempirical calculations. For ex-

ample, for polyacetylene Rossi et al. used the value E, = 1.5 kcal/mol, as estimated



in Ref. [20]. Here, we do not consider any particular system and we take Vo = .026

eV, a room-temperature value. This value should be appropriately changed for each

polymer.

2.3 Fragmentary versus wormlike chain

2.3.1 Calculation of number of flips in a chain

To distinguish between a wormlike and a fragmentary chain, we would like to know

how many abrupt changes occur in equilibrium conformations of the system. The

definition of an abrupt change may seem rather arbitrary, but our results turn out to

be insensitive to its absolute measure within broad limits. Crudely, one can think of

bonds as completely conjugated (Oi - i+ 1 = 0) or completely broken (Oi - '0-1 = 7/2).

We consider a more realistic situation: a "flip" occurs when IOi - 0i+11 > 00. In the

simulations on polyacetylene, discussed in detail in Section 2.4, qo is taken to be

10, 15 and 20 degrees without qualitative difference in the results. We thus proceed

to calculate the probability distribution as well as the most probable number of flips

in a chain of N double bonds, using the HR Hamiltonian (Eq. 2.2).

Our model only includes nearest neighbor interactions- the relative angles of

platelets are thus independent variables. The probability distribution of any angle ii

is
eO(Ec cos 20+E, cos q)

P(¢) =

where 3 = and Z = fJ d eE r cos 20 + E± cos O. For systems which favor a planar

conformation, we expect the angles to be small, so we expand the Hamiltonian around

the minimum q = 0, (if ~eq # 0, an expansion is made around ~q,)

N

HR = Z-Ec(1 - 20,2) - E,(1 - 02/2).
i=1

The angle dependency is usually ignored because its effect on electronic properties is

negligible. We will show however that, no matter how small, these angular deviations



give rise to a new physical picture. A similar approach can be taken for chains with

a minimum configuration other than the perfectly planar one and the qualitative

behavior is the same. The probability distribution now becomes

Me-002 (Es +4Ec)/2

P(¢) = de 2 (E4Ec)/2 (2.5)f", d e- 32(E,+4Ec)/2 '

We can now obtain from Eq. (2.5) the probability of two adjacent platelets being

coplanar, and we find it to be P(0) = 0.72. From the numerical simulations (Sec-

tion 2.4), we also observe approximately 70% of the angles to be around zero. Such

clustering of the relative angles of platelets around zero reinforces the fragmented

chain picture.

We now calculate the most probable number of flips or breaks, m*, in conjugation

in the chain. Consider an open chain, so there are N-1 single bonds. If all platelets

were coplanar, the energy of the system would be

E = -(N - 1)(Es + Ec).

If one flip occurs, then E = -(N - 2)(E, + Ec) - Es cos ¢- Ec cos 2¢. For m flips,

m

E = -(N - m - 1)(E, + Ec) - (E, cos O + E, cos 20/).
i=1

So

Z = ' e(N-m-1)(Es+Ec)/kTe/ •
3  (Es cosoi+Ec cos 2i)cN

m

E Tmm

where C - 1 = (N-m-1)! takes into account the different ways m flips can occur in

N - 1 possible sites. In Figure 2-2, we notice that this distribution of flips agrees

very well with that obtained from the results of numerical experiments described in

detail in Section 2.4.

After making Stirling's approximation, we obtain for the most probable number



o theory
) simulations

2N=30

T=300

o X

o0

0

Figure 2-2:
T = 300 K

Probability distribution of "flips" in a chain of 30 carbon atoms at
from theory and simulations

0o

0.35

0.3

0.25

0.2

15

05

O

E



TinK m*ic m*im
300 3 2
400 4.5 3
600 7 5

Table 2.1: Most probable number of flips in a chain of 30 carbon atoms from theory
and simulation.

of flips , m*,
dTm m*m = 0 = e- (E s+E c)/kT. (2.6)dm N

Since E, is directly related to Vo and Ec to t according to relation (4), our result

is immediately connected to our original model. Note that as the temperature T in-

creases, more flips are expected to occur. Similarly, a longer chain can support more

flips. These results agree with intuitive ideas of increasing disorder with increasing

temperature, as well as higher number of conformational distortions at longer lengths.

Additionally, we can see from the above formula that as N increases, one expects to

find more planar segments (strings), instead of longer ones. So the probability dis-

tribution of lengths of the strings will eventually be independent of N. We compare

the values of the most probable number of flips for a chain of 30 atoms at different

temperatures between predictions of the model and numerical experiments, (see Sec-

tion 2.4), and find relatively good agreement. Since the long chain limit has been

invoked, we expect an even better agreement for longer chains. As can be seen in

table 1, the number of flips is substantial, supporting the idea of a fragmented chain.

2.3.2 Calculation of distribution of length segments, pN(e)

We are also interested in the probability of finding a fully conjugated segment of

length f between flips in the chain. We consider such strings to be fully conjugated

when the angular difference of adjacent platelets is small, i.e.



for all i within the segment. Determining this probability distribution, kPN(f), is

important because it will enable the calculation of experimental physical properties

of these systems, such as the absorption spectrum, the linear polarizability, cr, and

the second hyperpolarizability, y, described in Section 2.5.

In general, for any property, x, its average < x > can be obtained from the

probability distribution p N(f) in the following way: if we consider an ensemble of Z

molecules, each with N double bonds, then

1 1
> = > Z X -= Z E N(f)x(f)

all seg, all mol e

E Z Ntot,seg 0N (j)x (f) (2.7)

where pgN() = N(C)/Ntot,seg, with N(f) the number of segments with length £ in the

ensemble and Ntot,,,seg the total number of segments. Finally,

N =< > E pN()+X(), (2.8)

where < > is 1/N times the average number of segments per molecule or ef .(j)

We now proceed to calculate pN(f). Consider an open chain with N double bonds

and k breaks, or "flips" as defined above, in the N - 1 single bonds so that k + 1

segments constitute the chain. The ith segment has length ni. The probability of

having a segment of length £ in this molecule, is PN(£), is given by

N N N
P:N(1) = MN Zk"

n=1 n2=1 nk+l=l

k+1

6[N - ni] {(nl - 1) + ... + 6(nk+l -1)
i=l

with normalization factor MkN. Recognizing that all terms are equivalent, and using

the exponential form of the delta function we obtain

j27r k+l dO
PkN() = Mk (k + 1) ... exp[iO(N -1 - ni)] 27

n2 nk+1 2



After performing the summations and some algebra,

(N- k - )!

To obtain the normalization factor from N-k pN(e) = 1, we redefine MN =MN(k

1), and use ZEN-k (N--l)! - (N-k1)!-=1 (N-k-f)! = k(N-k-1)!

(N - 1)!(N - k - 1)!
for k O 0

Po" () = 6
N,e.

The total probability of having a segment of length £, is PN(e) multiplied by the

probability of k breaks in a length of N double bonds, which is given by CN-lpN-l-k qk

(CkN- 1 being the same binomial coefficient as previously). Therefore,

N- 1-k k(N - 1 - )! k(N - 1 - k)!(N - 1)!
= Z 1N k((N1) -- 1 pN-l-_q)k
k=l (N -- k)! (N- 1)!(N- 1 - k)!k!

p here corresponds to having two consecutive coplanar platelets, and, similarly, q =

1 - p to having a flip or break in conjugation.

Simplifying the equation and renaming r, = k - 1, we obtain

N(1) = pN-2q N-1-1
k=O P

N-2 q N--1 pN-2q (p + q)N--1
p q(1 + -1-1

p p-l

pN(1) = pt-iq (2.10)

Since p is the probability of having two single bonds coplanar, it can be related to

the number of flips in the chain in the following way:

N-1 '

(2.9)

and

k(N - k - 1)!(N - I - 1)!



where m* is the most probable number of flips in a chain of N - 1 single bonds. If

the large N limit is assumed, m* is given by Eq. (2.6), so that

N - 1 - Ne - (ES+ E c)/kT

p=N- (2.11)
N-1l

Comparison with simulations (Section 2.4) is good as can be seen in Figures 2-3 and

2-4. As expected, there is better agreement with increasing N.

2.4 Simulations

In addition to the analytical model described above, the effect of conformational

disorder on conjugated systems and their optical properties was also studied through

numerical simulations. To test the validity of the fragmentary chain picture we used

the full Hamiltonian of Eq. (2.1). We find that the results of those simulations

agree with the predictions of our analytical model. A Metropolis algorithm [21]

was employed - instead of choosing configurations randomly and then weighing them

with a Boltzmann weight, we choose them with a probability e- 3H and then weigh

them equally. Configurations are produced by randomly moving one angle at a time

in succession along the chain. The total energy is calculated by diagonalizing the

Hamiltonian of Eq. (2.1) for that configuration. The average of any property, y, is

then
M

< y >= 1/M E Y (2.12)
i=1

where yi is the value of the property y of the ith configuration. M is the total number

of configurations. Typically, M is 5000N in our case. The first configuration is ran-

domly generated and configurations contribute to averages only after "equilibrium"

is reached. From the equilibrium configurations, we extract information about the

chain distortion. For the cases we considered, the notion of the fragmentary chain is

appropriate: first, we observe that the overwhelming majority of angles is indeed close

to zero as discussed in the previous Section. We found flips as defined in Section 2.3

and almost planar segments between flips. A typical configuration for N = 45 can be
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Figure 2-5: Typical configuration of a chain of 45 double bonds from the simulations.

seen in Figure 2-5. Note the appearance of flips.

We performed the simulations at three different temperatures, T = 300, 400, 600K;

for five different ratios of transfer integrals ts/td from 0.3 to 0.8; for values of the steric

energy parameter Vo between 0.026 and 0.0033 eV; and for chains between 30 and

130 C atoms.

We also calculated the linear polarizability a. For each configuration, we use the

standard expression from perturbation theory

a = 2Z < ain >< nlG > (2.13)
n En - EG

where < GllIn > is the transition moment matrix element between an excited and

the ground state, and we obtain the average according to Eq. (3.7). All matrix ele-

ments are computed within the tight-binding approximation. With a centrosymmet-

ric position system and within the one electron approximation, < GIpln > becomes
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Ci cthoc•zi where zi is the distance of site i from the origin - the center of the chain

in our case- and c4hoCeli the eigenfunctions of the hole and the electron respectively

of the excited state In > . The original choice for Vo, ts, and td, as commented in

Section 2.2, is .026, 2.15, and 2.85 ev respectively. Note from Figure 2-6 the striking

dependence of the linear polarizability to the transfer integrals ratio, and the insen-

sitivity to the steric parameter. This is fortunate since the transfer integrals can be

computed from experimental measurements of the band gap and band width, while

the steric parameter determination is based on cruder methods. The dependence on

the ratio of transfer integrals is evident in our calculations of Section 2.3.
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Figure 2-6: a/N from simulations. (o) Vo = 0.026 eV, t, = 2.15 eV, td = 2.85 eV.
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2.5 Optical properties: a, 7 and absorption

With an analytical expression for the probability of occurrence of a planar segment

of length £ in a chain of N double bonds, we can calculate any physical property

of the system and compare with numerical simulations and experiments to test the

relevance and applicability of the proposed picture of the chain as a collection of

small planar segments. Extensive discussion of the optical properties can be found

elsewhere [22]. Here we will comment only briefly on optical properties, since they

will be discussed in a forthcoming paper. We will show that there is agreement with

numerical experiments, and that we are able to explain many of the features of recent

experiments on long chains [7].

We calculate these properties according to our proposed model of Eq. (2.8), as was

explained in Section 2.3. Here, x(l) is the value of the property of a completely planar

all trans chain with 21 carbon atoms. For a(f), we use the expression of Eq. (3.6).

For y(f), we follow the approach of Yaron et al. [23].

We compare with the simulations in the following way: we use the configura-

tions generated by the simulations, after diagonalization of the electronic and steric

Hamiltonian of Eq. (2.1), and calculate a in the manner explained in Section 2.4 and

y according to Ref.(11). We compare with the predictions of our analytical model,

which uses the probability distribution of Eqs. (2.10)- (2.11). The values of the pa-

rameters are again: Vo = 0.026 ev, t, = 2.15 ev and td = 2.85 ev. The agreement

can be seen in Figures2-7 and 2-8. Our analytical model captures the behavior of the

system.

When we compare our results with that of recent experiment [7), we can im-

mediately see that our saturation value for 7yN is close to the experimental value

(14.5 x 10- 34 vs 16 x 10- 34 electrostatic units(esu) respectively). In our model, the

saturation is reached for chains of - 80 carbons (40 double bonds), longer than

theoretically predicted for the fully planar all trans molecule (- 20 - 30 double

bonds)[23, 24, 25), and shorter than seen in the experiment (saturation at 240 car-

bons). This latter discrepancy has been now partly resolved due to new mass mea-
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surements of the molecules used in the experiment, namely an error of factor of 2 [26].

The corrected experimental data are plotted in Figure 2-8. Also, note that there is

an uncertainty in the value of the steric potential constant, Vo, used. We have used

a value for Vo which may need to be modified for the particular molecules of the

experiment.

We also study the absorption of long chains. We model the absorption of the

11A 9 --+ 11B, electronic transition of a polyene of length £, by

Ie(w) = 2/2

(w - we) 2 +62

where we = A + B/? can be obtained by fitting experimental data in the usual way,
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and p is obtained in the same manner as described in Section 2.4. So the absorption

of a chain of N double bonds is given, according to our model by Eq. (2.8):

e (w - we)2 + 62 N

As in the case with y, the agreement with experiment is closer after the corrected

experimental data.

2.6 Discussion

Starting from a microscopic description, we propose an alternative way to consider

conformational disorder on conjugated chains. Instead of focusing on the majority

of small angular deviations of adjacent platelets, we consider the few big breaks or

"flips". We propose that the distribution of the length of the segments between flips

is the most relevant for the optical properties of these chains. Our predictions are

supported by numerical simulations. Certain aspects of recent experimental observa-



tions are also accounted for. In the process, we derive the form of the phenomeno-

logical term used to describe the conjugation effect of these systems and relate its

parameters to measurable quantities, but retain the phenomenological form of the

steric interactions. Describing steric interactions from a microscopic point of view

would be a possible expansion of this work.

We notice in the calculations for 7 (Figure 2-8), that the initial behavior of -y

with the number of double bonds does not follow the experimental rate of change.

This may be due to end effects, which are naturally more important in the smaller

chains. A modified probability distribution of segment lengths to account for the end

of the molecule may be more appropriate, and would explain the slow initial rise of

the curves. Work in this direction is in progress.

In this work, we have not addressed at all the role of electron-electron interactions.

We also did not consider the effect of bond length changes as conformation changes

occur. The inclusion of those effects would give the possibility of studying their

interplay and relative contributions of conformations to the electronic and optical

properties of those systems.

Finally, recent experimental work [27] addresses the questions of scaling of the

cubic nonlinearity in conjugated systems (poly-phenylene vinylene oligomers), and

the role of conformational disorder emerges as an essential aspect in understanding

the experiments.
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Chapter 3

Effects of an Applied Field on the

Structure of Finite and Infinitely-

long Polyene Systems

3.1 Introduction

Conjugated organic molecules and polymers have attracted attention for photonic

applications due to their large nonlinear optical (NLO) responses. Optimization of

those materials for building nonlinear optical devices has been the focus of recent

research [1]. Central to the problem of optimization lies the question of the relation

between structure, both chemical and geometric, to the electronic and optical prop-

erties, both linear and nonlinear. Understanding the relationship between geometric

and electronic structure will enhance the optimization of design strategies.

In particular, donor-acceptor substituted polyenes have been suggested as an im-

portant class of organic molecules for their potential use in NLO devices [2]. It has

been recently found by Marder et al. that, in small donor-acceptor polyenes, structure

and optical responses (both linear and nonlinear) are connected in a simple way [3].

The 7- electron bond order alternation (BOA) has been chosen as the parameter to

describe the structure. Their idea is that the internal field of the molecule (due to



the donor-acceptor as well as the applied electric field) control its structure and hence

the optical response. Numerical calculations support their conjecture [4]. To eluci-

date the origins of these results we study simple models which contain the essence of

those physical systems and can be solved analytically. First, we compare the effect

of the field on even and odd hydrocarbon chains. We consider the simplest possible

cases, the three and four carbon linear polyenes and obtain exact functional forms

between the field and displacement of atoms from equilibrium. We find those forms

to differ, reflecting the different symmetries of the two systems. While the odd sys-

tem's ground state energy contains odd power terms in field and displacement, the

even one contains only even ones. We then proceed to find the effect of an applied

field on the energy spectrum and structure of finite even membered carbon rings of

any length. Within Hueckel theory, we find, that the presence of the field opposes

the bond alternating structure. Finally, we examine a Hamiltonian, with the same

spectrum as that of a polyene, and which can still be solved with the addition of an

electric field. The electric field mimics the effect of the donor and acceptor on the

7r electrons. Here we focus on large systems and compare to effects seen numerically

in small polyenes. We find that the presence of a field changes the states of a large

1-dimensional system dramatically. In order to ensure self-consistent solutions, in

the large and weak field limit, the effective BOA parameter is forced to change with

the electric field. This implies that this internal field may indeed drive the chemical

and electronic structure, as already suggested, with important conclusions for the

relations among polarizabilities as a function of the field.

In Section 3.2, we compare the ground state energy of odd and even chains in the

presence of the field and reveal the complex behavior of the odd chains versus that

of the even ones. In Section 3.3 we consider the effect of the applied field on even

membered rings. We look at the stability of the bond alternating configuration in

the presence of the field, through the second derivative of the ground state, similar

in spirit to the calculation of Longuet-Higgins and Salem [5]. We find that the field

favors the bond alternating chain, and that the critical length where this configuration

becomes the stable one, decreases with the field. In Section 3.4 we introduce the



model system, namely a site alternating chain model or equivalently a two coupled

band model. In the absence of field, we make the connection to the polyenes and we

proceed in Section 3.5 to study the effect of a constant electric field on the donor-

acceptor substituted chain. In particular, we investigate the relationship of the bond

order alternation with this internal field. We choose this property as most relevant

to the study of the connection between structure and optical properties. Indeed we

show that the field drives the chemical structure through BOA. The implications of

this are discussed in Section 3.6.

3.2 Odd vs even polyenes in presence of an ap-

plied field

In this section, we begin by considering the simplest case, 3 and 4 carbon open chain

molecules, and we obtain the ground state energy as a function of the bond alternation

parameter, x, defined below, and the applied field, f. We are interested in how the

applied field influences the structure of those systems. We find that the functional

dependence is quite different, reflecting the different symmetries of the two systems.

In particular, while the properties of the even system contain only even powers in f

and x , those of the odd also contains odd power terms, such as xf. We will show in

Section 3.3 that the former result persists for the even rings of any length.

We denote the resonance integrals across the double (/2) and single (P1) bonds by

/2 • 01 < 0. (3.1)

We express alternately increasing and decreasing bond lengths by modifying the res-

onance integrals, so that

=1 = =oe-", 02 = Ooex (3.2)

where x is a small positive quantity (3o is negative).

In particular, for the radical, in site representation where the charge of an electron,



e = 1, and f is the applied field

f
/oe-x

0

•0e-x

0

i)3oex

0

oex

-f

For x = 0, in terms of y = ff/o the three orbital energies are

A0°=0 A0 =+±Vy2 +2

The first order corrections in x are

-2yx
C = (y2 + 2)

On the other hand, for the four

2f

/oe- x

0

0

4yx

(y2 + 2)
membered chain,

toe-x

f

0 oex

0

0

eoex

-f
!0o

e-x

no term linear in f appears:

0

0

0oe-
x

2f

The orbital energies are now (again in terms of y = f/0o)

61,2 = ±1/2 10y2 + 4 cosh 2x + 2e - 2x + 2S

C3,4 = ±1/2V10y2 + 4 cosh 2x - 2e - 2x + 2S

where S = v 9 y4 + e 4x - 12 sinh 2x + 30y 2e- 2x + 4

The xf (or xy) terms are also absent for the 6 membered chain. The differences

become apparent, when we look at the ground state energy as a function of the BOA

parameter x for different fields (Figure 3-1). We believe this difference in behavior to



persist for longer chains, and is due to the inherent ground state degeneracy of the

odd open chains (which is absent in the even chains).

Let us consider the 3 carbon open chain further. To mimic a donor-acceptor

substituted polyene, we replace f by g = -A + f in the Hamiltonian matrix. Thus at

zero applied field, site 1 has energy -A and site 3 energy +A. In the presence of the

field f, the site energies are transformed to +g (-A + f) and -g, respectively. Note

that the energies retain the same form, with f replaced by g so that g is the effective

field on the system (the sum of the applied field f and the molecular field s).

Now consider a 3 electron, 3 carbon chain. The total 7r energy in the Hueckel

model is then

E'(x, f )/o = 2E + Eo = +2 y2+2+ O(g 2 )

where y = g/oo. We can also compute the dipole moment of this system to this

order and find (as a function of field)

-y 2x(2 - y2) 4x 2 -2)
(;) 2 (y2 + 2)1/2+ (y2 + 2)2 (2 + 2)2

-2y OE"
(y 2 + 2)2 ay

Thus p is an even function of x for small x.

If we now consider a 2 electron, 3 carbon chain, the total energy and dipole

moment become

E'(x, f)/1o = 2E+ = +-2Vy2 + 2 y2)

and
-2y 4x(y 2 - 2)

(y2 + 2) 1/2  (y2 + 2 )2

The a electron energy is given by

EU(x, f) , 1/2w2 2,
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so that the equilibriumm value of x as a function of field is given by

4y 4(f - A)/(00w)
wxy±2 (3.3)

e w(y + 2) (f- A) 2 +2

Thus for If - Aj V2-, the bond alternation, Xeq, is a linear function of applied

field, and is zero at f = A. This is similar to the relationship found in Ref. [3].

Moreover, Xeq saturates as a function of y and then goes to zero again for large y. In

the intermediate range, however, Xeq has a slightly sigmoidal shape as a function of

field (see Figure 1 of Ref. [4]). We now calculate the molecular polarizabilities as a

function of field, by differentiating E' with respect to y. Note that Xeq is given by

Eq. 3.3, so that, for practical purposes, in the region ly( < V/2, y is proportional to

Xeq. Thus the molecular polarizabilities ca, 3 and y have the forms found in Ref. [3]

and [4] (see Figure 7 of Ref. [4]) as a function of Xeq (optimized in the field).

By examining any odd atom donor acceptor system, we find the same qualitative

behavior as above. The molecules considered in Ref. [4] are 11 atom sustems, with

(effectively) 10 7r electrons.

We see from this analysis that the qualitative results of Ref. [3] and [4] are present

already in the Hueckel model of ir electron molecules.

3.3 Bond alternation in finite cyclic polyenes in

presence of an applied field

In this section, we consider the effect of a weak electric field on the ground state

energy and bond alternation of even polyene rings of the form, C4n+2H4n+2. Here, we

consider finite systems of any length. Also, we make unambiguous use of the periodic

boundary conditions by considering rings, with the appropriate form of the dipole

moment operator, as we show later. We express the ground state energy in terms of

the displacement of the carbon atoms from the equal bond length configuration, and

the applied field. The calculation proceeds in the spirit of that of that of Longuet-

Higgins and Salem [5] (LHS): the a bond energy as a function of x is given by 1/2w2x 2 ,



favoring equal bond lengths (x = 0); the 7r contribution is given by

E'(x, f) = E' (x, 0) - -a(x)f (3.4)

where f is the applied field, x is the bond order alternation parameter and a(x) is
22Er

the polarizability as a function of x. LHS [5] found that (- -(x, 0)),=o was negative

and so the 7r energy favored bond alternation (i.e. x - 0). The question we ask is

whether the field dependent term in 3.4 favors x = 0 (i.e. (d2oa/dz 2)x=o < 0) or x = 0

(i.e. (d2ao/dx2)z=o > 0). As in LHS, the ground state energy is taken to be the sum

of the occupied orbitals (for a ring of 4N + 2 atoms)

N

E(x, 0) = 2 E j
j=-N

where

Ej = v 2 + P + 2/P2 cos[2j/Tr(2N + 1)] (3.5)

01 and /2 are the resonance integrals of the single and double bonds as defined in

Eq. 3.1 and 3.2. The actual change in bond length is equal to ax where a = .31A in

[5]. The second derivative of E (x, 0) with respect to x was found [5] to be negative

and increase as n In n.

To see the effect of the field on the energy as a function of x, we now proceed

to calculate the second derivative of the linear polarizability with respect to x. The

standard expression from perturbation theory for a

= 2 , < (x)Ie (x) > 2 (36)
n Ee (X) - Eg(x)

where < V59 (x) 10, e(x) > is the transition moment matrix element between an excited

and the ground state. The prime denotes a restricted sum, due to exclusion of the

ground state. For consistent use of periodic boundary conditions in finite systems,

the periodic representation of the dipole moment operator is the appropriate one [6].



For a ring of 4N + 2 carbon atoms,

e(2N + 1)1 n 27 _ Xj
= ([ E {cos( + xi)12j)(2jl2 =- 2N + 1

+ 2(j + 1/2)+ cos( + 2x2)2j
2N + 1

+ 1)(2j + 11} ]

where 1 = 210 is twice the equal bond length magnitude, and z 1 , 2 are angles

defined in such a way that the single and double bond lengths are given for small x

by

Is= lo + ax

and

ld = 10 - ax.

We find
ax2w7

S= - 2 (2N + 1)1'

Since the HOMO to LUMO transition carries most of the oscillator strength, we

consider only this excitation in the sum. a now becomes

(3.8)(x) - 2 I HOMO 
LUMO•

AE

The appropriate wavefunctions are now those for j = N

1
OHOMO = EjeijOu-i'"u2j)

V4N + 2 j
+ ei(2j+l)0N/ 2+i'rN 2j + 1)}.

where,

2NN1
ON=2N + I1 T

and

YHOMO() =
wN

1/2 arctan(tanh x tan 2N ) = -YLUMO(X).2N + 1

(3.7)

(3.9)



From Eq. 3.5, we obtain for the energy difference,

AE = 2o2 cosh 2x + 2 cos 2N (3.10)

Substituting Eqs. 3.7,3.9 and 3.10 into Eq. 3.8, for a small displacement of bonds x,

oa(x) e212 (2N + 1)

87r21 /o I2 cosh 2x + 2 cos 2N+

cos( 2Nj + X (x))e-2rj/2N+1
,2N + 1

os( 2(j + 1/2) + x2 x))e 2 (j- l)/2N +  (3.11)

The sums in Eq. 3.11 can be done and we find

ca(x) = e2a2 2/(2N + 1) (3.12)

813o1[X2 + (2N+1)
/ 2

Therefore [a"]x=0 > 0, and

E7(x, f) = E'(x, 0) -2((0) + [a(x)]= 0
2 2  (3.13)

so that the external field works in the same direction as the ir-electron energy; that

is to favor bond alternation.

3.4 Infinitely-long chains: Description of the model

systems

We now treat infinitely long chains. We briefly introduce the Hamiltonian of the

conjugated polyenes, as well as its spectrum in the absence of electric field. We

then describe the two-coupled band model we have chosen to emulate the behavior

of polyenes. The effect of the donor and acceptor at the ends of the chain on the

7 electrons is mimicked by a constant electric field across the direction of the chain.



In the absence of field (no donor-acceptor) we show that this model has the same

spectrum as the unsubstituted polyene. In this work, we consider systems of large N.

Since previous work looked at small molecules, it is interesting to investigate whether

ideas of the connection between BOA and field still prevail at the large N limit.

3.4.1 Polyenes

Polyenes of 2N carbon atoms have been extensively and successfully modeled as

one dimensional systems of 2N sites, each occupied by an atom with one unpaired

electron [7, 8]. Bond dimerization is imposed here although the electron-phonon

coupling interaction is explicitly neglected.

The Hamiltonian

N
H = [tda,la,2 + tsae, 2ae+l,, + h.c.]

a __i

+ EE eEdfaf,'ia~o, (3.14)

describes the hoping of 7r electrons along the chain with transfer integrals t, and td

along single and double bonds respectively as well as the site energies of the states

in the presence of a static electric field. a&,i(ae,i) creates(destroys) an electron with

spin a on the ith position of the eth unit cell and obeys fermi statistics. Each of the

N unit cells, f, contains two carbon atoms on sites i = 1, 2 - a double and a single

bond of fixed length respectively. Also, in Eq. (3.14), e is the electron charge, F the

applied electric field in units of eV/A and d the unit cell distance in A. We adopt the

following definition throughout the chapterfor simplification of notation: f - eFd.

Consider the zero field case (i.e. polyene without donor-acceptor groups.) With

the help of Fourier transforms of the ae's, invoking periodic boundary conditions:

1
ako,i = 1ka 1 ,kf- with k = 2wj/N, j = 0,1, .., (N - 1)



we diagonalize the Hamiltonian, with eigenvalues

k = ±[t + t2 + 2 tstd cos k]1/2 (3.15)

In the absence of electric field we obtain then the conduction and valence bands with

an energy gap Eg = 21(t,- td)l at k = 7r.

3.4.2 Two coupled bands

To mimic the behavior of the conjugated polyenes we look for a model which exhibits

an energy spectrum of the form of Eq. 3.15 and which can be solved analytically

in the presence of a field. We consider the site alternating chain model with single

transfer matrix element, as one close in spirit to the bond-alternated chain. In this

section, we will first show that this model is equivalent to a two band model with

interband interaction. Then, we will establish the connection with the bond alternated

spectrum in the absence of field, (i.e. of the polyenes) through the parameters of the

Hamiltonian described below. In the presence of the effective field, which models the

donor-acceptor substituted systems, they become effective parameters.

The site alternating chain Hamiltonian in the presence of a field is

H = A(-1)ebjbe + tE [btbe+1 + h.c.]

+ Efebfbe. (3.16)

In this Hamiltonian, A, t, and f are parameters to be chosen. If we define the even

sites with +A by ae,i and the odd sites with -A by ae,2, then there are two sites in

the unit cell labelled 1 and 2, similar to the polyene case in Eq. (3.14). With

ae,i = be, f even

ae,2 = be, £ odd



in the zero field case, the Hamiltonian then becomes

H o = - A Z-•[aia a,i - a,2 a,2] + t Z[aj,lat,2 + h.c.]

+ tE [at,2 ae+,,1 + h.c.]. (3.17)

The eigenvalues of Ho can be found by defining

ak, i  e - ika,

so that

Ho = A EZ[ak,lak,1 - , ak,2 + t ,[(1 + eCik )ak,1ak,2 + h.c.].
k

This Hamiltonian is then broken into 2 x 2 blocks with eigenvalues

Ck = ±[A 2 + t 2 (2 + 2 cos k)] 1/ 2. (3.18)

If we compare to the bond order alternated polymer eigenvalues in Eq. (3.15) we see

that they coincide if we make the substitutions

t2 = tst- A 2 = (t d - t)2 (3.19)

After making the identifications of our model system to the polyenes of interest we

proceed to study their behavior in the presence of electric field. The solutions for a one

band Hamiltonian with a constant transfer integral have been studied in the context

of crystals in uniform electric fields [9, 10] and recently in that of semiconductor

superlattices [11]. They are referred to in the literature as the Wannier-Stark Ladder

eigenstates. The solutions for the simplest case are given in Appendix A.



3.5 Two coupled bands: solutions in the presence

of a constant electric field

In this section we consider the effect of the molecular effective electric field or equiv-

alently the donor-acceptor in the chain system described in Section 3.4.2. Using the

procedure outlined in Appendix A we show the dramatic change of the eigenvalues

and eigenfunctions in the presence of field. In particular, we find that, in order

to obtain a self-consistent solution, it is necessary to vary the effective parameters

A 2 - (t, - td) 2 and t 2 = t,td as a function of the electric field. This implies that there

exists a correlation of the BOA with the effective field.

Rewriting the Hamiltonian (3.16) we have

H = Z-[(-1)A + Cf]btb, + t Z-[bbt+l + h.c.]. (3.20)

To diagonalize this Hamiltonian we introduce the transformation

be = (-1)e - Je_-(2t/f)cn
n

leading to

H = E [(-1)eZ + f]Jt-n(2t/f)J••n,(2t/f)ctc'n

- t j [Jen(2t/f)Je+l_ n(2t/f)cncn, + h.c.]. (3.21)

Using the Bessel function equalities, we find

H = Zrnfctc + A _(-1)n Jn-n'(2t/f)cncn/.
n n,n'

Now, introduce the Fourier transforms of the ca's:

1 dck i
c • eikc, and E= ncnei

T n dk N n~



k = -(4Ck, Ck+)
ifa

2Aei2a sink

2Ae-i2a sink Ck

if d Ck+7r

and a = 2t/f. To solve for the eigenfunctions and eigenvalues for a particular k, we

write

Sk= AkCkIO) + Bkck+7 IO)

so that

-d
(E - if )Ak = 2Ae-i 2asink•k

-id)k = 2ei 2 sinkAk(E - if )Bk = 2Aei2asink Ak (3.22)

Defining

Ak = Ake - i ck /f
Bk = Bke - ick l f

(3.23)

we find that the Ak and Bk obey the second order differential equation:

2A
A" + ( )2Ak + i2a cos kA' = 0

f
2A

B1 + ( )2Bk - i2 cos kB' = 0
f

(3.24)

where the prime means differentiation with respect to k. The form of this equation

is reminiscent of that of the Mathieu equation. We will make use of this in the weak

field (a > 1) and strong field (a < 1) limits. To capitalize on this resemblance, we

define

and Ak = ei~tCosk uA((k)

to find

with

Bk = e-icosk•UB(k)~ = k - 7/2 (3.25)



and find for u U UA(k)

2A 2 1
u" + [(R )2 2 - ia cos k - a2 cos(2k)]u = 0. (3.26)f 2 2

In the high field limit (a < 1), we can neglect the a 2 term; in the low field limit

(a > 1) we can neglect the a term with respect to the a 2 term. In both cases, we

can bring the equation into the form of the Mathieu equation:

u" + [a - 2q cos(2k)]u = 0.

However, the values of a and q are different in the two limits.

On one hand, in the low field case, we have

2A2  a 2  a2
u" + [( )2 + 2 cos(2k)]u = 0 (3.27)

f 2 2

so that ,
2A a 2  a 2

a=( -) + q
f 2 4

and since a = 2t/f,

a A2

_= 2+4
q t2

is independent of the field.

From the definition of A and t used to connect this model to that of an alternating

polyene (Eq. 3.19), we find
A2  (t - td)2

t2  tstd

so that
a (t, - td)2

=1+2
2q tstd

is a measure of the bond alternation (or t, - td).



In the high field limit, we neglect the a 2 terms in Eq. 4.12 to find

u" + [-ia cos 2 k]u = 0. (3.28)

Here,
ia it

a=O, q -is =-- , k= k/2 (3.29)
2 f

We have also neglected (2_)2 < 1, since A is of the same order of magnitude as t.
f

We focus our attention on the ratio a/q because the particular form of the Mathieu

equation solutions depends upon the values of (a, q). Details of the Mathieu solutions

pertinent to our discussion are given in Appendix B.

Before we proceed we note that it is the weak field regime that is relevant for

the study of polyene molecules. Since t is of the order of ev and f of the order of

10-1 eV, a > 1. The numerical values of the parameters are such that the high field

regime corresponds to an unphysical region for donor-acceptor substituted polyenes.

Rather, it is appropriate for the semiconductor superlattices, quasi one-dimensional

structures with periods of 100 A [12].

We concentrate now on the low field regime, since it is the physically relevant one.

From the condition that the Ak satisfy, namely that Ak = Ak+2,, we find, by using

Eq. 3.23 and 3.25, that u(k) have to obey the following equation

E u(k)exp(i27r-)= [u(
f u(k + 2r)

so that for the ladder spectrum (E/f integer) we obtain

Uik = iUk+27r (3.30)

Now, for (a, q) real, the Mathieu equation has solutions with period 27. Most

importantly, these solutions are special in that they define the "characteristic curves"

which divide the plane of Mathieu solutions into regions of stability and instabil-

ity [13]. This implies that there exists a functional dependence between a and q,



namely the family of curves a = a2n+l(q) and a = b2n+l(q) are obtained. This im-

plies then the functional dependence of A and f. The first few curves may be seen

in Figure 3-2. We have already identified A = It, - tdl to the difference of electron

transfer across single and double bonds. As such it is related to the bond order alter-

nation: A = 0 corresponds to the equal bond length situation, where the BOA = 0;

at the other extreme, the maximum value of A corresponds to the chain of maximum

dimerization where the BOA is maximum. We express everything in units of t, a

system dependent parameter. So we seek the relationship between A/t and f/t in

the limiting cases of low and high field. Since A/t is a constant for each system in

our Hamiltonian formulation, its value is not altered by changing the effective field.

Nevertheless, the 'phase diagram' of A/t versus f/t obtained from the relation of

those parameters to those of the Mathieu equation, yields indirect information on the

effect of the effective field on the BOA. In such a diagram, each system will fall and

follow a different curve depending on the value and t.

Finally, we notice is that, in the high field case, one of the Mathieu parameters

is imaginary, q = is. We thus expect the (a, Iql) stability "landscape" to differ from

the one for real (a, q). The behavior of the new characteristic curves, which define

the regions of stability, have already been numerically obtained for imaginary q [15].

Here, a and q are independent of A in the high field regime, i.e. the field has no

longer any effect on the BOA.

3.6 Conclusions

In this work, we have investigated the effect of an applied electric field on the energy

spectrum and the structure of polyene systems. Changes in structure have been

studied through the bond order alternation, or the extent of the difference between

single and double bonds across the conjugated chain. Our work was motivated by

recent conjectures that the BOA plays an important role in determining the nonlinear

optical response, in conjugated molecules with strong electron donor and acceptor

substituents [4], where the applied field was intended to mimic the effect of the donor-
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acceptor groups as well as the surrounding medium. We compared the functional

form of the energy as a function of the field and and BOA in even and odd chains,

by studying the smallest possible systems and found a striking difference between

the two. Following Longuet-Higgins and Salem [5], we found that the field dependent

term in the second derivative of the ground state energy enhances the bond alternation

effect; that is, it acts in the same direction as the 7r electron energy term calculated

by LHS. Finally, we considered large systems, where the effect of the field produces

the ladder spectrum, and found that the BOA and the field are interdependent.

In all cases, the bond alternating chain was favored by the presence of the field.

The equal bond length chain was not observed in the weak field limit, where all

our calculations have been done. This result agrees with the findings of Ref. [16].

Although the effect of the applied field is profound, the specific forms needed to

control the NLO properties were not recovered as suggested [4], similarly to the

findings of others [16, 17], except in the case of odd atom donor-acceptor radicals.

3.7 Appendix A: The Wannier-Stark ladder Hamil-

tonian

The simplest -single band- case is treated here in the presence of a static electric field

to illustrate the Wannier Stark eigenstates and their corresponding eigenvalues. A

chain of N sites (lim N -+ oc) at constant lattice spacing, d, (i.e. equal bond lengths)

within the tight binding approximation with nearest-neighbor transfer integral, t, is

considered. The Hamiltonian is then

N/2 N/2
H = t[aaai + h.c] + E featat, (3.31)

f=-N/2 e=-N/2

where aj (at) is the creation (annihilation) operator at the £th site. The solutions of

the eigenvalue equation HT = ET for Eq. (3.31) obey the following equation:

£fc, + t(ce±+ + ce-1) = ec (3.32)



where ce is the expansion coefficient of I in terms of localized Wannier states,i.e. we

have used
N/2

-= = c at 10)
e=-N/2

to obtain Eq. (3.32) from Eq. (3.31). Eq. (3.32) has the same form as the recursion

relation obeyed by the Bessel functions. More specifically the general solution of the

recursion relation:

fv+l(z) + fv-(z) = (2vl/z)f,(z)

is [18]

f, = AJ,(z) + BY,(z), (3.33)

where J,(z) and and Y,(z) are the Bessel functions of the first and second kind

respectively of order v and argument z. A and B are constants. But, since Y,(z) -+ oc

as z -+ oc, B is set to zero to ensure well behaved eigenfunctions. Similarly, if v is

not an integer the J, diverge [18]. Hence, the appropriate coefficients are

ce = AJe-n(2t/f) - cp n = e/(f) = integer. (3.34)

In this case it turns out that the eigenfunctions are orthonormal as it follows from

two of the Bessel function identities [18]:

SJ2(z)= 1, (3.35)=-0oo
and

E Jt+n(z)J+n'(z) = n,n.. (3.36)
f=-oo

Finally, the Wannier-Stark eigenstates,4', are

c 0) 1 n) = E Je_=(2t/f)a' O0)

e Jen(2t/f) It) (3.37)



with eigenvalues

En = nf. (3.38)

This equidistant level quantization gives rise to the name of Stark Ladder used in the

literature to refer to this type of Hamiltonian.

3.7.1 Properties of Wannier Stark eigenstates

We comment here on some of the properties of the eigenstates which are essential to

our treatment. These properties stem from those of the Bessel functions.

As the applied field increases, the argument of the Bessel function, z = 2t/f,

decreases. The Bessel functions of the first kind vanish for vanishing argument with

the exception of J0 which goes to one. More specifically, the asymptotic behavior [18]

is
(z/2)"lim J'(z) = (3.39)

z-+0 V!

So the magnitude of the expansion coefficient,c', vanishes rapidly as we move away

from £ = n. Only a few neighboring sites contribute significantly. This behavior is in

dramatic contrast to that of the eigenstates in the absence of field where the states

are extended, namely

Ek = 2t cos k Ck = e eik

In the low field regime, z -+ oo, the Bessel functions exhibit oscillatory behav-

ior,namely:

lim J, = (2/7rz)1/2 cos(z -- . (3.40)z-+00 2 4

Finally, we should note that the above treatment implied infinitely long systems.

Finite systems have been treated in the same formalism [9, 10] and rapid convergence

to the infinitely long limit has been obtained. Deviations from the Stark Ladder

spectrum were only observed for states at the edge of the band and for weak fields.

Also, an open ended chain has been implied here. In the latter study, chains with

rigid wall and periodic boundary conditions were compared to almost identical energy

spectra except at extremely low values of the field.



3.8 Appendix B: Properties of solutions of the

Mathieu equation

We present here those properties of the Mathieu solutions which are pertinent to our

discussion in Section 3.5. An extensive treatise on the theory of those functions may

be found in Ref. [14]. We consider the standard form of the Mathieu equation, namely

u" + (a - 2q cos 2z)u = 0

where a, q are real parameters and the prime denotes differentiation with respect to

the variable z. What makes our problem interesting is that the particular form of

the solution depends on the values of a and q, which in the context of Section 3.5

depend on the BOA as well as the applied electric field. We can immediately note

that the (a, q) plane is divided in regions of stability and instability as can be seen in

Figure 8 of Ref. [14]. A solution is stable if it tends to zero or remains bounded as

z -+ oc; unstable if it tends to ±oo. When (a, q) lies exactly upon one of the dividing

curves, one of the solutions is neutral and periodic and the second solution is unstable.

To ensure normalizable, well behaved eigenfunctions of our Hamiltonian we need to

consider only the regions of stable and neutral solutions [19]. The consequence of this

is restricted paths for the parameters in the (a, q) plane.

We mention the three cases briefly, focusing in more detail in the stable solutions:

* (a,q) falls in a stable region.

When (a, q) lies between a2n, b2n+1, the two linearly independent solutions are

ul(z) Ce2n+,3(z, q) = cm2n+ 3 cos(m t + )z

u2(Z) - Se2n+3(z, q)= Cm•n+ sin(m + /)z (3.41)
r=-oo

(3.42)

where m = 2r. When (a, q) lies between (a2n+1, b2n+2), m = (2r + 1) and 2n -+

2n + 1. Cm are well studied functions of a and q and 0 < P < 1. Although for P



irrational the solutions are not periodic, in numerical examples these solutions are

always found to be periodic.

S[a- q2] - m (3.43)

* (a,q) on the dividing curves. One of the solutions is periodic with period 7r for

a2n, b2n+ 2 or 27 for a2n+1, b2n+1. The second solution is unstable.

* (a,q) on an unstable regions both solutions are unstable in the range -oo < z <

00.
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Chapter 4

Hyper-Rayleigh Scattering of

Centrosymmetric Molecules in

Solution

4.1 Introduction

Interest in hyper-Rayleigh and hyper-Raman light scattering has been recently revived

as an advantageous technique for studying the second order nonlinear response of

molecules in solution [1, 2, 3, 4, 5]. The hyper-Rayleigh process of annihilation of two

incident photons of frequency w and the creation of a scattered photon at 2w is often

referred to as incoherent harmonic light scattering (HLS). Similarly, hyper-Raman

scattering corresponds to a scattered photon of 2w + win, Wm being an eigenfrequency

of the molecule. Decius and Rauch first proposed the hyper-Raman phenomenon

in 1959 [6] which was subsequently observed in the experiments of Terhune, Maker

and Savage in 1965 [7]. Since then, selection rules for different symmetry groups,

studies of lineshape and the interaction of molecules in solution were discussed, and

the experiments and theory were reviewed in Ref. [8]. Interest in this technique waned

because of the difficulties in experimental observations.

Experimental improvements and the quest for suitable materials for non linear



optical (NLO) applications motivated a reexamination of this technique. Unlike the

most frequently used method of electric-field induced second harmonic generation

(EFISHG ), it offers the possibility of experimentally measuring the first hyperpolar-

izability 0 of molecules with no ground state permanent dipole moment or of ionic

molecules in solution. In the first category lies a new class of molecules which are

promising candidates for materials for NLO applications: octupolar molecules [1, 9];

in the second category lie synthetic polymers with NLO chromophores and natu-

ral proteins [3]. Both categories are of interest for maximizing the microscopic and

macroscopic nonlinear response. Unfortunately, EFISHG, the standard technique for

the characterization of the first hyperpolarizability of molecules, is limited to dipolar

and nonionic species, due to necessity of aligning the molecules in the solvent through

their dipole moment by the applied electric field, thus precluding characterization of

the above systems. Also, in such an experiment, where the projection of 3 in the direc-

tion of the dipole moment is actually measured, knowledge of both the dipole moment

and the second hyperpolarizability 7 is necessary to extract information about /. In

contrast, HLS experiments on different orientations of polarized light have been used

to sort out components of / alone [10, 11, 12]. The advantage becomes then twofold:

experimental observation of otherwise inaccessible molecular hyperpolarizabilities of

systems of interest and a clean signal without y contributions.

In the case of centrosymmetric molecules, whose hyperpolarizability vanishes iden-

tically in the electric dipole approximation, no hyper-Rayleigh scattering is expected.

Nevertheless, intensities at approximately the doubled frequency, 2w, have been ob-

served for molecules with a center of inversion [13, 14]. The origin of this phenomenon

now becomes important if this technique be used for determination of the first hy-

perpolarizability of molecules. HLS measurements on noncentrosymmetric molecules

may then result from contributions other than just that of the first hyperpolarizability.

In this chapter, we focus on hyper-Rayleigh and hyper-Raman scattering of cen-

trosymmetric molecules to elucidate the way hyperpolarizabilities are probed in these

processes. The results may then be extended to noncentrosymmetric molecules. In

the literature in the late 60's and early 70's, all three interpretations of HLS relied on



cooperative scattering of centrosymmetric molecules or atoms. Kielich suggested that

the permanent multipole moments of the neighboring molecules produce a fluctuat-

ing field Fi on molecule i, which then lowers the natural symmetry of the molecule

and removes its inversion center [13, 15, 16]. Gelbart considered a theory for atomic

liquids which included many-body distortion effects so that the signal arises from

three-body clusters of atom interactions [17]. Pasmanter et al. [18] attributed the

phenomenon to the interaction between a dipole induced in one atom and the electric

field gradient produced by the dipole induced in an other atom.

Our approach is to discuss a third order effect (involving -y) with the third field

produced by the solvent molecules (not necessarily centrosymmetric), which is zero

on average. The autocorrelation function of the field due to the reorientation of

the solvent molecules determines the light scattering, its strength depending on this

correlation function. We propose a twofold contribution: vibrationally induced hyper-

Raman and a third order effect involving y(-2w; w, w, 0) from the field produced by

the solvent molecules. In this case the spectrum of noncentrosymmetric molecules

contains j and 'y contributions. The relative magnitudes of the two contributions are

different and the latter contribution may be negligible with the appropriate choice of

solvent. In the case of centrosymmetric solute molecules with a dipolar solvent, the

measured intensity will depend on the reaction field strength and the dynamics of the

solution and may be used as a probe for such processes.

We express the scattered intensity as the Fourier transform of the appropriate

correlation functions. The Heisenberg picture is appealing because it makes an inter-

pretation due to molecular motions possible and enables a classical correspondence

to be made. We derive expressions for / and an effective 7 from time dependent

perturbation theory and then obtain the correlation functions governing the spectral

density. In Section 4.2, we study vibrationally induced hyper-Raman for centrosym-

metric molecules and in Section 4.3, we study the effect of the effective solvent field

in HLS.



4.2 Hyper-Raman scattering: 13 contribution

In this section we obtain the scattering intensity in terms of the Fourier transform of

the correlation function of the appropriate tensor, the hyperpolarizability, P/. Since

centrosymmetric molecules do not exhibit HLS to this order, we study vibrationally

induced hyper-Raman of the ground electronic state as the most relevant to our case.

In fact, hyper-Raman scattering around the hyper-Rayleigh line has been experimen-

tally reported [19].

Molecular motions modulate the polarizability. Here, we neglect translational

motion; rotations and vibrations of the molecule are considered independently. The

lineshape is then connected to the reorientational correlation function and to the vi-

brational relaxation of the normal modes of appropriate symmetry. Gordon [20] first

introduced the reorientational correlation function to study the regular rotational

Raman effect. Nafie and Peticolas [21] and Bartoli and Litovitz [22] subsequently in-

cluded vibrations for the IR, Raman and hyper- Raman effect in one case and Raman

in the other. The latter used the semiclassical series expansion for the hyperpolariz-

ability in terms of the normal modes, while the former treated the states quantum-

mechanically in the Born-Oppenheimer approximation.

Our treatment applies to an isolated molecule. To treat liquid samples we in-

voke the following assumptions: isotropic liquids, no angular correlations between

molecules separated by distances of the order of the radiation. The dipole approxi-

mation will be invoked throughout this chapter. If it may not apply in the sample

as a whole, the sample may be divided in scattering volumes whose size is small

compared to the scattering wavelength and large over distances of molecular correla-

tions [23, 24]. It is the normalized cross section then that needs to be evaluated. Also,

the phases of vibrations in different modes are usually treated as uncorrelated, so the

correlation function of the vibrations of different molecules vanishes. No cooperative

effects are invoked as explained in Section 4.1

From time dependent perturbation theory, we obtain the most general differential



cross section per molecule to third order (see Appendix A)

I(w) oc dal/d = E p < •I iE 3 .  : E2 El Ifr > 125(wfi + WFI). (4.1)
i f

where 3 is the matrix element of the electronic polarizability tensor as a function

of the nuclear coordinates for the initial and final electronic states:

S <f=EI><nI 2 M>< Ii + 5 terms. (4.2)
n,m (Win - (Wkl + Wk2))(Wmi - kl)

Throughout the chapter, we use lower-case letters to denote molecular states and

upper-case letters to describe the electromagnetic field states. Ii > and If > are the

initial and final vibronic states of the scatterer. In the case of a noncentrosymmetric

molecule, i >= If > . For a centrosymmetric molecule, a transition to a normal mode

of the ground electronic state with appropriate symmetry is considered. jir > and

Ifr > correspond to the rotational states, independent of the vibronic states. Before

scattering, the sample is assumed to be in equilibrium so the initial states obey a

Boltzmann distribution. w W- FI is the frequency difference between the scattered

photon (w3 with polarization E3) and the incident photons (wl, E1 , and w2 , E2). In our

case, (in an HLS experiment), w1 = w2; E1 -= 2 , and the tensor is symmetric with

respect to exchange of the last two indices only. As long as the incident and scattered

light frequencies fall away from absorptions, the tensor is usually taken as symmetric.

The validity of this approximation is discussed in Ref. [25] where selection rules are

obtained for the nonsymmetric case.

To proceed, we will separate the nuclear and electronic motion according to the

Born-Oppenheimer approximation and express the wavefunctions in the Herzberg-

Teller expansion. Our treatment will be valid for the nonresonant case only so that

intermediate vibrational states may be summed. Also, we restrict our interest to tran-

sitions for which both the initial and final vibrational states lie in the nondegenerate

ground electronic state.



We now express the scattering cross section in terms of the relevant correlation

functions. We first convert the delta function to its Fourier integral representation

5(w) = dt exp(iwt). (4.3)
27 -oo

and substitute it in Eq. 4.1:

1
dao/d oc 2- Pi < ilE3 /3 : 62E If >< f E3 . 3 2 12E1 i >

if
x dt exp [i(WFI + Wf - Wit]. (4.4)-oo

Expressing the energies hwi and hwf as eigenvalues of the Hamiltonian H acting on

the initial and final states respectively, and summing over all the final states, we

obtain

1 p0

d/da oc E Pi dt exp(iwFIt) (4.5)
i f -oo

x < il 3 : E2E1 exp(iHt/h)e3 _ : E2Elexp(-iHt/h)l i >.

By defining the quantum mechanical operator, /

3(t) = exp(iHt/h)/(0) exp(-iHt/h)

so that it obeys the Heisenberg equation of motion, and denoting the statistical

average by brackets <>, Eq. 4.5 reduces to

I(w) DC _dt exp(iwF,t)< [3 · (0) : 1 ] [ (t) 2 21] > (4.6)

If the average is interpreted in the classical sense, the classical description is recov-

ered. In the quantum case the ordering of the operators is significant. By neglecting

translations the time dependence of the tensor / arises only from reorientation of the

molecules. The orientational correlation function depends on the symmetry of the

molecule and polarization vectors. The averaging may be done using the direction



cosine method or the characteristic rotation matrices (e.g. [26]).

Including the vibrational states may be done using the semiclassical expression for

the expansion of the electronic polarizability in terms of the electronic polarizability

following Placzeck, namely

0(t) = °(t) + E 03(t)/laq(t) Iqqv(t)

or the Herzberg- Teller expansion of the wavefunction such that for an electronic state

In >

5H
In >= In > + E < mO q InO > qJlm > Eo.

m$n

The comparison between the two approximations has been commented in Ref. [27].

By making the latter substitution, assuming the nonresonant case, and dropping

the denominator so summation of intermediate vibrational states is possible, we ob-

tain an effective 3, 3eff with 24 terms, such as

6HZ; < gl pla >< al ý-gn >< nUE2  lm >< mE1 . g>< fqji > .... (4.7)
n,m,a q

From Eq. 4.7 we can now see that scattering is allowed depending on the symmetry

of the normal modes.

Following the similar procedure as above, we obtain an expression containing

orientational and vibrational correlation functions:

1 00
I(w) oc dt exp(iwFit) < E3 - 3(0) : E2E•13 E(t): E2 1 >< qv(o)q'(t) > (4.8)

27r J-oo

4.3 Hyper-Rayleigh scattering: y contribution

Despite identically vanishing 3, second-order light scattering from centrosymmet-

ric molecules has been experimentally observed [13, 14]. Both Kielich [15, 16] and



Gelbart [17] have discussed this effect. Both approaches rely on intermolecular in-

teractions in the liquid phase and cooperative scattering from correlations among

centrosymmetric molecules or atoms. The symmetry of the molecules is lowered due

to either interaction with permanent multipole moments of neighboring molecules or

many-body distortion effects from triplet clusters of molecules. Kielich points out

that scattering occurs when the center of inversion of the scattering molecules is lo-

cally destroyed by a molecular electric field created by the permanent moments of

its neighbors. The effect is cooperative in nature, involving pairwise correlations.

Gelbart's approach, applied on atomic fluids where the above formalism still fails

to explain the scattering, considers the cluster expansion of a many-body X2 which

depends parametrically on the positions of all the nuclei. The first nonvanishing con-

tribution arises then from triplet cluster terms. Our proposition does not rely on

the cooperative effect among centrosymmetric molecules. Rather, we are considering

the field, created by solvent molecules (not necessarily centrosymmetric) on a solute

molecule - in particular, the single particle autocorrelation function of the field due

to reorientation of the solvent molecules. Such a function is expected to vary with

solvent. On average, < F >= 0, but < F(O, r)F(t, r') >54 0. Instantaneously, this

field exhibits low frequency time dependences (i.e. with Fourier components we e 0.)

The HLS experiment then depends on the second hyperpolarizability of the molecule

(fourth order in perturbation theory) -y(-2w; w, w, 0), where the third field is provided

by the solvent. The solvent is treated here classically, within the dielectric contin-

uum approach, for simplicity. In this proposed picture, the hyper-Rayleigh scattering

from the noncentrosymmetric molecules in solution will then appear as a result of

two contributions: 0 and y.

To obtain the intensity we follow the same procedure as in Section 4.2. Here

we ignore the vibrations. The 4th order perturbation theory expression is given in

Appendix B. The cross section is now

daR/dQ oc pi E- E pQ It(i, aso1v[3 I 'I " F: E2 E1 If, 6 s 0lv) 126(wfi , WFI + w). (4.9)
f a ,



where F is the solvent field, ao and 3 the initial and final solvent states respectively

and p,, the equilibrium distribution of the initial solvent states. The important

frequencies we are expected to be small compared to w and 2w. Rearranging the

above equation in a similar manner to Section 4.2, we obtain

dc/dQ oc dt exp(iwFlt) ( (O)(t)) (F(0)F(t)) (4.10)

where (F(O)F(t)) = Z,, a, aFpFF,(t) = Zq FqFq*eiwt and

(flt " ei)(lc•t " -3 In)(nlPi " c2Im)(m I • Elii)E = E ( e) 0 23 terms.
m,n,e E (Wli + (Wk3 - Wk1 - Wk2))(Wni - (-Wkl + Wk2) (Wmi - Wkl)

(4.11)

Note that we have averaged over all polarizations in the case of the interaction with

the solvent field.

For the HLS experiment, we can express

WFI = W 3 - W 2 - W 1 = w - 2w 0,

in terms of the incident frequency, wo and the scattered one, w, so the scattering cross

section now becomes

do'/dQ oc dt ei(w 2 wo)t (-(0),(t))(F(O)F(t)) (4.12)

4.3.1 The solvent field

In our treatment we include the polarization fluctuations of the solvent. To proceed,

we must calculate the solvent field correlation function. The Hamiltonian has thus

the additional term of

Hsolv = Fi F

where It is the dipole moment of particle i and F = E 0 is the solvent field. We con-

sider a solution of centrosymmetric solute molecules in a dipolar solvent. Our goal is

to obtain the low frequency modes of the field created by the solvent molecules. It is



assumed that it is a linear responding dipole field. To this end, we begin by a macro-

scopic theory, where we first obtain the field components as a function of the dielectric

constant of the medium. The solvent is thus modeled as a continuum dielectric, with

dielectric constant C2(w) and volume W, surrounding the solute of volume V and di-

electric constant e (w). Since the resulting fields are known to be shape dependent,

we take the molecular sample to be a sphere of radius a for simplicity. In the reaction

field approach, the environment of the molecule in focus is treated as a continuum.

The field felt by the molecule, due to the dipole that describes the molecule itself as

well as by the interaction of the dipole with the surrounding dielectric is known for a

spherical cavity [28].

By direct application of linear response theory, where the response of a system to

a weak perturbation is completely described in terms of the time correlation function

of the appropriate dynamical property, an approach extensively studied in the con-

text of dielectric relaxation [29], the dielectric constant is related to the appropriate

macroscopic correlation function, the dipole moment of the sample.

The polarization, in linear response, is related to the external field through the

susceptibility:

P(w) = X(w)Eo(w). (4.13)

The polarization is related to the net dipole moment per unit volume of the system

in the presence of Eo

P(w)ewt < E pi(t) > E0 , (4.14)

and the susceptibility X(w) is related to the net dipole moment in the molecular

sample, m(t) = Ei Ii (t) according to

x(w) = V dte-'t < m(O)m(t) >= /L[-d < m(0)m(t) >]. (4.15)

where L denotes the Laplace transform with variable z = iw.

Also, the polarization in the sample is related to the macroscopic, or internal field

of the sample, E(w) in the following way:



P(w) = - 1 E(w). (4.16)
47r

Before we proceed to the specific examples we chose for illustrative purposes, we

note the difference between the external field, Eo(w), which exists in the volume of the

sample when the latter is removed from the dielectric medium, and the macroscopic

Maxwell field, E(w), which is the field the sample actually feels. In general, the

relationship between the two is complicated; however, simple in the case of a spherical

sample in an infinite medium. The solute molecules, or spherical molecular sample

experience a field produced by the polarization in the solvent, which has been induced

by the polarization in the sample, hence the term reaction field is used to describe

the macroscopic field.

By means of simple electrostatic boundary value calculations [30] to a sphere em-

bedded in an infinite dielectric medium for two cases: a) in the presence of a constant

electric field and b) and an extended dipole moment inside the polarized sphere, we

obtain the spontaneous fluctuations of the solvent field as a function of the dielectric

constant of the medium and the geometry of the sample. The applied electric field

induces polarization in the solvent, the dielectric medium. When this polarization is

caused by the presence of a dipole, which for simplicity lies in a cavity, the field is

called the reaction field. We then obtain the fluctuating field of the solvent at that

specific place which we put the solute or probe molecule. The probe molecule lies in

a cavity just like the solvent molecule. This is the first step towards obtaining truly

single particle information where intramolecular interactions and degrees of freedom

are explicitly considered for giving rise to fluctuations [31, 32]. In the continuum

approach for the environment of the solute molecule, molecular structure of matter

and interactions are not taken into account explicitly. Finally, we will use such known

results of the single-particle correlation function in our treatment.

Constant electric field E, We first consider the case of a constant applied electric

field E, present at the medium of dielectric constant El (w), at a large distance from

the spherical sample of radius a and dielectric constant E2 (w). (Here, we impose the



field of the polarized solute to the solvent. This is a crude first step to treating more

realistically the response to the sample polarization in the next section.)

In this case, the external field inside the sphere, E 0 , that is the field present in

the cavity in the absence of the solute is the one that enters the linear response

formalism [33]. From a standard electrostatic calculation [30], this field is

Eo(w) = (w) (4.17)
2E1(w) +1

Combining Eq. 4.13, 4.16 and 4.17, we obtain for the field in the sample:

Eq ( =w) E x eiw < m(O)m(t) > dt. (4.18)
E2(W) - 1 2El(w) + 1 dt

The field outside the sphere is composed of the applied field E, and a dipolar

field of an effective dipole
(W) - 2 () Ea 3  

(4.19)
2E (w) + E2(W)

A point dipole at the center of the cavity Similarly, we consider the case of

a point dipole p inside the sphere. The insertion of a dipole in a polarizable solvent

produces a field, R. The reaction field is the field felt by the dipole due to this polar-

ization of the solvent. Again, we treat the solvent particles as a dielectric continuum

outside the sphere surrounding the dipole. The dipole, the solvent molecule, lies in

a cavity similar to the one of the probe solute molecule. We thus obtain the solvent

field that the solute molecule would feel at that point. The macroscopic field E(w) at

the sample is now the reaction field, R, which can be obtained from an electrostatic

calculation [30]:

R (t) - 2 [E1(W) - E2(W)] (t) (4.20)
62(W) [2c 1(w) + E2(w)] a3



For simplicity, the dipole lies in the z axis. The field outside the sphere is again a

dipolar field of an effective dipole

3
/1 (4.21)

2e 1(w)+ E2(W)

From Eq. 4.20, we obtain

2( [21(w) + 62(W)] E(w) 2e*(w) + ()] (4.22)

where E*(w) is the complex conjugate of the dielectric constant. Computer simu-

lations have been used to obtain forms for the autocorrelation function of the dipole

moments [34]. For the behavior of the dipole moment correlation function, we assume

here the simplest model: the Debye model of dielectric behavior where the correlation

function decays exponentially from its initial value,

(p(0)p(t)) oc e-lt l/ . (4.23)

T is a measure of the duration of the correlation and it is a relaxation time. Also,

within the same model, the dielectric constant goes like

E(W) = 1 + WT (4.24)
1 + iwT

where

Eo = E(0)

is the static dielectric.

Since we have assumed that the point dipole lies in a cavity, E2 (w) = 1, and

combining Eq. 4.22, 4.23 and 4.24 we obtain for irradiation at wo

4 (Co - 1)2  -t (4.25)
(R(O)R(t)) = e (4.25)

a6 (2EO + 1)2[1l +Wo 2]

We are now ready to calculate the total cross section by substituting the form



of the solvent correlation function of Eq. 4.25 to our original expression in Eq. 4.12.

The y correlation function will be constant for a specific molecule and experimental

setup. The time averaging over the motion of the molecules will involve macroscopic

averages of the second hyperpolarizability tensor y of the form (YIJKL"YMNKO). Since

all molecules, centrosymmetric or not, possess non-zero components, there will be a

fixed contribution for each molecule. We can thus study the change in the spectrum

from solvent to solvent for a chromophore. For a specific molecule then

TI. .\ •
(-U 1- 2
\ou -/

[1\WiJ 27ra 6 (2Eo + 1)2[1 +
1/T

2w2T 2] (W - W0)2 + (1/7)2 .

Table 4.1: Four representative molecules with a
relaxation times are chosen as solvents for a HLS
chromophore

(4.26)

range of dielectric constants and
experiment of a centrosymmetric

For illustrative purposes we choose four quite different solvents, with parameters

as shown in Table 4.1. We obtain the lineshapes for frequencies typically used in

the experiments in Ref. [2] and a much lower one for comparison as may be seen in

Figure 4-1.

solvent 60 7 (ps)
chloroform 4.78 5.4
bromoform 4.39 19
nitrobenzene 34.89 41
quinoline 9 45
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Figure 4-1: HLS of a centrosymmetric chromophore with Ao = 1000 nm typically
used in the experiments of Ref. [2] in different solvents: (a) quinoline (b) bromoform
(c) chloroform.



4.4 Conclusions

We have considered hyper-Rayleigh and hyper-Raman light scattering of centrosym-

metric molecules in solution. We have shown that both processes are possible, even

in the presence of identically vanishing P. Especially, in the case of hyper-Rayleigh,

we proposed that the contribution is a third order effect involving the second hy-

perpolarizability 7 as well as the dielectric behavior of the solvent. The lineshape

then, centered at frequency 2wo is Lorentzian at the center, and has its wings clipped.

This effect may be important as harmonic light scattering is re-introduced as an ad-

vantageous technique to measure the hyperpolarizability / of potentially important

materials for nonlinear optics. If it is undesirable, it may be minimized by the ap-

propriate choice of solvent. On the other hand, this technique may be used to probe

the solvent reaction fields.
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Figure 4-2: The full width at half maximum at scattering frequency 2wo as a function
of the relaxation time T of the solvent. The marks correspond to the specific solvents
considered.



4.5 Appendix A: HLS cross section

The differential cross section for the "quasi elastic" HLS of centrosymmetric molecules

in solution is obtained. The radiation field is treated quantum mechanically. We

reserve the capital letter kets for the photon and system states and the lower case

letter kets for the system states. So the total differential cross section, , is equal to

da" V

dQ cdQ

where TT-z is the transition rate from the molecular initial state III) to the final

molecular state IF) and may be obtained from time dependent perturbation theory.

c stands for the speed of light and V for the enclosed volume. Now,

TF-I = E Pf A Pi --
f i

is related to the transition amplitude Cfi(t) from the initial to the final state of

the system as well as the density of final and initial states per unit energy per unit

volume: pf and pi respectively. We assume that before each photon is scattered the

sample has come to equilibrium so that

e-hwi /kT

i e-hwi/kT'

The density of final states is given by

dQ w'2

Pf = h (27rc) 3

where w' is the frequency of of the scattered photon and dQ the solid angle within

which lies k'

We now proceed to calculate the transition amplitude to third order in perturba-



tion theory. Formally,

-t) (3)) j dT(f I VI(T) jdt 'V,(t') j dt"V1 (t/")IjI(O)) (4.27)

V1 is the time dependent part of the Hamiltonian in the interaction representation.

In our case,

H = Ho + H(t)

where Ho is given by

Ho = Hsystem + Hradiation

and

H(t) = Hinteraction -

Only the terms which annihilate or create one quantum need be considered and

Hinteraction = H(1). By inserting complete set of states in Eq. 4.27, we obtain for

the transition amplitude of the annihilation of two incident photons of wavevector

kI, k 2 and polarization A1, A2 and the creation of a photon with wavevector k3 and

polarization A3:

Ci(t)gA_2,A2;xA = 1i K dHH(1) eiwFKT dt'H(1) KLeiWKL
i() (ih2)3 KL FK

fo' dt"H(1)LMei , L t ''

There are 3! possible Feynman diagrams for this process corresponding to the

different sequences of annihilation of two quanta, creation of a third quantum. The

above sum thus has 6 terms. Looking at carefully one of the terms, namely the

annihilation of photon k1 , A1 followed by that of photon k2, A2 , the emission of k3, A3

we obtain:



-1 t (flPA3e-ik.'fk)
Term-- 1 =o dTeiwFIr+iwfiT (f P Ae -i,"7k)

Term1 = [k - c - h(w1 + W2)]

(k )p2e-iP 2 "e - ) 21.ei 1ri)

[xe - Ei - hw1]

x (e/m)(2rh/cv)1 1/2 1/2 1/2

(k1k2k3)1/2 k k2 k3+1
(4.28)

The occupation numbers nk,A are the number of quanta with wavevector k and

polarization A; w. =f- + w 3 - w2 - W1 + w,. The scattering system is constructed

by N units each of n, charged particles which can be regarded as independent of

each other. Within each unit the exponentials can be regarded as constants. For Ra,

the vector from an arbitrary origin to a fixed point in the scattering unit a and for

e(kjpA• Im) = imwkm(kI p Aim), Eq. 4.28 becomes

Term1
-- ft dTeifrF+iw'ir iR -(ki+k2- 3) (f 1

3 k)

h 0 a=1 k,l [6k - i - (W 1 + 2

(killA2 )
l[e - i - ihwi] 2  (

x imWkIWmW mi (e/m)3(2'7rh/cv) 1 1/2 1/2 n 1/2
(k1 ,k 2k 3)1/ 2 k, nk 2 k3 +1

'4.29)

4.6 Appendix B

We obtain the differential cross section for the "quasi elastic" HLS of centrosymmetric

molecules in solution. We treat the radiation field quantum mechanically and the

solvent field classically. We reserve the capital letter kets for the photon and system

states and the lower case letter kets for the system states. So the total differential

cross section,d-, is equal to

dr V

dQ cdQ



where TF-I is the transition rate from the initial state II) to the final state IF) and

may be obtained from time dependent perturbation theory. c stands for the speed of

light and V for the enclosed volume. Now,

TF+-I = ZPf Pi f+- 2

f i

is related to the transition amplitude Cfi(t) from the initial to the final state of

the system as well as the density of final and initial states per unit energy per unit

volume: pf and pi respectively. We assume that before each photon is scattered the

sample has come to equilibrium so that

e-hwi/kT

A i e-hwi/kT

The density of final states is given by

dQ w' 2

= h(27rc)3

where w' is the frequency of of the scattered photon and dQ the solid angle within

which lies k'

We now proceed to calculate the transition amplitude to fourth order in pertur-

bation theory. Formally,

Cf+-i(t)(4) - i4 I0 dT(f VI(T) 0 dt'VI(t') dt"Vi(t") tI dt"'VI(t')j 14(0))

(4.30)

VI is the time dependent part of the Hamiltonian in the interaction representation.

In our case,

H = Ho + H(t)

where Ho is given by

Ho = Hsystem + Hradiation



and

H(t) = Hinteraction.

Only the terms which annihilate or create one quantum need be considered and

Hinteraction - H(1).

By inserting complete set of states in Eq. 4.30, we obtain for the transition ampli-

tude of the annihilation of two incident photons of wavevector k1, k2 and polarization

A1 , A2 and the creation of a photon with wavevector k3 and polarization A3:

C(4) 1( KLM d HTsolHeiwFKT dt'H(1)KL iKLt/

fo' dt"H(1)LMei••Mt" dt" 'H(1)Mje'wM t ' .

There are 4! possible Feynman diagrams for this process corresponding to the

different sequences of annihilation of two quanta, creation of a third quantum and an

interaction with the solvent. The above sum thus has 24 terms. Looking at carefully

one of the terms, namely the annihilation of photon kI, A1 followed by that of photon

k2 , A2 , the emission of k3, A3 and finally the interaction with the solvent we obtain:

Terml = 1 ' dTei IHFK
h k,l,m 0

(k pA 3 e-ik3-f) (pA 2 eik2 I) (mIpA' ek 1(i)

[Ek - Ei 3+ h(W3 - W1 - w 2 )] [6~ - i - h(w 2 + w 1)] [Em -m i - •i1]

x (e/m)a(27rh/cv)3/2  1 1/2 1/2 1/2 (4.31)
(klk 2 k 3 )1/2 k l nk2 nk3+1

The occupation numbers nk,A are the number of quanta with wavevector k and

polarization A; w1 = + w3 - 2 - l + w. The scattering system is constructed

by N units each of n, charged particles which can be regarded as independent of

each other. Within each unit the exponentials can be regarded as constants. For Ra,

the vector from an arbitrary origin to a fixed point in the scattering unit a and for



e(k pAi Im) = imwkm(klI"p i Im), Eq. 4.31 becomes

Term1 -i
-- 1 I FK

( Ua_)
(k I/L3 If

(7ej~ 2 i)

[Ek - Ei + h(w 3 - W1 - w 2) [ - i -- h(W 2 + W1)] [Em - Ei - •i1]

x im 3 WklWImWmi(e/

Now, we substitute for Hsolv

Hsov = p . F

so that

HIV = (fl p Ik) -F.

Also,

I(wi) = nkic/V

Combining all the above, the scattering cross section becomes

27h 023
C5 W1 W2

Ef Epi
f i

a= ei +
a=1

(kl 3 e) (IpA' Im) (mItl Ipi)
k,I,m A [Ek - Ei + h(W3 - W1 - w 2)] [e - Ei- h(w 2 + W1)] [Em - fi - hW1]

terms (wf -i + W3 - 2 - W1 +w 6)

(mlI p1 Ii)

1/2 1/2 1/2 (4.32)

du

dQ

3 q 2q
m)(2xrh/cv)•" (k3 /2 1/ 1 /2

(kik2k3 1/2 nki nk2 nk3+1

-F2WklWlm mi + 23 (4.33)
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