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Abstract

In this thesis, we propose methods of estimating the amplitude modulation (AM)
and frequency modulation (FM) of the non-stationary sinusoidal components of a
signal. The approach is based on the transduction of FM to AM by a bank of filters,
motivated by the possibility that the auditory system relies on a similar transduction
in perceiving frequency modulation. FM to AM transduction occurs whenever a
signal with a time-varying frequency sweeps across the non-flat frequency response of
a filter, causing a change in the amplitude envelope of the filter output. When AM is
also present, the AM and FM are nonlinearly combined in the amplitude envelope of
the filter output. We use the amplitude envelopes of the output of a bank of filters to
estimate the AM and FM of an input signal. We first develop a method that refines
a current scheme for AM-FM estimation of a single sinusoid by iteratively inverting
the AM and FM estimates to reduce error introduced in transduction. The approach
is then extended to the case of two sinusoids by reducing the problem to two single-
sinusoid AM-FM estimation problems, yielding a closed-form solution that is then
improved upon by iterative refinement. For the general multi-component problem,
where no closed-form solution has been found, a Newton-type iterative solution is
proposed. Error analysis of the methods is performed using a frequency-domain view
of transduction. The methods are demonstrated by example for a wide range of
AM-FM functions.
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Chapter 1

Introduction

We are surrounded by non-stationary signals. Non-stationary signals consist of com-

ponents with amplitude envelopes and frequencies that change with time. A familiar

example is speech. Whenever we speak, we transform our thoughts into sounds whose

components have time-varying amplitudes and frequencies. The changes in the am-

plitudes and frequencies of those sounds carry the information necessary for a listener

to transform the sounds back into thought. Radio broadcasts are another example of

non-stationary signals. AM radio broadcasts consist of signals with changing ampli-

tude and a stationary frequency, and FM radio broadcasts consist of signals with a

stationary amplitude and a changing frequency. In fact, any signal with a beginning

or an end can be considered a non-stationary signal since its amplitude envelope must

transition between zero and some non-zero value at some point in time. With this

rather broad definition of non-stationary signals, it is apparent that practically any

signal of interest is non-stationary.

The goal of this thesis is to estimate the time-varying amplitude and frequency of

the components of a signal. To make this mathematically precise, consider a discrete-

time signal of the form

N

s[n] = akln] COS(9k[n]). (1.1)
k=1

Our goal is to estimate each ak n], which we refer to as the amplitude modulation



(AM), and each 9 k[n], which we refer to as the frequency modulation (FM)1 . Our

approach utilizes the amplitude envelopes of the outputs of a filter bank, which is

motivated by the possibility that the auditory system uses this information for sepa-

rating sound components.

In this chapter, we begin with a description of a few of the more common ap-

proaches to AM-FM estimation. We then further introduce our approach and discuss

the motivation behind it in more detail. The chapter concludes with a discussion of

the contributions of this thesis and an outline of the remainder of the thesis.

1.1 Background

A multitude of approaches have been taken to estimate the AM and FM of signal

components. In this section, we describe a few of the more popular methods. The

approaches were chosen because together they encompass the majority of the funda-

mental strategies that have been applied towards AM-FM estimation.

1.1.1 Residual Signal Analysis

Residual Signal Analysis (RSA) was originally proposed by Costas [5, 6]. It is not

aimed directly at estimating AM and FM, but rather to track the individual AM-FM

sinusoids that make up a complex signal. In the process of tracking the individual

components, however, estimates of the AM and FM are obtained and, therefore, RSA

can be viewed as an AM-FM estimation method.

In RSA, it is assumed that the signal of interest is of the form

N N

s[in] = ak[n] CoS(Ok[n]) = Xk[n]. (1.2)
k=1 k=1

The input signal is passed through a bank of N "trackers", one for each AM-FM

sinusoid. In order for a given tracker to see only one component of the input signal,

1We are abusing the notation here. 9[n] refers to the signal obtained from sampling the derivative
of the continuous-time phase, 0(t), that corresponds to 9[n].



the value of all other components at the next time instant must be predicted and

then subtracted from the incoming sample of the composite signal. Therefore, the

input to the kth tracker at time n = no is

N

sk[no]= s[n0 ] - Zi [no], (1.3)
ifk

where ,i[no] is the predicted value of the ith component of s[no]. This procedure is

illustrated in Figure 1-1.

There are two central issues with this approach. First, a component must be

acquired before it can be tracked. In other words, at a given instant in time, the

system must somehow determine if there is a signal present at some frequency. In most

systems based on RSA, this usually involves calculating the energy of the composite

signal in a narrow frequency band and assigning a tracker to it if the energy exceeds

some threshold. The problem is that there is not an obvious value to choose as a

threshold. The second issue involves the estimation of the value of the individual

components on the next sample. In Costas' original implementation, the next sample

was estimated by simply advancing the phase of the estimate of the current sample,

which assumes that there is negligible change in both the amplitude and the frequency

of each component of s[in]. A more effective method of estimation has been proposed

by Ramalingam [17].

1.1.2 The Teager Operator

The Teager operator is a nonlinear operator that estimates the amplitude modulation

and frequency modulation of a single sinusoid, i.e.

si[n] = a[n] cos(O[n]). (1.4)

In discrete-time, the Teager operator,T(s[n]), is defined as

I (s[n]) = s2[n] - sin - 1]s[n + 1] (1.5)



sr[n] = Ek=-i Xk[n]

Figure 1-1: A block diagram of residual signal analysis system.



with the property that [10, 11]

T(s[n]) P a'[n]O[n] (1.6)

under the conditions

Q, < 1 (1.7)

and

sin2 (2 ) <max [sin2(ý[n)] (1.8)

where Qf and ,a are the bandwidths of O[n] and a[n], respectively. T(s[n]) is also

referred to as the energy operator because it is proportional to the energy required

for a harmonic oscillator to generate s[n].

Using the Teager operator, the Discrete Energy Separation Algorithms 1 and 2

(DESA-1 and DESA-2) have been developed [10] that estimate the AM and FM of

Eq. (1.4). For example, the DESA-1 algorithm uses the Teager operator to estimate

a[n] and 0[n] in the following manner:

a2n] [x(n) ]
a] [x(n + 1) - x(n - 1)]

6[n] e arcsin ( I"[x (n+1 ) - x(n - 1)]) (1.9)

which holds again under bandwidth constraints on the AM and FM. Both DESA-1 and

DESA-2 are intended only for signals that consist of a single AM-FM sinusoid. There

have been attempts to generalize this method to multi-component signals [9, 12, 19],
but even stronger constraints on the rate of change of the AM and FM must be

imposed than the constraints of DESA-1 and DESA-2.



1.1.3 Time-Frequency Distributions

A Time-Frequency Distribution (TFD) is a two dimensional function, P(t, w), that

describes the energy of a signal in time and frequency simultaneously. It is usually

displayed as a three dimensional plot, the axes being time, frequency, and energy.

This method does not directly estimate the AM and FM of the components that

make up a signal, but it does display this information in an accessible form. One

approach to obtaining the AM and FM from such a function is to simply track the

peaks of P(t, w) on the time-frequency plane, while another method relies on moments

of the TFD [2].

TFDs are quite popular and are used in a wide range of applications. Some

examples of common TFDs include the spectrogram, the Wigner distribution, and

the Choi-Williams distribution. These particular TFDs belong to a large class, all of

which can be obtained from [4]

C(t, w) = *(u - -7)(u + T7)0(0, 7)e-jet-jrW+jeududTd0 (1.10)

where ¢(0, T) is called the "kernel".

There are some significant drawbacks to TFDs. First, the best distribution to use

depends on the signal being analyzed. For example, the Wigner distribution works

particularly well for FM-chirp signals, but not as well for other FM functions. Also,

various types of artifacts occur, especially when the signal consists of more than one

component. The most common artifact is the appearance of cross-terms, i.e. there

is energy in the time-frequency plane when it is known that no energy is actually in

those locations.



1.2 An Approach Motivated by the Auditory

System

The methods of the previous section show that the problem of AM-FM estimation

can be approached from a variety of viewpoints. RSA is reminiscent of feedback

systems used in control theory. The Teager operator was derived by considering

the energy required for a harmonic oscillator to generate the AM-FM signal. TFDs

can be thought of as generalizations of traditional analysis techniques such as the

Fourier transform in the sense that they project some form of the signal onto a set

of basis functions. In this thesis, we use yet another approach, based on FM to AM

transduction, that is fundamentally different from those mentioned above.

1.2.1 Motivation

The human auditory system has the ability, to a certain extent, to track the ampli-

tude modulation and frequency modulation of a sound. This is essentially our goal.

Admittedly, the auditory system is not a perfect AM-FM estimator, but in a general

sense, it seems to do what we hope to accomplish. We cannot show that the auditory

system actually estimates AM and FM. We can only say that, through our experi-

ence, the auditory system somehow gives rise to the sensation of AM and FM. Our

goal, however, is not to show how or if the auditory system estimates AM and FM.

Instead, our goal is to develop an approach to AM-FM estimation, motivated by a

simple model of auditory processing.

1.2.2 Some Properties of the Auditory System

Although the auditory system is a very complex system and much of it is not com-

pletely understood, there are a few basic properties that are well known:

1. The first processing stage consists of a large bank of broad, overlapping filters.

2. There is FM to AM transduction from filtering [8, 18]. As the FM sweeps across

the frequency response of a filter, a change is induced in the amplitude envelope



of the filter output.

3. The outputs of the overlapping filters are rectified resulting in an amplitude

envelope.

4. The rectified signal is transmitted to higher auditory processes.

These properties indicate that one signal used by the higher auditory system is the

amplitude envelopes of the filter outputs and that these envelopes are dependent upon

the AM and FM functions. A block diagram of this simple auditory model is shown

in Figure 1-2.

Input Filter R Further Sensation of
Bank Rectifier Processing (AM and FM

Figure 1-2: A simple block diagram of the auditory system.

1.2.3 Approach

The auditory model in Figure 1-2 is the motivation for our approach. The first step

is to filter the signals with a bank of broad, overlapping filters that have a non-

flat frequency response followed by a rectification stage in which we calculate the

amplitude envelopes of the output. The output envelopes are not only functions of

the amplitude modulation of the input, but they are also functions of the frequency

modulation due to the FM to AM transduction. In the case where the input consists

of a single AM-FM sinusoid, we obtain a closed form solution for the AM and the

FM from the amplitude envelopes. When the input consists of a sum of two AM-

FM sinusoids, we reduce the problem into two single-sinusoid AM-FM estimation

problems and thereby derive a closed-form solution. In the case where there are

more than two AM-FM components in the input signal, we are unable to find a



closed-form solution. We do, however, propose a method that still utilizes FM to AM

transduction, but instead of a closed form solution, the solution is obtained using

standard numerical methods. Although motivated by auditory modeling, we do not

claim that the auditory system uses these specific methods for AM-FM estimation.

1.3 Thesis Contribution

This thesis contributes to the area of signal processing in several ways. First, it

improves upon the algorithms based on FM to AM transduction implemented by

Quatieri et al. [16] by improving the accuracy of AM and FM estimates. Second, the

method is extended to the case where the signal consists of two AM-FM sinusoids.

Third, a method for estimating the AM and FM of a signal with an arbitrary number

of components is proposed. Last, we introduce a frequency domain interpretation of

filtering non-stationary signals with linear, time-invariant filters which allows us to

perform error analysis of the AM-FM estimation algorithms.

1.4 Thesis Organization

In the current chapter, we have described some of the more popular methods of AM-

FM estimation and discussed the motivation behind our approach. In Chapter 2, we

discuss some issues related to AM-FM estimation such as uniqueness, the concept of

instantaneous frequency, and general constraints on the types of signals that can be

analyzed. In Chapter 3, we describe FM to AM transduction and give an approxima-

tion for the output of linear, time-invariant filters when the input is non-stationary.

Chapter 4 covers the case in which a signal consists of only one AM-FM sinusoid,

providing the foundation of the next two chapters. Chapter 5 presents a technique

that improves performance of the algorithm of Chapter 4 based on inverting the mod-

ulation to reduce transduction error. Issues of robustness with respect to the center

frequency and filter shape are discussed in Chapter 6. We also present a frequency

domain analysis of the approximation used for the output of a linear, time-invariant



filter when the input is a non-stationary signal. In Chapter 7, an algorithm for esti-

mating the AM and FM of a signal composed of two AM-FM sinusoids is presented

and refinements are then made based on generalization of inverse modulation tech-

niques of Chapter 5. Chapter 8 shows how AM-FM estimation can be performed on

signals composed of multiple AM-FM sinusoids by posing the problem as a system of

nonlinear equations and solving these equations using standard numerical techniques.

The last chapter summarizes the thesis and gives suggestions for future work.



Chapter 2

Preliminaries

Before we describe the AM-FM estimation algorithms, we introduce a few concepts,

definitions, and subtle issues associated with AM-FM signals. The first topic is the

analytic signal, which is important for both establishing the uniqueness of the AM-FM

estimates and avoiding complications that often arise when using real signals. We then

discuss the concept of instantaneous frequency and some difficulties in formulating

its definition. The last section addresses the ambiguity in writing a signal in terms

of AM-FM components.

2.1 The Analytic Signal

We use the following definition for the analytic signal.

DEFINITION 2.1 (ANALYTIC SIGNAL)
The continuous-time (CT) analytic signal, s(t), and the discrete-time (DT)
analytic signal, s[n], have Fourier transforms that are identically zero over the
negative frequency range, i.e.

S(w) = s(t)e-jwtdt = 0 for w E (-oc, 0] (CT) (2.1)
00

S(ew) -= s[n]e-j" = 0 for w E [-r, 0] (DT). (2.2)
n=-oo

For the discrete-time case, for example, s[n] is an analytic signal if and only if its

spectrum is identically zero for negative frequencies. From this definition, it follows



that there is only one analytic signal, which we denote s,[n], corresponding to any

signal s[n]. This property will be useful when we establish the conditions under which

AM-FM estimation gives a unique solution. Also, the envelope of an analytic signal

can be determined by simply calculating its magnitude. Since the later algorithms

use the amplitude envelope of signals, the analytic signal is a useful form.

Since most signals to be analyzing are real, we discuss the relationship between

a real signal and its analytic counterpart in more detail. To calculate the analytic

counterpart of a real signal', s[n], we zero the negative frequencies of s[n] [4], i.e.

7r
sa[n] = 2 S(ewn)eindwn (2.3)

where S(eij ) is the discrete-time Fourier transform of s[n]. Since we are interested

in calculating a[n] and 0[n], we desire the analytic signal to have the same amplitude

and phase function as the real signal. To establish conditions under which this is

true, we introduce the quadrature signal, which is given by

Sq[n] = a[n]ejo[n] . (2.4)

The analytic signal has the same phase as the real signal when

Sa[n] = sq[n] (2.5)

Since e [ln] = cos(O[n]) + j sin(0[n]),

n=-oo

00

S*(e-iw) S*(e-i) _ j a[n] sin(O[n])e -jwl. (2.7)
n1= -00

1The analytic signal is twice the inverse Fourier transform of the positive frequencies of s[n] so
that Re{sa[n]} = s[n].



When s[n] is real, S(ej ' ) = S*(e-ji). Therefore,

Sq(e j") + S*(e -ji) = 2S(eiw). (2.8)

Since

Sa(") 0 for -r<w< (2.9)
Sa(eyw) = (2.9)

2S(eij ) = Sq(e j") + S*(e - ji) for 0 < w < r

we have the condition that Sa(edi) = Sq(e•w) if Sq(ed• ) = 0 for -r < w < 0.

Therefore,

Sa[n] = a[n]ey° [n ]

if

Sa[n]ee[nje -j = 0 for - i < w < 0 (2.10)
n=-oo

In other words, the real signal s[n] = a[n] cos(0[n]) has a corresponding analytic signal

sa[n] = a[n]ej obl[ when the spectrum of a[n]eji[1n contains no negative frequencies.

Throughout this thesis, we assume this to be true.

2.2 Instantaneous Frequency

Instantaneous frequency is a peculiar concept because it is very easy to understand

on an intuitive level, but very difficult to describe mathematically. As an example of

what is meant by the instantaneous frequency, consider a signal that is one second in

duration and starts at frequency of 100Hz and steadily climbs to 200Hz. At half of a

second into the signal, we say that the signal is at a frequency of 150Hz. Representing

this intuition mathematically, however, is not straightforward.

A standard definition of instantaneous frequency is the derivative of the phase of



the analytic signal [4]. For some signals, this definition of instantaneous frequency

matches our intuition, as shown in the next example.

EXAMPLE 2.1
Consider a signal

s(t) = cos (2w(100t + 50t 2)) for 0 < t < 1,

with the corresponding quadrature signal

Sq(t) = ej27r(100t+50t2)

The phase derivative is 2r(100 + 100t)
frequency of 150Hz.

In the above example, the result is what

sinusoids, however, this definition in terms

for 0 < t < 1. (2.12)

and at t = .5 seconds, we obtain a

we expect. If a signal consists of two

of the phase derivative no longer meets

our intuition.

EXAMPLE 2.2
Suppose s(t) consists of a sum of two stationary sinusoids

s(t) = cos(21rlO0t) + 2 cos(2ir20t) (2.13)

which has the corresponding quadrature signal

Sq(t) = ej 2r l0t + 2ej 2 r20t (2.14)

To determine the phase derivative, we first need sq(t) in a form with one phase
term. Doing so gives us

Ssin (2 •o10t)+2 sin(2r20t)
sq(t) = (5 + 4 cos(2r10Ot)) e actan( 'cos(210t)+2cos(2r20t) (2.15)

and a resulting instantaneous frequency function

1 1 3IF = -(21r30) + -(2x10)2 2 (5 + 4 cos(27r10t)) 2

A plot of the instantaneous frequency is shown in Figure 2-1.

Thus, according to our definition of instantaneous frequency, the frequency of the sig-

nal varies between approximately 17Hz and 30 Hz. There are some obvious problems

with the instantaneous frequency obtained in Example 2.2. First, one of the sinusoids

(2.11)

(2.16)
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Figure 2-1: An example of the instantaneous frequency of a sum of two sinusoids.

that made up our signal was at 10Hz, yet the instantaneous frequency never equals

this value. Second, when shown the plot of the frequency, we would expect that if

we heard such a signal it would waver rapidly in frequency. However, it is actually

perceived as a tone with no modulation. Cohen has summarized [4] a few of the

"paradoxes" of the definition we have given for instantaneous frequency:

1. Frequencies that are in the spectrum might not appear in the instantaneous

frequency.

2. For a signal that consists of only a few frequencies, the instantaneous frequency

might vary over a large range of frequencies.

3. For an analytic signal, i.e. a signal with no negative frequencies, the instanta-

neous frequency might be negative.

4. For a band-limited signal, the instantaneous frequency might go outside of the

band.

5. To calculate the instantaneous frequency, the analytic signal must be obtained

because the instantaneous frequency has been defined as the derivative of the

phase of the analytic signal. Since calculating the analytic signal is dependent

upon the signal over the entire time axis, the instantaneous frequency indirectly

depends on future and past values.



It is obvious that this popular definition for the instantaneous frequency does not

lead to the desired results since it does not account for the possibility of more than

one instantaneous frequency. If we were asked to describe the signal given in Eq. 2.14,

we would say that it consists of two sinusoids, one with an instantaneous frequency

of 10Hz and the other with an instantaneous frequency of 20Hz. Therefore, we must

allow for the possibility of the signal having multiple instantaneous frequencies, one

for each sinusoid present in the signal. We redefine instantaneous frequency to be

a set of phase derivatives, with each phase derivative corresponding to a particular

AM-FM component of the signal being analyzed.

2.3 Representing a Signal as a Sum of AM-FM

Sinusoids

Although allowing multiple instantaneous frequencies might avoid some of the "para-

doxes" listed in the previous section, we are now faced with the problem of deter-

mining how many AM-FM sinusoids make up a signal. This is not a simple matter.

In fact, if the signal of interest is white noise, representing it as a sum of AM-FM

sinusoids is probably not much more enlightening than representing it as a sum of

stationary sinusoids, as in standard Fourier techniques. In this section, we discuss

the problem of determining how many sinusoids make up a signal and describe some

constraints that ensure that the signal lies within the framework of the methods

developed in this thesis.

2.3.1 Two Extremes

An arbitrary signal can be expressed in an uncountably infinite number of ways. At

one end, it can be written as a single AM-FM sinusoid in an infinite number of ways

and, at the other end, it can be written in only one way as a sum of infinite number of

AM-FM sinusoids. We begin with the first case. Suppose we are given a real signal,



sin], that is non-zero for -N < n < N and we want to represent it in the form

s[n] = a[n] cos(O[n]). (2.17)

One way to to do this would be to simply choose any value for a[n] at each n with the

constraint that a[n] > Is[n] . This implies that 9[n] is equal to arccos (n). Since the

only constraint is that a[n] > Is[n]|, there are an infinite number of possible choices

for a[n] and 0[n] at each sample point. Note, however, that an analytic signal, sa[n],

can be expressed as an AM-FM sinusoid in only one way. This is due to the fact that

if sa[n] = a[n]ej l[n], it must be true that Isa[n]l = Ia[n]eje[n]I = a[n] and therefore,

a[n] is uniquely defined. This implies that 0[n] = - n ( , which is also unique

(modulo 27r).

We can also represent s[n] as a sum of an infinite number of AM-FM sinusoids.

One way2 is to take the discrete-time Fourier transform of s[n], i.e.

s[n] = j S(ei)eindw, (2.18)

where we are viewing the integral as the limit of a summation. We can also take M

stationary sinusoids obtained from the Fourier transform and express the remaining

sinusoids as a single AM-FM sinusoid. This gives a representation of s[n] consisting

of M + 1 AM-FM sinusoids. In this fashion, we can write an arbitrary signal as a

sum of any number of AM-FM sinusoids.

After making these observations, we see that from a strictly mathematical point

of view, it is meaningless to say that a signal consists of a certain number of sinusoids.

There is, however, for a given signal, a particular representation in terms of AM-FM

signals that is more "natural" and intuitive, as in Example 2.2. There it seemed

more natural to view the signal as a sum of two stationary sinusoids rather than one

sinusoid with both AM and FM. Determining the correct number of sinusoids is a

rather complex issue and not the topic of this thesis. Therefore, we assume that the

2 We consider stationary sinusoids to be a member of the class of AM-FM sinusoids; they are
AM-FM signals with constant modulation functions.



correct number of sinusoids, N, is known beforehand and our goal is to determine

the AM and FM of the signal under the assumption that s[n] is the sum of N non-

stationary sinusoids.

2.3.2 Signal Constraints

Throughout the remainder of the thesis, it is assumed that the signals being analyzed

satisfy two constraints. These constraints are necessary to ensure that the algorithm

produces the expected results. First, the signal must always be present and consist

of the same number of AM-FM sinusoids. This constraint allows us to avoid the

problem of signal detection. Second, the quadrature signal, described in Section 2.1,

must equal the analytic signal. If this condition is not met, an increasing difference

between the quadrature signal and the analytic signal results in an increasing amount

of error in the estimates. This constraint indirectly places constraints on the the AM

and FM because it constrains the spectrum of ai[n]eje [n] to be confined to the interval

[0, ir]. To establish when this constraint is violated, we determine the manner in which

the FM and AM contribute to the width of the spectrum of ai[n]ejei [n]. We denote the

Fourier transform of the amplitude as SAM(ej") and the Fourier transform of ejo'[n]

as SFM(eji). Since multiplication in the time domain corresponds to convolution in

the frequency domain,

Sq(e w) = SAM(ej(~i-))SFM(ej)dW, (2.19)

which means that the width of the spectrum of the quadrature signal is equal to

the sum of the widths of SAM(eiw) and SFM(eji). Therefore, to state the constraint

more explicitly, the sum of the widths of SAM(e jw) and SFM(ejw) must be less than

ir, otherwise the spectrum of the quadrature signal cannot be confined to frequencies

between 0 and 7. Note that this constrains the spectral content of the AM and FM

functions, but not necessarily their rate of change.



2.4 Summary

We began with a discussion of the analytic signal and the relationship between real

signals and their analytic counterparts. We then introduced the concept of instanta-

neous frequency and gave reasons, through a few examples, for defining it so that it

allows a signal to have multiple instantaneous frequencies. Next, we addressed the

issue of representing an arbitrary signal as a sum of AM-FM sinusoids. In particular,

we showed that it is possible to express a signal with any number of AM-FM sinu-

soids and that for a given number of AM-FM sinusoids, there is not, in general, a

unique expression. We did show, however, that if the signal consists of one analytic

component, the amplitude and phase derivative are uniquely specified. We then gave

constraints in order to ensure that the signals being analyzed fit within the framework

of our algorithms.



Chapter 3

FM to AM Transduction

This chapter introduces the fundamental idea behind this thesis - FM to AM trans-

duction. FM to AM transduction was first used in FM broadcasting by Armstrong [1]

for FM demodulation in a device referred to as a balanced frequency discriminator.

Recently, evidence of FM to AM transduction has been observed in the early process-

ing stages of the auditory system [18].

In the first section, we give a general description of FM to AM transduction and

how it arises in filtering. The following section covers an important relation called

the transduction approximation. The last section describes the circumstances under

which the transduction approximation is valid.

3.1 Filtering and FM to AM Transduction

FM to AM transduction occurs when an FM signal passes through a filter that has

a non-flat spectral shape. As the frequency of the signal sweeps across the passband

of the filter, the amplitude envelope of the filter output changes. In this fashion, the

amplitude envelope of the filter output is a function of both the AM and the FM of

the filter input. This idea is best illustrated by a few examples.

EXAMPLE 3.1
Consider the signal,

s[n] = ej(1.•1+2sin(11n)), (3.1)



passed through a filter with frequency response

H() 2r-w
0 < w < -7r

7r < w < 27rO<w<i-
ir<w<2ir

(3.2)

Due to the change in frequency of s[n], the signal moves across the frequency
response of the filter as a function of time. This movement induces a change
in amplitude envelope of the output, as shown in Figure 3-1.

(A)

C)
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600 700 800 900 1000

Figure 3-1: An example of FM to AM transduction, (A) the amplitude envelope of the
filter input, and (B) the amplitude envelope of the filter output.

EXAMPLE 3.2
Now suppose that we add amplitude modulation to the signal,

s[n] = [e - 00001(n - 500 )2] e(1.1n + 2 sin(.ln)) (33)

and use the same filter from Example 3.1. The amplitude envelope of s[n]
and the amplitude envelope of the filter output is shown in Figure 3-2. The
amplitude envelope of the output of the filter depends both on the AM and
the FM of s[n].
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Figure 3-2: An example of FM to AM transduction when both AM and FM are present,
(A) the amplitude envelope of the filter input, and (B) the amplitude envelope of the
filter output.

3.2 The Transduction Approximation

In the previous section, it was shown by way of example how frequency modulation

can be transformed into amplitude modulation and that the AM and FM are nonlin-

early combined in the amplitude envelope of the filter output. We now show how to

approximate the filter outputs.

Since we are interested in obtaining the AM and FM as functions of time, a

temporal representation is desired. One possible representation is the convolution

sum,

y[rn] = h[k]z[n - k], (3.4)
k=-oo

where x[n] is the input to the filter with impulse response h[n]. Unfortunately, this

representation is intractable for the type of analysis used to develop the AM-FM

estimation algorithms. Instead, the convolution sum is approximated. Suppose the

I I I I I I I I I

I

I



input to the filter is of the form

x[n] = a[n]jei[n].  (3.5)

The output of a linear, time-invariant (LTI) filter with frequency response H(eji) can

then be approximated as

y[n] ; a[n]ejo[n]H(eij [n]) = x[n]H(eji[n]). (3.6)

This approximation is referred to as the transduction approximation. Here it is as-

sumed that x[n] has been obtained by sampling a continuous time signal and that the

phase derivative, 0[n], is the sampled continuous-time phase derivative. Observe that

if x[n] has no AM and FM, then this approximation is exact. In fact, this approxima-

tion can be viewed as treating all AM-FM signals as if they are eigenfunctions of an

LTI filter, which is true only of stationary signals. The above approximation is some-

times referred to as the quasi-eigenfunction approximation. The name "transduction

approximation" is used here to emphasize FM to AM transduction property.

3.3 Error Bounds for the Transduction

Approximation

Error bounds for the transduction approximation have been derived by Bovik et al

[3]. Although we do not use these error bounds explicitly, they provide guidelines

for the design of the filterbank of Chapter 4. The error bounds are summarized as

follows. Consider a signal of the form

s[n] = a[n]e °0 l l. (3.7)



Let y[n] be the actual output of an LTI filter with frequency response H(eji) and

impulse response h[n], i.e.,

y[n] = s[n] * h[n] (3.8)

and 9[n] be the output approximated by

9[n] s[n]H(ee[n]). (3.9)

Then the error, defined as

e[n] = y[n] - 9[nl|, (3.10)

is bounded by

F[n] IhPl I : (I&v)I + amax.PlI(v)) dv, (3.11)

where amax = maxa[n] and a(v) and 0(v) are the continuous time signals correspond-
n

ing to a[n] and 0[n].

This bound indicates that there are three factors that influence the accuracy of the

transduction approximation. First, increasing the amount or rate of the AM increases

the first term in the integration and thereby increases the error. Likewise, increasing

the amount or rate of the FM increases the second term in the integral. Finally,

increasing the length of the impulse response of the filter increases the error. Of

these three sources of error, the one that can be optimized in our AM-FM estimation

algorithms is the length of the filter impulse response, which we desire to be as short

in duration as possible. Since the presence of phase in the frequency response of a

filter can increase the length of the impulse response, we consider only zero-phase

filters throughout this thesis.

Note that both AM and FM contribute to error in the transduction approximation.

Although the AM is not being "transduced", it does cause error in the approximation.



Therefore, when we refer to "transduction error", we are referring to error in the

transduction approximation which is caused by both AM and FM.

3.4 Summary

FM to AM transduction, which is the fundamental idea behind the approach of this

thesis, was introduced with some examples. Next, we gave an approximation, called

the "transduction approximation", that provides a simple expression to approximate

the output of an LTI filter when the input is a non-stationary sinusoid. We then

bounded the error of this approximation using results obtained by Bovik et al [3].

From this error bound, we argued that filters to be used in our algorithms should

have an impulse response that is as short in duration as possible.



Chapter 4

Single-Sinusoid AM-FM

Estimation

Some previous work has applied FM to AM transduction to the problem of AM-

FM estimation when the input is assumed to consist of a single AM-FM sinusoid.

MCEachern [13, 14] has proposed that the auditory system uses FM to AM trans-

duction for tracking the frequencies of sounds and qualitatively described a method

similar to the approach we will take. Quatieri et al. [16] have proposed and imple-

mented algorithms similar to the first algorithm we will describe.

In this chapter, we first describe the implementation of the single-sinusoid AM-FM

estimation algorithm which is an integral part of the two-sinusoid AM-FM estimation

algorithm of Chapter 7. The second section covers design choices and implementation.

We conclude with some examples of algorithm performance.

4.1 Approach

Figure 4-1 shows the structure of the estimation algorithm when the input is assumed

to be a single AM-FM sinusoid, i.e.

x[n] = a[n] cos(e[n]). (4.1)



-[n], 0[n]

Figure 4-1: Block diagram of the basic single-sinusoid AM-FM estimation algorithm.

As mentioned in the first chapter, this process is modeled after the early stages of the

auditory system:

1. The input is processed with a bank of broad, overlapping filters. These filters

must have a non-flat pass band so that the FM is transduced to AM.

2. The filter outputs are rectified. The envelopes have the AM and the FM com-

bined in some nonlinear fashion.

3. The envelopes are processed to extract the AM and FM. The method by which

the AM and FM is extracted is not based on the auditory system.



4.2 Algorithm

The filtering serves two purposes: to transduce the FM to AM and to make the

signal analytic. The signal is made analytic so that the amplitude envelopes can

be determined easily and so that the phase derivative and amplitude are unambigu-

ously specified'. The FM to AM transduction causes the amplitude envelopes to be

functions of a[n] and 0[n], the parameters to be estimated.

In Section 3.1, we described FM to AM transduction and showed that the output

of filters Gi(ej3), and G2(ej ") can be approximated as

yj[n] ; a[n]ejo[nlG,(einr' ]) (4.2)

where the input is of the form given in Eq. (4.1) and Gi(eJ") = 0 for -7r < w < 0.

Thus, the output of the rectification stage is given by

jyi[n])2 , 2[[n]G](ei[n). (4.3)

Using these filter output envelopes, we can solve for 6[n]. By taking the quotient of

the amplitude envelopes of the filter outputs, we eliminate the amplitude function,

a[n], from the equations, i.e.

ly2[n]12 G2(eji[n])

1yj [n]|12 G,(eibln])

The filters must be chosen in such a way that the solution to this equation is unique.

Therefore, it must be true that

G2(ej0[_) G2(ej[n])
G2l(eij [n]) G2 (ej[n]) for all O[n] [n] on the interval [0, r]. (4.5)
G,(ejOnl]) G,(e001n])

In other words, the only constraint for a unique solution is that the quotient, 72(ej,

must be either monotonically increasing or monotonically decreasing on the interval

1See Section 2.3



w E [0, r]. This allows a great deal of freedom in choosing filters that give a unique

solution.

We choose, for the sake of analytic simplicity, to constrain the filters to satisfy

G2 (epw) = wGI(ejO), (4.6)

which means that the envelopes of the filter outputs can be approximated as

lyi[n]2 a2[n]j (ei[n]) (4.7)

y2[n] 2  2 [n]2 [n]G2(eO[n). (4.8)

This allows us to estimate the parameters by

[n] y2[n] (4.9)
= I Iy l[n ]12

&[n] = (4.10)
G1 (eibl])

The only remaining design choice is the filter G1 (eji). The design must take into

account the following:

1. The impulse response of Gl(ejw) (and G2(ejw)) must be short in duration so

that the transduction approximation, Eq. (3.6), is valid.

2. The filter output must be analytic so that the envelope can be determined.

Therefore, we must constrain G1 (eji) to be zero for -7r < w < 0.

3. Gi(ei") must be in a form such that Eq. (4.10) can be evaluated and the analysis

is tractable.

The first two requirements are somewhat related. The standard approach used to

make a signal analytic is by way of the Hilbert transform. The impulse response of



an ideal Hilbert transformer is

2 n odd
h[n] = "• (4.11)

0 otherwise

As shown in Eq. (3.11), however, the transduction error increases as the length of

the impulse response of a filter increases. Although the impulse response of the

filter described in Eq. (4.11) does decay rapidly, we can choose a filter that has a

much shorter impulse response and that also has an analytic output. This is possible

because no where in our analysis thus far have we restricted the shape of Gl(ejw)

over the range 0 < w < ir. This means that we can choose Gl (ej) to be any

function on [0, 7r] and zero on (-r, 0). The other constraint is that the filter must

have a frequency response that we can evaluate to calculate the amplitude function

as shown in Eq. (4.10). Taking all of these constraints into consideration, we choose

the filters to be

G(1 - cos(2w)) 0 < w < 7r,
Gl(eiw) = (4.12)

0 -7- < w < 0

and

G2(e3W) = W (1 - cos(2w)) 0 <w <, (4.13)
0 -r < W < 0.

Plots of the frequency response and the magnitude of the impulse response of these

filters are shown in Figure 4-2 and Figure 4-3.

4.3 Implementation

Gl[k] and G2 [k] are the sampled frequency responses corresponding to Gi(e jW) and

G 2 (ej"). They were obtained by first sampling Gl(eij ) and G2 (ej • ) with a sample
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Figure 4-2: Frequency and
impulse response.

impulse response of Gl(eji), (A) frequency response, (B)

interval of 2r8192

[k] 192Gi [k] = Gi (e si2) for k = 0,..., 8191, i = 1, 2. (4.14)

This interval size was chosen to minimize the amount of aliasing in the impulse re-

sponse. Experimentation indicated that there was negligible gain in decreasing the

interval size any further for these particular filters. The impulse responses correspond-

ing to G'[k] and G'[k] were then truncated using a 129 point rectangular window,

gi[n] = w[n]gi [n]

w[n] =
0

for n = 0,..., 8191, i = 1, 2. (4.15)

for n = -64,..., 64

otherwise
(4.16)

Gl[k] and G2[k] are then obtained from the impulse responses, gi[n] and g2[n].
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Figure 4-3: Frequency and impulse response of G2 (eji), (A) frequency response, (B)
impulse response.

The input is processed in blocks of 1,920 samples and the input is filtered by

circular convolution using a 2,048 point DFT and the overlap-save method [15]. The

amplitude envelopes are obtained by taking the absolute value of the output of the

filters at each sample point. The frequency and amplitude estimates are evaluated at

each sample point according to Eq. (4.9) and Eq. (4.10).

4.4 Results

In this section, we show examples of the algorithm performance for a variety of signals.

Figures showing the estimate of the AM and FM functions have two sets of axis. One

set is in terms of samples and radians, the other in terms of time and frequency. Using

samples and radians is more general for discrete-time signals because it is independent

of an arbitrarily chosen sample frequency. Time and frequency, however, are more

common parameters for describing signals. For the axes corresponding to time and

frequency, we have chosen 10,000Hz as the sampling frequency.
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We give two error criteria, the first one being the mean square error of the estimate

e = , Z(f.n]- fHn)2. (4.17)
n=1

where fa[n] is the actual function, fe[n] is the estimated function, and N is the length

of the signal in samples. The other error criterion is the maximum deviation of the

estimate from the true function

d = max(Ifa[n] - fe[n] ). (4.18)

Also, there is no post-processing on these estimates, which is performed in many

AM-FM estimation algorithms.

Another important point is that edge effects have been ignored and are not shown

in the figures. As mentioned in Chapter 1, we assume that the signal is always

present. Therefore, we truncate the output of the algorithm so that the transient

response corresponding to the beginning and ending of the signal are not shown. Since

the filters G1 (ei' ) and G2(eij ) have impulse responses with energy concentrated in

seven adjacent samples, this transient response is very short. Nonetheless, we do not

address the issue of transient response and therefore exclude this from the plots.

For the first example, we analyze a signal with constant AM and constant FM.

EXAMPLE 4.1
Figure 4-4 shows the AM and FM estimates for the signal

x[n] = cos (2n). (4.19)

The error is negligible for this case, illustrating that when our assumptions
have not been violated and the transduction equation is exact, there is prac-
tically no error.

The next example is a signal with sinusoidal AM and constant FM.
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EXAMPLE 4.2
The input is

x[n] = [1 +.7cos (-)] cos (7) (4.20)

The results are shown in Figure 4-5 where the original (dashed) and estimated
(solid) modulation is superimposed. Here we are seeing the effects of the
transduction error due to AM.

In the next example, we see the effects of frequency modulation.

EXAMPLE 4.3
The input signal is now

x[n] = cos + 2sin .( 2 (10

I1 1I

S I I I I I I I I I 0

K

r
I I I I

I I
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1

I I I I I

(4.21)
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Figure 4-5: Single-sinusoid AM-FM estimates (solid lines) for a signal with sinusoidal AM
and constant FM. (A) amplitude estimate, mean square error: 1.468x 10- 4, max deviation:
1.713 x 10-2, (B) frequency estimate, mean square error: 1.409 x 10- 5 (rad 2/sec), max
deviation: 6.832 x 10- 3 (rad).

The results are shown in Figure 4-6. Again, the error has increased from that
of the first example due to the transduction error caused by the FM.

We now impose the AM and FM of the two previous signals together in one signal.

EXAMPLE 4.4
The input is

[ (7rn 7rn 7rn

x[n] = 1 + .7cos -)] cos + 2sin (o)). (4.22)

The results are shown in Figure 4-7. The error in this example might be too
large for some applications. At a sampling frequency of 10,000 Hz, the maxi-
mum frequency deviation is approximately 160Hz. The modulations we have
chosen, however, are somewhat severe in both the rate and extent of modula-
tion. In fact, if we listen to the signal, we do not perceive AM or FM. Instead,

I I I·\.
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Figure 4-6: Single-sinusoid AM-FM estimates (solid lines) for a signal with constant AM
and sinusoidal FM, (A) amplitude estimate, mean square error: 4.522 x 10- 4, max devia-
tion: 3.177 x 10-2, (B) frequency estimate, mean square error: 1.696 x 10- 3 (rad 2/sec),
max deviation: 5.602 x 10- 2 (rad).

the modulations cause the signal to take on a "buzz" quality. Apparently, the
AM and FM modulations are too severe for the human auditory system to
track.

As a final example, we add noise to the input signal of the previous example.

EXAMPLE 4.5
The input is now

x[n] [1 + .7 cos -)] cos + 2sin ()) +w [n]. (4.23)

where wi[n] is white Gaussian noise and the signal-to-noise ratio is

SNR = 10 logo10 ( wn] ) " 22dB. (4.24)
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Figure 4-7: Single-sinusoid AM-FM estimates (solid lines) for a signal with sinusoidal AM
and sinusoidal FM, (A) amplitude estimate, mean square error: 1.421 x 10- 3 , max devia-
tion: 6.694 x 10-2, (B) frequency estimate, mean square error: 2.835 x 10- 3 (rad 2/sec),
max deviation: 1.001 x 10- 1 (rad).

The results are shown in Figure 4-8, illustrating that the estimates suffer from
both transduction error and external noise.

4.5 Summary

We have described and implemented a method of estimating the amplitude and fre-

quency modulation of a signal that is assumed to consist of only one AM-FM sinusoid.

The fundamental idea behind our approach is FM to AM transduction, which was

motivated by the fact that there is evidence of this phenonemon in early stages of the

human auditory system. We concluded with a few examples of how the algorithm
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Figure 4-8: Single-sinusoid AM-FM estimates (solid lines) for a signal with sinusoidal
AM and sinusoidal FM with additive white Gaussian noise, (A) amplitude estimate, mean
square error: 3.009 x 10- 3, max deviation: 1.731 x 10-1, (B) frequency estimate, mean
square error: 5.439 x 10- 3 (rad 2/sec), max deviation: 3.313 x 10- 1 (rad).

performs with various types of signals and external noise. In the next two chapters,

we will discuss methods of reducing the error in the transduction approximation and

methods that make the algorithm more robust with respect to external noise.



Chapter 5

Inverse Modulation

The performance of the algorithm presented in the previous chapter degrades as the

rate and extent of AM and FM increase due to the fact that as the modulation is

increased, the transduction approximation becomes less accurate. This can be seen

in Eq. (3.11), where the error bounds on the transduction approximation increase as

h[n] and 9[n] increase. In this chapter, we propose a method that reduces &[n] and

d[n] by iteratively inverting the modulation with the AM and FM estimates.

We treat separately the cases in which the input is analytic and the case in which

the signal is real. We do this because when the input is analytic, the approach is

relatively straightforward. When the signal is real, however, complications arise due

to the fact that a real signal has negative frequencies; care must be taken in inverting

the FM so that negative frequencies are not modulated into the positive frequency

region.

In the first section of this chapter, we introduce our approach for the analytic

signal and the following section has examples showing the improved performance.

The third section discusses the issues that arise when the signal is real and shows

how to modify the approach used for the analytic signal. The last section gives

examples showing the improved performance with real signals.



5.1 AM and FM Inversion when x[n] is Analytic

To reduce the extent of the AM and FM, we use the estimates obtained from the AM-

FM estimation algorithm of the previous chapter to invert the modulation and then

re-apply the algorithm to the new demodulated signal. Since the initial estimates are

not exact, the demodulated signal still has some modulation. However, we can iterate

this procedure to further reduce the modulation that remains in the demodulated

signal. The block diagram of this system is shown in Figure 5-1. We denote k[n],

k = 0, 1, 2, ... as the input on the kth iteration and &k[n] and 0k[n] as the amplitude

and frequency estimates corresponding to Xk[n]. On the initial iteration, x0o[n] = x [n],

Io[n] = 1, and 0o[n] = 0. The inverse modulation procedure is described by the

following equation:

Xk+1[ ] = 1 • Xk[i]eji(wcn- O
k[p]dp)

ak [n]

= (ii a[ ej (kw nn]+[n]- = f° m[p]dp) (5.1)

The overall estimates after k iterations are given by

k

[n] = ,[n]- kw (5.2)
i=1

and

&[n] = & l i[n]. (5.3)
i=1

We have modulated by ejwcn to keep the signal in the passband of the filters G1(ejw)

and G2 (ejw). In the next chapter we show that the "optimal" modulation frequency

is w = . The procedure can be summarized as follows:

1. Estimate the modulation of Xk[n].
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Figure 5-1: Single-sinusoid AM-FM estimation algorithm with inverse modulation. o[n] =
0 and &o[n] = 1.



2. Divide k [n] by the amplitude estimate, ak[n]. If ak n] is close to the actual

modulation, then dividing by ak[n] produces a new signal that has almost no

amplitude modulation.

3. Estimate the phase, Ok[n], by numerically integrating Ok[n].

4. Modulate Xk[n] by ej ' k[ n]. If Ok[n] is close to the actual phase, the resulting

signal has a frequency of approximately 0 radians/sec with almost no frequency

modulation.

5. Modulate xk[n] back up to the passband of the filters Gi(e jW) and G1 (ej•).

6. Repeat the procedure with the new "inverse modulated" signal.

The first step is performed as described in the previous chapter. In the second

step, we assumed that k k[n] : 0 for all n. As mentioned in Chapter 2, we assume

that the signal is always present, and, therefore, a[n] # 0 for all n. However, it may

be the case, due to noise, that the estimate is equal to 0 or perhaps negative. If this

occurs, we do not divide by ak [n] at the point where it is not positive. Instead, we

linearly extrapolate between the two nearest values of ak[n] that are positive.

The third step requires numerical integration. For this step, we use the trapezoidal

rule for integration [20]. Since we use only amplitude envelopes, the phase offset is

not important and need not be estimated. After inverting the frequency modulation,

we are left with a signal that is at 0 radians/sec which must be modulated to the

passband of Gi(eil ) and G2(eji). We will show in the next chapter that the "optimal"

modulation frequency is 1 rad/sec. In the Section 5.3, we show that, in general, we

cannot use this modulation frequency if x[n] is real and discuss a suboptimal alternate

procedure.



5.2 Results of the Modified Algorithm for an

Analytic Signal

Rather than show error reduction for a few specific examples, we show error reduction

after each iteration for a group of signals. The group consists of 625 AM-FM signals

that are described as follows:

Xk,l[n] = 1[ + .5 sin (r5n0 )] 2 ( 500 (5.4)

where k = 2, 4,..., 50 and 1 = 2, 4,..., 50. If the sampling frequency is chosen to

be 10,000 samples/sec, the above set of signals has sinusoidal amplitude modulation

varying from 0.5 to 1.5 over a range of frequencies from 20 Hz to 500 Hz. The

frequency modulation varies from 2,000 Hz to 3,000 Hz and the rate of the frequency

modulation ranges from 20 Hz to 500 Hz. The average mean square error after

one, three, and five iterations is shown in figures 5-2, 5-3, and 5-4 respectively.

The average of the mean square error, i.e. the average value of the surface shown

in Figure 5-2, Figure 5-3, and Figure 5-4, is shown after each iteration in Table 5.1.

There is a large reduction in error after the first iteration and a less significant decrease

Iteration: 1 2 3 4 5

Average AM 3.57x 10- 4 3.44 x 10-6 3.67 x 10- 7  1.39 x 10- 7 8.08 x 10- 8
Estimate Error

Average FM 2.02x10- 4  7.62x10- 6 2.16x10- 6  1.32x10 - 6  1.06x10- 6

Estimate Error

Table 5.1: The average of the mean square error over the signal set in Eq. 5.4 (Frequency
error in rad 2/sample)

on subsequent iterations. There is such a significant reduction in error after the

first iteration because the estimates obtained on the first iteration are very close to

the actual AM and FM functions and therefore the majority of the modulation is

eliminated on the first iteration.
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Figure 5-2: Error in the initial amplitude and frequency estimates. Frequency estimate
error in rad 2/sample.

5.3 Inverting the AM and FM when x[n] is real

A real signal has negative frequencies and the inverse modulation technique described

in Section 5.1 may modulate the negative frequencies to the positive frequency range.

This is illustrated in the following example.

EXAMPLE 5.1
Suppose that we have the following signal,

xo [n]= + .7 cos( • cos + 2 sin 7(n)) (5.5)50 5 20
and we use the same demodulation algorithm as for the analytic input. After
the first iteration,

x[n] = 1 ej( 2 5 n sin(2))x0[n], (5.6)
a[n]

and, as shown in Figure 5-5, the negative frequencies are modulated into the
positive frequency range.

' '

x 10 .. .........
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Figure 5-3: Error in amplitude and frequency estimates after the third iteration. Frequency
estimate error in rad 2/sample.

If the negative frequencies are modulated to the positive frequency range, then when

x[n] is made analytic, it is no longer true that xa[n] = Xq[n], resulting in incorrect

AM and FM estimates'. Therefore, we need to restrict the function used to invert

the FM so that negative frequencies are not modulated to positive frequencies.

We denote 0 [n] as the positive FM function of x [n] and _[n] as the negative FM

function. If x[n] is real, then

x[n] = 2-a[n] -e (5.7)

and

0I[n] = -_[n]. (5.8)

'See Section 2.1 for a description of the quadrature signal, Xq[n].

50
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N
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Figure 5-4: Error in amplitude and frequency estimates after the fifth iteration. Frequency
estimate error in rad 2/sample.

Demodulating with wn - O+[n] results in

x [n] = a[n] (ein +[]dP + edj fo -[]dP) ej(wn -f, O+][pdp) (5.9)

S2 a[n] (ejwcn + ej(C~0~ i--+[p]dp)) (5.10)

To prevent the negative frequencies from being modulated into the positive frequency

range, we must force

-7r < 0_[n] - +[n] + w, < 0 for all n. (5.11)

This inequality can only be satisfied if

10-_[n ] - 0[n]I < r for all n. (5.12)

.-- 6



To satisfy this inequality, there are two options. We can scale 0+[n] by some factor

0 < a < 1, or we can divide the signal into shorter sections in which the frequency

variation of x[n] is confined to a smaller region. With the first option, the frequency

modulation would never be completely inverted. The second option assumes that

the frequency modulation of x[n] does not vary over a range of ! rad/sec within

the duration of the impulse response of the filters Gl(eji) and G2(ej"). This does

not impose a significant constraint. For example, if the sampling frequency is 10,000

Hz, a signal that violated this constraint would have to sweep across 2,500 Hz in

approximately 1 millisecond. If a signal does violate this assumption, we can use both

options, i.e. use a short block of the signal and scale the FM estimate by 0 < a < 1

to ensure that Eq. (5.12) is not violated. Therefore, we always use option two and, if

necessary, combine it with option one.

Once we have satisfied Eq. (5.12), we can now choose wc. For reasons given in

the next chapter, we select an w, that is as close to E as possible while still satisfying

Eq. (5.11). Assuming that Eq. (5.12) is satisfied, w, is determined by

2min(0+[n]) if min(0+[n]) <
n n

we = if min(O+[n]) > E and max(O+[n]) < (5.13)
n n

7r- 2max(O+[n]) if max(O+[ [n]) _>n n

-3 -2 -1 0 1 2 3
Frequency (rads)

Figure 5-5: An example of the negative frequencies being modulated to the positive
frequency range.



5.4 Practical Considerations

In the previous section, we gave constraints that must be satisfied to ensure that

the negative frequencies are not modulated to positive frequencies. In deriving that

constraint, it was assumed that we knew the actual FM function. Actually, we only

have an estimate of the FM function and because this estimate is generally not exact,

using it to demodulate the FM might violate the constraint in Eq. (5.12). Also,

the spectrum of an FM signal has spectral components outside the range of the

instantaneous frequency. This means that although _ [n] is confined to (-7, 0),

ej 6B [n] might have spectral components in the positive frequency range. Therefore,

we must leave some room for error when we demodulate, thus giving the following

constraint,

-r + e < 0_[n] - O+[n] + w, < 0 - E for all n. (5.14)

where e > 0. Determining the best e is a complex issue that involves finding a tight

bound for the estimation error and also determining the spectral range of the negative

frequencies. Therefore, we choose e = .06 rad/sec based on experimental results.

It is important to observe that even if a portion of the negative frequency spectrum

does get modulated to positive frequencies, the algorithm still produces useful results.

This is due the fact that the filters G1 (ejw) and G2 (ej w) are close to zero near -7r and

0. Therefore, any negative frequency spectral components that are modulated to the

low or high positive frequency range are approximately filtered out.

5.5 Results of the Modified Algorithm for a Real

Signal

The same signal set for the case where x[n] is analytic is used here. The average

mean square error after one, three, and five iterations is shown in Figures 5-6, 5-7,

and 5-8, respectively. From these plots, it is apparent that this method does result
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Figure 5-6: Error in amplitude and frequency estimates on the first iteration with x[n]
real. Frequency error in rad 2/sample.

in significant error reduction when x[n] is real, although it does not perform quite as

well when x[n] is analytic. As a final example, we show how the modifications of this

chapter improve upon the results shown in Example 4.4.

EXAMPLE 5.2
The signal in Example 4.4 is

x[n] = [1 + .7 cos (p)] cos ( + 2sin )) . (5.15)20 2 10
The results are shown in Figure 5-9. The mean square error of the amplitude
estimate has been reduced by a factor of approximately 40 and the mean square
error of the frequency estimate has been reduced by a factor of approximately
20.
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Figure 5-7: Error in amplitude and frequency estimates on the third iteration with x[n]
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5.6 Summary

In this chapter, we proposed a method for reducing the estimation error that is caused

by transduction error. The fundamental approach was to invert the modulation with

the modulation estimates and then iterate this procedure. When x[n] is real, in

contrast to being analytic, care must be taken so that the negative frequencies of x[n]

are not modulated into the positive frequency range. The most significant reduction

error came after the first iteration. This is due to the fact that the initial estimates are

close to the actual modulation functions and, therefore, the most of the modulation

is eliminated after the first iteration. Experiments were performed on a group of

sinusoidally modulated signals. The mean square error averaged over the group of

signals is shown in Table 5.1 for the case in which x[n] is analytic and in Table 5.2

for the case in which x[n] is real.
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estimates on the fifth iteration with x[n]

Table 5.2: The average of the mean square error over the signal set in Eq. 5.4 for x[n]
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Figure 5-9: An example of the estimated AM and FM (solid lines) after two iterations,
(A) amplitude estimate, mean square error: 3.312 x 10- 5 , max deviation: 1.101 x 10-2,
(B) frequency estimate, mean square error: 1.646 x 10- 4 (rad 2/sec), max deviation:
2.676 x 10- 2 (rad).



Chapter 6

Robustness with Respect to Center

Frequency

In the previous chapter, we showed that using the AM and FM estimates to de-

modulate the signal results in improved performance. Recall that when the signal is

demodulated with its FM estimate, the signal lies at a center frequency of approxi-

mately 0 rad/sec. Therefore, we are required to modulate the signal back up into the

passband of the filters G1 (ejw) and G2(e"W). We stated that the optimal frequency to

which to modulate was w, = 1, or, if x[n] is real, to modulate the signal as close to

this frequency as possible without modulating the negative frequencies of x[n] to the

positive frequency range. In this chapter, we show separately that w, = Z is optimal

in the sense of minimizing the transduction error as well as reducing sensitivity to

additive noise.

6.1 Center Frequency and Transduction Error

To show that w, = 2 is the best choice in terms of transduction error for our particular

choice of G1 (eji) and G2(ej'), we relate transduction error to the shape of an arbitrary



filter. Consider a filter with a frequency response

H(e") = H+(ej") 0 w < (6.1)
0 r <w < 27r

where H+(ei") is some arbitrary function. We assume that, over the frequency range

of the input signal, we can represent H+(eji) as a sum of polynomials, i.e.

00

H,(e) = Ewkfk. (6.2)
k=O

Since the output of a filter with shape wk is (j)kk x[n] [15], we can analyze the

transduction error explicitly by looking at the transduction error that corresponds to

each term in Eq. (6.2)1.

For an input of the form x[n] = a[n]ej oil] , we have the following outputs:

-1x[n] corresponds to samples of •z(t), where x(t) is a band-limited continuous-time signal
corresponding to x[n].



Filter

1

w2

w3

w4

Y' ) y[n] = 0T[n]a[n]eiO[n]

Transduction
Approximation

- j ((n - 1)O-2[n]O[nla[n] +

We can now make a few observations:

1. As the number of high-order terms in Eq.

error, in general, becomes less severe.

0'-1[nI&[n1) ejol] j-1[

en[n]

(6.2) decreases, the transduction

2. If H(ej") = 1 over the frequency range of the signal, there is no transduction

error.

3. If H(eJ") = cw+d over the frequency range of the signal, there is no transduction

error due to frequency modulation.

These observations complement the results obtained by Bovik2 et al. [3] in the

sense that their results pertain to the time-domain filter response while the above

results pertain to the frequency-domain filter response. This raises an interesting

point concerning the ideal Hilbert transformer. We argued in Chapter 3 that the ideal

Hilbert transformer is not a good procedure for calculating an analytic signal because

2See Eq. (3.11)

Output

++ y[n] = a[nlejo[n]

++ y[n] = b[n]a[n]eie[n] jia[n]eioI
Transduction el [n]

Approximation

++ y[n] = o•[n]a[nejein] - ([nI ] + [ln]&[n) ejo[n] - d j e[n]dn
Transduction

Approximation e2 [n]

Transduction

Approximation e3 [n]

++ y[n] = O4[n]a[n]ej[] - j(3a2[n]O[n]a[n] + 03[n]V[n] e -7 - j-e 33[n]

Transduction
Approximation e4 [n]

L



it has such a long impulse response, and from Eq. (3.11), suffers from transduction

error. However, our frequency-domain results suggest that, as long as the signal

does not have any energy at 0 rad/sec, there will be no transduction error since the

frequency response of the Hilbert transformer is flat everywhere except at 0 rad/sec3 .

The real problem with the Hilbert transformer is that the long impulse response

implies a long transient response in the filter output. In other words, the starting

point and ending point affect the estimates over a large range of samples. For the

particular filters we have chosen, most of the energy is contained in seven samples

and therefore we see only the effects of signal endpoints over approximately seven

samples.

In order to quantify the performance of a given filter, we define the following

measure,

00

E(w) = klfw,k I, (6.3)
k=1

where f,,,k is the kth coefficient of the Taylor series expansion of the frequency re-

sponse of the filter evaluated at w. As the frequency response of a filter requires an

increasing number of high order terms, the above measure increases in value. There-

fore, this measure corresponds to the amount of transduction error we expect for an

arbitrary input signal at a frequency of w.

Applying this measure to the filters G1(ej i) and G2(eJw), it is evident from Fig-

ure 6-1 that w, = I is the optimal center frequency with respect to transduction

error; the transduction error for G1(ed w) and G2(ej"), taken together, is minimum at

w, = 2.This result is consistent with the previous Taylor's series analysis because at

w = 2, Gi(ejw) ;- 1 and G2(ejw) f w.

3The transduction error bounds given in Eq. 3.11 do not directly capture the frequency-domain
characteristics of a filter. The analysis that we have presented here complements the time-domain
analysis and when choosing filters, both the time-domain and frequency-domain aspects should be
considered.
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6.2 Center Frequency and Additive Noise

An important consideration in performance is robustness in the presence of noise.

Suppose that the signal to be analyzed consists of a single AM-FM sinusoid with

some additive disturbance,

x[n] = a[n] cos(6[n]) + w[n] (6.4)

where

max(w[n]) < 6 min(a[n]) = e amin.n n
(6.5)

The constraint in Eq. (6.5) ensures that the amplitude of the disturbance never ex-

ceeds the amplitude of the signal.

We again denote g91[n] as the impulse response of the filter described in Eq. (4.12)

and g2[n] as the impulse response of the filter described in Eq. (4.13). The absolute

value of these impulse responses were shown in Figure 4-2 and Figure 4-3. As evident

in the figures, gl[n] and g2[n] have most of their energy confined to the region -3 <

0 0.5 1 1.5 2 2.5 3
Frequency (rads)
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n < 3. Therefore, for the following analysis, we define

1 = [g9[-3] gi[-2] ... gi[2] g[13]] T  (6.6)

g = [g2[-3] g2[-2] ... g9[2] g2[3]] (6.7)
w= [w[no - 3] w[no - 2] ... w[no + 2] w[no + 3]] (6.8)

Since we are concerned only with the amplitudes of the filter outputs, we assume

without loss of generality that 0[no] = 0. Therefore, the output of filter Gi(ej • ) is

given by

yi[no] = a[no]Gi(eiO[no])+ ei[no] +gi'w (6.9)
Transduction Transduction Filtered

Approximation Error Noise

and the square of the amplitude envelope of the filter output is given by

yi[no] 12 = a2 [no]G?(ej["ol]) + 2a[no]Gi(e6B["no)Re{ei[no]) + le[no] 12

+ 2Re (a[no]Gi(eilo) + ei[no]) gi'w + w'ggii'w. (6.10)

Because our analysis is in terms of the worst-case noise sequence, we assume that the

transduction error is negligible. We then approximate the square of the envelopes of

the filter output as

ly [no]j 2  a a2[no]G2(e jo[no]) + 2a[no]Gi(e39[nl])Re {g'w} + w'igig'w. (6.11)

Since we are calculating the error at an arbitrary point in time, we drop the time

index to simplify the notation. Also, since the signal-to-noise ratio is the smallest

when a[n] = amin, the worst-case frequency estimate is

2 = IY2 2 aminG2(e'6 ) + 2aminG 2(e)ReW'g2 + W 22W (6.12)S(6 lyy 12  a 2 a(e) + in2(a)Rew '2+ g2)
1y1| 2 - mn G2i(eij ) + 2aminGl(ejO)Re{w'gl} + w'glgx'w

We now seek two aspects of the performance with respect to the external noise, w.



First, for a given frequency 9, we find the disturbance sequence, wE(0), that causes

the most severe error in the estimate, and second, we find the frequency at which

the algorithm is least sensitive to wE(0). It is possible to solve for the bounds of 02

and the corresponding disturbance sequence wE(0) by using optimization techniques.

Namely, we minimize and maximize 02[no] over all possible disturbances, w, subject to

the constraint given in Eq. (6.5). The procedure, sometimes referred to as constrained

maximum ascent (to find a maximum) or constrained maximum descent (to find a

minimum), is described as follows:

1. Start at some point w = xi, with xo being a random initial point.

2. Calculate the gradient of 0 at xi: _ W=XI
3. Step in the (opposite) direction of the gradient to maximize (minimize), re-

stricting the step length to be less than some small constant 6: xi+l = xi + si

where si = 6- si= -S W=Xi w=Xj
4. If this steps outside of the boundary region given in Eq. (6.5), reduce the length

of the step (i.e., reduce the parameter 6) so that xi+1 lies within the boundary.

5. Repeat steps 2-4 with a new starting point, xi+l, until the algorithm converges.

The results of this procedure indicate that 6[n] is maximized when

Wamin[1 -1 -1 1 -1 -1 1]T for <
WE = - (6.13)

amin[l 1 -1 -1 -1 1 1]T forŽ > 1

and is minimized when

E amin[-1 1 1 -1 1 1 -1T for< 6.14)

eamin[1 -1 1 1 1 -1 - 1]T for >9

Figure 6-2 shows an example of the convergence of the algorithm for the second case

in Eq. (6.14) with 6 = 0.005, suplwl = 0.1, amin = 1, and 9 = 2. The initial points
n



(marked with an 'o') where randomly generated.

convergence of the other cases.

Similar behavior occurred in the
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Figure 6-2: An example of the convergence of the constrained maximum descent algorithm
for determining the worst case disturbance vector. The o's mark the randomly generated
starting points and the x's mark the points to which the algorithm converged (6 = 0.005,
supiwl = 0.1, amin = 1, and 9 = 2).

n

Now that we have determined the worst-case error vector, we, we find the fre-

quency, wc, at which the algorithm is least sensitive to the disturbance vector, we.

One possible approach is to set 0 --9 equal to zero and solve for 6. This calcu-00

lation, however, is rather cumbersome, so we determine w, by plotting 10- 0 as a

function of 9 with w = wE. This function is shown in Figure 6-3 over the range of

.0001 < e < .01 and .3 _< <5 r - .3, from which it is evident that w, = 1 is the

optimal choice in terms of reducing the sensitivity to external noise.
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6.3 Summary

In this chapter, we showed that w, = 1 is optimal for both transduction error reduc-

tion and robustness in the presence of additive noise. We also introduced a frequency

domain perspective on the transduction approximation which was used in the trans-

duction error analysis.



Chapter 7

Two-Sinusoid AM-FM Estimation

In this chapter, we propose an algorithm for the estimation of the AM and FM

functions of a signal that consists of two sinusoids. Our first step in developing this

method is to resolve the uniqueness issues discussed in Chapter 2. Recall that there

are an infinite number of ways to express a signal as a sum of two AM-FM signals,

even when the signal is analytic. We show that it is possible to reduce the two-sinusoid

estimation problem to two single-sinusoid estimation problems and that this results

in the desired uniqueness. In the second section, we discuss the implementation

of the algorithm and, in the following section, we illustrate the performance with

some examples. We then show how the algorithm can be modified to improve its

performance.

7.1 The Two-Sinusoid AM-FM Estimation

Algorithm

Consider signals of the form

x[n] = al[n] cos(01[n]) + a2[n] cos(9 2[n]). (7.1)

Our goal is to estimate al[n], a2 [n], ej[n], and 92[n]. An immediate difficulty is that,

for a given x[n], these functions are not unique, even if x[n] is made analytic. In



the single-sinusoid case, making the signal analytic forces a unique solution. Our

approach is to transform the two-sinusoid problem into two single-sinusoid problems

and thereby establish uniqueness.

7.1.1 Approach

If the input is passed through the filters Gl(eij ) = 1 (1 - cos(2w)) and G2(ej w)

wGi(ejw), then from the transduction approximation the filter outputs can be ap-

proximated as

Yi [n] - al [n]G 1 (ejil[ni)e je1 [n] + a2 [n]Gi (eje2[n])e j o2[n]  (7.2)

and

y2[n] al [n]G 2 (e l[n]) ej Oln]  + a[2 [n]G 2 (e02[n] )e 02[n

m a, [n]01[n]Gj (ej l[n])ejil[n] + [[n]0[n]Gi (ej2[n1])ejjo•2n (7.3)

The square of the amplitude envelopes of the filter outputs are given by

lyi[n]12 M a [n]Gl(e~'[n]) + a[n]G,(ej•o])

+ 2a1[n]a 2 [n]G (ejd'1n)Gi (ej ,2[n]) cos(02[n] - 01[n]) (7.4)

and

IY2[n]l 2 2 a [n]G (eo1[n]) + a [n]G (eio2; )

+ 2a,[n]a2[n]G 2(ei [ln])G2(ei02)[n] cos(02 [n] - 1 [n])

o a2 [n]• [n]G2 (eijoln) + a [n]'2 [n]G (ed2[nI(n

+ 2al [n]a 2[n]0 [n] G O l[n]Gl(e3 [n])Gi(eiG2[n]) cos(0 2[n] - 81[n]) (7.5)



If the first two terms in Eq. (7.4) and Eq. (7.5) are treated as noise terms1, i.e., we

define

Vi[n] = a [n]G2(ejo [n]) + a [n]G2(edo2[n])

v2[n] = a2 [n]01[n]G2(ejol I) + a2[n] ý2[n]G (ejo2[n

(7.6)
(7.7)

then we are left with two single AM-FM sinusoids with additive noise

lyl[n]j 2 ; 2al[n]a2[n]Gi(ejo[n])Gi(ei o2[n ]) cos(0 2[n] - 01[n]) + v1[n] (7.8)

and

ly2[]l 2 M 2a,[n]a 2[n]o[2n][n]Gl(e]&o[n])Gli(eo2n]) cos(02[n] - 01[n]) + v2[n]. (7.9)

Therefore, if Iyl [n] 12 is passed to the single-sinusoid estimation algorithm, the algo-

rithm gives a unique amplitude estimate

al, 12 [n] = 2al[n]a2[n]G1(eiýl[n])Gi(e ji2[n])

and a unique instantaneous frequency estimate

01,, 12[n] = 2[n] - 01[n].

(7.10)

(7.11)

Similarly, for y2[n] 12, the single-sinusoid estimation algorithm gives a unique ampli-

tude estimate

(7.12)alz 212[n] = 2aj[n]a2[n]O [n]ý [n]G1(ejd"1[n])Gi(ej2e[nf])

1We will discuss when this representation is valid in the next section.



and the same instantaneous frequency estimate

1 21,l2 [n] = 62[n] - 1 [n]. (7.13)

The product of the individual instantaneous frequencies can be obtained from

62[][n]1 n] - a2 2[n] (7.14)
aly, 12[n]

Solving for 02[n] in Eq. (7.13) and substituting this into Eq. (7.14) gives

O1[n] (r [n] + 61y 12[n] = aI2 12[n]
ay, 2 [n]

[n] + ,,j12 [n]1,[n] - ^ 1[n= 0. (7.15)

This has two possible solutions,

1  ([n] .1= -( 12[n] ±[" + [n]) . (7.16)

Since the frequency is positive, the correct solution is

6l[n] = -(~6yl[n] + 1l,[n] + 4 alli[n] (7.17)

Substituting this result into Eq. (7.13), we obtain

2[n] = (y,1[n] + 112j 2[n] + 4 aly, 1[n] (7.18)

Observe that we always assign the lower valued frequency estimate to 61[n] and the

higher valued frequency estimate to 02[n]. It is now possible to estimate the amplitude

modulation using the instantaneous frequency estimates and the magnitude of the

filter outputs. First we multiply jyl[n] 12 of Eq. (7.4) by 0102 and then subtract this



from Iy2[n]12 of Eq. (7.5), which results in

I2[n] - [n][ [n = a 1 2[l1 [n](e[i)([n] 1 2- [n]62[n])

+ a([n]G~(e32[nl)(9o[n] - 01[n]02[n])

From Eq. (7.10), we have

(a^,, 12[n]])2
4a2 [n]G2 (e A [n])

We new drop the time subscript so the equations are less cumbersome. Combining

Eq. (7.19) with Eq. (7.20), we have

Y212 -_ 6121Y•l = a2G2(ei"4)(6 (- + 4Gl• j 6 2
4aj (ei)

a2G 2(ei) 2
_ y212 - eý121Y1 2

01 - 02
(-llv)2(9• - =2ý )

+ ( 2 212 0.
4(8 - 1 =2)

4" oý

The above equation has two roots,

1
2

1•212 - 61621Y1 2

S- 0102 4
I--

1Y212 - 61621Y112

S102 ) 2
(- 41a112)2(62 - 6162)
4(6 -6 )

4(0( - 0192)

(7.22)

Because 01 < 62, it is always true that

(ally12)2(822 - 010 2 )
-4- 6162) > 0,

4(an - 1•r2)

and thus it is always true that

1y212 - 6192 1 y12
62_O 6162

(a[yip12)2(ý22 - ý162)-4 - 612)

4( - 0102)

1Y212 - eý121Y112

1O - 0192

(7.19)

(7.20)

a1G2 (ej0 )

(7.21)

(7.23)

!

ajGj(eji6

I'

2 [n]Gj(d0e2 ])



Therefore, one of the roots of Eq. (7.22) is always negative and the other one is always

positive. The correct root, since alGl(e jol) is real, is the positive root and we have

1 (y22-0 12ey ll2 y2(2-+ l yl2 2  t,,1,)26 -2O2)
S2 V-02 6-0162 4(Oj-0 1 O2)

al = (7.24)
Gl(ej01)

We can now obtain a2[n] from Eq. (7.10) and Eq. (7.24),

2 aly 12 (7.25)
2alGl(ejel)Gi(ejO2)

A block diagram of the two-sinusoid AM-FM estimation algorithm is shown in

Figure 7-1.

7.1.2 Validity of the Approximations

The two terms, vl[n] and v2 [n] described in Eq. (7.6) and Eq. (7.7), will be referred

to as self generated noise (SGN). In general, noise terms of this magnitude cause

severe problems in the single-sinusoid estimation algorithm. However, V [n] and v2 [n]

consist primarily of large low-frequency components, which are effectively eliminated

at the input of the single-sinusoid algorithm by the filters G1 (eji) and G2(ej3). In

fact, if there is no AM or FM modulation, the noise terms are constant and therefore

completely eliminated. This is illustrated in the following example.

EXAMPLE 7.1
Consider an input

(2rn 3•-rn
x[n] = cos + cos . (7.26)

Then the magnitude squared of the output of filter G1(eji) is

[n] 2 = G(i )2 + Gi(e )2 + G (e )G,(e ) cos ). (7.27)

This signal, lyl[n]V2, is the input to the single-sinusoid estimation algorithm.
The first step in that algorithm is to make the input analytic by filtering with



[n]02[n]
i[n]

[n], O[n]

2 [n], 02[n]

Figure 7-1: Block diagram of basic two-sinusoid AM-FM estimation algorithm.

ai, n]-
02[n]



Gl(ejw), resulting in

lyi[n]a = Gl(e'7r)G(ej)er . (7.28)

The two terms, Gi(eij )2 and Gi(e, )2 have been eliminated since they are
at a frequency of 0 rad/sec. The magnitudes of the DFTs at each stage of this
process are shown in Figure 7-2.
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Figure 7-2: An example of the elimination of self generated noise, (A) magnitude of the
DFT of x[n], (B) magnitude of the DFT of jx[n] * gi[n] 2 (input to the single AM-FM
estimation algorithm), and (C) magnitude of the DFT of gi[n] * Ix[n] * gi[n] 2 .

If the two signals are not stationary, the noise terms are not at 0 rad/sec, although

they still have a significant portion of their energy at very low frequencies. Therefore,

in general, some energy of the noise terms passes through the filters and results in

error in the estimates. As the spectrum of the SGN widens, the error increases. It is

difficult to quantify the allowable frequency range of the SGN because there are many
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0
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factors that influence the sensitivity. For example, if the two sinusoids are close in

frequency, then ei(02[1 ]- 0l[n]) is at a low frequency near the SGN. When yi[n] 12 passes

through Gi(eij), the SGN is not reduced relative to the single AM-FM term. Another

difficulty in quantifying the allowable frequency range of the SGN is that the algorithm

does not break down at a certain point; its performance continually degrades as the

interference from the SGN increases. The allowable frequency range of the SGN

therefore depends on the error allowed in a particular application. Consequently, we

use the general guideline that the frequency separation of the two sinusoids should

be greater than the largest spectral component of the SGN.

7.1.3 Modifications to the Single-Sinusoid Algorithm

One modification must be made to the single-sinusoid algorithm to ensure good per-

formance of the two-sinusoid algorithm. Recall that when the input to the single-

sinusoid algorithm is real, the inverse modulation algorithm modulates the signal to

a frequency, we, that is as close to 2 as possible. The closeness of w" to I was con-

strained to avoid modulating the negative frequencies to positive frequencies. In the

two-sinusoid case, we are even more constrained. This results from the fact the the

signals that are passed to the single-sinusoid algorithm, yl [n] 12 and zY2[n] 2, have the

SGN terms that are centered at 0 rad/sec. If we leave the single-sinusoid algorithm

as described in the previous chapters, the SGN will be modulated to the passband

of the filters. This violates the assumption in Section 7.1.2 that most of the energy

of the SGN is at low frequencies and therefore significantly reduced by the filters

Gl(ej") and G2(ejw). Therefore, we do not use the inverse modulation techniques in

the single-sinusoid algorithm in the two-sinusoid estimation algorithm that we have

just described. In a later section, we describe a modification to the two-sinusoid algo-

rithm that significantly reduces the SGN. Once the SGN has been reduced, we then

use the inverse modulation techniques in the embedded single-sinusoid algorithm.



7.1.4 Examples of the Two-Sinusoid AM-FM Estimation

Algorithm

In this section, examples of the performance of the two-sinusoid AM-FM estimation

algorithm are presented to demonstrate its capabilities and limitations. As mentioned

above, this algorithm does not use the iterative techniques in the embedded single-

sinusoid algorithms.

We begin with a signal that consists of two sinusoids, each of them with constant

AM and constant FM functions.

EXAMPLE 7.2
AM-FM estimates for the signal

(2irn 3(3rn
x[n] = cos + cos v--) (7.29)

are shown in Figure 7-3, illustrating that when there is no modulation, which
makes the transduction approximation exact, there is practically no estimation
error.

An important performance measure is the estimation error as a function of the

separation in frequency of the two components

EXAMPLE 7.3
For this example, the lower frequency component is held at 1 rad/sec while
the second signal is at 1 + 6 rad/sec. More explicitly,

x6[n] = cos + cos - + 6 n) for 6 =
2 \L2 1 100' 250' 500' 1000

(7.30)

The first column of Table 7.1 corresponds to a frequency separation of 50Hz
for a sampling rate of 10,000 Hz. The last column of Table 7.1 corresponds to
a frequency separation of 5Hz for 10,000 Hz sampling. The increase in error
shown in the last column in the table is due the SGN, since no transduction
error is present.

We now add modulation to the signal. In this next example, the signal consists of

two sinusoids with constant amplitude modulation and sinusoidal frequency modula-

tion. For each component, the frequency modulation is the same, the only difference

being the carrier frequencies.
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Figure 7-3: Example of two-sinusoid AM-FM estimation with constant AM and constant
FM, (A) estimate of al[n], mean square error: 1.103 x 10-12, max deviation: 2.143 x 10- 9 ,

(B) estimate of a2[n], mean square error: 1.363 x 10- 12, max deviation: 2.346 x 10- 9 , (C)
estimate of 1I [n], mean square error: 5.490x 10- 13 (rad/sec), max deviation: 1.079x 10-
(rad/sec), and (D) estimate of 02[n], mean square error: 3.303 x 10-' 3 (rad/sec), max
deviation: 8.033 x 10- 10 (rad/sec).
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ir 7r 7r

100 250 500 1000

1[n] mean sq. error 1.32 x 10- 4  0.019 0.085 0.324

a2[n] mean sq. error 1.32 x 10- 4  0.019 0.085 0.324

1[n] mean sq. error 7.09x 10-8 2.13x 10-6 9.33x 10-6 2.99 x 10- 5

02[n] mean sq. error 7.01x 10- 8  2.11x 10- 6 1.28 x 10- 5 1.731 x 10-5

a1[n] max deviation 0.018 0.307 0.603 0.794

a2[n] max deviation 0.018 0.307 0.603 0.794

81[n] max deviation 3.45 x 10- 4 2.80 x 10- 3 4.80 x 10-3 8.04 x 10- 3

2[n] max deviation 3.40 x 10- 4 2.80 x 10- 3 4.65 x 10- 3  5.16 x 10- 3

Table 7.1: Mean square error and maximum deviation as a function of signal separation.

EXAMPLE 7.4
For the two-sinusoid signal,

x[n] = cos + 12.5 sin 125n + cos n+ 12.5 sin , (7.31)
5 125) 5 [125])

the AM and FM estimates are shown in Figure 7-4. The error in the estimates
is due to both the FM modulation and the SGN.

In the next example, we show a signal with several types of modulation.

EXAMPLE 7.5
The signal in this example is given by

x[n] = 1+ 1n ( cos rn 2r25n 2
1000 5 10002

+ 1+ cos 5Co+ [m1 .. (7.32))2)2 100 5 250 50

The first component has linear AM and linear FM. The second component has
sinusoidal AM and linearly increasing sinusoidal FM. The results are shown in
Figure 7-5, which show that the algorithm performs well when the modulation
functions are quite different from each other.
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The signal in the next example has two components that cross in frequency.

EXAMPLE 7.6
The signal is

(3irn irn2  67rn irnx[n] = cos + + Cos (7.33)
S10 10000 10 10000

and results are shown in Figure 7-6. Since the algorithm assigns the lowest
frequency estimate to 01 [n], it does not show the frequency cross. Also observe
that the effects of the frequency crossing is local.

In our final example, we plot the mean square error of a group of signals as both

the rate of FM and the separation of the two components vary.

EXAMPLE 7.7
The group of signals in this example are given by

( __I 10 . 2 m
x[n] = cos - + -in sin rw +

2 100 Wm 1000

cos ( 1 + " -+ sin , (7.34)
2 100 w, 1000

where 6 = 1, 2, ... , 10, and wm = 1, 2,..., 10. At a sampling rate of 10,000Hz,
this group of signals has an FM rate ranging from 10 to 100Hz, an FM range
of 200Hz, and the components are separated by 100 to 1000Hz. When the
frequency of the FM rate exceeds the frequency separation between the two
components, the SGN has spectral components at frequencies higher than
02[n] - 9 [n]. This causes the embedded single-sinusoid AM-FM estimation
algorithms to perform poorly and results in the large error that is seen for a
few cases of the signal set.

Again, it is important to note that the algorithm used in these examples used no post

processing (e.g. no smoothing of the estimates).

7.2 Improvements on the Basic Algorithm

Since the two-sinusoid algorithm was based on the reduction of the two-sinusoid prob-

lem into two single-sinusoid problems, the performance of the two-sinusoid algorithm

is largely influenced by the performance of the single-sinusoid algorithm. There are,

however, modifications that can be made to the two-sinusoid algorithm that are in-

dependent of the single-sinusoid algorithm. First, the estimates of ai [n], 2 [n], 1 [n],
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Figure 7-7: Amplitude estimate error as a function of rate of FM and component separa-
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and 02[n] can be used to eliminate the noise terms vl[n] and v2[n]. Second, the am-

plitude modulation of each component can be inverted by adaptive filtering to reduce

the transduction error due to the AM.

7.2.1 Eliminating the SGN

In deriving the two-sinusoid estimation algorithm, we assumed that the SGN terms,

vi [n] and v2[n], were at a low frequency and were therefore approximately filtered out

in the single-sinusoid estimation algorithm. If the modulation functions contain high

frequencies, this assumption becomes less valid. For example, suppose that we have

a signal of the form

x[n] = 1 + .5 cos 275n ( cos rn + cos ( (7.35)

_ ·_ .··. . ·
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Figure 7-8: Frequency estimate error as a function of rate of FM and component separa-
tion.

The magnitude of the Fourier transform of Igi[n] * x[n] 2 is shown in Figure 7-9. Now

suppose that we have obtained the AM and FM estimates from the two-sinusoid

estimation algorithm. We can then estimate the SGN from Eq. (7.6) and Eq. (7.7),

i.e.

P [n] = a,[n]G (ei [n]) + a2[n]Gi(ejO2[n]) (7.36)

n] = a[n] (ei ) + a[n] G (ej[n]), (7.37)

and subtract this estimate from the output of filters Gl(ej") and G2(ej'). Figure 7-10

shows the block diagram with the SGN noise cancelation in place.

Recall that the presence of SGN restricted the inverse modulation in the single-

sinusoid algorithm because we could not allow the SGN to be modulated to higher

frequencies. Now that we have eliminated the SGN, we can use the single-sinusoid

Frequency Separation (Hz)
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Figure 7-9: Magnitude of Fourier transform of |gl[n] * x[n] 2.

inverse modulation algorithm as it was described in Chapter 5.

We use the signal described in Eq. (7.35) to illustrate the effects of SGN can-

celation. The results are shown in Figure 7-11; the SGN, circled in Figure 7-9, is

essentially eliminated and the mean square error has been reduced by a factor of two.

7.2.2 Inverting the Amplitude Modulation

Inverting the modulation when the signal, x[n], consists of two AM-FM sinusoids is

not as straightforward as the single-sinusoid case. The difficulty arises because we

cannot operate on each component of x[n] independently. We can operate only on

the sum of the two components. This makes inverting the FM very difficult. In order

to keep the frequency separation between the two signals constant, we would need to

adjust the sampling rate as a function of time to compress and stretch the spectrum

of x[n]. Therefore, we do not address FM inversion for the two-sinusoid case in this

thesis.

Inverting the AM is more difficult than in the single-sinusoid case, but less difficult

than inverting the FM for the two-sinusoid case. To invert the AM, we use a pair of

filters that have a linear frequency response for w E [0, ir] and are unrestricted 2 for

w E (-7r, 0). At each time sample, using estimates from an initial pass through the

2The filters are unrestricted for w E (-7r, 0) because when we compute the quadrature signal, the
negative frequencies of x[n] are eliminated.
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two-sinusoid estimation algorithm, we weight the output of the two linear filters in

such a way that the amplitudes of both components are scaled to a value of one. For

example, suppose that at time no, al[no] = 2, a2[no] = 3, 0 [no] = E, and 02[no] = 4.

Then if we pass this signal through a filter with a frequency response, H(ejw), such

that H(e) = 1 and H(ej9) = -, then the output of this filter at no consists of the

sum of two sinusoids, each sinusoid with an amplitude equal to one. If this procedure

is done at each time sample, then the amplitude modulation has been approximately

eliminated (assuming the modulation estimates are close to the true modulation).

We implemented this in the following manner. First, we chose a filter with a linear

frequency response for w E [0, 7r],

for 0 < w < r
Hb (ei" ) = (7.38)

H4w3 +6 2 + for - r < w < 0.

Over the negative frequency range, we choose Hb, (eiw) so that its first derivative is

smooth over the enter frequency range. This smoothness results in a short impulse

response. The value of Hb, (ej") for -7r < w < 0 is insignificant since the negative

frequencies are eliminated by subsequent filtering. The frequency response and im-

pulse response of Hbl (ej•) is shown in Figure 7-12. We then filter x[n] with Hb1 (ejw)

and Hb2 (ejw) = 1 - Hb (edw) to obtain the two signals Xb, [n] and zXb[n], respectively.

From the transduction approximation, these two signals can be written as

Xba[n] 1 a,[n] [n] cos( 1[n]) + a2  1 6[n] cos(02 [n]) (7.39)

xb2[ GI 8 a 1 - ]) C(OiS ) + 2 1 - COS(92[n]) (7.40)

where

x [n] = a [n] cos(0 1[n]) + a2[n cos(0 2[n]) (7.41)
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Figure 7-12: Frequency and impulse response of filter used in two-sinusoid AM inversion,
(A) frequency response, (B) magnitude of impulse response.

At each time instant, we choose the appropriate weights, b [n] and b2 [n], so that

Xdm[n] = bl [n]xbl [n] + b2[n]xb2 [n] = cos(01 [n]) + cos(2 [n]). (7.42)

In order for this equation to hold, it must be true that

bi [n]a,[n] + b2[n]a[n]
7r~

r [ 02[n]blr[n]a 2[n] [-] + b2 a 2[n]a

6 [n]
7r

62[n]1-"
IFT

(7.43)

(7.44)

Solving for bl[n] and b2 [n], we have

Samples

S= a[n](7r - 01[n]) - a2[n](7r - 02[n])
bn]a[n][n] = -a, [n]a2[n] (02[n] - 01 [n])

..
I.I 

.

I I I I I I I

and

(7.45)



and

(7.46)b2 [n] = ar&]2[n] - a-[n][n]
a[[n] = [n](02[n] -
al[n]a2[n](O2[n] - 01In])

The estimates used to obtain bl [n] and b2[n] are first smoothed with a low pass

filter with a cutoff frequency of '. This is done to prevent the noise in the estimates

from making the AM more severe than it was originally.

We again use the signal described in Eq. 7.35. The algorithm has both AM

inversion and SGN cancelation. The results are shown in Figure 7-13. Adding the
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Figure 7-13: Example of two-sinusoid algorithm with SGN cancelation and AM inversion,
(A) magnitude of the Fourier transform of Igl[n] * x[n]12 after SGN has been canceled
(compare with Figure 7-9 and Figure 7-11), (B) estimate of al[n] with SGN cancelation
and AM inversion, mean sq. error: 9.965 x 10- 5.

AM inversion has improved the estimate. The mean square error is reduced overall

by a factor of 10.
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7.3 Summary

We have proposed a method of estimating the AM and FM of a signal that is composed

of two AM-FM sinusoids. We resolved the uniqueness issue by transforming the

problem into two single-sinusoid AM-FM estimation problems, which we have already

established have a unique solution. We then proposed modifications to the algorithm.

The first modification involved estimating the SGN and then using the estimate to

reduce the SGN on the next pass through the estimation algorithm. We also proposed

a modification that reduces the AM of the input signal which reduces transduction

error, making the transduction approximation more accurate.
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Chapter 8

Multi-Component AM-FM

Estimation

In the previous chapters, we obtained solutions for the AM and FM components for

the cases where the signal contained one or two AM-FM sinusoids. The solution for

the two-sinusoid case was obtained by reducing it to two single-sinusoid problems.

We are unable to extend this approach to a signal with more than two components

because this reduction of order does not occur. For example, consider a signal with

three components,

x[n] = a,[n]eio n]+ a2[n]e j32[n] + a3[n]e ji3[ "]. (8.1)

The magnitude squared of this signal is

Ix[nI12 = a2[n] + a2[n] + a2[n] + al[n]a2[n] cos(92[n] - l[n]) +

al[n]a3[n] COS(03[n] - 1[n]) + a2[n]a3[n] cos(03[n] - 02[n]), (8.2)

which consists of three AM-FM sinusoids plus SGN. We have not reduced the number

of components. In fact, for signals that have more than three components, the above

procedure produces more AM-FM components than the number with which we began.

The approach we propose is still motivated by the auditory model described in
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Chapter 1, i.e. we utilize FM to AM transduction and the amplitude envelopes of the

outputs of a bank of filters. The difference is that instead of closed form solutions for

the AM and FM estimates, we rely on numerical techniques.

The first section of this chapter describes how to pose the problem in such a

way that we can use standard numerical techniques to solve for the AM and FM

functions. In the second section, we apply our approach to the single-sinusoid case

and follow with a section in which we apply the approach to the two-sinusoid case.

The purpose of both of these sections is to compare the performance to that of the

previous chapters. In the last section, we discuss how this approach can be extended

to multi-component AM-FM estimation.

8.1 Problem Formulation

AM-FM separation can be posed as a problem of finding the zeros of a system of

nonlinear equations. The system of nonlinear equations results from passing the

signal through a bank of filters, H1 (ejw), ... , HN(ej'). If the input is a summation

of M AM-FM sinusoids

M

x[n] = Zak[n]ei jk[] (8.3)
k=1

then the transduction approximations of the envelopes of the filter outputs are

lyI[n]l = E(a[n]H2(ei~k[n])
k 

k

+ ak[n]atl[n]H (ejo Inl)Hi (eo[In) cos(0m[n] - 01 [n]) . (8.4)
Ik

Since these equations are functions of both Ok[n] and Ok [n], they are a system of

nonlinear differential equations. In what follows, we treat Ok[n] and Ok[n] as though

they were unrelated in order to simplify the algorithm. Moreover, since the system

of equations involves only differences of the Ok[n]'s, we can reduce the number of
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unknowns by one by defining

Ok[n] = Ok+l[n] - Ok[n] k = 1,2, ... , N - 1, (8.5)

where N is the number of filters in the filter bank. This implies that

k-1

04[n] - 0,[n] = E Om[n]. (8.6)
m=l

We now have a function with 3M - 1 unknowns,

Fi(a-[n],..., a [n], []...[n],. . n], 1[n], 2[n], .. ., M-1[n]) = y[n] 12

Sk-
- • a•[n]H'(e "ih) + ' k[n]aL,[n]Hi(eOknl)HE(6eI (n) cos(Z Sm[n]))• (8.7)

k I1k m=1

where M is the number of sinusoids. Therefore, we need at least N = 3M - 1

filters to specify a solution. We know that there is at least one solution at ak[n] =

ak[n], Ok[n] = 0k[n], and Ck[n] = Ok+l[n] - k [n]. Whether or not this solution is

the only solution is an unresolved issue. There are known iterative algorithms, for

example Newton's method and its variations, that approximate the solution to a

system of nonlinear equations. We now discuss Newton's method for solving systems

of nonlinear equations and how it can be applied to AM-FM estimation.

8.2 Newton's Method

Defining F(.) as

F() = [F() F2 .) ... FN(.)] (8.8)
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and x as

X = i[n] - - M[n] 01[n] ... OM[n] 012[n] 013[n] "'" (M-1)(M) ,

(8.9)

we denote the solution to F(x) as x* and the estimate of the solution on the kth

iteration as xk. There are four steps that are performed at each iteration [7]:

1. If Xk satisfies conditions for convergence, terminate the algorithm with x* = xk.

2. Compute a non-zero step direction Pk.

3. Compute a step length, ak, such that F(xk + akPk) < F(xk).

4. Set Xk+1 = Xk + kPk, increment k, and repeat the procedure.

8.2.1 Conditions for Convergence

Since the algorithm is implemented on a digital computer and suffers from rounding

errors, we cannot expect to find an exact solution. Therefore, we consider xk to be

a solution if IIF(x) 112 is below some threshold. The thresholds varies from the single-

sinusoid algorithm to two-sinusoid algorithm. For the single-sinusoid algorithm, the

threshold is 1 x 10- 9 and, for the two-sinusoid algorithm, the threshold is 1 x 10- 3 .

These values were determined experimentally.

8.2.2 Determining the Step Direction

The Newton method is derived from a linear approximation of F at the point xk. The

linear approximation is obtained from the Taylor's series expansion of F(Xk)

F(x*) ; F(Xk) + J(xk)(X* - Xk). (8.10)
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where J(Xk) is the Jacobian evaluated at xk. The Jacobian is defined as

J•

Ofl(0k) Ofi (k) 8fA (k)
OXzl a2 "'" ex

Mf2(0k) Ofi(0k) 13 (0k)
OX1 aO2 "'" aOx

af (0,) af,n(Wk) a ,(Wk)
ex2 "' OXn

(8.11)

Since Xk+1 = Xk + OkPk, we want Pk to approximate x* - Xk. Since F(x*) = 0, we

have from Eq. (8.10)

Pk = -j-1(xk)F(xk) (8.12)

8.2.3 Determining the Step Length

There are many ways to determine the step length. The condition that must be met

is

IlF(xk + akPk) 112 < IIF(Xk)112  (8.13)

In terms of convergence rate, the optimal approach would be to minimize JIF(xk +

akPk) 112 with respect to ak. This is a fairly complex nonlinear problem in itself.

Since, at this point, we are not interested in fast convergence, we do not concern

ourselves with an optimal method. Instead, we use a more brute-force approach - at

each iteration we start with an ok such that I &kPk 12 = 0.1, which we choose based

on experimentation. If the condition in Eq. (8.13) is satisfied, we use the current ak.

If the condition is not satisfied, we reduce ak by a factor of 0.9 and then re-evaluate

F(Xk + akPk), repeating this procedure if the condition is still not satisfied.
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8.3 Newton's Method and Multi-Component AM-

FM Estimation

In Section 8.1, we described how the AM-FM estimation problem can be posed as a

problem of finding the zeros of a set of nonlinear functions. The nonlinear functions

resulted from passing the signal through a bank of filters and approximating the

envelopes of the filter outputs with the transduction approximation. In this section,

we describe the choice of filters and the implementation.

8.3.1 Filter Choice

In the algorithms of previous chapters, we used the constraint G2(e jw) = wG 1 (ej).

We again have constraints between filters and they arise because we calculate the

inverse of the Jacobian. In order for the Jacobian to be invertible, the vectors formed

by the 3M - 1 partial derivatives of Fi (Xk) and FI(Xk) must be independent for all

i - 1 and all ai[n] > 0, 6[n] E [0,7r], and Si[n] E [0,7r]. It is not obvious how this

constraint carries over to the filter choice. However, we can make one important

observation. We cannot use a bank of filters with a linear spectral shape if there is

more than one AM-FM sinusoid. This constraint results from the fact that we must

use at least five filters when there is more than one sinusoid. If the filters have a

linear spectral shape, then the output of one of the filters can be determined from

a linear combination of two other filter outputs. In other words, the filter outputs

are not linearly independent and therefore no new information is obtained from using

more than two filters that have a linear spectral shape. One way to determine if a

valid set a filters has been chosen is to confirm that the eigenvalues of the Jacobian

are non-zero for all a1[n] > 0, 9i[n] E [0, 7], and Oi[n] E [0, 7r].
We also desire to keep the equations for the filters simple in order to determine

the Jacobian. This conflicts with our desire to use a filter that has a short impulse

response'. We can avoid these difficulties by pre-filtering the input and estimating

1Even using filters as in the previous chapter, i.e. G1 (eji) = ½ (1 -cos(2w)), becomes cumbersome
when calculating the Jacobian.
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the AM-FM functions of the resulting pre-filtered signal. Once the AM-FM functions

of the filtered signal have been obtained, the AM-FM functions of the original signal

can be easily determined. Figure 8-1 illustrates this approach.

To obtain the AM and FM functions of the original signal, x[n], we first observe

that the pre-filtering did not change the frequencies present in x[n]. In other words,

filtering does not change the FM. Therefore, the FM estimates obtained from x [n]

are also estimates of the FM of x[n]. The amplitude functions, ai[n], of x[n] are

scaled by P(ej3An]), so they can be obtained from the amplitude estimates of xf [n]

by dividing by P(eiCdn]). Viewing the system as a pre-filter cascaded with a bank of

filters allows us to design filters with short impulse responses and to simultaneously

choose filters that are simple so that calculating the Jacobian is still practical.

8.4 Newton's Method Applied to the Single AM-

FM Sinusoid

We now return to the problem of estimating the AM and FM functions when the

input is of the form

x[n] = a[n] cos(O[n]). (8.14)

We can specify the filters as before. The pre-filter is given by

P(e) = (1 - cos(2w)) 0 < w < (8.15)

10 -r < w < 0

and the two filters in the filter bank are given by

1 0<w<-
H, (O ) = - -(8.16)

H0 -W< w < 0
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Figure 8-1: Block diagram showing the relation between the pre-filtering stage and the
AM-FM estimation algorithm.
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H2(e•) = {
w O<w<<r

(8.17)

With these particular filter choices, the multivariate function, F(x), becomes

F (a [n], 0 [n])

F2 (a [n], O [n])j
(8.18)= [[2 1] l 2y,[n]12

and from Eq. (8.11), the Jacobian is

(8.19)J(x, n)- 2[ n a[n] 0a2
L202 [n]a[n] 29[n]a2 En]]

In the following example, our test signal is the same as that of Example 4.4.

EXAMPLE 8.1
For the signal

x[n] = [1 + .7 cos " - cos( - + 2 sin (r))(10
results are shown in Figure 8-2. The performance is close to that of the first
single-sinusoid estimation algorithm of Chapter 4.

8.5 Newton's Method Applied to Two AM-FM

Sinusoids

The case with two AM-FM sinusoids present in the input was also described and

implemented in a previous chapter. Recall that the input is of the form

x[n] = al[n] cos(01[n]) + a2[n] cos(9 2 [n]). (8.21)
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Figure 8-2: Example of Newton's method applied to single-sinusoid AM-FM estimation,
(A) amplitude estimate, mean square error: 1.424 x 1- - 3 , max deviation: 6.784 x 10-2,
(B) frequency estimate, mean square error: 2.860 x 10- 3 (rad 2/sec), max deviation:
1.009 x 10-1 (rad).

We have chosen the same pre-filter as Eq. (8.15). The five filters are expressed as

1
0

0<w<ir

-- r<w<0
H_(e•") - 1

0to

0<w<r

-ir<w<0
(8.22)

) =

H3 (e ")
0

-r<w<0r
3

H4 (e) =w
0

O<w<ir

ir<w<0

0.

(B)

U

0

H (e •") =
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H5 (e) =<w<
0 -r < w < 0

which are chosen for ease in determining the Jacobian. We now show an example of

the performance of this approach.

EXAMPLE 8.2
The input signal is given by

x[n]= 1+.2sin (7)] cos rn +10sin •-n

(3irn\] 3wrn wn2
+ 1- .3cos 31rn cos • n  2500 rn  (8.23)500)] 5 25000

The results are shown in Figure 8-3. Although the performance is slightly
inferior to that of the two-sinusoid AM-FM estimation algorithm presented in
Chapter 7, these results indicate that this approach can be applied to AM-FM
estimation successfully.

8.6 Extension to Multi-Component Case

The procedures that we described in this chapter can be extended to the multi-

component case. There are a few issues that must be addressed before implemen-

tation. First, the amount of computation increases dramatically for each additional

component. For example, the inverse of the Jacobian is repeatedly calculated until the

algorithm converges and this repeated calculation occurs at each sample point. Since

the Jacobian is a (3M - 1) x (3M - 1) matrix, M being the number of sinusoids, cal-

culating the inverse of the Jacobian becomes very computationally expensive. There

are more efficient variations of Newton's method that do not require this calculation

at every iteration and these methods are desirable for the case of multiple sinusoids.

Second, we need to better understand how the choice of filters affects performance.

Last, and most important, we need to establish whether or not this approach allows

for a unique solution.
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Figure 8-3: Estimates (solid lines) obtained from two-sinusoid AM-FM estimation using
Newton's method, (A) estimate of a[r[n], mean square error: 1.618 x 10- 4, max deviation:
6.079 x 10- 2, (B) estimate of a2[n], mean square error: 1.415 x 10- 4, max deviation:
4.320 x 10-2, (C) estimate of 01[n], mean square error: 2.772 x 10-6 rad 2 /sample, max
deviation: 5.325 x 10- 3 rad, (D) estimate of 02[n], mean square error: 2.302 x 10-6
rad 2/sample, max deviation: 5.649 x 10- 3 rad.
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8.7 Summary

In this chapter, we described an approach to AM-FM estimation for signals with mul-

tiple AM-FM components that utilizes FM to AM transduction to obtain a system

of nonlinear equations which is solved with standard numerical techniques. We im-

plemented this approach for the cases where the input consists of one or two AM-FM

sinusoids and gave examples. We then discussed a few of the unresolved issues with

this approach for the case of three or more sinusoids.
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Chapter 9

Conclusions

9.1 Summary of Thesis

Our goal in this thesis was to estimate the AM and FM of the sinusoidal components

of a signal. Our approach was motivated by the early stages of auditory processing.

There were three fundamental properties of the auditory system that provided this

motivation: (1) the input signal is processed with a bank of broad, overlapping filters,

(2) the output of these filters is rectified, and (3) there is FM to AM transduction.

The first half of the thesis described our approach to AM-FM estimation for

the case where the input is a single AM-FM sinusoid. Although some similar work

has been performed [14, 13, 16], we proposed and implemented improvements to

the approach; furthermore, the single-sinusoid algorithm provided the foundation

for extending the algorithm to the case where the input consists of two AM-FM

sinusoids. Our improvements involved using the AM and FM estimates to "invert"

the modulation of the signal and then applying the algorithm to the demodulated

signal. By doing this, we showed experimentally that the transduction error was

reduced on successive iterations, resulting in improved AM-FM estimates.

The inverse modulation technique required that we modulate the signal to a fre-

quency, we, in order to keep the signal in the passband of the filters. To determine

the optimal choice for we, we considered separately how w, influences performance in

terms of transduction error and additive noise. To perform this analysis, we devel-
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oped a new frequency-domain approach to analyze filters with respect to transduction

error.

We then proposed a method to estimate the AM and FM functions when the

input signal is assumed to be a sum of two AM-FM sinusoids. We showed that this

problem can be reduced to two single-sinusoid AM-FM estimation problems. We

also improved this algorithm by both canceling the SGN and inverting the AM. We

gave several examples which showed that the algorithm works under a wide range of

AM-FM signals.

The last topic of the thesis was the extension of the transduction-based approach

to the more general multi-component AM-FM estimation problem. We showed that

the approach used for the two-sinusoid case, i.e. reducing the problem to a lower-order

problem, does not work. We therefore proposed the use of standard numerical ap-

proaches to solve the set of nonlinear equations that result from taking the magnitude

of the filter bank outputs. We gave examples for the single- and two-sinusoid case

and outlined the approach for more than two components.

9.2 Suggestions for Future Work

This thesis has shown that FM to AM transduction is a useful approach to AM and

FM estimation. There are several aspects of the algorithms presented that can be

improved upon or which require further investigation.

Improving Filter Selection

One of the key factors in choosing the particular transduction filters was analytic sim-

plicity. Therefore, these filters are likely not "optimal". There are two complementary

criterion to use when choosing The transduction filters. First, the results obtained by

Bovik et al. [3] show that in order to reduce transduction error, the impulse response

of the filter should be as short in duration as possible1. As we established in Chapter

6, another requirement is that the frequency response of the filters are maximally flat

1 See Eq. (3.11).
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over the frequency range of the inputs. The filters cannot have a completely flat spec-

tral shape, however, because such filters do not transduce the FM to AM. Therefore,

we face a trade-off between simplicity, spectral shape, and impulse response length.

The other aspect of the filter choice is the relationship among the filters. Recall in

the one- and two-sinusoid cases, we chose G2(ejw) = wG1 (ej"), for analytic simplic-

ity. Again, there is a trade-off between analytic simplicity, spectral shape, and the

impulse response length of GI(eji) and G2 (eji).

Multi-Component Extensions

In Chapter 8, we proposed a method using standard numerical techniques to estimate

the AM and FM functions when the signal is consists of more than two AM-FM

sinusoids. We did not show that this approach produces a unique solution; this

result needs to be established. Despite the issue with uniqueness, we implemented

the methods for the cases of one and two sinusoids. For the single-sinusoid case,

the algorithm converged to the "true" solution with performance comparable to that

of the single-sinusoid AM-FM estimation algorithm of Chapter 4. The two-sinusoid

algorithm also converged to the "true" solution, but its performance was somewhat

inferior than that of the two-sinusoid AM-FM estimation algorithm of Chapter 7. One

factor that possibly contributes to the inferior performance may be the filter choice.

Since we required the Jacobian, which involves taking the derivatives of products

of the frequency response of the filters, we kept the filters simple. In doing so, we

may have chosen filters that are poorly suited for this task. If the uniqueness results

can be established, then a multi-component algorithm needs to be implemented. We

have done some preliminary experimentation with a three-sinusoid algorithm and had

difficulties with convergence. We are unsure if this is caused by the manner in which

the algorithm has been implemented or because there is not a unique solution.

Signal Detection
In all of the algorithms presented in this thesis, it was assumed that number of

components of a signal remained the same throughout the duration of the signal.

Since many signals we are interested in analyzing, such as speech, do not have the
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same number of components at every instant, it is desirable to have the algorithms

detect these changes.

Convergence of Inverse Modulation

In Chapter 5, we showed experimentally that inverting the modulation with esti-

mates of the AM and FM significantly reduced the estimation error. A current area

of investigation is proving that this technique converges to the exact AM and FM

functions.

Signal Separation

In Chapter 7, we showed that when the frequency separation of the two components

becomes small and the modulation increases in rate, the error in the estimates in-

creases significantly. This is a result of the SGN having spectral components which

are passed to the embedded single-sinusoid algorithm. The SGN cannot be canceled

in these cases because the initial estimates contain such large errors and therefore

give poor SGN estimates. We are currently investigating alternative approaches to

SGN cancelation that work under a wider range of conditions.

Error Reduction by Multiple Filters

In the algorithms presented in this thesis, we have used the minimum number of

filters necessary. A possible approach to reduce the error is to use many filters and

exploit the redundancy to obtain improved AM-FM estimates. For example, we could

average the estimates obtained from several algorithms using different filter sets.

Filtering Additive Noise

After obtaining the FM estimates, we can filter the signal to remove any noise that

does not lie in the frequency range of the signal and then re-apply the algorithm.

Preliminary experimentation indicates that this technique significantly reduces sen-

sitivity to additive noise.
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