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by
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Abstract

The StarT-Voyager parallel computer is intended to be an experimental machine
which will support the use of multiple communications protocols on a single parallel
machine. StarT-Voyager provides hardware support for several different types of
messages, cache-coherent shared memory and configurable protection domains. This
flexibility allows programmers to select the communication method which is most
efficient for the task at hand, which is not possible in machines which offer a single
message- passing mechanism; it is also useful from an experimental viewpoint, as it
will allow exploration into the usefulness of various subsets of these parallel computing
support mechanisms.

The Bus Interface Units are an integral part of the StarT-Voyager hardware design.
These units respond directly to processor bus transactions, implementing the basic
message-passing and shared memory functionality directly to reduce latency while
supporting flexible responses through configurable internal state and communication
with other components, notably a secondary processor used to control communica-
tions protocols. This thesis describes the functionality and implementation of these
units.

Thesis Supervisor: G. Andrew Boughton
Title: Principal Research Scientist
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Chapter 1

Introduction

This thesis describes the implementation and verification of bus interface hardware

for a scalable parallel machine based on commercial components which supports both

message-passing and distributed shared memory communication methodologies. This

chapter begins with a summary of previous work in the field of parallel computing.

It then discusses the StarT-Voyager project in detail, and explains the motivations

for this thesis within the goals of that project. At the end of the chapter, the over-

all organization of the thesis is summarized to direct readers to particular areas of

interest.

1.1 Summary of Past Work

The past few decades have seen a rapid increase in the processing power of a single

computer; over the past decade, microprocessors have increased in performance by a

factor of almost 2 every year [8]. Even so, the processing power of a single computer

chip has not managed to out-distance the requirements of modern software; as pro-

cessing power has increased, so too has the complexity of computation required by

modern algorithms. Today's microprocessors, limited by the current silicon etching

technologies, power and cooling concerns and verification issues, are often insufficient

to meet the demands of modern users.

Parallel computing, in essence, is an attempt to circumvent these limits on com-



putational power by distributing the work done to several microprocessors within a

single "computer." The effectiveness of this method varies, but it is capable of re-

ducing latency for many classes of algorithms ranging from Fast Fourier Transforms

to database searches.

From an architectural standpoint, the greatest challenge in the emergence of par-

allel computing is the development of efficient mechanisms for inter-processor com-

munication. In order to work together on a single problem, processors must be able to

communicate with each other. There are two primary mechanisms of inter-processor

communication: distributed shared memory (DSM) and message-passing.

Originally, parallel architecture designs focused on one particular communication

paradigm. To be certain, "distributed shared memory" machines such as the Stanford

DASH [6] and MIT Alewife [4] are capable of emulating message-passing functional-

ity while "message-passing" machines like the Cray T3D [10] can implement shared

memory functionality; however, the software overhead required to do so makes pro-

gram execution considerably less efficient. Hence, while supporting a single type of

communication often lowered the design and hardware cost of a parallel machine by

a considerable amount, it also served to restrict the classes of problems which the

machine could efficiently solve.

Recently, several parallel machines have appeared with direct support for both

message-passing and cache-coherent distributed shared memory. The Stanford FLASH

project [7] implements communications functionality by replacing the standard mem-

ory controller with a programmable microcontroller, MAGIC, which directly handles

all intra- and inter-processor functionality; other designs, including StarT- Voyager,

utilize a secondary "protocol processor" (along with a smaller amount of custom logic)

to provide both forms of inter- processor communication.

1.2 The StarT-Voyager Project

StarT-Voyager is a continuation of the parallel computing research begun in StarT

[14] and continued in StarT-NG [3]. StarT and StarT-NG were designed with the
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Figure 1-1: A StarT-Voyager site

dataflow programming model in general and the Id language [13] in particular; the

Voyager project represents a shift to a standard programming ideology.

The primary goal of the StarT-Voyager project is to design and build a scalable

parallel computer based on commercially-available components which is capable of

supporting multiple communications protocols. In particular, StarT-Voyager is de-

signed to provide efficient means of sending messages of various sizes [2]; it also pro-

vides direct hardware support for cache-coherent shared memory protocols, including

(but not limited to) S-COMA [15] and CC-NUMA.

Each site in the StarT-Voyager parallel machine consists of a IBM PS/6000 Model

240 motherboard with two processor slots. One processor slot is occupied by a Pow-

erPC 604 processor with in-line L2 cache; this processor, called the application pro-

cessor or aP, runs a modified version of the AIX operating system with extensions

for parallel job coordination. The other processor slot is occupied by the NES card

(Network Endpoint Subsystem card), which is discussed in detail in section 1.3. The

60X memory bus [12] called the aPBus connects the aP, the NES, the Union memory

controller (through which aP DRAM is accessed) and the I/O subsystem.

The StarT-Voyager sites are connected through the NES card to the Arctic net-

work, a fat tree network constructed of Arctic router chips [5]. Both the Arctic



Figure 1-2: The NES card

router chips and the network boards are being designed and implemented as part

of the StarT-Voyager project. The Arctic network provides a lossless packet routing

system, achieving 160 MBytes/sec bandwidth on each link; as each StarT-Voyager

site has two links (one incoming, one outgoing) with the network, the total available

network bandwidth for a single site is 320 MBytes/sec. The fat tree topology pro-

vides a high bisection bandwidth and redundancy, two highly desirable features for

this project.

1.3 NES Overview

The Network Endpoint Subsystem, or NES, is designed to manage the various com-

munications mechanisms provided to the user by means of address space mapping.

There are several components of note: the NES Core (or NES chip), the service

processor, various SRAMs, and the network interface.



The NES Core, a small ASIC, is a custom logic design which provides hardware

support for the parallel communications functions required by StarT-Voyager. To

meet the goal of efficient communication, the NES Core implements many of the most

common functions directly in hardware; in order to provide the flexibility required to

implement various communications protocols, the Core is capable of interacting with

the service processor to handle complex or unusual operations.

The NES Core is further divided into three sections: the aP Bus Interface Unit

(aBIU), the sP Bus Interface Unit (sBIU) and the NES Ctrl (Ctrl). The aBIU and

sBIU handle all interaction with the memory busses of the aP and sP; the details of

these sections is contained in this thesis. The Ctrl module is responsible for interacting

with the IBus, an internal 64b data bus which connects the NES Core to the aSRAM,

sSRAM and network interface. Ctrl also contains most of the "official" NES state,

including the status of all message queues; the BIUs contain their own state and

shadowed versions of certain message queue pointers.

The service processor, or sP, is a PowerPC 604 which provides flexible and ex-

tendible support for the NES Core. The sP observes all aP memory accesses to an

address region called sP Serviced Space; it is also able to observe and modify all NES

Core state, and can initiate transactions on the aP memory bus through the aBIU

(see Section 2.2.3). These features are extremely flexible, and will be used to imple-

ment coherent shared memory protocols and non-resident message queues. The sP

is connected to the NES Core by the 60X bus called the sPBus; a MPC105 memory

controller [11] also lies on the bus and allows access to the sP DRAM.

The aSRAM and sSRAM provide storage space for resident message queues of the

aP and sP respectively; they are also used to pass data between the two and to read

NES Core state. These are dual-ported synchronous SRAMs; one port is attached to

the relevant 60X bus and controlled by the BIU, while the other port is attached to

the IBus and operated by Ctrl.

The clSRAM is a special SRAM used to store cache line status; this allows the

NES Core to handle requests for resident global memory in hardware without the

overhead of sP interaction.



The network interface, including the TxU/RxU and the Arctic Interface, is used to

provide CRC calculation/checking, compression/expansion and electrical conversions

between the IBus and the Arctic network itself.

1.4 Thesis Outline

This chapter has presented a brief background of the history of parallel computing,

provided a brief architectural overview of the StarT-Voyager project goals and basic

architecture, and described at a very basic level the goals of this research.

Chapter 2 expands on these goals by describing the specific functionality required

of the BIUs, including a list of all input and output signals, the support provided for

various address spaces and transaction types, the access and use of the SRAMs and

the aBIU's ability to serve as master of the aPBus.

Chapters 3 and 4 describe the implementation of the functionality of the BIUs;

these includes a description of the functional modules within each BIU, the state

machines responsible for each function, the system registers and other internal state,

and the timing requirements for interaction with the MPC105 and Union memory

controllers and the various SRAMs.

Chapter 5 details the methodology used to verify the functionality of the design; it

will indicate the advantages and difficulties found with this methodology, and indicate

areas of future concern.

Finally, Chapter 6 concludes the thesis with commentary on the contributions of

this research to the author's understanding of parallel architecture. Included in this

chapter are future work to be done involving the design described herein and specific

insights obtained from this design.



Chapter 2

BIU Functionality

This chapter details the functionality of the BIUs. Although the functions supported

by the two BIUs overlap considerably, they will be described separately here in the

interest of readability.

Each BIU section begins with the definition of the interfaces between the BIU,

the sP or aP Memory Bus, the SRAMs and the remainder of the NES Core. Next,

the address space mapping for the Memory Bus and the appropriate responses by the

BIU are given. Finally, internal commands issued by other NES Core modules and

the expected responses are detailed.

The emphasis of this chapter is on the various functions which are supported, not

on the mechanisms used to support them. Chapters 3 and 4 contain the detailed

implementation of the sBIU and aBIU respectively.

A summary of the various hardware components is given in Sections 1.2 and 1.3. In

addition, the StarT-Voyager Hardware Engineering Specification [1] and the "Message

Passing Support on StarT-Voyager" memo [2] provide a higher-level perspective on

the Voyager project and may help to put this thesis in context.

2.1 sBIU Functionality

The sBIU is responsible for handling bus transactions issued by the sP (including

control of the sSRAM port on the sPBus); it also reacts to a small set of commands



Signal Name Direction Size Comments
sPBusAddress I 32b Address

sPBusTransferStart I lb Start of Address Phase
sPBusTransferType I 5b Transfer Type
sPBusTransferSize I 3b Transfer Size

sPBusTransferBurst I lb Burst Transfer Indicator
sPBusAddressAck O lb Completion of Address Phase

sPBusAddressRetry O lb Address Retry
sPBusDataBusBusy I lb Data Phase in Progress
sPBusTransferAck O lb Completion of Data Phase
sPBusHardReset I lb Hard Reset
sPBusSoftReset I lb Soft Reset
sPBusInterrupt O lb Interrupt sP

Table 2.1: sBIU-sPBus Interface

issued by the CTRL or aBIU modules.

2.1.1 sBIU Interface Groups

The sBIU's interfaces can be broken down into several groups: sPBus Interface,

sSRAM Interface, JBus Interface, Ctrl Interface, aBIU Interface and miscellaneous

signals.

All signal directions are described with respect to the sBIU, i.e. "I" means an

input to the sBIU.

sPBus Interface

The sPBus Interface includes all of the signals relevant to the sBIU's ability to respond

to transactions on the sPBus according to 60X bus protocol and the specifications

of the MPC105 memory controller. The signals included in this group are listed in

Table 2.1.

The sPBusAddress, sPBusTransferType, sPBusTransferSize and sPBusTransfer-

Burst signals define the current transfer on the address portion of the sPBus. sP-

BusTransferStart, sPBusAddressAck and sPBusAddressRetry provide the boundaries

18



Signal Name Direction Size Comments

sSRAMAddress O 12b sSRAM sP-Port Address
sSRAMRead/Write O lb sSRAM sP-Port Read/_Write

sSRAMOutputEnable O lb sSRAM sP-Port Output Enable
sSRAMChipEnable O 2b sSRAM sP-Port Chip Enable

Table 2.2: sBIU-sSRAM Interface

for the address portion of the pipelined transaction, while sPBusDataBusBusy and

sPBusTransferAck identify and terminate the data phase of the transfer.

The sPBusHardReset, sPBusSoftReset and sPBusInterrupt signals also fall under

this interface; these signals may be used to reset the NES or generate interrupts on

certain events (such as a message arrival).

sSRAM Interface

The sSRAM Interface consists of the signals required to control the port of the sS-

RAM which is connected to the data portion of the sPBus; the other sSRAM port is

controlled by NES Ctrl).

The sSRAMAddress signal addresses the SRAM, while sSRAMRead/Write, sS-

RAMOutputEnable and sSRAMChipEnable serve as control signals.

JBus Interface

The JBus is a 32b data bus which connects the sBIU and Ctrl modules; it serves to

allow the JBus to request IBus access in order to transfer data between the aSRAM

and sSRAM or write data into one of the SRAMs. The JBus Interface specifies the

manner in which these requests are made.

When the JBus is used to write data to the SRAMs, JBusData contains the data to

be written and JBusAddress contains the SRAM address of the write. ShTxCompose

indicates that the JBus is being used to write the header of a short message (see

Section 2.1.2). MemQOutOCompose and MemQOutlCompose further specify that

the message being composed is in one of the two special MemQOut queues, with



Signal Name Direction Size Comments
JBusAddress 0 13b JBus Compose Address

JBusData O 32b JBus Data
ShTxCompose O lb 32b ShTx Compose Request

MemQOutOCompose O lb MemQOutO Compose
MemQOutlCompose O lb MemQOutl Compose

MemQOutOp O 2b MemQOut Operation
ComposeFree I lb ShTx Compose Completion

DataMotionValid O lb Data Motion Request
DataMotionFree I lb Data Motion Acknowledge
DataMotionDone I lb Data Motion Complete

Table 2.3: sBIU-JBus Interface

MemQOutOp indicating the particular type of transaction. ComposeFree indicates

that the JBus is available and the SRAM write has completed.

For transfers between the aSRAM and sSRAM, known as DataMotion transfers,

the JBusData field encodes the aSRAM and sSRAM addresses, the transaction size

and the direction of transfer. DataMotionValid indicates that the JBus is being

used for a DataMotion command; DataMotionFree acknowledges the reception of

the command by NES Ctrl, while DataMotionDone indicates that the transfer is

complete.

Ctrl State Interface

The Ctrl State Interface group consists of the SCBus, which is used by the sBIU to

access Ctrl state, and the CSBus, which is used by Ctrl to access sBIU state.

The SCBusAddress defines the Ctrl state to be accessed. SCBusOp defines the

operation as a read and/or write or no-op. SCBusData provides the 7-bit data field for

a state write. SCBusFree indicates that the SCBus is available for a new transaction,

while SCBusDone indicates that the previous transaction has been completed.

The CSBusAddress, which is only two bits wide, defines which of the four ShRx

(short message receive) producer pointers are being updated by Ctrl. This data is

required to allow the sBIU to calculate the full/empty status of the ShRx queues.



Signal Name Direction Size Comments

SCBusAddress O 11b Ctrl State Address
SCBusData O 7b Ctrl Update Data
SCBusOp O 2b SCBus Operation
SCBusFree I lb SCBus Acknowledge
SCBusDone I lb SCBus Operation Done

CSBusAddress I 2b sBIU State Address
CSBusData I 7b sBIU Update Data
CSBusValid I lb sBIU State Update

Table 2.4: sBIU-Ctrl Interface

Signal Name Direction Size Comments

SABusAddress O 10b aBIU State Address
SABusWData O 7b aBIU Update Data
SABusRData I 7b aBIU Read Data

SABusOp O 2b SABus Operation
ASBusAddress I 10b sBIU State Address
ASBusWData I 7b sBIU Update Data
ASBusRData O 7b sBIU Read Data

ASBusOp I 2b ASBus Operation

Table 2.5: sBIU-aBIU Interface

CSBusData contains the new pointer value; CSBusValid indicates a valid operation

on the bus. (There is no Free or Done signal, as the update is guaranteed to complete

in one cycle.)

aBIU Interface

The aBIU interface is used by the sBIU to initiate and respond to state access requests.

It consists of the SABus and the ASBus; the SABus carries aBIU state requests from

the sBIU, while the ASBus carries sBIU state requests from the aBIU.

The SABus is used by the sBIU to initiate aBIU state reads or writes. SABusAd-

dress indicates the aBIU state to be accessed, SABusOp indicates the transaction type

(read, write or no-op), SABusWData provides the data for a write and SABusRData



Signal Name Direction Size Comments
RxEmpty I 5b Medium Receive Queue Status

RxLateAck O lb Arctic Acknowledge
NESResetSP O lb Reset Received

CLSLatch O lb Latch clSRAM Update
ResetDMA O lb Reset aBIU DMA Counter

ClearApproval O lb Clear Approval Register

Table 2.6: sBIU Miscellaneous Signals

returns the data from a read.

The ASBus is a mirror image of the SABus which is used by the aBIU to access

sBIU state. ASBusAddress indicates the aBIU state to be accessed, ASBusOp in-

dicates the transaction type and ASBusWData and ASBusRData supply/return the

write or read data respectively.

Updates or reads indicated on the ASBus or SABus are expected to be processed

immediately, so no acknowledgment signals are required.

Miscellaneous Signals

There are a few other I/O signals which do not fall under any of the previous

interface groups.

The RxEmpty signal, generated by Ctrl, indicates the status of the medium mes-

sage receive queues; this information allows the sBIU to implement queue polling.

RxLateAck, output to Ctrl, indicates that the sP has read a message from a queue

which requires that a late acknowledgment be sent to the Arctic network. This use of

late acknowledgments is controlled by sBIU state (Section 3.3.3). This signal is also

used in response to the Arctic Ack Immediate Command, as described in Section 2.1.2.

NESResetSP, output to Ctrl, indicates that a Hard or Soft Reset has been received

on the sPBus, or that the NES Reset Immediate Command has been issued.

CLSLatch, output to the external clFIFO, causes the sPBusAddress to be latched

into the FIFO. Section 4.5 describes the use of this FIFO in updating the clSRAM.

ResetDMA and ClearApproval, output to aBIU, have specified meanings related



Field Content Description

[0:6] 010xxxx Special ShTx Space
01100xx SRAM Space
011010x QPtr Space
0110110 ShTx Space
0110111 ShRx Space
01110xx clSRAM Update Space
011110x Immediate Command Space
011111x Config Access Space

Table 2.7: sP Address Space

to the appropriate Immediate Commands.

2.1.2 sP Address Space

The sP has access to a full range of address spaces which are used to support direct

access to the aSRAM and sSRAM, updates of the clSRAM, access to sBIU, aBIU and

CTRL queue state at user or system level and access to message receive and transmit

queues.

The address space of the transaction is decoded by bits [0:6] of the sPBusAddress,

as shown in Table 2.7. Further decoding of the address depends on the address space.

(All unlisted address spaces are ignored.)

The sBIU only supports read-like and write-like transactions issued by the sP;

all other transaction types are ignored. Further, as detailed below, the size of the

read/write has varying effects on the sBIU's response.

SRAM Space

The simplest functionality supported by the sBIU is sP access to the aSRAM and

sSRAM. For sSRAM access, the sBIU simply acts as a 60X bus slave and SRAM

controller, providing the appropriate address and control signals to the SRAM while

coordinating the transfer on the sPBus. For aSRAM access, the sBIU coordinates a

transfer to/from a temporary sSRAM location with a data motion request to NES



Field Content Description

[0:4] 01100 SRAM Space

[5:15] X ** Unused **
[16] 0 sSRAM Access

1 aSRAM Access
[17:28] X SRAM Address

[29] X SRAM Chip Select
[30:31] 00 ** Fixed Field **

Table 2.8: sP SRAM Space

Ctrl along with a sSRAM read or write.

The sBIU supports direct access to the sSRAM through the control signals de-

scribed in Section 2.1.1. These accesses are limited to 4B and 8B aligned transfers

and 32B burst transfers; burst writes are assumed to be zeroth word first, while reads

are returned critical word first.

In the case of an aSRAM write, the provided data is stored in a temporary sSRAM

location; a DataMotion request to transfer data from the temporary sSRAM to the

specified aSRAM location is then issued through the JBus Interface. An aSRAM read

is handled in similar fashion: DataMotion is requested from the specified aSRAM

address to a temporary sSRAM location, and the read from this location is executed

when the data motion completes. Again, 4B, 8B and 32B transactions are supported

with the same restrictions as sSRAM transfers.

QPtr Space

QPtr Space is designed to allow user-level access to short and medium message queue

pointers in CTRL. It is intentionally similar to the system level access provided in

Config Access Space (Section 2.1.2), which simplifies the hardware implementation.

QPtr Space, and several other address spaces, have NESAddress and NESData

encoded within the sPBusAddress. NESAddress is an internal addressing scheme

used to access BIU or Ctrl state; bit 6 of the sPBusAddress selects between the two.

NESData contains the data for a state write if one is specified by the Update field.



Field Content Description

[0:5] 011010 QPtr Space
[6] 0 NESAddress[0] (Fixed)

[7:9] X NESAddress[3:5] == Comm Group
[10:11] 01 NESAddress[1:2]
[12:13] X ** Unused **
[14:16] 100 NESAddress[6,9:10] (Fixed)

[17] X NESAddress[11]
[18] X ** Unused **

[19:25] X NESData[0:6]
[26] 0 No Update

1 Update
[27:28] X NESAddress[7:8]

[29] X High/Low Word (for 32b Reads)
[30:31] 00 ** Fixed Field **

Table 2.9: sP QPtr Space

The use of NESAddress in the sBIU is explained in Appendix A.

Of particular note is NESAddress[3:5]; this is also called the Comm Group, since it

encodes the short or medium message group which is being referenced. This encoding

is shown in Table 2.10. PasT and VasR are short message transmit and receive queues,

respectively; PcpT and PcpR are medium message queues.

Also of note in QPtr Space is the effect of the sPBusTransferType. A read-

like transaction causes the sBIU to return data from a particular sSRAM location

associated with the Comm Group; this location contains various status information

about the Comm Group in question. A write-like transaction has no effect on the

sSRAM; writes to NES state are implemented through the Update field, which causes

the Ctrl state specified by the encoded NESAddress to be updated to the value

contained in NESData if asserted.

ShTx Space

The ShTx (short message transmit) space allows short messages to be sent by a

single uncached write from the sP. The message may be entirely contained in the



Group ID Description

000 PasT-0/VasR-0 (Short Message) Group
001 PasT-1/VasR-1 (Short Message) Group
010 PasT-2/VasR-2 (Short Message) Group
011 PasT-3/VasR-3 (Short Message) Group
100 Ctrl: Pcp-0 (Medium Message) Group

BIU: sBIU MemQIn/MemQOut Group
100 Ctrl: Pcp-1 (Medium Message) Group

BIU: Overflow Group
100 Ctrl: Pcp-2 (Medium Message) Group

BIU: aBIU MemQIn/MemQOut Group
100 Ctrl: Pcp-3 (Medium Message) Group

BIU: aBIU DMA Group

Table 2.10: Comm Groups

Field Content Description
[0:6] 0110110 ShTx Space
[7] 0 PasT-0 Group

1 PasT-1 Group
[8:27] X Message Content
[28] 0 Low Priority Queue

1 High Priority Queue
[29] X High/Low Word (for 32b Writes)

[30:31] 00 ** Fixed Field **

Table 2.11: sP ShTx Space

data portion of the write, or the sBIU can be used to compose a message header from

the sP Address of the write. Additionally, up to 2.5 lines of "Tag-On Data" can be

attached to the outgoing message by specifying this request in the message (in either

format).

When a ShTx Space write is recognized, the data portion of the write is imme-

diately placed in the sSRAM; the SRAM address used is specified in sBIU queue

pointer state (see Section 3.3.3).

Additionally, if this particular message queue uses 32b Compose format (as spec-

ified in sBIU system registers; see Section 3.3.3) and the transfer is a 32b write to



Field Content Description

[0:6] 0110111 ShRx Space
[7:14] X ** Unused **

[15] 0 VasR-0 Group: Do not poll
1 VasR-0 Group: Poll

[16] 0 PcpR-0 Group: Do not poll
1 PcpR-0 Group: Poll

[17] 0 VasR-1 Group: Do not poll
1 VasR-1 Group: Poll

[18] 0 PcpR-1 Group: Do not poll
1 PcpR-1 Group: Poll

[19] 0 MemQIn: Do not poll
1 MemQIn: Poll

[20] 0 Overflow: Do not poll
1 Overflow: Poll

[21:16] X ** Unused **
[27] 0 High Priority Queue: Do not poll

1 High Priority Queue: Poll

[28] 0 Low Priority Queue: Do not poll
1 Low Priority Queue: Poll

[29] x High/Low Word (for 32b Reads)
[30:31] 00 ** Fixed Field **

Table 2.12: sP ShRx Space

the odd word, sPBusAddress is written into the even word of the generated SRAM

location through the JBus.

When the entire message is contained in sSRAM, the sBIU updates its internal

queue pointers and updates NES Ctrl pointers via the SCBus.

ShRx Space

ShRx (short message receive) Space allows the user process to poll some or all of

the various receive queues associated with that process. It uses a bit vector form of

Comm Group to allow the user to select the queues to be polled and reads from the

highest priority (according to a static ordering described in Table 2.13) non-empty

polled queue, or returns data from a static location if no such queue exists.

The sBIU selects the queue to be read by ANDing the encoded polling information



Queue Name

VasR-0 High
PcpR-0 High
VasR-1 High

MemQIn
Overflow

PcpR-1 High
VasR-0 Low
PcpR-0 Low
VasR-1 Low
PcpR-1 Low

Table 2.13: sP ShRx Priorities (in descending order)

and the queue empty state (the internal short message queue state and the RxEmpty

signals provided by Ctrl for medium message and overflow status) to determine the

highest priority non-empty queue which is being polled.

For reads to the short message receive (VasR) queues, the sBIU returns the header

of the message as indicated by internal queue pointers. At the completion of one 8B

read or two 4B reads, the sBIU updates its own queue pointer state and forwards the

update to NES Ctrl over the SCBus. MemQIn reads operate in a similar manner;

however, MemQIn is located in the aBIU, so an update is passed along the SABus

instead of the SCBus.

Reads to the medium message receive (PcpR) or overflow queues, as well as reads

where there are no non-empty queues polled, result in the return of values from static

sSRAM addresses and no internal state change.

Writes to this address space are ignored.

Special ShTx Space

The Special ShTx Space is very similar to the ShTx Space; both spaces are used to

generate complete messages via uncached writes. There are two differences, however:

Special ShTx Space has a wider message content field in the sP Address, and Special

ShTx Space allows messages to be sent via MemQOut as well as the PasT (short



Field Content Description
[0:2] 010 Special ShTx Space
[3:4] 00 PasT-0 Group

10 PasT-1 Group
X1 MemQOut Group

[5:27] X Message Content
[28] 0 Low Priority Queue

1 High Priority Queue
[29] X High/Low Word (for 32b Writes)

[30:31] 00 ** Fixed Field **

Table 2.14: sP Special ShTx Space

Field Content Description MemQOutOp

[3,15:16] 000 DMA Receive 01
001 NES-Mastered Op 01
010 DMA Read/Send 10
011 DataMotion Command 11
100 Message Launch 00

Table 2.15: MemQOutOp Encoding

message transmit) queues.

As in ShTx Space, Special ShTx Space allows complete message specification in

data through a single 64b write or partial specification in the sPBusAddress through

a 32b write. The message content change has no bearing on the sBIU, since the entire

sPBusAddress is written to the SRAM through the JBus.

When one of the MemQOut queues is the target queue, the sBIU indicates this fact

to NES Ctrl via the MemQOutOCompose and MemQOutlCompose signals. Further,

the type of the MemQOut command is decoded as shown in Table 2.15 and passed

on the MemQOutOp bus.

clSRAM Update Space

The clSRAM, which is used to determine cache line status for aP reads to global

memory space (see Section 2.2.2) is only writable through clSRAM Update Space.



Field Content Description

[0:4] 01110 clSRAM Update Space
[5] X ** Unused **

[6:26] X clSRAM Address
[27] 0 Do not acknowledge

1 Acknowledge
[28] 0 Use MemQOut-0

1 Use MemQOut-1
[29:31] X clSRAM Data

Table 2.16: sP clSRAM Update Space

The sBIU's response to this transaction is to latch the sP Address in an external

FIFO and compose a MemQOut message which is directed to the aBIU; the aBIU

then completes the clSRAM update when it receives the message, which keeps the

update in FIFO order with other MemQOut transactions.

The Acknowledge signal is part of the clSRAM Update command; it is used to

request a confirmation from the aBIU to the sP via MemQIn when the clSRAM

update completes. See Section 4.5 for the details of this acknowledgment.

Config Access Space

Config Access Space is used at the system level to monitor and control NES status.

This space is similar to QPtr Space; however, a wider range of states are accessible

from Config Access Space, and the results of a read are different.

As with QPtr Space, NESAddress and NESData are explicitly provided in sPBu-

sAddress; however, Config Access Space allows access to the full NESAddress space,

while QPtr Space restricts access to a small region of queue state.

Reads to Config Access Space vary in result depending on the NESAddress being

accessed. Reads to Ctrl End-Point State return the status pointers for the specified

Comm Group, just as in QPtr Space. Reads to the Overflow Comm Group of Ctrl

Queue State return overflow status from a static SRAM address.

Reads to the remainder of Ctrl state require that the state be written to a hard-



Field Content Description

[0:5] 011010 Config Access Space
[6] 0 NESAddress[0] = Ctrl Access

1 NESAddress[0] = BIU Access
[7:9] X NESAddress[3:5] == Comm Group

[10:11] X NESAddress[1:2]
[12:13] X ** Unused **
[14:17] 100 NESAddress[6,9:11]

[18] X ** Unused **
[19:25] X NESData[0:6]

[26] 0 No Update
1 Update

[27:28] X NESAddress[7:8]
[29] X High/Low Word (for 32b Reads)

[30:31] 00 ** Fixed Field **

Table 2.17: sP Config Access Space

wired sSRAM location via a SCBus command; the sPBus read is delayed until this

write is completed. Reads of sBIU state operate in a similar fashion; the state is

written to the same SRAM location through the JBus and then read out by the sP.

Finally, reads of aBIU state require a read request across the SABus, a write to SRAM

on the JBus and finally a read from SRAM to the sPBus.

Write-like transaction types have no effect on the SRAM; state updates are indi-

cated by the Update field, as in QPtr Space.

Immediate Commands

The Immediate Command address space is used to send specific commands to the

Ctrl or aBIU modules. Immediate commands are decoded in the sBIU and passed

via the relevant signals to Ctrl or aBIU as required.

2.1.3 Other sBIU Functions

In addition to responding to transactions issued by the sP, the sBIU also responds to

state accesses issued across the CSBus and ASBus by Ctrl and aBIU.



Field Content Description
[0:5] 011110 Immediate Command Space

[6:14] X ** Unused **
[15:17] 000 NES Reset

001 ** Unused **
010 Arctic Ack
011 Clear Ctrl DMA State
100 Clear aBIU DMARxDataQ CPtr
101 Clear Approval Register
110 Interrupt aP
111 Interrupt sP

[18:29] X ** Unused **
[30:31] 00 ** Fixed Field **

Table 2.18: sP Immediate Command Space

The CSBus is used by Ctrl to update sBIU's short message receive queue pointers;

this information is needed so that the sBIU can determine if a given queue is empty

when polled. The ASBus is used by the aBIU to read or write sBIU state as necessary.

2.2 aBIU Functionality

The aBIU is responsible for handling bus transactions issued by the aP (including

control of the aSRAM port on the aP Data Bus); it also responds to various NES-

issued commands, including commands which require it to act as master of the aPBus.

2.2.1 aBIU Interface Groups

The aBIU interfaces can be broken down into several groups: aPBus Interface, aS-

RAM Interface, KBus Interface, Ctrl Interface, sBIU Interface, NESBuffer Interface,

clSRAM Interface and miscellaneous signals.

All signal directions are described with respect to the aBIU, i.e. "I" means an

input to the aBIU.



Signal Name Direction Size Comments

aPBusAddress I/O 32b Address
aPBusRequest O lb Bus Request
aPBusGrant I lb Bus Grant

aPBusTransferStart I/O lb Start of Address Phase
aPBusTransferType I/O 5b Transfer Type

aPBusTransferCodeO I/O lb Transfer Code bit 0
aPBusTransferSize I/O 3b Transfer Size

aPBusTransferBurst I/O lb Burst Transfer Indicator
aPBusGlobal I/O lb Global

aPBusCacheInhibit I/O lb Cache Inhibit
aPBusWriteThrough I/O lb Write-Through

aPBusShared I/O lb Shared
aPBusAddressBusBusy O lb Address Phase in Progress

aPBusAddressAck I lb Completion of Address Phase
aPBusL2Hit O lb Address Claim

aPBusAddressRetry I/O lb Address Retry
aPBusDataBusGrant I lb Data Bus Grant
aPBusDataBusBusy I/O lb Data Phase in Progress
aPBusTransferAck O lb Completion of Data Phase
aPBusHardReset I lb Hard Reset
aPBusSoftReset I lb Soft Reset
aPBusInterrupt O lb Interrupt sP

Table 2.19: aBIU-aPBus Interface

aPBus Interface

The aPBus Interface includes all of the signals relevant to the aBIU's ability to

respond to transactions issued by the aP (or Union memory controller), as well as the

signals needed to issue NES-Mastered transfers. The signals included in this Interface

Group are listed in Table 2.19.

aPBusRequest is used when the aBIU requires bus mastery for a NES-Mastered

operation; aPBusGrant indicates that the next bus cycle (indicated by negated aP-

BusAddressBusBusy) is granted to the NES.

aPBusTransferStart, aPBusL2Hit and aPBusAddressRetry define the boundaries

of the address phase of a non-NES-Mastered transfer, while aPBusDataBusBusy and

aPBusTransferAck identify the boundaries of the data phase. NES-Mastered trans-



Signal Name Direction Size Comments

aSRAMAddress O 12b aSRAM aP-Port Address
aSRAMRead/Write O lb aSRAM aP-Port Read/_Write

aSRAMOutputEnable O lb aSRAM aP-Port Output Enable
aSRAMChipEnable O 2b aSRAM aP-Port Chip Enable

Table 2.20: aBIU-aSRAM Interface

actions use aPBusGrant and aPBusAddressBusBusy to identify a granted address

phase, drive aPBusTransferStart and aPBusAddressBusBusy to claim the bus and

watch aPBusAddressAck to determine completion. aPBusDataBusGrant, aPBus-

DataBusBusy and aPBusTransferAck control the corresponding data phase.

aPBusAddress, aPBusTransferType, aPBusTransferSize and aPBusTransferBurst

indicate the type of transaction on the memory bus. aPBusTransferCode0, aPBus-

Global, aPBusCacheInhibit, aPBusWriteThrough and aPBusShared further define

the transfer. All of these signals are inputs for transfers controlled by the aP or the

memory controller and outputs for NES-Mastered operations.

aPBusHardReset, aPBusSoftReset and aPBusInterrupt signals also fall under this

interface; these signals may be used to reset the NES or generate interrupts on certain

events (such as a message arrival).

aSRAM Interface

The aSRAM Interface consists of the signals required to control the port of the aS-

RAM which is connected to the data portion of the aPBus; the IBus port of the

aSRAM is controlled by NES Ctrl.

The aSRAMAddress signal addresses the SRAM, while aSRAMRead/Write, aS-

RAMOutputEnable and aSRAMChipEnable serve as control signals.

KBus Interface

The KBus is a 64b data bus between aBIU and Ctrl which is used by the aBIU to

request access to the aSRAM or sSRAM through the IBus (see Figure 4-1). There are



Signal Name Direction Size Comments

KBusAddress O 13b KBus Compose Address
KBusData O 64b KBus Data

ShTxCompose O lb 32b Compose Request
MemQInComposeRead O lb MemQIn Compose from Read
MemQInComposeWrite O lb MemQIn Compose from Write

MemQInCtrlReq I lb MemQIn Dummy Request
MemQInComposeCtrl O lb MemQIn Dummy Compose

ComposeFree I lb ShTx Compose Completion
DataMotionValid O lb Data Motion Request
DataMotionFree I lb Data Motion Acknowledge
DataMotionDone I lb Data Motion Complete

Table 2.21: aBIU-KBus Interface

two distinct command types issued over the KBus: a DataMotion command enacts

a transfer of data from one SRAM to the other, while a Compose command writes

the provided data into a specified SRAM location. The KBus Interface controls these

functions.

For short message composition, the KBusData contains the data to be written; the

KBusAddress contains the aSRAM or aSRAM location of the write. ShTxCompose

indicates that the KBus is being used to write the header of a short message (see

Section 2.2.2); MemQInComposeRead and MemQInComposeWrite indicate that a

transaction of the given type has been captured and is being written to MemQIn.

(See Sections 2.2.2 and 2.2.2 for transaction captures.)

MemQInCtrlReq indicates that Ctrl wishes to place something in the MemQIn

queue; MemQInCompCtrl indicates that the current MemQIn producer pointer is

being passed along the KBusAddress bus and will be incremented when the compose

completes.

For DataMotion instructions, KBusData encodes the aSRAM and sSRAM ad-

dresses, the transaction size and the direction of transfer. DataMotionValid indicates

that the KBus is being used for a DataMotion transfer; DataMotionFree acknowl-

edges the reception of the command by NES Ctrl, while DataMotionDone indicates



Signal Name Direction Size Comments

ACBusAddress O 11b Ctrl State Address
ACBusData O 7b Ctrl Update Data
ACBusOp O 2b ACBus Operation

ACBusFree I lb ACBus Acknowledge
ACBusDone I lb ACBus Operation Done

CABusAddress I 2b aBIU State Address
CABusData I 7b aBIU Update Data
CABusValid I lb aBIU State Update

Table 2.22: aBIU-Ctrl Interface

that the transfer is complete.

Ctrl State Interface

The Ctrl State Interface group consists of the ACBus, which is used by the aBIU to

access Ctrl state, and the CABus, which is used by Ctrl to access aBIU state.

The ACBusAddress defines the Ctrl state to be accessed. ACBusOp defines the

operation as a read and/or write or no-op. ACBusData provides the 7-bit data field for

a state write. ACBusFree indicates that the ACBus is available for a new transaction,

while ACBusDone indicates that the previous transaction has been completed.

The CABusAddress, which is only two bits wide, defines which of the four ShRx

(short message receive) producer pointers are being updated by Ctrl. This data is

required to allow the aBIU to calculate the full/empty status of the ShRx queues.

CABusData contains the new pointer value; CABusValid indicates a valid operation

on the bus. (There is no Free or Done signal, as the update is guaranteed to complete

in one cycle.)

sBIU Interface

The aBIU interface is used by the aBIU to initiate and respond to state access requests

by the sBIU. It consists of the SABus and the ASBus.

The ASBus is used by the aBIU to initiate sBIU state reads or writes. ASBusAd-



Signal Name Direction Size Comments
SABusAddress I 10b aBIU State Address
SABusWData I 7b aBIU Update Data
SABusRData O 7b aBIU Read Data

SABusOp I 2b SABus Operation
ASBusAddress O 10b aBIU State Address
ASBusWData O 7b aBIU Update Data
ASBusRData I 7b aBIU Read Data

ASBusOp O 2b ASBus Operation

Table 2.23: aBIU-aBIU Interface

Signal Name Direction Size Comments
NESBufferOp I 64b NESBuffer Command

NESBufferValid I lb NESBufferOp Active
NESBufferFree O lb Latched NESBufferOp
NESBufferDone O lb Command Completed

Table 2.24: aBIU NESBuffer Interface

dress indicates the aBIU state to be accessed, ASBusOp indicates the transaction type

(read, write or no-op), ASBusWData provides the data for a write and ASBusRData

returns the data from a read.

The SABus is a mirror image of the ASBus which is used by the sBIU to access

aBIU state. SABusAddress indicates the aBIU state to be accessed, SABusOp in-

dicates the transaction type and ASBusWData and SABusRData supply/return the

write or read data respectively.

NESBuffer Interface

The NESBuffer Interface is used by Ctrl to relay commands to the aBIU. These

commands, as described in Section 2.2.3, are issued by the sP, sent through the

MemQOut queue to Ctrl, and relayed from Ctrl to the aBIU across this interface.

Table 2.24 lists the signals which comprise this interface.

NESBufferOp contains the command issued to the aBIU; NESBufferOpValid in-



Signal Name Direction Size Comments

clSRAMData I 3b Cache Line Status
clSRAMRead/Write O lb clSRAM Read/_Write

clSRAMUpdate O lb Enable clFIFO Output
clSRAMDone O lb Increment clFIFO

Table 2.25: aBIU clSRAM Interface

Signal Name Direction ISize Comments

RxEmpty I 5b Medium Receive Queue Status
RxLateAck O lb Arctic Acknowledge

NESResetAP O lb Reset Received
ResetDMA I lb Reset aBIU DMA Counter

ClearApproval I lb Clear Approval Register

Table 2.26: aBIU Miscellaneous Interfaces

dicates that a command is being issued. NESBufferFree indicates that the aBIU is

ready to accept another command, while NESBufferDone indicates that the earliest

outstanding command has been completed.

clSRAM Interface

The clSRAM interface has two functions: it is used to read cache line state for

transactions to aP Snooped Space (Section 2.2.2), and it is used to complete clSRAM

updates requested by a NESBuffer command (Table 2.40).

clSRAMData is the status of the current cache line being read; this is an input only,

as the updates are done through an external FIFO to save pins. clSRAMRead/Write

is used to control the SRAM itself; clSRAMUpdate places the current clFIFO output

onto the address and data ports of the clSRAM, while clSRAMDone indicates that

the clFIFO should move to the next item in its queue.

Miscellaneous Interfaces

There are a few other I/O signals which do not fall under any of the previous

interface groups.



The RxEmpty signal indicates the status of the medium message receive queues;

this information allows the aBIU to implement queue polling.

RxLateAck indicates that the sP has read a message from a queue which requires

that a late acknowledgment be sent to the Arctic network. This use of late acknowl-

edgments is controlled by a aBIU System Register (see Section 4.3.3). This signal

is also used in response to the Arctic Ack Immediate Command. (The Immediate

Command Space is described in Section 2.2.2.)

NESResetSP indicates that a Hard or Soft Reset has been received on the aPBus,

or that the NES Reset Immediate Command has been issued.

CLSLatch causes the aPBusAddress to be latched into an external FIFO, which is

used to allow clSRAM updates to be processed in FIFO order. ResetDMA and Clear-

Approval clear the DMA counter and Approval Register, respectively. See Table 2.40

for details.

2.2.2 aP Address Space

The aP has access to a full range of address spaces which are used to support direct

access to the aSRAM and sSRAM, updates of the clSRAM, access to aBIU, aBIU and

Ctrl internal state at user or system level and access to message receive and transmit

queues.

The address space of the transaction is encoded in bits [0:6] of the aPBusAddress,

as shown in Table 2.27. Further decoding of the address depends on the address

space. (All unlisted address spaces are ignored.)

The aBIU can respond to any transaction issued to Snooped Space or Serviced

Space; only read-like and write-like transactions issued to other spaces are supported.

The aBIU also reacts to certain address-independent commands (like Sync) that

may be issued on the aPBus.



Field Content Description

[0:6] 000001x Snooped Space
001xxxx aP Serviced Space
010xxxx
01100xx SRAM Space
011010x QPtr Space
0110110 ShTx Space
0110111 ShRx Space
011110x Immediate Command Space
011111x Config Access Space

Table 2.27: aP Address Space

Field Content Description

[0:4] 01100 SRAM Space (Fixed)
[5:15] X ** Unused **

[16] 0 aSRAM Access
1 aSRAM Access

[17:29] X SRAM Address
[30:31] 00 ** Fixed Field **

Table 2.28: aP SRAM Space

SRAM Space

The simplest functionality supported by the aBIU is direct access to the aSRAM and

aSRAM. For aSRAM access, the aBIU simply acts as a memory controller, providing

the appropriate address and control signals to the SRAM. For sSRAM access, the

aBIU coordinates a transfer to/from a temporary aSRAM location with a DataMotion

request on the KBus.

The aBIU supports direct access to the aSRAM through the control signals de-

scribed in Section 2.2.1. These accesses are limited to 4B and 8B aligned transfers

and 32B burst transfers; burst writes are assumed to be zeroth word first, while reads

are returned critical word first.

In the case of an sSRAM write, the provided data is stored in a temporary aSRAM

location; a DataMotion request to transfer data from the temporary aSRAM to the



Field Content Description

[0:5] 011010 QPtr Space
[6] 0 NESAddress[0] (Fixed)

[7:9] X NESAddress[3:5] == Comm Group
[10:11] 01 NESAddress[1:2] (Fixed)
[12:13] X ** Unused **
[14:16] 100 NESAddress[6,9:10] (Fixed)

[17] X NESAddress[11]
[18] x ** Unused **

[19:25] X NESData[0:6]
[26] 0 No Update

1 Update
[27:28] X NESAddress[7:8]

[29] X High/Low Word (for 32b Reads)
[30:31] 00 ** Fixed Field **

Table 2.29: aP QPtr Space

specified sSRAM location is then issued on the KBus. An sSRAM read is handled

in similar fashion: DataMotion is requested from the specified sSRAM address to a

temporary aSRAM location, and the read from this location is executed when the

data motion completes. Again, 4B, 8B and 32B transactions are supported with the

same restrictions as aSRAM transfers.

QPtr Space

QPtr Space is designed to allow user-level access to short and medium message queue

pointers in NES Ctrl. It is intentionally similar to the system level access provided in

Config Access Space (Section 2.2.2), which simplifies the hardware implementation;

however, QPtr Space is considerably more restricted than Config Access Space.

QPtr Space, and several other address spaces, have NESAddress and NESData

encoded within the aPBusAddress. NESAddress is an internal addressing scheme

used to access BIU or Ctrl state; bit 6 of the aPBusAddress selects between the two.

NESData contains the data for a state write if one is specified by the Update field.

The use of NESAddress in the aBIU is explained in Appendix A.



Field Content Description

[0:6] 0110110 ShTx Space
[7] 0 PasT-2 Group

1 PasT-3 Group
[8:27] X Message Content

[28] 0 Low Priority Queue
1 High Priority Queue

[29] X High/Low Word (for 32b Writes)
[30:31] 00 ** Fixed Field **

Table 2.30: aP ShTx Space

Of particular note is NESAddress[3:5]; this is also called the Comm Group, since it

encodes the short or medium message group which is being referenced. This encoding

is shown in Table 2.10. PasT and VasR are short message transmit and receive queues,

respectively; PcpT and PcpR are medium message queues.

Also of note in QPtr Space is the effect of the aPBusTransferType. A read-

like transaction causes the aBIU to return data from a particular aSRAM location

associated with the Comm Group; this location contains various status information

about the Comm Group in question. A write-like transaction has no effect on the

aSRAM; writes to NES state are implemented through the Update, NESAddress and

NESData fields. In the case of QPtr Space, the NESAddress is restricted to Ctrl

state, so updates are passed to Ctrl on the ACBus.

ShTx Space

The ShTx (short message queue) space allows short messages to be sent by a single

uncached write. The message may be entirely contained in the data portion of the

write, or the aBIU can be used to compose a message header from the aP Address

of the write. Additionally, up to 2.5 lines of "Tag-On Data" can be attached to the

outgoing message by specifying this request in the message (in either format).

When a ShTx Space write is recognized, the data portion of the write is immedi-

ately placed in the aSRAM location indicated by the queue pointers resident in the



Field Content Description

[0:6] 0110111 ShRx Space
[7:14] X ** Unused **

[15] 0 VasR-2 Group: Do not poll
1 VasR-2 Group: Poll

[16] 0 PcpR-2 Group: Do not poll
1 PcpR-2 Group: Poll

[17] 0 VasR-3 Group: Do not poll
1 VasR-3 Group: Poll

[18] 0 PcpR-3 Group: Do not poll
1 PcpR-3 Group: Poll

[19:16] X ** Unused **
[27] 0 High Priority Queue: Do not poll

1 High Priority Queue: Poll
[28] 0 Low Priority Queue: Do not poll

1 Low Priority Queue: Poll
[29] x High/Low Word (for 32b Reads)

[30:31] 00 ** Fixed Field **

Table 2.31: aP ShRx Space

aBIU.

Additionally, if this particular message queue uses 32b Compose format (as speci-

fied in aBIU queue state; see Section 4.3.3) and the transfer is a 32b write to the odd

word, aPBusAddress is written into the even word of the 8B SRAM block through

the KBus.

When the entire message is contained in aSRAM, the aBIU updates its internal

queue pointers and updates NES Ctrl pointers via the ACBus.

ShRx Space

ShRx (short receive queue) Space allows the user process to poll some or all of the

various receive queues associated with that process. It uses a bit vector form of Comm

Group to allow the user to select the queues to be polled and reads from the highest

priority (according to a static ordering described in Table 2.32) non-empty polled

queue, or returns data from a static location if no such queue exists.



Queue Name

VasR-2 High
PcpR-2 High
VasR-3 High
PcpR-3 High
VasR-2 Low
PcpR-2 Low
VasR-3 Low
PcpR-3 Low

Table 2.32: aP ShRx Priorities (in descending order)

The aBIU selects the queue to be read by ANDing the encoded polling information

and the queue empty state (the internal short message queue status and the RxEmpty

signals provided by Ctrl for medium message queue status) to determine the highest

priority non-empty queue which is being polled.

For reads to the short message receive (VasR) queues, the aBIU returns the header

of the message as indicated by internal queue pointers. At the completion of one 8B

read or two 4B reads, the aBIU updates its own queue pointer state and forwards the

update to NES Ctrl over the ACBus.

Reads to the medium message receive (PcpR) queues, as well as reads where there

are no non-empty queues polled, result in the return of values from static aSRAM

addresses and no internal state change.

Writes to this address space are ignored.

Config Access Space

Config Access Space is used at the system level to monitor and control NES status.

This space is similar to QPtr Space; however, a wider range of states are accessible

from Config Access Space, and the results of a read are different. This space is

identical to sP Config Access Space, shown in Table 2.17.

As with QPtr Space, NESAddress and NESData are explicitly provided in aPBu-

sAddress; however, Config Access Space allows access to the full NESAddress space,



Field Content Description
[0:5] 011110 Immediate Command Space

[6:14] X ** Unused **
[15:17] 000 NES Reset

001 ** Unused **
010 Arctic Ack
011 Clear Ctrl DMA State

o10X ** Unused **
110 Interrupt aP
111 Interrupt sP

[18:29] X ** Unused **
[30:31] 00 ** Fixed Field **

Table 2.33: aP Immediate Command Space

while QPtr Space restricts access to a small region of queue state.

Reads to Config Access Space access vary in function depending on the state being

accessed. Reads to Ctrl End-Point State return the status pointers for the specified

Comm Group, just as in QPtr Space. Reads to the remainder of Ctrl state require

that the state be written to a hardwired aSRAM location via a ACBus command;

the aPBus read is delayed until this write is completed.

Reads of aBIU state operate in a similar fashion; the state is written to the same

SRAM location via a KBus transaction and then read out by the sP. Finally, reads of

sBIU state require a read request across the ASBus, a write to aSRAM on the KBus

and finally a read from aSRAM on the aPBus.

Write-like transaction types have no effect on the SRAM; state updates are indi-

cated by the Update field, as in QPtr Space, and may be forwarded to Ctrl or aBIU

by the ACBus or ASBus respectively.

Immediate Commands

The Immediate Command address space is used to send specific commands to the Ctrl

module. These commands are decoded in the aBIU and used to assert the relevant

signals to Ctrl.



Field Content Description

[0:5] 000001 Snooped Space
[6:25] X clSRAM Address

[26:31] X Interpreted by sP

Table 2.34: aP Snooped Space

Snooped Space

Snooped Space is used to implement shared local global memory. The response of the

aBIU to this space is determined by the aPBusTransferType and cache-line status

received from the clSRAM. Sections 4.2 and 4.3 describe the implementation of this

functionality.

When a transfer to Snooped Space is attempted, the aBIU does a table lookup

indexed by the aPBusTransferType and the clSRAMData corresponding to the cache

line of the transfer. There are four possible outcomes: ignore, notify, approve or retry

indefinitely.

Ignored transactions elicit no further action by the aBIU.

Transactions which require notification are placed in MemQIn over the KBus

Interface. If the transfer is a write, the associated data is placed in MemQDataIn. In

either case, the aBIU does *not* assert any control signals, so that the read or write

can be completed to aP DRAM.

If a transaction requires approval, the state of the Approval Register is checked.

If the Approval Register is free, the transaction is placed in the register, an approval

request is sent over MemQIn, and the aPBus transfer is retried. If the Approval

Register is in pending or locked state, the aPBus transfer is retried and no further

action is taken by aBIU; this is also the case if the Approval Register is ready but

the associated address does not match this transaction. If the Approval Register is

ready and the address does match, the transaction is allowed to complete, with data

written to or read from the SRAM address supplied by the Approval Register.

If the transaction indicates indefinite retry, it is retried with no further aBIU

action.
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[0:2] 001
010

[3:31] X

Serviced Space

Interpreted by sP

Table 2.35: aP Serviced Space

See Sections 2.2.3 and 4.3 for more details on the use and implementation of the

Approval Register mechanism.

Serviced Space

Serviced Space is used to support global shared memory and other communication

to the sP. As with Snooped Space, the aBIU can ignore, capture, retry or service sP

Serviced Space transactions; the response to these transactions is dictated entirely by

aPBusTransferType, however.

Once the response - ignore, notify, approve or retry - is determined from the

Transfer Type, Serviced Space acts exactly as described above for Snooped Space

with two exceptions: the aBIU always asserts the control signals appropriate for the

slave of the current transaction, and data is read from/ written to a default aSRAM

location for transactions with ignore or notify responses.

2.2.3 NESBuffer Commands

The NESBuffer is used to pass a variety of commands to the aBIU, including opera-

tions to be executed on the aPBus, clSRAM updates, Approval Register state changes

and DMA commands.

The various commands are distinguished by bits 14, 16 and 18 of the NES-

BufferOp, as detailed in Table 2.36.

The exact encoding of the various operations, as well as the actions required for

each one, are described in the following sections. Two common functions exist: any

NESBuffer command can explicitly increment the DMARxDataQ CPtr, as indicated

r
i

Field I Content I Description



Field Content Description

[14,16] 00 DMA Receive Command
01 NES-Mastered Operation
10 DMARx-Mastered Operation
11 Miscellaneous Commands

Table 2.36: NESBuffer Operations

Field Content Description

[0] X DMAIncrement
[1:3] X ** Unused **

[4:13] X aSRAM Address
[14:16] 100 ** Fixed Field **

[17] 0 Do not acknowledge
1 Acknowledge

[18:31] X aPBus control signals
[32:61] X aPBusAddress
[62:63] X aPBus transfer size

Table 2.37: NES-Mastered Operation

by the DMAIncrement field; and any NESBuffer command can request that the com-

mand be acknowledged by placing the exact command, with bit [28] set to 1, into

MemQIn.

NES-Mastered Operations

NES-Mastered Operations require that the aBIU execute a specified transaction on

the aPBus. The aSRAM address and all aPBus signals are fully specified. When the

transaction completes, the aBIU increments the DMARxDataQ consumer pointer

and/or returns an acknowledgment through the MemQIn queue as requested.

DMA Rx Operations

DMARx-Mastered Operations, like NES-Mastered Operations, require that the aBIU

execute a specified transaction on the aPBus.



Field Content Description

[0] X DMAIncrement
[1:10] X ** Unused **

[11:13] X DMAChannel

[14:16] 001 ** Fixed Field **
[17] 0 Do not acknowledge

1 Acknowledge
[18:31] X aPBus control signals
[32:61] X aPBusAddress
[62:63] X aPBus transfer size

Table 2.38: DMARx-Mastered Operation

In the case of a DMARx-Mastered Operation, data is provided from the DMARx-

DataQ queue in aSRAM. If requested, the Approval Register is cleared upon comple-

tion of the transaction. The DMARxDataQ consumer pointer is incremented and/or

an acknowledgment is returned through MemQIn if specified. Finally, the DMAPend-

ing counter for the indicated DMAChannel is decremented when a successful transfer

is executed; if the counter reaches zero, a special acknowledgment is returned to the

sP through MemQIn.

DMA Receive

DMA Receive commands initialize the DMAPending counter for a given DMAChan-

nel; like other NESBuffer Operations, an acknowledgment is sent via MemQIn if

requested.

Miscellaneous Commands

In addition to the above, the NESBuffer is also used to update the Approval Register

and Notification status and to initiate a clSRAM update.

The NESBuffer is one mechanism used to change the Approval Register contents

or related state. See Sections 2.2.4 and 4.1.2 for more details.

The NESBuffer can also be used to lock and unlock the aBIU's Notification re-

source; any transfers requesting notify while this resource is locked are retried.



Field Content Description

[0] X DMAIncrement
[1:10] X Unused

[11:13] X DMAChannel
[14:16] 000 ** Fixed Field **

[17] 0 Do not acknowledge
1 Acknowledge

[18:47] X ** Unused **
[48:63] X DMAPending[DMAChannel]

Table 2.39: DMA Receive

Field Content Description

[0] X DMAIncrement
[1:13] X ** Unused **

[14:16] 101 ** Fixed Field **
[17] 0 Do not acknowledge

1 Acknowledge
[18] 0 No clSRAM Update

1 clSRAM Update
[19:46] X ** Unused **
[47:49] X Approval Command
[50:59] X New ApprSRAMAddress
[60:63] X ** Unused **

Table 2.40: Miscellaneous NESBuffer Commands



Finally, if the clSRAMUpdate field is set, the aBIU performs a write to clSRAM

using the address and data provided by the external clFIFO (see Section 2.1.2).

2.2.4 Approval Register

The Approval Register is a mechanism used by the aBIU to support carefully con-

trolled aPBus transfers to the Serviced Space and Snooped Space address spaces.

The general concept is to force some transfers to these spaces to be "approved" by

the sP before completion, which allows the sP to fetch remote data or perform any

other required tasks without completely stalling the aP. When the sP completes the

required tasks, approval can be granted and the transfer can be allowed to complete.

ApprRegState is the current status of the approval register; it can be FREE,

PENDING, READY or LOCKED. ApprRegAddress contains the aPBus Address of

the transaction which requires approval; ApprSRAMAddress contains the SRAM

location of data to be provided to any approved reads.

When a transaction requires approval, the state of the Approval Register is checked.

If ApprRegState == FREE, the transaction is retried, the address is stored in Ap-

prRegAddress, ApprRegState transitions to PENDING and an approval request is

sent through MemQIn.

If ApprRegState == LOCKED or PENDING, or if ApprRegState == READY

and the aPBusAddress does not match ApprRegAddress, the transaction is retried

with no further action

If ApprRegState == READY and the addresses do match, the transaction is

allowed to complete; read data is provided from the SRAM location specified in

ApprSRAMAddress, while write data is placed in MemQDataIn.

2.2.5 Other aBIU Functions

In addition to responding to transactions issued by the sP, the aBIU also responds

to state accesses issued across the CABus and SABus by Ctrl and sBIU.

The CABus is used by Ctrl to update aBIU's short message receive queue pointers;



this information is needed so that the aBIU can determine if a given queue is empty

when polled. The SABus is used by the sBIU to read or write aBIU state as necessary.

2.3 Summary

The sBIU and aBIU are designed to observe and response to commands issued on

the sPBus or aPBus respectively; these commands are encoded within the address of

a bus transfer. In order to carry out these commands, the BIUs must interact with

other NES components; the interface groups described here allow that interaction.



Chapter 3

sBIU Implementation

This chapter describes the functionality of the sBIU. First, an overview of the sBIU

is given, describing the assignment of functionality to the various submodules within

the sBIU and the interaction between these submodules. The submodules are then

described in detail, including all finite state machines (FSMs), registers and logic used

to provide the required functionality.

3.1 Overview

The sBIU is broken into three distinct submodules: the sBIU Bus Interface, or sBI;

the sBIU Queue/State, or sQS; and the sBIU Ctrl Interface, or sCI. Figure 3-1 shows

these submodules and the primary interfaces of each.

One further general comment bears mentioning: all signals leading into or out of

the sBIU are latched. Hence, input signals are "received" one cycle after they appear

on the port, and output signals are "asserted" one cycle before they are actually seen

by the other end of the connection.

3.1.1 Submodule Descriptions

The sBI submodule is responsible for interacting with the sPBus; it asserts the con-

trol signals to respond to a sPBus transaction as specified by the 60X bus protocol,
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Figure 3-1: sBIU Overview

coordinates the timing of events within the sBIU, and controls the sSRAM. It has

complete control of the sPBus Interface (see Section 2.1.1) and sSRAM Interface (Sec-

tion 2.1.1); it is also responsible for decoding and forwarding Immediate Commands

(Section 2.1.2) to the aBIU or Ctrl modules.

The sQS submodule is responsible for maintaining and manipulating the sBIU's

queue pointers, system registers and other global state; it also uses this state to

generate the appropriate sSRAM address for each transaction. It operates the Ctrl

State Interface (Section 2.1.1) and aBIU State Interface (Section 2.1.1) as well as the

RxEmpty status bus.

The sCI submodule is responsible for the operation of the JBus, the internal data

bus by which the sBIU can request access to aSRAM and sSRAM data. The JBus

Interface (Section 2.1.1) is used to handle these requests.

3.1.2 Internal Signals

There are several signals internal to the sBIU which are used to coordinate activity

between the submodules.

The sBI generates several internal sPBus signals: sPBusAddressI, sPBusTrans-



Signal Name Size Source Destination Comments

sPBusAddressI 32b sBI sQS, sCI Transfer Address
sPBusTransferSizel 3b sBI sQS, sCI Transfer Size
sPBusTransferStartI lb sBI sQS, sCI Transfer Start
sPBusAddressRetryI lb sBI sQS, sCI Transfer Retry
sPBusTransferAckI lb sBI sQS, sCI Transfer Data Done

AddressRead lb sBI sQS, sCI Transfer = Write
AddressWrite lb sBI sQS, sCI Transfer = Read

AddressConfirm lb sBI sQS, sCI Transfer Address Done
DataMotionReq lb sBI sCI DataMotion Request
SRAMAddress 12b sQS sBI, sCI sSRAM Address
ComposeReq lb sQS sCI Compose Request

MemQOutOReq lb sQS sCI MemQOutO Compose
MemQOutlReq lb sQS sCI MemQOutl Compose

clsReq lb sQS sCI clSRAM Update Compose
sQSRetry lb sQS sBI Retry Required

ComposeAvail lb sCI sQS Compose Available
DataMotionAvail lb sCI sBI DataMotion Available
DataMotionDone lb sCI sBI DataMotion Done

Table 3.1: sBIU Internal Signals

ferSizel, sPBusTransferStartI, sPBusAddressRetryl and sPBusTransferAckI. These

signals are directly latched from the corresponding signals described in Section 2.1.1.

The AddressRead and AddressWrite signals indicate the results of the transfer type

decoding; AddressConfirm indicates that the most recent address has been completed

without retry, allowing sQS and sCI to proceed with irreversible state changes. Data-

MotionReq indicates that the current address is an aSRAM access and thus requires

that sCI send a DataMotion command on the JBus at the appropriate time.

A primary function of sQS is the generation of SRAMAddress, the sSRAM address

corresponding to the current sPBusAddressI value. ComposeReq, MemQOutOReq,

MemQOutlReq and clsReq are used to request the specified Compose command to

sCI. sQSRetry indicates a resource conflict within sQS, and causes the sBI to retry

the current address transfer.

sCI generates ComposeAvail and DataMotionAvail, which indicate the current

status of the Compose and DataMotion buffers. It also relays DataMotionDone to



the sBI so that transfers waiting for a DataMotion command may proceed.

3.2 sBI Implementation

The sBI submodule, as described above, is responsible for observing and responding

to transactions on the sPBus. In doing so, it must conform to the 60X bus protocol

[12] and meet the requirements of the MPC105 memory controller [11]. The finite

state machine and associated logic which generate the sPBus and sSRAM signals

compose the bulk of this logic.

3.2.1 Bus Interface Finite State Machine

The sPBus is a 60X split phase bus, with address and data phases of a given transfer

occurring separately and governed by different signals. The two phases can overlap,

or the data phase can occur after the corresponding address phase has completed.

The MPC105 restricts the pipelining of address and data phases. In principle, the

60X bus places no restriction on this pipelining; any number of address phases may

complete while a single data phase is in progress or pending, with the corresponding

data phases waiting in order for bus availability. The MPC105 controller does not

allow such pipelining, however; it does not allow any address phase to complete until

the preceding data phase is completed.

The pipelining restriction of the MPC105 and the standard 60X bus protocol pro-

vide the motivation for the primary sBI finite state machine, as demonstrated in in

Figure 3-2. This is essentially a two-dimensional FSM; a transition along the verti-

cal direction indicates an address phase change, while a transition in the horizontal

direction indicates a data phase event. The events which occur at each state, as well

as the conditions for the possible transitions from each state, are described below.

One point of 60X bus protocol is particularly relevant to the FSM: the Address-

Retry window occurs after the "acknowledgment" of the address phase. Due to the

split phase nature of the 60X bus, the retry window can occur after the data phase

has been initiated, and cancels such a data transfer if it exists. In order to allow this,
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Figure 3-2: sBI Finite State Machine

State Address Phase Status Data Phase Status

AEDE AddressEmpty DataEmpty
AADE AddressActive DataEmpty
ARDE AddressRelease DataEmpty
ACDE AddressConfirm DataEmpty
APDE AddressPending DataEmpty
AHDE AddressHold DataEmpty
ARDS AddressRelease DataSetup
ACDS AddressConfirm DataSetup
APDS AddressPending DataSetup
AHDS AddressHold DataSetup
APDA AddressPending DataActive
AHDA AddressHold DataActive
APDR AddressPending DataRelease
AHDR AddressHold DataRelease

Table 3.2: sBI Finite State Machine States



the data phase is always stalled until the retry window passes, and may be cancelled

if a retry is received.

As stated above, the MPC105 memory controller restricts pipelining of address

phases; hence, the state machine stalls any address phase until the preceding data

phase has completed.

With these exceptions, it is clear that the address and data portions of the FSM

are independent, as are the address and data phases of a 60X bus transfer. Each state

of the FSM is composed of an address and data phase state; the bus signals for the

address or data phase are generated independently of the opposite state. The only

use of the complete state is to determine state transitions.

3.2.2 Address Phase Events

During the address phase, the sBI reads, decodes and latches the address, type and

size of the current transaction; assuming this transaction is to a sBIU-serviced address

space, the sBI generates the appropriate control signals to complete the address phase

of the transfer. The coordination of these events is handled by one part of the state

of the sBI FSM (Figure 3-2).

The AddressEmpty state indicates that there is no address phase currently in

progress. No address-related signals are asserted during this state; transition to Ad-

dressActive occurs when a new address phase is detected on the sPBus.

AddressActive is the state in which the sPBusAddress and related signals are

decoded. The sPBusAddressAck signal is generated during this phase (if the transfer

is to sBIU-serviced space). If a DataMotion transfer between the aSRAM and SSRAM

is required, a request is sent to the sCI submodule. Also, this phase is used to

detect and register any resource conflicts within the sBIU; if the command cannot

be completed, a register is set indicating that a retry is necessary. Transition to

AddressRelease is automatic.

AddressRelease is used to place a retry request on the sPBus when required and

to deassert all other 60X control signals. Also, sSRAM address and control signals,

and any ordering constraints on the data phase of the transfer, are generated (re-



ceived from sQS for sSRAM address) and latched during this phase. Transition to

AddressConfirm is automatic.

The AddressConfirm state is used to indicate to other sBIU units that an address

phase has completed without being retried, which allows those units to finalize state

updates. Immediate commands are issued to the aBIU or Ctrl in this state; no

other signals external to the sBIU are generated. At the end of a cycle, transition

to AddressPending (if the transfer has a data component) or AddressEmpty (if not)

occurs.

The AddressPending state indicates that the address phase has been confirmed and

the data phase is in progress. State transition occurs when the data phase completes

and/or a new address phase is detected. If a new address phase is detected before the

data phase completes, transition is to AddressHold. If a new address phase is detected

and the data phase completes on the same cycle, transition is to AddressActive. If

the data phase completes without a new address phase detection, transition is to

AddressEmpty. No control signals are asserted in this state.

AddressHold indicates that a new address phase has begun while a data phase is

in progress; this state is used to stall the address portion of the FSM until the current

completes, at which point the state transitions to AddressActive. Again, no control

signals are generated in this state.

3.2.3 Data Phase Events

The primary task of the data phase portion of the sBI FSM is coordination of the

transfer of data between the sPBus and the sSRAM.

DataEmpty indicates that no data phase is in progress. No signals are asserted

in this state, and transition to DataSetup (if the data phase is a read or must be

stalled) or DataActive (no stall, write) occurs when the beginning of a data phase is

indicated.

DataSetup is used to drive sSRAM address and control signals to prepare for a

read, and to stall the data phase until the address phase is "confirmed" and any

required JBus or SCBus commands are completed. Transition to DataActive occurs



when no wait conditions exist.

DataActive is the state in which data is read from or written to the sSRAM.

The sSRAM control signals and sPBus signals are used to process the transfer of a

single beat of data; if the current transfer is a burst, the latched sSRAM address

is incremented as well. This state transitions after one (non-burst transfer) or four

(burst transfer) cycles to DataRelease.

DataRelease is used to deassert all data phase sPBus and sSRAM signals. It

transitions immediately to DataEmpty.

3.3 sQS Implementation

The sQS submodule is designed to generate sSRAM addresses based on the address

and type of the current sPBus transfer, and to maintain the sBIU queue pointer

and system register state. These two functions are related, and combined in a single

submodule, because the sSRAM address generation is heavily dependent on the queue

pointer values.

3.3.1 sSRAM Address Generation

The sSRAM address which is used for sPBus transfers is generated in sQS based on

the address and type of the transfer. Additionally, read or update requests to sBIU,

aBIU and Ctrl state are generated after the sPBusAddress is decoded in the sQS.

Read requests are issued when the transfer begins, while update requests are delayed

until the address phase of the transfer is confirmed by sBI. Further details are given

in Section 3.3.2.

Address generation for the various sPBus address spaces is done in parallel; the

appropriate address for the actual sPBusAddress is selected by a large mux.

Readers are directed to Section 2.1.2 and the StarT-Voyager Hardware Engineering

Spec [1] for further details about the encodings of the various address spaces.



SRAM Space

Generation of the SRAM address for SRAM Space is straightforward. If bit [16] of

the sPBusAddress is asserted, the actual access is to the aSRAM; a static address

named aSRAMTmp is thus provided as the sSRAM address. If bit [16] is deasserted,

the fully-specified sSRAM address in the sPBusAddress is provided to sBI.

QPtr Space

The SRAM address for QPtr Space consists of a fixed base address named QPtrTmp

and an offset which consists of bits [7:9] (the Comm Group) of the sPBusAddress;

NES Ctrl maintains status information for the Comm Groups at these locations.

Additionally, if the Update field in sPBusAddress is asserted, an update request

is placed in the SCBus buffer for processing once the address phase is confirmed. If

this buffer is occupied, sBI is notified so that the current transfer can be retried.

ShTx Space

The sSRAM address for ShTx (Short Transmit) Space address is composed from the

concatenation of the Base and PPtr (Producer Pointer) state for the given PasT (short

transmit) queue. If the 32bCompose register is set for this queue, and the current

transfer is a 4B write, sQS also requests that the sPBusAddress be written to the even

word of the sSRAM address via the JBus Interface. The sBIU PPtr is incremented

(or zeroed if it matches the Bound register for the queue) at the conclusion of the

address phase; the command to update Ctrl PPtr is issued on the SCBus when the

data portion of the transfer completes (the message must be present in the sSRAM

before the Ctrl pointer is updated).

See Section 3.3.3 for a description of the state associated with the short transmit

queues.



ShRx Space

The ShRx (Short Receive) Space format uses a bit vector (with static priorities) to

determine which queue is to be polled; hence, the first step in generating the SRAM

address and related actions is determining which queue is actually to be read. This

is done by decoding the address to form a full prioritized bit vector of the queues to

be polled, ANDing this vector with a vector of the non- empty queues (as determined

by internal queue state and the RxEmpty signal from Ctrl) and then using a priority

encoder to determine the actual queue being accessed.

If the queue being read is a VasR (short receive) queue, the address is generated

by concatenating the Base and CPtr (Consumer Pointer) registers for the selected

queue. Also, the sBIU and Ctrl CPtr values are incremented (or zeroed if the CPtr

matches the Bound value for the queue) at the conclusion of the address phase of the

transfer. Finally, if the LateAck register for the queue is set, a late acknowledgment

is sent to the Arctic network via Ctrl.

On the other hand, if the queue indicated is a PcpR (medium receive) queue or

the overflow queue, or if none of the polled queues is non-empty, the SRAM address

generated is a static Continuation Address corresponding to the poll result. No state

updates occur for this case.

One exception to the above process exists: if the transfer is a 4B read, a special

OnePoll? register is tested. If the register returns a positive value, the SRAM address

is taken from the OnePollAddress register, the OnePoll? register is cleared and no

state update occurs; if the OnePoll? register returns a negative value, the SRAM

address is generated as above and placed into the OnePollAddress register (as well

as being provided to the sBI as usual) and the OnePoll? register is set. This special

mechanism is used to support interruptible 4B queue reads, since the OnePoll? and

OnePollAddress registers are sP accessible system registers.

Again, Section 3.3.3 describes the queue status registers in more detail.



Special ShTx Space

The SRAM address generation for Special ShTx Space transfers which indicate one

of the PasT queues executes exactly as in ShTx Space. Transfers which involve

one of the MemQOut queues are processed in a similar manner; however, instead of

using the SCBus to update Ctrl state, MemQOutOComp / MemQOutlComp are used

to indicate a composition to the indicated MemQOut and MemQOutOp is used to

indicate the type of the transfer as encoded in the sPBusAddress (see Section 2.1.2).

Config Access Space

The response to transfers in the Config Access Space depends on the state refer-

enced by the NESAddress encoded in the instruction. The encoding can be found in

Section 2.1.2; NESAddress details are described in Appendix A.

sSRAM address generation depends only on the state being accessed. If the access

is to sBIU state, aBIU state or Ctrl QRAM or SysReg state, the sSRAM address is

a special static location called QConfigTmp. If the access is to Ctrl EPRAM state,

the sSRAM address is generated from QPtrBase and the Comm Group of the access

as in QPtr Space; and if the access is to the Overflow group, the sSRAM address is

a static OverflowStatus location.

Additional actions depend on the transfer type of the sPBus transaction and the

Update field in the sPBusAddress. If the transfer type indicates a read and the state

referenced is in the sBIU, sQS arranges for the state to be written to the QConfigTmp

location in sSRAM via the JBus when the address phase completes; if a read to aBIU

state is indicated, sQS uses the SABus to read the indicated state and then passes

the information to the JBus. A read to Ctrl state is passed to Ctrl on the SCBus.

A state update, as indicated by the Update field in the address, is executed when

the address phase completes. Updates to sBIU state are handled internally; updates

to Ctrl or aBIU are passed along the SCBus or SABus respectively.



clSRAM Update Space

The clSRAM Update space generates an undefined sSRAM address, as no SRAM

transfer actually occurs. However, when a clSRAM Update access is seen, sQS does

generate a special request to sCI so that the update will be forwarded via the specified

MemQOut queue to aBIU.

Immediate Command Space

The Immediate Command space has no bearing on the sSRAM or any of the interfaces

provided by sQS; the generated sSRAM address is undefined.

3.3.2 State Access

All of the state within the sQS module is accessible for sPBus and aBIU Interface reads

and updates; the addressing format used to access the states, called NESAddress, is

described in Appendix A. The Ctrl State Interface access to sQS state is limited to

write access to the short receive PPtr values, which are described in Section 3.3.3.

State Updates

The visible state in the sQS module can be updated by the sBIU (as a direct update

from a QPtr Space or Config Access Space transaction, or as an indirect result of a

ShRx or ShTx transfer), the aBIU (via the ASBus) or Ctrl (via the CSBus).

Updates by the aBIU and sBIU use the same access path to system state, since

both units can access the full range of states specified by NESAddress (Appendix A).

Since the aBIU expects an immediate response, it is given priority; the sBIU state

update is buffered if a conflict arises. Each of these units can issue at most one sBIU

state update every four cycles, which eliminates the possibility of buffer overflow.

Updates issued by Ctrl are always executed immediately, and are issued along

a different data path than the updates described above. No resource conflict exists

between Ctrl and BIU updates to different states; simultaneous updates to the same

state are not expected, and the value written by Ctrl will be seen if such an event



occurs.

State Reads

All sBIU state is available immediately to both the aBIU and the sBIU (for composing

sSRAM addresses). Responses to aBIU read requests are generated by using the

request address as the input to a large mux; state used by the sBIU is directly wired

to the relevant address generation units, and can be muxed to the JBus interface for

status reads by the sP.

3.3.3 sBIU Internal State

Aside from the registers which are exclusively used by the sBI and sCI state machines,

all sBIU state resides in the sQS. This state is divided into three types: short receive

queue state, short transmit queue state, and system register state.

Short Receive Queue State

There are five short receive queues accessible by the sBIU: VasR-OL, VasR-OH, VasR-

1L, VasR-1H and MemQIn. Each of these queues is specified with CPtr, PPtr, Base,

Bound and LateAck registers.

The CPtr indicates the position of the queue's consumer pointer; the PPtr indi-

cates the producer pointer position. Together, these two pointers are used to deter-

mine if the queue is empty; also, CPtr is used to generate the sSRAM address for a

ShRx read.

Base specifies the base sSRAM address for the given queue, and is used with CPtr

to generate the full sSRAM address.

Bound limits the size of the queue; since these queues are circular, the CPtr is

set to zero instead of incremented if it would pass Bound. Bound is only tested for

internal incrementation of the pointers; direct updates are not tested against this

value.

Finally, LateAck indicates that ShRx reads to the queue should generate an Arctic



acknowledgment.

Short Transmit Queue State

There are six short transmit queues associated with the sBIU: PasT-OL, PasT-OH,

PasT-1L, PasT-1H, MemQOutO and MemQOutl. Each of these queues has a PPtr,

Base, Bound and 32bCompose register associated with it.

PPtr associated with a given queue specifies the producer pointer; this value is

used with Base to determine the sSRAM location where the next message should be

written, and is incremented when the write is complete.

Base indicates the beginning of the given queue's sSRAM space, and is used with

PPtr to generate the sSRAM address.

Bound indicates the size of the queue; PPtr is zeroed rather than incremented

when it reaches Bound.

Finally, 32bCompose indicates that the queue in question supports 32-bit compose

mode. This mode allows an 8B message to be specified via a single 4B write, with

the address of the compose command sent via the JBus to form the other 4B. (This

does not prohibit complete specification of messages via 8B write, however.)

System Register State

There are only two system registers used by the sBIU: OnePoll? and OnePollAddress.

Section 3.3.1 describes the use of these registers.

Static Values

Several address spaces use static sSRAM locations rather than configuring sBIU state

or encoding the sSRAM address within the sPBus address phase. aSRAMTmp is

used as the temporary sSRAM location for data transferred to or from the aSRAM.

OverflowStatus contains the status of the overflow queue, which is maintained by Ctrl.

EmptyMsgAddress indicates the sSRAM address to be read when a ShRx read does

not poll any non-empty queues. QConfigTmp is used to write BIU or Ctrl state to the



Field Value Description

[0] X ** Unused **
[1:13] X aSRAM address

[14:15] X ** Unused **
[16] 0 Transfer to sSRAM

1 Transfer to aSRAM
[17:29] X sSRAM address
[30:31] X Transfer Size

Table 3.3: JBus Data Motion Format

sSRAM so it can be read by the sP. Finally, QPtrBase defines the region containing

Ctrl-maintained status pointers corresponding to the various Comm Groups.

3.4 sCI Implementation

The sCI unit is responsible for coordinating the JBus interface, which the sBIU uses

to request action on the IBus between NES, aSRAM, sSRAM and the TxU/RxU

network interface module.

The logic in this unit is fairly straightforward. There are two buffers used: one

for pending aSRAM access requests generated by the sBI submodule and one for

Compose requests generated by the sQS module. All requests are initially placed in

these buffers; additional buffer state indicate that the command should be delayed

until the next address or data phase completes.

When a DataMotion command is ready, the sCI places the command on the

JBusData interface according to Table 3.3 and asserts the DataMotionValid signal;

these signals are held until Ctrl respond with DataMotionFree to indicate that the

command has been received. At this point, the buffer is cleared.

A Compose request requires that the SRAM address generated by sQS be placed

on the JBusAddress interface and the data (sPBusAddress in most cases; a hardwired

32b field for clSRAM updates) be placed onto JBusData. Again, the signals are held

until the ComposeFree response is given, when the buffer is cleared.



The sCI uses a very simple method for resolving conflicting requests for the JBus:

it tracks the last use of the JBus and awards priority to the type (DataMotion or

Compose) which was not serviced most recently. There is no need for more than one

buffer for each type, since the sCI broadcasts the buffer status and the other units

generate retries when a conflict is detected.

3.5 Summary

The sBIU implementation is driven by the functions and interfaces described in Chap-

ter 2. To provide this functionality, the sBIU is broken into three modules: a Bus

Interface module which interacts with the sPBus, a Queue/State module which gener-

ates sSRAM addresses and maintains sBIU state, and a Ctrl Interface module which

handles sBIU interaction with the JBus. Together, these modules provide all of the

functionality required.



Chapter 4

aBIU Implementation

This chapter describes the functionality of the aBIU. First, an overview of the aBIU

is given, describing the assignment of functionality to the various submodules within

the aBIU and the interaction between these submodules. The submodules are then

described in detail, including all finite state machines (FSMs), registers and logic used

to provide the required functionality.

As mentioned, the aBIU and sBIU share many common functions, and the aBI,

aQS and aCI submodules all are similar to their sBIU counterparts. The complete

descriptions are provided here nonetheless in the interest of readability.

4.1 Overview

The aBIU is broken into four distinct submodules: the aBIU Bus Interface, or aBI;

the aBIU Queue/State, or aQS; the aBIU Ctrl Interface, or aCI; and the aBIU Bus

Master, or aBM. Figure 4-1 shows these submodules and the primary interfaces of

each.

Because the aBIU serves as both slave and master on the aPBus, several tri-state

buffers are used along the aPBus Interface.

One further general comment bears mentioning: all signals leading into or out of

the aBIU are latched. Hence, input signals are "received" one cycle after they appear

on the port, and output signals are "asserted" one cycle before they are actually seen
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Figure 4-1: aBIU Overview

by the other end of the connection.

4.1.1 Submodule Descriptions

The aBI submodule is responsible for interacting with the aPBus; it asserts the control

signals to respond to a aPBus transaction as specified by the 60X bus protocol, coor-

dinates the timing of events within the aBIU, and controls the aSRAM. It shares the

aPBus Interface (see Section 2.2.1) and aSRAM Interface (Section 2.2.1 with aBM; it

is also responsible for decoding and forwarding Immediate Commands (Section 2.2.2)

to Ctrl. Ctrl modules.

The aQS submodule is responsible for maintaining and manipulating the aBIU's

queue pointers, Service Space and Snooped Space response tables, system registers

and other global state; it also uses this state to generate the appropriate aSRAM

address for each transaction. It operates the Ctrl State Interface (Section 2.2.1) and

sBIU State Interface (Section 2.2.1) as well as the RxEmpty status bus. Finally,

the aQS contains the Approval Register, and indicates the appropriate response (see

Section 2.2.4) when a transfer requires approval.

· · _~C1 _I_



The aCI submodule is responsible for using the KBus to allow the aBIU to reach

the IBus. It operates the KBus Interface (Section 2.2.1).

The aBM submodule is used to respond to commands issued to aBIU by the

NESBuffer Interface (Section 2.2.1). It can control the aPBus Interface and sSRAM

Interface when directed to place a transaction on the aPBus; it also maintains DMA

state, handles clSRAM updates and relays Approval Register updates to the aQS

submodule.

4.1.2 Internal Signals

There are several signals internal to the aBIU which are used to coordinate activity

between the submodules.

The aBIU generates several signals indicating the status of the current aPBus

transfer. AddressRead and AddressWrite indicate the decoded type of the most

current address phase. AddressConfirm indicates that the most recent address has

been completed without retry, allowing aQS and aCI to proceed with irreversible state

changes. DataMotionReq indicates that the current address is an sSRAM access and

thus requires that aCI send a DataMotion command on the KBus at the appropriate

time.

A primary function of aQS is the generation of SRAMAddress, the aSRAM ad-

dress corresponding to the current address phase. ComposeReq, MemQInReadReq

and MemQInWriteReq are used to request the specified Compose command to aCI.

aQSRetry indicates a resource conflict within aQS, and causes the aBI to retry the

current address transfer. LookupResponse indicates the response to a transaction in

Serviced Space or Snooped Space. MemQInNext relays the next MemQIn address to

aBM so that module can issue messages to that queue.

aCI generates ComposeAvail and DataMotionAvail, which indicate the current

status of the Compose and DataMotion buffers. It also relays DataMotionDone to

the aBI so that transfers waiting for a DataMotion command may proceed.

The aBMMasterAddress and aBMMasterData signals indicate that the aBM is

mastering the address or data phase of the aPBus. clsUpdate indicates that a clSRAM



Signal Name Size Source Destination Comments
AddressRead lb aBI aQS, aCI Transfer = Write
AddressWrite lb aBI aQS, aCI Transfer = Read

AddressConfirm lb aBI aQS, aCI Transfer Address Done
DataMotionReq lb aBI aCI DataMotion Request
SRAMAddress 12b aQS aBI, aCI sSRAM Address
ComposeReq lb aQS aCI Compose Request

MemQInReadReq lb aQS aCI MemQIn Read Compose
MemQInWriteReq lb aQS aCI MemQIn Write Compose

aQSRetry lb aQS aBI Retry Required
LookupResponse 2b aQS aBI Serviced/Snooped Response

MemQInNext 12b aQS aBM Next MemQIn Address
ComposeAvail lb aCI aQS, aBM Compose Available

DataMotionAvail lb aCI aBI DataMotion Available
DataMotionDone lb aCI aBI DataMotion Done

aBMMasterAddress lb aBM aBI aBM Mastering aPBus Address
aBMMasterData lb aBM aBI aBM Mastering aPBus Data

clsUpdate lb aBM aQS clSRAM Update In Progress
ApprUpdate lb aBM aQS Approval Register Update

ApprCommand 3b aBM aQS Approval Register Command
ApprAddressNew 10b aBM aQS New ApprSRAMAddress Value
aBMComposeReq lb aBM aQS, aCI aBM MemQIn Compose

Table 4.1: aBIU Internal Signals



Field Value Comments

[0:2] 000 ApprRegState = READY
001 ApprRegState = LOCKED
010 Reset DMARxDataQ CPtr
011 ApprRegState = FREE
100 No Operation
101 Lock Notification
110 Lock/Unlock aPBus
111 Unlock Notification

Table 4.2: ApprCommand Encoding

update is in progress, which indicates that any transfer to Snooped Space must be re-

tried. ApprUpdate indicates that a NESBuffer command related to the Approval Reg-

ister; the specific command is specified in ApprCommand according to Table 4.2, and

the new ApprSRAMAddress is given in ApprAddressNew. Finally, aBMComposeReq

indicates that aBM needs to compose an acknowledgment in MemQIn through aCI.

4.2 aBI Implementation

The aBI submodule acts as a slave device on the aPBus according to the specifications

of the 60X bus protocol [12] and the Union memory controller [9]. The finite state

machine and associated logic which generate the sPBus and aSRAM signals compose

the bulk of this logic.

4.2.1 Finite State Machine

The aPBus is a 60X split phase bus, with address and data transfers occurring sep-

arately; the two phases can overlap, or the data transfer can occur after the address

transfer is complete.

The Union memory controller allows flexible pipelining of 60X bus transactions;

the aBI implementation allows up to three outstanding address phase transactions to

be pipelined. In other words, the address pipeline does not stall until there are three
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Figure 4-2: aBI Finite State Machine Overview

Figure 4-3: aBI Finite State Machine Detail

uncompleted data phases.

The 60X bus protocol and selected pipeline depth provide the motivation for the

primary aBI finite state machine. This FSM is best described in several steps, due to

the complexity involved in pipelining the address and data phases.

Figure 4-2 gives a simplified overview of the entire state machine; Figure 4-3 breaks

one FSM state into several sub-states, each of which indicates a specified address and

data phase as shown in Table 4.3.

Figure 4-2 suggests a circular queue implementation of the registers associated

with the finite state machine; this is precisely the structure used. A pair of pointers



State Address Phase Status Data Phase Status

AExDEy AddressEmpty DataEmpty
AAxDEy AddressActive DataEmpty
ARxDEy AddressRelease DataEmpty
ACxDEy AddressConfirm DataEmpty
AExDSy AddressEmpty DataSetup
AAxDSy AddressActive DataSetup
ARxDSy AddressRelease DataSetup
ACxDSy AddressConfirm DataSetup
AExDAy AddressEmpty DataActive
AAxDAy AddressActive DataActive
ARxDAy AddressRelease DataActive
ACxDAy AddressConfirm DataActive
AExDRy AddressEmpty DataRelease
AAxDRy AddressActive DataRelease
ARxDRy AddressRelease DataRelease
ACxDRy AddressConfirm DataRelease

Table 4.3: aBI Finite State Machine States

is used to indicate the queue position of the current address and data phase, allowing

a single data path to be used for each phase.

As mentioned above, the aBI is designed to allow up to three pipelined address

phases; this restriction is seen in the dashed lines in Figure 4-3. The state AExDEx

has two meanings: the pipeline is empty, or the pipeline is completely full; the next

state is restricted to AAxDEx if the pipeline is empty and AExDSx if the pipeline is

full. Similarly, the states AExDS(x-1), AExDA(x-1) and AExDR(x-1) indicate that

the pipeline may be full or empty; transition to AAx can occur only in the empty

case. Finally, the state AAxDEx can only be reached when the pipeline is empty, and

thus does not allow a transition to ACxDSx.

4.2.2 Address Phase Events

During the address phase, the aBI reads, decodes and latches the address, type and

size of the current transaction; assuming this transaction is to a abiu-serviced address

space, the aBI generates the appropriate control signals to complete the address phase



of the transfer.

AddressEmpty indicates that there is no address phase currently in progress; hence,

no control signals are asserted. When an address start is detected, a sub-state tran-

sition to AddressActive occurs.

AddressActive is the state in which the aPBusAddress and related signals are de-

coded. The aPBusAddressAck signal is generated during this phase (if the transfer is

to aBIU-serviced space). If DataMotion between the aSRAM and aSRAM is required,

a request is sent to the aCI submodule; if an Immediate Command is indicated, the

appropriate signal is sent to the Ctrl. Also, this phase is used to detect and latch any

retry conditions within aBIU. Transition to AddressRelease is automatic.

AddressRelease is used to place a retry request on the aPBus bus when required

(due to resource conflict or a specified Snooped/Serviced Space response) and to

deassert all other aPBus control signals. Also, aSRAM address and control signals,

and any ordering constraints on the data phase of the transfer, are generated (received

from aQS for aSRAM address) and latched into the appropriate registers during this

phase. Transition to AddressConfirm is automatic.

The AddressConfirm state is used to indicate to other aBIU units that the address

phase has completed without being retried, which allows those units to finalize state

updates. This is the last sub-state in a given FSM state; completion of this state

increments the address counter and returns to the AddressEmpty sub-state.

4.2.3 Data Phase Events

The primary requirement of the data phase portion of the finite state machine is the

transfer of data between the aPBus and the aSRAM.

DataEmpty indicates that no data phase is in progress. No signals are asserted

in this state, and transition to DataSetup (if the data phase is a read and/or must

be stalled) or DataActive (no stall, write) occurs when the beginning of a new data

phase is detected.

DataSetup is used to drive aSRAM address and control signals to prepare for a

read, and to stall the data phase until the address phase is "confirmed" and any



required JBus or SCBus commands are completed. Transition to DataActive occurs

when no wait conditions exist.

DataActive is the state in which data is read from or written to the aSRAM. The

aSRAM control signals are used to process the transfer of a single beat of data; in

addition, aPBus signals are asserted if the aBI is acting as a slave device (rather than

snooping the bus). This state transitions after one (non-burst transfer) or four (burst

transfer) cycles to DataRelease; when this transition occurs

DataRelease is used to deassert all data phase sPBus and aSRAM signals. This

state indicates a master FSM state transition my advancing the data counter and

returns to the DataEmpty sub-state.

4.3 aQS Implementation

The aQS submodule is designed to generate aSRAM addresses based on the aPBu-

sAddress and aPBusTransferType field, to determine the response to transactions to

Serviced or Snooped Space, and to maintain the aBIU queue pointer and system reg-

ister state. These functions are related, and combined in a single submodule, because

the aSRAM address generation and Serviced/Snooped Space responses are dependent

on the queue pointer values.

4.3.1 aPBus Address Response

The aQS has several responses to an aPBus address phase. The aSRAM address

which is used by aBI in responding to transfers on the aPBus is generated in aQS

based on the address and type of the aPBus transfer; in the case of Snooped Space

or Serviced Space transfers, the response lookup is also provided by aQS.

Additionally, read or update requests to aBIU, aBIU and Ctrl state can be gen-

erated as the aPBusAddress is decoded in the aQS. Read requests are issued upon

reception of the aPBusTransferStart, while write requests are issued when the address

phase is confirmed by aBI. Further details are given in Section 4.3.2.

Address generation for the various aPBus address spaces is done in parallel; the



appropriate address for the actual aPBusAddress is selected by a large mux.

Readers are directed to Section 2.2.2 for more details about the encodings and

uses of the various address spaces.

SRAM Space

Generation of the SRAM address for SRAM Space is straightforward. If bit [16] of

the aPBusAddress is asserted, the fully-specified aSRAM address from aPBusAddress

is used. If bit [16] is deasserted, the access is to the sSRAM; in this case, the aSRAM

address is to a hardwired location called sSRAMTmp.

QPtr Space

The SRAM address for QPtr Space consists of a fixed base address named QPtrTmp

and an offset which consists of bits [7:9] (the Comm Group) of the aPBusAddress;

NES Ctrl maintains status information for the Comm Groups at these locations.

Additionally, if the Update field in aPBusAddress is asserted, an update request

is placed in the ACBus buffer for processing once the address phase is confirmed. If

this buffer is occupied, aBI is notified so that the current transfer can be retried.

ShTx Space

The SRAM address for ShTx (Short Transmit) Space address is composed from the

concatenation of the Base and PPtr (Producer Pointer) state for the given PasT (short

transmit) queue. If the 32bCompose register is set for this queue, and the current

transfer is a 4B write, aQS also requests that the aPBusAddress be written to the even

word of the aSRAM address via the KBus Interface. The aBIU PPtr is incremented

(or zeroed if it matches the Bound register for the queue) at the conclusion of the

address phase; the command to update Ctrl PPtr is issued on the ACBus when the

data portion of the transfer completes (the message must be present in the SRAM

before the Ctrl pointer is updated).

See Section 4.3.3 for a description of the state associated with the short transmit

queues.



ShRx Space

The ShRx (Short Receive) Space format uses a bit vector (with static priorities) to

determine which queue is to be polled; hence, the first step in generating the SRAM

address and related actions is determining which queue is actually to be read. This

is done by decoding the address to form a full prioritized bit vector of the queues to

be polled, ANDing this vector with a vector of the non-empty queues (as determined

by internal queue state and the RxEmpty signal from Ctrl) and then using a priority

encoder to determine the actual queue being accessed.

If the queue being read is a VasR (short receive) queue, the address is generated

by concatenating the Base and CPtr (Consumer Pointer) registers for the selected

queue. Also, the aBIU and Ctrl CPtr values are incremented (or zeroed if the CPtr

matches the Bound value for the queue) at the conclusion of the address phase of the

transfer. Finally, if the LateAck register for the queue is set, a late acknowledgment

is sent to the Arctic network via Ctrl.

On the other hand, if the queue indicated is a PcpR (medium receive) queue,

the SRAM address generated is a static Continuation Address corresponding to the

particular queue. No state updates occur for this case.

One exception to the above process exists: if the transfer is a 4B read, a special

OnePoll? register is tested. If the register returns a positive value, the SRAM address

is taken from the OnePollAddress register, the OnePoll? register is cleared and no

state update occurs; if the OnePoll? register returns a negative value, the SRAM

address is generated as above and placed into the OnePollAddress register (as well

as being provided to the aBI as usual) and the OnePoll? register is set. This special

mechanism is used to support interruptible 4B queue reads, since the OnePoll? and

OnePollAddress registers are sP accessible system registers.

Again, Section 4.3.3 describes the queue status registers in more detail.



Config Access Space

The response to transfers in the Config Access Space depends on the state being

accessed by the instruction (the encoding can be found in Section 2.1.2).

aSRAM address generation depends only on the state being accessed. If the access

is to aBIU state, sBIU state or Ctrl QRAM or SysReg state, the aSRAM address is

a special static location called QConfigTmp; if the access is to Ctrl EPRAM state,

the aSRAM address is generated from QPtrBase and the Comm Group of the access

as in QPtr Space; and if the access is to the Overflow group, the aSRAM address is

a static OverflowStatus location.

Additional actions depend on the transfer type of the aPBus transaction and the

Update field in the aPBusAddress. If the transfer type indicates a read and the state

referenced is in the aBIU, aQS arranges for the state to be written to the QConfigTmp

location in aSRAM via the KBus when the address phase completes. If a read to sBIU

state is indicated, aQS uses the ASBus to read the indicated state and then passes

the information to the KBus. A read to Ctrl state is passed to Ctrl on the ACBus.

A state update, as indicated by the Update field in the aPBusAddress, is executed

when the address phase completes. Updates to aBIU state are handled internally;

updates to Ctrl or sBIU are passed along the ACBus or ASBus respectively.

Immediate Command Space

The Immediate Command space has no bearing on the aSRAM or any of the interfaces

provided by aQS; the generated aSRAM address is undefined.

Serviced Space

The aQS response to Serviced Space commands is determined by the two-bit SSRe-

sponse to the particular aPBusTransferType and the status of the Approval Register.

If SSResponse = IGNORE, the aSRAM address generated is the static MissPat-

tern address (although no data is actually written in a write), and no other action is

taken by aQS.



If SSResponse = NOTIFY, the transfer is a notify only, the aSRAM address is

either MissPattern (for a read) or the MemQDataIn pointer (for a write). In either

case, aQS requests a MemQIn message compose of the specified type (read/write)

through the aCI, and updates the MemQIn PPtr in both the aBIU and sBIU (via the

ASBus).

If SSResponse = APPROVE, the exact response depends on the contents of Ap-

prRegState, ApprRegAddr and ApprSRAMAddr. If ApprRegState = FREE, indi-

cating that there is no pending approval, the current transaction is retried, aPBu-

sAddress is placed into ApprRegAddr, ApprRegState is set to PENDING, an ap-

proval request is placed into MemQIn and the MemQIn PPtr is incremented. If

ApprRegState = PENDING or LOCKED, or if ApprRegState = READY and Ap-

prRegAddr != aPBusAddress, the current transfer is retried and no further action

is taken. If ApprRegState = READY and ApprRegAddr = aPBusAddress, approval

has been granted: the transfer completes using the ApprSRAMAddr as the target

aSRAM address and ApprRegState is reset to FREE.

If SSResponse = RETRY, the transaction is retried with no further action by

aQS.

Snooped Space

aQS response to Snooped Space is very similar to the response to Serviced Space.

However, the HALResponse table is indexed by the clSRAMData for the cache line

of the current transfer as well as the aPBusTransferType. All other responses are

identical from the aQS point of view.

4.3.2 State Access

All of the state within the aQS module is accessible for aPBus and sBIU Interface

reads and updates; the addressing format used to access the states, called NESAd-

dress, is described in Appendix A. The Ctrl State Interface access to aQS state

is limited to write access to the short receive PPtr values, which are described in



Section 4.3.3.

State Updates

The visible state in the aQS module can be updated by the aBIU (as a direct update

from a QPtr Space or Config Access Space transaction, or as an indirect result of a

ShRx or ShTx transfer), the sBIU (via the SABus) or Ctrl (via the CABus).

Updates by the aBIU and sBIU use the same access path to system state, since

both units can access the full range of states specified by NESAddress (Appendix A).

Since the sBIU expects an immediate response, it is given priority; the aBIU state

update is buffered if a conflict arises. Each of these units can issue at most one aBIU

state update every four cycles, which eliminates the possibility of buffer overflow.

Updates issued by Ctrl are always executed immediately, and are issued along

a different data path than the updates described above. No resource conflict exists

between Ctrl and BIU updates to different states; simultaneous updates to the same

state are not expected, and the value written by Ctrl will be seen if such an event

occurs.

Finally, NotifyLock and the approval register states can be directly accessed by

NESBuffer commands and/or Immediate Commands relayed by the sBIU; all of these

are executed immediately and take priority over other updates.

State Reads

All aBIU state is available immediately to both the aBIU and the aBIU. Responses to

sBIU read requests are generated by using the request NESAddress to select the re-

quired data; within the aBIU, state is directly wired to the relevant address generation

units and can be muxed to the KBus interface for status reads by the aP.

4.3.3 aBIU Internal State

Aside from the registers which are exclusively used by the aBI and aCI state machines,

all aBIU state resides in the aQS. This state is divided into four types: short receive



queue state, short transmit queue state, Serviced Space and Snooped Space response

tables and system register state.

Short Receive Queue State

There are four short receive queues accessible by the aBIU: VasR-2L, VasR-2H, VasR-

3L and VasR-3H. Each of these queues is specified with CPtr, PPtr, Base, Bound and

LateAck registers. The DMARxDataQ uses the same format, but is used to provide

data for DMARx-Mastered operations; see Section 4.5.

The CPtr indicates the position of the queue's consumer pointer; the PPtr indi-

cates the producer pointer position. Together, these two pointers are used to deter-

mine if the queue is empty; also, CPtr is used to generate the aSRAM address for a

ShRx read.

Base specifies the base aSRAM address for the given queue, and is used with CPtr

to generate the full aSRAM address.

Bound limits the size of the queue; since these queues are circular, the CPtr is set

to zero instead of incremented if it would pass Bound. (PPtr is always explicitly set

rather than incremented, so Bound is unused.)

Finally, LateAck indicates that reads to the queue should generate an Arctic

acknowledgment.

Short Transmit Queue State

There are five short transmit queues associated with the aBIU: PasT-OL, PasT-OH,

PasT-1L, PasT-1H and MemQIn. Each of these queues has a PPtr, Base, Bound and

32bCompose register associated with it. The MemQDataIn queue shares most of this

format as well, although it is used to store data for captured transactions rather than

as a message queue.

PPtr associated with a given queue specifies the producer pointer; this value is

used with Base to determine the aSRAM location where the next message should be

written, and is incremented when the write is complete.

Base indicates the beginning of the given queue's aSRAM space, and is used with



PPtr to generate the aSRAM address.

Bound indicates the size of the queue; PPtr is zeroed rather than incremented

when it reaches Bound.

Finally, 32bCompose indicates that the queue in question supports 32-bit compose

mode. This mode allows an 8B message to be specified via a single 4B write, with

the address of the compose command sent via the KBus to form the other 4B. (This

does not prohibit complete specification of messages via 8B write, however.)

Serviced/Snooped Space Response Tables

The Serviced Space Response table (SSResponse) is an 11x2b table; the response

(IGNORE, NOTIFY, APPROVE, RETRY) associated with each of the supported

transfer types for the Serviced Space address region is obtained by using the aPBus-

TransferType as the table index.

The Snooped Space Response table (HALResponse) is an (11x8)x2b table con-

taining the same information as SSResponse. The transfer type of the transaction

and the 3-bit clSRAM response to the transaction address form the index to this

table.

System Register State

The OnePoll? and OnePollAddress system registers are used to handle 4B reads to

ShRx space; Section 4.3.1 describes the use of these registers.

The aPBusLock register indicates that the aPBus is to be locked; if this register is

set, the aBIU will retry all transfers on the aPBus (not only those normally serviced

by the aBIU).

The NotifyLock register is used to lock the notification resource. If this is set,

any Serviced Space or Snooped Space transactions which attempt to notify the sP

through MemQIn are retried instead.

ApprRegState, ApprRegAddr and ApprSRAMAddr are used to implement a sim-

ple approval mechanism for specified transactions to Serviced or Snooped Space. Ap-

prRegState can be either FREE, indicating that the register is not in use; PENDING,



indicating that an outstanding approval request exists; READY, indicating that ap-

proval has been granted; or LOCKED, indicating that the approval mechanism is not

active. ApprRegAddr stores the address of a PENDING or READY approval request;

this is matched against the address of future transactions to complete the approval.

ApprSRAMAddr specifies the aSRAM address for an approved transaction.

Static Values

Several address spaces use static aSRAM locations rather than configuring aBIU

state or encoding the aSRAM address within the aPBus address phase. aSRAMTmp

is used as the temporary aSRAM location for data transferred to or from the aSRAM.

OverflowStatus contains the status of the overflow queue, which is maintained by Ctrl.

EmptyMsgAddress indicates the aSRAM address to be read when a ShRx read does

not poll any non-empty queues. QConfigTmp is used to write BIU or Ctrl state to the

aSRAM so it can be read by the sP. Finally, QPtrBase defines the region containing

Ctrl-maintained status pointers corresponding to the various Comm Groups.

4.4 aCI Implementation

The aCI unit is responsible for coordinating the KBus interface, which the aBIU

uses to request action on the IBus (which connects the NES, aSRAM, aSRAM and

TxU/RxU network interface).

The logic in this unit is fairly straightforward. There are two buffers used: one for

pending DataMotion requests generated by the aBI submodule and one for Compose

requests generated by the aQS module. All requests are initially placed in these

buffers; additional buffer state indicate that the command should be delayed until

the next address or data phase completes.

When a DataMotion command is ready, the aCI places the command on the

KBusData interface according to Table 3.3 and asserts the DataMotionValid signal;

these signals are held until Ctrl responds with DataMotionFree to indicate that the

command has been received. At this point, the buffer is cleared.



A general Compose request from aQS requires that the SRAM address generated

by aQS be placed in KBusAddress and the aPBusAddress be placed onto KBusData.

MemQIn Compose requests use the MemQIn aSRAM address instead of the general

aQS-generated address. In either case, all signals are held until ComposeFree is

received.

Compose requests from aBM use the same interface with the KBus as general

Compose requests. Data provided by aBM is used as KBusData and MemQIn is used

as KBusAddress.

The aCI uses a very simple method for resolving conflicting requests for the KBus:

it tracks the last use of the KBus and awards priority to the type (DataMotion or

Compose) which was not serviced most recently. There is no need for more than one

buffer for each type, since the aCI broadcasts the buffer status and the other units

generate retries when a conflict is detected.

4.5 aBM Implementation

The aBM module is used to respond to commands issued over the NESBuffer Inter-

face, including mastering the aPBus, configuring DMA State, coordinating clSRAM

Updates and relaying Approval Register related commands to aQS. A full description

of the available commands is found in Section 2.2.3.

The state machine which controls the aBM, shown in Figure 4-4, is similar to

that found in the sBI (Figure 3-2). Unlike the aBI, the aBM is not designed to take

advantage of the Union's pipelining capabilities in order to simplify the design of the

module.

Functions which do not require mastery of the aPBus, such as setting up the DMA

(direct memory access) state and forwarding Approval Register commands to aQS,

are relatively simple; these are executed immediately and serve to short-circuit the

normal state machine execution.



to AEDE

to ARDE

Figure 4-4: aBM Finite State Machine

4.5.1 Address Phase Events

During the address phase, the aBM obtains mastery of the aPBus and places the

specified transaction on the address portion of the bus, asserting and responding

to the appropriate 60X signals. Also, NESBuffer commands which do not actually

involve the aPBus are executed during the "address" phase.

AddressEmpty indicates that there is no address phase currently in progress. No

signals are asserted in this state; transition to AddressRequest occurs when a new

command is received on the NESBuffer Interface.

AddressRequest is the state in which the aBM sends a request for the address

bus to Union. It is also the state in which non-aPBus commands are executed.

For bus commands, transition is to AddressActive when the bus grant is given; for

non-bus commands, transition is to AddressEmpty (and DataComplete) and occurs

immediately.

AddressActive is the state in which the aPBusAddress and related signals are

asserted. This state, and all associated signals, are held until aPBusAddressAck is

received, at which time the FSM transitions to Address Confirm.



AddressConfirm is used to deasserted the aPBusAddress and all other 60X signals,

and to observe the aPBusAddressRetry signal. If a retry is observed, the address

phase returns to Address Request and the data phase is cancelled; otherwise, the

address phase transitions to AddressPending to indicate that the data phase is in

progress.

AddressPending indicates that the data phase corresponding to the last address

has not yet completed. No control signals are asserted in this state. Transition

occurs when a new command is detected and/or the data phase completes, and is to

AddressHold (new command), AddressEmpty (data completion) or AddressRequest

(both).

AddressHold indicates that a new address phase has begun while a data phase is

in progress; this state is used to stall the address phase until the current or pending

data phase completes, at which point the state transitions to AddressRequest. Again,

no control signals are generated at this time.

4.5.2 Data Phase Events

The data phase includes the actual transfer of data, the updating of aBM state and

the completion of the current command. The aSRAM used for data transfer depends

on the actual NESBuffer command type: NES-Mastered operations include the target

aSRAM address within the command encoding, while DMARx-Mastered operations

use a special DMARxDataQ to generate the aSRAM address.

One general point of note: the data phase immediately transitions to DataEmpty

if aPBusAddressRetry is detected.

DataEmpty indicates that no data transfer is in progress. No signals are asserted,

and transition occurs to DataActive if a data bus grant is seen or DataComplete if

the NESBufferOp decoding indicates a non-bus command.

Data Active is the state in which the data is actually transferred. The aBM

asserted the aSRAM control and address signals and monitors aPBusTransferAck;

when the data transfer is complete (after one or four beat acknowledgments), the

state transitions to Data Complete. This state will never be reached for a non-bus



NESBuffer command.

Data Complete is used to deassert the various 60X data control signals. It is

also used to compose an acknowledgment to MemQIn, and to update MemQIn PPtr,

DMARxDataQ CPtr, and the DMAPending count if necessary.

4.5.3 DMA State

Each DMA channel contains a separate count of pending operations, DMAPend-

ing. DMAPending is initialized by a DMA Receive command (see Section 2.2.3) and

decremented at each successful DMARx-Mastered operation.

The DMARxDataQ, which is used to provide data for DMA operations, is de-

scribed in Section 4.3.3.

4.5.4 Summary

The aBIU implementation is driven by the functions and interfaces described in Chap-

ter 2. To provide this functionality, the aBIU is broken into four modules: a Bus

Interface module which acts as a slave or snoop device on the aPBus, a Queue/State

module which generates aSRAM addresses and maintains sBIU state, a Ctrl Interface

module which handles aBIU interaction with the KBus; and a Bus Master module

which responds to NESBuffer commands sent by Ctrl and acts as a master on the

aPBus. Together, these modules provide all of the functionality required.



Chapter 5

Verification

This chapter describes the methods used to verify that the implementation detailed

in Chapters 3 and 4 was properly coded in the Verilog logic language.

Two chief methods of testing have been used: manual testing of the internal BIU

signals and automated testing of the complete NES response to transactions on the

aPBus or sPBus. In addition, as the project advances, we expect to make use of

testing facilities provided by IBM.

5.1 Manual Testing

Manual testing of the BIU submodules, and the BIUs as a whole, occurred in parallel

with the Verilog coding of the implementation. The primary goal of this portion of

the verification process was to detect bugs in the implementation code, and in the

finite state machines in particular.

Each submodule was independently tested with a manually adjusted Verilog script

controlling the input vectors; internal state and outputs were observed graphically

with the Undertow utility.



5.2 Automated Testing

Automated testing of the entire NES Subsystem has been used to verify that the

NES Chip accurately performs its various functions. The primary goal of this testing

method is the detection and correction of design errors; additionally, the ability to

easily generate multiple tests allows a second round of bug detection. In order to

accomplish these goals, a complete StarT-Voyager site model has been created and a

series of required tests have been generated.

5.2.1 StarT-Voyager System Model

In order to simulate the entire StarT-Voyager site in Verilog, a complete Verilog site

has been created which contains functional models of the all hardware components (

as seen in Figures 1-1 and 1-2).

The sSRAM, aSRAM, clSRAM and clFIFO Verilog models were composed from

component libraries as required; these models should be completely accurate.

The MPC105 and Union models are simplified to meet the minimal functionalities

required for testing. The MPC105 model was generated almost directly from the sBI

submodule; the finite state machine was modified to accurately depict the memory

controller's responses, while the SRAM interface was unchanged to allow the SRAM

model to serve as a pseudo-DRAM for testing purposes.

The Union model is essentially designed with the aBI at its core, surrounded by the

bus arbitration machine. Again, the finite state machine was changed to correspond

to Union's interaction with the aBIU and the aPBus, while the SRAM interface is

again used to emulate aP DRAM. The bus arbitration machine is not exact; however,

it is expected to be sufficiently close to test the various aBIU functions with the aid

of IBM's testing environment (described below).

Provided bus models of the PowerPC 604 are used for the aP and sP. These bus

models are used to execute a specified list of bus transactions, which is the primary

testing mechanism of the automated testing method.

To execute tests, a list of bus instructions and supporting commands is generated.



Through a sequence of utilities, this instruction sequence is compiled with the base

Verilog object files into an executable which encodes the specified instructions. When

the executable is run on the system model (including the aP and sP 604 bus models),

the bus transactions are placed on the aPBus or sPBus at the appropriate time and

allowed to complete as 60X protocol dictates.

5.2.2 Test Groups

Instruction sequences have been written to test the full range of BIU functional-

ity. These tests are divided into several groups: SRAM Access, NES State Access,

Message Passing, clSRAM Update, NESBuffer Commands, aP Serviced Space, aP

Snooped Space, NES-Mastered Transactions and DMA Transactions.

SRAM Access

The SRAM Access test group includes 4B, 8B and 32B reads by the aP and sP to

both aSRAM and sSRAM space. SRAM and aPBus/sPBus activity are monitored

to confirm the tests.

NES State Access

This test group uses transactions to QPtr Space and Config Access Space to directly

update and/or read internal NES state. The internal state is directly observed to

confirm updates, while the SRAM and aPBus/sPBus activity are used to confirm

reads.

Message Passing

This test group involves setting up the BIU and Ctrl queue pointer state and then

sending and receiving a message through the ShTx and ShRx Spaces. The internal

NES state, SRAM/bus activity and IBus activity are all monitored to confirm proper

message handling.



clSRAM Updates

The use of the sP clSRAM Update Space is tested in this group to confirm that

the required data is stored in the clFIFO and the update request is passed to aBIU

through MemQOut and the NESBuffer Interface.

NESBuffer Commands

This address space tests the processing of non-bus NESBuffer commands: Approval

Register and related manipulation, DMAChannel initialization and clSRAM updates.

Internal aBIU state is used to confirm these tests.

aP Serviced Space

This group of tests confirms the proper processing of transfers to aP Serviced Space.

The SSResponse and Approval Register mechanisms are initialized and the response

on the aPBus to a transfer to aP Serviced Space is observed to confirm this function-

ality.

aP Snooped Space

The response to transfers to aP Snooped Space are tested in this group. The HAL-

Response, Approval Register and clSRAM are all initialized to particular states, and

then a transfer to Snooped Space is placed on the aPBus. The response to the transfer

as observed on the aPBus confirms this functionality.

NES-Mastered Transactions

To test this functionality, an NES-Mastered Transaction is sent to aBIU through a

sP compose to a MemQOut queue. The aBIU is expected to request control of the

aPBus and issue the specified transfer, so the aPBus signals are used to confirm this

functionality.



DMA Commands

To test the full DMA engine, NESBuffer commands are arranged to set up a DMAChan-

nel and issue a DMARx-Mastered operation. The observed activity on the aPBus,

the internal activity in aBM and the generation of a confirmation signal when the

DMAChannel is empty are all observed.

5.3 IBM Verification

As noted above, we do not expect our Union bus model to be complete; we are also

using simplified PowerPC 604 bus models as our sP and aP models, as no better or

faster models are available to us.

In order to confirm that our design actually functions as expected with real Union

and 604s in place, our agreement with IBM includes aid in verifying our design. The

use of complete models of the Union and aP/sP will be essential in confirming the

proper functionality of the NES in general and the sBI, aBI and aBM modules in

particular.

5.4 Current Status

Manual testing of all BIU components has been completed; with the completion of

the system model and increasing complexity of test cases, this testing method is not

expected to be used even if changes to the BIUs are made.

The automated process is still in progress. Of the test cases listed in Section 5.2.2,

all but NES-Mastered Transactions and DMA Commands have been verified in basic

cases, and exhaustive tests of all possible cases are being prepared. Future test groups

involving possible conflicts between transactions will also be created as necessary.

A basic methodology for preparing and testing StarT-Voyager Verilog code in the

IBM environment has been established; actual testing within this environment will

proceed over the next few months.



Chapter 6

Conclusions

This chapter concludes the thesis by presenting the work yet to done involving the

BIUs and the StarT-Voyager project and by presenting the author's thoughts on the

work done to produce this thesis.

6.1 Future Work

There are several steps that need to be completed before the NES Chip can be fab-

ricated: verification, synthesis and vendor interaction.

The verification process, as described in Chapter 5, is in progress. Confirmation

of the basic NES Chip functionality is nearing completion, but there is still work to

be done in the development and execution of complex test cases in which resource

conflict or other exceptional situations occur. Obviously, this process includes the

correction of any detected errors in BIU implementation.

Synthesis is the conversion of the RTL (Register Transfer Level) Verilog imple-

mentation to gate level Verilog and evaluation of the generated gate level logic. This

process, which will utilize the Synopsis synthesis and evaluation tools, has three pur-

poses: to identify improperly formed structures in the RTL implementation, to locate

critical timing paths in the implementation and estimate the delays along these paths,

and to compile the RTL code into a format suitable for fabrication. In addition, the

gate level code produced in this step can be run in the same verification environment



as the RTL code, allowing the confirmation of accurate synthesis.

Finally, taking the NES Chip from design to hardware will require considerable

interaction with an ASIC vendor. Once the verification and synthesis of the NES

Chip are completed, the gate level code will be translated into vendor-specific format

(if necessary) and sent the the vendor, where it will be laid out according to the

vendor's design rules. This layout will be subject to further verification, and the

more accurate delay estimations will be used to analyze the timing of the entire chip.

It is hoped that verification and synthesis can be completed by the end of the

summer, with the final product produced near that time.

6.2 Architecture Comments

The work described in this thesis has led to a number of thoughts about the design of

the StarT-Voyager parallel computer. This section describes some of the advantages

and disadvantages of the actual design, compares Voyager to a radically different

design (Stanford Flash), and briefly suggests a possible method of designing a hybrid

design.

6.2.1 StarT-Voyager

The chief advantages of the StarT-Voyager design are the flexibility and reduced

design time; the tradeoffs include some inefficiency in on-site communications.

Flexibility

StarT-Voyager is designed to provide exceptionally flexible message-passing and shared

memory support. The primary source of this flexibility is the interaction between the

NES Chip and the sP.

The NES Chip provides fixed hardware support of the simplest messages and

configurable support for other message types. It also allows for configurable responses

for responses to the Snooped Space and Serviced Space address spaces on the aP bus.



Many of these responses are executed in hardware, while others involve direct software

(sP) intervention.

The service processor can be used to implement a wide variety of message-passing

and shared memory protocols. With its own DRAM and memory controller, and ac-

cess to the aPBus through the NES Chip, it provides an additional degree of flexibility

beyond that provided by the configurable hardware support.

Design Effort

The use of commercial components has greatly reduced the design effort of the StarT-

Voyager custom logic. The greatest reduction in design time comes from the use

of commercial memory controllers. Further reduction is in fact obtained from the

sP; obtaining even reduced flexibility without a second processor would require a

considerable amount of additional hardware design.

Efficiency

While the use of commercial components and a distributed design does reduce the

design time of the StarT-Voyager parallel computer, it also reduces the efficiency of

the NES subsystem. In particular, the latency of commands on the 60X busses in-

creases due to the delays in BIU interaction with the memory controllers and SRAMs;

competition for the IBus can also cause delays.

6.2.2 Flash

As noted in Chapter 1, there have been recent efforts to design parallel computers

which support both message-passing and distributed shared memory. These designs

differ from that used in StarT-Voyager to various degrees.

Of these, the Stanford Flash project stands out. While attempting to meet the

same goals as the StarT-Voyager project, Flash employs a vastly different design; the

site consists solely of a commercial processor, local DRAM and a single custom logic

chip called MAGIC. MAGIC responds to all traffic on the processor bus and network,



and acts as a local DRAM controller as well.

The use of a single device reduces the latency of the bus and network interfaces,

thus increasing the overall efficiency; however, it also reduces the flexibility and greatly

increases the design effort required.

(The details of the Flash design are beyond the scope of this thesis; readers are

directed to [7] for more information.)

Flexibility

Because the design is implemented entirely in hardware, the Flash design is somewhat

limited in flexibility. It does provide for a variety of message-passing types and sup-

ports global shared memory, but the protocols used to support these communications

methods are limited in comparison to those available in the StarT-Voyager design.

Design Effort

The wide range of functions included in the MAGIC chip dramatically increases

the design effort required to produce the MAGIC chip and hence the Flash parallel

computer. Incorporating DRAM control and some of the sP functionality into a single

chip is a considerably more difficult task than that posed by the implementation of

the StarT-Voyager NES Core.

Efficiency

The single largest advantage of the Flash design is efficiency. By incorporating the

entire design, including memory controller and network interface, onto a single chip,

MAGIC avoids some of the communication overheads seen in StarT-Voyager.

In addition, the use of a fully custom design allows the bus arbitration and memory

controller to be optimized to meet the demands of the other functional units in the

MAGIC chip.



6.2.3 Voyager/Flash Extensions

Since the advantages of the Voyager and Flash designs seem to be completely compli-

mentary, it seems natural to consider the possibility of combining the positive aspects

of each: the flexibility and low design effort of the Voyager site and the enhanced ef-

ficiency of the Flash MAGIC chip.

One potential hybrid might be a slight modification of the StarT-Voyager design:

the incorporation of the aBI and aBM modules and memory controller functionality

into a separate component. This combination should eliminate Voyager's inefficient

use of the aPBus bus without affecting its flexibility (since the remainder of the

NES subsystem could be relatively unchanged); the generation of a DRAM controller

would increase the design cost of the system, however, since work would be done from

scratch.

6.3 BIU Similarities

As has been frequently noted, the sBIU and aBIU are similar in many regards; hence,

it was natural to attempt to reduce the design effort required by reusing much of the

Verilog code used to produce the modules.

The original decision was to implement the simpler sBIU module and then use

that module as the basis for the aBIU. This worked well for the aQS and aCI modules,

but the aBI module demonstrated the limitation of this idea: inserting new states

and signals into an existing FSM proved difficult. Implementation of the aBM from

the sBI proved even more difficult; eventually, the base was scrapped and the model

written from scratch.

It seems that it would have been far better to begin with the more complex module,

the aBIU, and then simplify that as required to meet the sBIU functionality.



6.4 Concluding Remarks

This thesis has described the design and implementation of a substantial portion

of the StarT-Voyager Network Endpoint Subsystem. The aBIU and sBIU modules

interact with the two processors on a Voyager site, processing or relaying commands

and data as required.

Although the verification and synthesis of these modules is not yet complete, the

work completed for this thesis represents a significant step towards the fabrication

of the NES Core and the ultimate goal of the project, the construction of a physical

StarT-Voyager parallel machine.
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Appendix A

NESAddress

The NESAddress is an internal addressing scheme used to access all available NES

Core state. Each NESAddress corresponds to up to 7 bits of data. The basic encoding

is indicated in Table A.1.

This section describes only the NESAddress space corresponding to BIU State;

Ctrl State NESAddress encodings can be found in Section 4.1 of the Hardware Engi-

neering Specification [1]. (Note: CtrlAddr == NESAddress[1:11].)

A.1 Queue State

Table A.2 describes the encoding of BIU queue state. Note that bit [4] of the NE-

SAddress indicates the location of the state; a value of 0 indicates state contained in

the sBIU, while a value of 1 indicates state contained in the aBIU.

Field Value Comments

[0] 0 Ctrl State
1 BIU State

[1:2] 00 End-Point State (Ctrl Only)
01 Queue State
10 System Registers

[3:11] X (Meaning Depends on State)

Table A.1: NESAddress: Basic Encoding
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Field Value Comments

[0:2] 101 BIU Queue State
[3:5] 000 PasT/VasR-0 Comm Group

001 PasT/VasR-1 Comm Group
010 PasT/VasR-2 Comm Group
011 PasT/VasR-3 Comm Group
100 MemQOut Comm Group
101 ** Reserved **
110 MemQIn Comm Group
111 DMARxDataQ

[5] 0 ** Fixed Field **
[6] 0 Tx Queue (PasT)

1 Rx Queue (VasR)
[7] 0 Low Priority / MemQOutO / MemQIn

1 High Priority / MemQOutl / MemQDataIn
[8:10] 000 CPtr for Rx, PPtr for Tx

001 PPtr for Rx
010 Base[0:6]
011 Base[7:8], Bound
100 LateAck for Rx, 32bCompose for Tx
101 ** Reserved **
lix ** Reserved **

Table A.2: NESAddress: Queue State
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Field Value Comments

[0:3] 1100 BIU System Registers
[4] 0 sBIU System Register

1 aBIU System Register
[5:7] 00 General SysReg State
[8:11] X SysReg Number

Table A.3: NESAddress: General SysReg State

Number Name Comments

0-1 OnePoll Contains OnePoll?, OnePollAddr
2 ABIULocks aBIU Only; contains aPBusLock, NotifyLock

Table A.4: BIU General System Registers

A.2 System Registers

The system register state of the BIUs is broken into three sections: general system

registers, SSResponse and HALResponse.

General system register space is shown in Table A.3; the list of system registers

is given in Table A.4.

The responses to aP Serviced Space transactions, SSResponse, are stored in a spe-

cial system register array; each element of the array contains the response (IGNORE,

NOTIFY, APPROVE, RETRY) for a single transaction type.

A similar encoding is used to access the responses to Snooped Space. The HAL-

Response (Hardware Approval Logic Response) is generated based on the transfer

type and 3-bit clSRAMData response to the cache line of the current address; the

Field Value Comments
[0:3] 1100 BIU System Registers
[4:6] 101 SSResponse Table

[7:11] X TransferType

Table A.5: NESAddress: SSResponse
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Field Value Comments

[0:3] 1101 HAL Response Table
[4:6] X clSRAMData

[7:11] X TransferType

Table A.6: NESAddress: HALResponse

corresponding NESAddress space is shown in Table A.6.
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