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Chapter 1

Introduction
The NuMesh project is an exploration of the potential for off-line routing to provide supe-

rior throughput for communication-bound multicomputer applications. Tadpole is a soft-

ware system which takes a compile-time description of the communication needs of an

application and produces a global schedule for the NuMesh hardware.

1.1 Off-line vs. On-line Routing
Off-line routing (also known as static routing) refers to the strategy of programming a

multicomputer interconnect with communication patterns determined at compile time.

Many current multicomputer interconnects use on-line routing; that is, they adapt their

behavior to the needs of the application at run time. Although they have the benefit of run-

time information which might not be available at compile time, their algorithms are lim-

ited to being causal (they cannot know the future) and local (they cannot efficiently incor-

porate information from distant places in the interconnect). In contrast, although an off-

line strategy may have limited information about the dynamic communication require-

ments of the application, what information it has can be applied globally, both in space

and in time.

On-line techniques must be carefully crafted to avoid deadlock, where network traffic

grinds to a halt because of a cyclic contention for network resources. The well-known

dimensional routing strategy [Ta81] is a simple way to prevent deadlock in Euclidean

meshes; more complex approaches are typically used in practice [DS87]. Off-line tech-

niques, however, can always avoid deadlock merely by never allowing contention at all,

giving them more flexibility in their routing choices. (Section 7.3 provides an example

where dimensional routing in particular would produce poor results.)



Finally, off-line techniques allow for simpler (and therefore potentially faster) hard-

ware implementations, since they do not incur the overhead of making routing decisions at

run time [Sh97].

For a complete comparison of on-line and off-line routing, see [Me97].

1.2 Road Map of Thesis
Chapter 2 summarizes the NuMesh, the hardware for which Tadpole generates output.

Chapter 3 presents a framework for attacking the off-line routing problem in systems

similar to the NuMesh. It is this framework which is most likely to be adaptable to other

systems.

Chapter 4 fills in the framework with details necessary to cope with the hardware limi-

tations of the current NuMesh implementation.

Chapter 5 and Chapter 6 discuss augmentations of the framework for supporting the

additional NuMesh features of "high-bandwidth streams" and "multicast".

Chapter 7 presents a collection of simple example routing problems and Tadpole's per-

formance on them.



Chapter 2

The NuMesh
A complete description of the NuMesh architecture is given in [Sh97]. The following is a

minimal summary adequate for an understanding of Tadpole.

2.1 Overview
The NuMesh is a programmable communication substrate providing the intercommunica-

tion facility for a collection of processing elements (e.g. Sparc CPUs). The substrate pro-

vides virtual channels, which we call streams, between nodes. Each stream provides some

fixed bandwidth of communication between a source and a destination.

The programming of the communication substrate determines the set of streams. Tad-

pole's job is to produce a program for the substrate given a set of communication require-

ments. Tadpole assumes that the substrate's program will be changed only by replacing it

with a completely new program.1

2.2 Physical Structure
The NuMesh communication substrate consists of a mesh of nearest-neighbor intercon-

nected nodes. The current-generation NuMesh has a four-neighbor three-dimensional

"diamond lattice" structure, but Tadpole does not depend on this topology. In principle,

Tadpole could be adapted to work on arbitrary graphs; the current implementation sup-

ports Euclidean meshes of up to three dimensions as well as the diamond lattice.

2.3 Nodes
Each node consists of a processing element and a Communication Finite State Machine

1. It is possible to make incremental run-time changes to the programming of the substrate, but it is
not simple to do so; consequently, Tadpole does not support this feature. Of course, independent
substrate programs may be generated by independent invocations of Tadpole.



(CFSM). The CFSMs are programmed independently and manage all communication

between nodes (Figure 2.1).

Figure 2.1 Block diagram of a three-node NuMesh system

A CFSM communicates with its neighbors by reading from and writing to ports; there

is a single such port for each neighbor. A CFSM communicates with its processing ele-

ment by reading from and writing to processor registers; there are several such registers

(16 in the current implementation).

All CFSMs in the entire mesh share a common clock which can be independent of the

clocks used for the processing elements. Each CFSM performs a fixed, periodic sequence

of actions described by its schedule, which is part of its program.

2.4 Threads
A CFSM thread is a directive to perform a single-word transfer.2 The source and destina-

tion of the transfer may be either a port or a processor register (or a buffer register; see sec-

tion 2.10). Programming a CFSM consists of determining its threads and the schedule

2. Note that this terminology is somewhat unconventional. It comes from viewing each thread as
being associated with a stream (see below), so that the serial execution of independent threads cor-
responds to the serial interleaving of independent streams.



which governs their execution.

Tadpole produces a different set of threads and a different schedule for each CFSM,

but it constrains the period of every schedule to be the same. Thus the entire communica-

tion substrate has a single global period, which we denote by T henceforth.

2.5 Pipelines
Each CFSM has two independent pipelines which execute threads. The CFSM schedule

specifies which thread enters each pipeline on each cycle. A thread's execution within a

pipeline consists of several single cycle stages. For Tadpole, the relevant stages are the

read stage and the write stage, which are consecutive. That is, while one thread is reading

a value from its source, its immediate predecessor in the same pipeline is writing a value

to its destination. This relative timing between the read and write stages determines how

data transfers work (see section 2.6). Since there are two pipelines with independent read

and write stages, each CFSM can perform up to two reads and two writes on each cycle. A

read followed by a write is a data transfer; thus, each CFSM may perform up to two inde-

pendent data transfers per cycle. (Put another way, each CFSM may transfer a word from

each of two streams on every cycle; see below for a description of streams.)

Each thread in the CFSM is associated with a single pipeline, and may execute only in

that pipeline.

2.6 Data Transfers and Streams
To program the transfer of a word between two nodes, we must schedule two threads on

neighboring nodes to cooperate. Specifically, the sending node's thread must be in the

write stage of its pipeline during the same cycle that the receiving node's thread is in the

read stage of its pipeline. This means we must schedule the receiving thread one cycle

later than the sending thread. (Recall that all nodes are clocked synchronously, which



makes "one cycle later" a meaningful global concept.)

Thus, to transfer a word across multiple nodes, we must schedule cooperating threads

on consecutive cycles of successive nodes. We also must choose a pipeline for each thread.

We call a (node, cycle, pipeline) triple a schedule slot, since each such triple represents a

potential scheduling of at most one thread. In other words, to transfer a word across multi-

ple nodes, we must reserve a schedule slot on consecutive cycles of successive nodes.

The ultimate source and final destination of any word are processor registers. 3 Since

the global schedule is periodic with period T, reserving a single schedule slot for a thread

means executing that thread every T cycles. So by arranging to transfer a word across sev-

eral nodes from one processor register to another, we create a stream between processing

elements with bandwidth - words/cycle. (For a method to create streams of higher band-

width, see section 2.8.)

Note that every thread is associated with a single stream, and that every stream is inde-

pendent of every other stream.

2.7 Flow Control
In general, the NuMesh communication substrate runs independently of the processing

elements. Consequently, the precise timings of reads and writes to a processor register by

a processing element are not necessarily predictable.

A processing element can detect when a processor register is full or empty. So it can

always avoid writing to a stream and reading from a stream too quickly (i.e., faster than

the bandwidth of the stream permits). However, if it is busy performing computation or is

3. Strictly speaking, this is not always true; the CFSM itself is programmed by writing to certain
"magic" destinations. As mentioned in section 2.1, Tadpole does not use this facility in the sched-
ules it generates.



otherwise slow, it may read from or write to a stream too slowly, and the communication

substrate must be prepared for this eventuality.

If a processor writes to a stream too slowly, the thread at the head of the stream will

attempt to read an empty processor register. The NuMesh transfers an empty/full bit with

each word, guaranteeing that empty words will not be delivered to any destination proces-

sor register. So this case is not directly relevant to Tadpole.

If a processor reads from a stream too slowly, however, the communication substrate

runs the risk of overwriting valid data in a destination processor register. This is prevented

by the NuMesh flow control mechanism, which we will describe now.

In addition to a source and a destination, each thread specifies a transfer type. The

transfer type is one of blind, flow-controlled, or conditional. Usually, Tadpole uses flow-

controlled transfers (but see section 2.9).

Each thread has an associated buffer register capable of storing a single word of data.

When a flow-controlled transfer fails, the word is stored in the thread's buffer register.

Such a failure happens when the destination is not prepared to receive data (e.g., when it is

a full processor register).

Eventually, the thread which encountered the failure is scheduled again. When the

thread reaches the read stage of its pipeline with a full buffer register, it will read from that

buffer register instead of from its designated source. If the source is a neighboring node,

the thread on that node will then encounter a failure, placing a word into its own buffer

register. (If the source is a processor register, it will simply not be emptied, a condition

which the source processing element can detect.) The failure to write to a destination pro-

cessor register will cause a stream to "back up" in the mesh. When the destination proces-

sor register is emptied, the stream will start moving again.



This means that a processing element can be "slow on the uptake" without causing

data loss. The NuMesh flow control mechanism has the notable advantages that it is trans-

parent to the CFSM programmer, and that it incurs no performance overhead

[SHM96,Sh97].

2.8 High-Bandwidth Streams
The streams we have discussed so far are minimum bandwidth; that is, their bandwidth is

y words/cycle. To create a stream of higher bandwidth we must invoke the same thread

more than once in the periodic schedule. If we invoke a single thread n times during one

period, the associated stream will have a bandwidth of n words/cycle.

Note that it will not work to provide several independent streams which happen to

have the same source and destination, since the flow control mechanism would allow

words to arrive in a different order than they were sent. For example, consider two streams

so and S, which have the same source and destination processor registers but are imple-

mented by different sequences of threads. If so were to encounter a failure because the

destination processor register was full, it would "back up". If the destination processor

register were emptied by the destination processor shortly thereafter, s, could then suc-

cessfully deliver a word which was originally read from the source processor register after

the word which failed.

So a high-bandwidth flow-controlled stream can be implemented only by a single

sequence of threads invoked at multiple points in the periodic schedule.

2.9 Packet Sizes
The NuMesh does not allow the same thread to be scheduled twice in a row. Even if it did,

a processing element would have difficulty timing a pair of writes to a single processor

register to exactly match up to the two consecutive cycles on which some thread was

~__ __~_



scheduled.

However, some communication patterns do send data in short bursts, or packets. The

NuMesh architecture supports a conditional style of thread transfer to handle this case. A

conditional transfer inherits all of its flow-control data (i.e., success or failure) as well as

its empty/full bit from the immediately preceding thread in the same pipeline. A packet

can thus be sent by scheduling several different streams consecutively which are identical

save for the processor registers which they access at the source and destination. All

streams after the first in the sequence (which transfers the head of the packet) use condi-

tional transfers instead of the usual flow-controlled. So the disposition of the head of a

packet (i.e., whether it succeeds, "backs up", or carries no data) determines the disposition

of the following words in the packet.

The source processing element must take care to write the head of the packet last to

insure that the inherited empty/full bits are safe. Similarly, the destination processing ele-

ment must read the head of the packet last to insure that the inherited flow-control data are

safe.

2.10 Delays
As described so far, streams require reserving threads on consecutive cycles of successive

nodes along the path from source to destination. In the presence of high congestion, this

requirement may be difficult to meet. To relax this requirement, the NuMesh allows any

thread buffer register to be specified as a source or destination for any thread in the same

pipeline. This allows one thread to transfer a word to another which is scheduled later. The

earlier thread specifies its own buffer register as a destination, while the later thread speci-

fies the earlier's as a source. The result is to delay a stream at a node for up to T - 1 cycles.



2.11 Forks
The NuMesh CFSM supports a fork operation, which allows the data on a single stream to

be sent in two directions. A fork requires cooperation between two threads scheduled on

consecutive cycles in the same pipeline. If the second thread's source is the same as the

first thread's destination, the CFSM will attempt to send the word both to that destination

and to the second thread. This works only when the destination is a port; it does not work

if the destination is a processor register or a thread buffer register.

This idiom (one thread's destination equal to following thread's source) cannot occur

outside the context of a fork because it would represent an attempt to both send and

receive a word on an external link at the same time. The NuMesh does not support full

duplex transfers between nodes, so the meaning of this idiom is unambiguous.

Note that flow control on fork operations works correctly and transparently to the

CFSM programmer. That is, the first thread "succeeds" only if both the destination port

and the second thread are ready to accept a word; otherwise, both transfers "fail" (see sec-

tion 2.7).

Through forks, the communication substrate provides a multicast facility, where a

stream carries data from a single source to multiple destinations. A stream which forks n

times can reach n + 1 destinations.



2.12 Summary of Hardware Limitations
This is a summary of the restrictions which the current NuMesh implementation imposes.

* The schedule size (and thus the period T) is at most 128.
* The number of threads per pipeline is at most 32.
* There are two pipelines.
* There are 16 processor registers.
* Full-duplex (i.e., simultaneous and bidirectional) transfers through a single port are

prohibited.
* The same thread may not be scheduled on two consecutive cycles.
* The processor registers permit only one CFSM access (read or write) per cycle per

pipeline.

2.13 Tadpole's Job
Tadpole's job is to take a number of node descriptions and stream descriptions as input,

and to produce a feasible schedule as output. A node description consists of a name and a

set of coordinates. A stream description consists of a name, a source node, one or more

destination nodes, a packet size, and a bandwidth. A feasible schedule is a listing of the

threads and the schedule for each CFSM, such that (1) each stream has the designated

source, destination(s), and packet size, (2) each stream has at least the specified band-

width, and (3) all of the limitations of the NuMesh hardware are respected.





Chapter 3

Off-line Routing

3.1 Definitions
A task communication graph is a directed graph whose vertices are tasks and whose edges

are the required communication bandwidth between tasks.

Placement is the job of deciding which nodes of a physical network will house which

tasks.

Routing is deciding which path or paths in a physical network will carry the traffic cor-

responding to each edge of the communication graph.

Scheduling is determining the exact cycle-by-cycle behavior of network traffic; i.e.,

which messages traverse which links at which times.

Given these definitions, we may describe Tadpole's job as follows. Tadpole takes a

task communication graph for which placement has already been performed; the vertices

are given by node definitions, and the edges are given by stream definitions. Tadpole then

performs off-line routing and scheduling of the communication graph for the NuMesh

architecture.

3.2 On-line Scheduling
Much of the existing research on the off-line routing problem assumes on-line scheduling.

That is, it assumes the on-line system will schedule whatever network traffic happens to

show up at run time, so that the off-line system's job is to place tasks and choose routes for

inter-task communication to make the on-line system's job easier. More precisely, the goal

is to find a placement and a set of routes which maximize the expected throughput of the

on-line system. Off-line placement algorithms generally try to maximize spatial locality,

while off-line routing algorithms generally try to reduce link congestion.1 We will hence-



forth largely ignore the placement problem, since it does not concern Tadpole.

The off-line routing problem may be formulated as an attempt to find a set of routes

which minimizes some objective function. The objective function is some measure of link

congestion whose minimization corresponds to "optimal" expected on-line performance.

Many algorithms for off-line routing use this formulation. The proposed objective func-

tion varies, and the proposed method for optimizing it ranges from fluid flow models

[BS86] to simulated annealing [BM88] to ad hoc routing using shortest-path computations

[KS92]. The general approach, however, is the same.

Tadpole's approach is similar to these in spirit, but with alterations to deal with off-line

scheduling.

3.3 Off-line Scheduling
Most research on off-line scheduling has been restricted to particular hardware architec-

tures. This is to be expected, since producing a cycle-by-cycle description of hardware

behavior requires extensive knowledge of the hardware.

An architecture similar to the NuMesh is assumed by Shukla and Agrawal's scheduled

routing technique [SA91], henceforth abbreviated SASR. Designed for video processing

or other pipelined tasks, SASR takes an acyclic directed graph of tasks (a task pipeline)

with edges representing messages. Each message has an associated length, and each task

has an associated execution time. Tasks without parents in the graph are input tasks; those

without children are output tasks. It is assumed that a task may not begin execution until

its incoming messages have arrived, and that a task generates its output messages only

after completing execution. The input tasks are assumed to be invoked periodically by

some external signal whose period is long enough not to overwhelm the slowest element

1. "Link congestion" is defined as the sum of the bandwidths of all streams which use a link, where
bandwidth is measured as a fraction of the total capacity of the link.



in the pipeline. With this constraint, all tasks may be invoked with the same period and the

pipeline will function properly.

The SASR algorithm goes through several phases, first deriving time bounds for mes-

sage injection and delivery, then routing messages in the network, then fragmenting mes-

sages across time intervals, then scheduling the fragments in time. The output is a detailed

node switching schedule.

The SASR algorithm assumes that network latencies are negligible compared to mes-

sage lengths, so it schedules a clear path from source to destination for the entire duration

of each message transmission.

Although SASR was adapted to an earlier generation of the NuMesh [Mi93], it is not

appropriate for the current generation. SASR messages are similar to NuMesh packets,

except that NuMesh packet sizes (at most a handful of words) hardly make network laten-

cies negligible by comparison. Allocating a clear path from source to destination for the

duration of each packet transmission (sometimes as small as a single word) would be non-

sensical.

SASR targets acyclic task pipelines which have large messages and a long period; one

long enough, that is, to encompass the execution time of the slowest task, which is

assumed to be a known quantity. The NuMesh provides relatively tiny packets but sends

them repeatedly at a relatively enormous frequency, making it more suitable for providing

high-bandwidth streams between tasks of arbitrary execution time.

3.4 Tadpole Formulation
One concept which we might borrow from SASR is the multiple-phase approach; that is,

using separate phases for routing and for scheduling. The first phase could use any stan-

dard off-line routing approach to minimize some objective function, while the second



phase could attempt to schedule network traffic along the chosen routes. Unfortunately,

the minimization of some simple objective function during routing provides no guarantee

that a feasible schedule will exist. Thus we would probably need to run both phases

repeatedly with feedback (as in [SA91] and [Mi93]).

Fortunately, we can avoid the multiple-phase approach altogether by the following

observation: Routing in space together with scheduling in time is equivalent to routing in

space-time [Li89].

To visualize this concept, let us take a mesh of nodes and make an image of each node

at every point in time (i.e. every clock cycle). Let these images of nodes form the vertices

of a graph. From the image of each node at each time t, we draw a directed edge to every

image of every neighbor of that node at time t + 1. Each edge represents a link from one

node to another between some cycle and the next; these may be thought of as potential sin-

gle-cycle data transfers between nodes.2 The edges are directed because time always flows

forward.

2. In this chapter we ignore transfers which do not cross nodes (i.e. delays).



For example, consider the one-dimensional mesh in Figure 3.1.

Figure 3.1 A one-dimensional mesh



The corresponding space-time graph is shown in Figure 3.2, where cycles 0, 1, and 2

have been drawn.

Figure 3.2 A two-dimensional space-time graph

By allocating resources in this space-time graph, we allocate them at particular places

and times. For example, if we allocate a route which starts at Node 2, Cycle 0, goes

through Node 1, Cycle 1, and ends at Node 0, Cycle 2, we are representing the action of

Node 2 communicating to Node 1 on cycle 0, and then Node 1 communicating with Node

0 on the following cycle. Thus we have represented both the spatial routing of a word from

Node 2 through Node 1 to Node 0, as well as the temporal scheduling of that route.

We can add additional routes depending on the capabilities of the underlying hard-

ware. For example, if a word needs to be transferred from Node 0 to Node 2, we can do it

from cycle 0 to cycle 2 provided Node 1 is capable of handling two transfers simulta-

neously.



On a space-time graph, algorithms for routing alone may be directly applied to the

combined problem of routing and scheduling. Alternatively, information from the space-

time graph may be incorporated into the objective function of a standard off-line routing

algorithm, helping to insure that a feasible schedule exists when the objective function is

minimized.

Note that this formulation is not always useful, since in general an application may

require very many cycles to run, which would make the corresponding space-time graph

intractably large. But if all activity is periodic, time itself is effectively bounded by the

period, and the space-time graph is cyclic. If the period is sufficiently small, the space-

time graph will also be small, and so may be explicitly constructed.

The present NuMesh implementation has an overall schedule size of at most 128

cycles, making this formulation applicable.

3.5 Multicommodity Flow
Looking again at the routing problem alone, we see that it is precisely an instance of the

integer multicommodity flow problem. Briefly, the multicommodity flow problem takes as

input a graph, a set of edge capacities, and a set of commodities; also, for each commodity,

a collection of source vertices, sink vertices, and demands. The output is a flow for each

commodity such that all demands are met and the maximum edge congestion is mini-

mized. 3 A flow is a specification of the amount of each commodity which is to traverse

each edge.

Integer multicommodity flow adds the restriction that a flow may not be split across

different paths.

3. "Edge congestion" is defined as the total flow through an edge divided by its capacity. "Maxi-
mum edge congestion" is the highest congestion of any edge.



If we identify the input graph with the physical structure of a mesh, the commodities

with streams, the demand for a commodity with the requested bandwidth of the stream,

and the edge capacities with the maximum bandwidth allowed by the hardware, we see

that off-line routing (with an objective function of maximum link congestion) is really just

integer multicommodity flow.

Multicommodity flow is a well-studied problem [KP95,KP95a,KPP95].

The basic multicommodity flow problem may be solved in polynomial time with linear

programming methods [KV86], but the integer case is NP-complete. However, there is a

fast approximation algorithm due to Stein et. al. [St92]. Tadpole's heuristic approach is

heavily based on this approximation algorithm, but augmented with information from the

space-time graph.

3.6 Reduced Graphs, Shortest Paths, and Cost Functions
The Stein algorithm begins by routing commodities independently of each other, and then

iteratively rerouting them in an attempt to decrease congestion. The rerouting phase uses

minimum-cost path computations on a reduced graph; that is, one whose edge costs are

related to the current edge congestion. A commodity is rerouted to use the "cheapest"

path, where the cost of a path depends on how much congestion is present along it.4

Tadpole augments this cost function with information from the space-time graph as

follows: the cost of a path in the reduced graph depends not only on the congestion of the

edges along it, but also on whether a feasible scheduling of that path exists. Thus, routes

which do not result in feasible schedules will not be considered, even if they would reduce

overall edge congestion.

4. Obviously, the cost of an edge increases with its congestion. The specific cost function used by
Stein was chosen to give provable bounds on the performance of the algorithm. The details are not
important for Tadpole, whose cost function is a complex morass of heuristics.



In subsequent chapters, we will see a variety of ways in which we further augment the

cost function.





Chapter 4

Ugly Details
Note: In this chapter, we consider only the case of minimum-bandwidth streams with a

single destination.

4.1 Overview
As described in Chapter 3, Tadpole's general strategy is to build a space-time graph and to

use it to augment the cost function of a multicommodity flow computation. The details of

the NuMesh architecture, however, suggest both a slightly different formulation of the

space-time graph and additional augmentation of the cost function. 1

4.2 Nodelets
We have seen how to create a space-time graph which associates a vertex with each node

at each possible time, and an edge with each potential communication between a pair of

nodes. A more directly useful formulation for the NuMesh is to associate a vertex with

each potential scheduling of a thread; that is, with each (cycle, pipeline) pair on each node.

We call the vertices in Tadpole's space-time graph nodelets. Each nodelet may be iden-

tified by its 3-tuple (N, t, k) , where N is a node, t is a time (cycle number), and k is a pipe-

line. Since the schedule is periodic with period T, the nodelet (N, t, k) is the same as the

nodelet (N, t + T, k) for any N, t, and k.

The edges in Tadpole's space-time graph correspond to potential transfers of a word

between threads. The edges leaving each nodelet (N, t, k) fall into two classes. The first

class consists of edges to every nodelet of the form (N', t + 1, k') , where N' is some neigh-

bor of N and k' is some pipeline. The second class consists of edges to every nodelet of the

1. This is where we take our clean, abstract formulation and sully it somewhat to make it apply to
real hardware. Such is engineering.



form (N, t + At, k) , where 0 < At < T. The first class of edges corresponds to inter-node

transfers, in exact analogy to the formulation of Chapter 3. The second class represents

intra-node delays. Note that it is a restriction of the current NuMesh implementation that

these intra-node delays may not cross pipelines.

4.3 Tadpole's Job is NP-hard
Given the Tadpole space-time graph, the task of scheduling and routing a stream from

some node A to some other node B is easy to describe: Find a path in the graph from any

nodelet of the form (A, t, k) to any other nodelet of the form (B, t', k') . Scheduling and

routing a collection of streams thus requires finding a collection of paths which do not

overlap.

A slight addition to the space-time graph reduces this problem into one which is well

known. Augment the vertices of the graph with a collection of "virtual sources" and "vir-

tual sinks" for each node. The "virtual sources" for node N have outgoing directed edges

to every nodelet of the form (N, t, k) for all t and k. The "virtual sinks" for node N have

incoming directed edges from every such nodelet. Scheduling and routing a stream from A

to B now corresponds to finding a route from one of A 's virtual sources to one of B 's vir-

tual sinks. As before, scheduling and routing a collection of streams consists of finding a

collection of such routes which do not overlap. Now, however, we can associate a particu-

lar virtual source and virtual sink with each stream, which is what we need to complete

our reduction.

This problem (i.e., given a collection of pairs of vertices, find a collection of pairwise

vertex-disjoint paths which connect them) is known as the disjoint connecting paths prob-

lem, and is NP-complete in the general case [Ka72]. On graphs with certain special struc-

ture (e.g., those which are "densely embedded" [KT95]), polynomial approximation



algorithms exist; on others (e.g., those with bounded tree-width [RS86]), polynomial-time

(though impractical) exact algorithms exist. 2

A polynomial-time algorithm is unlikely to exist for the Tadpole space-time graph,

however. The disjoint connecting paths problem is also NP-complete in Euclidean graphs

of as few as two dimensions [KL84]. An instance of the problem in a two-dimensional

Euclidean graph may be reduced to a Tadpole problem by embedding the graph in the dia-

mond lattice, letting the period T equal 1 (or, equivalently, giving all streams a bandwidth

of 1.0 words/cycle), and requesting a stream from each source to each sink. So Tadpole's

routing job is at least as hard as the disjoint connecting paths problem, and is therefore

NP-hard.

4.4 Dealing with Hardware Limitations
So far, we have been ignoring the various hardware limitations of the current NuMesh

implementation. We will rectify that now.

Fortunately, almost all hardware restrictions can be handled by further augmenting the

cost function for the reduced graphs. Specifically, we can account for the consumption of

resources other than mere bandwidth (such as threads per pipeline) by attaching a cost to

the use of those resources. We can also insure that routes which require "impossible"

behavior (such as bidirectional transfers) are never found by attaching an infinite cost to

the edges associated with such events.

The following sections describe how the various hardware restrictions are handled by

Tadpole. Most of these involve increasing the cost of an edge based on the resources it

consumes.

2. As already mentioned, Tadpole is based on multicommodity flow methods. It might be possible,
however, to adapt algorithms for disjoint connecting paths directly to off-line routing and schedul-
ing with a space-time formulation. Whether this is so, and to what extent, is an interesting area for
future research.



4.4.1 Schedule Size of 128 or less
The value of T is a fundamental parameter to most of Tadpole's code. So Tadpole

requires either that the user supply it, or that the user give an upper bound on the desired

value. If a bound is given, Tadpole merely runs the underlying algorithms for increasing

values of T until a feasible schedule is found.3

4.4.2 Thirty-Two or Fewer Threads per Pipeline

Each pipeline supports a limited number of threads, currently 32. We incorporate this

into the cost function by keeping track of how many threads have been allocated in each

pipeline, increasing the cost of an edge to a nodelet as the number of threads in its pipeline

increases. The details of this increase are ad hoc, and are determined by trial and error to

give good empirical results. Of course, a super-saturated pipeline incurs infinite cost, since

it cannot be used at all.

4.4.3 Only Two Pipelines
The current NuMesh architecture supports two pipelines; this is handled naturally by

the Tadpole space-time graph by associating a separate nodelet with each pipeline, and

allowing only a single transfer through each nodelet. Thus, edges to an already-used node-

let incur infinite cost.

4.4.4 Only Sixteen Processor Registers
This restriction is not relevant to Tadpole, since the number of processor registers used

on a node depends entirely upon how many streams originate and terminate at that node.

Thus, whether this particular restriction is met is a trivial property of the problem's stated

requirements, and not a property of how Tadpole performs. It is the job of the person (or

program) generating the requirements to insure this restriction is met. Of course, Tadpole

will generate a fatal error if the number of allowed processor registers is exceeded.

3. A larger period usually makes it easier for Tadpole to find a feasible route. Unfortunately, this is
not always the case; for example, a stream which requires a bandwidth of at least 0.5 words/cycle
would actually produce more congestion with a period of 3 than with a period of 2. Thus a simple
binary search for the optimal period will not work, so we resort to brute force.



4.4.5 Full-Duplex Transfers Prohibited
For each inter-node edge in the space-time graph, there is a corresponding edge which

represents a potentially simultaneous transfer in the opposite direction. To prevent bidirec-

tional transfers, the cost function checks that corresponding edge to see if it is already

allocated to some stream. If so, the edge is given infinite cost.





Chapter 5

High-Bandwidth Streams
Note: In this chapter, we consider only the case of streams with a single destination.

5.1 Simplifying the Problem
By high-bandwidth stream we mean specifically a stream implemented by scheduling its

threads more than once during each period (see section 2.8). Unfortunately, dealing with

such streams is not nearly as easy as dealing with the various hardware restrictions.

What does such a stream, with bandwidth n, look like in the space-time graph? It is a

collection of n minimum-bandwidth streams, each starting and ending at the same node,

and taking the same spatial route. Put another way, the paths in the space-time graph are

identical save for a set of offsets in time.

Finding a minimum-cost collection of n routes which are the same except for arbitrary

temporal offsets appears to be a hard problem. The advantage to using minimum-cost path

computations is that they can be done quickly, but this new problem does not fit directly

into our minimum-cost path framework. Our solution is to simplify the problem artifi-

cially.

Instead of trying to find n routes from source to destination with unknown temporal

relationships, we fix the temporal relationships before beginning the minimum-cost path

computations. That is, for a stream with bandwidth j, we come up with n stream offsets

between 0 and T- 1 such that the offsets are roughly evenly spaced. We then mandate that

the successive schedulings of the stream be at precisely those relative offsets, and no oth-

ers.

2
For example, suppose we are attempting to route a stream of bandwidth in a mesh

with a global period of 60 cycles. Then our stream offsets will be 0 and 30, meaning that



whatever route we find in the space-time graph, we will allocate one just like it but 30

cycles later. Thus the two schedulings of the stream will always be exactly 30 cycles

apart.1

This simplified problem can be solved within the minimum-cost path framework in the

following way. When computing the cost of an edge in the space-time graph, we look at

the edges which are offset from it by the stream offsets. The cost of the edge is then its

own cost plus that of all of its offset images. In this way, we find a route for the "first"

scheduling of the stream, and the stream offsets tell us the relative later schedulings of that

same stream.

5.2 Self Interference
The simplification just described works, but it introduces a new problem, which we call

self interference. Recall that our cost function incorporates congestion information for

streams which have already been routed, but not for the stream for which the current min-

imum-cost path computation is being performed. For a stream of minimum bandwidth,

this does not matter, since no minimum-cost path can ever cross itself (minimum-cost

paths are always acyclic).

With high-bandwidth streams, however, a problem arises when we consider an edge

corresponding to an intra-node delay. We must not allow a stream to be delayed by an

amount which would cause it to self-collide; that is, we must not delay the stream by the

difference between any pair of stream offsets. But the minimum-cost path algorithm has

no way to know this, since the cost function described so far has knowledge only of

already-routed streams. The solution is simple: We must give our cost function new

knowledge by introducing a self-interference cost for any edge which corresponds to an

1. As mentioned, allowing for "jitter" in the stream offsets (e.g., 0-2 instead of 0, 29-31 instead of
30) seems to complicate the problem tremendously, so we avoid it.



intra-node delay. The cost of an edge which causes the stream to self-collide must be infi-

nite.

Unfortunately, this modified cost function produces another (somewhat subtle) prob-

lem. Although our self-interference cost prevents collisions from simple intra-node delays,

it does nothing to avoid routes which first leave a node and then come back to self-collide!

Before we modified the cost function, it was impossible for this to happen, since for any

two nodelets on the same node, the least costly route between them was always a simple

intra-node delay. Now that we have added the self-interference cost, however, we have

made certain simple delays very costly indeed, and our minimum-cost path computation

could well find a path which self-collides. In other words, by handling self interference on

a single node as a special case, we have exposed ourselves to the possibility of other kinds

of self interference which were formerly impossible.

The structure of the minimum-cost path computation makes this new problem some-

what tricky to solve. Whether an inter-node edge corresponds to a self-collision depends

on which nodes the path goes through to reach that edge. How do we compute this effi-

ciently?

5.3 Path Histories
We will remember, for each node, all of the nodes which precede it along the shortest-path

route. The order of the nodes is not important, so we can use a simple bitmask to store this

information. These path histories are possible thanks to the structure of our particular

minimum-cost path algorithm (Dijkstra's relaxation algorithm [CLR90]) which guaran-

tees that nodes are visited in order of their distance from the source. Before relaxing a

nodelet, Tadpole consults the path history, to insure that the same node is not visited twice

along the same path. If so, we count the edge's cost as infinite.



Regrettably, this method carries a price: we now fail to find the actual shortest path

under some circumstances. The correctness of Dijkstra's algorithm depends on the self-

reducibility of the minimum-cost path problem. That is, any minimum-cost path from

nodelet a to nodelet c, if it goes through nodelet b, always consists of a minimum-cost

path from a to b joined with a minimum-cost path from b to c. Since the costs of our

edges now depend on the path taken to them, this self-reducibility property no longer

holds.

We can picture a specific failure as follows. Suppose we discover (through our path

history), while relaxing along an inter-node edge, that it causes a self-collision and is

therefore infinitely expensive. It is possible that some more expensive route to this point

(which we never explored) would make the edge no longer cause a self-collision.

Unfortunately, there appears to be no way to efficiently compute shortest paths in the

absence of the self-reducibility property. Thus, we choose to live with this failure. We take

some consolation in observing that it occurs only for high-bandwidth streams.

This difficulty is, in some ways, similar to the first problem we encountered with high-

bandwidth streams. We are using minimum-cost path computations because the structure

of the problem allows an efficient solution, even though the number of potential paths

between any pair of nodelets is exponentially large. We have now seen two aspects of

dealing with high-bandwidth streams which violate that nice structure. We dealt with the

first (unknown temporal offsets) by fixing the collection of stream offsets. We dealt with

the second by introducing a path-dependent cost function. In both cases, we have

restricted the search space artificially to achieve the necessary performance.

5.4 Packet Sizes
Dealing with packets of size greater than one is very similar to dealing with high-band-



width streams. Once again, we need to find a multitude of routes which use the same spa-

tial path but differ only in the time at which they are scheduled.2 Now, however, we seek a

collection of routes which occupy a collection of consecutive cycles. All routes except the

first will be implemented with conditional moves (see section 2.7).

We incorporate this into our stream offsets. So now, for each stream, the offsets are

used to represent both packet size requirements and bandwidth requirements. For exam-

ple, a stream with packet size of 2 and bandwidth requirement of 4 words/cycle in a

schedule with T = 60 would use stream offsets of 0, 1, 30, and 31.

Note that there is one substantive difference between packet sizes and high-bandwidth

streams: each word of a packet requires a separate thread, whereas each scheduling of a

stream uses the same thread. This matters to the cost function only, since it needs to know

how many threads are actually used by each stream in order to make sure we do not

exceed the allowed number of threads per pipeline.

2. Strictly speaking, a single packet could use different spatial routes if they all took the same num-
ber of cycles to reach the destination. This observation was made too late to incorporate it into the
current version of Tadpole; we henceforth ignore it for this thesis.





Chapter 6

Multicast

6.1 Introduction
So far, we have considered only streams with a single destination. One of the more inter-

esting applications for off-line routing, though, is handling multicast streams. Multicast

streams are those which have multiple destinations, and are supported in the NuMesh

through fork operations (see section 2.11). Obviously, the decision of where to fork a

stream can benefit greatly from global knowledge of network traffic, since the resources

required to handle the stream are effectively doubled at all points following the fork. A

stream which forks repeatedly (i.e. has more than two destinations) makes the decision

even more crucial.

Recall that our approach for single-destination streams was to use minimum-cost path

computations on a reduced graph in an effort to find a feasible scheduling and routing for

all streams. Let us now consider the case of a stream with multiple destinations. In the

space-time graph, routing such a stream means finding a tree from the source to all of the

destinations. (There are some restrictions on the structure of the tree, since forks on the

NuMesh have their own particular idiom; we will ignore this for now.)

Just as our algorithm for the single-destination case relied on finding minimum-cost

paths, our algorithm for the multicast case will rely on finding minimum cost trees in the

reduced graph. Finding such a tree is a well-known1 problem.

6.2 The Steiner Tree Problem
Given an undirected graph, a set of edge costs, and a set of target vertices, the problem

of finding the minimum-cost tree in the graph which spans the target vertices is known as

1. and very hard



the Steiner Tree Problem. It has long been known to be NP-complete [Ka72], and remains

NP-complete even in Euclidean graphs of as few as two dimensions [HRW92]. 2

The Steiner Tree Problem in directed graphs is sometimes called the "Steiner Arbores-

cence Problem". For acyclic graphs, a branch-and-bound algorithm was proposed by Nas-

tansky et. al. [NSS74]. Although it is conceivable that this approach could be modified to

work with the Tadpole space-time graph, it would require exponential time (in general) to

run.

In short, sufficiently little progress has been made on the Steiner Tree Problem in gen-

eral graphs that heuristic approaches are commonly used in practice. Tadpole is no excep-

tion.

6.3 Tadpole Multicast Trees
A multicast stream, viewed as a tree in the space-time graph, has the following properties:

* It has a unique source nodelet, forming the root of the tree.
* It has some number of intermediate nodelets, having a single source and single des-

tination, comprising vertices of the tree with a single child.
* It has some number of branch points, having a single source and exactly two destina-

tions, comprising vertices of the tree with two children. Furthermore, one of these
children must be the nodelet which is one cycle later in the same pipeline, and the
other must be a nodelet on a different node. (The restrictions on the number and
nature of the children are artifacts of the NuMesh hardware; see section 2.11.)

* It has some number of destination nodelets, forming the leaves of the tree.

6.4 Heuristic for Steiner Trees
Our heuristic for minimum-cost Steiner Trees is based on the following observation. A

minimum-cost multicast tree has the property that if we take any two nodelets a and b in

the tree which are connected solely by intermediate nodelets, that chain of intermediate

nodelets must form a minimum-cost path from a to b in the reduced graph.

2. Interestingly, for graphs with bounded tree-width, a linear-time algorithm is known [KS90]. This
algorithm is only of theoretical interest, however, since the constants involved are enormous.



Consequently, our heuristic is as follows. Begin with any multicast tree which con-

nects the source to all the destinations. Choose any two nodelets which are connected

solely by intermediate nodelets, disconnect them from each other, then reconnect them

using a minimum-cost path. Repeat until the cost of the tree stops decreasing. 3

We improve this simple algorithm as follows. Let the two chosen nodelets (connected

solely by intermediate nodelets) be a and b. One of these is an ancestor of the other; say it

is a. Then deleting the intermediate nodelets disconnects not only a from b, but also the

two components of the tree in which a and b reside. Instead of finding a minimum-cost

path from a to b, we find a minimum-cost path from b back to any nodelet in the compo-

nent where a resides.

Of course, we can connect to that component only in certain ways; namely, those

which respect the idiom of the NuMesh fork operation. We incorporate this information

into the cost function by insuring that edges which correspond to "impossible" forks have

infinite cost.

6.5 Our Heuristic and High Bandwidth
This heuristic for finding low-cost Steiner trees has the advantage that it is based on mini-

mum-cost path computations which we have already analyzed and implemented code to

perform. Consequently, we automatically handle the case of high-bandwidth streams and

greater-than-one packet sizes, because we already dealt with them in the single-destination

case (Chapter 5). Indeed, it is the nature of our heuristic that any improvement to the code

for the single-destination case will immediately apply to the multicast case as well.

This property of code reuse together with its fair performance in practice are the main

arguments in favor of our heuristic.

3. Or until we get tired of iterating. Hey, it's a heuristic.





Chapter 7

Results

7.1 Overview
This chapter presents examples of Tadpole's performance. Although Tadpole is intended

for use with the three-dimensional four-neighbor diamond lattice topology, we restrict

ourselves here to one- and two-dimensional Euclidean meshes for ease of presentation.

7.2 A Simple Line
Our first example is named simple_line. Its purpose is to illustrate Tadpole's scheduling

capabilities. The network topology is the one-dimensional mesh with five nodes shown in

Figure 7.1.

A Figure 7.1B TopoloC gyD of simpleline example

Figure 7.1 Topology of simple_1ine example



The input file for simple line is given in Figure 7.2.1 This defines the nodes A through

(node A (addr 0))
(node B (addr 1))
(node C (addr 2))
(node D (addr 3))
(node E (addr 4))

(stream S1 (src A) (dest E))
(stream S2 (src B) (dest E))
(stream S3 (src C) (dest E))
(stream S4 (src D) (dest E))

Figure 7.2 Input file for simple_line example

E with one-dimensional coordinates 0 through 4. It also defines four minimum-bandwidth

streams named S through S4. Each stream's source is one of the nodes A, B, C, or D; all

four streams have node E as destination.

When we give this input to Tadpole, we get back the schedule shown in Table 7.1.

Cycle
Node

0 1 2 3

A (S 1) preg->B

B (S2) preg->C (S 1) A->C

C (S1) B->D (S2) B->D (S3) preg->D

D (S4) preg->E (S 1) C->E (S2) C->E (S3) D->E

E (S3) D->preg (S4) D->preg (S1) D->preg (S2) D->preg

Table 7.1 Generated schedule for simple_line example

Each entry in the table represents a thread, with ports indicated by the node with which

they communicate. Processor registers are denoted simply by "preg" (since distinguishing

processor registers is unnecessary when illustrating Tadpole's performance). For example,

stream S1 begins with a read from a processor register on node A during cycle 2; proceeds

1. The syntax for Tadpole input files is described in the Appendix.



through nodes B, C, and D on cycles 3, 0, and 1; and arrives at a destination processor reg-

ister on node E at cycle 2 again.

For this example, we have restricted ourselves to a single pipeline and have set the glo-

bal period to four cycles. Even with these restrictions, which require that the link to node

E be used at 100% capacity, Tadpole has scheduled the read of each source word so that it

will reach its destination without being delayed at any node.

7.3 Routing Around Congestion
Our next example is called around. It demonstrates Tadpole's routing capabilities. The

topology for this example is the two-dimensional structure shown in Figure 7.3.

Figure 7.3 Topology of around example

The input file is shown in Figure 7.4. Streams S and S2 go to node C from nodes A and

Figure 7.4 Input file for around example



B, respectively. Stream S3 goes from node A to node E. We will set the global period to

three cycles, meaning each of these streams consumes ! of the bandwidth capacity of the

mesh.

Tadpole's output for this case is shown in Table 7.2, where again we have restricted

Cycle
Node

0 1 2

A (S 1) preg->B (S3) preg->B

B (S3) A->D (S2) preg->C (S1) A->C

C (S 1) B->preg (S2) B->preg

D (S3) B->E

E (S3) D->preg

Table 7.2 Generated schedule for around example

ourselves to one pipeline. Note the routing of stream S3 through node D to avoid the con-

gestion on the link between node B and node C. Also note how dimensional routing (with

the horizontal dimension ordered before the vertical) would have saturated that link.

7.4 Multicast
Our multicast example is namedfork. Its network topology is a 100-node two-dimensional

complete Euclidean mesh. The input file is shown in Figure 7.5 (abbreviated for clarity). It

(node xOyO (addr 0 0))
(node xOyl (addr 0 1))
(node xOy2 (addr 0 2))
<(node x9y8 (a...ddr 9 8)>
(node x9y8 (addr 9 8))
(node x9y9 (addr 9 9))

(stream Sbig (src x2y7) (dest x9y0) (size 2) (bw 1.0))
(stream Sfork (src xOyO) (dest x9y8 x8y9))

Figure 7.5 Input file for fork example



defines nodes named xOyO through x9y9, with Euclidean coordinates (0,0) through (9,9).

It defines one stream named Sbig with source x2y7, destination x9y0, bandwidth 1.0 (the

maximum), and packet size two words.2 It also defines one minimum-bandwidth multicast

stream named Sfork with source xOyO and destinations x9y8 and x8y9.

Tadpole's output for this example is shown graphically in Figure 7.6. The heavy gray

Figure 7.6 Tadpole's routes for fork example

line shows the route of Sbig, while the thin dotted line shows the route of Sfork. Tadpole

2. Sbig uses a packet size of 2 because the same thread may not be scheduled twice in a row (mean-
ing a stream with packet size 1 may be scheduled at most every other cycle).



chose to place the actual fork on node x8y8 and to route around the Sbig stream.3

Although it cannot be seen from the figure, the fork on node x8y8 occurs on consecutive

cycles within a single pipeline, as required by the hardware.

7.5 A Silly Example
This example is called maze. Its network topology is a 49-node 7x7 complete Euclidean

mesh. It uses 12 maximum-bandwidth streams and one minimum-bandwidth. It is proba-

bly best understood by examining the output, whose routes are shown in Figure 7.7.
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Figure 7.7 Tadpole's routes for maze example

The high-bandwidth streams are denoted by thick gray lines; the minimum-bandwidth

by a thin dotted line. By totally saturating certain links, we ensure that only one route from

3. Routing around the high-bandwidth stream was not strictly necessary, since the second pipeline
on node x4y 1 (for example) could have been used to let the streams cross. Tadpole chose the route
it did because letting the streams cross would not improve the latency, and using both pipelines is
slightly more "costly" than using one (see section 4.4).
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the lower-left to the upper-right is feasible.4 With this trick, we can use Tadpole to solve

arbitrary two-dimensional Euclidean mazes.

7.6 Toroidal Nearest-Neighbor
This example is named near8. Its network topology is a 100-node, 10x10 complete

Euclidean mesh. Each node is the source of a minimum-bandwidth multicast stream

whose destinations are the eight surrounding nodes. Such a communication pattern is

characteristic of some cellular automaton applications.

For this example, nodes on opposite sides of the mesh are considered adjacent. That is,

the logical topology is a torus even though the physical topology is a simple grid. To han-

dle this, Tadpole must allocate routes all the way across the grid for nodes on opposite

sides.

Tadpole successfully routes and schedules near8 for periods as low as 17 cycles,

although the results are difficult to display graphically.

7.7 Conclusion
Tadpole performs well on these simple benchmarks, producing working results in a rea-

sonable amount of time. Even near8, a fairly large benchmark, takes less than 45 seconds

of CPU time to run on a typical workstation.

Unfortunately, Tadpole's heuristic approach makes it nearly impossible to make prov-

able statements about the quality of its results or its total running time. The basic operation

of finding a minimum-cost path using Dijkstra's algorithm with a binary heap is O(E log V)

[CLR90], which for the Tadpole space-time graph for a n -node mesh and period T

becomes O(T 2n log Tn) .5 However, the number of minimum-cost paths which we compute

4. Some would call this "bad placement".
5. This is obvious since there are Tn nodelets and T edges per nodelet corresponding to delays.
Purists might suggest the use of Fibonacci heaps (again, [CLR90]), but that would only help if T
were large, which it isn't.



depends on how much re-routing we have to do to find a feasible schedule, and there is no

obvious way to bound this. Our heuristic approach to finding Steiner trees (section 6.4)

further compounds the problem.

However, Tadpole's running time and results are good enough in practice that it is

being used as part of a more complex automatic compilation system for the NuMesh

[Me97].



Appendix

Configuration File Syntax

A.1 Overview
Tadpole's configuration file uses a Lisp-like s-expression syntax.

A.2 node Directive
The node directive defines a node. Figure A. 1 summarizes its syntax.

(node name (addr x y z t))

Figure A.1 Syntax of node directive

This defines a node named name with up to four coordinates x, y, z, and t. If fewer than

four coordinates are specified, those omitted default to zero. Thus a three-dimensional

mesh has t equal to zero; a two-dimensional mesh has z and t equal to zero; etc. Two nodes

are adjacent if the Manhattan distance between them (the sum of the absolute values of

the differences of corresponding coordinates) is one.

A.3 stream Directive
The stream directive instructs Tadpole to allocate a stream between nodes. Figure A.2

summarizes its syntax.

(stream name (src nodeO) (dest nodel node2 ... )
(bw bandwidth) (size size))

Figure A.2 Syntax of stream directive

This defines a stream named name with source nodeO and destinations nodel, node2,

and so on. nodeO, nodel, etc. must be names of nodes defined earlier in the configuration

file. The stream will have a packet size of size and a bandwidth not less than bandwidth



words/cycle. node2 and higher are optional (of course), size defaults to 1, and bandwidth

defaults to the minimum ( ).

The value of T is determined by command-line arguments to Tadpole.
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