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Abstract

The purpose of this research is to find ways of improving optical communication
through atmospheric turbulence by using spatial modulation. The performance of a
class of adaptive spatially modulated communication systems, in which the antenna
pattern at the transmitter is modified in accordance with the knowledge of the channel
state obtained from a beacon signal transmitted from the receiving terminal to the
transmitter, is examined.

For time-invariant channels satisfying a certain reciprocity condition, there
exists an adaptive system that achieves the maximum energy transfer possible from
transmitter to receiver. This result is applied to the turbulent atmospheric channel
by regarding the atmosphere as undergoing a succession of fixed states, and proving
that instantaneously the atmosphere is reciprocal. The performance of adaptive spa-
tially modulated systems for the turbulent channel is derived for both point-to-point
and deep-space applications. In the deep-space case we find that the turbulence does
not increase the average far-field beamwidth attainable with a given diameter aper-
ture, but fluctuations about this average beamwidth do occur as the state of the atmo-
sphere changes.

The effects of noise and approximate transmitter implementations on the perfor-
mance of the adaptive systems under discussion are considered. A hypothetical deep-
space system is specified and its performance is evaluated.
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I. INTRODUCTION

Optical communication systems in which the clear turbulent atmosphere comprises

part of the transmission medium are characterized by reduced system performance when

compared with free-space systems. From a communications viewpoint, the loss of spa-

tial coherence caused by the turbulence limits the performance of optical systems in

two ways: (i) a receiving aperture diameter (for a heterodyne receiver) beyond which

the signal-to-noise ratio is not enhanced by increased aperture size; and (ii) a maxi-

mum transmitting aperture diameter (for a plane-wave transmitter) beyond which the

far-field beamwidth is turbulence-limited and independent of aperture size. Each of

these effects may be taken to define a coherence length for the turbulence, so that per-

formance saturates when the related aperture diameter is made larger than this length.

In point-to-point applications on the Earth with the receiving aperture in the near

field of the transmitter, the first of these limitations is the significant one. For Earth-

to-Deep Space applications the receiving aperture at the spacecraft contains only a single

coherence area, and thus the second of these limitations is the significant one.

Much work has been devoted to finding receiver structures for the point-to-point
1-3problem that are capable of using more receiver aperture than a coherence area.

These approaches, which assume a fixed (usually a plane-wave) antenna pattern at the

transmitter, are fruitful because in point-to-point applications the turbulence does not

greatly affect the total carrier energy incident upon the receiving aperture. This energy

is no longer in a single plane-wave component, and thus spatial diversity or wavefront

tracking techniques must be employed, but the energy is there at the receiving aperture.

This is not the case in Earth-to-Deep Space applications. The energy received at the

spacecraft is proportional to the energy in the proper plane-wave component of the field

leaving the top of the atmosphere. Any energy that is scattered out of this component

during propagation from the ground to the top of the atmosphere is lost, as far as the

spacecraft is concerned. Our primary aim will be to find a system for which the carrier

energy received at the spacecraft does not saturate, that is, become turbulence-limited

rather than diffraction-limited, as the transmitting aperture diameter is increased.

We shall study a class of adaptive spatially modulated transmitters in which the

antenna pattern of the transmitter is modified in accordance with the knowledge of the

atmospheric "state" obtained from a beacon signal sent from the receiving terminal to

the transmitter. The principal conclusion that we reach is that there exists a trans-

mitter of the type described whose average far-field beamwidth (over the turbulence

ensemble) is the same as the diffraction-limited beamwidth of a lens of the same aper-

ture diameter.

This report is organized as follows. In Sections II and III an abstract model is

developed for communication through a time-invariant inhomogeneous spatially modu-

lated channel. We show that for a class of channels (reciprocal channels) it is possible

to greatly improve system performance (measured in terms of received carrier energy)

1
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by use of spatial modulation and feedback, even if the exact state of the channel were

unknown a priori at both the transmitter and receiver. The results are extended to the

time-variant turbulent atmosphere in Sections IV, V, VI, and VII with primary emphasis

on deep-space applications.

In Sections II-VII a noiseless environment is assumed. This restriction is removed

in Section VIII, and the effects of noise are considered. Section IX concludes with a

calculation of the performance of a hypothetical adaptive system.
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II. APODIZATION IN THE ABSENCE OF NOISE

2. 1 CHANNEL MODEL

We begin our study of spatial modulation by developing some abstract results for a

time-invariant inhomogeneous spatially modulated channel. The model that we shall

postulate approximates the state of the turbulent atmospheric channel at a single instant

of time.

Consider the system geometry shown in Fig. 1. We wish to transmit inform-

ation using electromagnetic radiation. We shall assume narrow-band signals and

CHANNEL
XMTR NTENNA MEDIUM ANTENNA RECEIVER

Fig. 1. System configuration.

describe the electric field at any point in space as

E(r,t) = Re (r,t) ec] (1)

where E(r, t) is the field at a point r and time t, E(r, t) is the complex field amplitude,

and xc is the carrier radian frequency. Note that the time dependence of the complex-

field amplitude, E(r, t), is due solely to temporal modulation at the transmitter. Since

our work is concerned only with improving the received carrier energy, we shall neglect

any temporal modulation at the transmitter and suppress the time dependence of E(r, t).
Thus the electric field is

E(r,t) = ReE (r) e ct]. (2)

We would like to eliminate the vector nature of the channel. We do this by assuming
that the channel has no depolarizing effect on the field sent through it, and by communi-
cating with a single transverse component of the electric field. For that component we
now have

E(r,t) = Re E(r) ec (3)(1) e ~~~~~~~~~~~~~~~~~~~~(3)

3



From the linearity of Maxwell' s equations (either in time or frequency domain) we

conclude that the system shown in Fig. 1 is linear. To describe this linear system we

introduce an impulse response (Green's function), and for convenience we choose to

define it in terms of the complex-field amplitude. Let the transmitting antenna be a

\1

CHANNEL

MEDIUM

1 R2

Fig. 2. Antenna geometry.

planar aperture R 1 , and the receiving antenna be a planar aperture R 2, whose plane is

parallel to that of R 1 (see Fig. 2). The impulse response, h(p', p), of the system is the

complex-field amplitude at a point p' in R 2 in response to a complex-field amplitude

point source located at point p in R 1. If there is some arbitrary source distribu-

tion u(p) in R 1, then the resulting output-field amplitude, v(p'), in R2 is

v(p') = u(p) h(p', p) dp. (4)
R1

Eventually we shall need to study the field at R 1 that results when a field is trans-

mitted from R 2 , so we define another impulse response, h(p, p'), to be the complex-field

amplitude at a point p in R1 in response to a point source located at point p' in R 2 . Once

again, if there is an arbitrary complex-field source distribution v(p') in R 2 , then the

resulting output field, u(p), is given by the convolution of the input with the impulse

response. That is,

u(p) = v(p') h(p, p') dp'. (5)

2

Within the framework just described there are some interesting questions that can

be posed.

1. What unit energy source distribution u(p) on R 1 maximizes the total carrier

energy received over the aperture R2, given that the channel state (that is, the impulse

responses h and h) is known to both the transmitter and the receiver? (By energy

4
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we mean fR |u(p) 2 dp, which really corresponds to the power in the original field-

not field amplitude. Since we consistently suppress the time behavior of the spatial

waveforms, it is convenient to call the expression the "energy." This convention will be

maintained throughout the report.)

2. What unit energy source distribution u(p) on R 1 maximizes the total carrier

energy received over R 2 if the state is unknown a priori at both ends of the system, but

a channel beacon (from R 2 to R1) is available?

3. What are the resulting output energies of these optimal known-channel and

unknown-channel systems?

The extent to which an unknown-channel communication system can perform as well

as the optimum known-channel system, for the spatially modulated channel under dis-

cussion, is the crux of this report.

2. 2 APODIZATION FOR KNOWN CHANNELS

We shall consider the first problem. Apodization problems (that is, maximizing the

received energy for a given transmitted energy) when the channel state is known at both

terminals are easily solved, in principle, by solving for the natural "spatial modes" of

the system. In order to formulate the problem in these terms, we must itroduce some
4-6

added definitions. These known-channel results are not new and no proofs will be

given.

We define two kernels

K(p,r) = h(p',r) h(p', p) dp' (6)

2

K(pr') = h (pr') h(p,p ' ) dp. (7)

These kernels are both Hermitian and non-negative definite.

Let the K kernel have orthonormal eigenfunctions .i(p), and associated eigen-

values i, and let the K kernel have orthonormal eigenfunctions i(p'), and associated

eigenvalues i; that is, {i} is a set of orthonormal functions defined on R 1 such that

K(p,r) 1i(r) dr = rligi(p), (8)
1

and similarly {4i } satisfies the corresponding Fredholm integral equation in terms of

the kernel K. These sets of eigenfunctions may be assumed to be complete on their

respective domains if we augment them to include eigenfunctions with zero eigenvalues.

(The Fredholm integrals must be over finite regions, otherwise the eigenfunctions will

not be countable. When we make use of eigenfunction expansions, we shall be careful to

5
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Table 1. Kernels K, K, and Q.

DE FINIT IONS MODE L

K(p, r)= JR 2 (P ',)(p)', r) dp' R1 R2

R K(p, r) i(r) dr = 1ii(P ) i(Pp', ) i(p )

J1 C(P ')=fR1 Yi(P) h(P- 'p) dp IF 11 IZ > ... THEN 1 (p) IS THE UNIT
ENERGY WAVEFORM THAT DELIVERS
MAXIMUM ENERGY TO R2

K(p ',r')=fR (prdp R1 R2

11~~~~~1 2
_R _i _j(-P -) d-p- IF >-X >'' THEN d (p ') IS THE UNIT

1 1i2 ENERGY WAVEFORM THAT DELIVERS
MAXIMUM ENERGY TO R1

Q(p', r')= R 1 h*(pp)h(r, p) dpR 1 Rv ~ I * ~ ~ ~ ~ ~ R 1 R2

CONJUGATION
TRANSMITTER

aii(rp)

6
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use finite domains for the kernels K and K. On occasion we shall use these kernels

over infinite domains, but in these instances we shall not refer to the eigenfunctions or

eigenvalues.) Since both kernels are Hermitian and non-negative definite, we have

li 0, Xi > 0.

We now define the function i i(p ) to be the response at R 2 to a source field qi(P)

at R1; in other words,

/i Ti(P') = S i(p) h(p', p) dp. (9)

We also define the function D/ii. ~i(P) to be the response at R1 to a source field i(p ' )

at R 2; that is,

Xi i(P) (p') h(p, p') d p '. (10)
12

It may be shown that {pi) and {) are orthonormal sets of functions on their respective

domains. Furthermore, by properly augmenting {i } and {i) to include functions whose

associated eigenvalues are zero, we may

regard these sets as being complete on their

°l1'1 hal "°1 respective domains. These properties of

the input and output eigenfunctions of the

kernels K and K will be used frequently,
a2 P2 h ~ a2 /2t2

and so they have been summarized in

Table 1 for future reference. They lead

to parallel channel decompositions of the
ann h an o,. original channels 5' 6 (see Fig. 3).

Slepian 7 , 8 has shown that the eigenfunc-

tions associated with propagation through

free-space are the prolate spheroidal wave

bl vX t1' P 1 functions, and Greenspan has used this

result to obtain bounds on probability of

b2vF2 2CD b2 error for the spatially modulated free-

space channel. The impulse response of the

medium that we are modeling (the turbulent

atmosphere) is unknown, however, and were

it known it would still be difficult, if not

impossible, to solve the resulting Fredholm

(b) equations for the eigenfunctions and eigen-

Fig. 3. Parallel channel models. values. Nevertheless, we shall suppose that
(a) h channel. (b) h channel. not only are the impulse responses h and h

7
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known at each terminal but also the eigenfunctions and eigenvalues of their associated

kernels K and K are known.

Consider the apodization problem from R 1 to R 2 . Suppose that we have an available

energy Et to be used at R 1, and wish to adjust the transmitter to maximize the energy

received at R 2. Assuming that the eigenfunctions ({i) are ordered in such a way that

'q1 > 2 > 3 _ ....

we find that the optimum waveform to use is 7 ' 9

< 91l(P)t I

and the received waveform is

,/Et,1 b1 (')

which has energy EtrI. Note that by conservation of energy 1 < 1. Similarly, we can

show that

Ti 1, i ~ 1

It is easy to see that if we had energy E t available at R 2 and wished to maximize the

energy received at R1, then with {ci) ordered such that

1 > k2 3 ...

the optimum waveform is

q E t 1(P')

and the resulting received waveform is

/EK i(P)

which has energy EtX1.

Thus the solution to the apodization problem when the channel state is known reduces

to the problem of finding the solutions to a Fredholm integral equation. The solution of

the resulting integral equation is nontrivial; for the free-space channel answers are

known only for certain simple antenna geometries. 4 ' 7,9,10 Nevertheless, some inter-

esting comments can be made.

In transmitting from R 1 to R2 the maximum received energy, when an energy Et was

transmitted, is Etl, and il l 1. When will ll be close to unity? This question may

be answered in terms of the so-called degrees of freedom of the channel, a number that

tells how many of the eigenvalues are "close" to unity. We shall discuss degrees of free-

dom in more detail after we study apodization for unknown channels.

8



2.3 APODIZATION FOR UNKNOWN CHANNELS

There are many ways of trying to find the optimum waveform for apodization through

a time-invariant unknown spatial channel. Since we wish to apply our work to the (time-

variant) turbulent atmosphere, without justification, we shall specify a method of com-

munication and examine its performance. In Section III we show that for reciprocal

channels the performance of the system proposed here approaches the optimal energy

transfer if the channel is known at each terminal, and eventually we shall show that the

atmosphere is a reciprocal channel.

Fig. 4. Two-way apodization, unknown channel.

Suppose we are trying to maximize the energy received at R 2 using the system shown

in Fig. 4, subject to the following constraints.

1. We transmit a unit energy beacon from R 2 to R1.

2. Using the received beacon waveform (in a yet unspecified way), we adjust the

transmitter at R 1 .

3. We transmit energy Et from R 1, regardless of the amount of energy received

from the beacon.

We denote the beacon waveform (at R 2) as v(p'); thus the received signal at R 1 ,

Uo(p), is

u(p) = v(p') h(p, p') dp.
R 2

(11)

Let us now assume the following transmitter implementation at Ri: We receive the wave-

form u (p) and transmit a replica of the u(p) waveform, scaled to have energy Et, and

propagating in the opposite direction. Mathematically, the transmitted waveform, u (p),

may be written (see Appendix A)

E 1/2

u (P) = Lf v (p') K(p', r') v (r') dp'dr'

L 2 J~~~~I/

* _ -2@cTd
u*(p) e I

0

9
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where T d is the lumped delay time of the propagation of the beacon from R 2 to R 1 and

the transmitter adjustment time. Since Td is a constant, and just adds a delay to the

time-domain fields, we shall delete it from the expression for u (p). This makes the

transmitter at R 1 nonrealizable, but at any later point in the analysis we may add the

delay in our results. When we transmit u (p) the signal received at R 2 is

v( i (P) h(r', p) dp

1

: .... v. -- _/ dp dp' v (p') h(r', p)h (p, p'),
f v (p') K(p', r') v(r') dp'dr'2 R 1 d -p

R2

(13)

Now we assume that the receiver at R 2 cannot use all the energy in v (p'), but rather it

heterodynes (see Appendix A) v (p') with the beacon waveform v(p'). Thus the energy

that the (heterodyne) receiver measures is

2 Et v') (JR h(r', p) h (p, p' ) dp) v(r') dp'dr'
A* ~JR 2 1

v (r') v(r') dr' = 2 _ _ v ) d (14)
H2 JJ v (p') K(p',r')v(r') dp'dr'

2

where we have used the fact that v(p') has unit energy, and substituted from Eq. 13 for
A* -
v (r1 ). We define a kernel

Q(p', r) = h(r', p) h*(p, p) dp (15)
R -

in terms of which Eq. 14 may be written

H22 Et f J v (p') Q(p', r ) v(r') dp dr' IR

vS (P ) K(P r') v(r') dp'dr' (16)

The Q-kernel defined in Eq. 15 is more than a notational convenience; it has the

following interpretation. Let {i} be the orthonormal eigenfunctions of the Q-kernel,

with eigenvalues {ai}. That is

R Q(p', r') i(p ) dp' = a(17)

(As with the eigenfunctions of the K and K kernels the eigenfunctions of the Q-kernel

are countable only if R2 is finite.)

10



Note that the integration is performed on the first variable of Q, which is why the eigen-

functions are conjugated in (17). If Q is Hermitian symmetric, then (17) is equivalent

to the usual Fredholm equation. Without further information about h and h we cannot

tell whether or not Q is Hermitian or non-negative definite. Substituting for Q from

(15) and interchanging the orders of integration, we may write (17)

(i 5i(P') h(p, p') dp' h(r', p ) dp = a i (r). (18)
1 2

In other words, if one transmits (p') from R 2 and uses the "turn around" (conjugation

operation) transmitter at R 1, then the signal received at R 2 is ai i (r'), where the con-

jugation arises from the difference in propagation direction (R1 to R 2 instead of R 2 to

R 1 ). The energy in the signal received at R 2 is ai 2, since i has unit energy. This

property of the Q-kernel will be used often later in this report, and so it is included in

Table 1 (with the properties of the K and K kernels) for future reference.

Up to this point, we have arbitrarily assigned a great deal of structure to the apod-

ization problem that we are solving. To be able to compare our two-way (Q-kernel) sys-

tem with the one-way (K-kernel) system of section 2. 2 we must make some further

assumptions. Throughout we shall refer to the optimum known-channel (one-way) apod-

ization system described in section 2.2 as the K-kernel system. Similarly, we shall refer

to the unknown-channel (two-way) system described here as the Q-kernel system. Basi-

cally we are denoting each system by the kernel describing the system' s energy perfor-

mance. We shall now discuss the performance of one-way systems in terms of degrees

of freedom. We shall return to two-way apodization systems in the context of reciprocal

channels in Section III.

2.4 DEGREES OF FREEDOM

The discussion here will be restricted to one-way apodization problems. We use the

h channel as an example, but all comments apply equally well to the h channel.

The degrees of freedom, Df, of the channel has the following properties. 4 ' 8 11

1. Df is a function of the antenna areas (R1 and R 2) and the impulse response of the

intervening medium, and Df increases monotonically as either or both of the antenna

areas are increased.

2. Under the assumption that the eigenfunctions f{i) are arranged in order of

decreasing eigenvalues, then if

i Df li 1

i > Df rli - 0.

3. For the free-space channel with concentric apertures

11
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A1A 2
Df 2'

(Xz)

where Al is the area of region R 1, A 2 is the area of region R 2, X is the wavelength of

the radiation, and z is the perpendicular distance between R 1 and R 2 .

Thus Df determines how many of the spatial modes can propagate through the chan-

nel without excessive loss. It is analogous to the 2TW limitation on the number of time-

limited, "essentially" bandlimited orthonormal signals in the time domain. Also, since

the higher numbered eigenfunctions will resemble sinusoids of increasing spatial fre-

quencies, 3 it is apparent that the channel severely attenuates the high spatial frequen-

cies. Spatial bandwidth considerations will be treated in detail in Section VIII, and

extensive use will be made of the degrees-of-freedom concept.

12



III. RECIPROCAL CHANNELS AND STATE KNOWLEDGE

3.1 RECIPROCITY CONDITIONS

We have made few assumptions concerning the impulse responses, h and h, and

their associated kernels K, K, and Q. We might expect that if there is some strong

"correlation" between the functions h and h, then the unknown-channel communication

system could perform as well as the optimum known-channel communication system.

We shall now investigate possible "correlations" between the two impulse responses,

called "reciprocity conditions," and the communication-oriented consequences of reci-

procity.

For our purposes, the most important reciprocity condition is point reciprocity. We

shall say that the channel under consideration is point-reciprocal if and only if

h(p', p) = h(p, p') V p E R 1, p' E R 2 .

This condition implies that if we had a unit-energy point source located at a point p in

R 1 , then the field received at a point p' in R 2 would be the same as the field received

at p from a unit-energy point source located at p', hence the "point" nature of the prop-

erty.

It should be noted that without further assumptions we cannot simply apply the super-

position principle to (19) and conclude that transmitting a field from R 1 to R has the

same effect as transmitting the same input field from R 2 to R 1 . The superposition prin-

ciple does allow one to draw some interesting conclusions from (19), but they are some-

what different from the (false) conclusion just mentioned. Let u(p) be an input field on

R 1 . Multiplying (19) by u(p) and integrating (on R1), we obtain

u(p) h(p', p) dp = u(p) h(p, p') dp )Ep'E R 2.

The left-hand side is the output field that results when u(p) is the input field. The right-

hand side is the output of a receiver that heterodynes h(p, p') with u(p). Equation 20

shows, therefore, that for a point-reciprocal channel the following are equivalent: trans-

mitting u(p) from R 1 and measuring the field at the point p' in R 2, and placing a point

source at p' in R 2 and heterodyning the field received at R 1 with u(p).

If u(p) = 1 (zero-phase normally incident uniform plane wave), then (20) reduces to

h(p', p)dp = h(p, p) dp o p' E R 2.

If a medium satisifes (21), then we say that the medium satisfies a singly integrated

reciprocity condition. A similar singly integrated reciprocity condition results from

13
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integrating (19) over R 2. These singly integrated conditions are always satisfied by

point-reciprocal channels, but since some arguments will only require singly integrated

reciprocity, this weaker condition is defined explicitly.

A doubly integrated reciprocity condition may be obtained by integrating (21) over

R 2,

S h(p', p) dp dp' hR (p, P' ) dp dp'. (22)
2 1 2 1

This equation may be interpreted as follows: Each term is the output of a heterodyne

receiver when the transmitting and local-oscillator fields are both zero-phase normally

incident uniform plane waves, with the transmitter at R 1 on the left side and the trans-

mitter at R 2 on the right side.

We now investigate some conditions stronger than Eq. 19. Let us assume that the

channel is point-reciprocal, and also that the impulse responses, h and h, are spatially

invariant. That is,

h(p', p) = F(p'-p) = h(p, p') O p E R 1, p' E R 2 (23)

Point reciprocity implies that the two impulse responses are equal, spatial invariance

means that the impulse responses only depend on the single vector quantity p' - p. Spatial

invariance allows us to rewrite our usual convolution integral (4) in the form

v(p') = i u(p) F(p'-p) dp. (24a)

It is readily seen that the output field is invariant with respect to a spatial translation in

the input field. That is,

v( +p') = u(a+p) F(p'-p) dp )¢ -, (24b)
R 1

which is the spatial analog of the usual time-invariance property of linear systems in

the time domain.

The spatial invariance of the impulse responses, in addition to point reciprocity,

allows us to prove the following relation. For a spatially invariant, point-reciprocal

channel if an input field u(p) at R 1 causes an output field v(p') at R 2 , then an input u(-p')

at R 2 causes an output v(-p) at R 1. In other words, if

v(p%) = u(p) h(p', p) dp,

then

14
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v(-p) = u(-p') h(p, p') dp'. (25)

2

The proof of this property is presented in Appendix A, but the essential nature of (25)

can be illustrated by the following example. For this example we use a ray optics inter-

pretation of the impulse responses h and h. The function h(p', p) is assumed to be the

complex amplitude of the ray leaving the point p in R1 that arrives at the point p' in R2.

Thus for point-reciprocal channels the complex amplitude of the ray from p to p' is

the same as the complex amplitude of the ray from p' to p. From Fermat' s principle

it is apparent that the two rays in question (p to p' and p' to p) travel along the same

path through the channel medium but in opposite directions. Point reciprocity therefore

tells us that rays going in opposite directions on the same path are equivalent (same

complex amplitudes). For spatially invariant channels we have h(p', p) = F(p'-p) and

in our ray optics terminology this means that the complex amplitude of a ray from in

R 1 to C in R 2 depends only on the difference , - . This implies that two rays are

equivalent if the vectors from their source points to their output points are parallel;

hence, such rays will be called parallel rays. With this ray optics interpretation in

mind consider the following example. Let

u(p) = 6 (p-a) + 6(p-b),

where 6(.) denotes a unit-amplitude point source. Consider a point c in R2 ; since the

medium is point-reciprocal, we have

h(c, a) + h(c, b) = h(a, c) + h(b, c). (26)

The medium is also spatially invariant, so

h(a, c) + h(b, c) = F(c-a) + F(c-b)

= h(-c,-a) + h(-c, -b). (27)

As shown in Fig. 5, the vectors from the points a and b in R 1 to the point c in R2 are

antiparallel to the vectors from -a and -b in R 2 to -c in R 1 . Equation 25 (or Eq. 27)

shows that these antiparallel rays are equivalent. This is what we would expect, since

as we have seen point reciprocity implies the equivalence of rays going in opposite

directions on the same line, and spatial invariance implies that any two parallel rays

are equivalent; together they imply (27). In fact, spatial invariance (see Eq. 24b) allows

us to generalize (25) to

v(-p) = R u(,-p') h(p, p') dp' ( 5. (28)

2

The necessity of using u(-p') in (25) may be removed by imposing an additional

15

_____ I � __



b RAY I

/

( ) =s (- 'a ) +s ( p-a)

(a)

RAY 3

RAY 4

u ( -') = ( ) +8 +) + ( )

(b)

Fig. 5. Reciprocity for spatially invariant channels.
Rays 1 and 4 are antiparallel,
rays 2 and 3 are antiparallel.

constraint on the channel medium. Let the channel be point-reciprocal, and spatially

invariant, and in addition let it be isotropic. Thus we now have

(29)h(p', p) = F(I'- ) = hp, ) pE R 1, p'E R 2

Using (29), we can show (see Appendix A) that if

v(p') =

then

v(p) =
2

u(p) h(p', p) dp,

u(p') h(p, p') dp'.

The hierarchy of reciprocity conditions, and some of their immediate consequences,

are summarized in Table 2. Before turning to the communication-oriented consequences

of reciprocity, it is worth while to note that the free-space channel studied by Greenspan 4

satisfies all of the conditions in Table 2. This is easy to verify because we have explicit

formulas for the impulse responses h and h. The inhomogeneous medium of our

16
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turbulence model is neither spatially invariant nor isotropic, but it may still satisfy

point reciprocity or one of the integrated reciprocity conditions. This is a question of

importance for this work, and we shall return to it.

3. 2 APODIZATION FOR POINT-RECIPROCAL CHANNELS

We shall compare the performance of the K-kernel (known-channel) and Q-kernel

(unknown-channel) systems described in Section II. Extensive use will be made of the

properties of the K, K, and Q kernels, hence the reader may find it helpful to review

Table 1. We assume throughout that the channel under consideration is point-reciprocal.

From the definitions in Section II it is apparent that for any point-reciprocal channel

Q(p',r') = K(p',r', p',r ' ER 2 (31)

and

=. = x.. (32)5i(P' ) = <i(P'), a i = .i' (32)

Therefore, since i is now an eigenfunction of Q, if we transmit i from R 2 and use the

conjugation transmitter at R 1 , we receive i at R 2 . On the other hand, i is an eigen-

function of K, so when we transmit i from R 2 we receive \ T . at R Therefore we
' 1 1 l'

have shown that {}) has the following interesting property. It is a set of orthonormal

functions on R 1 that maps into a set of orthonormal functions on R 2 through the linear

filter h(p', p). This is the same property that the input eigenfunctions of the K kernel,

{ij), have. In fact, it may be verified that .i is a solution of the Fredholm integral

equation with the K kernel, and that the associated eigenvalue is X.. So, for a point-
1

reciprocal channel, we have

i(P) Pi (P), ri ( (33)

Recalling that the optimum waveform for apodization in the known-channel case is

Et7 41 (p), we see that if we used 41 (p') as a beacon waveform in the unknown-channel

case the renormalized waveform used at R 1 would then be \/E E l(p), which is the opti-

mum one-way result. Unfortunately, for an unknown channel there may be no way to

determine 1 ('). We shall return to comment about what can be done without

knowing 1 (').

We have just shown that for reciprocal channels, knowing p1(P ' ) is equivalent to

knowing 1 (p). We would like to obtain the weakest condition sufficient to prove this

property. In Appendix A it is shown that if Q = K, then we may make the identifica-

tion (33), and the optimality of the Q-kernel system follows in the same manner as pre-

sented above. It is also readily apparent that any channel satisfying (33) also must

satisfy (32), thereby implying that Q = K. Thus Q = K is a necessary and sufficient

18



condition for Eq. 33.

From the definitions of Q and K it directly follows that the two kernels are equal

if and only if

(p, p')(h(r', p)-h(p, r')) dp= 0 kplr R (34)

That is, h(p, p') is orthogonal (in L 2 (R1)) to h(r', p) -(p, r') R p', r E R2. This orthog-

onality condition is somewhat weaker than point reciprocity, as may be seen from

applying the Schwarz inequality to (34). We obtain

0= j (- p)(h(r)-h(p, r')) dp

1

(jR hdP) (<1 h(r ',p-h p2 d-) ) 1 p',rER. (35)

Hence a sufficient, but not necessary, condition for Q = K is

R, Ih(r ,p)-h(p, r) 2 dp= E R. (36)

In other words, h(r', p) = h(p, r') in L (R1 ).

We have derived a relation, (33), between the eigenfunctions and eigenvalues of the

K and K kernels that is valid for point-reciprocal channels. A necessary and sufficient

condition for the validity of (33) has also been derived. These results are summarized

in Table 3. The most important result is that (33) allows us to prove the existence of

an unknown-channel (Q-kernel) system that performs as well as the optimal known-

channel system.

3.3 OPTIMAL SPATIAL MODULATION TECHNIQUES

We return now to the problem of selecting a beacon signal for a Q-kernel communi-

cation system, when transmitting through a point-reciprocal channel. We have seen that

we can achieve the optimal one-way energy transfer from R 1 to R 2 if we can use C1 (')

as the beacon signal. We shall now discuss what can be done to obtain 61 (P') for two dif-

ferent cases of interest, a "deep-space" channel, and a point-to-point channel on the

Earth.

First, consider the deep-space channel, shown in Fig. 6. We assume that all of the

inhomogeneities (turbulent eddies) are confined to a small region near R 1 (on the Earth),

and that the rest of the path to R 2 (the spacecraft) is through free space. We have called

this a deep-space channel, to emphasize the fact that the path length from the top of the

atmosphere to the spacecraft is quite long. How long it must be for our purposes must

19



Table 3. Consequence of reciprocity.

SPACECRAFT R2

I
FREE SPACE

<XMTR -RTOP OF ATMOSPHERE

EARTH

Fig. 6. Deep-space apodization problem.
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be considered. Suppose the distance involved is such that when a beacon v(p') is trans-

mitted from R 2 the field received over a large planar region tangent to the top of the

atmosphere and centered on the line from R 2 to R 1 is a normally incident uniform plane

wave with amplitude proportional to

v(p') dp'. (37)

2

We assume that regardless of the field sent from R 2 the field received at R 1 depends

only on the field in that region at the top of the atmosphere where the assumption leading

to (37) is valid. We have assumed that there is a large planar region at the top of the

atmosphere subtending essentially no solid angle at the spacecraft compared with the

far-field beamwidth of the R 2 aperture. (Specifically, we require that the diameter of

the region of interest at the top of the atmosphere be much smaller than the minimum

of Nfzk and z/d, where z is the path length from the top of the atmosphere to the

spacecraft, X is the wavelength of the radiation, and d is the diameter of the R 2 aper-

ture.) Furthermore, for any beacon transmitted from R2, the field received at R 1 only

depends on the field in the region at the top of the atmosphere that we have just defined.

We shall comment on these assumptions eventually. Let us first consider their conse-

quences for finding 1,I the optimum beacon signal.

Since the field at the top of the turbulence will be a normally incident uniform plane

wave (at least as far as R 1 is concerned) regardless of the v(p') that we choose and 1(P ' )

is the eigenfunction of K that maximizes the energy received at R 1, 1 (p') must also

maximize the energy received at the top of the atmosphere. The energy received at the

top of the atmosphere is proportional to

2~2

and from the Schwarz inequality we have

2

| v(p') dp' | S dp' S2 v(P')1 2 d'
2 2 2

A 2. (38)

Equality holds in (38) if and only if

v(p') = e p' R:2' (39)
where is a real constant.

where is a real constant.
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Thus, for the deep-space channel, 1(P') is a normally incident unit-energy uniform

plane wave, regardless of the state of the turbulence, and from section 3. 2 we see that

the Q-kernel system with this beacon will transfer the maximum energy possible from

R 1 to R 2 .

Let us return to the assumptions that led to the derivation of Eq. 39. In the absence

of any ducting phenomenon in the atmosphere it is quite reasonable to assume that for

a finite aperture on the ground there is a large planar region tangent to the top of the

atmosphere through which any field energy from the spacecraft that reaches R 1 must

pass. By ducting we mean any atmospheric phenomenon that would radically alter the

direction of propagation of any incident radiation. Thus in the absence of ducting the

distance to the spacecraft need only be long enough that the region of interest at the top

of the atmosphere subtends essentially zero solid angle at the spacecraft compared with

the far-field beamwidth of the R 2 aperture. For typical apertures on the ground and the

spacecraft this condition could be satisfied at synchronous altitude. On the other hand,

if there are some atmospheric phenomena that disqualify the previous assumption, the

proof of (39) will still be valid if the path length is such that the entire Earth subtends

essentially zero solid angle at the spacecraft compared with the far-field beamwidth of

R 2 . Hereafter, when we refer to a deep-space channel we shall mean that the path

length is such that the statements leading to (37) and the proof of (39) are valid. As we

have seen, this may be true at synchronous altitude, which ordinarily would not be called

a deep-space channel.

Let us now consider what happens when the path length is not extremely long, the

R1 R2

INITIAL BEACON

- Vo (')

RECEIVED BEACON

R o ( h (p, - ' ) dp'
2 -

TRANSMITTED WAVEFORM

E4 f v* ( ) h* ( p, p' ) d p
A 2 RECEIVED WAVEFORM

,E/ Jf Vo-'h-,'hr,0 P )h)( )h( )d'd -_.

UPDATED BEACON

v ( r) = J J Vo )( p' ) h ( d p ) -(' dd
1TIME

TIME

INCREASING etc.

Fig. 7. Adaptive beacon system. (Arrows denote direction
of propagation.)
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point-to-point channel. For this channel neither (p' ) nor ~1(p) will be uniform plane

waves, and since, conceptually, it is as difficult to solve for 41 as it is to solve for )1'

we cannot make implementing an optimal system any easier by going to a two-way sys-

tem. A two-way system can be designed, however, to give near optimal performance

(in terms of energy transfer). Suppose an initial beacon signal vo(P') is sent from R2

to R 1 and the conjugation operation transmitter is used at R1, as described in sec-

tion 2. 3. When the signal returns to R 2 , the beacon transmitter "turns around" this

received signal, and uses this as an updated beacon, v (p'), after proper renormaliza-

tion. This adaptation process (see Fig. 7) continues until the over-all system is sta-

bilized with a fixed beacon signal VF(p'). This system will then provide near optimal

performance, as can be seen in the following way. Since {i} are complete on R2, we

may express v (P') in the form

0o

s U 0.1v(40)

i=l 1

where

v0 = v (p') i (p') dp'.
v i 2

We shall have occasion to use infinite summations; in all cases this notation should be

interpreted as the limit of the partial sums in the L2 space on which the summands are

defined. The beacon signal as received at R 1 , therefore, is

00

v0 4i(P) (41)

i= 1

and the signal received at R 2 is

2. (42)00\A Ej VoiXib i (p'), (42)
i=l 1

where A is a constant that normalizes the field transmitted from R 1 to have energy Et.

As the process of adaptation continues, the communication system that we have described

will tend to use only those components in the expansion of v (P') that propagate through

the channel with (essentially) no attenuation. In particular, if Vk(P') denotes the beacon

signal used after k R2-R1- R 2 round trips, then we have

00

vk E v X i(p') k = 1, 2, 3, ... , (43)

i=l 1

23
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where Bk is a constant that normalizes vk(P') to have unit energy. Since we have

0 < Xi . 1,
1

it is apparent that as the adaptation process continues, the beacon signal converges (in

L 2 (R2)) to a signal that yields the optimum energy transfer from R 1 to R 2. (This state-

ment requires v # 0. That is,

va O(P') 1(p ' ) dp' O.
2

We assume that v (P') satisfies this condition.) Moreover, this convergence is such that

the energy performance increases monotonically as time goes on, and thus an adaptive

system could be built that would continue changing the beacon until a certain level of per-

formance, say 0. 9Et received at R 2 , is achieved and then fix the beacon. Note that the

results obtained here apply to a time-invariant channel, in Section VII they will be gen-

eralized to the time-variant atmosphere.

Let us consider how long it takes for the convergence that we are talking about to

take place. Suppose that the number of degrees of freedom of the channel, Df, satisfies

the following assumptions:

1. Df > 1

2. k i 1 i Df

3. i =0 S i > Df.

The first of these assumptions means that the two antennas are in the so-called near

field, and the second and third assumptions are idealizations of the properties of Df.

If Df has these properties, then (43) reduces to

Df

vk(p) = a v Op(p') k = 1, 2,3, ... (44)

i= 1

and the convergence is completed in a single round trip. If any one of these assumptions

is not satisfied, then the convergence of the beacon signal will take an infinite number

of round trips, although if Df is greater than one, and assumptions 2 and 3 are approx-

imately true, then the convergence is "essentially" complete in one or two round trips.

Even if the three assumptions are satisfied, and (44) is the beacon signal that we

use, there is a difference between the known-channel and the unknown-channel situations.

In a known-channel case with Df degrees of freedom there are Df orthonormal functions

propagating through the channel without loss. The adaptive system that we have just
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described allows us to obtain one unit-energy function that propagates through the chan-

nel without attenuation, but there seems to be no way of obtaining the other Df- 1 eigen-

functions of unit eigenvalue. This loss of parallel channel capability does not affect our

ability to transfer energy from R 1 to R 2, but it does preclude our obtaining Df useful

spatial degrees of freedom for improving the reliability of information transmission.

In other words, although our adaptive beacon system can obtain all of the necessary state

information from the channel for apodization, it does not tell us all there is to know

about the channel. Note that the loss of parallel channel capability is unique to the point-

to-point channel because in the deep-space case there is only one branch to the parallel

channel model with nonzero gain (see section 6. 2).

We have now shown that for communicating through a fixed reciprocal channel a

Q-kernel system exists which will achieve optimal energy transfer in the deep-space

case, and a system exists that achieves arbitrarily close to optimal energy transfer in

point-to-point applications on the Earth. It is interesting to see how our results change

if the channel does not satisfy point reciprocity or even the weaker condition (34).

3.4 APPROXIMATELY RECIPROCAL CHANNELS

For some channels that we might wish to study, we may not be able to prove point

reciprocity, or even the orthogonality condition (34). We would like to say that if, in

some sense, Q K, then our results concerning the optimality of the unknown-channel

feedback system would still hold, at least to some degree of approximation. We shall

D ~~~~~~~D
'1 '2

BEACON

RECEIVED BEACON

TRANSMITTED WAVEFORM

RECEIVED WAVEFORM

v*(r') S ( Q '(,)d'

TIME

INCREASING

A -( HETERODYNE 
WITH R2

Fig. 8. Performance bound for Q K. (Arrows denote direction
of propagation.)
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derive a performance bound in terms of the difference kernel

R(p', r') = Q(p', r') - K(p',r'). (45)

Let the orthonormal eigenfunctions and the eigenvalues of the R kernel be denoted

fi(p ' ) and i. Then we may express the Q kernel in the forml

00

Q(p', r') i= l

i=l

(46)

We shall lower-bound the energy in the 1 component of the field received at R 2 after

the round-trip transmission scheme (R2 to R 1 to R 2) shown in Fig. 8. This result will

upper-bound the degradation in the optimality of the Q-kernel system caused by Q K.

As shown in Fig. 8, the received beacon field at R 1 is "turned around" and renormalized,

so that the field received at R2 is

00

v ( = Et- 1 (4 r') + Ei

i= 1
2

dp' )i (r).

The 1 component of this field, therefore, is

2

= + X +

i=l
i i(p ' ) (p' ) d p '
2

(48)

and the energy in this component is

2

1R2

t 1 +
Et

X1

00

i= 1

(/ E -tX A1 i=( i= 

%ii

2Lil 

(p') (p ) dp'

(49)

where we have used the triangle inequality. Expanding the right-hand side of (49),

obtain

we
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v (r') 1 (r') dr' 

> Et 1 -2 |i i (p ' ) 1 (P ' ) dp'

00 2

Et 1 2 E 1H '} i( ) W1 (p') dp

Et(X 1 - 2 maxi [)
i

> Et k - 2 max ' (.(p' dR'dr' (50)

Note that if the channel were reciprocal, then the energy received in the 

Note that if the channel were reciprocal, then the energy received in the 1 component

would be EtX1, so the loss in performance caused by Q f K is bounded by the second

term in (50).

The bound that we have derived may not be the strongest possible bound that could

be obtained, but it is presented here as one way of measuring how the Q-kernel perfor-

mance converges to EtX1 as the channel gets more and more "reciprocal," and the

R kernel approaches the null function.
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IV. TURBULENT ATMOSPHERIC CHANNEL

4. 1 EFFECTS OF TURBULENCE

The central problem of this research is to find ways of improving optical communi-

cation through atmospheric turbulence. Atmospheric turbulence causes the major limi-

tation on the performance of optical communication systems transmitting through the

clear atmosphere. We shall now summarize those aspects of the turbulent channel

that are relevant to our study.

The atmosphere is not in equilibrium, it is constantly subject to turbulent mixing

of inhomogeneities of varying sizes. These inhomogeneities cause the index of refrac-

tion, n(r, t), to be a random function of space and time, and the fluctuations in n, in

turn, cause random perturbations in any laser beam propagating through the atmosphere.

Qualitatively, the effects of the turbulence on a received beam may be classified as fol-

lows. 15

Beam Steering. The beam may be deviated from the line of sight, thereby possibly

placing it entirely outside the receiving aperture.

Image Dancing. Random variations in the angle of arrival of the beam cause images

to execute a two-dimensional random walk in the focal plane of a collecting lens.

Beam Spreading. The cross section of the received beam may vary randomly in

size.

Image Blurring. A random crumbling of the received wavefront causes images in

the focal plane to appear blurred.

TURBULENT MEDIUM

n( r, t)

PHASE FRONT OF
PHASE FRONT OF

INFINITE PLANE WAVE PHASE FRONT

Fig. 9. z-model geometry.
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Scintillation. Local variations in received amplitude degrade received signal modu-

lation.

Phase Fluctuations. Temporal fluctuations in the phase of the waveform produce

a spurious phase modulation.

Much work has been devoted to obtaining statistical characterizations of the turbu-

lence, 16 19 and studying the turbulent atmosphere as a communication channel. 1, 3, 

With proper foresight we have collected those results that will be of use in Sec-

tions V-VII.

A fairly useful way of studying the effects of turbulence is the z model. Assume

that an infinite linearly polarized uniform plane wave is normally incident on a slab of

turbulence (see Fig. 9). Since it is known that the turbulence has no depolarizing
21

effect on the incident radiation, we need only consider the incident polarization

component. For that component the electric field is then

E(r,t) = Re E(r,t) e , (51)

with the usual complex field amplitude representation. Let E (r) denote the complex-o
field amplitude that would have existed in the absence of turbulence. We define the chan-

nel disturbance, z(r,t), as follows

E(r, t)
z(r, t) = . (52)

E (r)
-o

It is convenient to write z(r, t) in the form

z(r,t) = e(r ' t) exp(X(r,t)+j(r,,t)), (53)

where X(r,t) and (r,t) are the real and imaginary parts of the complex process y(r,t).

Using the Central limit theorem, we may argue that y(r, t) is a complex Gaussian random
16

process and hence z(r,t) a complex lognormal process, in which case the sta-

tistics of z(r,t) are completely characterized by the second order statistics of X

and .

At this point it is worth showing why the z model was not chosen as the point of

departure for this work. This research is concerned with the use of spatial modulation

to improve the quality of optical communication through the atmosphere. In the defini-

tion (52) of z it is apparent that z depends upon what spatial waveform was used at the

transmitter. Thus any statistics for z must also be dependent upon the spatial wave-

form used at the input. This coupling between the channel model and the input field

makes analysis of spatially modulated systems difficult. Furthermore, it we examine
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16
analytic expressions for z(r, t) obtained through the Rytov approximation, we find that

the z model is not a linear system when spatial modulation is employed. For these

reasons, we shall only employ z-model results for infinite plane-wave sources, where

the model seems to adequately predict experimental results.1 6

4.2 INSTANTANEOUS TURBULENCE MODEL

Having qualitatively discussed the turbulent channel, we now show how the model

developed in Section II may be applied to the time-variant atmosphere. We have seen

that assuming a scalar channel is valid. The only issue that remains is the time

variation of the atmosphere.

The temporal behavior of the turbulence may be handled as follows. If the path length

of interest (center-to-center distance between R 1 and R 2 ) is short enough that the atmo-

sphere is essentially "frozen" during one propagation time (the time taken by a signal

sent from R1 to reach R 2 ), we may model the atmosphere as undergoing a succession

of fixed states. Thus if the input spatial waveform (at R 1 ) is u(p), then the output

waveform will be

v(p';t) =s u(p) h(p', p;t) dp, (54)

where h(p', p;t) denotes the state of the atmospheric channel at time t, subject to the

condition that the propagation time be small compared with the characteristic time

(coherence time) of the turbulence. A corresponding expression exists for the prop-

agation from R2 to R 1 . Since it appears that the turbulence has a power spectrum that

is limited to frequencies below 1 kHz, and possibly extending only to a few hundred

Hz, most path lengths of interest will satisfy the necessary propagation condition.

Specifically, by allowing 0. 1 ms of propagation time as a worst case, all path lengths

less than 30 km satisfy the propagation condition. Using an exponential atmosphere

model with a decay constant of 3 km, we see that the fixed-state model will apply

to Earth-to-space channels with near-zenith paths through the atmosphere. For point-

to-point channels on the ground there may be situations in which the fixed-state model

will not be a good one.

In studying the atmospheric channel we shall place primary emphasis on deep-space

applications, since it is here that the narrow beamwidths attainable (in the absence of

turbulence) with laser equipment could be used to greatly improve communication.
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V. APODIZATION FOR DEEP-SPACE CHANNELS

5. 1 Problem Specification

We shall now generalize the results of Section III to time-variant deep-space chan-

nels. There we studied a time-invariant point reciprocal channel. We shall now model

the atmosphere as undergoing a succession of fixed states, but we shall not assume chan-

nel reciprocity at the outset. A great deal of what we have to say will not depend on our

ability to prove that the turbulent atmosphere is reciprocal.

We consider an Earth-to-space communication link using a near-zenith path through

the atmosphere. The geometry of this system is shown in Fig. 10, and it is somewhat

different from the structure previously studied. The aperture R 1 is the transmitting

aperture on the ground, as before, but R 2 is now an imaginary "window" at the

top of the atmosphere. We assume that R 1 and R 2 are both circular apertures of

diameters D and d, respectively. Also, we assume that the plane of R 1 is perpen-

dicular to the line connecting the center of R 1 to the spacecraft, and furthermore that

the center of R 2 lies along this line, and the R 2 plane is parallel to the R1 plane.

The impulse responses h(p', p;t) and h(p, p';t) determine propagation from R 1 to R 2

and R2 to R 1 as before, although R 2 is no longer the receiving terminal. For notational

convenience we suppress the time dependence of the impulse responses and the output

fields whenever it is clear that we are talking about a single fixed state of the atmo-

sphere. Referring to Fig. 10, we see why R 2 was placed at the top of the atmosphere

instead of on the spacecraft. Ultimately we want to apply the results for two-way

(Q-kernel) systems to the time-variant atmosphere. This will require that the

SPACECRAFT

I
1

FREE SPACE f

R2 (WINDOW)

TOP OF

ATMOSPHERE -.

R ~ TIME-VARIANT ATMOSPHERE

R1 (XMTR)

Fig. 10. Deep-space apodization problem.
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atmospheric state be essentially fixed during a round-trip propagation time from R 2 to

R 1 to R 2, a condition that cannot be satisfied with R 2 on the spacecraft.

A discussion of how long a path was a "deep-space" channel has been given in sec-

tion 3. 3. For the moment, let us only assume that the spacecraft is sufficiently far

away that when a signal is sent from R 1 the field received at the spacecraft is propor-

tional to the normally incident plane-wave component of the field at the window R 2 (under

the assumption that the field is zero outside of RZ). In the light of this assumption, we

shall consider the following apodization problem. A unit amplitude normally incident

plane wave is transmitted from R2 to R 1 as a beacon. On the ground we observe the

received beacon field, and adapt our transmitter accordingly. The waveform trans-

mitted from R 1 is constrained to have energy Et , and we seek to maximize the energy

in the normally incident plane-wave component of the field at R 2.

Let us see why this is a problem of interest. Subject to our path-length assumption,

maximizing the energy in the normally incident plane wave component at R 2 maximizes

the energy received at the apacecraft. Strictly speaking, this is not true unless the field

at the top of the atmosphere is zero outside of R 2 . This requirement may be eliminated

by regarding R 2 as the infinite plane, and assuming an infinite plane wave beacon.

It is convenient for several reasons to start with R 2 finite, and study the behavior of

the resulting system as the size of R2 is varied. Ultimately, we shall see that for most

practical systems the beacon will be effectively of infinite extent. The optimal sys-

tem that we seek distorts the waveform used at R1 to account for the effects of the

turbulence in such a way that the field leaving the atmosphere is a normally incident

plane wave over the window R 2. In this sense, we are studying an adaptive equalization

problem.

Note that the apodization problem specified above is identical to the two-way apodiza-

tion problem that we studied earlier in section 2. 3, with one exception. In the prob-

lem just specified the beacon waveform is not a parameter under the control of the

system designer. It is interesting to note that in section 2. 3 heterodyning at the receiver

(R 2 ) was introduced rather arbitrarily, whereas heterodyning (extracting the normally

incident plane-wave component) in the problem that we are now discussing arises nat-

urally out of the propagation from R to the spacecraft.

5. 2 Q-Kernel Apodization System for a Single State

The great similarity between the problems described in sections 2. 3, and

5. 1, together with the results for reciprocal channels in Section III, lead us

to examine a system that uses a conjugation ("turn around") transmitter at R

as a possible solution to our apodization problem. For such a system we

may immediately evaluate the energy, E r , in the normally incident plane-wave

component of the field received at R 2 (for a single atmospheric state). We

have
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Et ff Q(p', r') dp'dr' 
R

E _|2 (55)
r A2 ff K(p',r') dp'dr'

R2

We shall spend considerable effort studying this energy expression.

5. 21 Asymptotic Behavior of K and Q

We begin our evaluation of E r by studying the asymptotic behavior of the K and

Q kernels as D becomes infinite (R1 becomes the entire plane). From their respec-

tive definitions (see Table 1) it is apparent that both of these kernels are functions of

R 1. To make this dependence explicit, we use the notation KR and QR to denote
1 1

these kernels for a particular finite aperture R 1 , and Koo and Qo to denote the limit

kernels that result as D approaches infinity. We shall prove the following lemma.

Lemma

Let v(p') be a unit energy signal on R 2, and V(F') be its spatial Fourier transform.

Let E be defined as

= I IV dF. (56)

It follows then that

Sr *- i i _ -_NJ V"(p') oo(p', r) v(r') dp'dr' = 1 - (57)

R2

$v (p') Qo(p',r') v(rl) dp'dr' = 1 - E. (58)

R 2

Proof: Before getting into the details of the proof, let us examine the meaning of the

lemma. The quantity E is the energy in v(p') a spatial frequencies above 1/X. It is

well known that these spatial frequencies correspond to waves that do not propagate, the

so-called evanescent waves. These waves are exponentially attenuated in the z direc-

tion (R2 to R1 direction). Equation 57 says that all of the energy in the propagating

waves falls on the infinite R1 plane. Equation 58 says that a Q-kernel system with

infinite D and v(p') as a beacon will return all of the energy in the propagating com-

ponents of v(p') to R 2 . Thus prepared, let us prove the lemma.

We shall prove (57) first. The energy received at R 1 when v(p') is transmitted from

R 2 is
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v(p') h(p, p') dp' d= (p') KR (p',r') v(r') dp'dr'. (59)

It is known that the turbulence does not absorb any energy from an incident beam, nor

is any energy scattered far out of the beam's initial direction. Therefore the energy

received at R 1 (the infinite plane) must be all of the energy in the propagating compo-

nents of v(p') plus whatever energy from the evanescent waves that reaches R 1. For path

lengths of kilometers (the case of interest) we may neglect any contribution to the

received energy from evanescent waves; thus, as D becomes infinite

(P ) KR (p', r') v(r') dp'dr' 1 - E

R 2

which proves (57).

Equation 58 is proved as follows. Let u(p) be the waveform received at R 1 when
A * -

v(p') is transmitted from R 2 . Let v (r') be the field received over the infinite R 2 plane

when u (p) is transmitted from R 1. Then we have (see Table 1)

v (p') QR (P' r) v(r) dp'dr' = r') v(r') dr'. (60)

R2 2

Let V(F) be the spatial Fourier transform of v (r') We shall prove that in the limit
Let V(F') be the spatial Fourier transform of v (r'). We shall prove that in the limit

D= oc

v (-F|
A 
V(F') = (61)

Equation 61 and Parseval's theorem will then show that

SSv (p) Q(p', r') v(r') dp'dr' = (v(r')) v(r) dr'

2

1 V(F') dF' = 1 - E,

which is Eq. 58.

Equation 61 is a consequence of the instantaneous time-reversibility of the atmo-

sphere, defined as follows. Consider a single atmospheric state, and let E(r) be the

complex-field amplitude at a point r in the turbulence that is due solely to the
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propagating waves resulting from transmission of v(p') from R 2 . Then the time

reversibility of the atmosphere means that E (r) satisfies Maxwell's equations through-

out the medium. We have not proved this assertion, we have only stated it. Before

proving it let us observe how time reversibility implies (61). For the path lengths

of interest we may assume that u(p) is due solely to the propagating waves. Hence when

we transmit u (p) from the infinite R1 plane the field that will result in the medium must

be E (r), since it is a solution of Maxwell's equations that satisfies all of the boundary

conditions (note that E(r) reduces to u(p) for r in the R 1 plane). The definition of E(r)

allows us to conclude that v (r') must be v (r') bandlimited to spatial frequencies below

l/X, which is precisely the condition (61). Therefore to prove (58) it only remains to

show that instantaneously the atmosphere is time-reversible.

5. 22 Time Reversibility

To complete the proof of the asymptotic behavior of QR we must show that the atmo-
1

sphere is time-reversible. First, let us see why this condition has been called time

reversibility. As is shown in Appendix A, conjugation of a complex field amplitude

reverses the direction of propagation of the wave. On the other hand, if we examine

the time-domain fields, we find that conjugating the field amplitude is equivalent to

using the original field amplitude with time running backwards; that is, t 1 > t 2 would

then imply that t 1 occurs before t 2 . For this statement to be true we must neglect the

evanescent waves. We turn now to the proof.

Lemma (Time-Reversibility)

Consider any time-invariant, nonabsorbing, inhomogeneous medium with no sources.

If the permittivity, E(r), is a smoothly varying function of position, then the medium is

time-reversible.

Proof: Maxwell's equations for the complex-field amplitudes in a source-free

region are

VX E(r) = -j CL0oH(r)

7 XH(r) = jwc E(r) E(r)

V H(r) = 0

V ' (E(r)E(r)) = 0. (62)

Since these are linear equations, the components of the complex-field amplitudes cor-

responding to the propagating waves and the evanescent waves must satisfy (62) inde-

pendently. We shall assume in the rest of this proof that we are dealing only with the

propagating components.

Since the medium is nonabsorbing E(r) is real. It is clear, therefore, that E (r) and

-H (r) are solutions to Maxwell's equations throughout the medium. Also, since (r)
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is smoothly varying, there are no internal boundary conditions to be considered. The

medium is therefore time-reversible.

We know that the turbulence satisfies all of the assumptions of the lemma, on an

instantaneous basis; therefore, we conclude that instantaneously the atmosphere is time-

reversible.

Some of our results are known, in other notations, for the free-space channel. For

instance, it is well-known that, in the absence of evanescent fields, the diffraction oper-

ator (in our terminology convolution with h) from R to R 1 is a unitary operator, a

statement equivalent to (57). Time-reversibility has been investigated for the free-space

channel under the title of inverse diffraction, 3 24 with conclusions that lead to results

comparable to (58). We now continue our examination of the system performance, Er,

for a single atmospheric state.

5. 23 Lower Bound to Er for a Single Atmospheric State

From the results of sections 5. 21 and 5. 22 it is apparent that for D = of the energy

in the normally incident plane-wave component of the field received at R 2, E r, given

by Eq. 55, reduces to

Et Q(p', r') dp'dr'
RE 2

E
r A f Ko(p,r)dp'dr

R2

= Et(1-E), (63)

where

S~,l/ X Iv(Fi)1 2 dF'

and V(F') is now the spatial Fourier transform of the function

1 -

v(p') 

0 p' t R 2

Note that V(F')12 is just the well-known Airy disk diffraction pattern. The parameter 

is a function of X and d. It will be neglected in the rest of this section, since for typi-

cal values of X and d (for example, X = 0. 6 3 2 8 g, d = 0.1 m), E is no more than 10 1 0

Therefore, we have from (63) that as D becomes infinite we can get essentially all

of the energy transmitted from R 1 into the normally incident plane-wave component

at R 2 . Since we cannot build a transmitter with an infinite aperture, we would like to

relate the rate of convergence of the QR integral to the rate of convergence of the
I
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KR integral to determine the performance of a system with D finite.

Let us examine some conditions under which the convergence relation is particularly

simple. Suppose any one of the following conditions is true. (Note that 1 implies 2 and

2 implies 3.)

1. h(p', p) = h(p, p')

2- QR (p', r') = KR (p',r')
1 1

3. S ( h(p', ) dp' = h(p, p') dp'
2 R2

From the

then

V P R 1, PI E R 2

p',r'E R2; R 

p E R 1
(64)

definitions of the kernels (see Table 1), if any of the conditions in (64) is true,

(65)QR ( p r') dp'dr' = KR1 (')
R2 R2

The integral on the right is a readily measurable quantity; hence, proving any of the

conditions in (64) immediately solves our convergence problem. Rther than address

ourselves directly to that task, we shall obtain a lower bound to E r for finite D.

Observe that we may write f QR (p', r') dp'dr' in the form
R 2 1

where

QR ( p
', 

r ') dp'dr'=
R I 1
R2

=R

F(p) =S

R 2F )= S9

dp (r', p) dr)' *( (p p') dp
R-- 

(66)

h(r', p) dr'

_(p, p') dp'.

Under the assumption that F and F have finite energies, (66) is a valid inner product

on L2 From (58), as D becomes infiniteon L (R 1 ). From (58), as D becomes infinite
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= C 
(F, F)

1 R
I

(The energy in the evanescent waves is so small that A 2 (1-E) A 2 .)

Consider the quantity

FR1 IF(p) dp)
1

1/2

!SR (p', r') dp'dr')
1

(67)

(68)

From Eq. 57 it is apparent that as D becomes infinite

1 1'l 1 R o Nr A- ~[.(691 

(Again, the energy in the evanescent waves is so small that A 2 (1-):A 2.)Applying the

Schwarz inequality to (66), we conclude that

I(F, F) R I <F,(7 1
-- 1 -RI%1< "-IR I1R1

where

4R (1 1 1

1/2

|F(P) dp)

and using (67) and (69) in conjunction with (70), we have

IIFIR1= aC < (71)

Note that equality holds in (71) if and only if F(p) = F(p) (condition 3 in Eq. 64 is equiv-

alent to F(p) = F(p)). We assume that

for some a, 1 a < .

Given E > 0, we can choose Do large enough that
0

FIIR > 2A- (72)D > D .
0

Applying the triangle inequality, we have

I (F, F)RI ' 1 - (Fa F)R + (F, F)oR
1 1
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where the inner product in the second term on the right is taken over the infinite region

outside of some finite aperture R 1. From the Schwarz inequality and what we have

proved concerning the norms and inner products of F and F as D becomes infinite, we
obtain

Az= I(F, )R= I I (F, FR + II F11oR 1I11 -R
1 1 1 1

'(F, F)R I + IIFlIR 1 = _ IIFll-_R

< I(F, F)RI + aN A (74)

where the last inequality holds for all D such that D Do. We now substitute for F and

F from their definitions in order to interpret the bound (74). The resulting expression

is the following. Given E > 0, for all D such that

1/z

RSS-R (P r') dp'drI >- Isf A- - E, (75)
R2 

we have

SS QR (p',r)dp 'dr' | a 4 (-aE) (76)
R2

Note that a is dimensionless, but E must have dimension (area) 1 / 2 We now

use (76) to lower-bound E r. If D is such that (75) is satisfied, then

R 2 QR1 ( , ) r2

E fr A R (p',r') dp'dr'

R Z 1

Et A 2 1

=Et(1 lZa +t
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One crucial question remains to be answered, How large is a? In Appendix B it is

argued that a is less than 10, typically from 3 to 5.

Note that for point-reciprocal channels a = 1, and our bound (77) reduces to

E E(1 J2E)

On the other hand, using (65), which is valid for reciprocal channels, we obtain

as the tightest possible bound consistent with (75), so the bound (77) should be quite

tight for small a and E.

We shall extend the bound (77) to a probabilistic bound on the system performance

for the time-variant atmosphere. This result will provide a way of picking an aperture

diameter (for R 1) to insure a specified performance level.

5.3 INTERPRETATION OF THE Q-KERNEL SYSTEM PERFORMANCE

5. 31 Performance Bound for the Time-Variant Atmosphere

The results of section 5.2 allow us to evaluate the performance, Er, of a two-way

(Q-kernel) communication system using a finite aperture, for any single state of the

atmosphere. We shall now generalize these results to the time-variant atmosphere. We

shall prove a performance bound of the following type. For a system operating during

the time interval (0, T), we would like the system to yield high energy transfer (from

R 1 to R 2 ) with high probability during a substantial fraction of (0, T). In order to

achieve this performance, D, the diameter of R 1, must be made sufficiently large.

The actual bound is given in the next lemma.

Lemma (Performance Bound)

Given an operating interval (0, T), for each 0 < 3 < 1, E > 0, and 6 > 0, there exists

a Do (Do < o ) and an open set U in (0, T) such that

Pr KRI(P', r; t) dp'dr' > NA- - ; ~ tE > D D

(78)

and the Lebesgue measure of U is greater than Tp. Moreover, for any D such that (78)

is satisfied, we have

Pr [E(t) > Et (1 Z ; >tEU >1- 6. (79)
· · ~~~~~~··~~~~~···(~ ~~~~~~~ 2(9
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Proof: We first show that given T, for each 0 s P - 1, E > 0, and 6 > 0, there exists

a finite D and an open set U of measure greater than T3 such that (78) is satisfied for

all D> Do. We partition (0, T) into coherence intervals of length T (T > 0) such that

KRl(P, r';t) dp'dr'
R

is constant for t in a coherence interval. This partition may always be made within the

framework of our fixed-state model of the time-variant atmosphere, with T approx-
.th

imately the reciprocal bandwidth of the turbulence process. Let I denote the i coher-

ence interval, then, from section 5.23, there exists D (Do < oC) such that for all

o.

1/2
Pr (p',r';t) dp'dr' > A- ; tE I > 1 - i (80)

where 6. 6/N, and N is the number of coherence intervals in (0, T). If the ensemble
1

statistics of the channel do not change with time during (0, T), then all the D will be
1

equal. The proof that we employ allows for the fact that the statistics of the channel will

change with time. Let fPNl denote the smallest integer larger than pN. If we order the

coherence intervals in such a way that

D -D <D 
01 02 03

then choosing Do = Do [PN] we have that for all D D

1/2 F[N 1
Pr' t) d-d > [- ' E; t E U I.

i 1 1

FPNr

i=l Pr (p, r;t)dp'dr' < ; t E I

2

> 1 - rpN1 6

> 1 - 6, (81)

where the first inequality follows from the union bound. If for each coherence

interval Doi is chosen to be the infimum of all D that satisfy (80), then Do = Do rN

will be the infimum of all D that satisfy (81). Thus we have proved the first asser-

tion of the lemma.
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Using the results of section 5. 23, we see that in each coherence interval if D Do
1then

Pr E (t) > E 1 ZEa ) Vt E > I

Hence, if Do = DorpN1 as before, we have for all D > Do

Pr E(t) > Et 1 2 ) t i=l I

T Pr E (t) <Et(t I a ); [Vti 

i=l Z i~ ~i

>1 - rPNl i

1 - 6 (83)

which proves the rest of the lemma.

Thus we have shown how the single-state performance bound of section 5.23 may

be extended to the time-variant case. The entire problem of choosing an aperture diam-

eter on the ground in order to achieve a desired performance level in terms of E (t)

has been reduced to studying the statistics of

te -R1(P 1r';t) dp'dr',

R

the energy received at R 1 when a normally incident plane wave is transmitted from R 2.

Before proceeding to other issues, it is worth observing that the lemma that we have

proved shows that our two-way apodization system does not exhibit a performance satu-

ration as the transmitting aperture is enlarged (as a nonadaptive system would). To make

this identification, it is necessary to evaluate the system performance in terms of E (t),

the energy received at the spacecraft. For convenience, we neglect the propagation delay

between R 2 and the spacecraft; thus, our path-length assumption enables us to write

Es(t) = CE r(t). (84)

From our path-length assumption, the field at the spacecraft is the spatial Fourier

transform of the field at R 2 evaluated at zero spatial frequency (with the l/r 2 loss

neglected), and since the Fourier transform of the normally incident plane-wave com-

ponent on R2 at zero frequency is proportional to (A 2 ) / we may write (84) in the form

Es(t) = C'AzEr(t), (85)

where C' is independent of d. Therefore we may rewrite the lemma just proved as

follows.
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Lemma (Performance Bound on E (t))

For all D such that (78) is satisfied we have

Pr LE (t) > E AC 2 ; tE U > I - 6. (86)

Proof: Apply Eq. 85 to the previous performance lemma. (Because (85) is only true

if the field received at the top of the atmosphere is zero outside of R2 , the performance

bound on Es(t) is only true when E is small enough.)

Hence we have verified that increasing d (enlarging R2 ) and then increasing D until

(78) is satisfied again continues to increase the energy received at the spacecraft (in

proportion to d for small enough E) without performance saturation occurring. We

have accomplished one of our major goals, demonstrating the existence of an adaptive

spatially modulated system whose far-field beamwidth is not turbulence-limited as the

relevant aperture size is increased.

5. 32 Performance Limitation Caused by Turbulence

We shall compare the performance (in terms of E (t)) of a system of the type

described above and a system transmitting a normally incident plane wave to the space-

craft through free space, both systems using the same transmitting aperture diam-

eter, D . It is clear from our performance bound on E (t) for the Q-kernel system,
o Z

that if E is small enough Es(t) increases in proportion to d , under the assumption that

the atmospheric state is such that we are above threshold. That is,

~~/ \~1/2

(1(p, r ;t) dp'drt > A- E. (87)

!2R 2

For a system using an aperture of diameter D in the absence of turbulence, the energy

received at the spacecraft will be proportional to Do. Furthermore, since the path

length to the spacecraft from the R 2 plane is essentially the same as the path length from

the ground, the two proportionality constants that we have mentioned will be the same.

Thus, when the atmospheric state is such that (87) is satisfied (for E small), the ratio

of the energy received at the spacecraft in the turbulent case (two-way system) to the

energy received at the spacecraft in the nonturbulent case (one-way system) is (d/Do)2 .

It is convenient to define a parameter

¥2 : ( d )(88)

as a measure of the performance limitation imposed by the turbulence. We assume in

(88) that y is a function only of d, and that D is chosen as the infimum of all D for
0
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which (78) is satisfied, with = 1 and 6 ~ 0. Since the one-way system using a normally

incident plane wave over R 1 maximizes E s for the given aperture diameter in the absence

of turbulence, y upper-bounds the performance reduction (in terms of E ) caused by the

turbulence. (Since we have not proved that a Q-kernel system is optimal for the atmo-

sphere, y is only an upper bound to the performance limitation.) Yet, interestingly

enough, we can show that as d becomes infinite y 2(d) approaches unity; that is, in the

limit of large d the turbulence causes no performance loss when going from the optimal

one-way nonturbulnet system to the Q-kernel system that we have been studying (see

section 5. 43). Unfortunately, this result is only achieved when the aperture on the

ground is infinite (see definition of D above).

5.4 EDGE EFFECTS PROBLEM

Thus far, in our discussion of two-way apodization systems for the turbulent channel

we have ignored some important issues concerning the beacon signal. We shall now con-

sider such problems. The first thing that we observe is that it is most likely that the

beacon used at the top of the atmosphere will be infinite or practically infinite in extent;

that is, it will be so large that the aperture on the ground (R 1 ) never sees the edges of

the beam. This will lead us to study the performance of the infinite beacon system,

and we shall compare this performance to that of a system using a finite beacon. When

the R 1 aperture is large enough that it sometimes sees the edges of the finite beacon,

but not so large that it always receives the entire beacon, we shall find that the perfor-

mance lemma for Es(t) in section 5.31 leads to anomalous results. This is the edge

effects problem. For R 1 as described we shall see that an assumption leading to

the bound on Es(t) is violated, so the bound itself is invalid in this region.

5.41 Obtaining a Beacon Signal

Until now, we have not specified how the unit amplitude normally incident plane wave

over R 2 (the beacon) is obtained. There are two practical options available, we can put

the laser on the spacecraft itself, or we may use a laser located on a synchronous satel-

lite (if we assume that the spacecraft is well beyond synchronous altitude) whose loca-

tion is sufficiently close to the propagation path to provide a beacon of the required

aiming accuracy. Since we shall assume that there are no ducting phenomena in the

atmosphere to consider, we may assume that in either of the cases described above the

beacon at the top of the atmosphere will be such that the aperture R 1 never sees the

edges of the beacon; that is, the beacon is effectively an infinite plane wave (at R 2 ).

If a finite beacon can be obtained, the results of section 5. 3 apply directly. We only

intend the present discussion as a rationale for investigating the infinite beacon

case.

It is worth noting that in section 3.3 we proved that for a time-invariant point-

reciprocal deep-space channel the optimal energy transfer from the ground to the space-

craft is achieved by a Q-kernel system in which the spacecraft transmits a normally
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incident plane wave to the ground, which corresponds (in the present terminology) to

using an infinite plane-wave beacon at the top of the atmosphere. We have not proved

that the atmosphere is reciprocal yet, but this result should be kept in mind.

5. 42 Infinite Beacon System

Suppose we have a two-way apodization system of the type under discussion here,

using a unit amplitude normally incident infinite plane wave as the beacon. From

Eqs. 55 and 85 we know that the energy received at the spacecraft will be

R2 =o0 1

For convenience, we assume that the channel is point-reciprocal instantaneously; there-

fore,

QR t) d'd' R (p',r';t) d'dr' =

R2 =oo R2 =oo

and (89) reduces to

E (t) = C Et 55 KR (p', r ;t) dp'dr'. (90)

R2=o0

We now study the behavior of the double integral in (90) as D is increased. We have

1 1 o2

2 Z(P0t)I|dp, 0(91)R1~ Iz( , )2 dT; (91)

where the last equality follows from the z model for infinite plane-wave propagation

through turbulence. Now we may apply some well-known results from the z model to

our problem. We partition R 1 into nonoverlapping coherence areas (circular areas of

diameter 2 c, where Pc is the distance at which the spatial correlation function of

jz(p,t) 12 has its first zero). We adapt the simplified model that z is completely cor-

related within a coherence distance (2pc) and completely uncorrelated outside of

this distance. Thus we have
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N

|z(p, t)12 dp zi(t) I2 A, (92)
R1 i=1

where z(t) is the value of z(p,t) in the it h coherence area, A = Pc, and N is the num-

ber of coherence areas in R 1. From the z model, the sum in (92) is the sum of

uncorrelated log-normal random variables whose ensemble average, E[A c |_i(t) 2], is

A 18, 22 Consider the fluctuation about its mean of the sum in (92). That is,
c

VAR Zi(t)12 Ac
cN(t) = I

E iS IZi(t) Ac
= 

(93)

Using the properties of the z., we have
1I

(VAR ( zi(t) 2 ))1/2
N(t) = (94)

The parameter arN is also the fluctuation of Es(t) about its mean; that is, from

Eqs. 90-92, we have

(VAR (E (t))) /2
~N(t) = (95)

E(E s(t))

It is clear from (94) that ,N(t) is an increasing function of the intensity of the turbulence
2 2(through VAR ( zi(t) )), and a decreasing function of D (through N = D /4p ).c

We have proved, therefore, that as D becomes infinite the fluctuation about its mean

of the energy received at R1 goes to zero, and similarly the fluctuation of Es(t) about

its mean goes to zero.

Since the mean of zi(t) 2 is also the value it achieves in the absence of turbulence,

we have also proved for all D that the mean of Es(t) is the value that it achieves in the

absence of turbulence. Also note that in the absence of turbulence the received beacon

will be a normally incident plane wave, and so the field transmitted from R 1 will be a

plane wave of energy Et and diameter D, the optimum one-way result for deep-space

apodization. In other words, E(Es(t)) is equal to the optimum energy transfer that is

possible in the absence of turbulence, that is, the diffraction-limited result for a lens

of diameter D. Furthermore, since the fluctuation of E (t) about its mean goes to zero

as D becomes infinite, we see that in this limit the Q-kernel system achieves

diffraction-limited performance with probability one.

The statements just made are important enough to warrant one more repetition. We

have shown that for any size R1 , the turbulence does not reduce the average energy
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transferred to the spacecraft. The turbulence does cause fading at the spacecraft, but

as R 1 increases in size this fading decreases (relative to the mean), ultimately going

to zero when R 1 becomes the entire plane.

We have reached some important conclusions in this section, but to obtain them we

assumed that the atmosphere was point-reciprocal instantaneously. The reciprocity

of the atmosphere is proved in Section VI. The rest of this section is devoted to com-

paring systems with finite beacons to the infinite beacon system.

5.43 Comparison with Finite Beacon Results

As in section 5.42 we shall assume a reciprocal channel. Consider a Q-kernel sys-

tem using a plane-wave beacon of diameter d, and a transmitting aperture at R 1 of

diameter D such that D << d. For d large enough (in the absolute sense) the radiation

:v

u

02
TO

SLOPE 2 n

LOG D

(a)

Fig. 1 1. Es(t) for Q-kernel systems.

(a) d < d 2 < d 3. Saturation

occurs when d << D, and the
resulting energy is Es(t) =

A 2C'Et. Slope 2 behavior

is only valid for d >> r o.

(b) d < d 2 < d3. For d D,

((VAR Es (t))l/2/E(ES(t))) - O.

LOPE -1

LOG D

(b)

received over the aperture R1 will come from the center of the beacon and its statistics

will be well approximated by the infinite plane-wave z model. In particular, if d is large

compared with the diameter at which the far-field beamwidth becomes turbulence-limited,

then the results hold as stated. Thus the performance, Es(t), will be the same as that in

section 5. 42 for the infinite beacon. Now as D increases, Es(t) increases monotonically

(for each atmospheric state) until D becomes comparable to d, and then a saturation

effect begins to set in. This saturation arises out of the fact that we begin to receive

the edges of the beam, and the energy received at R 1 (which for reciprocal channels is

proportional to Es(t)) cannot exceed A 2. In section 5. 3 when we commented that per-

formance saturation is avoided with a finite beacon system we had to keep increasing d.

In the limit D >> d the performance of the finite beacon system has saturated at
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Es(t) = EtA2C'. These results are shown in Fig. 11. It should be noted that in the

region D - d, the finite beacon system seemingly outperforms the infinite beacon system

for some atmospheric states. This is an anomalous result that is due to Eq. 85 not

being valid (for all states) in this region. In section 6. 2 we shall prove that, in terms of

Es(t), the infinite beacon system always performs as well as or better than the finite

beacon system.

There is one last result worth obtaining. In section 5. 42 we proved that for an infi-

nite beacon system, as D approaches infinity, Es(t) approaches the optimal one-way

energy transfer possible in the nonturbulent case with probability one. Therefore y2(d),

the parameter that measures the performance limitation imposed by the turbulence

(see Eq. 88), must approach one as d and D become infinite, since in this limit the

turbulence does not reduce our ability to get energy to the spacecraft.

5. 5 Summary of Deep-Space Apodization

We conclude our discussion of deep-space channels with a summary of the important

results.

1. A Q-kernel system using a plane-wave beacon was investigated as a possible

solution to a deep-space apodization problem.

2. An energy expression for Er(t), the energy received in the normally incident

plane-wave component of the field at the window, R 2, at the top of the atmosphere, was

obtained from the work in Sections II and III. This expression was lower-bounded in

terms of

RI (P , r') d'd r'
R 2

the received beacon energy.

3. The results for single atmospheric states have been extended to probabilistic

bounds on performance during a time interval (0, T).

4. It has been shown that it is quite likely that the beacon will be of infinite extent.

The performance of infinite beacon systems has been studied, under the assumption that

the atmosphere is point-reciprocal.

5. For the infinite beacon system we found that the average energy received at the

spacecraft, E(Es(t)), is the optimal one-way energy transfer possible (ground-to-

spacecraft) in the absence of turbulence, and as the aperture on the ground becomes infi-

nite the fluctuation about this mean energy goes to zero.

6. The performance of finite beacon systems was compared with the performance

of the infinite beacon system, under the reciprocity assumption. For D << d the two sys-

tems perform equally well. For D >> d the performance of the finite beacon system

saturates (see Fig. 11).

7. Thus, although we have not yet proved the optimality of our Q-kernel system, we
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have shown that it greatly improves the energy received at the spacecraft, compared

with a nonadaptive system. In Section VI we shall prove the optimality of the Q-kernel

system (for the atmosphere) by showing that the atmosphere is reciprocal.
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VI. RECIPROCITY OF THE ATMOSPHERE

We shall now prove that the turbulent atmospheric channel is point-reciprocal on

an instantaneous basis. Really, we shall prove that a model of the turbulence process

satisfies instantaneous reciprocity. In the model that we use the following assumptions

are made.

1. At a single instant in time the permittivity is a smoothly varying function of

position.

2. The medium causes no depolarization.

3. No energy is scattered far out of an incident beam's direction.

These assumptions, which we have already used several times, are consistent with

the properties of atmospheric turbulence.

We shall then examine some of the consequences of reciprocity for communication

through the atmosphere.

6.1 POINT RECIPROCITY OF THE TURBULENT CHANNEL

We assume the atmosphere may be modeled as undergoing a succession of fixed

states (see Section IV). We shall show that

h(p',p;t) = h(p,p';t) pE R 1 pE R2 t (96)

For convenience, we suppress the time dependence of the impulse responses, h and h,

where it is understood that we are always referring to a single fixed state of the tur-

bulence.

Two proofs of (96) are given, one under the assumption of Kirchhoff boundary

conditions, and the other of Rayleigh-Sommerfeld boundary conditions. 5 The first

proof is presented primarily because of its relative simplicity. The second proof,

with a more consistent set of boundary conditions, is significantly more involved.

6. 11 Proof with Kirchhoff Boundary Conditions

This proof is an application of Green's theorem for scalar fields, and is based on

an argument presented by Morse and Feshbach. 2 6

Green's theorem states that for any well-behaved complex functions of position U, W

PS (UVW-WVU)' dA § (U Z2 W-WV U) dv, (97)

where S is a closed surface enclosing a volume V, and the functions U and W have no

singularities on S. We shall apply this theorem to the case in which U and W are the

two impulse responses, h and h. We know that the impulse responses satisfy the

following Helmholtz equations

h(r, p) + k n (r) h(r, p) = -6(r-p ) (98)
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2 h p= (99)
V h(r, p') + k n (r) h(r, p') = -(r-'),

where k is the wave number, n(r) is the index of refraction at a point r, V operates

only on the observational (r) coordinates, and 6( · ) is the volume impulse function. We

n ( �)

Vh=0 >\ Vh=0

Fig. 12. Kirchhoff boundary conditions. Fig. 13. Closed-surface S.

must specify the boundary conditions that the impulse responses satisfy. The boundary

conditions that we wish to impose are shown in Fig. 12. In the plane of R 1, h and 7Vh

are zero everywhere except in a small neighborhood of the source point; similarly, h

and Vh are zero everywhere in the R 2 plane except in some small neighborhood of the

source point. These conditions are the Kirchhoff boundary conditions for a medium in

which there is no backscatter. 22, 2We form a closed surface S by closing the R 1 and

R 2 planes at infinity, and taking two small (spherical) caps behind the source points

(see Fig. 13). On the surfaces at infinity both impulse responses are assumed to be

zero, which is equivalent to assuming that the impulse responses vanish at least as fast

as a diverging spherical wave as the distance between the observation and source points

becomes infinite. We shall also assume that each impulse response and its gradient is

zero on the cap behind its respective source point. This assumption depends upon two

conditions: (i) there is no backscatter from the turbulence; and (ii) since the impulse

responses are Green's functions for diffraction through apertures, they may be regarded

as the fields of anisotropic point sources where the anisotropy is such that no energy is

radiated behind the diffracting screen in the absence of turbulence.

Now that our boundary conditions are completely specified we may proceed

rapidly. Multiplying Eq. 98 by h(r, p') and Eq. 99 by h(r, p) and subtracting, we

obtain

h(r, p') V h(r, p) - h(r, p) V(r, p') = -(h(r, p') )-6(r-p)(r, p )) (100)

Integrating (100) over the volume V enclosed by S, we have
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2 - - - 2 - -h
(h(r, p')V h(r, p)-h(r, p)V h(r, p')) d (h(p', )-(p p')). (101)

Since h and h are well-behaved functions on the surface S, we may apply Green's the-

orem to change the volume integral to a surface integral. Thus

§ (h(r, p')Vh(r, p)-h(r, p)Vh(r, p')) dA = (h(p', p)-h(p, p')). (102)

Applying our boundary conditions to (102Z), we see that the surface integral is zero.

Therefore

h(p', p) = (p, ') ¥ p E R, p E R;

hence, the atmosphere is point-reciprocal on an instantaneous basis.

6. 12 Proof with Rayleigh-Sommerfeld Boundary Conditions

The internal inconsistency in the Kirchhoff boundary conditions is well known. We

shall now prove point reciprocity, using more consistent boundary conditions. We wish

to remove the necessity of specifying the values of both an impulse response and its

gradient on an open surface. Our revised proof is somewhat more complicated than

the proof with Kirchhoff boundary conditions; it is a series of three lemmas.

Lemma 1

For a fixed state of the atmosphere let G(r, r o ) be the field at a point r that results

from a unit-amplitude isotropic point source located at point r o , where r and r are

points within the turbulence. Then G is a symmetric function of its two variables.

That is, for any r, r 1

G(rl, r) = G(rorl). (103)

Proof: This lemma will show that the atmosphere is reciprocal for isotropic

point sources, on an instantaneous basis.

The function G satisfies the same Helmholtz equation as the functions h and h,26

V G(r, r) +k n (r) G(r, ro ) =-6(r-r ). (104)

Also, G satisfies a homogeneous boundary condition at infinity. That is,

G(r,ro ))- 0 as Ir-; I .

Let S denote the surface of the sphere of infinite radius centered at r o, and V denote

the volume enclosed by S. Since G satisfies the same Helmholtz equation that the

impulse responses h and h do, we may use the argument of section 6. 11 to show that
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G(r, r) 7 G(r, r ) - G(r, ro ) VZG(r, r) = -(6(r-r o )G(r, r )-6(r-rl)G(r, r)).
1 0 0 1 0

(105)

Thus, by integrating (105) over the volume V enclosed by S, we obtain

- 2 --
(G(r, r )V G(r, r )-G(r, r)V G(r, r l)) dv = (G(r l r )-G(r0, r)).

SV
(106)

Using Green's theorem, we transform the volume integral into a surface integral.

Therefore,

Ss
(G(r, r )VG(r, r )-G(r, ro )VG(r, rl)) dA = (G(r, r)-G(r, r) (107)

and from our boundary conditions on S we conclude that

G(r 1 , r o ) = G(r o, r l ).

Lemma 2

Consider a small aperture in the R 1 plane centered on point p, and let p' be a point

in the R 2 plane. We define the function G in terms of the isotropic impulse response

G by

G(r, p') = G(r, p') - G(r, p'), (108)

where p' is the mirror image of point p' with respect to the R 1 plane, the medium

behind R 1 is assumed to be the mirror image (in terms of the index of refraction) of

the medium in front of the plane, and G is calculated when the diffracting screen

is not present (see Fig. 14). For G thus defined it follows that

O %

o0 0UBUEo T E

0 0 RBULENT EDDY

P Q
0O 

TURBULENT EDDY R2

0
MIRROR IMAGE

OF MEDIUM

o Q

Fig. 14. A

The function G(r,p'). (G(r,p') and G(r, p')
are isotropic point-source Green's func-
tions computed in the absence of the dif-
fracting screen.)

Fig. 15. A

The function G(r, p). (G(r, p) and G(r, p)
are isotropic point-source Green's func-
tions computed in the absence of the dif-
fracting screen.)
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aG(r, p')

h_(p', p=-· ~_ _ . (109)h(p', P) =az (109)
r=p

In this expression and in Eq. 111 the z axis is the line from the origin of R2 to the

origin of R 1 . The partial derivatives are taken with respect to the observational

(r) coordinates of G and G.

Similarly, we define

A
G(r, p) = G(r, p) - G(r, p), (110)

where p is the mirror image of the point p with respect to the R 2 plane, the region

behind R2 (see Fig. 15) is assumed to be the mirror image of the region in front of R2 ,

and G is calculated when the diffracting screen is not present. It follows that

-DG(r, p)
h(p, p') = a,. (ill)

r=p

Proof: We shall prove (109) first. The proof of (111) will be the same. From (104)

and (108), G satisfies the equation

2 22 2
2G(r, p') + k n (r) G(r, p') = -( 5 (r-p')-6(r-p')). (112)

Let U(r) be the solution of the Helmholtz equation that corresponds to diffraction

through the aperture in R 1 shown in Fig. 14. We have

V U(r) + k n(r) U(r) = 0. (113)

Therefore from (112) we conclude that

A
G(r, p') V U(r) - U(r) VG(r, p') = U(r) ( 6 (r-')- 6 (r-p')). (114)

Let S be the surface obtained by closing the R 1 plane at infinity to the right

p

s

Fig. 16. Closed-surface S for proof of Lemma 2.
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(see Fig. 16), and let V be the volume enclosed by S. Integrating (114) over V,

we have

-CGcF ,,o•cr-uF~o G~. '2 dv= Utp'). (115)V (G(r, p')V 2 U(r)-U(r) G(r, p')) dv = U(p'). (115)

Using Green's theorem to change the volume integral to a surface integral, we obtain

(G(r, p')VU(r)-U(r)VG(r, p')) · dA = U(p'). (116)

On the surface at infinity both U and G are zero, and in the R 1 plane outside of the

aperture we assume that U is zero. From (108) we know that G(r, p') is zero for all r

in the R1 plane (really this is the purpose of defining G by Eq. 108). Therefore,

if S 1 denotes the aperture in the R 1 plane shown in Fig. 14, then (116) reduces to

1 (U(S)CV G((, -1)) dA = U(-I). (117)

If we let S1 become vanishingly small and on S 1 let U approach a unit-amplitude point

source at p, then (117) reduces to

aG(r, p')
- =h(p', p) (118)

r=p

which proves Eq. 109. Equation 111 is proved in a similar manner. The minus sign

arises from the fact that the z axis will be antiparallel to the outward normal from

the aperture in the R 2 plane.

The important thing to remember is that in this lemma we have only placed a bound-

ary condition on the values of the impulse responses, h and h; their gradients have

not been constrained.

Lemma 3

For any p ER 1 and p' R 2 we have

G(p+(dz)i z , p') = G(p'-(dz) i, p) (119)

for sufficiently small dz.

Proof: The proof of this lemma is straightforward. For dz sufficiently small we

may write
A

G(p+(dz) i z , p') = exp[-jk(dz)(cos O)n(p)] G(p, p') - exp[+jk(dz)(cos O)n(p)] G(p, p'),

(120)

where 0 is the angle between the z axis and the vector from p to p' (see Fig. 17).
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Equation 120 follows from the fact that for small dz the only perturbation in G is a dif-

ferential phase delay. Similarly, we can show that for dz sufficiently small

A _ A

G(p'-(dz)i z , p) =exp[-jk(dz)(cos O)n(p')] G(p', p) - exp[+jk(dz)(cos O)n(p')] G(p', p). (121)

Since dz can be made arbitrarily small, and the perturbations in the index of refraction
6

caused by the turbulence are typically only a few parts in 10 , we may assume n = 1 in

all the phase terms in both (120) and (121). We now have

(G(p+(dz)i z, p')-G(p'-(dz)i z , p))

= exp[-jk(dz)(cos 0)] (G(p, p')-G(p', p)) - exp[+jk(dz)(cos 0)] (G(p, p')-G(p', p)).

(122)

From Lemma 1, the first term on the right in (122) must be zero. Furthermore,

by the construction of our mirror images in the hypothesis of Lemma 2, we have

G(p, p') = G(p, p')

G(p', p) = G(p', p). (123)

Thus, applying Lemma 1 and Eq. 123, we see that the second term on the right

in (122) is zero, which proves the lemma.

PI

p +(d z) iZ p

Fig. 17. Geometry of Lemma 3.

We are now ready to prove that the channel is point-reciprocal. From (109),

we have

h(p', ) = lim
dz-0

(124)
G(p+(dz)i z , p') - G(p, p')

dz

and substituting from (119) and (103), we have

h(p',p) = lim
dz-0-O

G(p'-(dz)i z, p) - G(p', p)

dz
(125)

Applying (111) to (125), we conclude that
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h(p', p) = h(p, p'),

and the atmosphere is point reciprocal (instantaneously).

6.2 OPTIMALITY OF A TWO-WAY Q-KERNEL COMMUNICATION SYSTEM

Now that we have proved that the atmosphere is reciprocal, we may show that a

Q-kernel system, as described in Section V, is an optimal system for deep-space apodi-

zation. We may conclude directly that if the spacecraft is sufficiently far away (see the

path-length assumption in section 3. 3) a Q-kernel system as described in Section V

achieves the maximum energy transfer to the spacecraft that would be possible if

the channel were known to the transmitter at R 1. This optimal system uses an infi-

nite plane wave at the top of the atmosphere as a beacon.

Now that we have proved the reciprocity of the atmosphere it is instructive to con-

sider another (rather simple) proof of the optimality statement above. Let R 1 be

the aperture on the ground, R2 the infinite plane tangent to the top of the atmosphere,

and the impulse responses h and h describe the propagation between these two planes

for a single atmospheric state. Let us evaluate the impulse response, h(, p), asso-

ciated with transmission from R 1 to R3 , the spacecraft antenna aperture. This is the

impulse response for a single atmospheric state. For the path lengths of interest,

by assumption, we have

h(g, p) = h(pt pi) dp' eja "E R 3 p ER 1, (126)

where A 3 is the area of the aperture R 3 , a is a constant phase delay, and C' is the pro-

portionality constant defined in Eq. 85.

We define a kernel

KDS(p, r) = h h( , p ) d. (127)

3

From our discussion of one-way apodization (see Table 1) we know that the eigenfunc-

tion of KDS with maximum eigenvalue is the optimum waveform for transferring energy

from the ground to the spacecraft. Combining (126) and (127) we have

KDS(P,r) = C'( h(p',p) dp')(S= h(p',r) dp. (128)

Since the kernel KS(p r) may be written in the form 1 4

Since the kernel KDS( p, r) may be written in the form

00

KDS(p.) = Piyi(p) Yi(r), (129)
i= 1
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where Yi(p) and Pi are the eigenfunctions and eigenvalues of KDS, Eq. 128 implies that

KDS has only one eigenfunction, Y1 (p), of nonzero eigenvalue, and that the eigenfunc-

tion is

R(I P) dp*
Y1(P) = (130)

(fR 1 IR =O h(P', P)dp p)

The reciprocity of the atmosphere shows that

R(IZ=00.(p, p') dp
= 2 (= ) ')d)(131)

R | IRCh(p, p')dp' d

which is precisely the conjugated received beacon signal (normalized to unit energy)

that results when we use an infinite plane-wave beacon at the top of the atmosphere.

Thus, we have proved that the infinite beacon Q-kernel system is optimum for deep-

space apodization.

Equation 128 also verifies the comment made in section 3. 3 that for deep-space

applications (through a reciprocal channel) there is only one branch to the parallel-

channel model (for transmission between the ground and the spacecraft) with nonzero

gain.

Finally, let us observe that the optimality proofs presented here guarantee that the

performance in terms of E(t) of an infinite beacon system cannot be exceeded by

the performance of any finite beacon system for deep-space applications.

6.3 COMPARISON OF ADAPTIVE AND NONADAPTIVE APODIZATION

SYSTEMS

We shall compare the optimal adaptive apodization system for deep-space appli-

cations (the Q-kernel system with infinite plane-wave beacon) to the optimal nonadaptive

system. We begin by deriving the optimum nonadaptive system for a general

apodization problem, and then apply the results obtained to the deep-space channel

through turbulence.

6. 31 Nonadaptive Apodization

Let R 1 and R 2 be the transmitting and receiving apertures, respectively, and

let h(p', p;t) be the time-variant spatial impulse response that governs propagation

from R 1 to R 2. We shall assume that the medium between R 1 and R 2 may be

modeled as a succession of fixed states; that is, if u(p) is the input field at

R 1 , then the output field at R 2 is
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v(p';t) = u(p) h(p', p; t) dp. (132)

The energy in the field received at R 2 is therefore

E(t) =§ v('; t)Jz dp'
2

u (p) K(p, r;t) u(r) dpdr, (133)

R 1

where K(p, r;t) is the usual one-way propagation kernel (see Table 1) at time t. We

wish to find the unit-energy waveform u(p) on R 1 that maximizes the time-average energy

received at R 2 , (E(t)). In other words, we seek u(p) such that

5 U(p)j2 dp= 1

and

(E(t)) = 5'5' u (p) K(p, r;t) u(r) dpdr (134)

R I

is a maximum. We assume that we may bring the time average operation within the

integral, and that the atmosphere is ergodic in the sense that the time average of K is

the same as the ensemble average. That is,

(K(p, r;t)) = E[K(p, r;t)]. (135)

We may now rewrite (134) in the form

(E(t)) = u (p) E[K(, r;t)] u(r) dpdr. (136)
R1

The waveform u(p) is the unit-energy waveform that maximizes (136). By analogy

with the results of Section II, we see that u(p) must be the eigenfunction of the kernel

E [K(p, r; t)] of maximum eigenvalue.

The result just obtained is not new. Z 8 We shall discuss the performance of this

optimum nonadaptive system for deep-space communication through the turbulent channel.

6. 32 Applications to the Deep-Space Turbulent Channel

For the deep-space channel, the time-dependent one-way propagation kernel is
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KDS(P,r;t) = C h(p',p;t) dp h(p',r;t) d ) (137)

where R2 is now the infinite plane at the top of the atmosphere, and h(p', p;t) is the

impulse response that applies to propagation from the ground to the top of the atmo-

sphere. Since the channel is point-reciprocal, we have

KDS(p, r;t) = C' h(p, p';t) d (S h(r, p';t) d (138)

and from the z model for infinite plane-wave propagation through turbulence (see Sec-

tion IV), we may conclude that

KDS(p, r;t) = C'z (p,t) z(r,t). (139)

Hence the ensemble average of the kernel of interest is

E[KDS(, r; t)] = C 'E[z (p, t)z(r, t)] (140)

which has been evaluated theoretically with the following result 2 9

E[KDS(P,r;t)] = C' exp [-3.44 r (141)

where r is determined by the strength of the turbulence and the optical wavelength.

Moreland and Collins have solved the resulting Fredholm integral equation numeri-

cally for the optimum eigenfunction and eigenvalue for several values of D (R1 diam-

eter) up to D = 4r o . The optimum u(p) has uniform phase over R 1, but its amplitude

decreases monotonically with jP|. More important, they show that the time-average

energy received at the spacecraft when u(p) is transmitted only slightly exceeds the

average energy received if a plane wave (u() = ER) were used, and in both

1
cases increasing D beyond r does not significantly improve the performance of the

system.

Thus, for the deep-space application, the optimum nonadaptive (one-way) system

has an energy performance that saturates with increasing aperture diameter. On the

other hand, the Q-kernel system of Section V with infinite plane-wave beacon (which,

as we have seen, is the optimum deep-space system for all atmospheric states) does

not exhibit this energy saturation with increasing D. We conclude that for large D as

compared with ro there is no nonadaptive system whose performance approximates the

performance of the optimal Q-kernel adaptive system for the deep-space channel.
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VII. POINT-TO-POINT COMMUNICATION THROUGH TURBULENCE

7. 1 PROBLEM SPECIFICATION

We shall now apply the results of Section III for point-to-point communication through

a reciprocal channel to the turbulent atmospheric channel. The system that we shall

study is shown in Fig. 18. The regions R1 and R 2 are circular apertures of diameters

D and d, respectively, whose centers lie along a perpendicular between the R 1 and R 2

Ic------ .z -I

TURBULENCE

,( p- P; t)

R2

R1 ( DIAMETER d)

( DIAMETER D)

Fig. 18. Point-to-point Q-kernel system geometry.

planes. We denote the path length (perpendicular distance) from R 1 to R 2 by z. The

medium between the two planes is the turbulent atmosphere, characterized by the two

impulse responses, h(p', p;t) and h(p, p';t). We assume that z is short enough that the

atmosphere may be assumed to be "frozen" for at least one round trip, R 2 to R 1 to R 2 ,

propagation time.

We shall study the energy performance of some adaptive systems of the Q-kernel

type. In this study we shall make frequent use of the properties of the various channel

kernels that are valid for reciprocal channels; hence, the reader may find it helpful to

review Tables 1 and 3.

7. 2 Optimal Spatial Modulation for Point-to-Point Channels

Let us study the following system. A unit-energy beacon, v(p'), is transmitted from

R2 , the transmitter at R 1 then sends a turned-around (conjugation operation) renormal-

ized (to energy Et) version of the received beacon field, and at R 2 the received field is

heterodyned with v(p'). It has been shown that for maximizing the energy received by

the heterodyne receiver at R 2 , the optimal beacon waveform for any single state of the

atmosphere is ,l(P'), the eigenfunction of K(p',r') for the particular state with maxi-

mum eigenvalue. We have observed that although it was not possible to calculate 1 (P')

a priori, for time-invariant channels, it was possible to approximate an optimal beacon

signal to any degree of approximation by using an adaptively updated beacon system. We

shall now show how that result can be extended to the time-variant atmosphere.

Let the round-trip propagation time from R 2 to R 1 to R 2 be Tp, where T includes

all of the necessary processing time at the transmitter. Let the coherence time of the
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atmosphere be Tc; that is, is the maximum length of time for which the atmosphere

may be regarded as fixed. We define the parameter M to be the largest integer in Tc/T

Thus the atmosphere is essentially "frozen" for M round-trip propagation times.

Consider the adaptive beacon system described here. At time zero an initial beacon,

v(p'), is sent from R 2 to R 1. When this beacon is received at R 1 it is conjugated,

normalized, and transmitted back to R. /At R2 the received field is heterodyned with

vo(P') as in a nonadaptive beacon system, but the received field is also conjugated,

O
P

INITIAL BEACON

aD
vo( )= ii( o)

RECEIVED BEACON

i=I

TRANSMITTED WAVEFORM

coB 1v 

RECEIVED WAVEFORM

B1 v* X (0)N*(p';0)

UPDATED BEACON

etc. ) o i (0)P i ( ';O)

etc.
TIME

INCREASING

Fig. 19. Adaptive beacon system. Arrows denote direction of propagation.
The adaptation process may continue as shown for M round trips
before the atmosphere changes significantly.

renormalized, and used as an updated beacon, v l (p'). This process can be continued

for M round trips before the atmosphere changes significantly (see Fig. 19).

Let i (p' ;t) and Xi(t) be the eigenfunctions and eigenvalues of the kernel Q(p', r';t).

From our assumptions, Pi and ki are essentially constant during the time interval

(0, MTp). Thus if the initial beacon is expanded in the form

00

vO(p') = vO.i(p';O), (142)
i=l 1

.th
then we may write the j updated version of the beacon in the form

o00

v.(p' = Aj vxi (0) i(';O) j = 1, 2, 3, . M, (143)

i=l
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where Aj is a normalizing constant. The performance of this adaptive beacon system

(in terms of the output energy of the heterodyne receiver) increases monotonically (as

long as the channel may be regarded as time-invariant) with time, and converges toward

the optimal energy transfer possible (under the assumption that v 0). Again if

k i 1 i Df, kXi =0 i>Df,

where Df is the number of degrees of freedom of the channel as discussed in section 2.4,

then the convergence will be essentially complete in one or two round trips, and the

energy performance thereafter virtually optimum.

Since the atmospheric state is a smoothly varying quantity (in time), the eigenfunc-

tions and eigenvalues, i and Xi , should also be smoothly varying time functions. Thus

if Tp << TC (M large), the adaptive beacon system should be able to track the changes in

the atmospheric state and, therefore, after some initial turn-on transient, the adaptive

beacon system should achieve near-optimal performance for all ensuing atmospheric

state s.

To achieve this optimality, we had to make M large, and to do this we must restrict

ourselves to short path lengths, and be able to rapidly process the incoming fields at

R1 and R2 . With the present technology it appears that the processing time restriction

will be the more stringent of the two.

The adaptive beacon system that we have just described is an optimal spatial modu-

lation system for the point-to-point channel when T >> T. The rest of this discussion

is devoted to a simpler system that places less stringent requirements on our processing

times, but for large enough apertures achieves the same performance as the adaptive

beacon system.

We use the same geometry as in the adaptive beacon system, but we now assume

that the beacon is constrained to be a unit-energy normally incident plane wave. We

assume that T > T (M > 1); so, we may employ a fixed-state model for a single round-
c p

trip propagation time. The transmitter at R 1 is still a conjugation operation transmit-

ter (with renormalization to energy Et), and the receiver at R 2 heterodynes the field

received there with the beacon signal (now a plane wave). Except that the transmission

path is horizontal, rather than vertical, this system is the same as the ground-to-

"window" system discussed in Section V, when the window (R 2 ) at the top of the atmo-

sphere is finite. Thus, for the point-to-point system, the output energy of the heterodyne

detector at R2 must be given by

Etff Q(P', r';t) dp'dr'
R

E r(t) = - (144)
r A2 ff K(p', r';t) dp'dr'

R2

Since the channel is point-reciprocal, we have Q = K; therefore, (144) reduces to
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Er(t) =Et K(p, r t) 1 dprdr (145)

R IFA 2 - -A-22

which is the received beacon energy times Et.

We can now apply the lemma of section 5.21 to show that given E > 0, for each atmo-

spheric state there exists a Do (D o < o0) such that

Et K(p' , r;t)1 dp'dr' > Et(l-) M D > D, (146)

22 2

where D is the diameter of the R 1 aperture. Recall that K depends implicitly upon R 1.

Furthermore, we can apply the probabilistic bound of section 5.31 to show that there

exist finite R 1 apertures that achieve a given level of performance during a substantial

fraction of a given operating interval with high probability.

Although the system just considered achieves near-optimal performance for large

enough transmitting apertures, the system is inefficient compared with the adaptive

beacon system (when M is large). This inefficiency is the following. An adaptive beacon

system will deliver good energy performance if the aperture areas are large enough that

at least one eigenvalue, Xl(t), is always near unity. The plane-wave beacon system just

considered will in general require that more than one of the Xi(t) be "always" near unity,

and to achieve this condition the R 1 aperture must be enlarged from the minimum value

for which the adaptive beacon system performs well. On the other hand, the plane-wave

beacon system requires much less processing than the adaptive beacon system, so we

are trading increased aperture diameter for decreased complexity. This is especially

important in view of the processing time constraint set by the coherence time of the

turbulence.

7.3 Remarks

We conclude the discussion of point-to-point communication with some comments

on the possible uses of two-way communication systems. We shall restrict ourselves

to the adaptive beacon system of section 7. 2, although what we say may be related to

the plane-wave beacon system, too.

Suppose in the adaptive beacon system shown in Fig. 19 the beacon used has energy

Et, and at R 1 there is a receiver, in addition to the adaptive transmitter, which hetero-

dynes the received beacon field with a stored version of the previous received beacon

field. Temporal modulation may then be employed at both terminals, R 1 and R 2, and

information transmitted in both directions simultaneously. The received carrier energy

for propagation in either direction, by the very nature of the system, will be near the

optimal value of energy transfer (if M is large) for all atmospheric states, and since

transmission of information occurs in both directions, there is no energy used purely for

channel measurement, as there would be if the beacon were not temporally modulated.
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This concludes our discussion of point-to-point channels, the last topic in our inves-

tigation of the turbulent channel in the noise-free case.
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VIII. APODIZATION IN THE PRESENCE OF NOISE

8. 1 INTRODUCTION

Thus far in our study of adaptive spatially modulated communication systems we have

made two implicit assumptions: (i) the beacon signal is received in the absence of noise,

and (ii) the adaptive transmitter is capable of generating the conjugate of an arbitrary

incident field amplitude. We shall now remove these assumptions, and focus our attention

upon the problems of beacon estimation and approximate transmitter implementation.

We begin by proving two general performance lemmas for Q-kernel systems, one

for point-to-point channels, and one for deep-space channels. These lemmas will both

summarize the previous work and set a firm foundation for the rest. Next, we shall

develop a model for the noisy estimation problem, and derive the maximum-likelihood

estimator. Then we shall study the optimal use of spatial bandwidth in a Q-kernel

system, and conclude by examining the performance of a class of approximate trans-

mitter implementations in the absence of noise.

8.2 PERFORMANCE LEMMAS

We shall study the performance of some Q-kernel communication systems operating

in the turbulent atmosphere. We begin with the point-to-point channel.

8. 21 Point-to-Point Channel

Consider the geometry shown in Fig. 20. We have two finite apertures, R 1 and R 2 , sep-

arated by the turbulent atmosphere. We assume that the path length between these aper-

tures is short enough that the coherence time of the turbulence is less than a round-trip

TURBULENCE

h(p, ;t)

(' P X Pios 20

Point-to-point system geometry.

J- THIS PATH LENGTH IS LESS THAN THE -|

SPEED OF LIGHT TIMES HALF THE

COHERENCE TIME OF THE TURBULENCE

(R 2 -R 1 -R 2 ) propagation time. Thus we may apply the fixed-state model of Section IV,

and describe the system by two impulse responses: h(p', p;t) governing propagation

from R 1 to R 2 and h(p, p';t) governing propagation from R 2 to R 1. We restrict

ourselves to considering a single atmospheric state, and, for convenience, we suppress

the time dependence of the impulse responses.

We wish to evaluate the performance of the following system. A beacon, \E v(p'),
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of energy Eb is transmitted from R 2. We denote the received beacon field at R 1 by

uo(p ). That is,

u(p ) v(p') v (p, P') dp'. (147)0 b

The transmitter at R1 transmits u (p ), and at R the received field is heterodyned with

the beacon waveform v(p'). We denote the energy in the output of this heterodyne detec-

tor by Er. That is,

Er = u ( ) h(', p ) d v(') dp' . (148)
r )

Note that if we had

Et

u(p) = d uO(p), (149)

fR {Uo ( ) lz d0

then the system just described would be our usual Q-kernel system. By leaving (p )

arbitrary, the system described above may be used to model the noisy estimation or

approximate transmitter problems.

Having set the stage, let us proceed with the lemma to be proved.

Lemma (Point-to-Point System Performance)

If the number of degrees of freedom of the channel Df has the following properties:

(i) Df > 1, (ii) i 1 i •Df, and (iii) ki ) i > Df, then the output energy of the het-

erodyne detector at R2 is given by

/RI u(p) U(p) dp12

b (150)
Eb

Proof: First let us interpret what we are proving. Condition (i) of the lemma

means that the two apertures are in the near-field region. Conditions (ii) and (iii) are

properties of Df that we have used from time to time, and they will be assumed to be

true here. Let us examine the first equality in (150). From Table 1 we know that when

u(p ) = uo(p ) the output energy is given by
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E r ,5 Jb v (p ) Q(p, r) v(r') dpdr'

R2

Thus the lemma asserts that the effect of having u(p) ~ uo(p ) is a multiplicative term,

i u(p ) uo(p) dpi

in the resulting energy expression. This term is precisely the energy in the uo( ) com-

ponent of u(p). Now let us begin the proof.

We first show that

2 -R u(p uo(p)dp

| b v (p') Q(p ',r') v(r') dp 'dr' 2

IRf1 u(p) u(p) dp

E= - (151)
Eb

Since uo(P) is the received beacon field, fR |U (p ) 12 dp is the energy in the received

beacon field. But from the properties of the K kernel (see Table 1), the energy in the

received beacon field is

Eb v (p') K(', r') v(r') dp'dr.

R 2

Furthermore, atmospheric reciprocity implies Q = K; therefore,

2

2

which proves (151). To complete the proof, we need only show that

Rl u(p) Uo(p) dp 12

r E b

We proceed as follows. We expand the beacon waveform in terms of {4i}, the input
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eigenfunctions of the K kernel.

oo

v(p') = vii(p',

i= 1

where

vi = s v(p') (i') dp' 

From the properties of (ee Table ), we have

From the properties of {i} (see Table 1), we have

u(p b

00oo

v . i()7i- 1i= 

We now express u(p) in the form

u(p ) =
au o (p )

+ W(p ),

(R 1
where

u (p )

(R I U o(r)lz

1

dp

d)1/2

o(p ) Uo(p ) dp = 0.

In terms of {i}, the output eigenfunctions of

the form

co

(p) =i
i=l o0

=1-

the K kernel (154) may be written in

(156)

oo

i(P ) + o Wi=(P ),
i=l 1

Eb l i Iv )

where a is as given above, and w.
1 (p) ·(p )dp. From the properties of {i}
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(see Table 3), v (p'), the field received at R2 , is

+ w. Ix. (P')
1 i 

oo

i=l 

Thus the output energy of the heterodyne detector at R2 is

2

v (p') v(p') dp'

oo

2 a
i=l

i=1

* X. I v. i 
b 1 

1/2
Eblvif2

/2

ai=

i=l1

Ivil2Xi)

+ v. oo 

i= 1

2

W .V . \-.
11 1

oo

i=l 

We now use the assumed properties of Df to reduce (157) to

E = a 1

i=rom (155),

From (155),

w(p ) Uo(p ) dp

Therefore

E r= a

l/2 2
I il

C r%, u * - P

1
IR U(P ) u (P ) dp

I ~~, -0

Df

Ivil2
i= 1

fR l u0o
(P ) dp
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(157)

12 Df 2

i=l1

Df

i= 1

(158)

b 1 i*bi

Eb



which proves the lemma.

As we have mentioned, the essence of this lemma is that E r is given by the per-

formance when u(p) = u(p ) times the energy in the uo(p) component of u(p). The proof

that we have presented hinges on the fact that since u (p ) and a (p) are orthogonal

on R 1 , they are also orthogonal on R 2 after propagation through the channel. The assump-

tion that the eigenvalues {ki} are either zero or one implies that any two orthogonal func-

tions on R 1 have this property.

In apodization problems we are concerned with maximizing the received energy for

a fixed transmitted energy, so we now prove the following corollary.

Corollary. If the conditions of the previous lemma are satisfied, then the fraction

of the transmitted energy that is in the output of the heterodyne detector at R 2 is given

by

E I JR 1 U(p) uo(p) dplZ

E i _ n
in Eb 1 ,(R1 )[ 2 dp

= 9v (p,) K(p,r t ) v(r') dp'dr cos (,Uo), (159)

R2

where Ein = R 1 I|U(p)1 2 d is the transmitted energy, and

I1f i(p) u*(p) dp1
cos (, u) =

(R I U(P )I2 d z (fIR u0(p)12 dp)

Proof: The first equality follows directly from (150) and the definition of Ein. The

second equality follows from the fact that

u o( P)1 2 dp = Eb v (p) K( ) v(r') dp'dr'

~1 ~ R2

and the definition of cos (u, Uo).

The interpretation of this corollary is much more important than its proof. Equa-

tion 159 says that the fraction of the transmitted energy in the output is the fraction

of the beacon energy received at R1 times cos (u, u ). The term cos (u, uo) is the mag-
1 0 20

nitude of the cosine of the angle between the functions u(p ) and u (p ) in L (R 1 ). The

Schwarz inequality shows that 0 < cos (u, uo) < 1, and cos (u, uo) = 1 if and only if

u(p ) = bu (p), where b is some scalar. We now turn to the deep-space chan-

nel.
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8.22 Deep-Space Channel

The geometry of interest is shown in Fig. 21. The R 1 aperture is still a finite trans-

mitting aperture on the ground, but R2 is now the infinite plane at the top of the atmo-

sphere perpendicular to the line connecting R1 with the spacecraft aperture R 3. We

FREE SPACE {

p' IS A VECTOR

IN THE R2 PLANE

/ - ta'
1t

rt

T R SPACECRAFT

THE R-R 2 PATH LENGTH, L,

IS LESS THAN THE SPEED OF

LIGHT TIMES HALF THE
COHERENCE TIME OF THE

TURBULENCE

I NFINITE R2 PLANE

T'-TOP OF ATMOSPHERE

ARTH

Fig. 21. Deep-space system geometry.

assume that the zenith angle of the R1-R 3 path is small enough that the round-trip

propagation time (R 2 -R 1 -R 2 ) is less than the coherence time of the turbulence; thus we

may use the fixed-state model of Section IV. We work with a single atmospheric state,

suppressing the time dependence of the impulse responses.

The system that we wish to consider is the following. A normally incident uniform

plane wave of amplitude B is transmitted from R2 to R 1. We denote the received beacon

field u(P ) as in section 8. 21, only in this case we have

0oP 

zO

u0(p ) = X

2

B (p, p') dp'.

The transmitter at R 1 transmits u (p). We assume that the path length from R2

is sufficiently large that the field received at R3 when u (p ) is transmitted from

a normally incident plane wave whose amplitude is

ejb 5 _ S
xiR=SVR

(160)

to R 3

R1 is

(161)

where is the Rz-R 3 path length, and b is a constant phase delay. This assumption is

the same path-length assumption that we made when discussing deep-space channels
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before. From 161, E s , the energy received over R 3 is

A3 / -4- , - - \ -A 2ES (\2 S2= u (p ) hu(p, p ) dp) dp' d' (162)

where A3 is the area of the aperture R3. Note that if u(p) = u(p), then (162) reduces to

the energy received at the spacecraft from a Q-kernel system.

We now prove the following lemma.

Lemma (Deep-Space System Performance)

For the deep-space system described above we have

ES (=--) ii BQ(p', r' ) dp'dr' 1 2

A3 U(P ) U(Pu(P)2 dp)

A2 IIIf uu (ppdpj2

( Z2 2 (163)
(XQ)Z BZ

Proof: First let us note that the definition of the Q kernel and Eq. 162 imply that

when u(p) = uo(p ) the enery received at the spacecraft is

A3 2
E S (k[2 BQ(p',r') dpdr'

(x2) RRl=00

Thus (163) says that E s is given by the performance when u(p ) = uo(p ) times the energy

in the u (p ) component of u(p ). Since R 2 is infinite, however, we cannot use the eigen-

function expansion argument of section 8. 21 to prove the lemma above. Instead we

proceed as follows.

From the properties of the K kernel and reciprocity we immediately conclude that

Uo(P) 2 dp = 5S B 2 K(p, r') dp'dr'
1 R2

= S B 2 Q(p' , r ) dp'dr'.

R 2= oo

Therefore, we have

R2 ooR =_ _
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so we need only show that

A3

s (xi)2

i f u(p) U(P) dp 2

B 2

to complete the proof of the lemma.

From (162) we have

E s = j2 ( ) (p' , p) d dp'

Interchanging the orders of integration and using the reciprocity of the atmosphere, we

obtain

E s (kl)2 u (S2= O (p, p')p dd

Next we substitute for R = h(P., p') dp' from (160) to obtain
2OO

A3

s (xQ)2

A3

(X 2)2

IR u (p) UO(p) dp' z

B 2

'R 1 uSplu0(p dpj

B2

which proves the lemma.

The fact that the energy received at the spacecraft is due solely to the energy in the

uo(p ) component of u(p ) should come as no surprise at this point. In Section VI we

showed that the apodization kernel for propagation from R 1 to R3 had only one eigen-

function with nonzero eigenvalue, and that eigenfunction was proportional to the conju-

gate of the received beacon field, that is, u(p ) in our present notation.

We now prove a simple corollary concerning the fraction of the transmitted energy

that reaches the spacecraft.

Corollary. For the deep-space system under consideration the fraction of the trans-

mitted energy that is received at the spacecraft is

E s A

Ein () 2

A 3

(x2)2

f u(p) u*(p) dp Z

B2 JR lI(p)1 dp

(S K(p, r) dp'dr) cos2 (u, ),( 2 (164)
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where Ein =R 1 I u(p )1 dp is the transmitted energy, and

IfR U(p') U*(P) dpi
cos (u, u ) =

(fR 1 l 2 dp) 1 / 2 (fR 1 ()2 dp) 1/ 2

Proof: The first equality follows directly from the lemma and the definition of E.in

The second equality follows from

up)2 d = K(, ') dp'dr'
1 R21

and the definition of cos (u, Uo).

The interpretation of this corollary is similar to that of section 8. 21. The term

A3 SS ,9K(p', r') dp ' dr'

R2=oo

is the fraction of the transmitted energy that reaches the spacecraft when u(p ) = uo(P )

Note that for R 1 large (see section 5. 4) this term is approximately A 1 A3 /(X)2 with high

probability. Although it might appear that we can make this term arbitrarily large by

increasing A3 or A 1, the path-length assumption implies that A 1 A3 /(Xe)2 << 1. (Remem-

ber that A 1A 3 /(Xp)2 is the number of degrees of freedom of the R 1 -R 3 system in the

absence of turbulence.) The cos (u, uo) term measures how much performance is lost

because u(p ) has energy in components orthogonal to uo(P).

8.23 Remarks

Let us emphasize one aspect of the results just proved. The ratio of the output

energy to the transmitted energy, that is, Er/Ein for point-to-point channels and Es/Ein

for deep-space channels, is the gain of the system. Our results show that these gains are

equal to the values they take on when u(p) = u (p) times a gain reduction factor g =

2 0
cos (,uo). This gain reduction factor lies between zero and one, and it is one if and

only if u(p ) is proportional to u (p). The gain reduction factor measures how much gain

is lost because u(p ) has components orthogonal to u (p ), and it will be the center of our

attention in discussing beacon estimation and approximate transmitter implementations.

We shall begin this work by developing a model for the relevant noise sources in our

system.

A final word is in order. None of the proofs in this section depended in any way upon

special properties of the atmospheric channel (other than the fixed-state model and reci-

procity), so all of our results are in fact valid for any time-invariant point-reciprocal

spatially modulated channel.
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8.3 NOISE MODEL

When a beacon is transmitted from R 2 to R1, whether in a point-to-point channel or

a deep-space channel, the signal is received at R1 in a noisy environment. Let us con-

sider the sources of noise in the receiver at R1. In general there will be a number of

different noise contributions: background noise from scattered sunlight, black-body and

other radiation sources, shot noise from energy detectors, and thermal noise from

amplifier circuits in the receiver, to name a few. We shall concentrate on the back-

ground noise and quantum shot noise as the principal noise sources in our system.

8. 31 Background Noise

When a beacon is transmitted from R 2 the received beacon field is

q \7 v(p ) h(p, p') dp ' for point-to-point channels
R2

uo(p ) = (165)

S~ Bh(p, p') dp' for deep-space channels
Z=0

The quantity u (p ) is the complex-field amplitude of the linearly polarized wave that

would be received at R1 were there no noise present. The actual field amplitude

received at R 1 is

u(p, t) = Uo(P ) ix + nB(p,t), (166)

where nB(p,t) is the complex-field amplitude of the background noise, and i is a unit

vector in the direction of polarization of the transmitted beacon field. We are describing

the complex-field amplitude of the noise process by nB(p, t). The actual background

noise waveform is

Re B(p, t) e

The reader should keep in mind that when we speak of noise fields here we shall always

be concerned with the complex amplitude of the noise.

For light from incoherent sources the background noise may modeled as a zero-

mean Gaussian random process whose two polarizations are statistically indepen-

dent.?., 30 Thus no loss in optimality results from passing the field received at R

through a polarizer that selects the ix polarization. The output of such a polarizer is

u(p, t) = uo(P ) + nB(p , t), (167)

where u(p, t) = u(p, t) ·ix, and nB(p,t) = n(pt) ' ix. For receivers with large fields
422 Xof view nB( p, t) has the following properties.

1. Let {u'} be a complete set of orthonormal functions defined on R1. We define
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the processes

nB(t) = nB(P, t) u i (P ) dp (168)
i 1

The processes {nB (t)} are then statistically independent identically distributed zero-
1

mean Gaussian processes, whose real and imaginary parts are statistically independent

and identically distributed.

2. Suppose that RB.(T) is the correlation function of nB. (t), and let SB. (f) be the
1 1 1

Fourier transform of RB (T). That is,
1

Bi B Bi l (169)

and

=SB(f RB (T) e jZT dT. (170)
1 00o 1

Then SB (f), the power spectral density of nB(t), is constant in a large region about
1 1

zero frequency. Properties 1 and 2 imply that the background noise is well approxi-

mated by a Gaussian process that is "white" in both time and space. The power spec-

tral density of this noise depends on both the time of day and the center frequency (w c/2r)

of the radiation. For the present, we shall assume that

SB.(f ) = N o, (171)
1

where SB (f) is defined by (170). (This value of SB (f) implies that the average power
1 1

in a 1-Hz bandwidth (bilateral) of the noise field

Re nB(t) ejc

is No.)

8. 32 Quantum Shot Noise

Since we must estimate the spatial variations of u(p, t), some sort of coherent-field

detection is required. In particular, it will be assumed eventually that heterodyne

detection is employed to measure the components of u(p, t) along a set of N spatial

modes. Thus we now consider the quantum shot noise of such systems.

Suppose that u(p,t) is heterodyned with the waveform \E ul(p) exp(+jA0t) (see

Fig. 22), where Ao/21 is the intermediate (offset) frequency, and ul(p) is assumed to

have unit energy. The complex envelope of the output of the photodetector in some

bandwidth W about the intermediate frequency will have three components, a signal
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proportional to

\FEo s Uo(P ) ul(p ) dp,
1

a contribution from the background noise proportional to

O , InB(P, t)]L Ul(p ) dp,

where [nB(p, t)]BL is the noise process nB(p, t) limited to a bandwidth W about zero fre-

quency, and a shot-noise term that arises from the quantum nature of light. Helstrom

has shown that in the limit

X > U(p) 2 dp + N W (172)

the shot noise is a Gaussian random process, whose real and imaginary parts are sta-

tistically independent and identically distributed, and whose spectral density is flat over

PHOTODETECTOR OF QUANTUM EFFICIENCY q

BEAM SPLITTER
INCIDENT FIELD

AMPLITUDE AT R1

OUTPUT [ j u ( p, t ) =

u (u')+nB(' t)

Jul ()e-j At

LOCAL OSCILLATOR

Fig. 22. Single heterodyne detection system. The photodetector
covers the region R 1. The output of the detector is at

the offset frequency Aw/2r, and has bandwidth W.

the bandwidth W. Furthermore, the value of the spectral density depends only on the

local oscillator power, the center frequency of the incident light, and the quantum effi-

ciency of the photodetector used. The inequality (172) implies that the local oscillator

is much stronger than the received beacon plus average background noise, over the

bandwidth of interest. When (172) is satisfied the shot noise in the output of the photo-

detector may be represented by an equivalent noise field amplitude, n s(p, t), with the

quantum nature of the detection process ignored. This noise field has the following

properties. 3 2 , 33
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1. ns(p,t) is a zero-mean Gaussian process that is statistically independent of

nB(P, t).
2. The process ns(p, t) may be written in the form

n(p, t) = ns(t) U1(P )

where n (t) is a Gaussian random process whose real and imaginary parts are statis-
SI

tically independent and identically distributed, and whose spectral density is hwic/2 over

a bandwidth about zero frequency that is large compared with W, where Tr is the quantum

efficiency of the photodetector in Fig. 22.

Now let us suppose that u(p, t) is heterodyned with N local oscillators

N4V ° ) e'jw u p ) e+j) t, . E . uN(P ) e Tt-Iu 2 (p) o N

where {u i; 1 i N} is a set of orthonormal functions on R1 , and Eo satisfies (172)

(see Fig. 23). The complex envelope of the output of each photodetector will contain

PHOTODETECTORS BEAM SPLITTERS
u ( , t)

OUTPUT n 7 -- 7

LOCAL OSCILLATOR 1

u (p, t)
OUTPUT 2 4N

LOCAL OSCILLATOR 2

u( , t)

OUTPUT N 

BEAM

SEPARATOR

I

- u (, t)=

Uo ( ) + ( , t )

LOCAL OSCILLATOR N

Fig. 23. Array of heterodyne detectors. L. O. i is the ith local oscillator

/E /N ui(p) et. The photodetectors have areas congruent to
0 1

R 1 , and are all of quantum efficiency ri. The outputs are at the

offset frequency A/2wr, and have bandwidth W.

a signal component, a contribution from the background noise, and a "white" Gaussian

shot noise over the bandwidth W. Since each local oscillator-photodetector pair is inde-

pendent (physically) of all other such pairs, it is reasonable to assume that the shot

noises are independent processes. Moreover, if we use an equivalent shot-noise field,
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ns(p, t), to account for the shot noise in the photodetector outputs, then ns(p, t) has the

following properties.

1. ns(p, t) is a zero-mean Gaussian process that is statistically independent of

nB(P, t).

2. The process ns(p, t) may be written in the form

N

ns(p, t) = n (t) ui(P), (173)

i=l 1

where {n (t)} is a set of statistically independent Gaussian noise processes whose real
1

and imaginary parts are statistically independent and identically distributed, and whose

spectral densities are constant at hI c/2, over a bandwidth about zero frequency that is

large compared with W.

Although the description of ns(P, t) in Eq. 173 is complete with respect to the shot

noise in the outputs of the photodetectors in Fig. 23, it is not the description that we

shall use now. Let {ui} be a complete orthonormal set of functions on R 1 , where

* v *O _ U* _

u 1 (p ), U2 (p ), ... uN(p )

are the spatial waveforms used in Fig. 23. Consider the expression

oo

ns(p, t)= ns (t) ui( ) (174)
i=l 1

where {n. (t)} is as in condition 2. It is clear that as far as the outputs of the N photo-
1

detectors in Fig. 23 are concerned, Eq. 174 may be used instead of Eq. 173 as a

description of the equivalent shot-noise field. Equation 174 is the description of a

Gaussian process that is essentially white in both time and space, and it is the descrip-

tion of the shot noise that we use.

From our discussions, we conclude that the reception of the beacon signal at R1 may

be modeled as occurring in the presence of an additive noise-field amplitude

n(p, t) = nB(P, t) + ns(p, t),

where nB(p, t) is the background noise as described in section 8. 31, and ns(p, t) is the

equivalent shot noise field described by Eq. 174. We have seen that both nB(P, t) and

ns(p, t) are white Gaussian noise processes in time and space. Since the two noises

are statistically independent, n(p, t) is a white Gaussian process also. In particular,

if {i} is some arbitrary complete orthonormal set of functions on R 1 , then the

processes

n.(t) = s n(p, t) i(P ) dp (175)
1 1
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are statistically independent identically distributed white Gaussian noise processes with

spectral densities No + hwc/2n. This result follows from the Karhunen-Loeve expansion

of white Gaussian noise.

Before continuing, let us emphasize the importance of this result. Although we

are concerned with the noise in the output of an array of N heterodyne detectors

using a particular set of local oscillator waveforms, we have shown that it is equiv-

alent to assuming an additive white Gaussian noise at the input and ignoring the

quantum nature of the detection process and the particular set of local-oscillator

waveforms used.

8, 4 MAXIMUM-LIKELIHOOD TRANSMITTER

We are now ready to study apodization in the presence of noise. Consider the fol-

lowing maximization problem. A spatial waveform u (p ) is received over some finite

aperture R1 in the presence of an additive noise n(p, t). The noise-corrupted waveform

u(p, t) = uo(p) + n(p, t)

is detected by an array of N heterodyne detectors (as in Fig. 23) using spatial wave-

forms

_ e+JAt ue*+jAct 
1 (P) eo , "TE u(p ) e. ,O UN(p) e+jwt,

where {u i : 1 i N} is a set of orthonormal functions on R1 . The outputs of the N het-

erodyne detectors are observed over a time interval (0, T), and from this observation

an estimate, u(p ), of uo(p ) is made. We seek to find the estimation rule that maxi-

mizes

IR U(P ) u (p) dp 

E (176)

Li ju (P)j dpfR j'()jdj

subject to the constraint

E N
U(P = n aiui(P, (177)

a ti i=l

where the expectation is over the noise ensemble.

Let us see why this is a problem of interest. Suppose uo(P ) is the received beacon
field in a point-to-point or deep-space two-way communication system (as in sec-

tion 8. 2). From the results of section 8. 2 we find that the solution to the estimation

problem above maximizes the average gain of the system, subject to an energy con-

straint. at the transmitter. We shall begin the solution of this problem.
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8.41 Apodization in the Presence of Weak Noise

We shall solve the maximization problem posed above in the weak-noise limit, using

the noise model developed in section 8.3. That is, we assume

{ni(t) = n(p, t) ui(p) dp: 1 i N

is a set of statistically independent identically distributed white Gaussian noise processes
2N + c/ri

with spectral densities 2 It is convenient to define the parameters

ai = u(P ) ui (p ) dp 1 i N (178)

in terms of which the gain reduction factor may be written

2 N a1 2

u(p) u ( p ) d-| I Y: a,I fR12 J u= i=l

R Iuol I2 dp fR I 'P) dP fR luPI)2 dpIR1 1

, (179)

where we have used (177) for u(p ). Equation 179 has the following important interpreta-

tion. The term

N

i= 1

fR 1 u(p) dp

is the gain reduction factor that would result from using

N

u(p) = aiui(p )

i= 1

as an approximation to uo(p ). The key word here is approximation, rather than esti-

mate, since we can only measure u (p ) when there is no noise. We shall return to dis-

cuss noise-free approximate transmitter implementations. For the moment, we are

interested only in the effects of the noise. The term in brackets in Eq. 179,

N *
a a.

N N

. I ai12 z I i 2
i= 1 i=l

measures how much performance is lost (in addition to the noise-free gain reduction)
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because of the presence of noise. Note that this term has the form of the gain-reduction

factor when

N

u o(p) = aiui(P).
i=l 1

Since we have assumed a fixed set of heterodyne waveforms, our original maximiza-

tion problem reduces to the following form. From the observation

{ai+ni(t): 1 i-<i-N 0 < t -T}

find the estimate, a i, of a i that maximizes
1 1

E

(Note that since we are working with a fixed atmospheric state, we have implicitly

assumed that T is less than the coherence time of the turbulence minus the round-trip

(R 2 -R 1 -R 2 ) propagation time.)

Observe that no loss in optimality is incurred by time-averaging the observation

{ai + ni(t): 1 i N, 0 <t -< T} over the interval (0, T). This assertion can be proved as

follows. The time-average of the observation is

(ai+n.(t)) dt = a. + n(t) dt: 1 i N}
i (t) dr: 1 i<N

and, since {ni(t)} is a set of independent white Gaussian noise processes, the noise com-

ponents whose time averages are zero are irrelevant. Let us define the random

variables

ni = T n(t) dt 1 < i < N.

The set {ni} is therefore a collection of statistically independent identically distributed

zero-mean Gaussian random variables, whose real and imaginary parts are statistically
2N + h /rl

independent and identically distributed, and whose variances are 2T . Our

problem is now to maximize

E
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by choice of a i , given the observation {ai + ni: 1 i N}.

The problem just posed is easily solved in the weak-noise limit. Remember that

N 2
Y a.a,

i=l
N N
Z la i l2 1~il2

i= i= 

N N
is the square of the cosine of the angle between the vectors 7 aiui(p) and aiui( )

i= 1 i= 1
in the function space spanned by {ui(P): 1 i N}. Consider the error vector

N

(a i- ai) ui(P )

i=l
N

As shown in Fig. 24, this vector has a component along aiui(p ) (the in-phase error)
N i= 1

and a component perpendicular to Y aiui(p ) (the out-of-phase error). If
i= 1

N N

IE a lta-1i << E I| ail' (180)

i=l i=l

N
(the percentage square error is quite small), then the angle between aiui(p ) and
N i= 1
Z aiui(p ) will also be quite small. Furthermore, this angle will then be approximately

i=l 1
the ratio of the length of the out-of-phase error vector to the length of the signal vector
N
Z a.ui(p ). Thus, if (180) is satisfied, then the error angle, the angle a between the

i=l 1

C

Fig. 24.

B Error angle a. This plot is in the space spanned
by {u i ( P): 1 i.<N}. N

OA is the signal vector, Z aiui(p )
i= 1

N
OC is the estimate vector, z aiui(p )

i= 1
N

AC is the error vector, Z (i-ai) ui(P)
i= 1 

AB is the in-phase error, and BC is the out-of-
phase error.

0
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N N
vectors Z aiui(p ) and aiui.(p), is given by

i=1 i=1

a ~ , (181)

where we have evaluated the length of the out-of-phase error vector. In terms of a we

have

N aa.a aj=1

i=l 1 1 2
= cos a (182)

Z | a i l
2 Z; I ai2(J 1

i=l i=l

and, since a is small compared with one, (182) reduces toN 2

a.a*.
1i=l ~1 = 1 - a2· (183)

N N
Z ai2 Z I ZiJ2
i=l i=l

Therefore ine in the weak-noise limit the average gain reduction factor is maximized by

minimizing E(aZ). From the discussion leading to (181) we see that E(a2) is minimized,

in the weak-noise limit, by minimizing the mean-square out-of-phase error. It is well-

known 1 3 that the minimum mean-square error unbiased estimator for the unknown mean

of a white Gaussian process with equal variances in each dimension is the maximum-

likelihood estimator

aiML = a. i T S = u(p, t) ui (p ) dp dt 1 <i N. (184)

The Cramer-Rao bound shows that there is no estimator with a fixed bias, a bias inde-
N

pendent of aiui(p ), which has a lower mean-square error than the maximum-likelihood
i= 1

estimator. A variable bias system might exist that would outperform the maximum-

likelihood system, but to find such a system we would need some a priori information
N *

i=l 1 

85

n - -I _ _ _ _ �I _ ___�__



The resulting mean-square out-of-phase error, when maximum-likelihood estimation

is used, is

(2N + hwc/n)
(N-1) T

Thus the average gain-reduction factor is maximized by the maximum-likelihood rule

given in (184), and when this rule is used the resulting average gain-reduction factor is

2 -E(g) = E(cos (u, u0))

ai. 2
i=l 

fR Iuo(p) d

N

I f 1R
i=l 1

(N- 1) (ZN + hc/rl) \

1-i-l i |
2T I a2

1= 

uo(P ) ui p) dp 

£R l U(P )l dp
1

(N-1)(2

N
2T z I R

i=l 1

The result that we have obtained is

as a lemma.

quite important, and to emphasize it we state it

Lemma (Performance in Weak-Noise)

At R we receive

u(p, t) = u(p) + n(p, t),

where u (p ) is the received beacon field in a two-way adaptive communication system,

and n(p, t) is the white Gaussian noise discussed in section 8. 3. The field at R 1 is

detected by an array of N heterodyne detectors using a set of N orthonormal waveforms,

{Ui (P ): 1 < i-N}, as local oscillators, and the outputs of these detectors are observed

over a time interval (0, T). The average gain of a communication system using an

unbiased estimator at R 1 is maximized by the maximum-likelihood transmitter

ur(p ) =
u(p)= / t a. uE(p),

N I 2 i= 1 ML
a.

i=1 MLI

A 1 
where a.L = (- f u(p, t) i ( ) d dt, 1 . < i < N when the noise is weak enough that

IML T 0 R I 1

N(2No+ hw /)

<<
i=l

2

uR (p) (p) dp
0I
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(Note that we have substituted a bound on the ratio of the average length of the error

vector to the length of the signal vector for the condition in (180). The resulting average

gain-reduction factor under the conditions above is

E(g) = E
dp

N

i l dp '(N-1)(2No +iWc/ )

R uo(p, 1
2 d T IR uP ) Ui (p ) dp I

We shall continue the study of apodization in the presence of noise by discussing the

optimal use of spatial bandwidth in the weak-noise limit.

8. 42 Optimal Use of Spatial Bandwidth in Weak Noise

The maximum-likelihood transmitter and the resulting gain-reduction factor perfor-

mance are the complete solution of the weak-noise apodization problem when the N het-

erodyne waveforms used at R 1 are fixed. We shall now discuss what can be done when

{ui: 1 i < N} may be chosen to maximize the average gain-reduction factor. From

Eq. 179, if ul(P )= uo(p ) and N = 1, then the gain-reduction factor would be one

regardless of the noise. This choice of heterodyne waveforms is equivalent to

knowing uo(p ) a priori, which is not possible. It was precisely because we did not know

the channel state a priori that we began to consider two-way communication systems.

We shall study the following problem. Given a complete orthonormal set of functions

on R 1 , {ik which subset of {k} achieves the largest average gain-reduction factor

when used as the heterodyne waveforms in a weak-noise maximum-likelihood estimator.

Our results are stated in the following lemma.

Lemma (Optimal Use of Spatial Bandwidth in Weak-Noise)

Consider a maximum-likelihood estimator operating in a weak-noise environment

using some subset of f{k} as heterodyne waveforms. Let

u*(P)= (P) i= 1,2,3 ....
ui(P) = k. 

where

a ISn u(P ) U1(P ) dp u(P ) u2(p ) dp | ... , (186)

and let N be such that
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22 2N + /11R1 uo(P ) UN( p ) dp 2,
u (puO ( p ) dp < c/r (187)

2T

Then the optimum subset of k} Ifor maximizing the average gain-reduction factor is

{ui: 1 < i -. N}.

Proof: In the presence of weak noise the average gain-reduction factor achieved

by a maximum-likelihood system using heterodyne waveforms {ui: 1 i M} is

M 1 _ * _ -12 2No + h CA
iZ R Uo(P) u(p ) dp (M-1) 2T

E(g) = i 1 dp

If {ui} are constrained to be chosed from a given complete orthonormal set, {'k}' then

for any M the choice given in (186) maximizes

M

If IR1 uo(P ) u i (p) dp 2

R 1 Uo(P)12 dp
1 0

Furthermore, when u is chosen in this manner, E(g) is maximized by M = N, where

N satisfies (187), which proves the lemma.

This lemma has an important interpretation in terms of "matching" spatial band-

widths within the system. It asserts that the optimal subset of a given complete ortho-

normal set of spatial modes is the set of modes in which the signal energy exceeds the

average noise energy. In other words, it tells us to match the spatial bandwidth of the

transmitter at R 1 to the bandwidth over which the signal energy density exceeds the noise

spectral density.

In general, this lemma is the only spatial bandwidth result that we can

obtain. For the point-to-point channel, however, there is another lemma that

can be proved.

Lemma (Spatial Bandwidth for Point-to-Point Channels)

The average gain of a point-to-point two-way communication system using a

maximum-likelihood transmitter in the presence of weak noise with heterodyne wave-

forms chosen from a given complete orthonormal set, { *i} is a maximum under the

following conditions.

1. When the number of degrees of freedom of the channel, Df, is such that
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v(p ') K(p',r') v(r') dp'dr' 1. (188)

R 2

2. When the heterodyne waveforms are chosen from {k} in accordance with the

previous lemma.

Proof: From the corollary of section 8. 21, the average gain of the point-to-point

channel is

(9~v*(p') K(P', r') v(r')dp'dr'E(g)

R2 

and, since v(p') has unit energy, we have

o v (p') K(',r') v(r') dp'dr' 1.

R2

Thus applying (188) and the previous lemma completes the proof.

Let us see what interpretation we can attach to this lemma. Condition (188) says

that the beacon signal v(p') must propagate through the channel with essentially no atten-

uation. How does this result relate to spatial bandwidth? Using the notation of sec-

tion 8. 21, we have

00

v (P')K(p', r' ) v(r' ) dp 'dr' = vi2 )i

R 2 i=l

Df

m Iv il2
i= 1

where

00

i vji2 I v(p)2 dp' = 1.

i= 1 2

In section 2. 4 we observed that the number of degrees of freedom of the channel is in

essence a spatial bandwidth constraint imposed upon signals propagating through the

channel medium. Thus Eq. 188 says that we must make the channel spatial bandwidth

larger than the spatial bandwidth of the beacon that we are using. Conversely, if the

aperture sizes are fixed, we must choose a beacon whose spatial bandwidth is less than

the bandwidth of the channel. (Remember that Df is an increasing function of A1

and A .)
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We have seen that the spatial bandwidth of the transmitter at R 1 must be matched

to the bandwidth over which the signal energy density exceeds the noise spectral

density. For point-to-point channels we have just seen that the signal spatial

bandwidth must be less than the channel spatial bandwidth. Thus in the point-

to-point case, performance is optimum when the spatial bandwidths of the bea-

con and the transmitter at R 1 are properly matched to the spatial bandwidth

of the channel.

8. 43 System Performance in Strong Noise

The results of sections 8. 41 and 8. 4Z were predicated upon a weak-noise assump-

tion. We shall now derive some performance results that are valid regardless of

the strength of the noise. Rather than attack the problem of maximizing the average

gain-reduction factor, which is a difficult problem when we cannot make a weak-

noise assumption, we shall study the performance of a particular two-way sys-

tem that reduces to the maximum-likelihood system of section 8.41 when the

noise is weak.

Consider the system shown in Fig. 25. The field received at R 1 is

u(p,t) = uo (p) + n(p,t)

as in section 8. 41. The field transmitted from R 1, however, now is

u (P ) =

N

Z a. ui(p), (189)
i=1 ML1-l

where

iML T ) p) d

and

ai uo( ) u i (p ) dp 

This transmitter is the same as the maximum-likelihood transmitter of section 8.1

This transmitter is the same as the maximum-likelihood transmitter of section 8.41,
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except for the fact that in the system of Fig. 25 the average transmitted energy

{ a. I< i< N
aML: N TRANSMITTER u

WITH AVERAGE

ENERGY

CONSTRAINED

* () I
I=1 I

N
* u,(p)i=1 'MLI

TRANSMITTED WAVEFORM

Fig. 25. Maximum-likelihood transmitter with average
energy constrained.

is constrained, rather than the actual transmitted energy. This normalization is

convenient for the calculations that we shall make.

In Appendix C it is shown that for u(p ) as defined above

(190)
R N 2 N (2N + w/rl )

0 Z I i a. I- l 2 )1 _ _ _ _ _ _ _

i= 1 2T

and

VAR [
L|

ZQ

i!

u(P) Uo(P) dp 2
u(p ) u(p ) d]

N
Et Z I a i

2

i= 1
2 N + / A ) N 2N + ci 

2 I E ail + 4T I

i= 

2T

(191)

where the expectations are over the noise ensemble. Using

the following lemmas.

these results, we can prove

Lemma (Point-to-Point System Performance)

Let uo(p ) be the received beacon field in a point-to-point system using a beacon,

i bP v(p'), of energy Eb. Then the performance of the system that transmits u (p),

given by (189), is as follows.

1. The average energy over the noise ensemble in the output of the heterodyne

detector at R2 is
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(192)
EtN

E(Er) = Eb I a2
i= 1

2. The variance of the output energy of the heterodyne detector at R 2 is

E 2 a

VAR(E i=1

VAR (Er) =

3. The fractional fluctuation of E about its mean, that is, the ratio of the standardr
deviation of E to its mean, isr

(VAR (E)) 1/2

E(E r)

(194)

Proof: Equations 192 and 193 follow immediately from Eqs. 190 and 191 and the

Lemma of section 8.21. Equation 194 is obtained by taking the square root of Eq. 193

and dividing by Eq. 192.

We shall comment on these results after proving the next lemma.

Lemma (Deep-Space System Performance)

Let u (p ) be the received beacon field in a deep-space system using an infinite plane-

wave beacon of amplitude B. Then the performance of the system that transmits u (p),

given by (189), is as follows.

1. The average energy (over the noise ensemble) received at the space-

craft is
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N
A3 Et Z a i

2

E(E s ) = =1 
(Xke) B

i= 1

+ N(2N + hw/) 

i= 

(195)

2. The variance of the energy received at the spacecraft is

(196)VAR (E s ) =
5

3. The ratio of the standard deviation of E to its mean is
s

(VAR (E )) 1/

E(E s )

(197)

Proof: Apply Eqs. 190 and 191 to the Lemma of section 8. 22.

The results that we have just obtained are valid regardless of the strength of the

noise relative to the received beacon energy. It can be seen that they reduce to the

weak-noise results of section 8. 41 when

N(ZN + hiwc/) N2T T << 1E 2
i= 1

Let us consider what happens when we are not in this weak-noise limit. From our

results we see that the noise has had two effects on the system.

1. The noise in the u (p ) component of the field at R1 causes fading at the receiver,
that is, the variances of E and E are nonzero.r s

2. The noise causes the transmitter at R 1 to waste energy on spatial modes orthog-

onal to u(p ).
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Consider the following special case. Suppose that

2No + hcwc/ N(2N + hc/-n)
<< 1 <N N

2T Z l ail 2 2T l a1 2

i=l i=l

Since N may be quite large, we may often find ourselves in this situation. In this case

the in-phase noise is negligible, but the total noise is still not weak enough to use the

results of section 8.41. From the lemmas just proved we note that although the frac-

tion of the average transmitted energy that is received will not be close to one, there

will be little or no fading caused by the noise. That is,

(VAR (Er))1/2 (VAR (Es))1/2
_ - 0.

E(E r) E(E s)

(Remember that we are working with a fixed atmospheric state; changes in the atmo-

spheric state will produce fading at the receiver even if there were no noise in the sys-

tem. See section 5.4 for a discussion of this type of fading.) Thus the maximum-

likelihood transmitter delivers good energy performance, that is, little fading, for a

single atmospheric state, as long as the average noise energy per spatial mode is small

compared with the signal energy at R 1, and its performance is optimum if the total aver-

age noise energy is small compared with the signal energy at R1 .

We shall leave the question of performance in the presence of noise and study the

behavior of some approximate transmitter implementations in the absence of noise.

8.5 APPROXIMATE TRANSMITTER IMPLEMENTATIONS

In the absence of noise the optimal transmitter for maximizing the gain of a two-

way adaptive communication system transmits a scaled version of the conjugate of the

received beacon field uo( ). At present, there does not seem to be a device capable

of generating the conjugate of an arbitrary received beacon field, so we now address

ourselves to the theoretical problem of approximating the conjugation operation in the

absence of noise. In this matter we shall find the lemmas of section 8. 2 quite helpful.

We shall restrict ourselves to considering systems that heterodyne u (p ) with a set

of N orthonormal waveforms {ui: 1 i N} and transmit a scaled version of the conju-

gate of

N

u(p ) = aiui(p ), (198)
i=l

where

ai = u(p) ui (p ) dp 
R1
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From the results of section 8. 2, we know that the system gain for point-to-point or

deep-space channels is proportional to the gain reduction factor

f Wu(p ) u o (P ) dp 

R 1 IP 1 ()i dp fR lUo()| dp

and for the case of interest here we have

NN a.12

g i=1 d (199)
fR1 luO(P )o dp

If {Ui : 1 i N} is such that

N

i= 1 1(200)

then no performance has been lost by going to an approximate transmitter.

As an example of an approximate transmitter implementation, let us consider the

Taylor series arrays. We partition the R 1 aperture into nonoverlapping circular array

elements of radius r. Over the i t h array element an n t h -order Taylor series trans-

mitter makes an nth-order Taylor series approximation of the complex phase of uo(p),

and u(p ) is taken to be the component of uo( ) parallel to the approximate phasor. That

is, if

Uo(p )= ea( p)

then

a. en
i,n B.

1 ~<i -- <N, (201)u~p )= B i n EAi 1 i N, (201)

where A. denotes thwhere Ai denotes the ith array element, ai n(p ) is the n th-order Taylor series approxi-

mation of a(p ) on A B. n is a normalizing constant, and

i, n u A
a.in u o(P ) -- Bn dp.

1 rr

In the n = 0 case, u(p ) is a piecewise plane wave normally incident on R 1, whose abso-

lute phase delay varies from array element to array element. In the n = 1 case, u(p )

is a piecewise plane wave, whose direction of propagation and absolute phase delay
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varies from array element to array element. In the n = 2 case, 7i(p ) is compensated

for the spherical and hyperbolic aberrations in the phase of u (p ).
th 0

The n -order Taylor series transmitters fall within the framework set up previously

with

-i, n(P)

U. (P) B, n/ p p EAi p A. 1 i N,
1 1,n 1 1

u 0

where N is now the number of array elements in R1. Fried 2 has studied

series approximation that we are discussing for the deep-space channel.

order Taylor series system he has calculated a maximum array element

that if r < Pn, then

E(1 lai nl2 E( lo(p) 2 dp).

i= /

That is, g 1 on the average,

E z I ai, n2)
( i=lu 

E (f 1 U dp

(202)

the Taylor
thFor the n-

radius pn, such

and if r > pn, then

decreases monotonically as r increases, where the expectations are over the turbulence

ense mble.

This completes our discussion of approximate transmitter implementations. We

have only dealt with the noise-free case. The performance of array systems in the

presence of noise was considered in section 8.4. But, since the heterodyne wave-

forms used by a Taylor series array depend upon the field received at R 1, the results

of section 8.4 can only be applied to the Taylor series arrays in the weak-noise limit.

8.6 SUMMARY

We have covered a great deal of material, and it is worth reviewing what we have

accomplished. The principal results are as follows.

1. The performance of a general two-way spatially modulated communication sys-

tem was evaluated for both point-to-point and deep-space channels. It was shown that

the system gain, the ratio of the output energy to the input energy, is given by the gain

of an ideal Q-kernel system times a gain-reduction factor.

2. The performance of Q-kernel systems in the presence of noise was examined.

The noise was modeled as a white Gaussian process in space and time, and the

maximum-likelihood estimator for the received beacon field was derived.
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3. The maximum-likelihood transmitter was shown to be the unbiased estimator

that maximizes the average system gain (over the noise ensemble) in the presence of

weak noise.

4. The energy performance of the maximum-likelihood system in the presence of

strong noise was derived.

5. The optimal matching of spatial bandwidths between the beacon, channel, and

transmitter at R 1 was discussed.

6. A class of approximate transmitters was investigated in the absence of noise.

The performance of such systems, compared with the ideal conjugation transmitter, is

determined by a gain-reduction factor.

The result of greatest importance is that neither the presence of noise, nor the use

of an approximate transmitter implementation in the absence of noise, changes the

essential fact that a two-way Q-kernel system achieves good energy performance through

the turbulent atmosphere.
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IX. HYPOTHETICAL DEEP-SPACE COMMUNICATION SYSTEM

We shall now specify the parameters of a hypothetical deep-space Q-kernel com-

munication system, and calculate its energy performance. The system will contain a

beacon at synchronous altitude, an adaptive transmitter on the ground, and a receiver

on a spacecraft approximately 80 million miles from Earth (typical Mars range). We

shall calculate the following quantities:

1. energy performance when an ideal conjugation transmitter is used on the

ground, in the absence of noise,

2. number of elements needed by a Taylor series transmitter (of orders zero or

one) to achieve near-ideal performance in the absence of noise, that is, a gain reduction

factor of approximately one,

3. performance of a Taylor series system, with a noise-free gain reduction factor

of unity in the presence of noise, and

4. comparison of Q-kernel energy performance with the performance of nonadaptive

optical and microwave systems.

The geometry of the problem is shown in Fig. 26. The beacon is a 0. 01 W laser

operating at 0. 6 3 2 81±, with a diffraction-limited aperture, 0. 2 m in diameter. The

beacon is located on a synchronous satellite at zero zenith angle, and the field across

the beacon aperture, R 3, is assumed to be a uniform plane wave whose direction of

SPACECRAFT R4 CIRCULAR APERTURE

1.0 in

DIAMETER

BEACON TR3/ 
CIRCULAR APERTURE

0.2 m in

DIAMETER 

FREE SPACE

TOP OF 

ATMOSPHER ERROR

Zo R1 CIRCULAR APERTURE 1.0 m

EARTH IN DIAMETER

Fig. 26. Hypothetical deep-space Q-kernel system. The beacon is at zero
zenith angle: power is PB = 0. 01 W; the wavelength is X = 0. 6328p[.

The transmitter power at R1 is Pt = 0. 1 W; the wavelength at R 1 is

= 0.6328k. The R 2 -R 3 path length is Zl; z 2 is the R 2 -R 4 path length.
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propagation is parallel to the center-to-center perpendicular from the beacon antenna

(R3 ) to the Earth antenna (R 1 ). The aperture on the ground, R 1, is a circular aperture,

1. 0 m in diameter, and the transmitter power used at R 1 is nominally 0. 1 W. The wave-
11length used at R 1 is also 0. 63281. The spacecraft is at a distance 1.29 X 101 m (80

million miles) from the Earth, and it has a circular receiving aperture (R4 ), 1. 0 m in

diameter. The angular displacement between the R 4 -R 1 and R 3 -R 1 lines is a,

the beacon aiming error (see Fig. 26). We begin our calculations with the energy per-

formance in the absence of noise.

9. 1 SYSTEM PERFORMANCE IN THE ABSENCE OF NOISE

Before proceeding, some preliminary comments are in order. First, let us note

an implicit assumption in the system specification. We have placed the beacon on a

synchronous satellite, and we assume that the field received at the top of the atmosphere

(R 2) is, as far as R1 is concerned, an infinite plane wave whose amplitude is propor-

tional to the spatial Fourier transform of the beacon waveform at zero spatial frequency.

In the absence of atmospheric ducting, this assumption is satisfied for a -m aperture

on the ground and a 20-cm aperture at synchronous altitude.

Our second comment concerns what we mean by energy. Heretofore, we have

adopted the convention that R lu(p) 2 dp is the energy in the spatial waveform u(p )

over R 1. We must now give up this fiction. If c and Eo denote the speed of light and

the permittivity of free-space, respectively, then the power in the electric field over

R 1 whose complex-field amplitude is u(p ) is

2 |u(p)| d W.
R1

This is the convention that we shall now use.

When a plane-wave beacon of power PB is transmitted from R 3 the field at the top

of the atmosphere is a plane wave whose amplitude is

Ja 1 / 2 -

where a is a phase delay, z1 is the path length from R3 to R2, X is the wavelength of

the radiation, and A 3 is the area of the aperture R 3 . Thus, if the constant phase

delay is neglected, the field received at R 1, for a single atmospheric state, is

u 2PBA)1/2'
lo(p ) Xz 1(2PB=1/2 (p, p 0dp

=z 1 (2pBA3) z(p ), (203)
1 
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where z(p ) is the perturbation from the z model for infinite plane-wave propagation

through turbulence. The power received over R 1 therefore is

PBA 3

(Xz ) R1
| z(p) 1 dp. (204)

If, in the absence of noise, the transmitter at R 1 transmits P u(p), (this wave-

form has power Pt), then, under the assumption that the aiming error a is suf-

ficiently small, the field received at R4 (the spacecraft) is

v (x) R2=o
^ e2 Z=t

( 1
U (P ) h(p', p ) dp dp'

P 

where b is a constant phase delay, and z2 is the path length

and (204), we have

from R 2 to R4. From (203)

/2P ejb R= z(R (p) h(p', p) dp) dp'

2 (jI ]- -2-v~~~~~~~~~~~~

By interchanging the orders of integration, using

of z, v (x) may be written in the form

\* ( ZPt ejb /
v (x) = -- t R

CEXZ'V c~~~~~ Xt~~
z(P) 2 dp) 1 /2

point reciprocity, and the definition

x R44 (207)

Hence P 4 , the power received by the spacecraft, is

P4 = 2 
4

PtA4

(XZ ) S1

IA*(x I d

I z(p) 2 dp, (208)

where A4 is the area of the aperture R4.

Using the results of section 5. 4, we may evaluate the mean and the fluctuation about

the mean of P1 and P 4 (the expectation is over the turbulence ensemble), and obtain

PBA3A1
E(P 1) 2

(Xz 1)
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x E R4 (205)

x ER 4 . (2 06)
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Pt A 1 A4
2E(P 4 (210)

(Xz2)

(VAR (P1))/2 (VAR (P4))1/2 (VAR (I zl2))1/2
1~= 4= (Z211)

E(P 1 ) E(P 4 ) 

where NI is the number of intensity coherence areas in the aperture R 1. From the given

data we conclude that

(0. 01 )(rr X 10-2 )(w/4)
E(P 1 ) 6 7 2

(0. 63X 10 X3.6X107)

= 5.1 X 10 W (212)

and

(0. )(Tr/4)2

E(P 4 ) =6 11
(0. 63X10 6X1. 29X 1011)

= 1. OX 1011 W. (213)

To obtain the fluctuation about the mean we must evaluate NI . Really the quantity we

need is VAR (fR 1 z(P ) 2 dp). Fried3 4 has studied this expression, and we rely on his

results. Fried has shown that for zenith paths, under the assumption that the variance

of log I z is 0. 5 (a typical value),

VAR (I !2 )
VAR (fR I (p) 2 dp) = N

where NI = 4A 1 /TrD, and D = 2. 86 X 102 m. Thus we have

(VAR (P1))1/ (VAR (P)) 1/ 2 (VAR( ZI2)1/2

E(P 1 ) E(P 4 ) i

(e 4 VAR (log I )_ 1)1/2

(4A 1 / TrD )/2

=6.9x10 - 2. (214)

Equations 212-214 completely describe the performance of the system using an ideal

conjugation operation transmitter in the absence of noise. Note that not only is there a

large average power received at R4 (see comparison with a microwave link below), but
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there is also relatively little fading, as indicated by (214).

We have seen (section 8. 5) that there exists Taylor series approximations of the ideal

conjugation transmitter whose performance, as measured by a gain reduction factor, is

essentially the same as that of the ideal system. The number of elements used in such

an array is not only a measure of the system complexity, but also determines the system

performance in the presence of noise. For that reason, we shall calculate the minimum

number of array elements needed by zero-order and first-order Taylor series arrays to

achieve gain reduction factors of approximately one. Our results, based upon the work

of Fried, are as follows.

1. n , the minimum number of elements needed by a circular zero-order Taylor

series array, 1 m in diameter, to achieve a gain reduction factor of approximately one,
-2

is r .
o
2. n1 , the minimum number of elements needed by a circular first-order Taylor

series array, 1 m in diameter, to achieve a gain reduction factor of approximately one,

is (3.4 ro )- 2

3. The parameter r is the coherence length of the turbulence from the structure

function of the phase. If we take r = 4 mm as a typical value, we have

n = 6. 25 X 10 4 (215)

n1 = 5.38X 10 (16)

The parameter r is roughly the largest aperture over which the far-field beamwidth

of a plane wave transmitter is diffraction-, rather than turbulence-limited. Therefore

4A 1 /rro2 is the average power gain achieved by using a Q-kernel system instead of a

nonadaptive plane-wave transmitter, since it is the ratio of the average power received

over R4 from a Q-kernel system to the average power received over R4 from a plane-

wave transmitter of diameter r using the same input power. For a Q-kernel system

with a 1-m aperture and typical r this gain is enormous; that is,

4A 1 /rr2 = 6. Z25 X 104

which is 48 dB.

We conclude the analysis of the noise-free case by comparing our Q-kernel system

with a microwave link. We shall compute the input power required by a microwave sys-

tem to achieve the same average power level at the spacecraft. We assume the following

situation:

1. The microwave transmitter is a diffraction-limited parabolic dish 64 m (210 ft)

in diameter.

2. The operating frequency is 2. 1 GHz.

3. The power input is P.

4. The antenna at R4 (the spacecraft) is a parabolic dish, 1 m in diameter.
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Table 4. System performance in the absence of noise.

It can be seen that the power received at the spacecraft from such a system, for

which we have assumed that the atmosphere is completely transparent at 2. 1 GHz, is

PiA4A'
P4 = 4 (217)

(X'z2)

where Al is the area of the transmitting aperture, and X' is the wavelength corre-

sponding to a frequency of 2.1 GHz. For P4 to equal E(P4 ) from Eq. 213, P must be

PtAI (1 \2
t A- X)

= 1.03 X 10 6 W. (218)
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P 1 = RECEIVED BEACON POWER OVER R 1

(zlPB 3 z(p) 2 d; E(P 1 ) = 5. 1 X 10- 7 W
2 1

(VAR (P 1 )) 1/2 -2
- =6.9 X 10- Z

E(P 1 )

P 4 = POWER RECEIVED OVER R4

- 4 z(p) 2 dp E(P 4 ) = 1.0 x 10 - 11 W W

2 4

(VAR (P4))1/2 -2
= 6.9 10

E(P 4 )

RESULTS FOR TAYLOR SERIES ARRAYS

no = minimum number of elements required by zero-order
array to achieve g 1 on a 1-m diameter circular

aperture = 6. 25 X 104

nl= minimum number of elements required by first-order
array to achieve g 1 on a -m diameter circular

aperture = 5. 38 X 103



Equation 218 illustrates the tremendous antenna gains obtainable at optical wave-

lengths with physically small antennas. It is important to remember that we needed a

Q-kernel system in order to achieve diffraction-limited performance (on the average)

from antennas larger than r in diameter. Indeed if we used a nonadaptive optical sys-

tem of the same power as the Q-kernel system, we would need only 16. 5 W input to the

microwave system to achieve the same average received power at the spacecraft.

This concludes our treatment of the noise-free case. The results are summarized

in Table 4. Our next task is to evaluate system performance in the presence of noise.

9.2 SYSTEM PERFORMANCE IN THE PRESENCE OF NOISE

We begin our study of the noise-present case by evaluating the spectral density,
ZN + Ad /ti

°2 +, of the white Gaussian noise model of section 8. 3. From measurements

of the spectral radiance of the zenith sky by Bolle and Leupolt, as reported by M611er,3 5

-26
we conclude that at X = 0. 6L, we have No 10 W/Hz. (This is a daytime value of No,

nighttime values of No are much smaller.) Assuming a photodetector with a quantum

efficiency of 0. 4, we have hw / = 7. 8 X 10 - 19 W/Hz at X = 0. 6. Thus the quantum

shot noise is the dominant noise in the system.

Since a Taylor series array is likely to be used in a system that is actually built,

we shall restrict ourselves here to considering only Taylor series arrays of zero and

first order, as described in section 8. 5. We assume that the integration time T is 1 s

(corresponding to a 1-MHz bandwidth), and that in both cases the minimum number of

elements required to achieve a gain reduction factor of approximately one in the absence

of noise is used. Thus the average noise power collected by the Taylor series array is

no(2N o + hc/) -8
ZT(2T ~~ = 2. 44 X 10 W (219)2T

for the zero-order array, and

nl(2No + lic/) -9
2T = 2. 04 X 10 W (220)2T

for the first-order array. From (212) we conclude that the average signal-to-noise ratio

at R1 is approximately 13 dB for the zero-order array and 23 dB for the first-order

array. In either case we expect that the weak-noise results of section 8.4 will apply.

Furthermore, since the fluctuation of the received beacon energy about its mean is

small, we may modify the results of section 8. 43 as follows.

1. The average beacon power received over R 1, over the turbulence and the

noise ensembles (By this we mean the average power received over R1 in the spatial

mode corresponding to the received beacon waveform in the absence of noise. From

section 5. 4 we know that the average power received at the spacecraft is proportional

to this quantity.) is
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2N + hc/
E(P 1) + 2T

where E(P 1 ) is the average beacon power received in the absence of noise. Since

2N + hw /
E(P1) >> 2 C, this average power is about the same whether or not the noise isE(P1) 2T
present.

2. The average power transmitted by a system that sends qPt/E(P) times the

conjugate of the Taylor series approximation of the noisy received beacon field is

Pt (2N + n (/rN )c/)
E(P 2T

for the zero-order system, and

Pt + n1
E(P1) 2T

for the first-order system. In either case, since the noise is weak [compare (219) and

(220) with (212)], the average transmitted power is approximately Pt, and the fluctuation

about the mean is about the same as the noise-free result (214).

3. The fraction of the average transmitted power that is in the received beacon com-

ponent of the field at R 1, that is, the gain reduction factor, is

2No + hwc/r
1+

E(P 1 ) 2T

no (2N o +hw C/)
1+

E(P 1 ) 2T

for the zero-order system, and

2N + h /1 No + c1+
E(P 1 ) 2T

nl (2No +hc/)
1 +

E(P 1 ) 2T

for the first-order system. In both cases the fractions are close to one because of the

weakness of the noise power compared with E(P1 ).

The main conclusion to be drawn from these results is that the noise power is weak

enough that the system under consideration has virtually the same performance charac-

teristics whether or not the noise is present.
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9.3 CONCLUSIONS

We have demonstrated that a Q-kernel system, even one using an approximate trans-

mitter realization in the presence of noise, performs quite well in terms of the power

delivered to a spacecraft 80 million miles away. Although these results are true, they

are only true when some stringent aiming and alignment requirements are met. We shall

take explicit note of these requirements, and comment upon some other important

aspects of the system.

9. 31 Alignment Restrictions

There are 4 alignment restrictions that were assumed, either explicitly or implic-

itly in sections 9. 1 and 9. 2. These requirements have to do with aiming all of the anten-

nas in the system (the beacon, transmitter at R 1, and spacecraft antennas) within a

far-field beamwidth of their respective targets. Specifically, they are as follows.

1. The direction of propagation of the plane wave transmitted from R 3 (the synchro-

nous satellite) to the ground must be aligned within -0.4 X/d rad of the perpendicular con-

necting R3 and R 1, where = 0. 6. and d = 20 cm.

2. The aiming error a must be less than 0.4 X/D rad, where X = 0. 6 and D =

1 meter. It may be possible, by using a corrective phase tilt at R1, to tolerate an

aiming error significantly greater than 0.4 X/D. Whether or not this is possible depends

on the size of the isoplanatic angle, but if such a system is feasible, the phase tilt at

R 1 must be adjusted within 0.4 X/D of the desired tilt.

3. The Taylor series transmitter at R1 must produce a waveform that over any one

array element is aligned within 0. 4 X/d n rad of the estimate of the approximate incident-

field amplitude, where X = 0. 6 and dn is the diameter of the n -order array element.

4. The antenna on the spacecraft, R 4, must be aligned within 0. 4 X/d rad of the

R1-R 4 direction, where X = 0. 6L, and d is the diameter of a diffraction-limited lens

whose far-field beamwidth is the same as that of R4 .

Restriction 2 is the most severe, and it is indeed so because

0.4 X/D = 0. 371L R = 0. 076 seconds of arc.

Alignment to this accuracy will require extremely delicate adjustments and virtually

complete mechanical and electrical stability. On the other hand, if any of conditions

1-4 cannot be met, the performance of the system will not approach the values calculated

in section 9. 2. For instance, let us assume that conditions 1, 3, and 4 are satisfied,

but that a X/D. The resulting average power received at R4 will be -10 - 3 times the

result given in section 9. 2.

9.3 2 Point-Ahead Problem

There is an issue that we have ignored completely that may be critical to the opera-

tion of a deep-space Q-kernel system. That issue is the point-ahead problem. In

general, the spacecraft that we wish to communicate with will have a nonzero relative
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velocity with respect to the Earth transmitter, and this motion will necessitate our

pointing the beam ahead of the spacecraft. For systems in which the beacon is on the

spacecraft, the motion of the spacecraft relative to the Earth can cause the beacon to

probe a different path through the atmosphere than the one we transmit through from the

ground to the spacecraft, This could invalidate our Q-kernel performance results. If

the isoplanatic angle of the turbulence is less than the point-ahead angle, then the cor-

rection at R 1 is just a deterministic tilt of the wavefront, and our performance results

hold as given earlier. (The isoplanatic angle may be regarded as the maximum

angular displacement between two infinite plane waves incident on the top of the

atmosphere for which the effect of propagation to R 1 is the same for each plane

wave.) Since the point-ahead angle for this system is 2v/c, where v is the

transverse speed of the spacecraft relative to the Earth and c is the speed

of light, the isoplanatic angle will set an upper limit to the transverse speed

(relative to the Earth) of a spacecraft for which a Q-kernel system will work

as well as we have indicated. In numbers, the maximum allowable relative

speed is 333 miles per hour times the isoplanatic angle in rad. If the iso-

planatic angle is greater than 20j R or so, this maximum speed requirement

will not be severe. Unfortunately, little theoretical or experimental evidence

is available concerning the isoplanatic angle.

Let us not paint too gloomy a picture of this problem. Suppose that the beacon is

not on the spacecraft, but is on a separate (synchronous) satellite. Then, regardless

of the size of the isoplanatic angle, if the aiming error angle between the apparent posi-

tion of the synchronous satellite and the predicted position of the spacecraft (after point-

ahead correction) meets the alignment restriction set in section 9. 31, then all of the

performance results that we have derived are valid for this system. The isoplanatic

angle does play a role in the system just described; it determines how long (in time) a

particular synchronous satellite may be used as a beacon for the Earth-to-spacecraft

path, before the beacon probes a "different" atmospheric path from the desired path.

Our final comments concern the sensitivity of our results to the zenith angle of the

R 1 -R 3 line (with point-ahead questions ignored). The work in sections 9. 1 and 9. 2 was

predicated on this zenith angle being zero. Fried's work3 4 indicates that as the zenith

angle increases, for a fixed aperture on the ground, the fluctuation factor

(VAR (P4)) 1/

E(P 4 )

increases in proportion to the square root of the secant of the zenith angle. If the zenith

angle is very large the Q-kernel system of section 9. 1 will exhibit severe signal fading

at R 4 . Although this fading may be decreased by increasing the size of R 1, if R 1 is

made too large the path length assumption of section 3. 3 will be violated by a beacon at

synchronous altitude, thereby completely invalidating the results of section 9. 1.
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On the whole we conclude that, subject to the problems outlined above, the two-way

system that we have discussed here will achieve excellent power transfer to the space-

craft with little fading.
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X. SUGGESTIONS FOR FURTHER WORK

Perhaps the most important conclusion that we can draw is that more work needs to

be done. Our study of adaptive spatially modulated transmitters was undertaken to find

ways of improving optical communication through atmospheric turbulence. In this matter

we have succeeded. Our results show that there are adaptive systems whose perfor-

mance greatly exceeds the best nonadaptive system for communication through turbu-

lence. With the exception of some of the basic properties of the turbulence that we have

used, this conclusion is based wholly upon theoretical considerations. It is time that

some experimental work be done.

Three areas in which work is needed are the following.

1. Channel Measurement

The instantaneous reciprocity of the atmosphere should be verified experimentally.

The temporal statistics of the quantity

R (pr';t) dp'drT ,
R

which is the energy received over an aperture R1 when a plane wave is transmitted from

R 2 , and which determines the performance of a Q-kernel system operating between

R 1 and R 2 using a plane-wave beacon, should be measured for various sizes of the

R 1 and R 2 apertures. The isoplanatic angle of the turbulence, which is an important

parameter to know when designing a deep-space Q-kernel system, should be measured.

2. Transmitter Implementation

An effort should be made to implement a conjugation transmitter, or some approxi-

mation of it such as the Taylor series array discussed in section 8. 5.

3. System Implementation

An experimental Q-kernel system should be implemented and its performance char-

acteristics compared with theoretical results.

This program is by no means exhaustive, but it is indicative of the work that needs

to be done. On the other hand, there are other avenues of research, related to the

material that we have presented, to be explored. The reciprocity of the atmosphere

provides a powerful tool for measuring the atmospheric state. Further research is

needed on adaptive systems (other than the kind that we have considered) that use this

information to improve optical communication through the atmosphere. Another research

area is the application of reciprocity, as we have defined it, to the study of other

slowly fading channels.
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APPENDIX A

Apodization for Reciprocal Channels

A. 1 Conjugation Operation Transmitter

We shall prove that Eq. 12 does represent the "turned around" and renormalized

field at R 1 , in a two-way communication system. First, we show that for any field

uo(p) received at R1 from R2 , uo(p) represents a reversal in the direction of propa-

gation of the waveform. We may represent u(p) in R 1 as

0 (p = Iu 0(p) exp -j(k(p) (p+ziZ)++, (A. 1)

where k(p) is the wave vector, Ik(p) = k is the wave number, and is the absolute

phase of the waveform at the origin of R 1 . The direction of propagation of a differen-

tial segment of phasefront centered on the point po is parallel to the vector k(po). This

may be verified as follows. We may regard the differential segment of phasefront as

being a piece of plane wave; that is, there exists a 6 > 0 such that

Uo(p) = IUo(po)I exp -j(k(po) (p+zTi)+) ) IP-poI (A. 2)

(The smoothness of the inhomogeneities of the channel medium allows us to assume

that all fields are continuous within the boundaries of R 1 .) The direction of propagation

of this plane-wave segment is parallel to k(p ). Hence if we conjugate Eq. A. 1 we

have

uo (p) = iu o ( p)i exp -j(-(. (P+Zz-) (A. 3)

and we see that locally (at p) the waveform is propagating in the -k(Po) direction. Note

that conjugating uo(p) does not change the shape of the surfaces of constant phase,

although the 4o surface of u (p) becomes the -4 0 surface of uo(p) for any constant o0,

and also conjugation does not change the amplitude of the wave. Thus conjugation does

reverse the direction of propagation of an incident waveform.

To complete the verification of Eq. 12, we must show that the normalization and

time-delay terms are correct. We have from Eq. 11 that

o(p) = v(p') h(p, p') dp' (A. 4)

2

so the energy in uo(P) is

§1 uR1 dP SS d§ v ) h*(p, ) h(p,r') v(r') d'dr'. (A. 5)

0 R1 R Z
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Therefore the renormalized (to energy Et ) reversed direction-of-propagation wave-

form is

/UE Et \lu (p) v E (A. 6)
v (pa) K(p', r') v(r') dp'dr' 

where we have used Eq. 7 for K(p',r').

Now we must account for the delay term in Eq. 12. The absolute phase, , of uO(p)

represents a time delay in propagation from R 2 to R 1 (under the assumption that the

beacon signal had zero absolute phase). Thus, by conjugating uo(p), we have obtained

a signal with a negative phase, corresponding to a signal beginning before u(p)

arrives at R 1 . In order that the transmitter be realizable, we must add a delay term

to the absolute phase of u (p) in (A. 6); the resulting expression when this delay is added

is Eq. 12.

A. 2 Heterodyne Receivers

We shall explain the difference between what we mean by heterodyning with v(p') and

what we mean by measuring the v(p') component of a received field v (p'). We define

the output of a receiver that heterodynes v (p') with v(p') to be

v (p') v() dp'. (A. 7)

Since v(p') has unit energy, the energy in the receiver output is

(p') v(p') dp' . (A. 8)
R2

When we measure the v(p') component of the field v (p') we are determining the coef-

ficient of the v(p') term in an expansion of v (p'), using some complete orthonormal set

of functions of which v(p') is one. Hence the v(p') component of (p') is

(R v*(P') v*(p) d) v(p') (A. 9)

which corresponds to heterodyning v (p') with v (p'). The energy in this component is

v(p') v (p') dp' (A. 10)

since v(p') has unit energy.
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A. 3 Reciprocity Conditions

We shall prove the reciprocity conditions Eqs. 25 and 30. First, consider a point

reciprocal spatially invariant channel. Let v(p') be the output field (at R 2 ) that results

when u(p) is the input field. Consider the expression

SR2
u(-p') h(p, p') dp'. (A. 11)

We shall assume that R 2 is made large enough that

u(-p') - 0 V p' R,. (A. 12)

This can always be done, since we have

u(p) - 0 P p R1 (A. 13)

and R 1 is a finite aperture. Making the change of variable = -p' in (A. 11), and using

(A. 12) and (A. 13) we have

u(-p') h(p, p') dp' =

Now we may use the spatial invariance of

(see Eq. 23) to show that

S
fE R

u(g) h(p, -) d =

E R 1

the impulse responses and point reciprocity

F(-~-p) dS

e CR 1

= v(-p) (A. 15)

which proves Eq. 25. Similarly, Eq. 28 may be proved by using u(,-p') in (A. 11),

and proceeding through the same argument.

Next consider a point reciprocal spatially invariant channel that is also isotropic.

To prove Eq. 30, we proceed as follows. Again, let v(p') be the output field at R 2

when u(p) is the input. We have to assume that R is made large enough that

u(p') - 0 Vg p' R.

Then we have
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§R2
S

6 GR1

(A. 14)

__ _ _ _

u(�) h(p, -�) 4

u(S) h(-p, ) dJ



5 u() h(p, )d = 5 u(g) F( -pI)d
R2 _R

= u(h h(p, ) d5

gE R 1

= v(p) (A. 17)

which proves Eq. 30.

Note that in both of these proofs we have relied on the fact that all of the spatial

variables (p, p', and ) are two-dimensional vectors, which may be defined with respect

to the origin of either aperture, R1 or R 2 . Although we have always tried to keep all

unprimed vectors in the R1 plane and all primed vectors in the R 2 plane, it was not

possible here.

A. 4 Q = K Identities

There are two statements to prove. First, we must show that if a channel is

point reciprocal, then .i (r) is an eigenfunction of K(p, r) with eigenvalue X.i Second,

that Q = K is also a sufficient condition for this result.

Suppose h(p', p) = h(p, p'). Consider

K(p, r) h- (r) dr h(, p) h(p d (A. 18)

1 1 2

Interchanging the orders of integration, and using the fact that bi is an eigenfunction

of Q we have

(p,r) (r) dr h (p',p) 4(p') dp'. (A. 19)

1 R2

Now we may use point reciprocity and the fact that i is an eigenfunction of K to show

K(p,r) i(r) dr = X. (p). (A. 20)

It remains for us to show that Q = K is sufficient to prove (A. 20). Consider {(m}.

We shall assume that this is a complete orthonormal set. Let us examine the integral

K(p,r) i(r) dr. (A.21)
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Since this integral is a function on R with finite energy, we may expand it in terms

of the {I}.

R K(p, r) i (r) dr =

j=

(A. 22)aijj (P),

where

( j(p) K(p, r) i(r) dpdr. (A. 23)aij =Y
R 1

We must show that

a.. = .6..1J 1 1J

To do this, we substitute the definition of K in (A. 23), interchange the orders of inte-

gration, and obtain

aij 2 =1

~ ~2 V1

R2

= Xiij

dr)4i (r) h(p', r)
( I

dp) dp'j(p) h (p, p)

Nf (P ) (p') dpI
I i P ~~~~3 

(A. 24)

where we have used the properties of {i*} that follow from Q = K and the orthonormal-

ity of the {4i}.
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APPENDIX B

Apodization through Atmospheric Turbulence

We shall show that the parameter a, defined in section 5. 2 as

a= · ~ - h(p', p) dp' dp , (B. 1)

2 

is small, typically from 3 to 5. The argument presented here is not intended as a rig-

orous proof, since the point reciprocity of the atmosphere (proved in section 6. 1) enables

us to write immediately

2 

1
= (y KOO(p', r') dp'dr' = 1, (B.Z)

where the last equality follows from the lemma of section 5. 21.

In the argument presented here we shall use a physical interpretation of (B. 1)

that does not rely on the reciprocity of the atmosphere. We have

2

a - h(p', p) dp dp. (B. 3)
R1=°0 I R2 2 _ 

The impulse response h(p', p) may be regarded as the field at p' resulting from a point

source at p. Thus we may regard

h(p', p) dp'

R2 

as the output of a heterodyne receiver that heterodynes the field received at R 2 from

a point source at p with a unit-energy normally incident plane wave. The quantity

|1 f __I 2
1 !h(p', p) dp'

2 2

is then the energy in the output of this heterodyne receiver, and therefore, from (B. 3),
2

a may be interpreted as the sum of the heterodyne receiver output energies resulting

from point sources in R 1.
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Consider, for the moment, the nonturbulent case. The impulse response h is

thenZ5

h(p', p) =
-exp -jk( p'-p 2 /Z os 0

(B. 4)

jx( p l z

where z is the path length from R 1 to R 2 , and is the angle between the z axis and

the vector from p to p'. Let us now apply a well-known result about heterodyning. The

energy output of a heterodyne receiver using a normally incident plane wave of radius a

for a local oscillator essentially results only from those plane-wave components of the

received field that are less than X/Za rad away from normal incidence.3 6

MR2

PHASE FRONT

\ OF h ( ',p )

ABSENCE OF

TURBULENCE
P I

Fig. B-1. Phase-front curvature.

C B

z

Note 1: AB=X/2

Note 2: '<COB < ACB (since a < < Z)

a0

Z 2ao

Fig. B-2. Calculation of a .
0
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Referring to Fig. B-1, we see that for any p R 1 the vector normal to the phase

front received at R 2 is only close to normal incidence on R 2 in a small circular region

of R 2 centered on the perpendicular projection of p onto R 2 . Let A_(a) denote the cir-

P
cular region of radius a centered on the projection of p onto R 2 . Let a be the largest

value of a for which the incident field is within X/2a rad of normal incidence on A(a).

From Fig. B-2, we see that a satisfies the condition P
o

a
X ao

a z * (B. 5)
o

For such a o, within the region A_(ao), we have
P

exp -jk( p'-~ I2+z2)l/21 = 1, cos 1.

Therefore from (B. 4) and our statement about heterodyning we have

2

1 _,2 ( p) dp' (B.6)

2 | (Xz) A 2

If A is the smallest circular region in the R 1 plane such that for all p not in A

SR h(p', p) dp' 0,

then we have

ag = h(p', p) dp' dp. (B.7)

Applying (B. 6) to (B. 7) to show that

2
(rra)2 A

2a 2 (B. 8)
(Xz) z A z

and substituting for a from (B. 5), we have

ar o A . (B.9)

From our discussion of heterodyning leading to (B. 5) we may conclude that A is
From our discussion of heterodyning leading to (B. 5) we may conclude that is
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approximately the perpendicular projection of A 2 onto the R 1 plane; therefore, we

have a rr/2.

This result applies to the nonturbulent atmosphere, in which case we know that a = 1.

What we have demonstrated is a method of obtaining a, within an order of magnitude, in

the absence of turbulence. We now assume that the same method will enable us to

estimate a within an order of magnitude for the turbulent channel.

In the presence of turbulence h(p', p) will have a basically spherical wavefront with

perturbations caused by the turbulence. The local variations in the angle of arrival are

the only perturbations that can affect our argument. Since these perturbations are

typically only a few tens of microradians,37 there will still be some circular region

A_(a o ) such that
pP

C' 1
1 h. (p', p) dp' - h(p', p) dp' O

gz,, ;- -,z_(ao) q-~z
P

and the size of ao will still be determined primarily by the basic curvature of the

h phase front. Hence, within an order of magnitude, we conclude that a should be

about the same in the presence of turbulence as in the absence of turbulence, which

is the desired result.
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APPENDIX C

Spatial Bandwidth and System Performance

We shall calculate the mean and the variance of

() uo(P ) dp

where

t /
a(p u.(p) (C 1)

N N(2N+h/) ML 
V ai 12 N(2No+ac122T i=

a. -1I u(p t) u(p) d dt
ML 

ai = R uO(p) ui (p) dp

u(p, t) = uo(p) + n(p, t)

and n(p, t) is the white Gaussian noise described in section 8. 3. It is clear from the

properties of n(p, t) that {. } is a set of statistically independent complex Gaussian
ML 2N + noh /r

random variables, with means ai and variances 2 c Furthermore, the real

and imaginary parts of a. are statistically independent with equal variances for all
1ML

i, 1 -- i N. Therefore we have

/2 N

(at2+nia i), (C. 2)

i= 

where {ni: l <i-<N} is a set of statistically independent zero-mean Gaussian random

variables, whose real and imaginary parts are statistically independent and identically
2N o + hwc/r,

distributed, and whose variances are 2 . From the properties of Gaussian

random variables, we conclude that R U(p) u*(p) dp is a Gaussian random variable

with mean
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(
Et

N N(2N +h c/tl)
Z Jail2 + o c

i= 2

and variance

N 1 2 (2N + h c/a)
E t Z Jail 2T

i= 1

N
z ail

i=l 

2 N (2No+hfc/)

Also, the real and imaginary parts of fR

ances.

u(p) u(p) dp are independent with equal vari-
1

We wish to evaluate the mean and variance

diately
of fR 11

u(p) u(p) dpo0 

2
We have imme-

2)

u(p) u(p) dp = VAR (

2 N

i=1
2N + hcoc/T|ai|2 + o c

N 2 (2N +hIi /)

i= 1 ai + 2T

To obtain the variance of fR1
1

u(p) uo(p) dp 12 we evaluate the variance of nI 2

where n is a complex Gaussian random variable whose real and imaginary parts are

statistically independent and have equal variances. We have

VAR (n 2) = E((lnl 2 -E(n1 2 ))2 )

= E(I1 4 +(2 Re (E(n) *))2 ) + E2 (InI 2 )

- 2E(InI2 ) E(II Z+ 2Re (E(n)n ))

= 3 (VAR 2 (Re ()) + VAR 2 (Im (n)))

+ 2 VAR (Re (n)) VAR (Im (n))

- (VAR (Re () + VAR (Im (n)))

+ 2 E(n) 12 VAR (n)

= (VAR (n) + 21 E (n) 1 2) VAR (n),
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where n = n - E(n), and we have used the moment-factoring property of real Gaussian

variables. Thus for the case at hand we obtain

[2)
VAR( IR 1 '(p) u(p) dp

0

Et !
= 2 (i=
N

1 ai1 2 +
i= 
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