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Abstract

Natural landscapes, noise in electrical devices, and fluctuations in the stock market are
among the extraordinary variety of phenomena that exhibit fractal structure. As a result,
the need for efficient and robust algorithms for processing fractal signals arises in many
engineering contexts.

This thesis develops a discrete multiscale state-space representation for an important
class of fractal random processes referred to as 1/f processes. We show that this representa-
tion, which is based on a signal expansion in terms of simple first-order processes, satisfies a
novel frequency-based characterization for discrete 1/f processes. Using this representation,
we develop efficient algorithms for several signal processing problems that have previously
had no practical solution, such as prediction.

Iterative algorithms are developed for maximum-likelihood parameter estimation of 1/f
signals in white Gaussian noise. These algorithms exploit the computational efficiency of the
Kalman smoother. Performance evaluation using simulations suggest robust performance
in noise-corrupted scenarios. These algorithms are extended to address the problem of
estimating a deterministic signal in 1/f and white noise. We evaluate the estimator for
the special case of affine signals in 1/f noise, which have potential applications in ocean
temperature and economic time series analysis. The estimation of the slope of an affine
signal in 1/f noise is shown to have a polynomial dependence on the length of the data.

The thesis also develops efficient recursive algorithms for prediction and smoothing of
1/f signals in white Gaussian noise. The distant past for 1/f processes is shown to have a
significant effect on predictions of future data samples, in contrast to the distant past for
autoregressive and moving-average processes. The single-step prediction error covariance is
shown to decrease to the minimum error covariance as a polynomial function of data length.
The multi-step prediction error covariance is shown to increase to the signal variance as a
polynomial function of the distance of the predicted point from the observed data.
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Chapter 1

Introduction

Natural landscapes, noise in electrical devices, and fluctuations in the stock market are

among the extraordinary variety of phenomena that exhibit fractal structure. As a result,

the need for efficient and robust algorithms for processing fractal signals arises in many

engineering contexts.

The 1/f processes are an important class of fractal random processes. The fractal

nature of these processes originates from self-similarity and scale invariance in statistical

structure. As a consequence of this special structure, these processes demonstrate behavior

qualitatively different from traditional random process models used in statistical signal

processing. For example, in contrast with the widely used family of ARMA processes which

have covariance functions that decay exponentially with lag, 1/f processes have strong

long-term statistical dependence characterized by covariance functions with polynomial-

type decay.

Due to the wide range of phenomena modeled as 1/f processes, there is increasing de-

mand for applications for processing these signals. Algorithms for predicting future values

of a 1/f signal based on observations of the process over a finite time interval could have

applications in economic forecasting, for instance. This thesis develops algorithms for pro-

cessing fractal signals based on a multiscale state-space representation. Since measured

data is typically represented as a discrete sequence, the thesis focuses on discrete-time 1/f

processes observed over a finite data length. This state-space representation is particularly

well-suited for several signal processing problems, such as prediction, that have previously

had no practical solution. In addition, the algorithms in this thesis are robust in the presence



of broadband measurement noise.

The thesis begins with a brief background for continuous 1/f processes in Chapter 2.

These processes have several important empirical properties including statistical self-similarity

and scale invariance. We review several existing models for describing, generating, and an-

alyzing 1/f processes.

This thesis focuses on discrete 1/f processes which have different self-similarity charac-

teristics than continuous 1/f processes. Chapter 3 examines these differences and presents

a frequency-domain characterization for discrete-time 1/f processes based on a restricted

notion of self-similarity. We present a infinite-order multiscale state-space representation

for nearly-1/f processes that satisfies this characterization. This representation, analogous

to a continuous framework due to van der Ziel [17], is based on the superposition of first-

order autoregressive processes with different characteristic time-constants. We show that

a properly chosen finite-order approximation to this infinite-order representation exhibits

1/f spectral behavior over a finite frequency range. Using this approximation, a state-

space system description for 1/f signals in a background of additive white Gaussian noise

is presented in Chapter 4. This description allows computationally efficient optimal estima-

tion algorithms based on noisy observations of 1/f signals, using the Kalman filtering and

smoothing equations.

In signal processing applications involving 1/f signals, it is frequently necessary to

characterize and parameterize the signal. Chapter 5 addresses the problem of parameter

estimation with 1/f signals. Joint signal and noise estimation of the parameters of a 1/f

signal process obscured by additive white Gaussian noise is performed using an Estimate-

Maximize (EM) algorithm. The Estimation step in the algorithm exploits the state-space

system description and filtering equations from Chapter 4. The properties of the estimator

are analyzed with Monte-Carlo simulations. This algorithm is extended to include joint

signal and noise estimation of the parameters of an arbitrary parameterized deterministic

signal obscured by a combination of additive 1/f noise and white Gaussian noise. This

algorithm is potentially applicable in processing signals such as economic time series and

oceanographic temperature data. The special case of affine deterministic signals corrupted

by 1/f noise of known parameters is analyzed.

Chapter 6 presents computationally efficient algorithms for single-step and multi-step

prediction and smoothing of 1/f processes. These algorithms exploit the state-space de-



scription of Chapter 4 and are computationally efficient. The distant past for 1/f processes

is shown to have a significant effect on predictions of future data samples, in contrast to

the distant past for autoregressive and moving-average processes.

Finally, Chapter 7 reviews the contributions of the thesis and suggests directions for

future research.



Chapter 2

1/f Processes

The 1/f family of fractal random processes provides useful models for an extraordinary

variety of natural and man-made phenomena that exhibit long-term dependence. Examples

of such processes include voltages and currents in electrical devices such as diodes and

transistors; phase noise in oscillators; the amplitude and pitch of music; and fluctuations in

stock market indices.

A 1/f process is empirically defined as having measured power spectral density of the

form
2

S (w) ~ X (2.1)

over several decades of frequency w, where y is a parameter in the range 0 < 7 <- 2.

Two particular cases are important and well-known. White noise, with a constant power

spectrum, corresponds to - = 0, while Brownian motion (also known as the Wiener process)

corresponds to y = 2. In many examples of 1/f behavior in nature, 7y 0 1. Figure 2-1 gives

an example of a 1/f spectrum with -y = 1.

A more general class of processes has spectral behavior that is approximately 1/f.

Nearly-1/f processes [19] have a measured power spectral density that is bounded according

to

L < s(W) < -' (2.2)

where a2 and au are arbitrary constants satisfying 0 < a 2 5 Ua < 00.

The 1/f processes are characterized by statistical self-similarity and long-term statistical

dependence. The first part of the chapter discusses the empirical properties of 1/f processes
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Figure 2-1: Power spectrum S(w) of 1/f process with parameter -y = 1

and reviews a frequency-based characterization for continuous 1/f processes. A similar

characterization for discrete 1/f processes will be presented in the Chapter 3.

Due to the wide variety of phenomena that are well modeled by 1/f processes, it is

often desirable to perform signal processing with 1/f signals. Consequently, mathematical

models for generating and analyzing 1/f processes are necessary. The second part of this

chapter gives a brief overview of some existing models for 1/f and nearly-1/f processes.

In Chapter 3, a multiscale state-space model for nearly-1/f behavior will be developed

which addresses several signal processing problems that are effectively intractable using

these models.

2.1 Statistical Self-Similarity

The 1/f processes are inherently self-similar: the statistical structure of these processes

does not change when observed on different time scales. Figure 2-2 illustrates a 1/f process

with parameter -y = 1.67 observed on different scales. A formal definition of this property

is given below.
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Definition 2.1 A random process x(t) defined on -oo < t < oo is said to be statistically

self-similar [20] with parameter H if, for any real a > 0,

x(t) a-H (at) (2.3)

where = denotes equality in a statistical sense.

This equality holds for all finite-dimensional joint probability distributions in the case of

strict-sense self-similar processes. For wide-sense self-similar processes, the equality holds

for second-order statistics; the self-similarity property (2.3) may be expressed as

Mx(t) - E[x(t)] = a-HMx(at) (2.4)

Rx(t, s) = E[x(t)x(s)] = a- 2HRX(at, as). (2.5)

In this thesis, we consider zero-mean Gaussian processes, for which these definitions are

equivalent.

A 1/f process with parameter y is statistically self-similar with parameter H, where

- = 2H + 1.

A mathematical characterization for 1/f processes in the frequency domain based on this

property is given in [20]:

Definition 2.2 A wide-sense statistically self-similar zero-mean random process x(t) is

said to be a 1/f process if there exist wo and wl satisfying 0 < wo < wl < oo such that when

x(t) is filtered by an ideal bandpass filter with frequency response

1 wo<Iwi<Wi

B1 (w) = (2.6)
0 otherwise

the resulting process y(t) is wide-sense stationary and has finite variance.

This definition is justified by the following theorem [20]:



Theorem 2.1 A 1/f process x(t), when filtered by an ideal bandpass filter with frequency

response

B(w) = WL< (2.7)
0 otherwise

for arbitrary 0 < WL < wu < oo00, yields a wide-sense stationary random process y(t) with

finite variance and having power spectrum

So,(W) = i" WL < W < WU (2.8)
1 0 otherwise

for some oa > 0, and where the spectral exponent 7 is related to the self-similarity parameter

H according to -y = 2H + 1.

In Section 3.1, we give a mathematical characterization for discrete random processes in the

frequency domain.

2.2 Long-Term Dependence

As shown above, the statistical structure of 1/f processes at long time scales is similar to

the statistical structure on short time scales. As a result, even distant samples of the process

exhibit relatively strong correlation. As opposed to the traditional autoregressive moving-

average (ARMA) models characterized by correlation functions with exponential decay, 1/f

processes exhibit strong long-term dependence characterized by correlation functions with

polynomial-type decay. The generalized Fourier pair [3]

++ 1 (2.9)
2r(7y) cos(y7r/2) IwI1

valid for y > 0 but 7y 1,2,3,..., suggests that for 0 <7 < 1, the autocorrelation Rx(r)

associated with Sz(w) is characterized by polynomial-type decay of the form

Rx(7) ~ I-1ir'. (2.10)

The strength of this dependence varies with the parameter y. White noise, corresponding

to - = 0, exhibits no long-term dependence. As y increases, the strength of the long-term



dependence increases. Brownian motion, corresponding to 7 = 2, represents a process with

extremely strong long-term correlation. Figure 2-3 illustrates sample paths of 1/f processes

for various values of 7.

2.3 Infrared Catastrophe

For y- > 1, the integral of the power spectrum of the 1/f process is infinite. This infinite

low-frequency energy suggests that a stationary 1/f process would have infinite variance.

This phenomenon is termed the infrared catastrophe. This problem has been interpreted

as revealing that the process as inherently nonstationary [11] [14]. In this thesis, we assume

that the 1/f process is stationary with a power spectrum that changes from 1/f to flat

below a certain frequency, although this low-frequency roll-off is not always observed in

natural signals (see [11] and the references cited).

For 7 < 1, the integral of the power spectrum of the 1/f process is infinite due to

the high-frequency energy of the signal. However, it is shown in Chapter 3 that this phe-

nomenon, termed the ultraviolet catastrophe, does not arise in the context of discrete 1/f

processes.

2.4 Existing Models

This section briefly reviews the fractional Brownian motion, discrete fractionally differenced

Gaussian noise, and the wavelet-based model for 1/f processes.

The theory of of the fractional Brownian motion (fBm) and fractional Gaussian noise

(fGn) models was developed by Mandelbrot and Van Ness [15]. Let H be the self-similarity

parameter of the fBm. Mandelbrot and Van Ness define fractional Brownian motion

x(t) (H + 1/2) (it rIH-1/2 IH-12 w(r)dr + it H-1/2w(r)dr

(2.11)
for 0 < H < 1, where w(t) is a zero-mean, stationary white Gaussian noise process with

unit spectral density. The generalized derivative of fractional Brownian motion [2]

z'(t)= d (t) -= (H 1 /2) 2 IH'- 1 /2w(r)dr (2.12)dt F(H + 1/2) oo
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Figure 2-3: Sample paths of 1/f processes with various values of y



is termed fractional Gaussian noise, where H' = H-1. This process is zero-mean, stationary

and statistically self-similar with parameter H'. Additionally, fGn has 1/f-type spectral

behavior. The problem of detecting a deterministic signal obscured by additive fGn over a

finite sequence is addressed by Barton and Poor [2]. A discrete-time extension to fractional

Brownian motion and fractional Gaussian noise via sampling is given in [13].

The fractional Brownian motion may be viewed as the fractional integral of white noise

of order H + 0.5. By analogy, Granger and Joyeux [8] and Hosking [10] define a discrete

fractionally differenced Gaussian noise (fdGn) process parameterized by d as the fractional

difference of discrete white Gaussian noise

Wd[] (_)kw[n - k] (2.13)
k=0 k

S (k d-)w n - k] (2.14)
k=O k!(d- 1)!

where w[n] is a discrete zero-mean white Gaussian noise process with variance a 2,. The

discrete spectral density of dfGn

S(Q) = 2-2da2  02 ,-2d (2.15)
(sin 2

approaches 1/f-type behavior at low frequencies, with parameter 7 = 2d. Deriche and

Tewfik [5] give a procedure for estimating the parameters of dfGn sequences.

The scale-invariance characteristic of 1/f processes suggests that natural models for

these processes might be based on representing the model as the sum of many component

processes, each with a characteristic scale. Although not the focus on this thesis, wavelet

expansions, with their characteristic scale-invariance, represent examples of a natural ap-

proach to modeling 1/f-type behavior. Wavelet-based models for 1/f-like behavior are

presented in [20].



Chapter 3

Multiscale State-Space Models for

Discrete 1/f Processes

This chapter introduces a multiscale state-space representation for 1/f processes, based on

the superposition of first-order autoregressive processes. We focus on the typical case in

which observations of the 1/f signal are available only as a discrete data sequence over a

finite time interval, limiting the range of frequencies over which 1/f spectral behavior can

be observed. In Chapters 5 and 6, we see that this state-space representation is particularly

well suited for several signal processing problems that existing models have not addressed,

such as prediction of 1/f signals based on noisy observations.

We begin the chapter with an examination of the differences between discrete and con-

tinuous 1/f processes. In a discrete data sequence, the highest observable frequency is

constrained by limited time-resolution due to sampling of the data. This consideration

motivates a frequency-based characterization for discrete 1/f processes which requires 1/f

spectral behavior asymptotically at low frequencies.

We continue with a description of the discrete multiscale state-space models for nearly-

1/f processes that are the focus of this chapter. We review a generalized autoregressive

moving-average (ARMA) framework for continuous 1/f signals which was originally de-

scribed by van der Ziel [17]. This framework describes nearly-1/f processes composed of

many underlying processes, each with a single characteristic scale. We develop a discrete-

time adaptation of this framework and show that the resulting models describe processes

that are nearly-1/f.



The infinite order of these models suggest that an infinite number of state variables

are required to represent the memory of a 1/f process. Fortunately, since the finite data

length constrains the lowest frequency observable in the process, only a finite number of state

variables which generate 1/f behavior above this frequency are required for the applications

considered in this thesis. We examine how particular choices of state variables affect the

accuracy of these finite-order models over various frequencies. Using these models, 1/f

signals in a background of white Gaussian noise are represented in Chapter 4 with a finite

state-space system, allowing the use of the Kalman filter and smoother for applications

involving 1/f signals of finite data length.

3.1 Discrete 1/f Processes

The data modeled as a 1/f process is generally represented with a discrete sequence. The

data may be samples of a continuous-time 1/f process, such as in the case of ocean temper-

ature data taken at fixed time intervals. In other cases, such as the fluctuations in the stock

market, the data is fundamentally discrete. The discretization of the time axis limits the

shortest time-scale - or equivalently the highest frequency - in which 1/f spectral behavior

can be observed.

Useful insights regarding the effects of discretization can be gained by considering the

power spectrum of a hypothetical discrete process with parameter 7 satisfying

Sf(-) • • -7r < Q < 7r. (3.1)

While the spectral density of continuous 1/f signals

S() , - < < 00 (3.2)

vanishes for sufficiently high frequencies, the discrete process described by (3.1) will have

significant power at the highest frequency Q = 7r. In addition, the discrete process with

parameter 7 < 1 will not have infinite high-frequency energy, as opposed to continuous 1/f

signals with parameter 7 _ 1. However, the discrete process with parameter /y > 1 will

have infinite low-frequency energy, as in the case of continuous 1/f signals with parameter

y > 1 described in Section 2.3.



This analysis suggests that the low-frequency behavior of discrete 1/f processes is of

primary interest which motivates the following frequency-based characterization for discrete

1/f processes.

Definition 3.1 Let x[n] by a discrete-time zero-mean wide-sense stationary random pro-

cess. Then x[n] is said to be a discrete 1/f process with parameter -7 if

lim / (Sx(Q) - k- Sx(Q2/k)) 2 df2 = 0 (3.3)
k--oo JO

where Sx(Q) is the power spectrum of x[n].

Essentially, we define a process to be a discrete 1/f process if its spectral behavior is self-

similar at arbitrarily low frequencies. We can interpret this property in the time domain by

viewing Sx(Q/k) in terms of a downsampling operation. Let i[n] be the output when x[n]

is passed through an ideal low-pass filter with frequency response

B(Q) = - (3.4)
0 /k < 101 <_7

and let

xk[n] = E[kn] (3.5)

representing x[n] downsampled by a factor of k. Then the spectrum of ik[n] is [16]

S:k (Q) = !Sx(92/k), JQ < 7r. (3.6)

Heuristically, a discrete 1/f process can be viewed as being self-similar under downsampling;

i.e., the downsampled 1/f process has a similar long-term statistical structure as the original

process. Compare this to continuous 1/f processes which can be viewed as being self-similar

for both expansion and contraction of the time axis. We define discrete nearly-1/f processes

that approximate this behavior.

Definition 3.2 A discrete-time zero-mean random process x[n] is a discrete nearly-1/f

process with parameter 7 if there exists a frequency Qo such that for all S2 < 20,

o SY, (2) < SX (Q) _ :rS (5) (3.7)



for some 0 < a2 < a 2 < oo, where Sy(Q2) is the power spectrum of some discrete 1/f

process with parameter 7 satisfying Definition 3.1.

3.2 Continuous ARMA Model

In this section, we review a model for continuous processes exhibiting nearly-1/f spectral

behavior. This model forms the basis for an analogous discrete model in the following

section. Although we focus on van der Ziel's model in this thesis, another ARMA-based

model for nearly-1/f processes developed by Keshner [11] gives useful insight into the long-

term memory of 1/f processes.

Van der Ziel [17] modeled 1/f processes as the weighted superposition of a continuum

of uncorrelated random processes. Each component process is governed by a distinct char-

acteristic time-constant 1/a, with correlation function

Ra(r) = e-aclT (3.8)

and corresponding Lorenzian spectrum

2Ca
Sa(w) = a2  (3.9)a2 + W2'

Choosing a scale-invariant weighting function of the form

f(a) = a~-' (3.10)

for 0 < - < 2, the weighted superposition of the continuum of these processes has an

effective spectrum

Sz(w) = So S(w)f(a)da (3.11)

which is 1/f, i.e.,

SX(w) oc l (3.12)

In fact, the superposition of a countably infinite collection of appropriately distributed

single time-constants processes is sufficient to model nearly-1/f behavior as described by

(2.2). In particular, consider a distribution of exponentially-spaced poles described accord-



ing to

am = m , -oo < m < oo (3.13)

for some 1 < A < oo, and weighting function

gm = a 2Ca1 -7 (3.14)

where a 2 is a parameter governing the amplitude of the 1/f process. The weighted super-

position of these processes has the corresponding spectrum

a 2A(2 -7)m (315)
SC() = W2 + A2m

which is bounded according to

2 2a(
I Sw(I) (3.16)

for some 0 < a2 < a2 < oo with ripple such that

IwljVSx(w) = IAkwTSx(Akw) (3.17)

for all integers k [20]. On a log-log frequency plot, the process has a spectrum that is 1/f

with a superimposed ripple with uniform spacing and amplitude. Both the amplitude and

the spacing of the ripple decrease as A -+ 1. Figure 3-1 is an example of several nearly-1/f

spectra for both A = 10 and A = 1000 and y = 1.

3.3 Discrete Infinite-Order ARMA Model

By analogy to the continuous-time model based on exponentially-spaced poles described in

Section 3.2, we develop a model for discrete-time 1/f processes based on the superposition

of a countable collection of uncorrelated processes. For each continuous component process,

we find a discrete component process whose spectrum is asymptotically equivalent to the

spectrum of the continuous component process at low frequencies. The superposition of the

resulting component processes has a spectrum that asymptotically approaches the spectrum

of (3.15) at frequencies near zero. Consequently, the discrete superposition is nearly-1/f



ci

10,

Figure 3-1: Power spectrum S(w) of nearly-1/f process using van der Ziel's continuous
ARMA model

according to Definition 3.2.

A discrete first-order autoregressive process governed by scaling parameter fm > 0 and

characteristic time-constant 1/#m satisfying 0 < 8, < 1 has correlation function

Rpf,Im [k] = fIPml (3.18)

corresponding to a spectral density [9]

f m (1 - 2) (3
Sim,im(0) = (3.19)

which can be modeled as the output of a causal LTI function with system function

1 - Pmz- I

driven by an independent stationary white noise source. Substituting the Taylor series

expansion at Q = 0,
02 Q 4 Q2

cos = 1 - + T .- 1- 1 (3.21)
2! 4! 2



gives an approximate spectrum

Sfm,fm () m( - 13m)2 << 1. (3.22)
2 + (;-1/2 _ 31/2)

We wish to find 3m and fm for all integer m such that

00

SX(Q) = E s,~,( ) (3.23)

has 1/f behavior over low frequencies.

Therefore, we choose 3m and fm such that Sx (2) has approximately the same frequency

behavior as the continuous-time spectrum S,(w) in (3.15) as Q approaches 0, i.e.,

00 a2A(2-7)m
S0 (Q) 2 2+ (3.24)

where 1 < A < oo. For the approximation (3.22) to satisfy the desired low-frequency

behavior (3.24), we simultaneously solve

(1/2 _ 1/2 2= A2m (3.25)
fm( 1 -1m) = o 2 A( 2-7)m (3.26)

for ,m and fm. Although (3.25) has multiple solutions for im, only

,3m = + A2m ) 2  (3.27)

satisfies 0 < 3m < 1. Note that the time-constants 3m are independent of the parameters

y and a2 of the 1/f process. Substituting (3.27) into (3.26), we have that

a 2a (2- 7)m

fm= (3.28)
The -weights fm depend on the 1/f process parameters

The weights f, depend on the 1/f process parameters f and o2



3.3.1 Properties of the Model

We first show that this model describes a discrete nearly-1/f process. The discrete-time

spectrum satisfies

00

S (Q) = Sm%,f. (Q) (3.29)
m=-oo

00 o2A(2-7)m
00 Q2 + A2m (3.30)

where this approximation is valid for low frequencies. We have seen in Section 3.2 that (3.30)

represents the spectrum of a nearly-1/f process. The following proposition gives bounds

for the difference between the actual discrete-time spectrum (3.29) and the approximation

(3.30) below a given frequency 0o.

Proposition 3.1 Let Sx(Q) be the spectrum of the process with parameters y and a 2 de-

scribed by the model in this section, i.e.,

00 fm( -i2)
S (Q)= _3 (3.31)m( = - 1 + 2 - 2m cos 2

with

3m = = 2 (3.32)
Am+V/A2m+4

fm = 2A(2 -y)(3.33)

where 1 < A < oo. Let

00o 2A(2-7)m
Sy() = 2 +iA<2m<, I < r r. (3.34)

Then for any Qo satisfying 0 < Go < r,

12
Sy(Q) < SzX() < 12 2 S y ( )  (3.35)

12 - so

for all Q satisfying 0 < Q < Go-



The proof of Proposition 3.1 is given in Appendix A. The following proposition is a direct

result of Proposition 3.1 and (3.16).

Proposition 3.2 Let S,(2) be the spectrum of the process with parameters y and a 2 de-

scribed by the model in this section. Then S,(Q2) describes a discrete nearly-1/f process as

defined in Definition 3.2.

3.3.2 Properties of the Component Processes

In this section, we analyze the component process parameters 3m and fm. We observe that

lim OM = 1 (3.36)
m--oo

lim 'm = 0 (3.37)
m-0oo

illustrating that the model contains processes whose behavior ranges from being similar to

Brownian motion (low-frequency) to being similar to white noise (high-frequency). It is

straightforward to show that for large positive values of m corresponding to high-frequency

component processes,

fm " r2 A-ym (3.38)

and therefore

lim fm = (3.39)
m0oo 0, 7 > 0

implying that all discrete 1/f processes with y > 0 have finite high frequency power. At

7 = 0, corresponding to the case of white noise, the multiscale model breaks down. We

also see that as 7 is increased, there is decreasing power at high frequencies. For extremely

negative values of m corresponding to low-frequency component processes,

, 2 A(2-')m
fm (3.40)2A2m 2m + 4 (3.40)

and therefore

0, < 1

mim fm = U2 /2, y = 1 (3.41)

oo, 7 >1



om 7f = 0.33 7= 1.00 =1.67
1 - 10-  0.0002 0.5000 1119.3606
1 - 10-4  0.0010 0.5000 239.3150
1 - 10- 3  0.0049 0.5000 51.1646
1 - 10-2 0.0229 0.5000 10.9387
0.9049 0.1068 0.4994 2.3358
0.3820 0.4472 0.4472 0.4472

9.805 x 10- 3  0.4587 0.0981 0.0210
9.998 x 10- 5  0.2187 0.0100 0.0005
1.000 x 10-6 0.1023 0.0010 0.0000
1.000 x 10- 8  0.0479 0.0001 0.0000
1.000 x 10-10 0.0224 0.0000 0.0000

Table 3.1: Variances fm of component processes

implying that discrete 1/f processes with parameter 7 > 1 have infinite low-frequency

power. This infinite low-frequency power suggests that these processes are inherently non-

stationary. Additionally, we see that as 7 is increased, there is increasing power at low

frequencies. Table 3.1 presents a subset of the variances fm for various values of 7, with

A = 10.

3.4 Discrete Finite-Order ARMA Model

The model for discrete 1/f processes described in the previous section has infinite order,

suggesting that an infinite number of state variables would be necessary to completely

describe the process over all frequencies. Fortunately, we are generally interested in the

process over a finite data length. The spectrum of a finite-length discrete 1/f process is

effectively bandlimited - the sampling of the process constrains the highest frequency of

the spectrum, while the finite data length constrains the lowest frequency of the spectrum.

Therefore, an appropriately selected finite subset of the infinite component processes is

sufficient to model 1/f spectral behavior over the frequencies relevant to the data length.

The resulting model can then be described by a finite number of state variables.

Generally, we wish to choose the minimum number of retained component processes that

exhibit 1/f spectral behavior, within a certain error tolerance, over relevant frequencies.

The error can be divided into four parts. First, discrete infinite-order model is an approxi-

mation to the continuous infinite-order model; the error for this approximation is bounded

in Proposition 3.1. Second, the continuous infinite-order model has only nearly-1/f spec-



1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0
0 0.5 1 1.5 2 2.5 3

Figure 3-2: Power spectrum SOm (Q) of weakly-correlated component processes

tral behavior. This is briefly discussed in Section 3.2. This error is a function of the model

parameter A. This section discusses the last two parts of the error, which result from the

approximation of the infinite-order model with a finite number of component processes.

Weakly-Correlated Component Processes

We refer to a component process as weakly-correlated if the long-term correlation of the

process is weak, i.e. the parameter #m of the process is near zero. The power of these

processes is distributed roughly evenly across all frequencies, as shown in Figure 3-2, in

contrast to processes with strong long-term correlation (/3 m near 1) in which case the power

of the process is predominantly low-frequency, as shown in Figure 3-3.

As described in Section 3.3, a component process with parameters fm and im has a

spectral density
fm(l - O) (3.42)

1 + /2 - 23m cos Q

., = 1



a
U,

Figure 3-3: Power spectrum S/3m (2) of strongly-correlated component processes

which reaches a maximum at 2 = 0 of

Sp (0) fm (1 - 2 = a2A - m (3.43)
1 + #m - 2#m

We wish to discard all component processes with correlations weaker than a certain thresh-

old, i.e. processes corresponding to m > MH, where m = MH corresponds to the most

weakly-correlated component process that is retained. The total power SH((2) of the dis-

carded weakly-correlated component processes at any frequency Q is bounded by

SH() = SPm (A) (3.44)
m=MH+1

_< ,2A--y m  (3.45)
m=MH+1

= -2 (3.46)

This suggests that by discarding an additional process, we increase the discarded power

SH((0) by a factor of AT. We can also see that as 7 approaches zero corresponding to a

Q



1/f process with weak long-term correlation, the power of the discarded weakly-correlated

component processes increases. Generally, as -y increases, we can discard additional weakly-

correlated component processes.

The discarded weakly-correlated component processes are each nearly white. Therefore,

to further reduce the error from 1/f behavior, the discarded processes can be replaced by

a single white process wH [n] with power spectrum

S--2 (MH+1)

SW, (Q) = a 2  (3.47)

Strongly-Correlated Component Processes

The finite data length constrains the lowest frequency observable in the spectrum of the

1/f process. As described by Keshner [11], the finite data length effectively smoothes the

frequency response by averaging over a bandwidth inversely proportional to the data length:

27r
2L ~ r. (3.48)

We are concerned only with frequency behavior above £2 L due to this smoothing. To mini-

mize the number of component processes necessary to model 1/f behavior at low frequencies,

we discard any component processes that do not have significant power above QL. We refer

to a component process as strongly-correlated if the long-term correlation of the process is

strong, i.e. the parameter 3 m, of the process is near one. Strongly-correlated processes have

predominantly low-frequency power and effectively appear constant over the observation

time N. Discarding strongly-correlated processes has the effect of changing the apparent

steady value of the process. In the frequency domain, discarding strongly-correlated com-

ponent process has the effect of generating a flat (instead of 1/f) spectrum below a certain

frequency. Figure 3-4 illustrates the frequency spectrum of a finite-order nearly-1/f process

with parameter -y = 1. Essentially, the goal is to guarantee that the roll-off between 1/f

behavior and flat low-frequency behavior occurs below the observable frequency Q2L.

We first examine the low-frequency behavior of a single component process with char-

acteristic time-constants 1//m. As described in the previous section, this process will have
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Figure 3-4: Finite-order nearly-1/f process spectrum.

a spectral density of the form

fm(1 - P2) o.2(2-7y)m
1 + f2 - 2#m cos Q 2 + A2m

where the approximation is valid at low frequencies. For this section, we assume that this

approximation holds for the frequencies of interest. The spectral density of the process is

bounded by the inequality
-2 A(2-*y)m

s~p (n) < 02 (3.50)

over the relevant frequencies. We note that as m decreases, the corresponding process will

generally have decreasing power in this frequency region. We wish to discard all component

processes corresponding to m < ML, where m = ML corresponds the lowest-frequency

process that we retain in our finite-order model. The total power SL(tL) of the discarded

component processes at frequency QL is

ML --1

SL (L) = • Sm (L) (3.51)
m=-oo



.2  A( 2-7)(ML-1)
< 1 - (3.52)

This suggests that discarding an additional component process will increase the discarded

power SL (QL) at low frequencies by a factor of A2- -. We can also see that as - approaches 2

corresponding to a 1/f process with strong long-term correlation, the power of the discarded

strongly-correlated component processes increases. Generally, as - decreases, we can discard

additional strongly-correlated processes.

Additionally, if we increase the data length by a factor of k, the discarded power SL(QL)

at low frequencies will increase by a factor of k 2 , approximately. In order to maintain

the same discarded power while increasing data length by k, we should retain 2 logA k

additional component processes.

3.4.1 Error Analysis

The bounds given by (3.46) and (3.52) can provide a measure of the error of a finite-order

model with component processes corresponding to ML < m < MH from the infinite-order

model. Denote the spectrum of the finite-order model

MH

Sf () = Y So. (2) (3.53)
m=ML

which will always have less power than the infinite-order model Sx(Q).

We establish an approximate bound on the worst-case percentage error in the spectrum

due to discarding the high-frequency processes by examining the power of the finite-order

spectrum at frequency Q = 7r and comparing to the upper bound of the power SH(Q) of

the discarded high-frequency processes given in (3.46). We can further reduce this error by

replacing the discarded high-frequency processes with a single white ( 0m = O) component

process with power equivalent to the discarded processes.

Similarly, we establish an approximate bound on the worst-case percentage error in

the spectrum (over relevant frequencies) due to discarding the low-frequency processes by

examining the power of the finite-order spectrum at frequency Q = QL and comparing to

the upper bound of the power SL(QL) of the discarded low-frequency processes given in

(3.52).

We give several examples of finite-order models for 1/f processes for various values of 7.



7
0.33
1.00
1.67

e= 0.05 E = 0.01 e = 0.001
ML MH ML MH ML MH
-5 7 -6 10 -7 15
-7 2 -8 3 -10 5
-11 1 -15 2 -20 3

Table 3.2: Finite component process choices satisfying error bound E

We measure the worst-case percentage error at high and low frequencies from the discrete

infinite-order model. For this section, we choose A = 4 and RL = 10 - 3 for the purposes of

illustration.

We wish to find a choice of finite component processes so that the worst-case percentage

errors are each below a certain error tolerance E, i.e.,

< e (3.54)
S (7r) + SH(2 )

< e (3.55)
S! (QL) + SL(~L)

where SH(Q) and SL(OL) are bounded by (3.46) and (3.52). Table 3.2 gives examples of

appropriate choices of component processes for several values of 7 and E.

3.4.2 Effective Signal Power

The variance of a 1/f signal is not an ideal measure of the signal's power over finite data

lengths. For instance, 1/f signals with parameter 7 > 1 have infinite variance, although

over a finite data length the process varies only within a comparatively small range relative

to its time average. Additionally, the variance of a process described with the finite model

is strongly dependent on the number of scales used in the description.

The preceding sections have suggested that only frequencies above a certain frequency

RL are relevant when the data has finite length. Therefore, we are primarily interested in

the signal's power over the relevant frequencies. We define

Oa2 = f -Sf ())d (3.56)

= fm 1 - 2 arctan (1 + 3) 2 (3.57)
as the effective signal power over frequencies above 1 This measure of signal power has the

as the effective signal power over frequencies above G2L. This measure of signal power has the



useful property that it depends only slightly on the number of scales used in the description,

as opposed to the variance of process. We use this notion of signal power when analyzing

the performance of algorithms in Chapters 5 and 6.

3.4.3 Notational Conventions

We denote the number of states represented in the finite-order model as M = MH - ML + 1.

For notational convenience in future chapters, we represent the finite spectrum

MH M

sx( = E S(W) = G s(W ) (3.58)
m=ML m=1

where S,• (Q) is simply a reindexing of Sv. (Q), i.e. xm[n] = Vm+ML-1 with corresponding

reindexed time constants Tm = fm+ML-1 and reindexed weights gm = fm+ML-1.



Chapter 4

State Estimation with Discrete 1/f

Processes

The linear, finite order models described in Section 3.4 are naturally represented by state-

space system descriptions. This representation is desirable for estimation algorithms with

1/f processes due to the computational efficiency of recursive estimation using the Kalman

filter and smoother. In addition, the state-space system description accounts for the pres-

ence of additive broadband measurement noise. In this chapter, we present two descriptions

for 1/f processes which will be used for applications in parameter estimation, prediction,

and smoothing in Chapters 5 and 6. We review the discrete-time Kalman filtering and

Kalman smoothing equations that will be used in these applications.

A linear time-invariant single-output system may be described by the discrete-time state

evolution and observation equations [1]

x[n + 1] = Ax[n] + Bu[n] (4.1)

z[n] = Cx[n] + w[n] (4.2)

for n > 0. The system state vector x[n] evolves in time according to the state evolution

equation (4.1) which is driven by the input process u[n]. The observation equation (4.2)

describes the measurement process z[n] as a linear transformation of the state vector ob-

scured by a noise process w[n]. The input process and measurement process are assumed

to be white, indepedendent from each other, and zero mean Gaussian processes with known



covariances. In addition, we specify a stochastic initial condition x[0] with known mean

{[0] and known covariance Rx[0].

4.1 First-Order Autogressive Process

Each component process of the multiscale model is a wide-sense stationary first-order au-

toregressive (AR) process xm[n] parameterized by time-constant 1/Tm and weight gm, with

correlation function

Rx,, [k] = gmrjk

which can be generated using initial condition xm [0] - N(0, gm) and filtering equation

Xm[n] - rmXm[n - 1] = (m(1 -- r))1/2 Um[n] (4.3)

where the input process Um [n] is a white zero-mean Gaussian process with unit variance. For

convenience, we define a new parameter hm = (gn(1 - Tm))1/ 2. A state-space description

for this first-order process with a one-dimensional state vector xm[n] is

xm[n + 1] = rmxm[n] + hmUm[n] (4.4)

z[n] = xm[n] (4.5)

with initial condition zm[0] having zero mean and covariance R.m [0] = gm.

It will prove useful to equivalently describe the first order AR process using additional

state variables. This concept of augmenting the signal model with additional states has been

applied to several smoothing applications [1]. A state-space description for this first-order

process with a two-dimensional state vector is

Xm[n + 1] x= m m[n] + [h [n] (4.6)
1[n0 0

z [n] = 1 0 xm [n] (4.7)



with initial condition x,[0] having zero mean and covariance

R~m[0] = gm Tmgm (4.8)
Tmgm 9m

The state vector may be heuristically viewed as H[n] = [ X[n] xm [n - 1] In con-

trast with the single-state description, the information about the correlation between adja-

cent time samples is explicitly available.

4.2 Multiscale Model for 1/f Processes

A 1/f process described by the multiscale model presented in Chapter 3 is composed of

the superposition of M uncorrelated component processes, each of which is described in

the previous section. As each component process is a first-order AR process that may be

described with either one or two states, the 1/f process can be described with either an

M-state system or a 2M-state system. In Chapter 5, the 2M-state system is used for

parameter estimation algorithm. In Chapter 6, the M-state system description is used for

prediction and smoothing applications.

As described in Section 3.4, the M state model representing the 1/f process x[n] has M

component processes {xl [n],..., xM[n]} with governing time-constants 1/Tm and weights

gm. The state vector for the 1/f process consists of the total of all the component state

vectors

x [n]

x[n] = I (4.9)
[XN[n]

where xi [n] is a one-state or two-state vector corresponding to a first-order AR component

process. The 1/f process is driven by a white M-dimensional Gaussian input vector

u[n] U= [n] u2[fl ... uM[n] (4.10)

with zero mean and covariance

Ru.U = E {u[n]u[n]T = IMxM



corresponding to M uncorrelated noise processes, each with unit variance.

The measurement process z[n] is composed of the 1/f process corrupted by additive

white measurement noise w[in], described by the state-space equations

x[n + 1] =

z [n] = I

A 1  0 B1

•- .. ~ [n] +
0 AM 0

C1 ... CM] x[n] + w[n]

where w[n] is a zero-mean white Gaussian noise sequence with variance a . Each matrix

is composed of component matrices corresponding to the component first-order AR process

described in the previous section. For the M state system,

Am = Tm, Bm = hm, Cm = 1 (4.13)

for 1 < m < M. For the 2M state system,

Am = Bm = m ,Cm=1 01 0 0
(4.14)

for 1 < m < M. The initial condition x[0] is a zero-mean random vector with covariance

Rx[0] =
Rx, [0]

0

(4.15)
0

RxM [0]

where

Rxm [0] = gm (4.16)

for the M state system, and

(4.17)Rxm[0] = g mgm1
Tmgm gS

for the 2M state system.

0
u[n]

BM

(4.11)

(4.12)



4.3 Kalman Filter

In this section, we review the discrete-time Kalman filter, which will be used in applications

of prediction described in Sections 6.1 and 6.2. The Kalman filter is a computationally

efficient, recursive state estimator for the linear state-space model presented in the previous

section. The state estimate is based on previous observations and is optimal in the minimum

mean-squared error (MMSE) sense.

Given a general state-space system described by (4.1) and (4.2), the observation set

Z[n] = {z[0], z[1], ... , z[n]} (4.18)

consists of observations up to and including time n. The state estimation problem involves

estimating the state x [n] given the observation set Z[n]. The Kalman filter recursively

computes the state estimate 5i[n] and the error covariance matrix

Rx[n] = E (x[n] - 5[n])(x[n] -n]- ])T I Z[n] (4.19)

in two steps. In the propagation or prediction step, the state estimate and error covariance

matrix given data up to time n are computed for time n + 1, using the state estimate and

error covariance matrix for time n. We denote the computed state estimate 5i[n + 11n]

and computed error covariance matrix Rx[n + 11n], emphasizing that these quantities are

based on observations up to time n. In the measurement update step, the new observation

y[n + 1] is incorporated to generate the state estimate and error covariance matrix for time

n + 1. We denote the computed state estimate ý[n +1 In + 1] and computed error covariance

matrix Rx[n + 1ln + 1], emphasizing that these quantities are based on observations up to

time n + 1.

The Kalman filter equations [1] are given in Table 4.1. The initialization step assumes

that the state variables are zero mean with steady-state covariance Rx[0]. We then alter-

nate between the update step and propagation step until we have generated the desired

quantities. For state estimation algorithms, we are interested in - [nln] and Rx[nln]. On

the other hand, for the prediction algorithms of Chapter 6, we are interested in 5i[n + 1 In]

and Rx[n + 11n].



Initialization

[0oj - 1] = 0 (4.20)
Rx[0I - 1] = Rx[0] (4.21)

Propagation Equations

ý [n + 11n] = A$4[nIn] (4.22)
Rx[n+1 n] = ARx[nln]A T +BB T  (4.23)

Update Equations

k[n + lIn + 1] = i[n + lln] + Kn+ (z[n + 1] - C~[n + 1|n]) (4.24)

Rx[n + 1n + 1] = (I - K+ 1C) R[n + lln] (4.25)

where

[ ++1 =Rx [n + lln]CT (4.26)
CR,[n + 1|n]CT + a2

is denoted the Kalman gain.

Table 4.1: Kalman Filter Equations

4.4 Kalman Smoother

In this section, we review the Kalman smoother, which will be applied to problems of

parameter estimation in Chapter 5 and signal estimation in Section 6.3. We focus on the

fixed-interval smoothing case [1], involving estimation of the state vector i[n] for all times

0 < n < N, based on the observation set

Z[N] = {z[0], z[1],... , z[N]}

consisting of observations up to and including time N. The Kalman smoother is optimal

in the MMSE sense.

Again, we assume a general state-space system described by (4.1) and (4.2). The Kalman

smoother computes the state estimates

i[njN] = E {x[n] I Z[N]} (4.27)



and the error covariance matrix

Rx[nIN] = E {(x[n] - ~[n|N])(x[n]- i·[nIN]) T I Z[N]} (4.28)

in three steps. The propagation and update steps are performed in the same manner as in

the Kalman filter. A third smoothing step consists of a backward pass updating the state

estimates with future observations.

The Kalman smoother equations [1] compute i[nlN] and Rx[nlN] for 0 < n < N

according to the algorithm in Table 4.2. As before, the initialization step assumes that the

state variables are zero mean with steady-state covariance Rx[0].



5i[0| - 1] = 0

Rx[0I - 1] = Rx[0]

For n = 0, 1, 2, ... , N, perform the following two steps:

Update Equations

i4[njn] = i[njn - 1] + Kn (z[n] - C.[n n - 1])

Rx[nln] = (I- KnC) Rz[nrn - 1]

where
K = R[nln - 1]CT

CRx[nln - 1]CT + a2

is denoted the Kalman gain.

Propagation Equations

. [n+ lln] = A. [nln]

Rx[n + 11n] = ARx[nln]A T + BBT

For n = N - 1, N - 2,... , 0 perform the following step:

Smoothing Equations

i [nlN]

where

= 5[nln] + Sn (5i[n + 1IN] - A.b[n n])
Rx[nlN] = Rx[nln] + Sn (Rx[n + 1IN] - Rx[n + 1ln]) SnT

S, = Rx[nln]A T Rx[n + 1In]-l

Table 4.2: Kalman Smoothing Equations

Initialization

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)



Chapter 5

Parameter Estimation for 1/f

Signals

Since the parameters of the 1/f signal are typically not known a priori, algorithms for

parameter estimation are essential. In a typical scenario, only a finite-length observation

sequence of a 1/f signal with unknown parameters is available. Additionally, these obser-

vations are invariably corrupted by broadband measurement noise. Some other approaches

to parameter estimation for alternative models of 1/f behavior are given in [5] [13] and [20].

In this first part of this chapter, we consider the problem of jointly estimating sig-

nal and noise parameters for the case of Gaussian 1/f processes corrupted by stationary

white Gaussian noise. We develop algorithms for Maximum Likelihood (ML) parameter

estimation exploiting the state-space model and Kalman smoothing equations described in

Chapter 4. The performance of the estimator is analyzed with Monte Carlo simulations on

synthetic data.

In the second part of this chapter, we consider problems in which the 1/f process ob-

scures a deterministic signal of interest. The deterministic signal is parameterized as a

linear combination of a finite set of basis signals. We develop algorithms for ML parameter

estimation of the deterministic signal jointly with the corrupting 1/f process and white

Gaussian noise. Of particular interest are cases involving affine signals, which have appli-

cation in the analysis of economic time-series and ocean temperature data. We examine in

more detail the special case in which the parameters of the 1/f noise are known.



5.1 1/f Signal in White Gaussian Noise

In this section, we consider the problem in which we have observations z[n] of a discrete zero-

mean Gaussian 1/f process x[n] corrupted by zero-mean independent identically distributed

(i.i.d.) Gaussian noise w[n] that is statistically independent of x[n], so

z[n] = x[n] + w[n], O < n < N- 1 (5.1)

where N is the length of the observed data. Each finite length sequence may be viewed as

an N-length column vector

z[0] x[0] w[0]

z" = W= = [ = . (5.2)
z[N - 1] x[N - 1] w[N - 1]

The goal is to estimate the vector of unknown parameters

0 = {J, o2 2,} (5.3)

where 0 < y < 2 and a 2 > 0 are parameters of the 1/f process x[n] and a 2, > 0 is the

variance of the i.i.d. additive Gaussian noise process w[n].

The observed data is a Gaussian random vector of length N with probability density

function (p.d.f.)

fz(z; 0) = [det (27rAz())]- 1 / 2 exp [- z TA1z ()z (5.4)

indexed by the vector of unknown parameters 0. The N x N covariance matrix of the

observation vector is given by

Az(0) = Ax(7, o2) + Aw(a) (5.5)

where Ax(-, a 2) is the covariance matrix of the 1/f signal vector and Aw(a 2 ) is the co-

variance matrix of the additive Gaussian noise vector. The covariance of the 1/f process is



given by

Ax(-y, a2) =

Rx[0] Rx[1] ... Rx[N - 1]

Rx[1] Rx[O]
Rx [1]

Rx[N - 1] ... Rx[1] Rx [0]

where Rx[n] is the covariance function of the 1/f process with parameters y and a 2 , as

given in Chapter 3. The covariance of the additive Gaussian noise process is simply

Aw (a2) = aI (5.7)

where I is the N x N identity matrix.

The ML estimate OML of 0 is defined by

bML = arg max log fz(z; 0) (5.8)
EOe

where O represents the region over which the parameters are allowed to range. Solving

directly for the ML estimate is generally a difficult multiparameter optimization problem;

in addition, the calculation of the inverse in (5.4) is computationally intensive.

The structure of the discrete 1/f model suggests using an iterative estimate-maximize

(EM) algorithm [4] to simplify computations. As described in Section 3.3, the discrete finite

multiscale model represents the 1/f signal as the superposition of M uncorrelated single

time-constant processes
M

x[n] = Z Xm[n] (5.9)
m=1

which have correlation functions

Rm[k] = gm(y, a2) Tlkl. (5.10)

We assume that the observations are well-represented by the finite-order model and that the

order parameters {A, ML, MH} are known. As described in Section 3.4, this assumption

implies that the spectral behavior of the observations is 1/f only over a known, finite

frequency range. In practical scenarios, this may not always be a realistic assumption; we

discuss this further in Section 5.1.2.

(5.6)



The EM algorithm for this problem efficiently estimates the unknown parameters by

estimating the statistics of these component processes. A detailed derivation of the EM

algorithm for this problem is presented in Appendix B.1. The algorithm is described below

and summarized in Table 5.1 in terms of y[1], a 2 [1], and a2[] which denote the estimates of

parameters 7, a 2, and aU, respectively, that are generated on the lth iteration of the algo-

rithm. The EM algorithm is guaranteed to converge to a stationary point of the likelihood

function.

E Step

The E step calculates the statistics of the complete data, which includes the component

states as well as information about the white noise variance. These expectations can be

efficiently computed using the Kalman smoothing equations in Table 4.2 with a 2M-state

system described by equations (4.11), (4.12), (4.14) and (4.17), representing the 1/f signal

with parameters -y[l] and V2[l] and white noise with parameter a2l.

M Step

The M step updates the parameter estimate by performing the maximization

max U(O, O[1]) -+ 0[+1 ].  (5.19)
0

The updated white noise variance estimate is straightforward, while the updated 1/f sig-

nal parameters require more complicated algebraic manipulation. Due to the tridiagonal

structure of Hn 1, only certain elements of

Xm(x = E X mI Z z; (5.20)

corresponding to those calculated in the E step are necessary. A root-finding algorithm

such as bracketing and bisection can be used to solve (5.15).

5.1.1 Special Case of Known Noise Statistics

If the variance of the white noise a2 is known, the algorithm simplifies. During the E step,

the Kalman smoothing is performed using the known noise parameter a2 rather than the



= E xm[n] I Z[N]; O[W] }

(xm[n]xm[n - 1]) [̂

form= 1,...,M.

M Step

= E (xm[n] - m[n])(xk[n]- 'k[n]) I Z[N]; 01]} + im[n]ik[n],

k = 1,...,M (5.12)

= E (xm[n] - &m[n]) (xm[n - 1] - Im[n - 1]) I Z[N]; O]}

+ .m[n]:m [n - 1], (5.13)

z2[n]
M

- 2z[ [n] E [n]
m=1

M+ + 1• yL 1+l](mt M

2 qm(A)

1 M Ay [1+]( m+ M L - 1 )

NM qm(nA)

A2m

Tm - Tm

_12

1
- Tm

MM
+ EZ Z(m[n]xk[n]) [1']

m=1 k=1

L -1)
tr (Hm1x-7m) = 0

( 1 M)

- Tm

- Tm

- Tm 1

0

.+T r -Tm

-rTm 1

Table 5.1: EM algorithm for parameter estimation of 1/f signal in white noise of unknown
statistics

E Step

MI'] [n]

(xm [n]Xk [n])^[']
(5.11)

o2 [1+1]
w

)[1+1]

r2[1+1]

where

qm(A)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

1N-1
Nn=n.

m=1



E Step

Si'[n]
(xm[n]xm[n - 1])^[]

for m= 1,...,M.

M Step

S[l+1]

= E xm[n] I Z[N]; 1]} (5.21)

= E{(zxmInlm[] - m[n]) (m[n - 1 -m[n- 1]) I Z[N]; O[']

+ !m[n]f,[n - 1], n = 1,...,N- 1 (5.22)

M , M+1 A7[L+1](m+ML -1)

m=1 2 qm(A) tr

= NM qm(A) tr (H~-mxT)
M=1

(5.23)

(5.24)

where

qm(A)
A2m

Tm - Tm

1=-r

(5.25)

1 --Tm

-rTm 1 + 7r

0

-Tm

-- rm 1 + r
-ITm

0

-Tm

1

(5.26)

Table 5.2: EM algorithm for parameter estimation of 1/f signal in
statistics

white noise of known

estimated parameter a. . In the M step, we do not update the noise parameter a2 . This

case of the algorithm is summarized in Table 5.2. As before, due to the tridiagonal structure

of H 1 ', only those elements of Xmx T corresponding to the quantities calculated in the E

step are necessary. The EM algorithm converges substantially faster in the case of known

noise statistics.

5.1.2 Model Order Effects

The model order parameters {A, ML, MH} for the parameter estimation algorithm are

assumed to be appropriate for the observation data sequence. In Sections 3.2 and 3.4, it

was shown that parameter A governed the amplitude and ripple of the nearly-1/f behavior



of the model, while parameters ML and MH governed the low and high frequency behavior,

respectively, of the discrete 1/f model. This section discusses the effects of mismatches

between true and assumed model order parameters.

The Maximum-Likelihood parameter estimates as described in (5.4) and (5.8) depend

on the covariance Az of the 1/f process model. In most scenarios involving real data,

the observed sequence exhibits 1/f behavior over all frequencies. In this case, the most

appropriate choice of order for the observed data sequence would be the infinite-order model

given in Section 3.3. Therefore, the finite-order model should closely approximate the

covariance of the infinite-order model. First, we consider the sensitivity of the parameter

estimation to different choices of MH. Recall from (3.38) that the variance of high frequency

processes decreases exponentially, i.e. fm O'2 A-ym. In this case, we can approach

the covariance of the infinite-order model as closely as desired. Therefore the parameter

estimates will converge to a fixed value as MH is increased. Figure 5-1 plots the RMS error

in estimating y as the order parameter MH of the estimator is varied, with ML fixed. The

results of 64 trials were averaged to obtain these results. In each trial, the simulated data of

length 50 is generated using the parameter ML and MHgen shown in the figure. Parameter

estimation is then performed on the data using various values of MH in the estimation

algorithm.

Next, we consider the sensitivity of the parameter estimation algorithm to different

choices of ML. Recall from Section 3.3.2 that for 7 < 1, the low-frequency component

processes have decreasing power fm as m decreases. Again, the parameter estimates will

converge to a fixed value as ML is decreased. However, for the case 7y > 1, the low-frequency

component processes have non-decreasing power as m decreases; consequently the covariance

of a finite-order 1/f process model does not converge. The parameter estimates have a

strong dependence on ML in this case. In general, decreasing ML adds low-frequency

component processes to the estimator and decreases the estimate of y. Increasing ML

discards low-frequency component processes and increases the estimate of y. This effect

becomes more pronounced as y is increased. Figure 5-2 plots the RMS error in estimating

y as the order parameter ML of the estimator is varied, with MH fixed. The results of 64

trials were averaged to obtain these results. In each trial, the simulated data of length 50 is

generated using the parameter MLgen and MH shown in the figure. Parameter estimation

is then performed on the data using various values of ML in the estimation algorithm.
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Although a 1/f process with parameter -y > 1 has infinite power, a finite-length obser-

vation of the process has finite power. We assume that the data spectrum exhibits a rolloff

between 1/f and white behavior at some frequency. A proper choice of ML should gener-

ate a model with a spectrum exhibiting the same rolloff frequency as the data spectrum;

however, this rolloff frequency cannot be easily determined. We therefore expect that the

choice of ML will not be optimal, and consequently the parameter estimation algorithm will

be biased.

The choice of A determines the amplitude and frequency spacing of the ripple super-

imposed upon the 1/f spectrum, as discussed in Section 3.2. As A -+ 1, the finite-order

model converges to ideal 1/f behavior; consequently the parameter estimates converge to

a fixed value. However, as A is decreased, additional component processes are necessary to

generate 1/f spectral behavior over the same frequency range.

When choosing the model order parameters for the estimator, it is important to note that

the rate of convergence of the EM algorithm slows as the number of component processes

increases. Furthermore, the number of computations in the estimation step of each iteration

is proportional to the square of the number of component processes.

5.1.3 Simulations

The performance of the parameter estimation algorithm is analyzed using Monte Carlo

simulations on synthetic discrete samples of 1/f processes, both for the noise-free case and

the case where the data is corrupted by stationary white Gaussian noise. The 1/f processes

are generated using the state-space description of Chapter 4. The model order parameters

is this section are chosen to be A = 4, ML = -- 10, and MH = 10 for both the generated

process and parameter estimation algorithm.

We evaluate the performance of the special form of the EM algorithm corresponding

to the noise-free case discussed in Section 5.1.1. Figure 5-3 shows the RMS error in the

estimates of - and a2 as a function of observation length, for various values of y. The results

from 64 trials were averaged to obtain the error estimates. In some cases, the error in the

estimates increased with additional data samples; this is most likely a result of the relatively

small number of trials used in this simulation, rather than a property of the estimator.

We also evaluate the performance of the general EM algorithm in several SNR scenarios.



0.25

0.2

0.15

C

0
c)
M 0.1

0.05

0 10 20 30 40 50 60 70 80 90 100 110
Data Length N

60

0 .......0 =0.33
50 ..... A r =1.00

.0 ....... O =1.67

4 0 .....................
3 .. .

310

0

0 10 20 30 40 50 60 70 80 90 100 110
Data Length N

Figure 5-3: RMS error in estimates of y and a 2 as a function of data length N in the special
case of no noise

54

o ....... 0 r=0.33
.A ....... A -1.00
" ...... r- 7 1.67

l..l.67A

-0

-A " +

'"... . A



We define the signal power in this case to be

E, L S.(Q)dQ (5.27)
E r /N

where S,(Q) is the power spectrum of the 1/f process. The signal-to-noise ratio is therefore

SNR = loglo s-. (5.28)

Figure 5-4 shows the RMS error in the estimates of - and a2 as a function of the SNR, for

various values of y. The results from 64 trials were averaged to obtain the error estimates.

The data length is these simulations is 50 samples. In some cases, the error in the estimates

increases as SNR is increased; again, this is probably a result of the relatively small number

of trials used in this simulation, as opposed to a property of the estimator. We see that as

7 increases, the effects of white noise on the parameter estimates decreases. This is to be

expected since for large values of 7, low-frequency component processes dominate and are

easily distinguishable from white noise. For small values of 7, high-frequency component

processes dominate; the values of these component processes are hard to estimate due to

their similarity with the obscuring white noise.

5.2 1/f Signal and Deterministic Signal

Section 5.1 considers applications in which the 1/f process is the signal is of primary interest.

In other applications, the 1/f process is a noise process obscuring another signal of interest.

This section considers the problem of estimating the parameters of a deterministic signal

obscured by an unknown 1/f noise process as well as white Gaussian measurement noise.

We formulate the problem as follows. Suppose we have observations z[n] of a deter-

ministic signal s[n] obscured by a discrete zero-mean Gaussian 1/f noise process x[n] in

addition to zero-mean independent identically distributed (i.i.d.) Gaussian noise w[n] that

is statistically independent of x[n], so

z[n] = s[n] + x[n] + w[n], 0 < n < N - 1 (5.29)

where N is the length of the observed data. In addition, the signal is parameterized as a
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linear combination of a finite set of known basis signals, i.e.,

P

s[n] = Apbp[n] (5.30)
p= 1

for real parameters A1,..., Ap. We may view each finite length sequence as an N-length

column vector

z[0] s [0] x[0] w[0]

z - : =8-- , z =- , w -=z[N-1] S[I ] ][ ] []
z[N - 1] s[N - 1] x[N - 1] w[N - 1]

(5.31)
We wish to estimate the vector of unknown parameters

S= {X, ..., Ap,7, , aa} (5.32)

where A1,..., Ap parameterize the deterministic signal si[n], 0 < -y < 2 and a2 > 0 are

parameters for the 1/f process x[n] and a2- > 0 is the variance of the i.i.d. additive

Gaussian noise process wi[n]. As in the previous section, maximizing the likelihood function

of the observed data directly is difficult.

The EM algorithm for this problem is similar to that presented in Section 5.1. A

detailed derivation of the EM algorithm for this problem is presented in Appendix B.2. The

algorithm is summarized below, where ],..., A, , 1]2[], and -2[1] denote the estimates

generated on the lth iteration of parameters A1,...,Ap, Y, a 2, and a2,, respectively. The

algorithm is summarized in Table 5.3. We omit the definitions of qm(A) and Hm1 which

can be found in Table 5.1.

E Step

As in the previous algorithm, the E step calculates the statistics of the complete data, which

includes the component states as well as information about the white noise variance, using

the most recent parameter estimates. Again, these expectations can be efficiently computed

using the Kalman smoothing equations (4.31)-(4.38) with a 2M-state system described by

equations (4.11), (4.12), (4.14) and (4.17), representing the 1/f signal with parameters -y[I]

and -2[1] and white noise with parameter 2[1]



E Step

z'[n]

Z'[N]
A] [n ]

(xm [n]zk [n]) [̂ l]

P
- z[n]- EZ, Apbp[n]

p= 1

= {z'[0],... ,z'[N]}
= E {xm[n] Z'[N]; 0 [P]

(5.33)

(5.34)

(5.35)

= E (xm[n] - m[n)(k[n] -- k[n]) I Z'[N]; O[l] + .m[n]ik[n],

(xm[n]xm[n - 1]) [̂ 1

for m = 1,..., M.

M Step

= E (xm[n] - Xm [n]) (xm[n -

(5.36)

1]- Xm[n- 1]) I Z'[N]; 0111

(5.37)

N-1 P
1 z2[n] - 2z[n] 1 ,'pbp[n]

n=0 p=1

P Q M

+ Z ~ ~],Aqlbp[n]bq[n] - 2z[n] Z ,0m[n]

p=1 q=1 m=1

M P M M

+ 2 j• ý N ) []n]bp[n] + M (xm X[n]xk ln])I
m=1 p=1 m=l k=-1

M ( M+ 1 A['+1](m+ML-1)
m - qm( tr (H1x• m  = 0m=l 2 qm(A) r

a+ML-1)

A) tr (H xmxm

- ZAk]bk[n] -
k74p

M

m=1

Table 5.3: EM algorithm for parameter estimation of deterministic signal obscured by 1/f
and white noise

a2[1+1]w

[1+1]

o2[1+1]

p[+1]

M1 M A'Yll+1 (

NM qm(1-M
NM=1

n=1 n=1

(5.38)

(5.39)

(5.40)

(5.41)

=

M[n]

+ .i·m[n]j.·,[, n lj, n = ,..., N -

bp[n] (z~n]



Since we have available observations of the 1/f signal, white noise, and an additional

deterministic signal, the sequence that is input into the Kalman smoothing equation is the

observation sequence with the current estimate of the deterministic sequence subtracted

out
P

z'[n] = z[n] - E )]bp[n]. (5.42)
p= 1

M Step

The M step updates the parameter estimate by performing the maximization

max U(8, 08[1] ) - 0 [1+ 1].  (5.43)

The maximization of the 1/f signal parameters are unchanged. The results of the M step

are derived in detail in Appendix B.2.

5.2.1 Special Case of Known 1/f Parameters

In this section, we consider a scenario in which the parameters of the 1/f process and

white measurement noise are known. In this case, the problem reduces to estimating the

parameters of a deterministic signal in colored noise of known statistics.

The problem formulation follows that of Section 5.2 through equations (5.29), (5.30),

(5.31). In this case, we wish the estimate the vector of unknown parameters

S=[A ... i Ap (5.44)

which parameterize the deterministic signal s[n]. In this case, maximization of the param-

eters can be performed directly.

In vector notation, the problem formulation can be expressed as

z = GO + x + w (5.45)

where

b [0] b2 [0] ... bp[0]
G = [ . . (5.46)

b [N - 1] b2 [N - 1] ... bp[N - 1]



and x and w have zero mean and covariances Ax (y, a2 ) from (5.6) and Aw(aU2 ) from (5.7),

respectively. The maximum likelihood parameters OML(z) with covariances AML are given

by

OML(Z) = (GT(Ax + Aw)-'G) G T(Ax + Aw)-'z (5.47)

AML = (GT(Ax + Aw)'G)- . (5.48)

We consider the special case of estimating a deterministic affine signal in 1/f noise of

known parameters, with a 2 = 0. In this case, the unknown parameters 0 = [ A1 A2 ]T

represent the offset and slope of the deterministic signal, and

1 0

1 1
G . (5.49)

1 N-1

Estimation of the offset of the affine signal has a strong dependence on the apparent steady

value of the process and is therefore sensitive to the model order parameter ML for -y> 1.

Therefore, we are principally interested in the estimation of the slope of the signal. Figure 5-

5 plots the error covariance in the estimate of the slope as a function of the data length N.

The error covariances are normalized so that the error for each value of y is the same at

N = 2. The error covariances exhibit polynomial-type decay as a function of data length.

For Brownian motion, the error covariance is proportional to 1/N, whereas for white noise,

the error covariance is asymptotically proportional to 1/N 3. As y increases, it becomes

increasingly difficult to estimate the slope of an affine signal in 1/f noise.
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Chapter 6

Prediction and Smoothing of 1/f

Signals

In this chapter, we consider the 1/f signal estimation problems of prediction and smoothing.

Our general problem formulation is to consider the estimation of the past, present, or future

values of a 1/f signal s[n] from noisy observations z[n] of the form

z[n] = s[n] + w[n], O < n < N (6.1)

where w[in] is an i.i.d. Gaussian noise sequence with zero mean and variance a2. The obser-

vations can be represented with the multiscale state-space description from Section 4.2. We

assume that the signal and noise parameters -, a2, a, are known, although in practice, these

parameters must be estimated from the observed data using the algorithms in Chapter 5.

We exploit the state-space model in Chapters 3 and 4 to design computationally efficient

recursive algorithms based on the Kalman filter and smoother.

In the first part of the chapter, we consider the problem of predicting the future values of

the 1/f signal given the observations. Algorithms for single-step and multi-step prediction

are presented and analyzed in the special case of no noise. In the second part of the

chapter, we consider of smoothing of the noisy observations of the 1/f signal over a fixed

time interval. The smoothing algorithm is analyzed for several SNR scenarios.



6.1 Single-Step Prediction

Prediction pertains to the problem of estimating the future values of a random process given

observations of past values. In this section, we consider estimating a single time sample into

the future. In Section 6.2, we extend the algorithm to address the problem of estimating

multiple time samples into the future. The properties of the predictor for 1/f processes are

compared to those for autoregressive and moving-average processes.

Given the observation set Z[n] = {z[0], z[1],..., z[n]} of a 1/f process, single-step predic-

tion optimally estimates the next observation sample s[n+1]. The state estimate b[N+1IN]

and state error covariance RX[N + 11N ] for the system can be determined by applying the

Kalman filtering equations in Table 4.1. Using this information, the single-step prediction

estimate

9[N+ llN] = E{x[N + 1]IZ[N]}

SE {Cx[N + 1] I Z[N]}

= C.[N + 1N] (6.2)

and the prediction error covariance

R,[N+ 1N] = E{(z[N+1]- .[N+ 1N])2 1 Z[N]

= E (Cx[N +1] - C[N + 1N])2 I Z[N]}

= CRx[N + 1IN]C T  (6.3)

are easily calculated. The single-step prediction algorithm is summarized in Table 6.1. Note

that the prediction error covariance is independent of the observed data and dependent only

on the number of observed time samples N.

Due to the long-term dependence characteristic of 1/f signals, we expect that the qual-

itative behavior of the prediction error covariance for the case of 1/f signals is different

from the case of autoregressive moving-average (ARMA) signals. We analyze the single-

step prediction algorithm for the special case a 2 = 0. To facilitate this analysis, we note a

few important properties of the estimator. A prediction made using no data has an error

covariance equal to the variance of the process, i.e., R, [01 - 1] = a,2. We view R,[N + 1IN]



Kalman Filter

Apply Kalman filter to observations Z[N] to generate 5[N + 1IN] and RX[N + 1IN].

1/f Process Prediction

9[N + 1N] = C. [N + 1N] (6.4)

Rs[N + 1N] = CRx[N + 1N]CT (6.5)

Table 6.1: Single-step prediction algorithm

as the error covariance of a prediction using N previous time samples. Using additional

previous time samples never increases the prediction error covariance:

R,[N + 2IN + 1] < Rs[N + 1IN]. (6.6)

While additional data will generally improve the quality of the prediction, there is a lower

bound on the prediction error covariance. This lower bound

Rs[oo oo] = lim Rs[N + 11N] (6.7)
N--oo

12 1 log S,(Q)d 2 (6.8)

is the minimum prediction error covariance, where Ss(Q) is the power spectrum of s[n]. We

are interested in analyzing how quickly the prediction error covariance approaches this lower

bound as the number of previous time samples are increased. Therefore, we consider the

effect of increasing N on the quantity R,[N + 11N] - R,[ooIoo] for autoregressive, moving-

average, and 1/f processes.

Autoregressive Processes

An autoregressive process s[n] of order K is defined by

s[n] + ais[n - 1] +... + aKs[n - K] = w[n] (6.9)



where the ai are constants and {w[n]} is a sequence of independent identically distributed

Gaussian random variables with variance ao. The minimum error covariance is R,[oo•oo] =

o and is achieved for N = K. For an autoregressive process of order K, the memory of

the process is completely contained in the past K time samples.

Moving Average Processes

A moving average process s[n] of order K is defined by

s[n] = w[n] + c1w[n - 1] +... + cKw[n - K] (6.10)

where the ci are constants and {w[n]} is a sequence of independent identically distributed

Gaussian random variables with variance o . The variance of the process is

s = o,(1+ c+ +... + c) (6.11)

and the minimum error covariance is Rs[ooloo] = a,2 . In contrast to the autoregressive

case, the minimum error covariance is not achieved exactly for finite N. Figure 6-1 shows

Rs[N + 1IN] - Rs[ooloo] vs. N for a moving average process described by cl = .8, c2 = .6.

The prediction error covariance approaches the lower bound exponentially as N increases.

1/f Processes

We examine three 1/f processes with y = 0.33,1.00,1.67. We see in Figure 6-2 that

the prediction error covariance approaches the minimum error covariance in a polynomial

fashion. We observe that

Rs[N + 1IN] - R,[ooloo] oc (6.12)

approximately for each of these processes, for N > 2. This behavior, in contrast with the

more rapid approach to the lower bound in the moving average and autoregressive cases,

suggests that samples from the distant past of 1/f processes have a greater impact than

samples from the distant past of ARMA processes on the performance of the algorithm

in predicting future data samples. This is to be expected due to long-term correlation

characteristic of 1/f processes.
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Kalman Filter

Apply Kalman filter to observations Z[N] to generate -i[N + 1IN] and Rx[N + 1IN].

For m = 1,..., M - 1, perform the following step

Propagation Equations

i[N + m + llN] = Ai[N + mIN] (6.15)

Rx[N+m+lln] = ARx[N+mIN]A T +BB T  (6.16)

1/f Process Prediction

9[N + MIN] = C1[N + MIN] (6.17)

Rs[N + MIN] = CRx[N+MIN]CT  (6.18)

Table 6.2: Multi-step prediction algorithm

6.2 Multi-Step Prediction

Given the observation set Z[N] of a 1/f process, multi-step prediction optimally estimates

the Mth succeeding time sample s[N + M], for M > 1. The state estimate I[N + 1|N] and

state error covariance R,[N + 1IN] can be determined through application of the Kalman

filtering equations in Table 4.1. This multi-step prediction is performed iteratively by using

the propagation equations of the Kalman filter. The omission of the update equation reflects

the lack of additional observation information Z[N + 1],... , Z[N + M - 1]. This algorithm

produces the state estimate - [N + MIN] and state error covariance Rx[N + MIN], which

are used to calculate the multi-step prediction estimate

9[N + MIN] = E {s[N + M] IZ[N]} (6.13)

and prediction error covariance

Rs[N + MIN] = E (s[N + M] - 9[N + MIN])2 IZ[N]}. (6.14)

The multi-step prediction algorithm is summarized in Table 6.2.

As in Section 6.1, we analyze the behavior of the prediction error covariance and com-



pare it to the prediction error covariance for autoregressive and moving-average processes.

For this analysis, we assume that ua = 0 and let N = 10000 so that the prediction er-

ror covariance has approximately reached a steady state at the minimum prediction error

covariance. As M increases, the prediction error covariance increases monotonically:

R,[N + M + 11N] _ Rs[N + MIN ]. (6.19)

The maximum value of the prediction error covariance is the same as the error covariance

of predicting the signal with no data, which is equal to the variance of the signal:

lim R,[N + MIN] = aos .  (6.20)
M-•oo

We are interested in how quickly the prediction error covariance approaches this upper

bound as M increases. Therefore, we consider a2 - R,[N + MIN] as we increase M for

autoregressive, moving-average, and 1/f processes.

Autoregressive Processes

For this example, we use an third-order autoregressive process with coefficients al =

2.4,a 2 = 1.92, a3 = 0.512. Figure 6-3 shows a2 - RS[N + MIN] vs. M for this pro-

cess. There is a rapid (faster than polynomial) approach to the maximum error covariance

as M increases. This suggests that as the distance from the predicted time sample to the

observed data increases, the value of the observed data for predicting the point quickly

decreases.

Moving-Average Processes

By the definition of moving-average processes in (6.10), a sample s[n] of a Kth order moving-

average process is uncorrelated to samples s[n - K - 1], s[n - K - 2],... more than K points

in the past. Therefore,

R,[N + MIN] = o (6.21)

for M > K. Observations of a Kth moving-average process are useful only in predicting

future data within K samples of the last observation sample.
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Figure 6-3: a0 - R,[N + MIN] vs. M for autoregressive process

1/f Processes

We examine three 1/f processes with -y = 0.33, 1.00, 1.67. We see in Figure 6-4 that

the prediction error covariance approaches the maximum error covariance in a polynomial

fashion. For 7 = 1 and 7 = 1.67, this decay is extremely slow. This behavior, in contrast

with the more rapid approach to the lower bound in the moving average case, is also due to

the long-term correlation characteristic of 1/f processes. As the distance from the predicted

time sample to the observed data increases, the value of the observed data for predicting

the point decreases slowly. As 7 increases, corresponding to a stronger dependence, this

decrease becomes even slower.

6.3 Smoothing

An observed 1/f signal is frequently obscured by a background of additive stationary white

noise. Smoothing of the 1/f signal attempts to extract the signal from the noise. In this

section, we exploit the linear state-space system to design algorithms for smoothing.
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Our problem formulation is to consider the estimation of values of a 1/f signal s[n] from

0 < n < N from noisy observations Z[N] = {z[0], z[1],..., z[N]} of the form

z[n] = s[n] + w[n] (6.22)

where w[n] is an i.i.d. Gaussian noise sequence with zero mean and variance a2 . We note

that the observations can be described with the multiscale state-space description from

Section 4.2. For this section, we assume that the signal and noise parameters y, a2, a2 are

known. In practice, these parameters must be estimated from the observed data.

We first apply the discrete-time Kalman smoothing equations in Table 4.2 to the ob-

served data. The state estimates and error covariance are then used to smooth the 1/f

process. The smoothing algorithm is summarized in Table 6.3.

We measure the performance of these estimators in terms of SNR gain of the signal

estimate, as a function of the SNR over relevant frequencies of the observations. We define

r-0.33
r-1.00

. . rl.67

- -- -- - - -- -- -- - - -- -- --



Kalman Smoothing

Apply Kalman smoothing equations observations Z[N] to generate b [n N] and Rz[n N]
for 0 <n <N.

1/f Process Estimation

9[n] = CX^[nIN] (6.23)
R,[n] = CR [nJN]CT  (6.24)

Table 6.3: Smoothing algorithm using finite-interval data

the signal energy in this case to be

E, - Sz(Q)dQ (6.25)
7r Jir/N

where Sz(Q) is the power spectrum of the 1/f process. The signal-to-noise ratio is therefore

Es
SNR = logo0 E. (6.26)

The mean-squared estimation error over the finite observation length is

1N
E = (6.27)

n=o

The SNR gain is defined as

SNR gain = (6.28)

Figure 6-5 shows the SNR gain of the signal estimates for various values of -y as a

function of the SNR of the observations. The sequence length is N = 1000 and the values

of ML and MH for the finite model are chosen according to the last column of Table 3.2.

The estimator achieves a larger gain as y is increased. For larger values of y, more energy

is concentrated in low-frequency scales with strong long-term correlation; these scales are

easily distinguished from the noise. At smaller values of 7, more energy is concentrated at

high-frequency scales with weak long-term correlation; these scales are similar to the noise

and are consequently difficult to estimate. Similar results for smoothing were achieved using
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Figure 6-5: SNR gain (dB) of the signal estimate as a function of SNR (dB) of the obser-
vations over relevant frequencies for various -y

wavelet-based algorithms in [20].

Finally, Figure 6-6 presents an example of smoothing of a 1/f signal of length N = 200

obscured by additive white Gaussian noise. The SNR is 0 dB. The parameters of the

data set are estimated using the parameter estimation algorithm presented in Section 5.1.

Using these parameters, smoothing is performed on the noisy data set. The estimated 1/f

parameter is ^' = 1.70 and the SNR gain of the smoothing algorithm is 9.5 dB.
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Figure 6-6: Example of signal smoothing
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Chapter 7

Conclusions

The 1/f family of fractal random processes models a wide range of physical and man-made

phenomena. In this thesis, we have introduced a multiscale state-space representation for

1/f processes suitable for addressing several signal processing problems that have previously

had no practical solution, such as parameter estimation of a deterministic signal in 1/f noise

and prediction of a 1/f signal in white noise.

This thesis has focused on discrete, finite-length Gaussian 1/f signals. A significant

contribution of this thesis is the frequency-based characterization for discrete 1/f processes

in Chapter 3 based on the concept of self-similarity at low frequencies. We have developed a

multiscale state-space representation for 1/f processes satisfying this characterization. This

representation is composed of a finite number of first-order autoregressive component pro-

cesses and is naturally represented with a state-space system description given in Chapter 4.

We have analyzed the effects of various choices of component processes on the spectrum of

the process.

Using this representation, in Chapter 5 we have presented iterative algorithms for esti-

mating the parameters of 1/f signals in white noise that exploit the computational efficiency

of the Kalman smoother. A performance analysis based on Monte Carlo simulations has

demonstrated the robustness of the estimator in the presence of noise even for relatively

small data lengths. In the same chapter, we have presented algorithms for estimating the

parameters of a deterministic signal in 1/f and white noise. A preliminary analysis has

been performed for the special case of affine signals in 1/f and white noise of known statis-

tics. A performance analysis for the general case of unknown 1/f and white noise statistics



provides a possible future direction for research. Generally, theoretical characterizations for

the performance of these estimators based on tools such as the Cramer-Rao bounds could

prove valuable.

Several potential extensions to these parameter estimation algorithms provide interest-

ing opportunities for additional research. Since these estimator are sensitive to mismatches

between true and assumed model order parameters, algorithms for jointly estimating the

order of the model as well as the parameters of the signal are preferable. Another improve-

ment would be to obtain sequential or adaptive parameter estimation algorithms, possibly

by replacing the Kalman smoother with a Kalman filter or fixed-lag smoother [1]. Such

sequential EM algorithms have been considered in, e.g. [6] [18].

The thesis focuses on 1/f signal estimation in white Gaussian noise in Chapter 6. A

principal contribution of this thesis is the development of practical algorithms for predicting

future values of the 1/f signal given noisy observations. An empirical analysis of the

behavior of the prediction error covariance for both the single-step and multi-step prediction

case compares the characteristic long-term memory of 1/f processes to the relatively short

memory of the well-known autoregressive and moving-average processes. A theoretical

justification explaining the behavior of the prediction error covariance could yield additional

insight into the memory characteristics of 1/f processes. Furthermore, several additional

signal processing problems are reasonably straightforward to address using the methods in

this thesis. The problem of interpolation between data points of 1/f signals is potentially

very interesting due to the self-similarity of 1/f processes.



Appendix A

Proof of Proposition 3.1

We first show that Sy(Q) < Sx(Q) for any Q such that 0 < Q < r.

M=-0o

m=-oo

(b)

m= 0-
SX (A)

a2A(2--)m
Q2 + A2m

fm(1 - P2
1 + ,- 20m 1 Q2

1 + 2 - 20m cos Q

(A.1)

(A.2)

(A.3)

(A.4)

Step (a) is derived by substituting equations (3.25) and (3.26). Step (b) follows since Om is

positive for all m, and cos Q > 1 - - for 0 < Q < i. O

Next, we show that Sx(Ž) < 1  Sy(Q2 ) for any Q such that 0 < Q < R0.T2-Q 0

SX(Q)

(c) 0
< E

m=-oo

m=-oo

fm(l - P2)

1 + p2 - 20m (1

(d) 00 12
< ES 12 -C 2

(e) 12

12 - 2 Sy
0

fm(1 - P2)

1 + 0m2 - 2m 1 - •

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

1 + 02 - 20m (1 _Q2 + Q4

0 0 f ( l _ O2 )
M=-00 1 + Om2 - 20m cos Q

1 + Om2 - 20m (1
a22 _ ) 1 + Om2 - 2ý3m (1 -



Step (c) holds since /m is positive for all m, and cos Q < 1 - -+ a4 for 0 < Q < 7r. Step

(d) follows since

1 + p2 - 2/m (1 -

1 + p02 - 20m (1
=1+

=1+

20m (Q4/24)

1+3 -2 _ 1- + a)

20m (Q 4/24)

(1 - m)2 + 2m (2 ~-4

(2 24+ 2m( 4 /24)
< 1+

( 2 24
< 1+

12 - Q2

12 - Q2

Step (e) follows since Q < o0. El

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)



Appendix B

The EM Parameter Estimation

Algorithm

This appendix contains the derivations for the EM algorithm for the estimation of a signal

and noise parameters for the case of a 1/f signal in white noise, presented in Section 5.1,

and the related EM algorithm for the estimation of signal and noise parameters for the case

of a 1/f signal and deterministic signal in white noise, presented in Section 5.2.

Recall from Section 3.3 that a discrete 1/f signal with parameters 7 and a 2 is represented

as the superposition of M uncorrelated single time-constant processes

M

x[n] = E xm[n] (B.1)
m=1

which have correlation functions Rm[k] = gm(7y, a2) rIk. The time constants Tmare inde-

pendent of parameters - and a 2. The weights are dependent on parameters y and a 2 of the

1/f signal:

gm (y, a 2 ) (a-2 (m+ML-1)) qm(A) (B.2)

where ML - 1 is the indexing offset described in Section 3.4.3 and

A2m
qm(A) = (B.3)Tm - Tm

is a function independent of the 1/f process parameters ' and a 2.



B.1 1/f Signal in White Gaussian Noise

In this section, we derive the EM algorithm for the estimation of a signal and noise param-

eters 0 = {'y, a 2, a2 } for the case of a 1/f signal in white noise, presented in Section 5.1.

The signal is observed over a finite time length so each component process can be viewed

as an N-length column vector xm. Denote the MN-length column vector

x = K . (B.4)
xM

We define the incomplete data as the observed signal z. The complete data is defined as the

samples of the observed signal z together with the samples of each individual component

process of the 1/f signal:

y = . (B.5)

The EM algorithm for the problem is defined [4] as

E step: Compute

U(0, [0]). (B.6)

M step:

0[1+1] = arg max U(o, 0[11). (B.7)

where

U(0, O[L)= E{logfy(y; 0) Iz;81I (B.8)

E step

From Bayes's rule,

fy(y; 0) = fx(x; 0) -fzlx(z I x; 0) (B.9)

and equivalently,

log fy(y; 0) = log fx(x; 0) + log fz 1x(z I X; 0) (B.10)



The E step of the algorithm computes the conditional expectation

U(0,O[1') = E logfy(y; 0) I z;[ 01' (B.11)

= Elogfx(z;) I z;['I} +E log fzilx(z I xz;0) 1z;[] (B.12)

in an efficient manner through the Kalman smoother described in Table 4.2.

From (5.1) and (B.1),

N 1 M 2
log fzlx(z z;0) = log 2 - E= [] (B.13)

2 Orw n=o m=1

Taking the conditional expectation given Z = z at parameter value 0111

E {log fzlx(z I x; 0) I z; 0[L] (B.14)

= 2 log 2r2[] - 2z[n] E i] [n] + (xm•(m[]Yk[]
2 n=O m=1 m=l k=1

where we define

(:)E1 =E . I z; 0[1] (B.15)

These conditional expectations can be computed using the Kalman smoother with a 2M-

state system given by equations (4.11), (4.12), (4.14) and (4.17), describing the 1/f signal

with parameters [l] and 2[] with white noise with parameter a2[] . Specifically,

i[n]= E {xm[n] IZ[N]; 0[l (B.16)

is a single element of the state estimate 5i[n I N] given by the smoothing equation (4.36),

and

(xm [n]Xk[ n]) [" = E { (m[n] - mm [nl)(k [n] - k [n]) I Z[N]; 0'I]} + lm[n]ik[n] (B.17)

where the first term in the sum is a single element of the error covariance matrix Rx[n I N]

given by the smoothing equation (4.37).



The component processes have a multivariate Gaussian probability density

fx(x; 0) = [det (2rAx (0))]- 1/ 2 exp [- AX1 (0)x]

where Ax = E {xzzT. Since the component processes are uncorrelated,

Axi

Ax =

0

0

AXM

(B.18)

(B.19)

where the component matrices are

AXm = gm(a2[1]I[ ]) .

1

TM

TN-9m,

Tm m 1

(B.20)

denoting the covariance of the mth component process and the matrix Hm is independent

of 0. The inverse of this matrix can be explicitly determined as

A-1  0X1

Ax1 = (B.21)

0 Agona matrices
XM

where the component inverses are known N x N tridiagonal matrices

1 1
A- = 1 1

xm gm (U2[1] [1]) "- _r 2 )

1

Tm

-7Tm

-Tm

-- rm 1 + 7

-Im

-Tm

1

(B.22)

--1-1~



Taking the logarithm of (B.18),

log fx (x; ) = c - [log det Ax (0) + xTAl(O)x]

= - [log det Ax() + tr (Ax'1(0)xxT)] (B.23)

where c is a constant independent of 0. The conditional expectation given Z = z at

parameter value [01] is

E log fx(x; 0) z; []= c-1- [logdet Ax (0) + tr (Ax ' (B.24)

where xxT = E XzzT Z = z; 0 [1] . This can be simplified by exploiting the block diagonal

structure of Ax and substituting for Ax, (0) using (B.2), (B.20) and (B.22):

E log fx(x; 0) 1 z; 0[' }

= c - 1 log det Ax, (0) + tr (, () ~x  (B.25)
m=l m=l

M=M Mi 2 M 1mz (B.26)
= c2 - - N log gm(a2,) + (2 tr (H m ) (B.26)

2m=1 m=1 9m

= 3 - [NM log u2 _ 2 (M + 2ML - 1)y log A

1 M ArY(m+ML-) )] (B7)
+ 2U2 qm(A )  tr Hm xml (B.27)

m=1 )

where

xmX = E XzmX I Z = z; 0[1] (B.28)

and c2 and C3 are constants independent of 0. It is necessary to compute only two subsets of

elements of the matrix XmX T due to the tridiagonal structure of A-1 (0). The first subset

corresponds to the diagonal elements of xmXT:

E m0,[n]2 Z = z; 0[1] = E (Xm[n] - im[n])2 I Z = z; 0 ] + im[n]2  (B.29)

for n = 0,...,N -1, where we define im[n] = E zm[n] Z = z;01 ']. The second set



corresponds to the off-diagonal elements of XmXT:

E {xm[n]x[n - 1] Z = z; }011] (B.30)
= E {(xm[n] - m [n]) (Xm[n- 1]- zm[n - 1])I Z = z; 0 I] + m[n]•]m[n - 1].

for n = 0,..., N - 1. The quantities in (B.29) and (B.30) can be efficiently computed using

the 2M state Kalman smoothing equations from Table 4.2 with the system described by

equations (4.11), (4.12), (4.14) and (4.17), again describing the 1/f signal with parameters

y[l] and a2['] with white noise with parameters a ] .

In summary, the E step computes, for m = 1,..., M, the conditional expectations

.d]f[n ] = E xm[n] I Z[N]; O I ]} (B.31)

Xm[n]kl [1] = E {(xm[n] - m[n])(xk[n] --k[n]) I Z[N]; [']I} + &m[n]fik[n],

k = 1,..., M (B.32)

Xm[n]Xm[n - 1] = E (xm[n] - m[n]) (xm[n - 1] - xm[n - 1]) I Z[N]; 0[1I}

+ m[n]:m[n- 1], n= 1,...,N- 1 (B.33)

which are used to form

U(o, O1]) =
N 2  1 N-1 M MM

c- log 2ra, - 2[] - 2z[n] E 1[n] + E (Xm[n•k[nl) 111
SW n= m=1 m=1 k=1

1 r _ NM
[NM log a2 -2 (M + 2ML - 1)7 log A

1 qm( AY(m+ML-1) tr (B.34)
+ -~lq(a) tr H mI(34

m=1

M step

The M step maximizes U(O, 011]) as given by (B.34). We differentiate U(O, 011]) with respect

to each of the parameters of 0 to obtain the local extrema. This maximization can be

separated into two independent sections since U(O, 011]) can be expressed as the sum of two

terms by (B.12).

The first term is described by (B.13) and is dependent only on a2 . The maximization



of this step gives us

2 -1 i z2[n] - 2z[n] : 1[n] + M (xm[n]Xk[nj)-[1] . (B.35)
n=O m=1 m=1 k=1

The second term is described by (B.27) and is dependent on - and u 2. Differentiation with

respect to each parameter gives us

NM&2  M Aj(m+ML-1)

2 (M + 2M -1) = (m + ML - 1) qm(A) tr (H;-lxm-xT ) (B.36)

N1 Aq(m+ML-1)2 NM m, tm(A) (H mlxm ) (B.37)

Eliminating & we obtain that j is the solution of the polynomial equation

S m - 2 q(A )  tr (H•lmXT ) = 0. (B.38)

The solution to this polynomial equation is unique.

B.2 1/f Signal and Deterministic Signal

In this section, we derive the EM algorithm for the estimation of a signal and noise pa-

rameters 0 = {Al,... , Ap, -7, a2 , 2,} for the case of a 1/f signal and deterministic signal in

white noise, presented in Section 5.2. As before, we denote the MN-length column vector

x= - " (B.39)

XM

which represents the component processes of the 1/f signal. We define the incomplete data

as the observed signal z. The complete data is defined as the samples of the observed signal

z together with the samples of each individual component process of the 1/f signal:

y = . (B.40)



E step

The E step for this situation can be broken into two steps. First, we form a modified

observation sequence

Z'[N] = {z'[0], ... , z'[N]} (B.41)

which consists of the observations of the 1/f signal and deterministic signal in white noise

with the current estimate of the deterministic signal removed

P

z'[n] = z[n] - E AI]b[n].
p=1

(B.42)

Second, we compute the conditional expectations of the 1/f signal components with the

Kalman smoothing equations, using the modified observation sequence. This computation

is identical to the computation performed in Appendix B.1

From (5.29), (5.30), and (B.1),

log fzix(z I z; 0) = Nlog 2roa2
2 N-

' n=o

M P
z[n] - ZE x[n] - EApbp[n]

m=1 p=l

Taking the conditional expectation given Z = z at parameter value 0[l]

E log fzlx(z x; 0) 1 z; 011[

M M P M M

- 2z[n] , m[n]+2 A[l4,[n]bp[n] + • (xm[n]Xk[n])^['] (B.44)
m=1 m=l p=1 m=1 k=1

where we define

(-)[1] E1 {. I z; 0['] (B.45)

These conditional expectations can be computed using the Kalman smoother with a 2M-

state system given by equations (4.11), (4.12), (4.14) and (4.17), describing the 1/f signal

with parameters yl] and u2[1] with white noise with parameter awjl]. The input for the

(B.43)



Kalman smoothing equations is the modified observation sequence Z'[N]. Specifically,

&I [n] = E {m[n] I Z'[N]; 01[]} (B.46)

is a single element of the state estimate 4[n I N] given by the smoothing equation (4.36),

and

(Xm[n]xk[ n)-[I ] = E (Xm[n] - &m[n])(Xk [n] - lk[n]) I Z'[N]; 01]} + &m[n]j•k[n] (B.47)

where the first term in the sum is a single element of the error covariance matrix Rx [n I N]

given by the smoothing equation (4.37).

The probability density function of the component processes has the same form as given

in (B.18). As in (B.27),

" 21 [ NM
E{log fx(x; 0) I z; 0} c- NMlog2 (M + 2ML - 1)7 log A

1 A-y(m+ML-l)
12 tr HfamsT) (B.48)

+ m=1 qm(A) tr H mlxm)]

where XmXM = E {XmX Z = z; 8[] .As before, we calculate

E (xm[n] - im[n])2 I Z = z; 0I1] + im[n]2 (B.49)

and

E {(xm[n] - xm[n]) (xm[n - 1] - xm[n - 1]) I Z = z; 0111 + im [n]Im [n - 1]. (B.50)

where we define rm[n] = E Xm[n] I Z = z; 0[ }. The quantities in (B.49) and (B.50) can

be efficiently computed using the 2M state Kalman smoothing equations (4.31)-(4.38) with

the system described by equations (4.11), (4.12), (4.14) and (4.17), again describing the

1/f signal with parameters y[t ] and u2[1] with white noise with parameters a2] .The input

into the Kalman filter is the modified observation sequence Z'[N].



M step

The M step maximizes U(, 011]). We differentiate U(0, O1] ) with respect to each of the

parameters of 0 to obtain the local extrema. This maximization can be separated into two

independent sections since U(O, 0[1]) can be expressed as the sum of two terms by (B.12).

The first term is described by (B.44) and is dependent only on the white noise parameter

a2 and the deterministic signal parameters { Ap,..., p}. The maximization of this step

gives us

- z2[n] - 2z[n] A )4']bp[n]
n=0 p= 1

P Q M

+ 01, 0_, )4]']bp[n]bq[n] - 2z[n] E 4[ftn]
p=1 q=1 m=1

MP MM

+ 2 ACS]t[n]bp[n] + _(xm[n]xk[n )^l '] (B.51)
m=1 p=1 m=1 k=1

AP = b [n]j by [nr] zH[n ] bk [n] - ) [n] (B.52)

forp = 1,..., P.

The second term is described by (B.48) and is dependent on y and a 2. This maximization

is identical to the corresponding maximization in the M step of Appendix B.1.
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