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Abstract

In the wireless communications setting, channel coding schemes must combat not only ad-
ditive noise, but also distortions such as intersymbol interference and signal fading caused
by multipath propagation. Spread-response precoding is a newly proposed method for com-
municating over such channels, which is attractive because it offers good performance while
having efficient implementations and requiring no additional average power or bandwidth.
Furthermore, these systems essentially transform the intersymbol interference into a more
benign form of uncorrelated, additive noise at the receiver. In this thesis, we examine sev-
eral theoretical and practical issues relating to fading channel estimation and equalization
for use in these spread-response precoding systems.

We first compare linear fading channel equalizers designed according to two seemingly
different criteria of optimality, namely, the maximum signal-to-noise ratio (SNR) criterion
and the minimum mean-square error (MMSE) criterion. Initially, we assume the fading
channel impulse response is known at the receiver, and we show that, while the maximum
SNR equalizer corresponds exactly to the MMSE equalizer for the case of a frequency nonse-
lective channel, for the case of a slowly-varying, frequency selective channel this result holds
only approximately. We examine the more general frequency selective case in some detail
by comparing the frequency responses of the two equalizers and the bit-error probability of
systems employing them.

We then consider the case in which the fading channel coefficients are unknown at the
receiver, but some form of direct channel measurement is obtained through the use of a
pilot-tone. From these observations, we develop techniques based on the Kalman filter and
the Expectation-Maximization algorithm for estimating and tracking the fading channel
parameters. We examine how these estimates alter the form of the optimal equalizers,
and assess their impact on the performance of spread-response precoding systems through
analysis and simulation.

Finally, we give some preliminary results from an implementation of these ideas within
an indoor wireless testbed. We demonstrate the use of our channel estimation algorithms in
characterizing the wireless channel found in the laboratory, and we compare transmissions
over this channel with and without spread-response precoding.

Thesis Supervisor: Gregory W. Wornell

Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

A central issue in the wireless communications setting is the signal fading and intersymbol

interference (ISI) introduced by the channel [1]. Due to multipath propagation, many copies

of the transmitted signal arrive at the receiver antenna, each with a given attenuation and

delay. When these delays are separated by more than the symbol duration, intersymbol

interference (ISI) results. Furthermore, when the receiver antenna is set in motion, as is

usually the case in such applications such as cellular telephony, signal fading results as the

received power level fluctuates because the multipath components add constructively or

destructively. As a result of these distortions, wireless fading channels exhibit dramatically

poorer bit-error performance than traditional additive white Gaussian noise channels when

using uncoded transmissions.

Recent work [2], [3] has suggested a technique called spread-response precoding for com-

bating ISI and signal fading found in wireless links. The idea behind this sort of precoding

is to temporally distribute the energy of each symbol, and effectively recombine these trans-

missions, to achieve the average effect of the channel rather than the instantaneous fade. A

key element of the receiver is an equalizer that partially compensates for the instantaneous

ISI and fading effects of the channel, and constructing this equalizer requires some knowl-

edge of the fading channel impulse response. In a real wireless system, especially when

the receiver is mobile, knowledge of the fading characteristics must be obtained through

adaptive channel estimation, either blind or trained, based on a model for the channel. The

impact of estimation errors must then be incorporated into the performance analysis of the

communication system. Different techniques for estimating the channel must be compared



based on their bit-error probability, robustness, and computational complexity.

In this thesis, we address several theoretical and practical topics relating to fading

channel estimation and equalization for use in spread-response precoding systems. After

summarizing the relevant background material on fading channels and spread-response pre-

coding systems in Chapter 2, we examine in Chapter 3 two different criteria for obtaining

optimal linear equalizers that rely on complete knowledge of the fading channel impulse

response. Chapter 4 develops a particular method for obtaining fading channel estimates

based on observations of the fading in white noise (a pilot-tone), and Chapter 5 integrates

these channel estimates into the equalizers found in Chapter 3 and examines the bit-error

probability of the complete system. In Chapter 6, we present the results of transmitting

data over a real wireless channel using a preliminary implementation of the ideas outlined

in this thesis. Finally, in Chapter 7, we make some concluding remarks and suggests areas

of further research.



Chapter 2

Background

For the purposes of this research, we consider point-to-point communication using the base-

band equivalent system shown in Figure 2-1. In this figure, x[n] represents generally the

complex-valued sequence of (coded) information-bearing symbols. For simplicity of ex-

position, we assume that x[n] is a zero-mean, white QPSK sequence with energy £, per

symbol. Additional channel coding is performed by the spread-response precoder h[k; n],

which generates the transmit sequence y[n] from x[n]. The fading channel corrupts y[n]

with complex-valued fading and additive noise, to yield the received sequence r[n]. These

effects are modeled by the time-varying linear filter a[k; n] and additive term w[n], respec-

tively. Finally, the receiver processes r[n] to obtain symbol estimates i[n], which may be

further decoded.

In this chapter, we shed some light on the model for the fading channel and the structure

of the spread-response precoder. For a more thorough introduction to fading channels and

diversity techniques in general, the interested reader is referred to Proakis [1]. Spread-

w[n]

x[n] 1[n]

Figure 2-1: System model for spread-response precoding systems in fading environments.



response precoding is a particular example of a time diversity scheme, and was recently

explored by Wornell [2], [3].

2.1 Rayleigh Fading Channels

The channel in Figure 2-1 represents a fairly general, stationary Rayleigh fading channel

with uncorrelated scattering and additive noise. Specifically, we regard the kernel a[k; n] as

the fading response at time n to a unit-sample applied at time n - k, so that the received

sequence may be written as the convolution

r[n] = 1 a[k; n] y[n - k] + w[n] (2.1)
k

where w[n] captures the effects of receiver thermal noise, and more importantly, co-channel

interference. We model w[n] as a zero-mean, white complex Gaussian sequence with variance

a2 = E [ w[n] = (2.2)

Also, we note that x[n], a[k; n], and w[n] are mutually independent.

2.1.1 Statistical Characterization

Statistically, we model the fading response a[k; n] as a collection of complex jointly Gaus-

sian sequences in n indexed by k. When these sequences have zero-mean, as we assume,

the magnitude la[k; n] is Rayleigh distributed, hence the name Rayleigh fading channel.

Furthermore, when the sequences are jointly stationary, we may define the variance of each

sequence as

S= E [a[k; n12] (2.3)

Finally, we assume that the sequences corresponding to distinct values of k are independent,

which corresponds to what is referred to as the uncorrelated scattering assumption.



The above assumptions imply that the time-varying frequency responsel

A(w; n] = E a[k; n]e - jwk (2.4)
k

is also Gaussian and stationary in w and n. Moreover, its first and second moments are

given by

PLA = E [A(w; n]] = 0 (2.5a)

a = E [IA(w; n]2] = 2 (2.5b)
k

When we wish to classify the fading channel broadly in terms of its frequency and time

selectivity, we examine the spaced-frequency spaced-time correlation function

TA(w; m] = E [A(O; n] A*(0 - w; n - m]] (2.6)

We note that the function JWA(w; 0] is a correlation function for the frequency response at

frequencies separated by w; hence, we expect the support of this function to correspond

to the coherence bandwidth of the channel, normalized by the sampling frequency. When

the transmission bandwidth is much less than the coherence bandwidth of the channel, the

signal is affected uniformly in frequency, and the channel is termed frequency nonselective;

otherwise, the channel is termed frequency selective. We point out that it will often be

convenient to simplify our notation for the case of a frequency nonselective fading channel,

for which

a[k; n] = A(0; n] 6[k] = a[n] 6[k] (2.7)

where a[n] is a zero-mean, complex Gaussian sequence with variance a2. In this case, the

1We adopt the useful notation "F(., .]" to indicate that the first argument to F is continuous-valued,
while the second argument to F is discrete-valued.



received sequence is given more simply as

r[n] = a[n] y[n] + w[n] (2.8)

Similarly, XPA(0; m] is a correlation function for the frequency response at sample times

separated by m; hence, we expect the support of this function to correspond to the coherence

time of the channel, normalized by the sample period. Specifically, we define the coherence

time of the channel as

TA = 2 Re{IA(0;;m]} (2.9)
A m=0

When the symbol duration is much less than the coherence time of the channel, the channel

is termed slowly-varying.

2.1.2 State-Space Evolution Model

In addition to the system-level descriptions above, we need to specify an evolution model for

the fading that captures some of the correlations of these sequences. Such a model allows us

to simulate these characteristics as well as develop our estimation techniques in Chapter 4.

We begin with a simple construction for the frequency nonselective channel, and extend it

to the frequency selective channel.

Frequency Nonselective, Time Selective Channel

When the fading is frequency nonselective, but time selective, the impulse response satisfies

(2.7), and the fading can be thought of as a time-varying gain applied to the transmitted

signal. In order to simulate or form a model-based estimator of the channel, we need to

augment (2.7) with a model for the time evolution of the sequence a[n]. For our purposes,

we utilize a first-order autoregressive model of the form

a[n + 1] = p a[n] + v[n + 1] (2.10)

where p is a real number satisfying 0 < p < 1, and v[n] is another zero-mean, stationary,

complex Gaussian random sequence, with variance a2 = o~ (1 - p2), and which is inde-



pendent of a[k] for all k < n. The model (2.10) has been proposed in the literature for

modeling time-selective fading channels, and is adequate for capturing, at least at a high

level, the effects of correlation in the process. Furthermore, its simplicity helps in making

analytical results more tractable.

The time constant p is determined by the coherence time of the fading channel. Specif-

ically, when we examine the spaced-time correlation function for this case, we find

W'A(0; mI = a pmil (2.11)

The coherence time, in samples, is then given by

1
TA = (2.12)

1-p

For example, with p = 0.99, TA = 100 samples, and the channel is highly correlated, or

slowly-varying.

Frequency Selective Channel

For the frequency selective case, the channel response a[k; n] consists of several taps, each

of which is modeled as a zero-mean, stationary, complex Gaussian random sequence with

variance a,. Furthermore, we restrict our attention to the case when the channel is causal

and has impulse response of finite duration K, i.e.,

a[k;n]= 0 for k<O and k >K (2.13)

Because we assume that the channel exhibits uncorrelated scattering, we can model each

tap according to (2.10), i.e.,

a[k; n + 1] = Pk a[k; n] + v[k; n + 1] (2.14)

where each Pk is a real number satisfying 0 < Pk < 1, and the kernel v[k; n] is a collection

of independent, zero-mean, stationary complex Gaussian sequences with variances a2

a2k (1 - p2), respectively.



We find it useful to collect the taps into the vectors

a[n] = [a[O; n] ... a[K - 1; n] ]T (2.15a)

v[n] = [v[O; n] ... v[K - 1; n] ]T (2.15b)

where the length K is defined by (2.13). Then the evolution model becomes

a[n + 1] = P a[n] + v[n + 1] (2.16)

in which the state transition matrix P = diag (po,... ,PK-1).

Again, we may examine the spaced-time correlation function to find

I'A(O;m] = 2 k, prl (2.17)
k

so that the coherence time of the frequency selective channel is the weighted sum

A= 1 2 1k) (2.18)
A k

2.2 Spread-Response Precoding Systems

As a result of intersymbol interference and signal fading, uncoded transmissions over fading

channels often exhibit dramatically poorer bit-error performance than uncoded transmis-

sions over traditional additive white Gaussian noise (AWGN) channels. To combat these

effects, systems often employ diversity schemes, including time, frequency, and spatial di-

versity methods [1]. The spread-response precoder h[k; n] in Figure 2-1 represents a recently

proposed technique for obtaining time diversity in fading environments [2], [3]. We focus

on this technique throughout the thesis.

The idea behind time diversity schemes in general is to temporally distribute the energy

of each symbol, and effectively recombine these transmissions, to achieve closer to the av-

erage effect of the channel rather than the instantaneous fade. Spread-response precoding

systems in particular achieve time diversity without requiring additional power or band-

width, by passing the symbol sequence through a dispersive, invertible, linear transforma-

tion before transmission. Accordingly, spread-response precoding represents a computation-



Figure 2-2: Linear, periodically time-varying spread-response precoder structure.

ally efficient alternative to error-control coding for achieving time diversity. Furthermore,

spread-response precoding effectively transforms the fading channel into an additive, white

marginally Gaussian noise channel.

2.2.1 Transmitter: Linear, Periodically Time-Varying Precoder

The spread-response precoder h[k; n] produces as its output the sequence

y[n] = 1 h[k; n] x[n - k] (2.19)
k

For the purposes of this research, we restrict our attention to the special case in which the

impulse response h[k; n] corresponds to a linear, periodically time-varying (LPTV) system

of the form shown in Figure 2-2. We view the precoding structure of Figure 2-2 in the

following way. The first two stages demultiplex the symbol sequence x[n] into its even

samples, xl[n], and odd samples, x2 [n], respectively. Note that we can easily recover x[n]

at this point by appropriately interleaving the two sequences. Another interpretation of

this operation is that of converting the original user of the channel into two "virtual" users.

In fact, the last two stages correspond to a spread-signature filter bank of order L = 2

and finite duration N developed in [3] for multiuser communication over fading channels.

We now describe some of the important properties of these spread-signature sets, which we

denote by the vector

h[n]= [hi[n] ... hL[n]]T (2.20)



Figure 2-3: Linear, periodically time-varying postcoder structure for inverting the effects of
the precoder of Figure 2-2.

First, we note that the signature set, together with its translates by integer multiples

of L, constitute a complete orthonormal set, so that the transformation introduced by

precoding is simply invertible. Note that this is not a necessary condition for recovery of

x[n] from y[n], but the orthogonal construction is convenient in terms of both analysis and

implementation. Furthermore, for practical reasons, we restrict out attention to real-valued

signature sets. Consequently, the inversion is simply the transpose of the system given

in Figure 2-2, which we give in block diagram form in Figure 2-3 for completeness. The

notation "(.)" in Figure 2-3 is necessary to indicate that the sequences are not equivalent

to their counterparts in Figure 2-2 when channel distortions are introduced between the

precoder and postcoder.

Secondly, the sequences take values

h1[n] = ±1/v-N (2.21)

for each 1 < I < L and 0 < n < N. This property allows for efficient implementations of

these systems via simple additions and subtractions. Furthermore, (2.21) implies that these

sequences are the most effective, among sequences of length N, at temporally spreading

each symbol. More specifically, we define the dispersion factor Dh of the spread-signature

set as

1 -- 1 (2.22)
Vh L•I' Dh



where V)h represents the dispersion of the sequence h [n], namely,

IDh = h4[n] (2.23)

Then these signature sets achieve the bound

Dh < N (2.24)

with equality. This property is important because the effective time diversity offered by the

spread-response precoder increases with N. Furthermore, we see that since the bound is

achieved for any L > 2, there is no need to consider precoders with L > 2 for the single-user

scenario.

However, increasing the length N of the precoder to obtain higher diversity benefit

precludes the use of optimal maximum-likelihood sequence detection (MLSD) due to its

computation complexity. To make this statement more precise, consider the channel formed

by the cascade of the precoder and fading channel response

=[k; n] = a[l; n] h[k - 1; n - 1] (2.25)

Let us assume that the fading channel impulse response is known at the receiver, so the

composite channel (2.25) is also known. Recall that the precoder at any time n is causal

and has finite duration N, and the fading channel at any time n is also causal and has finite

duration K. Hence we expect the cascaded channel i[k; n] to satisfy

a[k;n] = fork<Oandk> (N + K - 1)

for any time n. When each symbol in the sequence x[n] takes value in the finite set X, we

may model the cascade channel as a IX " state finite-state machine, where v = (N + K - 2)

under our assumptions. Then implementing the MLSD via the Viterbi algorithm requires

IX v+ l1 = -IX(N + K - 1) IXIN (2.26)

computations for each received sample [4]. Consequently, we see that increasing the length



r[n] bk [n]
r n]. b[k;n] { [n ]  hT[k;n] [n ]

Figure 2-4: Linear receiver consisting of an equalizer and postcoder.

of the precoder leads to an exponential increase in the amount of computation required for

the MLSD.

2.2.2 Receiver: Linear Equalizer-Postcoder

Instead of the MLSD, the receiver block of Figure 2-4 consists of a linear equalizer b[k; n],

which partially compensates for the effects of fading, followed by the postcoder 2 hT[k; n],

which inverts the precoding process.

We define the cascade of the fading channel and equalizer as the kernel

c[k; n] = b[; n] a[k - 1; n - l] (2.27)

and assume that all three kernels are wide-sense stationary, uncorrelated scattering channels

that satisfy certain ergodicity constraints. Under these assumptions, Wornell [2], [3] has

shown the following result: As the dispersion Dh -+ oo, the symbol estimates 1[n] converge

to

x[n] E c x [n] + z [n] (2.28)

where we use the notation "m.s." to indicate mean-square convergence. The sequence z[n]

in (2.28) is a zero-mean, complex-valued, marginally Gaussian white-noise sequence with

variance

a= ,0o +No (7+ I l2 (2.29)

2We use a special notation for the postcoding filter to simplify the receiver block diagram. Specifically, if
h[k; n] is the spread-response precoder of Figure 2-2, the the notation "hT[[k; n]" indicates the corresponding

postcoder of Figure 2-3.



and PB, pc and au, a are the means and variances of the kernels B(w; n] and C(w; n],

respectively, found from (2.5).

Accordingly, we may compute the signal-to-noise ratio (SNR) in the symbol estimates

as

I Cl2
y(b) = (2.30)

2 + (o U + AB 12

where

Co= (2.31)

We may then approximate the bit-error probability for symbol-by-symbol detection when

using QPSK signaling over this composite channel as the corresponding bit-error probability

over an AWGN channel with SNR -y. This probability of error, given by [1], is

Pr (e) P• Q( ) (2.32)

where

Q(x) = e-x2 /2dx (2.33)

This approximation is simple, and turns out to be a good one as the length N, and therefore

dispersion Vh, of the precoder becomes large [2].

2.3 Summary

In this chapter, we have presented a context for the thesis and introduced important no-

tation and terminology for fading channels and spread-response precoding systems. We

have indicated the structure of the spread-response precoder and briefly stated some of

its properties. Most importantly, we have repeated Wornell's theorem on the ability of

spread-response precoding systems to transform the arbitrary Rayleigh fading channel into

an additive marginally Gaussian white-noise channel, and given a useful approximation for

the bit-error probability of QPSK signaling over the composite channel. Finally, we have set



the stage for Chapter 3, in which we address the problem of choosing the equalizer b[k; n]

to obtain optimal performance from the class of linear equalizers.



Chapter 3

Optimal Linear Equalizers

In Chapter 2, we introduced the concept of spread-response precoding for communication

over fading channels. Our main result was that under certain ergodicity constraints on the

channel, long precoding essentially transforms the fading channel into an additive marginally

Gaussian white-noise channel.

In this chapter, we examine two criteria for deriving optimal equalizers. First, we

develop equalizers which maximize the output SNR of the composite channel, following

the development of [2]. Because the precoder is an invertible, all-pass transformation of the

transmitted sequence, we will see that the resulting receivers correspond to linear, minimum

mean-square equalizers for two special cases of interest. Due to this overlap for certain cases

of the channel, we examine the minimum mean-square error criterion in more detail and

develop single user versions of the recursive equalizers found in [5]. Comparisons between

the equalizers are made in terms of their time-varying frequency responses and bit-error

probabilities.

3.1 Maximum SNR Criterion

Our first design criterion for obtaining optimal equalizers is to maximize the composite

channel SNR given by

ab + r o + IUsl2) (3.1)



with ~o = A/0/1s as in (2.31). Such an approach seems reasonable because we approximate

the composite channel as Gaussian, and the bit-error probability for Gaussian channels

(2.32) decreases monotonically with increasing SNR. While the development in this section

mirrors that of [2], the individual steps will prove useful at a later point in the thesis.

We examine two specific cases of the channel, namely, frequency nonselective fading and

frequency selective, slowly-varying fading, respectively.

3.1.1 Frequency Nonselective Channel

For the case of a frequency nonselective channel, the fading response satisfies

a[; n] = a[n] 6[k]

in which case the equalizer is of the form

b[k; n] = b[n] 6[k]

and

c[k; n] = a[n] b[n] 6[k]

Consequently, we may rewrite (3.1) as

IE [ab]21
7(b) = +(3.2)

Var [ab] + o E [Ib]

where we have dropped the dependence on n due to stationarity. To derive the optimal

equalizer, we first rewrite (3.2) as [2]

S(b) (3.3)(b) = 1/4(b) - 1

where

O(b) = jE [ab]12  (3.4)
E [(Ja12 + o) Jb12]



and we note that maximizing (3.4) is equivalent to maximizing (3.3). Now by the Schwartz

inequality, we have

2

JE [ab]12 = E a b•al2 + o

<E la12 + 6o0 E [ J2 +0) Jb2

with equality just in case

a* [n]b[n] oc (3.5)
la[n] 12 + •o

Thus we maximize (3.4) and therefore (3.3) through this choice of b[n], which is specified

to within a (complex) scale factor.

3.1.2 Frequency Selective, Slowly-Varying Channel

In this section we consider the more general, frequency selective fading channel model in

which the response has more than a single tap. We note that as we increase the transmission

bandwidth relative to the coherence bandwidth of the channel, we also decrease the symbol

period relative to the coherence time of the channel. Hence, for very short symbol times,

the channel is very slowly-varying, and the cascade of the fading and equalizer can be

approximated via

C(w; n] , A(w; n] -B(w; n] (3.6)

Essentially this approximation requires that the fading channel is time-invariant over a

block of length N, with K < N < TA and where we have assumed TA > K. Consequently,

the composite channel frequency response should be well approximated by the product of

the two constituent frequency responses, as in (3.6).

Using (3.6) in (3.1), we find that the output SNR for the frequency selective channel is



given approximately by

IE [AB]I2
y(b) E (3.7)Var [AB] + o E [BI2

where we have dropped the dependence of these statistics on w and n due to stationarity.

Following an argument similar to that of the previous section, we find that the equalizer

that approximately maximizes the composite channel SNR has frequency response [2]

B(w;n] A*(w; n]A(w;n]B(w; n] oc (3.8)
SIA(w; n] 2 + ý0

where again the equalizer is specified to within an arbitrary (complex) scale factor.

3.1.3 Average Output SNR and Bit-Error Probability

With the above choices for the equalizer b[k; n], we may compute the output SNR directly.

In fact, we see by inspection of the results (3.5) and (3.8) that the maximum output SNR

are identical in both cases. This is due to the fact that for the nonselective channel, the

processes a[n] and A(w; n] = A(O; n] are equivalent, with mean-zero and variance a2 .

We solve for the maximum SNR by substituting (3.5) into (3.4), and computing the

required expectations. The details of these calculations are a special case of those given in

Appendix A, with 7 = r' = 0o, resulting in

Omax = 1 - CoeCOEl (Co) (3.9)

where the receiver input SNR is given by

2(3.10)
SNR = 1/Co = (3.10)

and El(.) denotes the exponential integral

(v)=dt (3.11)
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Figure 3-1: Bit-error probability for QPSK signaling using spread-response precoding of
various lengths over known fading channels. The successively lower solid curves represent the
analytical bit-error performance over the fading channel without precoding and for infinite-
length precoding, respectively. The successively lower dashed curves are the performance
of spread-response precoders of lengths N = 2, 4, 16, 64 and 256, respectively.

Hence, by applying (3.3), we obtain

1
Ymax = eE - 1 (3.12)

Co E1 (Co)

Equation (3.12) is useful for our purposes because it gives us an approximate upper

bound on the output SNR of spread-response precoding systems for the two cases we have

addressed. Similarly, for uncoded transmissions, it gives, in conjunction with (2.32), at least

an approximate lower bound on the bit-error probability of symbol-by-symbol detection.

Figure 3-1 shows the bit-error probability as a function of the receiver input signal-to-noise

ratio, defined in (3.10), for various lengths of the precoding filters. As the figure indicates,

for practical systems with finite length precoding, the performance approaches the bound as



the length of the precoder increases. In particular, for the input SNR values of interest, the

asymptotic result is virtually achieved by precoding of length N = 256 times the coherence

time of the channel in samples.

3.2 Linear MMSE Criterion

As Wornell [2] also points out for the frequency nonselective case, the output 9[n] from the

equalizer (3.5) corresponds to a linear, MMSE estimate of the transmitted sequence y[n].

Hence, since the postcoder hT[k; n] inverts the precoder, its output ^[n] corresponds to a

linear, MMSE estimate of x[n]. Similarly, under the assumption (3.6) and, with hT[k; n]

the precoder inverse, -[n] corresponds, at least approximately, to linear MMSE estimates

of the symbol sequence x[n].

These observations suggest that a reasonable alternative and sometimes equivalent cri-

terion for the receiver structure is to determine the linear receiver that has minimal mean-

square error. In fact, this criterion was used to develop the recursive multiuser receiver

of [5]. In this section, we examine the structure of this equalizer, which is based on the

Kalman filter [6], for the single user case.

3.2.1 Channel State-Space Model

To derive the Kalman filter, we must cast the channel of Figure 2-1 into state-space form.

The approach taken in [5] is to used the cascade of the precoder and fading channel (2.25),

so that the received sequence is given simply as

r[n] = E i [k; n] x[n - k] + w[n] (3.13)
k

Recall that the precoder is causal and has finite length N, so that h[n] = 0 for n < 0

and n > N. With the additional assumption that a[k; n] is of finite length K, the combined

kernel a[k; n] also has finite duration, namely, (N + K - 1). Hence, with the definitions

s[n] = [x[n] x[n - 1] ... x[n - (N + K - 2)] ]T  (3.14a)

i[n] = [1[O; n] a[1; n] .- . [N + K - 2; n]] (3.14b)



a state-space model for the channel takes the form

s[n + 1] = F s[n] + G x[n + 1]

r[n] = h[n] s[n] + w[n]

where

G=[10 ..- 0]T

and F is the (N + K - 1) dimensional shift matrix

0

... O

.0

1 0

3.2.2 Recursive Equalizer Equations

Given the state-space model (3.15), it is straightforward to derive the Kalman filter, con-

sisting of two sets of equations, namely, the update equations, and the prediction equations.

For ease of presentation, we make the definitions

(3.16a)

(3.16b)

s[nlm] = E [ s[n] I r[l], I < m ]
s,[nlm] = E [(s[n]- 9[nlm]) (s[n] - A[nlm]) t I r[i], < m

to denote the state estimate and its corresponding conditional mean-square error, re-

spectively. We also fix the initial conditions of the Kalman filter to ,[01 - 1] = 0 and

E,[01 - 1] = 8,I. Finally, the symbol estimates may be taken as

(3.17)

where Bj is the unit vector whose jth entry is 1, and j is chosen to achieve a specified degree

of smoothing in the estimates.

(3.15a)

(3.15b)

1[n] = Bj ^[nln]



Symbol Estimate Update Equations

Given the estimate [njn - 1] and its corresponding conditional error variance E~[nln - 1],

as well as the observation r[n], we compute the updated estimate and its conditional error

covariance according to

^[nln ] = i[nln - 1] + K[n] (r[n] - i[n] [njn - 1]) (3.18a)

Es[nln] = (I - K[n] &[n]) Es[nln - 1] (3.18b)

with

K[n] = E[nln - 1] it [n] (A[n] E[nln - 1] t [n] + No) (3.18c)

Symbol Estimate Prediction Equations

Next, given the estimate .[nln ] and E,[nln], we compute the predicted symbol estimates

according to

A[n + 1In ] = F ^[nln] (3.19a)

E~[n + 1ln] = F Ej[nln] F T + E+ G GT (3.19b)

Using these predicted estimates, the algorithm can continue with (3.18) at time (n + 1) as

soon as the observation r[n + 1] is available.

Equations (3.18) and (3.19) yield efficient, 'recursive implementations of the linear,

MMSE equalizer based on observations from the present and into the infinite past. Addi-

tional smoothing of the symbol estimates may be obtained by augmenting the state vector

s[n] and state-space matrices F, G, and fi[n] accordingly. There are more efficient methods

for obtaining smoothed estimates [6], but we restrict our attention to a small amount of

smoothing to simplify the exposition.



3.3 Comparison of the Equalizers for the Two Criteria

The equations of the previous section specify exactly how to implement a linear MMSE

equalizer in recursive form in the time domain, regardless of whether or not the precoding

filter is lossless, or whether or not the channel is slowly-varying. In this sense, the linear

MMSE equalizer appears more appropriate for implementation purposes than the equal-

izer of (3.8), whose implementation generally requires truncation of the impulse response.

However, we do not want to sacrifice performance for ease of implementation; therefore, we

need a framework for comparing the Kalman filter with the equalizers of (3.5) and (3.8),

which we have seen maximize the output signal-to-noise ratio in the frequency nonselective

and slowly-varying, frequency selective cases, respectively.

Such a comparison is very complicated to formalize based on the recursive equations

given (3.18) and (3.19), because in general the state-space model is time-varying. Instead,

we consider the effects of the Kalman filter/smoother in terms of non-recursive, linear

MMSE estimation equations, and find that we may compute the time-varying frequency

response of the Kalman filter/smoother directly from this point of view.

More specifically, we treat a random sequence f[n] as the infinite random vector

f = [...f[-1] f[] f[O] f[1] ... ]T

Hence, the signals x[n], y[n], w[n], and r[n] become the vectors x, y, w, and r, respectively.

From our system model, we have that E [x] = 0 and E [xxt] = 6, I. Similarly, E [w] = 0,

E [wwt] = .No I, and E [xwt] = 0.

To specify the second-order statistics of the vectors y and r, we must first determine

matrix representations of the precoder and fading channel by examining the convolution

relationships (2.1) and (2.19) for these two systems. The received sequence may be written

as

r = Ay + w (3.20)



where the matrix A has the form

a[K- 1;-1]

0

0

°- o

a[K - 1;0]

0

a[O; -1]

a[K - 1; 1]

0 0

a[0; 0] 0
...- a[0; 1]

We note that a[0;

straightforward to

0] in the

write the

middle row aligns with y[O] in the vector y.

precoder convolution as

y = Hx

Similarly, it is

(3.21)

where the H matrix has the form

0 h[N-1;-1]

0 0
0 0

h[N - 1;0]
0

h[O; -1]

h[N- 1; 1]

0

h[0; 0]

0

0

h[0;1]

Again, we note that h[0; 0] in the middle row aligns with x[0] in the vector x. Furthermore,

we could group these two matrices into the combined matrix A = AH, but we have reasons

for keeping them separate, as we will soon point out.

Using (3.20) as well as (3.21), we find that

E [r] = 0

E [xrt] = 0,HA t

E [rrt] = £,AHHtAt + AoI

(3.22a)

(3.22b)

(3.22c)

From these statistics, we can write the Kalman smoother equations in non-recursive vector

0

0

--0
° " O

0 ...

0 ...

0 ...



form as

= HfAf (AHHtAt + 0oI) r (3.23)

with Co = A0o/E, as defined in (2.31). As with the other convolutions, (3.23) is an infinite

set of equations for computing all the symbol estimates * based on the entire observed

sequence r. We note that this formulation is only of conceptual value; to implement the

linear MMSE equalizer, we employ the recursive equations of the previous section.

For the special case in which the precoder inverse is the transpose, H is a unitary matrix,

so the Kalman smoother simplifies to

x= HtAt (AAt + oI) r (3.24)

which is similar in form to (3.8) followed by the postcoder. This result confirms the partition

of the receiver into an equalizer and postcoder: if the precoding transformation was not

orthogonal, then we could not partition the linear MMSE equalizer in this manner. Because

of this partitioning, we can simply compare the filter

B = At (AAf + lo)l (3.25)

to the equalizers of (3.5) and (3.8).

Just as the matrix A has a special structure, so does the filter matrix B. Specifically,

each row of the matrix contains the time-reversed version of the equalizer impulse response

b[k; n] for a particular time n. Hence to compare the two equalizers at time no, we simply

pick the corresponding row of B, reverse this row in time, and compute its frequency

response. Although we cannot compute the doubly-infinite matrix b for the general case,

we can make several observations in the two cases of immediate interest.

For the case of the frequency nonselective channel a[k; n] = a[n]6[k], and the fading

matrix is

A = diag(..., a[-1], a[O], a[1],...)
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Figure 3-2: Frequency response comparisons between the (approximate) maximum SNR
equalizer and the MMSE equalizer, for (a) a slowly-varying channel, and (b) a more quickly-
varying channel. The solid lines corresponds to the (approximate) maximum SNR equalizer
B(w; 100], while the dash-dotted lines correspond to the MMSE equalizer B(w; 100].

so that B is also a diagonal matrix. Picking the elements along the diagonal, we find

[n] = [n] (3.26)
Ia[n]2 +o

which is identical to (3.5). Hence, the two optimization problems, based on seemingly

different criteria, give the same result for this case.

For an arbitrary frequency selective channel, B is impossible to compute. However, we

might examine the finite-length version of the equation (3.20) for a particular realization of

the fading. For example, if we assume K = 2 and write the equation (3.20) for a segment

of the data of length M, then we can compute the truncated approximation BM to B.1 We

may then compute the frequency responses (3.8) and compare to the frequency responses

of the corresponding rows of BM.

Illustrative results of these computations are shown in Figure 3-2 for a slowly-varying

channel and a more quickly-varying channel. In these figures, we compare the same fading

channel frequency response surrounded by different contexts. That is, we fix the frequency

response at time n = 100 and use forward and backward recursions of the model (2.16) to

'When M is large, we expect the middle rows of f3~ to be good approximations of the corresponding
rows of &. In fact, computer experiments have suggested that the results for M > 50 are largely similar.



generate a block of length M = 200. In both cases, we arbitrarily set ýo = 0.01.

For the slowly-varying case, we use the parameters Po = pl = 0.9999 and Ua2 = a2

1/2, corresponding to a channel with coherence time TA = 10000. Figure 3-2(a) shows

the frequency responses of the two equalizers in the middle of this data segment, i.e.,

the (approximate) maximum SNR equalizer B(w; 100] computed from (3.8), and the linear

MMSE equalizer B(w; 100] computed by taking the discrete-time Fourier transform of the

middle row of B 200 . We see from the figure that the approximation (3.6) does result in a good

match between (3.8) and the Kalman filter/smoother in terms of their frequency responses.

Hence we expect similar performance for both equalizers in terms of output signal-to-noise

ratio and mean-square error. Furthermore, we find it appropriate to utilize the equalizer

of (3.8) for analysis of both approaches; however, we find the Kalman filter/smoother more

suitable for implementation purposes because it is constrained to be realizable.

A similar comparison is offered by Figure 3-2(b), in which the same frequency response

is fixed at time n = 100, but for this example, the parameters of the model (2.16) were

Po = Pl = 0.9 9, and a = a2 = 1/2, corresponding to a channel with coherence time

TA = 100. For this channel, the two equalizers are very different in terms of their frequency

responses; however, this figure does not offer the whole picture. Ultimately, we are interested

in the bit-error probability of the systems employing these equalizers. While Figure 3-2(b)

suggests that the bit-error probabilities are different, it does not suggest which of the two

is smaller.

Figure 3-3 shows empirical bit-error probability for the case of a white channel, namely,

Po = P, = 0, and ao = a2 = 1/2 using the two equalizers with length N = 256 precoding.

The successively lower curves correspond to the (approximate) maximum SNR equalizer

(3.8), the Kalman filter (without smoothing), and the Kalman filter with a smoothing

factor of 100, respectively. It is interesting to note that the performance of the equalizer

(3.8) does not improve with increasing SNR. This result suggests that, for the quickly-

varying, frequency selective channel, this equalizer is incapable of reducing the time-varying

intersymbol interference introduced by the channel. On the other hand, the Kalman filter

equalizer's performance does improve with increasing SNR, which suggests that it is in fact

capable of reducing the ISI. Moreover, it Oeems plausible that the performance improves

with additional smoothing, although more xtensive investigation of this result is required.

I
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Figure 3-3: Bit-error probability over a very fast-fading channel using the two equalizers
with length N = 256 precoding. The successively lower solid curves correspond to the
(approximate) maximum SNR equalizer, the Kalman filter (without smoothing), and the
Kalman filter with a degree of smoothing 100.



3.4 Summary

In this chapter, we have examined two criteria for obtaining optimal linear equalizers for

use in spread-response precoding systems|. Specifically, we have demonstrated that the

maximum output SNR and MMSE criteria yield exactly the same equalizer in the frequency

nonselective case. For the frequency selective channel, our numerical results suggest that

the (approximate) maximum SNR equaliier and the linear MMSE equalizer are similar

when the channel is slowly-varying. Howefer, we have shown through simulation that the

(approximate) maximum SNR equalizer is severely interference limited when the channel

exhibits fast fading, while the linear MMS4 equalizer compensates for some of the ISI effect

in this case. Whether the true maximum ýNR equalizer corresponds to the linear MMSE

equalizer remains as an interesting questioCi for future research.





Chapter 4

Fading Channel

As derived in Chapter 3, the fading channel
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This approach includes a sequential parameter

Ltion-Maximization (EM) algorithm. Finally, we

Lded in order to estimate the frequency selective



4.1 State-Space Model for the Fading Channel

In addition to the autoregressive evolution model

a[n + 1] = pa[n] + v[n + 1] (4.1)

we need to define an observation model for the fading channel. In other words, we have

to specify how the receiver obtains information as a channel measurement from which to

estimate the fading. At a high level, we assume that the channel information we obtain is in

some sense "orthogonal" to the data transmissions. For example, in the frequency nonselec-

tive, time selective channel case, a pilot tone for measuring the channel can be transmitted

outside the transmission bandwidth but within the coherence bandwidth of the channel.

The data and pilot tone "see" the same fading, but the additive noises in the two problems

are independent because they do not overlap in frequency. This orthogonality is important

because it allows us to examine the problem of estimating the channel independently of the

problem of decoding the symbols.

In particular, suppose the pilot-tone is a sinusoid with center frequency just outside

the combined transmission bandwidth and the Doppler spread Bd oc 1/TA of the channel.

In baseband equivalent form, using the frequency nonselective channel response a[k; n] =

a[n] 6[k] of (2.7), the observation sequence for this model is

q[n] = V/pa[n] + Z,[n] (4.2)

where Ep is the energy of the pilot-tone, and 2t[n] is yet another zero-mean, stationary,

complex Gaussian sequence with variance a2 = oAf representing the receiver thermal noise

and co-channel interference in the pilot-tone bandwidth.

Equations (4.1) and (4.2) together form a minimal state-space model for the fading

process a[n]. However, we will find it helpful in later sections to utilize a state-space model

based on the augmented state vector

s[n] = a[n- 1] (4.3)



Combining (4.1) and (4.2), we obtain the E

s[n + 1] =

q[n] =

where

and where v[n] and Ci[n] are mutually in(

noise sequences with variances a2 and a 2

evolution of the fading process a[n] as we

note that the state-space model is param,

constant p, the process noise variance U,2

collect into the vector

0=

4.2 Recursive MMSE Chan

To estimate the fading process state s[n]

utilize the Kalman filter [6] based on the

state-space model of (4.4). By filtering th,

filter produces the estimate1 e [nln] which

s[n].
Before presenting the Kalman filtering

for the conditional mean and covariance ol

1We utilize the subscript notation ie[nln ] to inc
true parameters 8. In a later section, this notatio
the model with estimated parameters 8.

tate-space model

Fe s[n] + G v[n]

C s[n] + t [n]

[0]

(4.4a)

(4.4b)

C=[I 0] (4.5)

Lependent, zero-mean complex Gaussian white-

respectively. This model captures the actual

11 as the generation of measurements q[n]. We

-terized by three parameters, namely, the time

and the additive noise variance a2 , which we

(4.6)

rel Estimator

from the received pilot-tone sequence q[n], we

state-space model with parameters 0, i.e., the

observed sequence q[k] for k < n, the Kalman

corresponds to the MMSE estimate of the state

equations, we first define two useful shorthands

the fading state vector s[n] based on the state-

icate that the estimates are based on the model with the
L will allow us to discuss the estimates ig[nln] based on

G =Fo [ P



space model with parameters 0, namely,

Ae[nlm] = E[ s[n] I q[1], I 5 m] (4.7a)

E•[nlm] = E [(s[n] - Se[nlm]) (s[n] - go[nlm])t I q[], l < m] (4.7b)

We initialize the filter by setting

O[0 1- 1] = 0 (4.8a)

[0 - 1][ 1 p2 ]  (4.8b)

the a priori mean and covariance of the fading process, respectively. The Kalman filter

is described by two sets of equations, namely, the update equations and the prediction

equations, which we give next.

4.2.1 Update Equations

Given ~e[nln - 1], eo[nln - 1], and the observation q[n], we form the updated estimate

So[nln] and its corresponding covariance Ee[nln] via

eo[nln] = ~i[n in - 1] + Ke[n] (q[n] - C so[nln - 1]) (4.9a)

Ee[nln] = (I - Ko[n] C) Ez[nln - 1] (4.9b)

with

Ke[n] = E[nn - 1] Ct C Eo[nln - 11 Ct + o-) (4.9c)



4.2.2 Prediction Equations

Next, given go[nln] and Eo[nln] as compul

ge[n + 1In] and its corresponding covariani

8e[n + 11n] = F,

eo[n + l1n] = F,

Using these predicted estimates, the algoi

soon as the observation q[n + 1] is availab]

We obtain an estimate of the fading at

aIn] = [

and the corresponding conditional varian(

Eo[nln], i.e.,

Ea[n] =

The conditional mean (4.11) is the unbia,

error defined as a2n] = E [Je[n]12], where

e[n] =

A key result of Gaussian estimation theo:

therefore, (4.12), is independent of the ol

unconditional mean-square error a2].

4.3 Channel Model Paramf

The Kalman filter channel estimator deve

space model of (4.4) along with the set a

situation in which the form of the mode'

d via (4.9), we compute the predicted estimate

EO [n + 1In] via

eo[nln]

Ee[nln] F1 + GGt

(4.10a)

(4.10b)

thm can continue with (4.9) at time (n + 1), as

time n via

1 0] e[nIn] (4.11)

i is the element in the first row and column of

E• [nln] ]1,1 (4.12)

-d estimator which minimizes the mean-square

a[n] - ao[n] (4.13)

€ is that the conditional covariance (4.7b), and

ervations q[k]; hence, (4.12) also represents the

ter Estimation

oped in the previous section requires the state-

parameters 0. In this section, we consider the

(4.4) is known correctly, i.e., the order of the



state-space model is known at the receiver; however, the parameter vector 0 is not known

at the receiver, and must be estimated in order to apply the Kalman filter equations of the

previous section.

4.3.1 Expectation-Maximization Algorithm

Our approach to finding parameter estimates 0 is similar in principle to the Expectation-

Maximization (EM) algorithm [8], which iteratively computes Maximum-Likelihood (ML) 2

estimates of the parameters 0 based on the observations of the random vector

q = [ q[O] .. q[N - 1] ]T  (4.14)

Direct computation of the ML estimates based on the observation q = qo, which is referred

to as the incomplete data, often requires multidimensional optimization algorithms. On the

other hand, computations of the ML estimates based on observations of the random vector

d = [at qt ]t

= [ a[-1] a[0] ... a[N - 1] q[O] ... q[N - 1] ] (4.15)

are more straightforward, because, as we will see, estimation of .a can be performed sep-

arately. In the nomenclature of the EM algorithm, the observation d = do is called the

complete data.

The EM algorithm forms parameter estimates in the following iterative manner given

the observations q = qo. First, assuming a previous parameter estimate, we compute the

expected value of the log-likelihood function of the complete data d. Next, we maximize

over this expected log-likelihood to obtain a new parameter estimate. Mathematically, the

steps of the EM algorithm are:

1. Pick an initial parameter estimate 0o.

2We note that for our particular problem, the ML estimator is biased, and consequently not an efficient
estimator. (In fact, an unbiased efficient estimator does not exist from the complete data, so it seems
plausible that none exist from the incomplete data.) However, we explore ML estimation for several reasons.
First, as we will see, maximization over the log-likelihoods of Gaussian random variables lead to closed-form
expressions for the parameter estimates. Secondly, although a proof of these properties is beyond the scope
of this thesis, ML estimators are often asymptotically efficient and consistent estimators.



2. For each iteration k > 1,

Expectation Step Compute the f

U(O', k-1) = E [log

Maximization Step

via

Compute thi

Ok = a

By maximizing over (4.16), the expected 1

the EM algorithm increases the log-likeliho

fact, the EM algorithm is guaranteed to coi

the incomplete data [8]. Consequently, it u

for the algorithm, with the hope that one

corresponding to the ML estimates.

In the following two sections, we compu

the development of [8], and we point out ]

tional complexity of the exact EM algoritl

E-Step Computations

In this section, we compute (4.16) for our

Pd(do; 0') = Pa(

we obtain

log [pd(d; 0')] = log [p,

Because both the fading and the additive nc

the log-likelihoods in (4.19). From the st;

inction U(0', Ok-1) defined as

pd(d; 0') q = qo, 0 = k-1] (4.16)

parameter estimates 0 k for the next iteration

g max U(o', Ok-1) (4.17)

alue of the log-likelihood of the complete data,

>d of the incomplete data with each iteration. In

verge to a local minimum of the log-likelihood of

Lay be necessary to use several initial conditions

of the trajectories reaches the global maximum

be (4.16) and (4.17) for our problem by following

Low the batch structure and resulting computa-

m are impractical for our intended application.

,ading channel model. First, noting that

ao; 0') Pqa(qo ao; 0') (4.18)

(4.19),(a; 0')] + log [pqla(qla; 0')]

ise are complex Gaussian, we can easily compute

,te evolution model (4.1), the fading process is



first-order Markov, i.e., given only a[n - 1], a[n] is complex Gaussian with mean p' a[n - 1]

and variance (o,2)'. Hence3

N- 1
(a; ) = P[1-la e [n]-p'a[n-112/(o)' (4.20)p.(a;on=') = Poolal) .(v),

Also, because the additive noise C2[n] is zero-mean, white and complex Gaussian, we have

that given a[n], q[n] is complex Gaussian with mean V/4pa[n] and variance (ao)'. Conse-

quently,

N-1
q(qa;') = -[n]- a[n]2 /( e)' (4.21)

n=o

Combining (4.20) with (4.21) into (4.19), we find

log [pd(d; 0')] =

N-1
C - Nlog() I [ja[n]12 - 2p'Re {a[n]a*[n - 1]} + (p')2 a[n- 1112]

-n=0

N-1

- Nlog(4)' - ( : q[n•n]2 - 2V,• Re{q[n]a*[n]} + p la[n]I~] (4.22)

where C is a constant, independent of 0'. Now we take the expected value of both sides

of (4.22), conditional on the observation q = qo and assuming that the parameters are

0 = Ok-1. Using the shorthand notation

()=E[ q=qo, = Ok-1 (4.23)

3We assume that pa[_j](a-1) is independent of 0 to simplify the M-step computations. This assumption
might create an edge effect, but it dies away for N large.



we find that

U(', k-1) =
N-1l

C -N log(a )'- 1 N-1
n=0

N-1
- N log(a~)' - 2- [q

Equation (4.24) requires computation

ments of the) correlation matrix of a give

are Ok-1. In fact, if we are willing to acc

the Kalman filter based on the state-space

required estimates. Hence, given the parar

the quantities a[n], a[n]a*[n - 1], and a[rn

the incomplete data vector qo with the Ka

Since this Kalman filter gives the estii

Eýk-1 [nIn], the required correlation matrii

Rk_-1 [nin] = "k-l [

Then we have the following relationships,

a[n]
a[n]a*[n - 1]

Ja[n] 12

ia[n - 1]12

More importantly, we see that estima

estimate the parameters, and vise versa. I

parameter and state estimator for the fadin

be viewed as a parameter estimation algoi

2p'Re {a[n]a*[n - 1] + (p')2 a[n- 1]12 ]

- 2 V Re q [n]a* [n] + p Ia[n]2 (4.24)

)f the conditional mean vector and (certain ele-

a observation q = qo, assuming the parameters

ept noisier estimates due to lack of smoothing,

model with parameters Ok-1 yields exactly the

leter estimate, we can compute (approximately)

I2 needed above to compute (4.24) by filtering

Iman filter of the previous section.

iates gk-1 [nln] with corresponding covariances

is

Ok1 k-1 [n]

or 0 < n < N,

= [R[nIn]] 
1,

= [R nk-1 1I

k--1 
2,2

(4.25)

(4.26a)

(4.26b)

(4.26c)

(4.26d)

es of the fading itself are required in order to

lence, the EM algorithm really gives us a joint

channel. More generally, the EM algorithm can

ithm that produces estimates of the underlying



symbols as side information. However, it is worth emphasizing that in our application, it is

these signal estimates in which we are ultimately interested.

M-Step Computations

Now that we have determined U(8', Ok-l) (the E-step) for our problem, we must compute

6 k according to (4.17). We solve for these estimates by setting

- U(O', Ok-1) = 0 (4.27)

and solving. Substitution of (4.24) into (4.27) yields, after a bit of algebra,

( N-1 N- 1

Re {a[n]a*[n - 1 a[n - 1112 (4.28a)
n=O n=0

(o2•k = 1 [Io 2 ll 2- 2,Re a[na*[n-11} +2a[n -- 1I2]2 (4.28b)
n=0

SN-1

=( k [Iq[n] 2 - 2V/ Re {q[n]a*- } +- E Ia[n]I2] (4.28c)
n=o

4.3.2 Sequential EM Approximation

As we see from the structure of (4.24) and (4.28), the EM algorithm operates on a block

of data in an iterative fashion. Using a previous parameter estimate 0k-1, (4.24) must be

implemented, requiring estimates of the entire fading vector a and parts of its correlation

matrix. A new parameter estimate Ok is obtained via (4.28), and the process may be con-

tinued until some suitable level of convergence is obtained. Presumably, both the parameter

and state estimates become more accurate with more and more iterations of the algorithm.

Unfortunately, there are two practical problems with the EM approach for our intended

application. First and foremost, computer experiments have demonstrated slow convergence

of this algorithm requiring many iterations, in which we must compute the entire set of signal

estimates. Secondly, sequential implementations of the above algorithm are not known. In

other words, when we obtain a new piece of data, say q[N + 1], it is not known how one could

incorporate this data with previous parameter estimates to directly form new parameter



estimates. Instead, we must perform a nun

(N + 1) sequence, which is impractical.

As an alternative, we combine the notio:

algorithm such as that developed in [9]. In

previous parameter estimate On-1 to itera

(with 0 = On-1), thereby obtaining the e,

the updated parameter estimates accordinj

Pn = R2[n]/n3

1
(O)n N [R[n]

in which

Ri[n]

R 2[n]

R 3 [n]

R 4 [n]

= Rl[n -

= R2[n -

= R3[n -

= R4[n -

1] + la[n]12

1] +Re {a[

1] + la[n -

1] + q[n] 2 -

Of course, the above algorithm is not

converges over time to the ML estimates.

our application because of its sequential na

sample) compared the EM algorithm of th

4.4 Estimator Mean-Square

As is usually done, we characterize the perf,

of its mean-square error. That is, defining

Lber of iterations, re-estimating the entire length

is of iterations k and time n, to form a sequential

particular, upon the observation q[n], we use the

te the Kalman filter equations (4.9) and (4.10)

timates (4.26) (with 0 = On-1). We then form

, to a sequential version of (4.28), namely,

n]

- 2nnR2[n] + p2R 3[n]]

(4.29a)

(4.29b)

(4.29c)

]a*[n - 1]

]2}

-2VRe f q[n][n]j+a*[n+ n] 2

(4.30a)

(4.30b)

(4.30c)

(4.30d)

)n EM algorithm, so we cannot expect that ,n

However, this algorithm is more suitable for

ture and dramatic computational reduction (per

- previous section.

Error Performance

ormance of the fading channel estimator in terms

the error sequence as

a[n] - ~e[n] (4.31)e[n] =



the mean-square error is the quantity

MSE[n] = E |e[n]2] (4.32)

Even when the model parameters are known at the receiver, the error sequence e[n] at the

output of the Kalman filter is nonstationary because we fix a time to begin estimating the

stationary process a[n]. However, we can expect the filter to reach steady-state behavior

(and e[n] to become stationary) as the length of our observation time becomes large. Simi-

larly, we hope that the parameter estimates converge, so that the error sequence becomes at

least stationary, if not unbiased as well. In this case, we can characterize the performance

of the Kalman filter estimator in terms of its steady-state mean-square error, defined as

MSEoo = lim MSE[n] (4.33)
n-oo

when the limit exists. We may then examine the signal-to-estimation-noise ratio (SENR)

for the estimator defined as

SENR= A (4.34)
MSEoo

and investigate how this normalized quantity behaves as a function of n, TA, and the received

pilot-channel SNR defined as

SNRp = (4.35)

4.4.1 Performance with Known Parameters

As we mentioned previously, when the model parameters are known, the channel estimator

is unbiased and the mean-square error corresponds to the error variance. In this case, we use

the typical approach of iterating the Kalman filter covariance equations (4.9b) and (4.10b),

beginning with the initial condition (4.8b), to solve for the steady-state mean-square error.

This approach also allows us to characterize how the steady-state mean-square error decays

with time.

Inspection of the results of SENR versus n indicates the following. First, the rate of
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Figure 4-1: Evolution of the channel est
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convergence to the steady-state solution g

the time constant p. Thus we plot in Fi,

since these should be worst case results ir

Secondly, we see from the figure that the c(

one. Nevertheless, we expect the Kalman I

in the worst case. Fast convergence results

as an LTI processor, corresponding to the

Finally, Figure 4-2 displays the results

of p are displayed on the plot. As these re,

mator SENR over time for the case in which
SNRp = 0 dB. The successively lower curves
).5, respectively.
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ure 4-1 the time evolution for SNRp = 0 dB,

the range of receiver input SNRp we consider.
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lter to reach steady-state in roughly 25 samples

such as these allow us to treat the Kalman filter

:ausal Wiener filter, in its steady-state.

for SENR versus SNRp. Again, several choices

ults reflect,

1 > SNRpSEN (4.36)
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Figure 4-2: Channel estimator SENR versus SNRp for the case in which the model param-
eters are known. The successively lower solid curves correspond to p = 0.99, p = 0.95, and
p = 0.5, respectively. The dashed curve is the curve SENR = SNRp, which we see gives a
lower bound for the estimator performance.



for all choices of p, and this lower bound b

4.4.2 Performance with Unknowr

In this section, we give results similar to I

which the model parameters are unknown

estimator to be biased in this case, we ex

estimation algorithm through Monte Carlc

Empirical averages for the error sequel

proximately unbiased when the parameter

this conclusion based on the observation th

error were very similar, differing by no mo

Figure 4-3 illustrates the results of our e

number of observations n. Again, we see t'

closer to one. We also note a loss in the oi

Finally, we present in Figure 4-4 prelim

for the joint parameter and state estimato:

4.5 Frequency Selective Fac

In this section we comment on how to exte:

frequency selective channel. Following the I

characterization of the frequency selective

estimation scheme.

4.5.1 State-Space Model

Similar to the frequency nonselective case,

are orthogonal to the transmit symbol se

pilot-tone is not suitable because only a c

separate the channel measurements and tra

with pilot symbols. Specifically, over a blo

over the channel are training symbols, whi

ecomes tight for high SNRp.

. Parameters

hose of the previous section but for the case in

at the receiver. Because we expect the channel

Lmine both error bias and error variance of the

simulations.

ice e[n] indicate that the estimator remains ap-

estimates are unknown at the receiver. We make

at the numerical error variance and mean-square

re than 1 dB.

npirical averages for the output SENR versus the

lat the convergence rate decreases as p becomes

tput SENR due to parameter estimation.

nary results of the mean-square estimation error

versus SNRp.

ing Channel Estimation

id the algorithms of this chapter to the case of a

requency nonselective case, we give a state-space

:hannel and then discuss a model-based channel

we wish to obtain channel measurements which

luence. For the frequency selective channel, a

,rtain frequency can be measured. Instead, we

asmit sequence in time by using training periods

:k of length M, the first T symbols transmitted

le the remaining M - T symbols are data. We
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Figure 4-3: Evolution of the channel estimator SENR over time for the case in which the
model parameters are estimated and for SNRp = 0 dB. The successively lower dotted
curves corresponds to empirical averages of the mean-square error for the values p = 0.99,
p = 0.95, and p = 0.5, respectively. For comparison, the successively lower solid curves are
copied from Figure 4-1, where the parameter are assumed known at the receiver.
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note that such a scheme should be useful when the channel has coherence time TA > M.

We also note that this scheme, as with a pilot-tone, increases the bandwidth required for

transmissions at a fixed rate. In both cases, it is necessary to properly divide available

power resources between the data and pilot channels.

Mathematically, the above properties imply that the training sequence t[n] satisfies

t[n]=O for T<n<lM,= ... ,-1, 0,1,... (4.37)

Collecting this sequence into the vector

tin] = [t[n] tin - 1] ... tin - K + 1] ]T

whose length K corresponds to the length of the fading channel impulse response, our

observation model for the channel becomes

q[n] = aT[n] t[n] + t [n] (4.38)

where a[n] is defined as in (2.15a). Coupled with the evolution model of (2.16), we obtain

the complete state-space model

a[n + 1] = P a[n] + v[n + 1] (4.39a)

q[n] = tT[n] a[n] + ti [n] (4.39b)



4.5.2 Channel Estimator

Based on the model (4.39) and the obsern

the Kalman filter for estimating the state

0 =

When the parameter vector 0 is unknowi

the previous section to obtain these para

the fading tap vector a[n]. Then since ea

the estimation equations of the previous s5

technique is beyond the scope of this thesis

research.

4.6 Summary
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impulse response. While we have focused e
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selective case. To recap, the channel estima
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but it represents an interesting topic for further

lue for obtaining estimates of the fading channel

cclusively on the frequency nonselective channel
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tor consists of a Kalman filter for estimating the

Af the state-space model are unknown, they too

ýstimator equations. Because of the difficulties

timates, we utilize a sequential algorithm which

y reduced complexity. We have summarized the
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Chapter 5

System Perform

Channel Estimat

In this chapter, we examine the performa

only channel estimates of the form develop

begin by reviewing some of the properties

and we use these properties in the deriva

Section 3.1. We then compute the averag

mance using the additive Gaussian white-

Finally, we confirm these predicted result

case, we consider only the frequency non:

the equalizers for the two criteria are equi

results to the frequency selective channel.

5.1 Optimal Linear Equaliz

In this section, we develop the optimal line,

linear, MMSE) based on MMSE channel e

several properties of the channel estimate,

rnce Using

es

Ice of spread-response precoding systems when

ýd in Chapter 4 are available at the receiver. We

of the (approximate) MMSE channel estimates,

;ion of the optimal equalizer along the lines of

ý output SNR and predict the bit-error perfor-

aoise approximation for the composite channel.

i through simulation. As has usually been the

elective fading channel in detail; consequently,

ialent. We also comment on how to extend the

1rs Revisited

Lr equalizer (both in term of maximum SNR and

3timates. We begin our discussion by reviewing

and then determine the optimal equalizer.



5.1.1 MMSE Channel Estimator Properties

The channel estimator developed in Chapter 4 has several important properties that we

may utilize to simplify the calculation of the maximum SNR equalizer based on channel

estimates. Specifically, when the model parameters are known at the receiver, the channel

estimate a e[n] is unbiased and has minimum mean-square error. Furthermore, the results of

Chapter 4 indicate that these properties hold approximately for the channel estimate &6[n]

based on estimates of the model parameters. In the remainder of the thesis, we develop

our analytical results for the channel estimate based on the true model parameters, with

the understanding that these results hold approximately for the latter case. Consequently,

we eliminate the subscript 0 notation without risk of confusion, and make it clear from the

context which estimation technique is employed.

We can express the properties of the channel estimate more concisely in terms of the

error sequence

e[n] = a[n] - &[n] (5.1)

Mathematically, we have that the error sequence (5.1) is zero-mean

E [e[n]] = 0 (5.2)

for all n. Furthermore, because the estimator is linear and has minimum mean-square error,

e[n] is orthogonal to the estimate &[n], i.e.,

E [A[n]e*[n]] = 0 (5.3)

for each n. Since a[n] is Gaussian, the condition (5.3) implies that a[n] and e[n] are in-

dependent. This result is useful since we constrain our equalizer b[n] to rely only on the

estimate &[n], so that we also have

E [b[n]e*[n]] = 0 (5.4)



for each n. Also by independence of i[n] a

2 =Ar

5.1.2 Derivation of the Optimal I

As we mentioned in Chapter 2, the comp

channel, equalizer, and postcoder is well al

white-noise channel when the length of the

the output SNR for this channel is

7 (b) -
Var

where ýo = Afo/1, as in (2.31). Note that w

on n due to stationarity. As in Chapter 3

maximizes this quantity; however, in this

error sequence (5.1) in the analysis.

Again following the development of [2],

y(b) =

where

0(b) = -
E

and in which we have exploited the identit

Var [ab] = E

We note that maximizing 0(b) is equivalen

Next we make use of our relationship be

by substituting

(5.5)

'qualizers

)site channel consisting of the precoder, fading

proximated as an additive, marginally Gaussian

precoding filter becomes large. Asymptotically,

IE [ab]12
[ab] + ýo E [Ib12]

(5.6)

have dropped the dependence of these statistics

we wish to find the linear equalizer b[n] which

section, we consider the effects of the unknown

we first rewrite y(b) as

1
(b)-1 (5.7)

IE [ab]12
a12 + 0)bb1(5.8)

|la|'+ o) |b|2]

[1ab2] -IE [ab]12 (5.9)

; to maximizing y(b).

tween the true and estimated channel responses,

S[n] + e[n]

id e[n], we see that

r

a[n]=



into (5.8) to obtain

(b) E [I+2 E E [&b] + E [eb]12

E [&b2] + 2Re E [&e* 1b12] } + E [|eb|2] + 0E [bl12]

When we apply the properties (5.3) and (5.4), we find that (5.10) simplifies to

O(b) = E [b]12  (5.11)

with 6 = ~o + a 2 . The form (5.11) was maximized in Section 3.1. Consequently, we may

use our previous result to obtain the maximum SNR equalizer

b[n] oc (5.12)
la[n ]12 + 0

We note that this equalizer is optimal in the class of equalizers constrained to depend on

only the channel estimate a[n] and only the statistics of the error sequence e[n].

Several observations are important at this point in the discussion. First, we see by

inspection of the result (5.12) that the optimal equalizer in terms of SNR must take into

account the mean-square estimation error of the channel estimator. Similarly, since the

two equalizers are equivalent in the frequency nonselective case, the linear MMSE equalizer

must also take into account the mean-square estimation error. Thus, as we would expect,

the two problems of channel estimation and equalization are coupled. Secondly, we note

that this result is consistent with the known channel case in (3.5): as a -+ 0, we have

d[n] -+ a[n] and ' -+ Co, which implies (5.12) becomes (3.5). Thirdly, note that (5.12)

corresponds to the optimal equalizer for the "known channel" a[n] with additive noise of

intensity 8,a 2 + Afo. This interpretation becomes very intuitive when we examine the

channel as shown in Figure 5-1. Let us examine the sequence

t[n] = e[n] y[n] (5.13)

Because y[n] is white and zero-mean, and e[n] is zero-mean, we have that t[n] is a white

sequence with intensity ,a42 that is uncorrelated with the input y[n]. Thus, the total

additive noise has variance 8,a2 + Afo, since t[n] and w[n] are independent. We also point
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out that even though tw[nJ is not a Gaussia

term is valid in our analysis because we or

and maximizing the composite channel SN:

fact that i-[n] is not Gaussian does not cha

be well approximated as an additive marx

make use of this result in the next section.

As a final comment, we note that sim

frequency selective channel if we assume th

sense stationary, uncorrelated scattering cl

sequence that is uncorrelated with the inm

this chapter apply. However, the validity o

error kernel warrants further investigation.

5.2 Average Output SNR a

The last section demonstrated that the opi

mean-square estimation error of the chan

average output SNR for this optimal equal

only the channel estimate a&[n] and does nc

w[n]

r[n]

w[n]

imated channel &[k; n] in

1 sequence, treating it as another additive noise

y examine second-order statistics in computing

L. Furthermore, as Wornell points out in [2], the

ige the fact that the composite channel can still

inally Gaussian white-noise channel. We shall

lar results can in principle be obtained for the

it the error kernel e[k; n] corresponds to a wide-

annel. Then again, the sequence z[n] is a white

It sequence y[n], and all of the results cited in

this uncorrelated scattering assumption for the

Id Bit-Error Probability

mal equalizer (5.12) must take into account the

el estimator. In this section, we compute the

zer, and compare it to the equalizer which uses

account for mean-square estimation error, i.e.,



the equalizer

ý* [n ]b*[n] = (5.14)
| -[n]l 2 + 2

First, when the optimal equalizer (5.12) is used, we may utilize the results of Appendix A

with a = 6, b given by (5.12), and q = 1' = (. The maximum output SNR is given by

"Ymax = 1 - 1 (5.15)

where = / . Again, we note that as a -+ 0, (5.15) reduces to the previous result

found in (3.12).

For the mismatched equalizer (5.14), we obtain the output SNR using the computations

of Appendix A with a = a, b given by (5.14), 77 = (, and 7j' = C'. The result is

'i 1 (5.16)

in which

1 - ('eoEl((1)
1 - (O'eCCES ((0') + (¢( - (0') [e•El ((1 ') (1 + (0') - 1]

and where C(' = 6o/c A .

We are ultimately interested in the bit-error performance of the spread-response pre-

coding systems which employ the equalizers (5.12) and (5.14). To compare their bit-error

performance, we make use of the fact that the composite channels can be well approximated

as additive marginally Gaussian white-noise channels, with average output SNRs given by

(5.15) and (5.16), respectively. Then we approximate the of a bit-error probability using

(2.32).

Implicitly, the performance of these systems depends on the effectiveness of the channel

estimation algorithm. Recall that in Chapter 4 we characterized the performance of the

channel estimation algorithm in terms of the normalized quantity

2
SENR = a (5.18)

MSEoo
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To combine all of our results, we assur

related according to

Sp
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= D E (5.20)
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Figure 5-2: Analytical bit-error probability for QPSK signaling using spread-response pre-
coding systems based on channel estimates. The two plots correspond to the frequency
nonselective channel model (4.1) with (a) p = 0.9 and (b) p = 0.999. The successively lower
curves correspond to the pilot-tone power factors of D = -10, -5, 0, 5 and 20 dB, respec-
tively. The solid curves correspond to the optimal equalizer (5.12), while the dash-dotted
curves correspond to the mismatched equalizer (5.14).
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vell modeled as an additive marginally Gaussian

)act of channel estimation errors on the perfor-

is. We began by re-deriving the optimal fading
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Figure 5-3: Simulated bit-error probability for QPSK signaling using spread-response pre-
coding systems based on channel estimates. The two plots correspond to using the frequency
nonselective channel model (4.1) with (a) known model parameters and (b) estimated model
parameters. The successively lower curves correspond to pilot-tone power factors of D = 0, 5
and 20 dB, respectively. The solid curves are the results from Figure 5-2(a), while the curves
marked with "x" and "o" correspond to simulated performance values.



Chapter 6

Laboratory Expe

All of the results of Chapters 3-5 were obt

erate each of the curves, we assumed a pa

how the various estimation and equalizatic

Although such an approach yields understb

ious conditions, our ultimate interest lies

spread-response precoding. To begin dev(

experiments within an indoor wireless con:

laboratory setup and point out the additioi

previous development. We then present the

surement and estimation of the fading cha:

precoding systems over this channel.

6.1 Laboratory Setup

Our experimental wireless system can be

Figure 6-1. We process the complex discri

stn] and r[n], respectively, using a workst

between the workstation and the analog-to

verters. These converters can provide a sar

transmitter, a set of analog hardware impl

of fc = 915 MHz. The up-conversion prc

,riments

ained through analysis and simulation. To gen-

rticular set of model parameters and evaluated

n techniques performed under this assumption.

6nding of how the algorithms behave under var-

in the performance of real systems employing

loping this picture, we have performed several

munication laboratory. We first summarize the

al channel distortions we have suppressed in our

results of two sets of experiments, namely, mea-

miel, and an implementation of spread-response

3ummarized according to the block diagram of

,te-time, baseband transmit and receive signals

ation. Another program handles data transfer

digital (A/D) and digital-to-analog (D/A) con-

ipling frequency of at least f, = 10 kHz. At the

-ments the frequency up-conversion to a carrier

cess is shown in the figure as a multiplication
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Figure 6-1: Passband block diagram summarizing the indoor wireless laboratory environ-
ment.

by the complex exponential ej 2,fct followed by taking the real part of the resulting signal,

yielding the passband signal sp(t). The channel consists of indoor wireless transmission

of sp(t) between two antennae, with the receive antenna potentially in motion. At the

receiver, the received passband signal rp(t) is down-converted using another set of analog

components; however, due to offsets in instantaneous frequency and phase in the two oscil-

lators, we model the down-conversion process as multiplication by the complex exponential

e - j 27r (fc+Af)t+O. Appropriate anti-aliasing filters are present in the A/D converter.

Several distortions are introduced by the analog hardware, only some of which are shown

in Figure 6-1. To reduce their effects, several restrictions must be placed on the transmitted

signal. For example, harmonic distortions are introduced when the input signal power is

too large. Similarly, when the input signal power is too small, the demodulated carrier

introduces DC bias in the received signal. Both of these distortions restrict the effective

transmit signal energy which can be employed. To reduce the effect of carrier offsets Af, we

employ a tunable oscillator (frequency generator) at the receiver, allowing us to reduce Af

to under 10 Hz which should be small relative to our transmission bandwidth for signaling

experiments. Finally, for the case of QPSK symbols, we find it appropriate to employ

differential encoding and detection to eliminate the effects of the constant phase offset €.

All of these restrictions are implementation specific and were not required in our general

analysis of the previous chapters. However, to perform various experiments with a real

wireless system, these effects must be considered.

r[n]



6.2 Fading Measurements

In our first set of experiments, we explore

found within our wireless system of Figur

as being frequency nonselective, due to the

delay spread, typically present in such ind,

sampling rate of f, = 10 kHz, correspondi

see that for two multipath components to b

the paths would need to have lengths diffe:

3 x 108 m/s . 1

Because differences in path lengths on this

ronment, we may faithfully regard the chan

sample period, or alternatively, a large co

bandwidth.

Since the experimental wireless channe

assessing the applicability of the assumed

a[n + 1] =

where the (possibly complex') time const

Gaussian white-noise sequence with varian

To measure the channel, we transmit a

quency fp as a pilot-tone, i.e.,

s[n] =

through the system shown in Figure 6-1, -

To process the received signal r[n], we uti

demodulate the pilot-tone to baseband an

1We find it convenient to incorporate the effects
allowing the time constant p to be complex. Hence

the properties of the particular fading channel

6-1. It seems plausible to model this channel

large coherence bandwidth, or small multipath

)or channels. For example, using our maximum

ig to a sample period of T, = 10- 4 seconds, we

e resolve more than one tenth of a sample apart,

'ing by

3- 5 seconds = 3 km

order are not possible in our small indoor envi-

ael as having a small delay spread relative to the

lerence bandwidth relative to the transmission

I is frequency nonselective, we are interested in

irst-order autoregressive model

!a[n] + v[n + 1] (6.1)

ant Ipl < 1 and v[n] is a zero-mean, complex

:e E wv[n112] = o2s
complex exponential with continuous-time fre-

(6.2)

,hile walking around with the receiver antenna.

lize the system shown in Figure 6-2. First, we

d then low-pass filter to eliminate out-of-band

of the small frequency offset Af into the model (6.1) by

,p = pI ejLP, where Lp oc Af/f,.

Pej27r(fp/f )n



r[n] qEn]
Xr LPF 4M q[n]

e-j 27r(fp/f$)n

Figure 6-2: Baseband system for processing the received pilot-tone signal.

noise. Finally, we downsample to obtain the reduced rate sequence

q[n] = V/-a[n] + i[n] (6.3)

where [iin] is a zero-mean, complex Gaussian white-noise sequence with variance

E [It[n]12] = fo/M (6.4)

In this setting, we assume a[n] evolves according to the model (6.1).

Figure 6-3 shows the received power level of q[n] in decibels for a particular experiment

in which we walked around the room with the receiver antenna to create fading effects in the

channel. The setup of this experiment was as follows: f, = 2 kHz, fp = 500 Hz, and Ep =

0.25 V (-12 dB). Examination of the received sequence r[n] revealed that a downsampling

factor of M = 5 was suitable for eliminating all but the highest level noise, while maintaining

the entire fading spectrum. From the results in Figure 6-3, we see two effects often found

in wireless links, large-scale path loss of roughly 3 dB, and, more significantly, small-scale

fading by as much as 30 dB due to receiver motion. We also note that the channel appears

to be slowly-varying, relative to our sample time. For example, this particular realization

remains essentially constant for half of a second in several places, which means we should

be able to estimate the fading accurately.

We consider applying our parameter estimation algorithms to the sequence q[n], since

it is of the form of a channel measurement on which these algorithms were based. We

apply two different parameter estimation algorithms, namely, the complete EM algorithm

described in Section 4.3.1, and the sequential approximation to the EM algorithm discussed

in Section 4.3.2. These algorithms yield practical values of the model parameters p, a 2, and
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A typical set of results for iterations of the complete EM algorithm are given in Fig-

ure 6-4. Due to computational complexity of this algorithm, only the last half second,

corresponding to two hundred samples, were used when applying the complete EM algo-

rithm. Our convergence criterion was that the absolute difference in the estimates from one

iteration to the next be no more than 1%. As we see from this set of results, 100 iterations

were required to meet this level of convergence, which is a large computational burden, even

with the reduced data set.

In Figure 6-5, we show the results of the sequential approximation to the EM algorithm

for estimating the parameters. Recall that for the sequential EM approximation, we perform

only one iteration for each new data point; hence, the horizontal axis in Figure 6-5 represents

the number of observations, n, instead of the number of iterations, k. We see from these

results that the two algorithms seem to converge to similar solutions; therefore, based

on empirical results, we regard our sequential algorithm as a good approximation to the

complete EM algorithm when given enough data. More importantly, we have received

a large computational benefit in the sequential algorithm. It is important to point out,

however, that direct comparisons of the results in Figure 6-4 and Figure 6-5 are difficult

because the parameter estimates are formed based on different sets of data.

In addition, we show in Figure 6-6 the power density spectrum for the received signal

q[n] compared with that predicted by the first-order model (6.1) with the final parameter

estimates from Figure 6-4 and Figure 6-5, respectively. Specifically, the model power density

spectra are given by

Sqq(ejw) 1- pej + (6.5)

with the parameter values obtained from applying the two parameter estimation algorithms

to the sequence q[n]. We see from Figure 6-6 that the first-order model seems to captures

some, but not all, of the dynamics of the fading process. In particular, we note the inability

of the first-order model to decay quickly enough in frequency, which might explain why

the complete EM algorithm repeatedly underestimated the additive receiver thermal noise.

Fortunately, the sequential algorithm seems to measure this quantity more accurately. To

capture all of these dynamics more precisely, higher-order models, potentially with moving
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h[k; n] fL----* p[n]I ý s

Figure 6-7: Block diagram of the transmitter for the spread-response precoding implemen-
tation.

average components, may be necessary.

Finally, we note the similarity of the two models based on parameter estimates from

the different algorithms. These results suggest that our indoor wireless channel can be

reasonably modeled using the autoregressive model, with a coherence time of approximately

0.25 seconds (p z 0.99 with f, = 400 Hz), average fading power of 0.15 V2 (p M 0.99,

a2 ; 0.003), and additive noise intensity of less than -30 dB.

6.3 Spread-Response Precoding Implementation

The results of the previous section suggest that the first-order model is a reasonable if simple

one for our wireless channel. We next consider an implementation of spread-response pre-

coding systems for use over this channel, based on the estimation and equalization schemes

from the previous chapters. While this implementation is preliminary, and limited in its

ability to verify the performance curves obtained through analysis and simulation, it does

shed some light on the assumptions used throughout the thesis. Our approach in this sec-

tion is to first discuss the implementation details, and then present several results obtained

in the laboratory.

To obtain the transmit sequence si[n] which we pass through the channel of Figure 6-1,

we process the QPSK symbol stream x[n] using the system shown in Figure 6-7. As we

mentioned in Section 6.1, due to the phase offset q between the transmitter and receiver

carriers, it is necessary to differentially encode x[n]. This sequence is further encoded using

the spread-response precoder h[k; n], which we implement according to the block diagram

of Figure 2-2. We upsample the precoded sequence y[n] by the factor L, and then pass the

sequence through the square-root, raised-cosine filter p[n] for pulse-shaping. Finally, the
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6.4 Summary

In this chapter we have presented the results of several laboratory experiments with spread-

response precoding systems over an indoor wireless fading channel. We first identified the

fading channel as being frequency nonselective, and found useful values for the parameters

of the first-order autoregressive evolution model of the channel. In obtaining these values,

we confirmed the notion that our sequential approximation to the EM algorithm for esti-

mating these parameters performs well and gives a large computational benefit over the

EM algorithm. We also described an implementation of spread-response precoding systems

within our wireless laboratory, and presented several results which seem to confirm the the-

oretical results (and the assumptions on which they are based) concerning spread-response

precoding systems. In particular, we showed empirical results which suggest that the re-

maining additive interference at the output of the receiver appears marginally Gaussian and

white.



Chapter 7

Conclusions

The goal of this research has been to expl4re several of the many issues involved with im-

plementing spread-response precoding systems for use in fading environments. Specifically,

we have addressed several questions relatec to channel estimation and equalization in these

systems, and we have demonstrated our results through analysis, simulation, and a prelimi-

nary implementation within an indoor wireless communication system. We have approached

these problems somewhat independently i4 that we first form a channel estimate and then

use this information in a optimal way in tl e equalizer.

In Chapter 3, we explored two equalizets obtained through seemingly different criteria,

namely, the maximum output SNR criterion and the linear MMSE criterion. We demon-

strated that these two equalizers are equivalent for the frequency nonselective channel, and

very similar in terms of their frequency responses for the slowly-varying, frequency selective

channel. Finally, we gave an example of a quickly-varying fading channel for which the two

equalizers are vastly different. From the reshults of Chapter 3, we find that the Kalman filter

equalizer based on the linear MMSE criterion has a more straightforward implementation

and gives performance which is equal to a better than that obtained using the the (ap-

proximate) maximum SNR equalizer. However, solution of the true maximum output SNR

equalizer for the quickly-varying, frequenci selective channel remains an open problem.

In Chapter 4, we described a pilot-tonie channel observation model and channel esti-

mation techniques based on the Kalman filter and a sequential approximation to the EM

algorithm. Our empirical results suggest that these estimators remain unbiased and approx-

imate MMSE channel estimators even when the model parameters are unknown a priori



at the receiver. Using these two important properties of the channel estimates, we were

able in Chapter 5 to find the optimal equalizers based on channel estimates, and charac-

terize the degradation in performance due to mean-square estimation error of the channel.

We also gave a useful interpretation of the equalizer as being based on the known channel

corresponding to the channel estimate, with additive noise depending on the mean-square

estimation error as well as the original additive noise.

Finally, in Chapter 6, we presented the results of several laboratory experiments with

the algorithms given in Chapters 2-5. We found characteristic values of the fading channel

model parameters by applying the parameter estimation algorithms of Sections 4.3.1 and

4.3.2 to received pilot-tone data obtained experimentally in the laboratory. Furthermore, in

the context of implementing spread-response precoding systems, we provided experimental

evidence that spread-response precoding changes the characteristics of the output noise to

be well approximated as marginally Gaussian and white. This property is very important

from the point of view of implementing spread-response precoding systems, because it allows

us to employ symbol-by-symbol detection at the receiver.

Several other important issues have been left for future work. Many of the results of

this thesis could be extended formally to the frequency selective channel. As we mentioned

in Chapter 4, a different channel observation model based on the insertion of pilot-symbols

would be preferable for this case. Moreover, the pilot-symbol observation model would

include the frequency nonselective channel as a special case, and would eliminate the peak-

power issues associated with a pilot-tone. We feel that such a framework could be extended

to employ decision feedback equalization, which might lead to an increase in throughput

as well as in performance. We also note that the area of uncoordinated multiuser commu-

nication over fading channels presents another natural area of extension of this research.

Finally, as with any idea, demonstration of these schemes within our wireless testbed would

provide a useful tool for confirming our analytical results and the assumptions on which

they are based.



Appendix A

Computations

A.1 Average Output SNR Computations

In this section, we give details on some of the results utilized in Chapters 3 and 5. Specifi-

cally, we compute the quantity

IE [ab] 12

E [(1a12 + 7) Ib12] (A.1)

where a is a zero-mean complex Gaussian random variable with variance oa, the random

variable b depends on a according to the relationship

b = a* (A.2)
|a12 + 71'

and 7, r' are two constants. Our first step is to rewrite (A.1) as

IE [ab] 12
= (A.3)

E [(la12 +' + ( - 1)) lb2]

Then when we substitute (A.2) into (A.3), we obtain

=E [ab] 2E[ab]12  (A.4)
E [ab] + (c -t )E [bl]

We see from (A.4) that we must compute two expectations, namely, E [ab], and E jbl2].



We begin by noting that a has the probability density function

Pa(ao) = 12 e- laol2/0

so that its squared amplitude s = la12 has the exponential density function

p,(so) = e- /

for so > 0, and 0 otherwise.

A.1.1 Computation of E [ab]

By substituting (A.2), we obtain

=E s]s + ,q

(A.5)

(A.6)

(A.7)

which we solve for using the density function (A.6) via

E[ ] -- -= 1 so-+-' -so/7dso (A.8a)

= t e-(t-' )/j2dt (A.8b)

1 oo I -t/00 2
= e- d - e'/2 dt (A.8c)

= 1 - ('eC'Ei((') (A.8d)

where (' = r'/a2 and El(.) is the exponential integral

El (v) = 0 e--dt (A.9)

We note that (A.8b) is obtained through the change of variable t = so + 77, (A.8c) results

from the change of variable u = t - r, and (A.8d) results from the change of variable

V = t/OT.

E [ab] = E [2la12+ ,



We also note that when 7 = 77', we need only solve for E [ab], in which case we find

= 1 - (eEi(() (A.10)

in which ( = r//a2 .

A.1.2 Computation of E [|b12]

When r7/ /', we must also compute the expectation E [1b12]. Substituting (A.2) as before,

E(a +lb2)2 = E (s +77') 2  (A.11)

Using the density function (A.6), the steps in the computation of this expectation are as

follows.

E = (so -,)e-so/ 2dso (A.12a)
(S + q2) 2 0 S 71)2

- 1o- f t 7'e-(t-')/UOdt (A.12b)

-1 e-t/"0 rl 2f 0/ o e-t/aa
= I/a , dt - -e_' e - dt (A.12c)

e--~e EI(') - •ee'/, 1 e-77/, - El(')] (A.12d)a ac L'

= 1 [eC'E 1((,') ( 1 + ') - 1] (A.12e)

Again we note that (A.12b) results from the change of variable t = so + 77', while (A.12d)

results from integrating the second term of (A.12c) by parts.

Combining the results (A.8) and (A.12), we obtain, after some simplification

1 - ('eEl((') 2 A.13)

= 1 - ('eC'E ((') + (C - (') [eC'El(C')(1 + C') - 1] (A.13)
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