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Abstract

Most manipulators have difficulty performing delicate tasks due to
high joint friction. Feedback from a base force/torque sensor can be used to
estimate joint torque, which allows joint-level disturbances such as friction to
be rejected.

This thesis presents control methods which utilize base force/torque
sensor feedback to achieve high-performance position and force control. A
fine-motion position control algorithm is presented. Simulation and
experimental studies are performed on a PUMA geared manipulator. The
algorithm is also applied to a hydraulic manipulator, with nonlinear
actuators and very high joint friction. In all cases, a significant improvement
is shown in positioning accuracy.

The algorithm is then applied to the delicate force control problem, and
several methods of force control are compared. It is shown that the base
sensor can be used to control delicate interaction forces, even against a stiff
environment.

Finally, novel methods of manipulator identification are presented.
These methods depend only on the base sensor measurements, and not on
manipulator joint acceleration or joint torque estimates. Joint friction does
not corrupt the estimation process.

Thesis Supervisor: Dr. Steven Dubowsky
Professor of Mechanical Engineering
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Introduction

1.1 Background and Literature Review

Many applications of industrial manipulators require accurate control

of position during small, slow motions, and accurate control of small forces.

It is difficult to achieve high precision during these "fine motions" due to

nonlinear joint friction, which can lead to stick-slip behavior, static

positioning errors, or limit cycle oscillations. There are several existing

approaches for improving fine motion manipulator performance. However,

they are hampered by one of the following factors. They require complex

modeling of frictional behavior (Popovic et al., 1994; Canudas de Wit et al.,

1996). They can require the use of specially designed joint-torque sensors,

which are costly, complex, and have limited accuracy (Pfeffer et al., 1989;

Vischer and Khatib, 1995). Finally, some methods have been proposed that

control only finite displacements, ignoring the trajectory tracking problem

and thus making it difficult to produce smooth, slow motions (Popovic et al.,

1995). A more complete discussion of friction compensation techniques can

be found in (Morel and Dubowsky, 1996).

A simple control scheme which overcomes the above limitations has

been developed and demonstrated on an electrical industrial robot (Morel

and Dubowsky, 1996). This method utilizes feedback from a six-axis

force/torque sensor mounted at the base of the manipulator, which is used to

estimate the torque at each joint of the manipulator. The estimation process

is based on Newton-Euler equations of successive rigid bodies. With an
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estimation of the joint torque, accurate joint torque control is possible. This

leads to improved friction compensation, which in turn allows the execution

of fine-motion positioning tasks. This method is attractive because of the

simplicity of its implementation and excellent performance. It does not

require models of the actuator characteristics or joint friction, nor does it

require the manipulator to be retrofitted with expensive and difficult to

implement joint-torque sensors.

A first main purpose of the research described in this thesis was to

apply this method to a hydraulic manipulator. This is a challenging

application due to the very high joint friction present in such manipulators.

The second purpose was to extend the methodology to force control. Finally,
manipulator identification and sensor calibration techniques were

investigated as extensions of the use of a base-mounted force/torque sensor.

There is little discussion in the literature of fine motion control as

applied to hydraulic manipulators. Hydraulic manipulators are frequently

used in industrial applications requiring the manipulation of heavy payloads

and the application of large forces. Such tasks are common in nuclear

maintenance, undersea, and field applications (Dubowsky, 1996). Hydraulic

robots are attractive due to their high load carrying capacity (relative to typical

electric motor-driven robots), but are often difficult to control due to high
joint friction and actuator nonlinearities (Merritt, 1967).

One recent position control method utilizes a nonlinear PI controller,
with the integral term modified to include a term which is designed to detect
the onset of stiction (Heinrichs et al., 1996). This method is attractive due to
its ease of implementation. However, the authors reported that performance

was poorest for fine motions, where friction effects have large influence.

Manipulator force control has been studied by many researchers over
the past twenty years (Whitney, 1987). It is well known that accurate control
of joint torques leads to improved force control performance (Asada and
Youcef-Toumi, 1987; An, 1988). Feedback from the base force/torque sensor

fLapter 1: Introduction
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can be used for this purpose. This leads to improved performance under two

types of force control: torque control, and implicit force control.

Manipulator identification has been studied by many researchers in

recent years, due to its important role in model formulation (An et al., 1985;

Khosla and Kanade, 1985; Armstrong et al., 1986). Most methods are based on

the solution of a series of equations relating joint torque to joint motion.

However, since most manipulators are not equipped with joint torque

sensors, an estimate of the joint torque which is derived from a measurement

of the motor current is used. This estimated value is degraded by the

presence of unmodeled joint friction and actuator dynamics.

1.2 Purpose of this Thesis

Previous work in fine-motion control using a base force/torque sensor

has been limited to the position control of an electrically-driven manipulator

(Morel and Dubowsky, 1996). As discussed above, the focus of this work is to

evaluate applications of the base force/torque sensor method to the fine-

motion control of a hydraulic manipulator, force control of an electrically-

driven manipulator, and parameter identification of an electrically-driven

manipulator.

In this thesis, theoretical methods of joint-torque estimation are
reviewed. It is then shown that if dynamic terms of the joint-torque

estimation equations are neglected and gravity torque is assumed to be
constant, the estimation equations become a series of computationally very

simple static transformations. A simulation which utilizes this highly
simplified form of the algorithm predicts improved performance during fine-

motion tasks for an electrically-driven manipulator. These results support

experimental results, proving the efficacy of the simulation (Morel and
Dubowsky, 1996).

The method is then applied to a hydraulic manipulator with nonlinear
actuators and very high joint friction. Experimental results clearly
demonstrate that excellent tracking performance during fine motion tasks is

Chapter 1: Introduction
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achievable even with the simplified form of the algorithm. Results are also

presented for tasks requiring the fine positioning of heavy payloads. Again,
the experimental results show improved performance over conventional (i.e.

PD) control schemes.

Two force control methods are then examined in theory, simulation,

and experimentation. Base force/torque sensor feedback is again used to

estimate joint torques, and performance improvements are shown relative to

a system without torque feedback. It is shown that high resolution force

control is attainable on an electrical experimental system.

Finally, a novel method for identifying manipulator mass and inertial

parameters is presented. Previous work with the base sensor in this area has

been limited to the estimation of mass parameters (West et al., 1989).

Experimental results for a similar method of mass parameter identification is

presented. Theory and experimental results are then presented for a novel

inertial parameter identification scheme. Unlike most identification

methods which estimate joint torque from a measurement of the motor

current, the method exploits feedback from the base force/torque sensor and

thus is not influenced by joint friction or actuator dynamics. The method

does not require measurement of the joint acceleration, but only the joint

velocity. It is shown that accurate mass and inertial parameter identification

is possible on an experimental system.

1.3 Outline of Thesis
This thesis is divided into five chapters. This chapter serves as an

introduction and overview of the work. Chapter 2 introduces the base
force/torque sensor method as applied to the fine-motion positioning
problem. Simulation results are presented for an electrically-driven

manipulator and are compared to results from an experimental system.
Finally, experimental results are presented for a hydraulic system.

Chapter 3 gives an introduction to the force control problem, and
provides a brief review of recent research in the field. It describes two general
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methods of force control: torque control, and implicit force control. Each

method is modified to utilize base-sensor feedback. Simulation and

experimental results are presented for each method.

Chapter 4 introduces manipulator identification. Conventional

methods for parameter identification are briefly reviewed, and a method for

identifying manipulator mass parameters is presented. Experimental results

show that the method is capable of high-accuracy parameter estimation. A

method for dynamic identification which utilizes base-sensor feedback is then

described. Experimental results are presented which confirm the validity of

the method.

Chapter 5 outlines general conclusions regarding the use of the base

force/torque sensor, and presents suggestions for further work.

The appendices to this thesis give detailed information on specific

topics related to the practical implementation of the proposed methods.

Appendix A provides a kinematic description of the PUMA 550 manipulator.

Appendix B describes a calibration procedure for base-mounted force/torque

sensors. Appendix C provides the detailed equations for inertial parameter

estimation of the first two joints of a PUMA 550 manipulator.
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Chapter 2

Manipulator Fine-Motion Position Control

2.1 Introduction

This chapter describes simulation and experimental studies of fine-

motion position control of a PUMA 550 and a Schilling Titan II manipulator.

Section 2.2 presents the theoretical framework for the base force/torque

sensor method, and discusses important simplifications that can be made for

the fine-motion case. Section 2.3 contains simulation results for a PUMA 550

manipulator executing fine-motion tasks and compares them to experimental

results. Section 2.4 presents experimental results for the Schilling Titan II

system, for unloaded free motion tasks, and free motion tasks with a payload.

2.2 Fine-Motion Position Control Theory

To obtain good performance during fine-motion positioning tasks, it is

essential to compensate for joint-level disturbances, such as friction. Our

approach to friction compensation is based on torque feedback. To
understand the benefit of torque feedback in position control, it is worthwhile

to examine a simple linear model of a single joint manipulator. With an
analytical understanding of the benefits of torque feedback, the problem of
torque estimation can then be addressed. The generalized dynamic torque
estimation equations used in the base force/torque sensor method were
originally presented in (Morel and Dubowsky, 1996). Here, we review these
equations, and present a simplified version of them. Through simulation
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and experimentation, the simplified equations are shown to be sufficient and

effective for fine-motion control.

2.2.1 Torque Feedback Linear Analysis

Consider a single-joint DC motor-driven manipulator, shown in
Figure 2.1. This joint is controlled by a PD controller, and subject to a torque

disturbance, Td.

Figure 2.1: Single Joint Manipulator with PD Controller

We are interested in examining the system positioning performance
with respect to joint-level disturbances, such as friction. Thus, we write the
system transfer function, paying particular attention to the transfer function

from Oa to td'

K, + Kds 10=S2 + Kds + Kp + 2 d -s 2 Kd1+ Kp + d  (2.1)
s 2+KdS+K+ d s2+Kds+KP+&2

And:

0a  1
12 1(2.2)

d s 2 +Kds + K + 2

For a unit-step torque disturbance, the asymptotic output will be:

10 (oO) = - 1
K, + 02

We see that the system is incapable of rejecting the torque disturbance,
and a steady-state positioning error results. Increasing the K, gain of the

C(hapter 2: Position Control



compensator will reduce this gain, but stability issues limit the effectiveness

of this solution.

We now consider a similar system, modified to include an integral-

type compensator acting on a torque feedback loop. This system is shown in

Figure 2.2.

Figure 2.2: Single Joint Manipulator with PD Controller
and Torque Feedback

Again, we are interested in examining the system positioning

performance with respect to joint-level disturbances. Thus, we again write

the system transfer function, again paying attention to the transfer function

from Oa to Td.

(KdKi)s + K pKi  Kis
a s3 + (o3 2 + KdKi)s + KpKi s 3 + (02 + KdK,)s + KK,

(2.3)

s3 +(0o2 +KdK,)s + KpK

And:

(2.4)S +)
Ird S 3 +W 2 + KdKi)s + KpK i

For a unit-step torque disturbance, the asymptotic output will be:

Oa(OO) = 0

U apter 2: Position Control
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From this simple analysis, we see that the system rejects the torque

disturbance in finite time, and no steady-state positioning error results. The

addition of an integral term in the critical path should add phase lag to the

system. However, for slow motions the effects of this additional lag should

be negligible.

2.2.2 Generalized Torque Estimation Equations

The preceding analysis assumed "perfect" torque feedback (i.e. the

actual joint torque was read by an ideal sensor with no noise or measurement

error). In reality, joint torque is difficult to measure, and as a consequence

most manipulators are not equipped with joint torque sensors. Here, we

develop equations for estimating joint torque from a measured wrench at the

base of the manipulator (Morel and Dubowsky, 1996).

In the general case, the wrench, Wb, exerted by the manipulator shown

in Figure 2.3 on its base sensor can be expressed as the sum of two

components:

Wb=W +Wd  (2.5)

where W is the gravity component, and Wd is the component caused by

manipulator dynamic motion. Note that the base sensor measures forces and
torques corresponding to joint torques that are effectively transmitted to the

manipulators links. Thus, friction does not appear in the measured wrench.

Since we are interested in eventually obtaining equations relating the
base wrench to manipulator motion, it is desirable to eliminate the wrench
component that is caused by gravity. The gravity wrench can be compensated

for using the following model (West et al., 1989; Baker, 1992) :

Wd = Wb - w, = Wb i= n (2.6)wj (2.6)M_ = Y Os-G x mg9 i=1
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where F, and Mg. are the gravity force and moment at the center of the

sensor Os, respectively, mi and Gi are the mass and the location of the center of

mass of link i, respectively.

W-.3

0

A T= -IA .+AT

IAT

Wd 1

e Force/
I orque Sensor

Figure 2.3: Generalized Manipulator Mounted on a Base Force/Torque Sensor

Assuming accurate gravity compensation, the Newton-Euler equations

of the first i links are:

w

Wlýo-.

w.

w~~

= -Wb
=W-W

=0O41i dyn 1

= W. - WdynSil-i - Wdyni

(2.7)

where wii+l is the wrench exerted by the link i on the link i+1 and Wdyni

the dynamic wrench corresponding to link i. The Wdyni term can be expressed

at any point A in terms of the acceleration VG, of Gi, the angular acceleration

o, and the angular velocity oi -:

Chapter 2: Position Control
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Wd dyn i= mG
Wdyni MA =i+xi+G mVG,;J( dynM Ii i + i X IiO i - GiA x

(2.8)

The torque at joint i+1 is obtained by projecting the moment vector at

O i along z, (see Figure 2.4) :

i+1 = --zi[ Mi + (I- j + Io x jcoj + OGjxm VG) (2.9)

Where Md is the dynamic moment component of the base wrench.

Analysis of this equation shows that for joints nearest to the base

sensor with orthogonal axes of rotation, we can write torque estimation

equations that depend only on the measured base wrench. However, for

distal joints that have axes of rotation that are non-orthogonal to the axes of

rotation of proximal links, dynamic terms must be included in the torque

estimation equations. This requires knowledge of joint acceleration, which is

difficult to measure in practice.

P1

Link i

0
i-1 I

Figure 2.4: Body-Fixed Coordinate Frames for a Generalized Link i
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2.2.3 Simplified Torque Estimation Equations

In the general algorithm, the gravity wrench is computed for every

manipulator configuration along a trajectory. In the fine-motion case,
however, it is assumed that since the manipulator range of motion is small,
the gravity wrench is nearly constant. Thus, we can set it equal to the static

wrench measured by the base sensor immediately before motion. In this way,
the complexity related to computing the gravitational wrench, such as

identification of link weights and a static manipulator model, is eliminated.

If the joints of the manipulator move just a few degrees, it can be shown that

the errors in the gravitational terms are only a few percent.

For the fine-motion case, it is also assumed that the manipulator

moves very slowly. In this case, Wdyn terms will generally be negligible.

Hence, dynamic terms are treated as a disturbance. As a result, for slow, fine

motions, only the measured wrench at the base is used to estimate the torque

in joint i+1. The torque is estimated by projecting the base wrench at Oi, Woi,
along zi (see Figure 2.4). This leads to the equation:

O.
. = -z .t. base (2.10)1+1 base

This equation can be written as,

0.
r = A(q). Wbe 1 (2.11)base

Thus the estimated torque is computed via a static transformation

from the manipulator base to joint i. The method does not depend on
measurements (or estimations) of the joint velocities or accelerations,
estimates or models of masses or inertias of the links or payload, or models of
the actuator dynamics or friction, but only on joint positions, and the
manipulator's kinematic parameters.
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2.3 Fine-Motion Position Control Simulation
A three degree-of-freedom (d.o.f.) simulation of a PUMA 550

manipulator was formulated in Matlab to predict performance during fine

motions under base force/torque sensor control. The PUMA 550 is a five

d.o.f. industrial electrically-driven manipulator, shown in Figure 2.5 (refer to

Appendix A for complete kinematic description). Many researchers have

studied this system, and thus mass and inertial parameters are available in

the literature (Corke, 1984, Armstrong et al., 1986). To simulate the base

sensor measurement, manipulator equations of motion were written with

respect to the sensor frame.

Several simplifications were made. The first was that gravity

compensation was assumed to be perfect. Sensor compliance was not

considered, and neither were the effects of sensor noise. These

simplifications were deemed reasonable, especially for the fine-motion case.

However, encoder digital effects were considered significant for low-velocity

motion, and were included in the simulation.

Figure 2.5: A PUMA 550 Manipulator with Coordinate Frames Attached

Chapter 2: Position Control
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An important component of the simulation was the friction model.

Previous researchers have characterized the type of friction present in a

PUMA manipulator (Armstrong, 1991; Canudas de Wit et al., 1996). This

curve captures the nonlinear behavior of friction at low-speeds. A Lorentzian

friction model was employed to compute the frictional torque F, which takes

the following form (Armstrong, 1991):

F(0) = 5.05 + 4.946 + 1.30 1 + 0.466 1
1+ (6/0.0058)2 1 + (/0.068)2 (2.12)

The sign of this frictional torque is assumed to be opposite that of the

direction of motion. Figure 2.6 is a plot of the friction model. Note that the

stick-slip (negative-sloping) regime ranges from zero velocity to
approximately 1 degree per second.

Figure 2.6: Joint Friction Model

2.3.1 Governing Equations and Controller Design for PUMA 550 System

The position control scheme consists of an inner torque loop and an

outer position loop, as shown in Figure 2.7. During fine motions, the

frictional torque of the PUMA 550 is often larger than the dynamic torque
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applied to the joint. With this in mind, a high DC gain is required in the

torque controller. Several researchers have studied the performance of

various types of torque controllers (Volpe and Khosla, 1992; Vischer and

Khatib, 1995). An integral compensator achieves low-pass filtering and zero

steady-state error, which is desirable. A proportional compensator could

introduce instability, and a derivative compensator is ineffective and difficult

to implement on a real system due to noise issue. Previous studies also

suggests that a feedforward compensator should not be used in conjunction

with integral control, but experimental work shows improvement in the

torque control performance when a feedforward term is used.

The torque control law was chosen as follows:

out = Ides + Kint (tdes- Test) (2.13)

Where rdes and est are the desired and estimated (i.e. base-sensed) torques,
respectively. The control gain Kint was tuned to 75% of the value that caused

instability in the simulation.

The inner torque loop serves to eliminate friction at the manipulator

joints. With a "frictionless" manipulator, excellent positioning performance

can be achieved without the use of complex control algorithms. A simple PD

controller is sufficient for the outer loop compensator. The final position

control law was as follows:

toxu = des + K (t Tdes - 'st) (2.14)

With:

tdes = K,(Od - )+ Kd(d -6) (2.15)

Where K, and Kd are diagonal gain matrices.

The simplified torque estimation equation, Equation 2.10, yields the
following result when applied to the PUMA 550:
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0 0 0
A(q) = 0 0 0

a2sin(0 1)cos(0 2) -a2sin(0 1)sin(0 2) -a2cos(0 2)

0

-sin(0 1)
-sin(0 1)

0

cos(0 1)
cos(Q,)

For clarity, we can write explicitly:

-T = _Mz
1 base

I2 = -sin(0 )Mxase + cos(02)Myase2 base base

-_1
0 (2.16)

0)

(2.17)

(2.18)

3 = 2 - a2 (-cos(0 )sin(02)Fbase + sin(0)sin(02)Fase + cos(0 2 F (2.19)

Note that the torque estimation equations depend only on the

manipulator joint positions, the measured base wrench, and the

manipulator's kinematic parameters. These estimation equations are

computationally very simple, and for the case of the PUMA requires

knowledge of only a single kinematic parameter.

Figure 2.7: Position Control System Architecture

2.3.2 Simulation Results for PUMA 550 System

I) Torque Control Results

As discussed in Section 2.3.1, an integral-type controller was used in the

torque control loop. Equation 2.14 describes the control law which was used.
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To evaluate the performance of the torque controller, we conducted

simulated experiments which mirrored the real-world requirements of a

torque controlled system. One such experiment is the tracking of a small

amplitude triangular torque wave. The magnitude of the triangular wave

was chosen such that its maximum value was less than the value of the

simulated static friction (see Figure 2.6). The simulation was written for joint

one of the PUMA 550.

Figure 2.8: Joint One Torque Control Simulation

Figure 2.8 shows the response of the simulated system. The command

signal (i.e. the signal sent to the DC motor) has a higher magnitude than the

desired torque, in order to overcome friction. The simulated system tracks

the desired torque accurately, with transient errors occurring at velocity sign

changes, where frictional disturbances are largest.

Figure 2.9 shows the results of an experimental trial with the first joint

of the PUMA 550. This result was obtained by Guillaume Morel and can be

found in the literature (Morel and Dubowsky, 1996). Comparing this result to

the simulation, it can be seen that the simulated manipulator tracks the

desired torque at a slightly higher accuracy than that of the physical system.
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The higher accuracy of the simulation is probably due to nonlinear

disturbance forces, such as gear cogging and backlash, that were not included

in the model. These effects, however, appeared to be small. It is clear that the

simulation captures the dominant behavior of the physical system.

5

0
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-\' ti/4Il/ Command Signal 4ipI

Applied Torque \D es ed-orque i den-....d .............. . .................. ...............

I I I I I

0 1 2 3 4 5 6
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Figure 2.9: Joint One Torque Control Experiment

II) Joint Space Position Control Results

To evaluate the performance of the closed-loop position control

system, tracking of a 0.10 degree triangular wave was simulated. The average

joint speed was approximately 0.08 degrees per second, which corresponds to

the stick-slip regime of the friction model (see Figure 2.6). The simplified

torque estimation equations (Equations 2.17 through 2.19) were used. Base-

sensor control performance was compared to both PD and PID control.

Controller gains were tuned on a trial-and-error basis.

As seen in Figures 2.10 and 2.11, the simulation predicts marked

improvement of base-sensor control over PID and PD control. Tracking error
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is significantly lower, and recovery time at velocity sign changes is greatly

reduced.

Figure 2.10: Joint One Simulated Triangular Wave Tracking
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Figure 2.11: Joint One Simulated Triangular Wave Tracking Error

Chapter 2: Position Control

0.10

0.05

0.00

-0.05

-0.10

0 1 2 3 4

Time (seconds)



Comparing these results to experimental results obtained by Guillaume

Morel in Figure 2.12, similarity in response shape and magnitude can be seen.

This implies that the modeled frictional behavior and controller gains are

similar to that of the experimental system.

0.10-

0.05 --

4- 0.00-

0

-0.10

Base-Sensor Feedback
--. - 1 PID Control

-- -------- - ----- -------------

-I -

PD C-ontrol

Desired (Hidden)

I I I I I I
0 2 4 6 8 10

Time (seconds)

Figure 2.12: Joint One Experimental Triangular Wave Tracking

Table 2.1 compares the error of the three types of control for the

simulated trajectory. The root-mean-square error of the base sensor feedback

was 14.8 times better than in PID control, and 37.2 times better than PD

control. The RMS error is approximately 0.0013 degrees throughout the task,
which is less than the encoder resolution of 0.0058 degrees. These excellent

simulation results are comparable to experimental results found in the

literature (Morel and Dubowsky, 1996). These results are reprinted in Table

2.2. The experimental system displayed slightly poorer tracking accuracy,

probably due to unmodeled effects such as gear cogging and backlash.
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PD

PID

P + Base Sensor
Feedback

RMS Error
(degrees)

0.0483

0.0193

0.0013

Maximum Error
(degrees)

0.0891

0.0485

0.0062

Table 2.1: Summary of Simulated Error Results--Triangular Wave Tracking

PD

PID

P + Base Sensor
Feedback

RMS Error
(degrees)

0.120

0.056

0.012

Maximum Error
(degrees)

0.059

0.020

0.004

Table 2.2: Summary of Experimental Error Results-Triangular Wave
Tracking

III) Cartesian Space Position Control Results

A circular tracking task in cartesian space was selected. Inverse

kinematic calculations were performed prior to the simulation, and the

resulting joint space trajectories were commanded, under the same control

scheme as the previous section.

Cartesian-space tasks require the coordinated motion of two joints.

During this type of motion, we can examine the effects of disturbances on one

joint resulting from motion of a different joint.

Again, the simulation predicts that base-sensor feedback control will

greatly outperform PID control. Figure 2.13 shows that the simulation using

PID control exhibits noticeable "squaring" of the circle. These square corners

correspond to regions where the joint velocities are undergoing a sign change
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(and thus the friction disturbance is large).

literature, compares well with the simulated results (Morel and Dubowsky,

1996).

Figure 2.13: Simulated Cartesian Space Tracking
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Figure 2.14: Experimental Cartesian Space Tracking
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2.4 Fine-Motion Position Control Experimentation

Previous position control experiments have been performed on a

PUMA 550 system (Morel and Dubowsky, 1996). In order to examine the

effectiveness of the base sensor feedback method on a complex, highly
nonlinear system, experiments were also conducted on a Schilling Titan II

hydraulic manipulator. Development of governing equations and controller

design proceeded in a manner similar to that for the PUMA 550 system.
Experimental results were conducted for unloaded fine motions, cartesian-

space fine motions, and for fine motions while supporting a payload.

2.5.1 Governing Equations and Controller Design for Schilling Titan II
System

The Schilling Titan II is a six d.o.f. industrial hydraulic manipulator,

shown in Figure 2.15. The Titan II is a widely used hydraulic manipulator in
undersea and nuclear applications. It is attractive because of its high strength,
low weight, and large workspace. However, the manipulator suffers from
poor dynamic characteristics, largely due to high joint friction. Performance

during small, slow motions is dominated by nonlinear friction effects.
Further, it is very difficult to model the actuator and joint characteristics
(Merritt, 1967; Habibi et al., 1994; Electricit6 de France, 1996).

In this study the control system was implemented on a Sun 3/80
interfaced to a VME bus. The control software is run on a 68030 single-board
computer (Durfee et al., 1991; Kuklinski, 1993). Position feedback from the
Titan II's joints is measured with resolvers, and dedicated hardware converts
the resolver signal to quadrature waves with an effective resolution of 0.087
degrees. For all experiments, the sampling rate was seven milliseconds,
which was deemed sufficiently fast for fine motion experiments.
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Figure 2.15: Schilling Titan II Dimensions

The position control scheme consists of an inner torque loop and an

outer position loop, as shown in Figure 2.16. An inner loop integral

compensator provides low-pass filtering, and zero steady-state error.
Previous theoretical and experimental work has shown that an integral
compensator with a feedforward term provides the best torque control
performance for a geared, DC motor-driven manipulator (Vischer and Khatib,
1995; Morel and Dubowsky, 1996). Similar linear analysis is less conclusive

for the Titan II, due to its highly nonlinear dynamic characteristics in the
operating range of interest. Experimentation has shown, however, that the
selection of an inner loop integral compensator is effective for this system.

Figure 2.16: Control System Architecture
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A simple proportional controller is employed in the outer loop. A

derivative term was not added (as in (Morel and Dubowsky, 1996)) due to the

high level of damping caused by joint friction. The control law was:

tout t des + Kint f( des est) (2.20)

with

Tdes = Kp(Od -0) (2.21)

Equation 2.10, when applied to the Titan II, yields the following form

for the matrix A for the first three joints (see Figure 2.17 for Titan II frame

assignments):

( 0 0 0 0 0 -1
A(q) = 0 0 0 -sin(O,) cos(0l) 0 (2.22)

a2cos( 1 ))sin(02) -a2sin(01 )sin(0 2) -a2 cos(2) -sin(01 ) cos(O,) 0)

For clarity, we can write explicitly:

1 = -Mzbase (2.23)

t2 = -sin(O,)Mbase + cos(2)MYas e  (2.24)

3 -t 2 -a 2 (-cos(0 )sin( 2 )Fbase + sin(O, )sin(0 2)F s + cos(0 2)F a )(2.25)

As expected, the torque estimation equations depend only on the
manipulator joint positions, the measured base wrench, and the
manipulator's kinematic parameters. These estimation equations are
computationally very simple, and for the case of the Titan II requires
knowledge of only a single kinematic parameter, a2.
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Figure 2.17: Schilling Titan II Coordinate Frames

2.5.2 Experimental Results for Schilling Titan II System

I) Joint Space Position Control Results

The first task presented is for the third joint (03) of the Titan II to track a

1.5 degree magnitude triangular wave at 0.1 Hertz. Due to the Titan II's very

high levels of joint friction, this small amplitude, slow motion is difficult to

execute. The commanded trajectory magnitude corresponds to approximately

17 counts of the quadrature-converted resolver signal.

The benchmark against which control performance is compared is PI
control. Proportional and integral gains were tuned to be at 75% of the level
causing structural oscillation. Figure 2.18 compares the performance of
traditional proportional-integral (PI) control (dashed line) and proportional

control with base-sensor feedback (solid line). For motions of this magnitude,
PI control requires a relatively long time (=6 seconds) to reach zero-error
tracking. Base-sensor feedback allows the manipulator to achieve good
tracking performance within a much shorter (=0.5 second) time. Due to the

integral nature of both controllers, tracking performance lags at velocity sign

changes (when the frictional force changes direction).
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Figure 2.18: Joint Three Triangular Wave Tracking

Figure 2.19: Joint Three Triangular Wave Tracking Error

Figure 2.19 shows the joint angular errors of the two control

approaches, and Table 2.3 qualitatively compares the results. Proportional
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control with torque estimation achieves a 77% improvement in RMS error

over PI control, and the maximum error is substantially reduced.

PI

P + Base Sensor
Feedback

RMS Error
(degrees)

0.3671

0.0861

Maximum Error
(degrees)

0.7860

0.3460

Table 2.3: Summary of Error Results for 1.50 Triangular Wave Tracking

Figure 2.20 compares performance of the same controllers with the

same gains executing 0.5 degree, 0.1 Hertz triangular waves, which correspond

to a magnitude of approximately 6 counts, and velocity of 2 counts per second.

At these very low speeds, proportional control with base-sensor

feedback requires slightly longer to compensate for friction at velocity sign

changes (=1 sec). However, zero steady-state error is still achieved.

Figure 2.20: Joint Three Triangular Wave Tracking
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Figure 2.21: Joint Three Triangular Wave Tracking Error

Table 2.4 compares the error of the two types of control for this

trajectory. Base sensor feedback achieves a 54% improvement in RMS error

over PI control. While some errors remain, recall that this is a very large,
powerful manipulator with very high joint friction performing a very slow

and small motion, a very difficult task for it.

PI

P + Base Sensor
Feedback

RMS Error
(degrees)

0.1863

0.0845

Maximum Error
(degrees)

0.4480

0.2520

Table 2.4: Summary of Error Results For 0.50 Triangular Wave Tracking

II) Cartesian Space Position Control Results

Cartesian-space tasks are more typical of practical applications. Here, a

cartesian task was designed using joints two and three of the Titan II

manipulator. The desired endpoint trajectory was a small circle of 15 mm
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radius at a speed of .166 revolutions per minute. Recall that the manipulator

has a reach of approximately 1.9 meters. Joint-space paths were computed off-

line using inverse kinematics. Errors were formed in joint space, and thus

the control scheme is unchanged.

What is unique to this experiment is that coupled motion between

joints with two parallel axes is required. The axes of rotation of joints two

and three are parallel. The simplification of the torque estimation equation

(i.e. the removal of dynamic terms for the torque estimation of joint 3) is thus

explicitly tested.

15

10

S 5

0
o -5

X
-10

-15

-15 -10 -5 0

Y Position (mm)

5 10 15

Figure 2.22: Cartesian Space Tracking

The effectiveness of the model-free base-sensor controller is shown in

Figure 2.22. Table 2.5 gives a numerical summary of the results. Clearly, the

method makes a significant improvement.
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PI

P + Base Sensor
Feedback

RMS Error

(degrees)

3.033

0.776

Maximum Error

(degrees)

4.643

1.365

Table 2.5: Summary of error results cartesian-space tracking

III) Joint Space with Payload Results

Many industrial tasks require accurate positioning of heavy payloads,

such as the placement of the steam generator nozzle dam during nuclear

power facility maintenance (Electricit6 de France, 1996). A control system

must therefore be robust to variations in the effective inertia of the system,
and should provide high-performance control in both loaded and unloaded

states. The Titan II is a very lightweight arm (77 kg). However, an ungeared,
lightweight arm which is capable of supporting large loads will be subject to

dramatic variations in the effective manipulator inertia tensor, a difficult

control problem. While adaptive control methods can be applied, they have

limitations (Craig, 1988). Here it is shown that the model-free control scheme

is robust enough to deal with these variations, and still provide accurate

tracking performance.

The commanded task was for the third joint of the Titan II to perform
one degree sine wave tracking at 0.1 hertz while supporting a payload. The
payload has a weight of 210 Newtons, a load that is approximately 30% of the
Titan II weight. However, since the maximum torque capacity of joint 3 is
1200 Nm, a fully extended payload represents only 17% of the Titan II's
maximum lift capacity.

Figure 2.23 compares the tracking performance of PI control and P
control with base sensor feedback. From these results we see that even with a
small payload, the performance of PI control is substantially degraded. With
base sensor feedback, rapid response to friction sign changes and to initial
control switching (at time=0) is exhibited, and zero-error tracking is achieved.
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The rapid tracking of the system with base sensor feedback implies that

the system bandwidth has been increased. This result follows the conclusions

drawn for electrical systems (Pfeffer et al., 1989; Vischer and Khatib, 1995).

Figure 2.23: Joint Three Tracking with Payload

2.5 Summary and Conclusions
This chapter presented simulation and experimental studies of fine-

motion position control of both a PUMA 550 and a Schilling Titan II

manipulator. The theoretical framework for the base force/torque sensor

method was discussed, and a simplified form of the algorithm was

formulated for the fine-motion case. Simulation results for a PUMA 550

manipulator executing fine-motion tasks were presented and shown to be

consistent with experimental results, confirming the validity of the

simulation. Extensive experimental results for the Schilling Titan II system

were presented, for unloaded free motion tasks, and free motion tasks with a

payload. The results showed substantial improvement over conventional

control schemes.
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Chapter 3

Manipulator Force Control

3.1 Introduction

This chapter describes simulation and experimental studies of delicate

force control of a PUMA 550 manipulator. Section 3.2 presents a description

of the force control simulation engine. Section 3.3 describes the force control

experimental setup. Section 3.4 presents the theoretical background,
simulation and experimental results for joint torque control. Section 3.5

presents a theoretical background, simulation and experimental results for

implicit force control.

3.2 Force Control Simulation

A force control simulation program was developed, based on the

position control simulation described in Section 2.3. The position control

simulation was modified to include the effect of end-effector contact forces,

both on the motion of the manipulator and on the base sensor measurement.

The environment was modeled as a lightly damped one-dimensional

linear spring, as follows:

Fenv = (Ke v 5 ) + (benv 6) (3.1)

where 8 is defined as the penetration into the simulated environment

boundary. For the following simulations, an environment with a simulated

stiffness of Kenv=50 kN/m and damping rate of 100 Ns/m was used. These
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parameters are similar to experimentally-measured parameters of a stiff

environment (An, 1988).

The effect of environment interaction on manipulator motion was

simulated by computing the joint torque caused by contact, and subtracting

this torque from the applied joint torque. The joint torque caused by

environment interaction is computed from the environment interaction

force, Fenv, via the relation:

Tenv = JT Fenv (3.2)

where J is defined as the manipulator Jacobian matrix and is of dimension (3

x n), where n is the number of manipulator joints. The vector Fenv is assumed

to be e 913, since environment contact is modeled as frictionless point contact.

The effect of environment contact on the base sensor measurement is

computed via simple rigid-body analysis, as shown in Figure 3.1. The wrench

measured by the base sensor due to a generalized interaction force can be

expressed at the base via a force/moment transformation, as follows:

We = Fenv + (roa xFenv) (3.3)

where all vectors are expressed in the base-sensor frame.

This interaction wrench is then added to the total computed base

wrench (i.e. the wrench caused by dynamic robot motion).

Figure 3.1: Simulated Base-Sensor Interaction Force Measurement
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3.3 Force Control Experimentation

The system used for the following experiments was a PUMA 550 five

d.o.f. manipulator, shown in Figure 2.5. The PUMA control architecture is

based on a Programmable Multi-Axis Controller (PMAC) and a Sun 3/80

running VxWorks (Durfee et al., 1991; Kuklinski, 1993). Control loops were

run on a single-board 68020 computer, with sampling periods of eight

milliseconds.

For the experiments in this chapter, joint one of the PUMA was

controlled, and joints two and three were held under joint PID control. The

initial state of the PUMA was 01=00, 02=00, 03=900. This can be seen in Figure

3.2.

A rigid aluminum brace was used as the environment. The stiffness of

the environment was determined empirically to be approximately 50 kN/m.

Damping was not experimentally determined, but was assumed to be low.

02

03

Figure 3.2: Force Control Experimental Setup
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3.4 Torque Control

Torque control is a force control method which relies on accurate

control of individual joint torques. A desired environment interaction force

is achieved by transforming the interaction force to a vector of desired joint

torques, the through the relation zdes = jT Fdes. Closed-loop control is then

performed on these desired torques.

An analysis of torque control's disturbance rejection properties is

presented in this section, and simulation results for a torque-controlled

system are also discussed. Experimental studies on a PUMA 550 manipulator

are shown to agree well with simulation results.

3.4.1 Torque Control Theory

Torque control is an effective method of rejecting joint-level

disturbances, such as friction (An, 1988; Williams and Khatib, 1995, Morel and

Dubowsky, 1996). Linear analysis presented in Chapter 2.2.1 demonstrated the

effectiveness of torque control on system positioning accuracy. Here, we

examine torque control at the joint level, in order to understand its influence
on force control.

Figure 3.3 is a simplified block diagram of a single manipulator joint
with a frictional disturbance.

Figure 3.3: Single Joint Model with Frictional Disturbance

Chapter 3: Force Control
1_ _ _ _



In this simple model, the output torque, tout, is related to the desired

torque, rdes, by the relation:

Tout = (Tdes - Tdist K o+ (3.4)

There is no means of disturbance rejection for this model. This is

highly ineffective for situations where dt is large relative to Tde, such as

small, low-velocity motion, such as force control. In this case, the output

torque differs substantially from the desired torque, and force control

performance is poor. For this reason, torque control is not used as a force

control method for geared systems without torque feedback.

An integral compensator is expected to reject joint-level disturbances.

Figure 3.4 shows the previous system with the addition of an integral

compensator and a feedforward term. Note that this model assumes "perfect"

torque feedback (i.e. there is no error in the measurement of tout)-

Figure 3.4: Single Joint with Frictional Disturbance Under Integral Control

In this model, the output torque, zour, is related to the desired torque,

tdes, by the following relation (assuming Ko is near unity):

Tout = Zdes + K) Tdist (3.5)

The addition of an integral compensator rejects disturbances below a
break frequency which is set by the integral gain Ki. This is illustrated in
Figure 3.5.
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•igure 3.5: Integral Compensator Disturbance Rejection Properties

From this simple example, it is clear that the addition of an integral

torque feedback loop improves the manipulator's disturbance rejection

properties, and therefore its torque tracking abilities. This benefit is directly

applicable to force control. Given a desired environment interaction force, a

vector of desired joint torques can be computed via the relation:

Ides = jT -Fdes (3.6)

To exert a desired interaction force, accurate control of individual joint

torques is required. For manipulators with low drivetrain friction (such as

direct-drive manipulators), accurate torque control is possible (Asada and

Youcef-Toumi, 1987). For manipulators with joint friction, however, we
have shown that the output torque can differ substantially from the desired
torque. This results in poor force control performance, and thus torque
control is an ineffective force control method for geared manipulators

without some form of torque feedback.

A block diagram of the experimental system used in this work is
shown in Figure 3.6. A desired force is specified, from which a desired torque
vector is computed. Closed-loop control is performed on this desired torque,
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using the simplified torque estimation equations for the PUMA manipulator

(Equations 2.17 through 2.19). The assumptions of small, slow motions,

which were made for the fine-motion positioning case are equally valid for

the force control case.

F

Figure 3.6: Torque Control System Architecture

For force control, it is interesting to note that the base-sensor feedback

becomes inherently equivalent to wrist sensor feedback if the manipulator is

considered a rigid body. Thus, the proposed control scheme can be viewed as

similar to recent wrist sensor-based schemes (Williams and Khatib, 1995). It is

important to realize, however, that a wrist sensor measures only forces

caused by interaction, while the base sensor measures forces caused by both

motion and interaction. Thus, the base-sensor could be used as the basis for a

high-performance hybrid control scheme (controlling both interaction-related

and motion-related torque), but a wrist sensor could not.

3.4.2 Torque Control Simulation Results

A simulation task was written for the first joint of the PUMA 550. A
desired force of 10 Newtons was commanded, with the manipulator

beginning in contact with the environment. Integral control with

feedforward was employed as a compensator, as shown in Figure 3.6. The

interaction force is plotted in Figure 3.7.

Chapter 3: Force Control
__



Desired Force

Desired Force
Actual Force

20 -

15 -

I I I
1.0

Time (seconds)

Figure 3.7: Torque Control Simulation--Pure Integral Control

Although the simulated system is stable, the response exhibits

undesirable oscillations. These oscillations are caused by the absence of

damping in the system. This is due to the fact that the torque control loop

effectively removes joint friction, which accounts for much of the system's

mechanical damping. Additionally, there is no electronic (i.e. velocity-based)

damping present in the controller.

To reduce the oscillations of Figure 3.7, a damping term is added to the

controller which takes the form Kdo. Thus, the control law is as follows:

Tor =-,des + Ki., ( Tdes - test)+Kdo (3.7)

The response of the damped system to a desired command input of 10

Newtons is shown in Figure 3.8.
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Figure 3.8: Torque Control Simulation-Integral Control
with Damping

From Figures 3.7 and 3.8, it is clear that the introduction of damping to

the control law improves system response with respect to overshoot and

settling time. This result is well documented in the literature (Volpe and

Khosla, 1992). Note, however, that high-frequency components result from

the addition of damping. This is due to the high Kd term that is required to

attain a substantial level of damping. The high-frequency components are a

product of the Kd gain acting on the joint velocity, which is small but highly

variable during force control.

Another method suggested by researchers to improve system response

involves filtering the command signal through a dominant pole, in an

attempt to remove high-frequency components of the signal that cause

oscillation (An, 1988; Roberge et al., 1996). A dominant pole takes the form

(a/(s + a)). This is a simple first-order filter with unity gain at DC, and a break

frequency set by the constant a. The control law for the system with a

dominant pole is as follows:
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rout = des + Kint ('rdes est) (3.8)

Figure 3.9 displays the simulated response of the torque controlled

system with a dominant pole, attempting to attain a desired force of 10

Newtons. The response is well damped and the rise time corresponds to the

time constant of the dominant pole, as expected. Small high-frequency

oscillations still exist in the system response, but this behavior is caused by

vibration of the stiff environment/manipulator system, rather than the

addition of velocity-dependent damping. This distinction is significant in the

control of real systems, as we will see in Section 3.4.3.

Figure 3.9: Torque Control Simulation-Integral Control
with Dominant Pole

3.4.3 Torque Control Experimental Results

An experimental task was designed for the first joint of the PUMA 550.

A desired force of 5.2 Newtons was commanded, with the manipulator

beginning in contact with the environment. Integral control with

feedforward was employed as a compensator, as shown in Figure 3.6. The

interaction force is plotted in Figure 3.10.
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Figure 3.10: Torque Control Experimentation--Pure Integral Control

Although the experimental system is stable, the response exhibits

undesirable oscillations and a large overshoot (maximum percent overshoot

= 288%). As in simulation, these oscillations are caused by the absence of

damping in the system, and in fact confirm the high performance of the

torque control loop. Joint friction has been largely removed from the system.

(Note that the initial interaction force offset was caused by sensor drift.)

As in the simulation, damping of the form KdO was added to the

system control law in an attempt to reduce oscillation. The modified control

law was identical to Equation 3.7, and experiments were performed for

desired force step inputs of approximately 5 Newtons. Unlike the simulated

system, however, the addition of damping tended to have a destabilizing

effect on the system. Most step response trials resulted in unstable or

marginally stable performance. This is most likely due to fact that first-order

backward-difference numerical differentiation of the position was used to

calculate the velocity. For small, slow motions (which predominate in force

control), the computed velocity is highly variable. This variability leads to
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"spikes" in the control signal from the term Kdi, which in turn leads to

oscillation or instability.

Figure 3.11 displays a result which was typical of experiments

involving velocity-based damping terms. In this experiment a dominant

pole was added in order to improve system stability.

10

8
Z
O6

0 4

0

3rce
rce
: ........ ~...................

0.0 1.0 2.0 3

Time (seconds)
Figure 3.11: Torque Control Experimentation-Integral Control
Figure 3.11: Torque Control Experimentation-Integral Control

with Damping

Experiments were also conducted which utilized a dominant pole
filter. The desired interaction force was 4.5 Newtons, and the control law was
identical to Equation 3.8. The pole of the filter was placed at 1.43 radians per
second, giving a time constant of 0.7 seconds. The results of this experiment
can be viewed in Figure 3.12.

C(hapter 3: Force Control

.0 4.0 5.0



4

• 132

0

------ --------.............. -- ------- ............. --................ ------- .......................-
- Desired Force

Actual Force

I I I I
0.0 1.0 2.0 3.0 4.0 5.0

Time (seconds)

Figure 3.12: Torque Control Simulation--Integral Control
with Dominant Pole

This system exhibits stability and good tracking. The time response of

the system is slower than the simulated system, but is still acceptable for
many real-world applications. A small amount of steady-state error remains,
but this is to be expected from a torque-controlled system (An, 1988).

Kinematic uncertainty and sensor noise limit the absolute accuracy of the

response.

3.5 Implicit Force Control

Implicit force control refers to a force control scheme where closed-loop

control is not performed on the measured environment interaction force, but
rather on endpoint position. The desired position is related to a desired force
by an estimate of the environment stiffness. This scheme is sometimes
referred to as position-based force control (Whitney, 1987).

An analysis of implicit force control's accuracy limitations is presented
in this section. Simulation results are then presented, which focus on
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attainable force resolution. Experimental results are presented which agree

with simulation studies, and show that torque feedback improves the

allowable force resolution.

3.5.1 Implicit Force Control Theory

The relationship between desired force and desired position can be

understood by examining the model of Figure 3.13.

Desired
Position

S

Figure 3.13: Force Control Environment Interaction Model

A desired position which lies at a distance A beyond the environment

boundary is commanded. When the robot contacts the environment, a small

deflection 5 results. The resultant stiffness of the manipulator/environment

system can be modeled as a series spring combination. That is,

1 1 1-= + - (3.9)
Ktot K= Kenv

Assuming linear elastic behavior, we can relate the desired force to the
desired position by the following equation:

Xdes = Fdes / Ktot (3.10)
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Noting that the arm stiffness is configuration dependent, we can write

Equation 3.10 is a slightly expanded form, which gives an equation for

calculating desired position from a desired force:

Xdes=( Kenv JT KJ +jTKj (3.11)Fenv

In this equation, J represents the manipulator Jacobian matrix, and K

represents the diagonal joint stiffness matrix. The product JTKJ is the

cartesian-space stiffness matrix (Craig, 1986).

From the preceding analysis, we see that accurate implicit force control

relies on manipulator kinematics, and knowledge of the environment

stiffness. If both of these factors were known exactly, Equation 3.11 could be

used in an algorithm to compute a position trajectory, based on a desired force

input. However, environment stiffness is often difficult to estimate

accurately, and thus implicit force control is inherently inaccurate (Mills,

1996; Siciliano et al., 1996).

Although highly accurate force control is difficult to achieve, high

resolution force control is attainable. For this reason, implicit force control is

often used in tasks which require the application of forces which need not be

precisely known (Dubowsky, 1996; Mills, 1996). For many tasks, such as

precision assembly and part mating, force resolution is a critical system

performance metric.

Rearranging Equation 3.10, we see that:

Fdes = Ktot * Xdes (3.12)

Force control resolution depends on the attainable positioning

resolution. Based on the high resolution obtained in small-magnitude

positioning tasks in Chapter 2, we expect to be able to attain high resolution
during force control. Controlling small-magnitude forces will be the focus of
the simulation and experimental tasks that follow.
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A block diagram of the implicit force control system can be seen in

Figure 3.14. From this figure, we observe that implicit force control differs

from torque control only by the generation of its input signals. We also

observe that the implicit force control scheme is identical to the position

control scheme employed in Chapter 2. The advantage of using a position-

based control scheme is that it allows for a single control system to be used for

both positioning and contact tasks, potentially eliminating the need for

controller switching in a task that requires both positioning and environment

interaction. This is advantageous since controller switching can lead to

instability and undesirable transients (Slotine, 1991).

Figure 3.14: Implicit Force Control System Architecture

3.5.2 Implicit Force Control Simulation Results

Simulation tasks were written for the first joint of the PUMA 550.
Although the stiffness of the simulated environment was known exactly, a
desired interaction force was not explicitly commanded, since the purpose of
this experiment was to examine the force resolution of the system, not the
absolute accuracy.

The performance of a simulated system without torque feedback was
first examined. In this case, the system control law is reduced to classical

cartesian-space PD form:
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Tout = Kp(Xdes - Xa)+ Kd(Xdes -'a) (3.13)

Without torque feedback, nonlinear friction can dominate the

performance at low speeds, and we would expect to observe relatively poor

force resolution (Armstrong, 1991). The control law of Equation 3.13 was

implemented in simulation, and a desired position which lay beyond the

simulated environment was commanded. A 2.0 mm magnitude sinusoid

was the desired trajectory. However, the manipulator could not track signals

of such small magnitude. Static friction was greater than the commanded

output torque, and thus no motion was observed. Successive trials were

performed, until recognizable force tracking was achieved. The interaction

force for a typical experiment is plotted in Figure 3.17.

Figure 3.15: Implicit Force Control Simulation Results--PD Control

As expected, the system under PD control demonstrates marked stick-

slip behavior, which leads to poor force resolution. It is clear that joint

friction impairs force control performance, as well as position control

performance. For PD control without torque feedback, the maximum

attainable force resolution was found to be approximately 2 N. These
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simulation results strongly suggest that high resolution force control is not

achievable under standard PD control.

The performance of a simulated system with torque feedback was then

examined. The control architecture for this system can be seen in Figure 3.14.

The simplified torque estimation equations (Equations 2.17 through 2.19)

were used. A desired position which lay beyond the simulated environment

was commanded. A sinusoidal desired position of magnitude 2.0 mm was

added to a DC offset of 1.0 mm, and this offset sinusoid was filtered through a

first-order filter with break frequency of 1 Hz in order to ensure that the

manipulator did not lose contact with the environment. The commanded

position profile can be seen in Figure 3.16. The interaction force is plotted in

Figure 3.17.
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Figure 3.16: Implicit Force Control Position Trajectory-PD Control with
Torque Feedback
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Figure 3.17: Implicit Force Control Simulation Results--PD Control
with Torque Feedback

The system is stable, and able to respond to minute changes in the

command signal, even while in contact with a stiff surface. This suggests that

implicit force control is a viable method for high-resolution force control.

Numerous simulation trials were performed, and the maximum attainable

force resolution was found to be approximately 0.1 N. In theory, with perfect

torque feedback, the limitation on attainable force resolution is set by the

resolution of the cartesian endpoint position. This limitation is

configuration-dependent and is dictated by the encoder resolution, as:

68max = J-86 (3.14)

where 86 is a vector composed of the angular displacement corresponding to

one encoder count.

3.5.3 Implicit Force Control Experimental Results

Experimental tasks were performed with the PUMA 550. The location

of the environment was measured, and a desired position which lay "inside"

the environment surface was commanded (see Figure 3.13).
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Experimental trials were first conducted for joint one of the PUMA

under PD control, without torque feedback. The desired position trajectory

and interaction force for a typical trial are shown in Figures 3.18 and 3.19.

Figure 3.18: Implicit Force Control Desired Position Trajectory--PD Control
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Figure 3.19: Implicit Force Control Experimental Results-PD Control
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As in the simulation, the system under PD control demonstrated stick-

slip behavior, which leads to poor position tracking, and poor force

resolution. For PD control without torque feedback, the maximum attainable

force resolution was found to be approximately 1.5 N. These results confirm

that high resolution force control is not achievable under standard PD

control.

Experimental trials were then conducted for joint one of the PUMA

with torque feedback. A sinusoidal desired position of amplitude 1.0 mm was

added to a DC offset of 1.0 cm, and this offset sinusoid was digitally filtered

through a first-order filter with a time constant of 2 seconds, in order to

ensure that the manipulator did not lose contact with the environment. The
commanded position profile can be seen in Figure 3.20.

The control system was identical to the system shown in Figure 3.14.

The simplified torque estimation equations (Equations 2.17 through 2.19)

were used in the torque feedback loop. The interaction force is plotted in
Figure 3.21.
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Figure 3.20: Implicit Force Control Position Trajectory--PD Control with
Torque Feedback
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Figure 3.21: Implicit Force Control Experimental Results--PD Control
with Torque Feedback

From Figure 3.21 we observe that the experimental system can respond

to minute changes in the commanded position signal, as predicted by the

simulation. It is also important to note that the system is stable during

contact. Stability during contact is an important property of implicit force

control.

Additional experimental trials were performed in an attempt to discern

the maximum allowable force resolution. Figure 3.22 displays the highest-

resolution trial recorded. From this figure we can see that sensor noise

becomes significant with respect to the signal level as the desired force

resolution increases. However, this noise is due to electronics, and is not

caused by high-frequency interaction forces. This is confirmed by the fact that

the noise frequency is identical before and after contact. Thus, the noise can

be filtered with a second-order Butterworth filter. The unfiltered and filtered

force signals are displayed in Figure 3.21. Note that the negative interaction

forces in are caused by sensor offset.

Based on all trials, it was concluded that the maximum achievable

force resolution is approximately equal to 0.5 Newtons. This number is
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approximate due to the uncertainty caused by noise filtering and

configuration dependency. Different manipulator configurations could have

drastically different force control properties, especially under the cartesian

control scheme of Figure 3.14. The estimation of 0.5 Newton resolution was

found to be a reasonable average value over a large portion of the PUMA

workspace.

Figure 3.21: Implicit Force Control Experimental Results--PD Control with
Torque Feedback

3.6 Summary and Conclusions
This chapter presented simulation and experimental studies of two

different types of force control: torque control, and implicit force control. The

theoretical framework for both control methods was discussed, and

predictions were made regarding system performance. Simulation results for

both types of force control were presented. Experimental results were then

presented which largely agreed with the simulation results.

Torque control with a dominant-pole filter was shown to be an

accurate, stable force control method. Implicit force control was shown to
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allow high force control resolution, although its accuracy is limited. Force

resolution, however, can reach the sub-Newton level with base-sensor

feedback. Implicit force control was also found to be stable during contact,

even against a stiff environment. It was shown that "real-world" effects, such

as numerical differentiation and sensor noise, hindered the experimental

systems.
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Chapter 4

Manipulator Identification

4.1 Introduction

This chapter describes theoretical and experimental studies of

manipulator mass and inertial parameter identification. Section 4.2 presents

a slightly modified version of a mass parameter identification method which

was developed for use with the base force/torque sensor (West et al., 1989).

Theoretical analysis and experimental results are presented. Section 4.3

presents a description of an inertial parameter estimation method which was

developed for use with the force/torque sensor (Liu et al., 1997). The

algorithm described in section 4.3 was developed by Guangjun Liu, and is

presented here for completeness. Theoretical analysis and experimental

results of mass and inertial parameter identification are presented.

4.2 Manipulator Mass Parameter Identification

Mass parameter identification refers to the determination of masses

and center of mass locations of the links of a manipulator. These parameters

are important for gravity compensation and model-based control schemes,

but are not usually known by robot manufacturers. Thus, methods to identify
these parameters have been developed (West et al., 1989).

Mass parameter identification is conceptually simple. Consider the

single d.o.f. manipulator shown in Figure 4.1. The goal of mass parameter
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identification is to identify the link mass, m, and the distance of the center of

mass from the joint, c.

Figure 4.1: A One Degree-Of-Freedom Static Manipulator

The relationship between torque and link mass is:

1: = m-g-c-cosine(0) (4.1)

It is clear that the product of the link mass and distance of the center of

mass from the joint can be determined from a single measurement of the

joint torque, r, and joint angle, 0. That is:

m-c = T / (g.cosine(0))

If additional information is desired, such at the magnitude of the link

mass independent of its center of mass location, the complete wrench at the

joint is required.

Equation 4.1 requires accurate knowledge of the joint torque, which is

difficult to obtain without purpose-built joint torque sensors. Most

identification theories assume accurate knowledge of the joint torque,

ignoring the fact that few manipulators are equipped with joint torque

sensors (Khosla and Kanade, 1985; Hsu et al., 1987; Goldenberg et al., 1989).

This section will focus on an identification method which is based on

feedback from a base force/torque sensor instead of sensed joint torque. It
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circumvents the requirement for accurate joint torque sensing, yet allows

highly accurate mass parameter identification.

4.2.1 Mass Parameter Identification Theory

A mass property identification theory was formulated which exploits

feedback from a base force/torque sensor, and requires reorientation of the

manipulator base (West et al., 1989). Reorientation of the manipulator base is

not always practical or desirable. A modified version of this theory, which

allows the manipulator base to remain fixed, is presented here. It should be

noted that reorienting the base allows the identification of additional mass

parameters (such a the total manipulator mass). For control of fixed-base

manipulators, however, this information is unnecessary.

Consider an n-joint manipulator mounted on a six-axis base

force/torque sensor, as shown in Figure 2.3. The manipulator has n+1 links,

where link 0 and link n+l1 represent the base and the terminal link,

respectively. The wrench measured by the base force sensor is denoted as w.

We will assume that link 1 is rigid and immobile. Under this assumption, it

is desirable to express the base wrench w at an inertial frame fixed at joint 1.

The wrench at joint 1, w,, can be obtained as:

w, =Tw (4.2)

where Tis a force/moment transformation matrix (Craig, 1986).

A local coordinate system is fixed at the joint of each link i. With

respect to this coordinate system, the three mass parameters of link i are

denoted as follows: mry
= miryi  (4.3)

where mi is the mass of link i. The coordinates (r,,i,rzri)are of the center of

mass of link i with respect to joint i.
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Note that for a multi-link manipulator, the mass parameters in the

vector 0 may consist of a group of several parameters. This occurs if the

parameters are unidentifiable individually (An et al., 1985; An 1988). That is,

the grouped components always influence the base wrench in a coupled

manner, and their individual influence on the robot dynamics cannot be

determined. However, this grouping does not affect gravity compensation or

robot modeling, since these grouped parameters must occur together in any

static equations. (A more detailed discussion of parameter grouping will be

presented in Section 4.3.1).

The wrench at joint 1 is related to the mass parameters of the links as:

wi=UQ (4.4)

where U is a matrix determined by kinematics and joint position of the

manipulator, and can be determined from static equilibrium equations. The

vector 0 represents the mass parameters of links 1 through n. A detailed

derivation of Equation 4.4 can be found in the literature (An et al., 1985; An,

1988).

Combining Equations 4.2 and 4.4 yields:

w=T-'1U (4.5)

Denoting

y=T-1U (4.6)

gives

w=y # (4.7)

When m measurements are used, the elements of Equation 4.7 can be

augmented as:
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w(1)
w(2)

w(m)

Y(1) 1
y(2)

y(m)J

(4.8)

Equation 4.7 can then be rewritten as:

W = YO (4.9)

When the manipulator is moved to different configurations, the

components of W and Y vary. In theory, if we wish to identify r mass

parameters, the number of different manipulator configurations which must

be considered is equal to Fr/6], since each measurement supplies six static

equations (one from each component of the base wrench). Then, the

calculation of the vector 0 would be accomplished as follows:

0 = Y-1 -W (4.10)

If Y is non-square, the matrix least-squares inverse (YT y)- YT can be

used.

In practice, however, the number of measurements which must be

taken is greater than r/6. This is due to the fact that the Fx, F,, Fz, and M z

components of the base wrench are configuration invariant, and thus do not

contribute unique equations. Thus, the theoretical minimum number of

configurations required becomes [r/21, since each measurement contributes

only two equations, from Mx and M,.

It is intuitively obvious that in order to identify the mass parameters of

several manipulator links, each link should be exercised. That is, all joints of

the manipulator should move with respect to one another during data

collection. This observation leads to a metric on identification which is

defined by the condition number of the matrix Y-' (or (YT Y)-1 yT if Y-1 does not
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exist). An estimate of the magnitude of errors on 0 caused by measurement

errors in W can then be defined as follows (West et al., 1989):

| <11: C II0 W (4.11)

Where C is the matrix condition number, 6 is the error magnitude, and 8W is

the magnitude of the error vector corresponding to W. This equation implies

that a large condition number could cause some parameters to be greatly

influenced by errors in W. Thus, C should be as small as possible.

One way to minimize C is to collect redundant data points. In this case,

Y is non-square and the matrix least-squares inverse (Y' y)-lyT is used in the

computation of P. In practice, all joints of interest should move through

most of their range of motion. This usually ensures a well-conditioned

matrix.

4.2.2 Mass Parameter Identification Experimentation

Mass parameter identification experiments were conducted on the first

three joints of a PUMA 550 five d.o.f. manipulator, shown in Figure 2.5.

Joints four and five (the wrist joints) were excluded from this analysis due to

their small influence on manipulator mass.

As explained in Section 4.2.1, only the Mx and My components of the

base wrench are configuration dependent, and thus contribute independent

equations. Thus, w of Equation 4.7 can be written as:

w = (4.12)

The matrix y was developed from a static analysis of the PUMA

(Corrigan, 1994). This matrix relates the base wrench w and the mass

parameter 0 vector as follows:

Ssl -cl slc2 -sls2 s1c23 -sls231

Y = -cl -sl -clc2 cls2 -clc23 c1s23 (4.13)
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In this notation, (si, ci) represents (sin(0i), cos(ei)), and (sij, cij)

represents (sin(0i+0j), cos(0i+0j)).

The vector of mass parameters, 0, was determined by inspection to be:

mr'1
mirzi + m2rz2 + (m2 + m 3)d2 + m3rz3 + m3 d3

m2rx2 + (m2 + m3)a 2

m2ry2

m3rx3 + m 3 a3

m3ry3

(4.14)

Refer to Appendix A for a kinematic description of the PUMA 550.

Numerous experiments were performed, with varying ranges of joint

motion. A typical experiment is described below. The first three joints of the

PUMA were commanded to follow linear trajectories (in joint space) within

the following bounds:

01: -900 to -2700 02: -350 to 850 03: 00 to -90 °

The manipulator was stopped at 50 equally-spaced points, and the base

wrench W was compiled. Since 50 data points leads to 100 equations, the

matrix Y was of dimension (100x6). This non-square matrix was inverted

with the least-squares inversion technique, as follows:

0 = (yT y)-lyT .-W (4.15)

The numerical values of the vector P were computed as:

0.0231

-5.4622

3.4887

0.2379

0.6359

-0.0087

These values are similar to those computed by previous researchers

(Armstrong et al., 1986; Corrigan, 1994). This comparison can be seen in Table

4.1. The discrepancy in the term (m 3r3 x + m3a 3) is due to the fact that the
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reported data is for a PUMA 560 manipulator, which contains an additional

wrist joint, and thus an additional motor in link three. The term (m 2r 2, +

(m2+m 3)a 2) is also influenced by this additional motor.

m lrx

m 1rzl + ...

m2rx2 + . . .

m2ry2

m3rx3 + m3a 3

m3ry3

Experimentally
Determined
Parameters

0.0231

-5.4622

3.4487

0.2379

0.6359

-0.0087

Previously
Determined

Values (Corrigan)

0.1593

-5.8440

4.6137

0.1298

2.2527

-0.0738

Physically
Measured Values

(Armstrong)

0

-5.3080

5.0650

-0.1044

2.6170

0

Table 4.1: Comparison of Mass Parameter Values

However, comparison to published data is an inconclusive test of the

method's accuracy, since several researchers have reported substantially

different values for PUMA mass parameters (Corke, 1994). Thus, the

identified mass parameters must be verified by more direct methods.

The accuracy of the computed parameters was verified by comparing

the measured moment vector (i.e. the data from the base sensor) with a

predicted moment vector. The predicted moment vector was calculated off-

line using a calculated 0 vector and knowledge of the robot joint positions

along a trajectory. That is, the measured moment vector was compared to the

product ((yT y)-lyT. ) at each point along the trajectory. The results of this

comparison can be seen in Figures 4.2 and 4.3.
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Notice the excellent agreement between measured and predicted

moments. The "random" appearance of Figure 4.3 implies that no systematic

errors are present in the estimation process. It is therefore safe to conclude

Chapter 4: Identification

________

....
... .....

.......



that the computed parameters will be effective in a gravity compensation

scheme, or a static manipulator model.

Table 4.2 numerically presents the results of Figures 4.2 and 4.3. Since

the noise level of the AMTI sensor is approximately 0.5 N-m, we can

conclude that the estimation accuracy has surpassed the level of

measurement noise (Corrigan, 1994). It should be noted that this level of

accuracy is achievable due to oversampling and averaging. This is possible

since during mass parameter identification experiments, data collection time

is not constrained.

RMS Error
(N-m)

0.0403

0.0367

Maximum Error
(N-m)

0.1233

0.1275

Table 4.2: Comparison of Measured and Computed Moment Vector

4.3 Manipulator Inertial Parameter Identification

Inertial parameter identification refers to the determination of masses,

center of mass locations, and moments of inertia of the links of a

manipulator. Mass parameter identification can thus be viewed a subset of

inertial parameter identification. Inertial parameters are important for

dynamic manipulator modeling and model-based control schemes, but are

not usually known by robot manufacturers. Thus, methods to identify these

parameters have been developed (An et al., 1985; Khosla and Kanade, 1985;

Gautier and Khalil, 1990).

Unlike mass parameter identification, inertial parameter identification

requires that data be collected during manipulator motion, since inertia is a

dynamic property. Therefore, the methods for identifying inertial parameters

are fundamentally different from methods for identifying mass parameters.
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Let us return to the one link example of Figure 4.1 to demonstrate this.

In this case, we assume the manipulator is accelerating at a rate ca.

Figure 4.4: A One Degree-Of-Freedom Dynamic Manipulator

The relationship between torque and link mass is:

T = m-g-c-cosine(O) + I - (4.9)

Unlike Equation 4.1, this equation has two unknown quantities: the

product m -c, and the link inertia I. However, the problem is not

indeterminate, since it can be solved as long as multiple data points are

available.

Examining Equation 4.9, we can see that knowledge of both joint torque

and joint acceleration are required. Joint torque measurement difficulties

have been discussed in Section 4.2 and Chapter 2. Acceleration

measurements are difficult to obtain due to noise amplification that is

inherent in numerical differentiation.

Difficult theoretical issues of inertial property identification can be

observed in this simple example. One issue involves the joint motion: how

fast does the link need to accelerate in order to obtain a "good" estimate of the

mass properties? (And, for a multi-link robot, what level of velocity must be

obtained?) What motion profile leads to a "good" estimate? Another

question is of inertial parameter grouping: do inertial parameters occur in
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"groups" (as they did in mass parameter identification), and if so, how can we

identify these groups?

The answers to these questions are intuitively less obvious than they

were for mass parameter identification, since they require examination of the

dynamics of a multi-d.o.f. manipulator. The following section will address

these issues, while developing a generalized inertial parameter estimation

procedure.

4.3.1 Inertial Property Identification Theory

An inertial property identification theory was formulated which

utilizes data from a base force/torque sensor (Liu et al., 1997). This theory is

presented here for completeness.

Consider again the n-joint manipulator mounted on a six-axis base

force/torque sensor, as shown in Figure 2.3. The wrench at joint 1, w,, can be

obtained as:

wl=Tw (4.10)

where Tis a force/moment transformation matrix (Craig, 1986).

A local coordinate system is fixed at the joint of each link i. With

respect to this coordinate system, the ten inertial parameters of link i are

denoted as follows:

mi

Mir~i
Mir'i
I.

XXI

Ixyi

Ixzi

I .i
lyzi

-zzi 1

(4.11)
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where m i is the mass of link i. The coordinates (rxi,ryi,rzi)are of the center of

mass of link i with respect to joint i. The elements of the inertia tensor of

link i about joint i are represented by (IxxiIxyi,xziIyy ,IyziIzzi). It should be

noted that the inertia tensor is expressed with respect to the joint, not the

center of mass of the link.

The wrench at joint 1 is related to the inertial parameters of the links

as:

w1=U4 (4.12)

The vector 4 represents the inertial parameters of all links. The matrix

U is a matrix determined by the kinematics, joint velocity and acceleration of

the manipulator. Since it relates the base wrench to joint motion, U can be

determined by writing the dynamic equations of motion for the manipulator

with respect to a reference frame fixed at the sensor center.

Combining Equations 4.10 and 4.12 yields:

w=T-1Uo (4.13)

Denoting

y=T-'U (4.14)

gives

When m measurements

augmented as:

w=yO (4.15)

are used, the elements of Equation 4.7 can be

w(1)
w(2)

w(m)

y(1)
y(2)

y(m)

(4.16)

Equation 4.15 can then be rewritten as:
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W = YO (4.17)

This equation is identical to Equation 4.9. Note, however, that the

matrix Y includes dynamics terms (i.e. Y = f(q, c, )), where in Equation 4.9 it

contained only static terms (Y = f(q)).

The vector 0 can generally be estimated from Equation 4.17 using the

least-squares method as:

= (Y TY)-' YTW (4.18)

However, the least-squares method may not be applied directly when

(yTY)-' does not exist. In this case, the ridge regression or singular value

decomposition methods can be used to solve this problem. Ridge regression

is a technique which makes (yTy) invertible by adding a small number d to

the diagonal elements. Singular value decomposition is a technique which

reformulates the matrix Y is terms of a diagonal matrix I and two orthogonal

matrices U and V. This new matrix is invertible. More detail on these

methods can be found in the literature (Marquardt and Snee, 1975; Golub and

Van Loan, 1983).

I) Elimination of the Acceleration Requirement

To compute the elements of Y in Equation 4.17, knowledge of joint

acceleration is required. However, it is difficult to measure manipulator joint

acceleration directly, and estimating acceleration with position or velocity

signals is usually difficult due to noise. A low-pass filter transformation can

help overcome this problem (Goldenberg et al., 1989; Liu and Goldenberg,

1996). Applying a low-pass filter with unity DC gain to both of sides of

Equation 4.17 yields:

(W), = (Y), 4 (4.19)

where
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1
(.), = L-'[ L[.]] (4.20)

s+1

where L[ ] and L-'[ ] represent the Laplace transform and the inverse Laplace

transform respectively, and I is a positive constant.

Since acceleration terms in Y appear only in conjunction with

functions of the joint angles q, a term containing q can be generally

represented by f(q)qj (Hsu et al., 1987). Its Laplace transform is:

- af(q)
L[f(q)4j ] = sL[f(q)q,] - L[i~~q, ij] (4.21)

i=1 aqi

Applying the low-pass filter to both sides of Equation 4.21 leads to (Hsu
et al., 1987; Liu and Goldenberg, 1996):

1 1 1 _ _f(q)

L[f(q)i ] = sL[f(q)q ]- L[ q( q
s+l s+1 s+1 ]q

1 1 , f(q). (4.22)
= 1(1 )L[f(q)qj ] i4----- i j ]

s+1 s+ i=1 +qi

Applying an inverse Laplace transformation to both sides of Equation

4.22 yields:

, af(q)
(f(q)q4), = l[f(q)4 - (f (q)4 ),] - ( -a iij) (4.23)

Thus, no acceleration term appears on the right-hand side of Equation

4.22. This greatly simplifies the practical implementation of the identification

method.

II) Filtering of Velocity Measurement Noise

The first term of the right-hand side of Equation 4.23 is actually the

difference between the unfiltered and filtered values of f(q)4j, multiplied by

the filter parameter 1. This term is sensitive to the noise that is inevitably

Chapter 4: Identification



present in the computed joint velocity, 4j. For example, when f(q)=l,

Equation 4.23 becomes:

(f(q)4j)1 = (4j), = l[4q - (q4),] (4.24)

which could be dominated by measurement noise when the low-pass filter

bandwidth parameter I is large.

To overcome this problem, the transformation defined by Equation

4.20 is applied again to Equation 4.19:

((W))d = ((Y))d (4.25)

where d is another positive constant that determines the bandwidth of this

second low-pass filter.

After applying the second low-pass filter, Equation 4.23 becomes:

, af(q)
((f(q)tj))d jd= l[(f(q) 4)d - ((f(q)4j))d] - ((I af(q 4i4•)d (4.26)

i=1 qi

And Equation 4.24 becomes:

((f(q)q))d ((j))d = [()d - (())d] (4.27)

Equation 4.25 is used to estimate 0 using the least squares technique.

When [((YT))dO((Y)I)d] - 1 exists, we can estimate 0 using :

= [((YT)) )d -d - T J ((YT))d((W)1 )d (4.28)

As described earlier, the ridge regression or singular value

decomposition methods must be used when [((yT)l)d((Y)I)d]-I does not exist.

When implementing the parameter identification algorithm, it is clear

the parameter d should be set high compared to 1. It should be low enough,

however, to filter out velocity measurement noise. This will be

demonstrated in the experimental results presented in Section 4.3.2.
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III) Elimination of the Effect of Sensor Offset

It is assumed in the previous analysis that the wrench w is caused by

the dynamic motion of the manipulator. However, undesirable output

offsets usually exist in strain gage force/moment sensors, due to mismatched

electronics or mechanical preloading. In most cases, these offsets can be

eliminated by measuring the sensor output at zero load, and removing this

measurement from future readings. In our case, however, a manipulator is

bolted to the base sensor, and thus it is impossible to measure the sensor

output at zero load. The sensor offset could be measured by removing the

manipulator from the base sensor, but this is impractical.

The dynamic wrench is also corrupted by the presence of a gravity-

induced wrench. This wrench can be compensated for with gravity

compensation techniques (Corrigan, 1994). However, although these

methods are accurate, a more direct method is desired.

In summary, the base sensor output contains the motion-related

wrench, gravity-induced wrench, and sensor offset. That is:

Ws = Wm + (Wg + Wo) (4.29)

where wmis the "dynamic" (i.e. motion-related) wrench, which is zero when

the manipulator is stationary. The wrench caused by gravity, w,, is mixed

with the sensor offset, w o.

The effect of sensor offset can be eliminated by extracting the motion-

related wrench from Equation 4.29:

Wm = Ws - (Wg + Wo) (4.30)

where ws is measured during robot motion along a given trajectory. Since

(wg+wo) depends only on the position of the manipulator, it can be measured

as follows: the manipulator is controlled to move along the "dynamic"

trajectory, but is stopped at each sampling position, and the sensor output is

recorded. This "static" output corresponds to the (wg+wo) term of Equation

4.30, and can simply be subtracted from the "full" wrench.
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Without gravity, Equation 4.15 becomes:

Wm = YmO (4.31)

For m sampling points:

W =

Wm(l)

Wm(2)

_Wm(m)

Ym =

ym(1)

Ym( 2 )

Ym(m)

(4.32)

From Equation 4.31:

Wm = Ym0 (4.33)

The identification algorithm, Equation 4.28, can then be modified using

Equation 4.31 as:

= [((Y ) ((m )d - 1 ((Y )m d ((Wm) )d (4.34)

4.3.2 Inertial Parameter Identification Experimentation

Experiments were performed on a PUMA 550 robot arm, using only the

first two joints. The manipulator was mounted on an AMTI six-axis

force/torque sensor as shown in Figure 2.5. During the experiments, joints

three, four, and five were immobilized, in the following configuration: oq=-

142.10, q4=00 , q=00 . Joint positions were measured with the PUMA's optical

encoders, and joint velocities were computed off-line via forward

differentiation of the position data. The sampling rate for the experiments

was eight milliseconds.

For the coordinate system illustrated in Figure 2.5, the equations

relating manipulator motion to the wrench exerted at the first joint were

expressed in Equation 4.17 as:

W= Y
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where

is a single measurement of the base sensor wrench, transformed to the origin

of the <xyzl> coordinate system via a simple force/moment transformation.

This transformation is performed under the assumption that the trunk of the

PUMA is rigid. Thus, the transformation removes a constant term (do+dj)

from the equations of the matrix Y. The elements of Y are given in Appendix

C. The inertial parameter vector 0 is given by:

mrz, + m,2
cam 2

m2ry2

Ixyl

yy + m2d + 2d 2rz2 xx2

Iyzl

Ixy2

Ixz2

Iyy2 - xx2

Iyz2

Izz2

where a = a2+rx2 and 0 = d2+rz2.

Note that some of the elements of 0 appear as sets of grouped

parameters. These groups are usually determined through the use of energy-

based methods (Siciliano et al., 1996). In our case, the minimum parameter

set was obtained analytically, by performing QR decomposition on the matrix

Y (Siciliano et al., 1996). Both the matrix formulation and QR decomposition
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were accomplished with the aid of the symbolic processor Maple. After QR

decomposition is performed, it is easy to observe the numerical

interdependence of the columns of Y, and thus identify parameter groups.

The excitation trajectories of the two joints are shown in 4.5 and 4.6.

The determination of "exciting" trajectories for real-world identification

experiments is in itself a research topic (Gautier and Khalil, 1992). In our

experiments, the excitation trajectories were designed with the aid of a

MATLAB simulation. A simulated PUMA system (identical to the one

described in Chapters 2 and 3) was asked to follow numerous different high-

acceleration, high-velocity trajectories, and inertial parameters were

computed based on the simulated base wrench. Suitably exciting trajectories

were those which yielded well-conditioned (yTy) matrices (Siciliano et al.,

1996).

Figure 4.5: Excitation Trajectory--Joint One
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Figure 4.6: Excitation Trajectory-Joint Two

The identification algorithm of Equation 4.34 was implemented using

Matlab. Filter parameters were chosen to minimize the effect of sensor noise

while maintaining reasonable signal bandwidth. For the filter parameters

1=1, d=50, the following estimate of 4 was obtained:

0.1125

-4.2455

2.2202

-0.1834

-0.2278

1.2489
0.1338

0.1213

-0.1247

0.8596
-0.0086
0.9867
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Although there is data in the literature for inertial parameter

identification of a PUMA 560, it is not applicable to these experiments, since

only the first two joints of the PUMA were exercised. Thus, in our

experiments the mass and inertial properties of the second "link" contain

contributions from the third link. Also, the PUMA 560 differs slightly from

the PUMA 550 used in the experiments, as it contains an additional wrist

motor. A more direct means of verifying the experimental results must

therefore be employed. This verification is the focus of the following section.

I) Inertial Parameter Identification Verification

To verify the results of the previous section, the estimated inertial

parameters were used to predict the output of the base force/torque sensor for

a completely different trajectory, shown in Figures 4.7 and 4.8. The base

wrench during this trajectory was measured, and compared to a predicted

wrench. The predicted wrench was computed as ((Ym))d ~, where 0 is the

vector of estimated inertial parameters. Filtering is performed as in previous

experiments (i.e. the same filter parameters were used for all experiments).

Figure 4.7: Verification Trajectory--Joint One
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Figure 4.8: Verification Trajectory--Joint Two

The predicted base wrench agrees well with the measured base wrench.

This can be observed in Figure 4.9a-g.
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4.4 Summary and Conclusions

This chapter presented an approach to both mass and inertial

parameter identification which exploits feedback from the base force/torque

sensor. The fundamental problems of parameter identification were

discussed, and a theoretical framework was presented for each method.

Experimental results were then presented, which showed that both methods

are capable of achieving high levels of accuracy.

Unmodeled joint friction does not degrade the accuracy of the results,

since the method does not use motor current to estimate the joint torque, but

rather a direct measurement from the base sensor. The mass parameter

estimation process is simple to implement, and the error is potentially less

than the sensor noise level, due to the sensor data averaging.
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Chapter 5

Conclusions and Suggestions for Further Work

5.1 Contributions of This Work

This thesis described the application of a base-mounted force/torque

sensor to manipulator identification and control. Simulation and

experimental data were presented which show the utility of base-sensor

feedback in precision position and force control, and manipulator mass and

inertial parameter identification.

Simulation and experimental studies of fine-motion position control

of both a PUMA 550 and a Schilling Titan II manipulator were described.

Simulation results for a PUMA 550 manipulator executing fine-motion tasks

were presented and shown to be consistent with experimental results,

confirming the validity of the simulation. Extensive experimental results for

the Schilling Titan II system were presented, for unloaded free motion tasks,

and free motion tasks with a payload. The results showed substantial

improvement over conventional control schemes.

Simulation and experimental studies of torque control and implicit

force control were then presented. The theoretical framework for both

control methods was discussed, and predictions were made regarding system

performance. Simulation results for both types of force control were

presented. Experimental results were then presented which largely agreed

with the simulation results.

Torque control with a dominant-pole filter was shown to be an

accurate, stable force control method. Implicit force control was shown to
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allow high force control resolution, although its accuracy is limited. Force

resolution, however, can reach the sub-Newton level with base-sensor

feedback. Implicit force control was also found to be stable during contact,

even against a stiff environment. It was shown that "real-world" effects, such

as numerical differentiation and sensor noise, hindered the experimental

systems.

Unique approaches to both mass and inertial parameter identification

were presented, which exploit feedback from the base force/torque sensor.

The fundamental problems of parameter identification were discussed, and a

theoretical framework was presented for each method. Experimental results

were then presented, which showed that both methods are capable of

achieving high levels of accuracy.

Unmodeled joint friction does not degrade the accuracy of the results,

since the method does not rely on estimates of the joint torque. The mass

parameter estimation process is simple to implement, and the error is

potentially less than the sensor noise level, due to the sensor data averaging.

5.2 Suggestions for Further Work

This thesis has shown that feedback from a base force/torque sensor

can greatly improve manipulator performance for delicate position and force

control, and can allow highly accurate parameter identification. Although

substantial work has been completed in these areas, the unexplored potential

of base-sensor feedback remains considerable.

Optimization of the torque control loop has yet to be performed. To

date, a simple integral-type compensator has been employed, and controller

tuning has been largely empirical. Although excellent results have been

obtained, advanced controller design techniques should lead to further

performance enhancement.
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In the area of position control, experimentation with fully dynamic

torque estimation has not yet been performed. Dynamic torque estimation

would require knowledge of joint acceleration, which could limit its

usefulness. However, with sufficiently high-quality sensors and fast

sampling, an acceleration estimator could be constructed. Although some

error would likely result in the torque estimation, system performance would

still be greatly improved.

In the area of force control, it is clear that explicit force control could be

performed with the base force/torque sensor. Hybrid control could also be

benefited by base-sensor feedback. With the addition of a wrist-sensor to the

manipulator, a system could be developed which is able to perform both

high-precision closed-loop force control, and high-precision position control.

Base-sensor feedback could also be used to improve performance in

master-slave teleoperated systems. A master arm with torque feedback would

appear virtually frictionless to the operator, and would thus allow improved

positioning performance of the slave arm.

In the area of parameter identification, further work remains in the

area of identifiability of inertial parameters. An energy-based algorithm for

computing the minimum set of inertial parameters is conceivable, similar to

those found in the literature (Siciliano et al., 1996).
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Appendix

PUMA 550 Kinematic Description

Kinematic Parameter Values (Corri.an,1994):

dO = 0.189 m
dl = 0.672 m
d2 = -0.2435 m
d3 = 0.098 m

a2= 0.4318 m
a3 = 0.4331 m
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Appendix B

Base Force/Torque Sensor Calibration
Procedure

This section describes a decomposition-based on-site calibration

method for force/torque sensors, which was developed with Guangjun Liu.

B.1 Standard Calibration Method

The output voltage signals from a force/torque sensor are related to the

applied wrench by:

f = Cv (B.1)

where f 3 q9" is the force/torque wrench measured by the base sensor. The

vector v 3 91" is the output signals from the sensor. The matrix C 3 91×"n

which relates f and v is a calibration matrix. The task of sensor calibration is

to determine the values of the components of the matrix C. This is difficult

due to the fact that C is not diagonal. Small off-diagonal terms, called

coupling terms, remain and must be accurately identified.

Calibration is generally performed by applying precisely known loads to

the sensor and recording the output signals. These data are then used to

calculate C. There are various ways to apply the loads and calculate C. For

example, suppose n different loads are applied to the sensor: fi (i=1,2,...,n).

The corresponding signals are vi  (i=1,2,...,n). From Equation B.1, the

following equation holds:

[fi f2 ... f] = C [ v2 ... Vn] (B.2)

Or in a more compact form:
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F = CV (B.3)

where F = [fi f2 ... fn] and V = [vi v2 ... Vn].

If the n different loads are applied such that vi (i=1,2,...,n) are linearly

independent, then V is full rank and invertible. Then C can be obtained as:

C = F V' (B.4)

Equation B.4 requires only n data points. However, for each data point,

the n loads have to be carefully applied to ensure that V is invertible and

well-conditioned. Theoretically, this would imply that each load would be

applied directly along one of the sensor's n axes, with no off-axis loading.

This requirement is impossible to achieve in practice, due to coupling

among the axes. For instance, when a sensor is fixed horizontally as shown

in Figure 2.5, it is impossible to apply a load purely in the Fz direction, since

the PUMA manipulator physically interfereres with load application.

Additionally, since the sensor center is located at some distance inside the

sensor body, it is difficult to apply a pure force without exerting a

corresponding moment.

In practice it is much easier to apply a load to one axis of the sensor if it

is not necessary to know its effect on the other axes. This observation is the

basis for a calibration method that requires that applied loads be well known

along only one axis at a time. The method is described in the following

section.

B.2 Proposed Calibration Method

Consider the i' axis of f in Equation B.1:
n

fi = Cij vj i=1,2,...,n (B.5)
j=1

Equation B.5 can be rewritten as follows:
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fi = vC = [ VI V2 . Vn
j=1

Cil
Ci2

Cin

(B.6)

For k data points,

fil

fi2

fik

Vill Vi21 . . Vikl

Vil2 Vi22 Vik2

Viln Vi2n Vikn

Cil
Ci2

Cin

(B.7)

Or in a more compact form:

Fi = ViCi (B.8)

To determine the n components of Ci, at least i data points are required.

If Vi is invertible, Ci can be found by:

Ci = Vi-1 F
i  (B.9)

In practice it is desirable to use more than the minimum number of

data points, in order to assure a full rank, well-conditioned matrix. If more

than n data points are used, Ci can be estimated using the least squares

method:

Ci = (Vi TVi) " Vi T Fi  (B.10)

Note that this equation is only a function of forces applied in the i

direction. Equation B.6 extracts the applied force along a single axis from

from the applied wrench, and thus forces in other directions (Fk, kfi) need not

be measured. Note, however, that Vi TVi will be non-singular and well-

conditioned only when components in the non-control directions (Vk, k#i)

are suitably large and variable. Thus, forces must be applied along non-

control directions, but it is again important to note that the magnitude of

these forces does not need to be precisely known. The importance of this

results will be clarified in the following section.
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B.3 Practical Implementation

In the calibration procedure, a force or moment of well-known

magnitude was applied to an axis. Several data points were collected, by

applying known loads of increasing magnitude. For each measurement,

unknown forces were applied to the orthogonal axes, one axis at a time.

Moments were applied by hanging known weights from a bar bolted to

the mounting plate, or by simple pulleys and cables (see Figures B.1 and B.2).

X0

Figure B.1: Application of Moments: Mx Direction (PUMA Robot Hidden)

X0

Figure B.2: Application of Mx Moment and Fx Force (PUMA Robot Hidden)

During the experiment, it is important to maintain parallellity of the

applied load with the axis of interest.

In summary, for calibration of a single axis of the base force/torque

sensor the following simple procedure was followed:

1) A well-known load was applied along the axis of interest, using

either a hanging weight (for the M x, My, and Fz directions) or a

pulley (for the Fx, F,, and M z directions).

ri I I r

1-41 1 r%
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2) Additional well-known loads of different magnitudes were

applied along the axis of interest in the same manner. This was

done in order to improve the accuracy of the subsequent least-

squares estimation.

3) With a known load applied to the axis of interest, a load of

unknown magnitude was applied to an orthogonal (non-

control) axis.

4) Step (3) was repeated along a different orthogonal axis, until all

orthogonal axes had been exercised.

5) The row entry to the calibration matrix C corresponding to the

axis of interest was computed with Equation B.10.
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Appendix

Complete Inertial Parameter Matrix for
PUMA 550 Manipulator

The following equations describe the elements of the 6x15 matrix

Equation 4.17. For compactness, the notation (ci, si) represents (cos(0,),sin(E

Y, = -C1 cq - s12 1
1 2 = -s1lq + c 1q1

Y13 -SIC 241 - ci 2 42 1 2 - 2  +- 2ss 24 42
Y 14 = SIS 2ql - c1c2 j2 + 42 c1 s2 S+ cS2q2 +" 2SIc2 1 q2
Y, = -SI 1•2 +

1 6 = -S 142d2 + C1q1d2

Y17 = 0

Y9 = 0
Y,,o =0
Y,10 =0

Y, 12 =0

Y, 13 =0

Y,14 =0
Y, 15 = 0

21 = -S 1 + Clql

23 c241 - SIS2q 2 - SIC2 - SIC2q2 - 2Cs 1 242

Y2 4  -cs2 - + 4SIC22  + SIS2q2 - 2 CS 2 9qq 2

Y25 1= 
214 2+S1

Y26 d2 1 2 +d2 S141
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Y27 = 0

Y28 = 0
Y29 = 0
Y2 10 = 0
Y211 =0

Y212 =0

Y2 13 = 0
Y2 14 =0

Y3 =0
Y32 =0Y3 1 = 0

3 = -S + c2q2
34 Cq2 - s2q2

Y35 =0

Y;3 6= 0

Y37 =0

Y38 = 0

Y39 =0

Y3 10 = 0
Y311 =0

Y3 12 -0

Y3 13 =0

Y3 14 =0

3 15 =0
Y,41 = 0

Y43 = --CS?42d2 + C - CS~ cd40 -- CIC4 -- ,,

Y45 =0

Y46 = 0
Y47 = -S12q + Cl 1

Y4 8 = 0

Y47 = -S142 + Clql

Y48 = 0

Y4 9 = C41 + Sl4l

Y410 = C1 C2S2241 - SIC 2S2 2 +4 ,42(2c, c -c21)
Y4 1 1 = 41(2c,1c - c-) + ql (-2s1 c2 + s,) - 4clc 2s 2414 2
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4 12 1 CIS 2 - cIS2q + 1c242 + SIS2
Y413= -CIc 2 S2 11 + SIC 2S2q 1 +4 142 (-2Cc2 + C1)

Y =2 *22
414 1 1C2 - c 1c2q2 - CS 2q 2 + SIC241

Y51 = 0
Y52 = 0

Y53 = -SIS234d 2 + SIS2d2  + + c1S24d 2 - Slc 2d242
Y54  --SIC2 42d 2 

+ S C2d2 CC2d 2 s1 s2d2 2

Y55 =0

Y56 = 0

17 = 4 - c141

Y58 =0

5 9= S•• c1 •1
Y5 10 C2S241 + cc•2S24I + q,42(2s1c2 - s, )
Y = (2sc -_ S) + 4 (2c,1  -c 1 ) - 4s1 c2S 2 1 2

Y5 12 q1S2 - SIS 2q2 - CIS2, + SIC2q2
Y5 13 = -IC2S 24 1 - CIC 2S2 2 + 14'2 (-2sic + s1)
Y5 14 1 SIC2 - SIC 2q2 - CLC 2 1 - SIS24 2

Y515 = -C14 2 + 4142SI
Y61 =0

Y62 =0

Y63 = -42 S2 d2 -q 2d 2

Y64 
= - 2 c2d2 - 22d2

Y65 = 2,4d 2

Y66 1d2
Y6 7 = 0

Y6 8 = 1
Y69 = 0

Y610 = 41q (1- c22)+2c2S2l142

Y6,1 = 2c2s2 , +4 ~2 (4c2 - 2)

Y6 12 2= cq + S2q2
Y6 13 = -2c 2s241 , 2 +
Y6 14 - -S 2q 2 + C2q 2

Y615 = 0
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