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Abstract

We study permutations with a prescribed number of subsequences of a given type. First
we consider the case when this number is zero and the subsequence is of length 4. We
show that only very few permutations of length n, in fact simply an exponential number
of them, have this property. An exact formula for the pattern 1342, and a link with
labeled plane trees and planar maps is presented. We prove that some subsequences of
length four are significantly easier to avoid than others. We also show recursive methods
for treating longer patterns.

Then we consider the general case, that is, when this prescribed number is not neces-
sarily zero. We prove that if the subsequence is 132, then the number of permutations of
length n containing exactly r subsequences of the above type is a polynomially recursive
function of n, for any natural number r. A surprisingly simple closed formula for the
case of r = 1, and a recursive formula for r = 2 are included.

Finally, we consider the partially ordered set of all finite permutations and construc-
tively prove that it contains an infinite antichain.
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Chapter 1

Introduction

Let q = (qi, q2 , , qk) E Sk be a permutation, and let k < n. We say that the permu-

tation p = (pl ,p 2, " . ,pn) E Sn is q-avoiding if there is no 1 < iaq < iq2 < .< i < n

such that p(il) < p(i 2) < ... < p(ik). Otherwise we say that p contains q as a pattern,

or p contains a subsequence of type q. For example, a permutation is 12345-avoiding if it

does not contain any increasing subsequence of length 5 in the above one-line notation.

For another example, a permutation is 132-avoiding if it doesn't contain three elements

among which the leftmost is the smallest and the middle one is the largest.

It is a natural and easy-looking question to ask how many permutations of length n

(or, in the sequel, n-permutations) avoid a given pattern q. In the rest of this work this

number will be denoted by S,(q). Throughout Chapter 2 we will study this function of

n and q.

If the length of q is three, (and practically, only then) this question can indeed be

satisfactorily answered fairly easily.

Theorem 1 Let q be any permutation of length 3. Then Sn(q) = cn = (n)/(n + 1).

Proof: We first show that Sn(q) does not depend on q. It is clear that a permuta-

tion avoids 123, then its reverse avoids 321, thus S,(123) = Sn(321). Similarly, if a



permutation avoids 132, then its reverse avoids 231, its complement (that is, the per-

mutation obtained by subtracting the entries of the original permutation from n + 1)

avoids 312, and the reverse of its complement avoids 213. Therefore we also have

S,(132) = Sn(231) = Sn(312) = S,(213). All we need to show to prove our claim is

that Sn(123) = S,(132). This is the content of the next lemma.

Lemma 1 Sn(123) = S,(132) for all n.

Proof: The are several ways to prove this first nontrivial result of the subject. We

choose the one of Simion and Schmidt [25], as the machinery used by them will be useful

for the purposes of the next chapter. Here and later in this work we will always use the

one-line notation for permutations. An entry of a permutation which is smaller than all

the entries that preceed it is called a left-to-right minimum. Note that the left-to-right

minima form a decreasing subsequence.

We will construct a bijection f from the set of all 123-avoiding n-permutations onto

the set of all 132-avoiding n-permutations which leaves all left-to-right minima fixed.

f is defined as follows. We take any 123-avoiding permutation p, and fix all its left-

to-right minima. Then going from the left to the right, we put the elements which are

not left-to-right minima into the empty slots between the left-to-right minima so that in

each step we place the smallest element we haven't placed yet which is larger then the

previous left-to-right minima.

For example, if p = 4 6 5 1 3 2, then the left-to-right minima are the entries 4 and 1,

thus we leave them in the first and fourth positions. The first empty slot is the second

position and we put there the smallest entry which is larger than 4, that is to say, the

entry 5. Similarly, we put 6 to the third position as it is the smallest of the entries not

yet used which is larger than 4 (in fact, this is the only such entry). Then by the same

reasoning we put 2 into the fifth position and 3 into the sixth position. This way we get

the permutation f(p) = 4 5 6 1 2 3



Clearly, f(p) is 132-avoiding, because if there were a 132-pattern in it, then there

would be one which starts with a left-to-right minimum, but that is impossible as elements

smaller than any given left-to-right minimum are written in increasing order.

The inverse of f is even easier to describe: keep the left-to-right minima of p fixed and

put all the other elements into the empty slots between them in decreasing order. Then

we obtain a permutation which is the union of two decreasing subsequences and thus

123-avoiding. If we apply this operation to f(p), then we must get p back, as the left-

to-right minima haven't changed, and the other elements must have been in decreasing

order in p, too, otherwise p wouldn't have been 123-avoiding. This completes the proof

of the lemma. O

To prove the theorem, it is therefore enough to show that Sn(132) = (2n/(n + 1).

Suppose we have an 132-avoiding n-permutation in which the entry n is in the ith position.

Then it is clear that any entry to the left of n must be smaller than any entry to the

right of n. Moreover, there are ci-1 possibilities for the substring of entries to the left of

n and cn-i possibilities for that to the right of n. Summing for all i we get the following

recursion:
n-1

= ci-cn-i. (1.1)
i=0

Therefore, if C(x) = En=o CnX n is the the ordinary generating function of the cn, then

(1.1) implies C2 (x)x + 1 = C(x), which yields

C(x) = 2x (1.2)
2x

By standard methods this yields

" 1 2k 212n - 4_
C(x) = 12k -( 2 k-1 (2n-2 (1.3)

k=1 n=o



and the statement of the theorem is proved. O

If q is longer than three, then the most exact result is due to Regev [21] and deals

with monotonic patterns:

Theorem 2 For all n, Sn(1234 ... k) asymptotically equals

(k - 1)2n

Ak (k2- 2k )/ 2

Here

Ak = ' L JX[D(xŽ, X2 , ... i k) , e-(k/2)X2 ]2 dxidX2 ... dxk,

where D(x,,x 2 , ... ,X) = k i<j(xi - xj), and yk = (1/V/2-r) k- " k k2/2.

We will not need this strong version of the theorem, only the weaker statement saying

that if q = 1 2 3 ... k, then Sn(q) < (k - 1)2n, thus we only prove this latter one here.

Let us say that an entry x of a permutation is of order i if it is the top of a rising

subsequence of length i, but there is no rising subsequence of length i + 1 it is the top of.

Then for all i, elements of order i must form a descending subsequence. Therefore, a q-

avoiding permutation can be decomposed into the union of k-I descending subsequences.

Clearly, there are kI - 1 ways to partition the elements into k - 1 classes and there are

less than k"- 1 ways to assign each position to one of the subsequences, completing the

proof. O

However, if q is not monotonic, then this problem turns out to be surprisingly hard.

The following result from complexity theory [7] indicates that this is not by chance:

Lemma 2 Let a be a given n-permutation. Then the problem of deciding whether an

arbitrary permutation b is contained in a as a pattern is NP-complete. Moreover, the

problem of counting the number of n-permutations avoiding b is #P-complete.



That is why in the general case all we can expect is an upper bound or an asymptotic

formula for S,(q), not an exact formula. The major problem of this area is to prove the

conjecture of Wilf and Stanley [33] from 1990, stating that for each pattern q there is an

absolute constant c so that Sn(q) < c' holds. In Section 2.1 we will prove this conjecture

for all patterns of length 4.

For the case of q = 1342, however, we do better. We are going to present an exact

formula for S, (q) by presenting interesting links between permutation pattern avoidance,

labeled rooted trees, and planar maps. This formula will enable us to prove several

conjectures for this pattern.

We have seen in Theorem 1 that S,(q) is the same for all patterns q of length 3.

Numerical evidence computed by West in [34] shows, however, that this is not the case

anymore if q is of length 4. Some of the values Sn(q) for n < 8 from the above source

are shown below.

* for Sn(1342): 1, 2, 6, 23, 103, 512, 2740, 15485

* for S,(1234): 1, 2, 6, 23, 103, 513, 2761, 15767

* for Sn(1324): 1, 2, 6, 23, 103, 513, 2762, 15793.

This observation rises the question whether it will always remain the case that

Sn(1423) < Sn(1234) if n > 6 and S,(1234) < Sn(1324) if n > 7. In Section 2.1 we

answer this question in the affirmative. These are the first results we know of which

prove that one pattern is more likely to occur in a random permutation than another

one.

A general and probably very hard question is to decide whether S,(ql) < Sn(q2) for

some n implies S,(ql) < Sn(q2) for all n. We point out that a positive answer to this

question would imply a positive answer for the conjecture of Wilf and Stanley. Indeed, if

q is any pattern of length k, then let q' be the monotonic pattern of length k + 1. Then



Sk+l(q) = (k + 1)! - k2 - 1 < Sk+l(q') = (k + 1)! - 1 would obviously hold, implying

Sn(q) < Sn(q') < k 2n (by Theorem 2 ) for all n.

The possible hardness of this problem is also underlined by the surprising fact that

if the length of q is fixed, then the monotonic pattern does not provide the maximum or

the minimum of the values Sn(q). This remains the case when q is of length 5 or 6, too.

Numerical evidence in [34] also suggests that it is much closer to the maximum than to

the minimum. A complete understanding of this phenomenon would certainly boost the

efforts to prove the S,(q) < cn conjecture.

It has also been conjectured that while S,(q) is not the same for all patterns of length

k if k > 3, these numbers will be at least asymptotically equal. We will disprove this

conjecture by showing that S,(1234) < Sn(1324) even in the asymptotic sense. Even the

weaker conjecture that limn, 0o Sn(q)1/n = (k - 1)2 will be disproved in Section 2.1.3.

In section 2.2 we consider longer patterns. We will show a series of results, all of

which show that if the conjecture of Wilf and Stanley is true for some pattern q, then

it is true for some other patterns q' as well, where q' can be built out of q in a specified

way.

In Chapter 3 we study permutations with a required number r (thus not necessarily

0) of occurences of a given pattern q. Here it would not be too interesting to ask the

order of magnitude of the number of such permutations as it is clear that deleting r

points from such a permutation we can always get a permutation with no subsequences

of type q. Instead, we will adapt a more qualitative approach for this function Sq,,(n).

Again, if q is of length 3, then exact enumeration is possible. Recently, Noonan has

proved [19] that if q 123, then Sq,(n) = (n3). In section 3.2 we will prove a similar,

yet even simpler formula for the case of q = 1 3 2 and r = 1, showing Sq,l(n) = (2n-33).

We point out that this formula is even simpler than that for r = 0, proved in Theorem

1. It is obtained by a generating function argument, and thus a direct combinatorial

explanation for this formula is yet to be found. By obvious reasons of symmetry, this



result completes the analysis of the case when q is of length 3 and r = 1. Then in section

3.3 we prove a recursive formula for the case r = 2.

However, the general conjecture of this area, made by Zeilberger and Noonan in [37]

states much more. It says that for any fixed q and r the function Sq,r(n) is P-recursive

in n. (Recall that a function f : N -+ R is called P-recursive if there exists a natural

number k and polynomials po(n), p1(n), p2 (n), .. Pk(n) so that for any positive integer n,

there exist polynomials Po, P1 , " - -, Pk E Q[n], with Pk = 0 so that

Pk(n)f(n + k) + Pk-l(n)f(n + k - 1) + ... + Po(n)f(n) = 0

for all n. Some basic properties of P-recursive functions will be given in section 3.1).

To illustrate how far we are from the solution of this conjecture, we note that if q is

longer than three, then we do not have a proof for any r > 0. If r = 0, then with the

single exception of Theorem 9 of this work, which proves the conjecture for q = 1342, we

have a proof only for the monotonic patterns of any length (see [38] or [13]) and of course,

for those patterns for which it is known that they are avoided by as many n-permutations

as for the monotonic patterns of the same length are.

In Section 3.4 we will prove this conjecture for the case of q = 1 3 2 and any fixed

r. This is the first result we know of when the case of each r is solved for some given

q. In fact, we show that this remains true even if we impose some restrictions on the

permutations. We also show the stronger statement that the ordinary generating function

G,(x) of S13 2 ,r(n) is algebraic, in fact, it is rational in the variables x and 1 - 4x. We

use this information to show that the degree of the polynomial recursion satisfied by

S132,r(n) is r.

In Chapter 4, the result of which has been obtained in joint work with Daniel A.

Spielman, we take the set of all finite permutations and consider it as a partially ordered

set in which ql • q2 if and only if ql is a pattern contained in q2. This will clearly be a



graded poset. The conjecture we address in Chapter 2 and numerical evidence suggest

that any element of this poset is covered by almost every element (that is, all but c0) of

any higher rank. Therefore, it could seem plausible that if we choose a large number of

elements of this poset, then no other element will be incomparable to all of the chosen

elements. However, this is not the case; in fact, we are going to construct an infinite

antichain in this poset.



Chapter 2

The Sn(q) < cn conjecture

2.1 The case of length 4

2.1.1 Earlier results

Our goal in this chapter is to prove that for any pattern q of length 4 there exists a

constant c so that Sn(q) < cn for all n. There are 24 patterns of length four; now we are

going to give a survey of results previously obtained for them making it possible for us

to restrict our attention to only two out of these 24 patterns. These patterns are 1 3 4 2

and 13 2 4.

It is clear that applying the symmetry arguments already seen in the proof of Theorem

1 (using the reverse and complement of permutations) we can restrict ourselves to those

patterns of length four in which

* the first element is smaller than the last one and

* the first element is 1 or 2.

This still leaves us 11 patterns, namely 12 3 4, 12 4 3, 13 2 4, 13 4 2, 14 2 3, 14 3 2,

2 13 4, 2 14 3, 2 3 14, 2 3 4 1 and 2 4 13. Note that if p contains q, then the inverse of p



clearly contains the inverse of q (as the inverse of a permutation matrix is its transpose),

so Sn(q) = Sn(q-'). Therefore, we can drop 1 4 2 3, too, as its inverse 1 3 4 2 remains on

the list. Similarly, we can drop 2 3 1 4 as its complement is 3 2 4 1 and the reverse of that

is again 1 4 2 3. The next serious step in advance is the following theorem of West and

Babson:

Theorem 3 Sn(123 ... rar+ar+2 ... ar+t) = Sn(r... 321ar+lar+2 ... ar+t), for any natu-

ral numbers r, t and n.

Proof: See [34] for r = 2, see [1] for r = 3 and see [35] for r > 3. O

In words, if the first r elements of a pattern are the smallest ones and they are in

increasing order, their string can be reversed without changing the value of Sn(q).

This theorem, together with its dual versions imply that we can drop 1 2 4 3, 1 4 3 2,

2134, 2143 and 2341 as each of them is avoided by Sn(1234) n-permutations. (And we

know by Theorem 2 that Sn(1234) < 9n). The only remaining pattern we have to deal

with is 2 4 1 3. This is taken care of by the following lemma of Stankova.

Lemma 3 [27] S,(1423) = Sn(2413) for all n.

Therefore, the only patterns we still need to prove the conjecture are indeed 1 3 2 4

and 1 3 4 2. The next two sections deal with these two patterns.

2.1.2 The pattern 1324

Numerical evidence we presented in the introduction showed that if n = 7 or n = 8, then

S,(1234) < Sn(1324). We are going to show that this remains the case as n grows. Recall

that elements in a permutation which are smaller than any elements they are preceded

by are called left-to-right minima. Similarly, we will say that an element is a right-to-left



maximum if it is larger than any element it precedes. Note that the right-to-left maxima

form a decreasing subsequence as the left-to-right minima do.

Theorem 4 For all n > 7, Sn(1234) < Sn(1324).

Proof: We are going to classify all permutations of n according to the set and position

of their left-to-right minima and right-to-left maxima. This definition is crucial in all

this chapter, so we announce it on its own:

Definition 1 Two permutations x and y are said to be in the same class if

* the left-to-right minima of x are the same as those of y

* they are in the same positions

* the same holds for the right-to-left maxima.

For example, x = 5 1 2 34 and y = 5 1 3 2 4 are in the same class, but z = 2 4 3 1 5 and

v = 2 4 1 3 5 are not, as the third entry of z is not a left-to-right minimum whereas that

of v is.

The outline of our proof is going to be as follows: we show that each nonempty

class contains exactly one 1234-avoiding permutation and at least one 1324-avoiding per-

mutation. Then we exhibit some classes which contain more than one 1324-avoiding

permutation and complete the proof.

Lemma 4 Each nonempty class contains exactly one 1234-avoiding permutation.

Proof: Suppose we have already picked a class, that is, we fixed the positions and

values of all the left-to-right minima and right-to-left maxima. It is clear that if we

put all the remaining elements into the remaining slots in decreasing order, then we get

a 1234-avoiding permutation. (Indeed, the permutation obtained this way consists of

3 decreasing subsequences, that is, the left-to-right minima, the right-to-left maxima,



and the remaining entries. Thus, if there were a 1234-pattern, then by the pigeon-hole

principle two of its elements would be in the same decreasing subsequence, which would

be a contradiction). On the other hand, if two of these elements, say a and b, were in

increasing order, then together with the rightmost left-to-right minimum on the left of a

and the leftmost right-to-left maximum on the right of b they would form a 1234-pattern.

Finally, if the chosen class is nonempty, then we can indeed write the remaining numbers

in decreasing order without conflicting with the existing constraints- otherwise the class

would be empty. (In other words it is the decreasing order of the remaining elements

that violates the least number of constraints). O

Corollary 1 The number of nonempty classes is asymptotically c -9n/n 4 , where c is as

in Lemma 1.

This is immediate by Lemma 4. Ol

Lemma 5 Each nonempty class contains at least one 1324-avoiding permutation.

Proof: First note that if a permutation contains a 1324-pattern, then we can choose such

a pattern so that its first element is a left-to-right minimum and and its last element is a

right-to-left maximum. Indeed, we can just take any existing pattern and replace its first

(last) element by its closest left (right) neighbor which is a left-to-right minimum (right-

to-left maximum). Therefore, to show that a permutation avoids 1324, it is sufficient to

show that it doesn't contain a 1324-pattern having a left-to-right minimum for its first

element and a right-to-left maximum for its last element. (Such a pattern will be called a

good pattern). Also note that a left-to-right minimum (right-to-left maximum) can only

be the first (last) element of a 1324-pattern.

Now take any 1324-containing permutation. By the above argument, it has a good

pattern. Interchange its second and third element. Observe that we can do this without



violating the existing constraints, that is, no element goes on the left of a left-to-right

minimum it is smaller than, and no element goes on the right of a right-to-left maximum

it is bigger than. The resulting permutation is in the same class as the original because

the left-to-right minima and right-to-left maxima have not been changed. Repeat this

procedure as long as we can. Note that each step of the procedure decreases the number

of inversions of our permutation by at least 1. Therefore, we will have to stop after at

most (n) steps. Then the resulting permutation will be in the same class as the original

one, but it will have no good pattern and therefore no 1324-pattern, as we claimed. O

Notation (by example): in the sequel we write al * a2 * * bl for the class of

permutations of length 6 which have two left-to-right minima, al and a2, which are

in the first and third position, and one right-to-left maximum, bl, which is in the last

position.

Finally, we must show that "at least one" in the above lemma doesn't always mean

exactly one. If n = 7, then the class 3 * 1 * 7 * 5 contains two 1324-avoiding permutations,

3612745 and 341672 5. This proves S7 (1234) < S7 (1324). For larger n we can extend

this example in an easy way, such as taking the class n (n - 1) ... 8 3 * 1 * 7 * 5.

This shows that there are more 1324-avoiding permutations than 1234-avoiding ones and

completes the proof of the theorem. O

Definition 2 A class which contains more than one 1324-avoiding permutation is called

a large class.

Now we can attack the problem of asymptotics in a simple way. All we need to do

is to evaluate the number of large classes. If there is a positive contant C so that the

number of large classes is at least e times the number of all classes for all n, then we

get that Sn(1234) is asymptotically smaller than Sn(1324). The following theorem shows



that this is indeed the case.

Theorem 5 S,(1234) is asymptotically smaller than S,(1324).

Proof: We exhibit a set of large classes. They will be built up from our above example,

that is, the class 3 * 1 * 7 * 5 for n = 7. Now let n > 7 and let us choose any class C of

permutations of length n - 7. (For example, let n = 12 and let C be 1 * * 5 2 ). Now we

define the composition of the class C and the class 3 * 1 * 7 * 5 to a class C' of length n as

follows. Simply add 7 to all left-to-right minima and right-to-left maxima of C and leave

the empty slots between them as they are. Then write the class 3 * 1 * 7 * 5 after this

modified version of C. In this way our example results in the class 8 * * 1293 * 1 * 7 * 5.

Clearly, this way we can define the compositon of permutations of these classes as well:

if pl = (al, a2 ,..., an- 7) E C and p2 = (3, bl, 1, b2 , 7, b3, 5) E 3 * 1 * 7 * 5, then let their

composition be pi = (al + 7, a2 + 7, ... , an- 7 + 7, 3, b1, 1, b2, 7, b3, 5) E C'.

Now it is easy to see that if we have the permutations pi E C and p2 E 3 * 1 * 7 * 5, and

both pi and P2 are 1324-avoiding, then their composition is 1324-avoiding, too. (Indeed,

it is not possible for a 1324-pattern to start somewhere among the first n - 7 entries and

end somewhere among the last 7 entries). Therefore, every class obtained this way will

be large because we have two different choices for P2, and at least one choice for pl.

(In our example, we get the permutations

* 812101193612745 and

* 812101193216725).

This shows that we can build up a large class of permutations of length n from every single

class of permutations of length n - 7. The number of these classes equals Sn_ 7(1234)

by Lemma 4 and this is larger than (1/9 7)Sn(1234) by Theorem 2. This immediately

implies that S,(1324) > (1 + 1/9 7)Sn(1234), completing the proof of the theorem. O



We have thus proved by the above theorem that Sn(1324) is asymptotically larger

than Sn(1234), disproving the conjecture stating that all patterns of length k are equally

likely to occur. We need more work to prove that Sn(1324) < K" for some constant K.

This is the content of the next theorem. Before we start proving it, we introduce some

new machinery that will be very useful in what follows.

Definition 3 Two n-permutations x and y are said to be in the same weak class if the

left-to-right minima of x are the same as those of y, and they are in the same positions.

Thus here we don't require that the right-to-left maxima agree. For example, 3 4 1 2 5

and 3 5 1 2 4 are in the same weak class, though they are not in the same class.

The number of weak classes is easy to determine:

Lemma 6 The number of nonempty weak classes is c* = (2n)/(n + 1).

Proof: Similar to the proof of Lemma 4. Each weak class contains exactly one 123-

avoiding permutation which is obtained by writing all the entries which are not left-to-

right minima in decreasing order. The number of 123-avoiding permutations is known to

be C, = (2")/(n + 1) (see Theorem 1 ) and the proof is complete. O

Definition 4 Let p be an n-permutation with m left-to-right minima, am > am-l, ' . >

al = 1. Then an entry z of p which is not a left-to-right minima has rank i if ai < z <

ai+l.

Now we can state and proof our theorem on the upper bound for the number of 1324-

avoiding permutations.

Theorem 6 For all n, we have Sn(1324) < 32".



Proof: As the number of weak classes is smaller than 4n , it suffices to show that no weak

class can contain more than 8" 1324-avoiding permutations, and we will be done. Let W

be any weak class of n-permutations with left-to-right minima am > am-1 > " " > al = 1.

We are going to estimate the number of 1324-avoiding permutations in W. It is clear that

entries of rank i must be on the right of ai; otherwise some of them would be left-to-right

minima. Therefore, in any 1324-avoiding n-permutation, the permutation of the entries

of rank i must be 213-avoiding. We know that there are bi = ai+1 - ai - 1 such entries

and thus Cbi < 4bi such permutations for each i. The problem is that there are several

ways to merge these strings of elements of rank i into one single n-permutation. Thus

we have to estimate the number of ways that merging can be done.

First suppose m = 2, thus W has only 2 left-to-right minima. Then the entries of

any permutation in W can only have rank 1 or 2; we are going to call them small and

large entries (respectively). Then it is easy to see that the following must hold in any

1324-avoiding permutation in W:

1. No 21-pattern of small entries can be followed by a large entry. Thus the set of small

entries on the left of the rightmost large entry must form an increasing subsequence.

2. No small entry can be inserted between the two large entries of a 12-pattern both

of which are on the right of al = 1. Thus for any small entry s, the large entries

put between 1 and s are larger than the large entries put on the right of s.

Indeed, if either condition is violated, al = 1 and the three entries violating that condition

would form a 1324-pattern.

If the first i elements of a permutation p form an increasing subsequence but the first

i + 1 don't, then we say that the initial increasing subsequence of p is of length i. If there

are j ways to insert a bar among the entries of p so that everything before the bar is

larger than everything after the bar, then we say that p has j cuts. We will call i and j

the parameters of p.



The above observations suggest that in order to estimate the number of ways we can

merge the strings of small and large entries together, we need to find an upper bound for

the number of 213-permutations with long initial increasing subsequences as well as for

those with many cuts. Now we are going to prove two lemmas which will provide these

upper bounds.

Lemma 7 Let xi be the number of 213-avoiding n-permutations starting with an increas-

ing subsequence of length at least i. Then xi < 4"

Proof: It is easy to see that a 213-avoiding permutation is completely determined by the

set and position of its right-to-left maxima. Indeed, once we know these, there is only one

entry we can write into the rightmost empty slot: the one which is largest among those

which are smaller than the closest right-to-left maximum to the right of that position.

Thus it is enough to estimate the number of possible sets and positions of the right-to-left

maxima to get an estimate for the number of 213-avoiding permutations with the given

property.

If we wanted to estimate the number of all 213-permutations, then we could simply

say that we have less than 2n choices for the set of these right-to-left maxima and less

than 2n choices for their positions, so the number of these permutations is less than 4".

However, if we require that the first i entries form an increasing subsequence, then

it is clear that no right-to-left maximum can be put into any of the first i - 1 positions.

Thus we have only 2n-i+1 choices for the positions of the right-to-left maxima. Note that

we have less than 2 n-1 choices for their set as the entry n must be part of that set and

that set cannot have more than n - i + 1 elements.

Therefore, the number of permutations with the given property is less than 2 n- i+ l

2n-1 = 4" / 2i as claimed. O



Lemma 8 Let yi be the number of 213-avoiding n-permutations which have at least i

cuts. Then yi < 4"

Proof: Induction on n and i. The statement is obvious for n = 1, 2, 3 and i = 0. Suppose

we know it for all pairs (m, j) which are smaller than (n, i) in the coordinate-wise ordering;

that is, j < i and nl < n and at least one of these inequalities is strict.

Let p be an n-permutation in which the entry 1 is in the j-th position where 1 < j < n.

Then there cannot be any cuts after 1. Thus the induction hypothesis applies to the string

of the first j entries, and we get that there are less than 4 j/ 2i permutations which contain

the entry 1 in the j-th place and have at least i cuts.

If j = n, then there is a cut before the last entry (which is 1), so there must be at

least i - 1 other cuts in the permutation. We know by induction on i that there are less

than 4 n-1/ 2
i - 1 permutations with that property.

This yields
4n -1 n-1 4 j 4n-1 4j n-1-i

Yi < 2i+- - 2i- + - 1 43-
j=i j=O

4n -1 4i 4n - i - 1 4n -1 4n 2.5 - 4n  4n
+ < +- <

2i - 1  
2 i 3 2 i-1 22i 3 3- 2i  2i

Now we are in a position to complete the estimate of the number of ways to merge

the strings of entries of rank r together. Recall that our weak class W has only two

left-to-right minima, al = 1 and a2. Suppose we have a bl-permutation on the entries of

rank 1 whose initial increasing subsequence is of length i and a b2-permutation on the

entries of rank 2 which has j cuts. Then the constraints specified before the last two

lemmas show that the only way to merge these two permutations is to insert the entries

of the initial increasing subsequence of the first one into the cuts of the second one (in

fact, only cuts on the right of a, are eligible), or on the left of all of them, or on the right



of all of them, then to put all the other small entries at the end of the n-permutation.

This can be done in (i+j) ways. Therefore, by the two previous lemmas, there are less

than
(i + J) 4b 4b2 < 

4 b+b2 = 4 n-2 (2.1)

ways two pick two permutations with these parameters and merge them. Finally, we have

to consider all possible choices for i and j. Clearly, i + j < n, so we have less than (n)

possibilities for the pair (i, j). Therefore, W has less than (n) 4n-2 < 8n 1324-avoiding

permutations.

Now consider the general case, i.e., when W has m > 2 left-to-right minima. Call

entries of rank m large and the others small. We claim that it is sufficient to show that

for any given choice of the vector of the parameters (il, i2 , , "im, j, j2,7 7 ,jm), we have

at most 4" 1324-avoiding permutations with that vector of parameters. (Here ik and jk

denote the length of the initial increasing subsequence and the number of cuts in the

substring of elements of rank k).

Indeed, the initial increasing subsequence of the elements of rank r can contain at

most one position after which a cut can be obtained. Thus ir + jr < b, + 1 = ar+l - ar,

and therefore E,(ir + jr) < n. This implies that we have at most 2n - 1 choices for the

vector (i1 , i2, ..." " 4, i,jl, j2,'" jr), since the number of all compositions of the integer n

is 2 - 1. (We can suppose that there is at least one element of each rank).

So let us estimate the number of 1324-avoiding permutations in W which have a given

vector (il, i2,' ... , 4i, j1, ... jr) of parameters. Suppose we already merged together

the strings of all small entries and we want to merge the outcome with the string of

large entries. As before, the large entries must form a 213-avoiding permutation, so the

estimate of Lemma 8 holds. We must be a little bit more careful with the small entries.

If am-1 and am-2 are not in consecutive positions, then the initial increasing subsequence

on the small entries can only contain entries of rank m - 1, thus we can simply apply



our estimate to the permutation of entries of that rank. If am-l, am-2, ' '',at are in

consecutive positions, then we can do the same for the 213-avoiding permutation of the

entries of rank at least t and at most m - 1. [as any 213-pattern on them would be

entirely on the right of at and would thus form a 213-pattern]. This means that less than

1/2ith of all 213-avoiding permutations on the large entries have an initial increasing

subsequence of length at least i, and less than 1/2jth of all 213-avoiding permutations

on the small entries have at least j cuts. Thus we can always apply the method seen in

the proof of formula 2.1 and get that we have less than 4" 1324-permutations for any

given vector of parameters. Thus W has less than 8n 1324-avoiding permutations, as

claimed. As we have only cn = (2)/(n + 1) < 4n choices for W, the proof of the theorem

is complete. O

2.1.3 The pattern 1342

A correspondence between trees and permutations

In this section we are going to prove an exact formula for the number Sn(1342) of 1342-

avoiding permutations of length n showing that

(7n 2 - 3n - 2) 1 n (2i - 4)! n -i + 2n-
Sn(1342)= 2 (1)"- + 3 2i+ i!(i -2)! 2(1)

~~2 ~i=2 i!(i- 2) 2

by first proving that the ordinary generating function H(x) for these numbers Sn(1342)

has the following simple form:

32x
H(x) = ( 8x 2 + 12x + 1 - (1 - 8x)3/2'

This is the first result we know of which provides an exact formula for the number



S,(q) of permutations of length n avoiding a given pattern q if q is longer than three

and is not 1234. Results concerning the case of length three can be traced back to two

centuries; [8] already makes references to earlier work. The formula for q = 1234 is given

in [13]. Until recently it has not even been known that Sn(1342) < cn for some constant

c. In [2] this upper bound with c = 9 was proved. This formula pushes down this c to 8,

and proves that it is optimal.

In our proof, we are going to present a new link between the enumeration of permu-

tations avoiding the pattern 1342 and the that of 3(0, 1)-trees, a class of labeled trees

recently introduced in [10]. We will show that the number 1,(1342) of indecomposable

1342-avoiding permutations of length n is equal to the number of P(0, 1)-trees on n nodes.

The set D' ( ,'1) of 3(0, 1)-trees on n nodes is known to be [10] equinumerous to the set

of rooted bicubic maps on 2(n + 1) vertices, and an exact formula for the number tn

of these is provided in [32]. (These are planar maps with 2-colorable vertices which in

addition all have degree three and a distinguished "root" edge and face). Therefore,

I,(1342) = D(1) = t = 3 - 2n-1 . (2n)! So combinatorially, the number of all

n-permutations avoiding 1342 will be shown to be equal to that of plane forests on n

vertices in which each component is a 3(0, 1)-tree. To our best knowledge, this is the

first time when permutations avoiding a given pattern are shown to have such a close

connection with some planar maps, though recently 2-stack-sortable permutations have

been shown to be equinumerous to nonseparable planar maps [11] [12]. Examining the

generating function H(x) we will be able to prove and disprove several conjectures for

the pattern 1342. H(x) turns out to be algebraic, proving a conjecture of Zeilberger and

Noonan [37] for the first time for a nonmonotonic pattern which is longer than three.

We will see that FS(1342) -+ 8, which disproves a conjecture of Stanley and implies

that limn-,oo(S,(1342)/Sn(1234)) = 0. We would like to point out the surprising nature

of this result: while Sn(q) = (2)/(n + 1) for any patterns q of length three, for the case

of length four there are sequences Sn(q) that are not only different from each other, but



their quotient also converges to 0.

Definition 5 [10] A rooted plane tree with nonnegative integer labels l(v) on each of its

vertices v is called a 0(0, 1)-tree if it satisfies the following conditions:

* if v is a leaf, then l(v) = 0,

* if v is the root and v l , v2, .. ,vk are its children, then 1(v) = =i l(vk),

* if v is an internal node and v1 , v2,2 * , Vk are its children, then 1(v) < 1 + =1 l(vk).

A branch of a rooted tree is a tree whose top is one of the root's children. Some rooted

trees may have only one branch, which doesn't necessarily mean they consist of a single

path.

We start by treating two special types of 3(0, 1)-trees on n vertices. These cases are

fairly simple- they will correspond to 231-avoiding (resp. 132-avoiding) permutations,

but they will be our tools in dealing with the general case.

First we set up a bijection f from the set of all 1342-avoiding n-permutations starting

with the entry 1 and the set of 3(0, 1)-trees on n vertices consisting of one single path. In

other words, the former is the set of 231-avoiding permutations of the set {2, 3, 4 ... , n}.

So let p = (piP2" ' Pn) be an 1342-avoiding n-permutation so that pi = 1. Take an

unlabeled tree on n nodes consisting of a single path and give the label l(i) to its ith

node (1 < i < n - 1) by the following rule:

l(i) = #{j < i so that pj > p, for at least one s > i }.

Finally, let l(n) = l(n - 1). In words, l(i) is the number of entries on the left of pi

(inclusive) which are larger than at least one entry on the right of Pi. We note that this

way we could define f on the set of all n-permutations starting with the entry 1, but in

that case, as we will see, f would not be a bijection. (For example, the images of 1342

and 1432 would be identical).



Example 1 If p = 14325, then the labels of the nodes of f(p) are, from the leaf to the

root, 0,1,2,0,0.

Lemma 9 f is a bijection from the set of D' (0 '1 ) of all P(0, 1)-trees on n vertices con-

sisting of one single path to the set of 1342-avoiding n-permutations starting with the

entry 1.

Proof: It is easy to see that f indeed maps into the set of 3(0, 1)-trees: l(i +1) 1(i) +1

for all i because there can be at most one entry counted by l(i + 1) and not counted by

l(i), namely the entry pi+l. All labels are certainly nonnegative and 1(1) = 0.

To prove that f is a bijection, it suffices to show that it has an inverse, that is, for

any 0(0, 1)-tree T consisting of a single path, we can find the only permutation p so that

f(p) = T. We claim that given T, we can recover the entry n of the preimage p. First

note that p was 1342-avoiding and started by 1, so any entry on the left of n must have

been smaller than any entry on the right of n. In particular, the node preceding n must

have label 0. Moreover, n is the leftmost entry pi of p so that pj > 0 for all j > i if there

is such an entry at all, and n = p, if there is none. That is, n corresponds to the node

which starts the uninterrupted sequence of strictly positive labels which ends in the last

node, if there is such a sequence and corresponds to the last node otherwise. To see this,

note that n is the largest of all entries, thus in particular it is always larger than at least

one entry in any nonempty set of entries.

Once we located where n was in p, we can simply delete the node corresponding to

it from T and decrement all labels after it by 1. (If this means deleting the last node,

we just change l(n - 1) so it is equal to l(n - 2) to satisfy the root-condition). We can

indeed do this because the node preceding n had label 0 and the node after n had a

positive label, by our algorithm to locate n. Then we can proceed recursively, by finding

the position of the entries n - 1, n - 2, - - -, 1 in p. This clearly defines the inverse of f,

so we have proved that f is a bijection. O



Lemma 10 The number /(0, 1)-trees with all labels equal to zero is Cn- 1.

Proof: These /(0, 1)-trees are in fact unlabeled plane trees. We prove that they are

in one-to-one correspondence with the 132-avoiding permutations whose last entry is n.

Suppose we already know this for all positive integers k < n. Let T be a 3(0, 1)-tree

on n vertices with all labels equal to 0 and root r. Let r have t children, which are,

from left-to-right, at the top of such unlabeled trees T1, T2, ... , Tt on nl, n2 , ... , nt nodes.

Then by induction, each of the Ti corresponds to a 132-avoiding ni-permutation ending

with ni. Now add Ej=i+l nj to all entries of the permutation pi associated with Ti, then

concatenate all these strings and add n to the end to get the permutation p associated

with T. This is clearly a bijection as the blocks of the first n - 1 elements determine the

branches of T. O

Example 2 The permutation 341256 corresponds to the 3(0, 1)-tree with all labels equal

to 0 shown in Figure 2.

1C

1

Figure 2
An easy way to read off the corresponding permutation once we have its entries

written to the corresponding nodes is the well-known preorder reading: for every node,

first write down the entries associated with its children from left to right, then the entry

associated with the node itself, and do this recursively for all the children of the node.

Note that such a /(0, 1)-tree has only one branch if and only if the next-to-last element

of the indecomposable 132-avoiding n-permutation corresponding to it is n - 1.



Let's introduce some more notions before we attack the general case. An entry of

a permutation which is smaller than all the entries by which it is preceded is called a

left-to-right minimum.

Recall definition 3 from the previous Section: Two n-permutations x and y are said

to be in the same weak class if the left-to-right minima of x are the same as those of y,

and they are in the same positions.

Proposition 1 Each nonempty weak class W of n-permutations contains exactly one

132-avoiding permutation.

Proof: Take all entries which are not left-to-right minima and fill all slots between the

left-to-right minima with them as follows: in each step place the smallest element which

has not been placed yet which is larger then the previous left-to-right minimum. The

permutation obtained this way will be clearly 132-avoiding, and it will be the only one in

this weak class because any time we deviate from this procedure, we create a 132-pattern.

Definition 6 The normalization N(p) of an n-permutation p is the only 132-avoiding

permutation in the weak class W containing p.

Example 3 If p = 32514, then N(p) = 32415.

Definition 7 The normalization N(T) of a P(0, 1)-tree T is the /(0, 1)-tree which is

isomorphic to T as a plane tree, with all labels equal to zero.

Proposition 2 A permutation p is indecomposable if and only N(p) is indecomposable.

Proof: Let W be the weak class containing p, given by the set and position of its left-

to-right minima. It is clear that if p E W is decomposable, then the only way to cut it



in two parts is to cut it immediately before a left-to-right minimum a. Now if there is a

left-to-right minimum a so that it is in the n + 1 - ath position, then all entries which

are larger than a must be placed on the left of a and so all such permutations in W are

decomposable. If there is no such a, then for all left-to-right minima m, there will be an

entry b so that m < b and b is on the right of m, and so permutations in W will not be

decomposable. O

Corollary 2 If p is an indecomposable n-permutation, then N(p) always ends with the

entry n.

Proof: Note that the only way for a 132-avoiding n-permutation to be indecomposable

is to end with n. Then the statement follows from Proposition 2. O

Now we are in a position to prove our theorem about the number of indecomposable

1342-avoiding permutations.

Theorem 7 The number of indecomposable n-permutations which avoid the pattern 1342

I,(1342) = t, = 3 - 2n - 1  (2)!

(n + 2)!n!

Proof: We are going to set up a bijection F between these permutations and D(O ,'1) .

This will be an extension of the bijection f of lemma 9.

Let p be an indecomposable 1342-avoiding n-permutation. Take N(p). By corollary

2 its last element is n. Define F(N(p)) to be the /3(0, 1)-tree S associated to N(p) by

the bijection of lemma 10. Now write the entries of p to the nodes of S so that for all

i, the pi is written to the node where N(p)i was written in S. In particular, the left-

to-right minima remain unchanged. Figure 3 shows how we associate the entries of the

permutation 361542 to the nodes of N(T), which is the image of N(p) = 341256.



Figure 3

Now we are going to define the label of each node for this new 3(O, 1)-tree T and

obtain F(p) this way. (As an unlabeled tree, T will be isomorphic to S, but its labels will

be different). Denote i the ith node of T in the preorder reading, thus Pi is the ith entry

of p, (which is therefore associated to node i), while 1(i) is the label of this node. We say

that pi beats pj if there is an element Ph so that Ph, pi, pj are written in this order and

they form a 132-pattern. Moreover, we say that pi reaches Pk if there is a subsequence

Pi, Pi+al, * Pi+at, Pk of entries so that i < i + al < i + a 2 < ... < i + at < k and that any

entry in this subsequence beats the next one. For example, in the permutation 361542,

the entry 6 beats 5 and 4, 5 beats 4 and 2, and 4 beats 2, while 6 reaches 2 (of course,

each entry reaches all those elements it beats, too). Then let

1(i) = #j{ descendants of i (including i itself) so that there is at least one k > i for

which pj reaches Pk },

and let F(p) be the 3(0, 1)-tree defined by these labels. (Recall that a descendant

of i is an element of the tree whose top element is i). First, it is easy to see that F

indeed maps into the set of 3(0, 1)-trees : if v is an internal node and v1 , v2 , -. , Vk are

its children, then 1(v) • 1 + EC, 1 l(Vk) because there can be at most one entry counted

by 1(v) and not counted by any of its children's label, namely v itself. All labels are

certainly nonnegative and all leaves, that is, the left-to-right minima, have label 0.



If p = 361542, then F(p) is the 3(0, 1)-tree shown in Figure 4b.

1 0

Figure 4a Figure 4b

To prove that F is a bijection, it suffices to show that it has an inverse, that is, for any

3(0, 1)-tree T E D(°o'1), we can find the only permutation p so that F(p) = T. We again

claim that given T, we can recover the node j which has the entry n of the preimage p

associated to it, and so we can recover the position of n in the preimage.

Proposition 3 Suppose pn : n, that is, n is not associated to the root vertex. Then

each ancestor of n, including n itself, has a positive label. If Pn = n, then l(n) = 0 and

thus there is no vertex with the above property.

Proof: If pn = n, then nothing beats it, thus p, = 0. Suppose pn is not the root vertex.

To prove our claim it is enough to show that for any node i which is an an ancestor

of j, there is an entry Pk so that Pk is an ancestor of pi and n = pj reaches k. Indeed,

this would imply that the entry pj = n is counted by the label l(i) of i. Now let

am = Pl > a2 > ... a = 1 be the left-to-right minima of p, so that n is located between

ar and ar+1. Then n certainly beats all elements located between ar and ar+1 as ar can

play the role of 1 in the 132-pattern. Clearly, n must beat at least one entry yl on the

right of ar+l as well, otherwise p would be decomposable by cutting it right before ar+l.

If yl is on the right of i, then we are done. If not, then yl must beat at least one entry

Y2 which is on the other side of ari+1, where y is located between ar, and ar1+1 for the



same reason, and so on. This way we get a subsequence Yi, Y2, ... so that n reaches each

of the Yt, and this subsequence eventually gets to the right of i, as in each step we bypass

at least one left-to-right minimum, and thus the proposition is proved. O

Proposition 4 Suppose Pn = n. Then n is the leftmost entry of p which has the property

that each of its ancestors has a positive label.

Proof: Suppose Pk and n both have this property and that Pk is on the left of n. (If

there are several candidates for the role of Pk, choose the rightmost one). If Pk beats an

element y on the right of n by participating in the 132-pattern x Pk y, then x Pk n y is a

1342-pattern, which is a contradiction. So Pk does not beat such an element y. In other

words, all elements after n are smaller than all elements before Pk. Still, Pk must reach

elements on the right of n, so it beats some element v between Pk and n. This element

v in turn beats some element w on the right of n by participating in some 132-pattern

t v w. However, this would imply that t v n w is a 1342-pattern, a contradiction, which

proves our claim. O

Therefore, we can recover the entry n of p from T. Then we can proceed as in the

proof of Lemma 9: just delete n, subtract 1 from the labels of its ancestors and iterate

this procedure to get p. If any time during this procedure we find that the current root

is associated to the maximal entry that hasn't been associated to other vertices yet, and

the tree has more than one branch at this moment, then deleting the root vertex will

split the tree into smaller trees. Then we continue the same procedure on each of them.

The set of the entries associated to each of these smaller trees is uniquely determined

because T as an unlabeled tree determines the left-to-right minima of p. Therefore, we

can always recover p in this way from T. This proves that F is a bijection.



Thus we have set up a bijection between the set of indecomposable 1342-avoiding

n-permutations and DO(o,1) . Therefore the Theorem is proven. O

Note that in particular, F maps 132-avoiding permutations into /(0, 1)-trees with all

labels equal to 0 and permutations starting with the entry 1 into P(0, 1)-trees consisting

of a single path.

Corollary 3 Sn(1342) equals the number of plane forests on n vertices in which each

component is a /(0, 1)-tree.

Consequences for Enumeration

Tutte [32] has obtained the numbers tn by first computing a translate of their generating

function

SF() 3-(2n)! 8X2 + 12x -1+ (1- 8x) 3/ 2

F() .2 (n + 2)!n! 32x

By theorem 7, the coefficients of this generating function are the numbers 1,(1342).

Therefore, the generating function of all 1342-avoiding permutations is given by the

following theorem.

Theorem 8 Let s, = Sn(1342) and let H(x) = E 0 s' x " . Then

1 32x
H(x)= F'(x) 3 (2.3)

i>O 1 - F(x) -8 2 + 12x + 1 - (1 - 8x) 3 /2

Proof: Any 1342-avoiding permutation has a unique decomposition into indecomposable

permutations. This can consist of 1, 2,.. blocks, implying that sn = - tis, i, and

the statement follows. O



Theorem 9 For all n > 0 we have

S,(1342) = Sn(1342)
(7n 2 - 3n - 2) ( 13 2 1 (2i 4)! n

2 - ( -1) +3 2i+ - 2)!
2 i=2

-i
2

+ 2) (-1)n-2.

(2.4)

Proof: Multiply both the numerator and the denominator of H(x) by (-8x 2 + 20x +

1) + (1 - 8x) 3/2 . After simplifying we get

H(x) = (1 - 8x) 3/2 - 8x 2 + 20x + 1
2(x + 1)3 (2.5)

As (1-8x)3 /2 = 1-12x+ n>2 3-2n+2n 2 n-)! formula (2.5) implies our claim. O So the

first few values of Sn(1342) are 1,2,6,23,103,512,2740,15485,91245,555662. In particular,

one sees easily that the expression on the right hand side of (2.5) is dominated by the

last summand; in fact, the alternation in sign assures that this last summand is larger

than the whole right hand side if n > 8. As (2n-)! <  by Stirling's formula, we have

proved the following exponential upper bound for S,(1342).

Corollary 4 For all n, we have Sn(1342) < 8 .

It is straightforward to check that the numbers I, = tn satisfy the following recurrence

tn = (8n - 4)tn-1/(n + 2). (2.6)

In particular, 4/t -+ 8. Using this formula we can disprove a conjecture of Stanley

claiming that for all permutation patterns q of length k, the sequence fSn(q) converges

to (k - 1)2.

Theorem 10 ý/ = /Sn(1342) -+ 8 when n -- oo.



Proof: This is true as clearly tn sn < 8" by Corollary 4 and we know from (2.6) that

-t- -+ 8 if n - 00oo. O

Corollary 5 lim,,,o(Sn(1342)/Sn(1234)) = 0.

Proof: Follows from limn-~oo Sn(1234) = 9 [13] [21]. O

This Corollary certainly implies that S,(1342) < Sn(1234) if n is large enough. How-

ever, using the formulae of Theorem 9 and [13], we can easily show that this is true for

all n > 6. (This has recently been shown by a long argument in [2]).

Corollary 6 For all n > 6, we have Sn(1342) < S,(1234).

Proof: It is known [13] that

n 2i) (n 2 3k2 + 2k + 1 - n - 2knS(1234) = 2 o i (k + 1) 2(k + 2)(n - k + 1) (2.7)

One sees easily that the dominant summand is the one with i = 2n/3, and that this

summand is much larger than the last (and dominant) summand in (2.5) if n > 9. The

proof then follows by checking the values of Sn(1342) and S,(1234) for n < 8. O

Formula (2.3) enables us to prove that the sequence Sn(1342) is P-recursive in n,

solving an instance of the conjecture of Zeilberger and Noonan mentioned in the Intro-

duction. Indeed, H(x) is certainly algebraic, thus in particular, it is d-finite and therefore

S,(1342) is P-recursive as claimed. So we have proved the following theorem.

Theorem 11 The sequence Sn(1342) is P-recursive in n. Furthermore, its generating

function H(x) is algebraic and its only irrationality is 1 - -8x.



2.2 Recursive results

2.2.1 Estimates for longer patterns

How can we attack this conjecture for longer patterns? A natural approach will be

discussed in this section. It is based on the following idea: suppose we know that the

conjecture on the exponential upper bound holds for a pattern q, then try to construct

longer patterns for which it must hold as well. We are going to prove a series of lemmas

to get more and more general methods to build such patterns.

To simplify notation, we define the insertion of an element into a pattern as follows:

Definition 8 Let q be a pattern. Then to insert the entry y into the j-th position of q

is to put y between the j - 1-st and the j-th element of q and to increase the value of

any entry v for which originally v > y held by 1.

We can define the deletion of an element similarly: just erase the element and decrease

all elements larger than that by 1.

Example 4 Inserting 5 to the third position of the pattern 236154 results in the pattern

2357164. Then deleting 1 from this latter results in 124653.

The following definition simplifies our terminology even more:

Definition 9 A pattern q is called good if the enumerative conjecture is true for it, that

is, there exists a constant c so that Sn(q) < cn for all n.

So all patterns of length 3 and 4 are good.

Notation: If q = xz is a pattern and we insert the element y between them, then we

get the pattern q' = x y z. So in particular, inserting 1 to the first position of q results in

the pattern 1 q.



Lemma 11 ("adding an element to the front") Let q be a pattern with first entry 1 so

that Sn(q) < K n for some absolute constant K. Then the there is some absolute constant

K1 so that S,(lq) < Kj.

Proof: Take any weak class W. One sees that if an n-permutation p avoids 1q, then the

string of its entries which are not left-to-right minima must avoid q. Indeed, if there were

any copy of q on these entries, then one could complete it to a copy of 1q by joining the

smallest left-to-right minimum s on the left of this copy of q and this copy of q. (By the

definition of the left-to-right minima, s is smaller than the first entry of our copy of q,

and therefore it is smaller than all entries of that copy because q starts with 1). So the

number of 1q-avoiding permutations in W is less than K" as W has less than n entries

which are not left-to-right minima. On the other hand, the number of weak classes is

smaller than 4" by Lemma 6, therefore we get S,(lq) < (4K)n = K n as claimed. O

Remark: the estimate we have just used is not the best possible. For example, in

the case when Sn(q) < (k - 1)2n, thus for all patterns q for which S,(q) 5 Sn(123... k)

we do better, in fact, we show that the estimate remains essentially the same. That is

for the new, (k + 1)-long pattern it will be k2n. Indeed, if W has i left-to-right minima,

then there are at most (n) choices for the set of these minima and at most (n) choices

for their positions and less than (k - 1)2(n- i ) choices for the permutation induced on

the other entries. Summing on all i we get that Sn(1q) < -nl (:)2 (k - 1)2 (n - i)

(En0 (n) - (k - 1)(n-i))2 = k2n as we have claimed.

Obviously, the dual versions of this lemma are also true, that is, we can take the

reverse of all permutations occuring in the statement or the complement or the inverse of

all permutations and the lemma remains true. Moreover, Theorem 3 will be applicable

here if we iterate this lemma and prove this way that if q is as in the lemma, then for all

r there is a constant Kr so that Sn(123 .-- rq) < Kn.



Corollary 7 Let q be a pattern with first entry 1 so that S,(q) < K" for some absolute

constant K. Then for all r there is a constant Kr so that Sn(123 ... rar+1ar+2 ... ar+t) =

Sn (r... 3 2 1 ar+1ar+2 ... ar+t) < K .

Is there any way to modify a pattern q elsewhere, that is, not at its ends, and still

get a good pattern? The following lemma is an example for that.

Lemma 12 ("inserting an element") Let q be a pattern and let y be an entry of q so that

for any entry x preceeding y we have x < y and for any entry z preceeded by y we have

y < z. Suppose that S,(q) < K' for some constant K and for all n. Let q' be the pattern

obtained from q by inserting y + 1 to the position right after y. Then S,(q') < (4K)" for

all n, thus q' is a good pattern.

Example5 If q= 1324657 and y=4, then q'= 13245768.

Proof: Take an n-permutation which avoids q'. Suppose it contains q. Then consider all

copies of q in our permutation and consider their entries y. Clearly, these entries must

form a decreasing subsequence. Indeed, if one of them, say yl, would be smaller than an

other one, say y2, on its right, then yl, y2, the initial segment of the copy of q which

contains yi and the ending segment of the copy of q which contains y2 would form a copy

of q'.

So the yi form a decreasing subsequence of length at most n - 1. Therefore, we have

at most 4n- 1 choices for the values and positions of the yi. Deleting the yi, we are left

with a permutation which is shorter than n and avoids q. By our hypothesis, there are

at most K" such permutations. So we have had at most 4 n-1 - Kn possibilities for our

permutation before the deletions. Finally, if our permutation doesn't even contain q,

then we have only K" choices for it. As 4n- 1 . K" + K" < (4K)", the lemma is proved.



Note that Lemma 11 is a special case of this lemma, ie. the case when y is the first

entry of q. This lemma can be applied repeatedly to show that for all r, we can insert

the subsequence y + 1, y + 2, y + 3, -... y + r after y and still get a good pattern.

Can we insert anything else than increasing subsequences? The following lemma

answers this question in the affirmative. To state the lemma, we need another definition:

Definition 10 Let q be a pattern, and let y be an entry of q. Then to replace y by the

pattern w is to add y - 1 to all entries of w, then to delete y and to succesively insert

the entries of w at its position.

Example 6 Replacing the entry 1 in 1 4 2 3 by 1 3 2 4 results in the pattern 1 3 2 4 7 5 6.

Lemma 13 ("replacing an element by a pattern") Let q be a pattern and let y be an entry

of q so that for any entry x preceeding y we have x < y and for any entry z preceeded by

y we have y < z. Suppose that S, (q) < K n for some constant K and for all n.

Let w be a pattern of length k starting with 1 and ending with k so that S,(w) < Cn

holds for all n, for some constant C. Let q' be the pattern obtained by replacing the entry

y by the pattern w in q. Then S,(q') < (2CK)n , thus q' is a good pattern.

Example 7 Thus the pattern of Example 6, 1 3 2 4 7 5 6, is a good pattern.

Proof: As before, take an n-permutation which avoids q'. Suppose it contains q. Then

consider all copies of q in our permutation and consider their entries y. Clearly, these

entries must form a permutation which does not contain w. For suppose they do, and

denote yl and yk the first and last elements of that purported copy of w. Then the initial

segment of the copy of q which contains yl and the ending segment of the copy of q which

contains Yk would form a copy of q'.

By similar argument to that of lemma 12, this shows that less than (2C)n-1 Kn+Kn <

(2CK)n permutations of length n can avoid q'. O



In some particular cases we do not need all of these restrictions made on w:

Lemma 14 Let q be as in lemma 13 and let y be its first entry. Replace y by any good

pattern w which ends with its largest entry. Then the pattern obtained this way is good.

Similarly, if y is the last entry of q, then it is enough to require that w be good and

that w start with 1. With these conditions, the pattern obtained by replacing y by w is

good.

Proof: this can be proved exactly as lemma 13 was. The special values and positions of

y obviate the omitted restrictions. O

Example 8 If p = 1 3 2 4, w = 1 3 4 2, then by the second statement of this lemma we

obtain that the conjecture is true for the pattern 1 3 2 4 6 7 5.

The following Proposition is obvious. However, our Lemmas 13 and 14 enable us to

use it to prove the enumerative conjeture for patterns we may not be able to handle

otherwise.

Proposition 5 If q contains r as a pattern, then S,(q) > S, (r). Thus if q is good, then

so is r. O

Example 9 Deleting 1 from Example 8 we get the pattern 2 1 3 5 6 4 is good.

Corollary 8 Let q be any good pattern which starts with 1. Replace 1 by any pattern r

of length 3 to get q'. Then q' is a good pattern as well.

Proof: If r ends with 3, then this is immediate from lemma 14. If not, then add the

entry 4 to the end of r. As all patterns of length 4 are good, lemma 14 applies. Then

delete 4 and apply Proposition 5. O



2.2.2 Relations between longer patterns

Theorem 4 can be easily generalized for longer patterns in the following sense:

Theorem 12 Let q be a pattern of length k which starts with 1, ends with k and has

only one inversion. Then Sn(123--. k) < Sn(q) if n is sufficiently large.

This can be proved as Theorem 4 is, in other words, we can define classes of permutations

so that each of them contains exactly one 123 - k-avoiding permutation and at least one

q-avoiding one. If the inversion is due to the ith and (i + 1)st elements, then such a

classification is obtained as follows:

Definition 11 For a permutation p, an element is said to be in the jth basic subsequence

if it is the endpoint of an increasing subsequence of length j, but there is no increasing

subsequence of length j + 1 ending in that entry.

It is clear that all basic subsequences are decreasing. Now let us define two permutations

x and y to be in the same class if the set and position of their jth basic subsequences

agree for all j except i. Then the proof is identical to that of Theorem 4. If q has only

one inversion, but it doesn't start with 1 or doesn't end with k, then S,(q) = S,(12 ... k)

as it is shown in Theorem 3.

A more general form of this theorem is as follows.

Theorem 13 Let ql and q2 be two patterns which both start with the entry I and S,(ql) <

Sn(q 2 ) for all n. Then Sn(lql) • Sn(lq2) for all n.

Proof: Note that an n-permutation p will be 1qi avoiding if and only if the substring

formed by its entries which are not left-to-right minima is qi avoiding, and the statement

follows. O

Example 10 For all n > 0 we have S,(12453) < S,(12345).



Chapter 3

P-recursiveness

3.1 Background

3.1.1 On P-recursive functions

What else can we say about the functions S,(q) apart from that they are probably less

than c"? In this chapter we study questions of P-recursiveness, not only for the S,(q),

but also for the number of permutations with a prescribed number r of the subsequence

q, (thus not necessarily 0). As we mentioned in the Introduction, the general conjecture

of this field [37] states that for any fixed q and r, this function Sq,r(n) is P-recursive in

n.

First, we need a brief survey of P-recursive functions. In this we are going to follow

[29] closely. For simplicity, we are going to work over the field of complex numbers,

denoted by C, though a more general treatment is possible.

Definition 12 A function f : N -+ R is called P-recursive if there exist polynomials

Po(n), Pi(n), - -, Pk(n) e Q[n], with Pk(n) $ 0 so that

Pk(n)f(n + k) + Pkl(n)f(n + k - 1) + -- + Po(n)f(n) = 0 (3.1)



for all natural numbers n.

Here P-recursive stands for "polynomially recursive". The continuous analogue of this

notion is d-finiteness, which stands for "differentiably finite".

Definition 13 Let u(x) E Q[[x]] be a power series. If there exist polynomials

po(n),pl(n), -- -pd(n) so that Pd $ 0 and

pd(X)U(d)(X) + Pd-1 (X)(d-1)(X) ± + pl (X)U'() + Po(x)U(x) = 0, (3.2)

then we say that u is d-finite. (Here u(j ) = dj).

Note that this is clearly equivalent to saying that the Q(x)-vectorspace spanned by u and

all its derivatives is finite dimensional.

Theorem 14 The function f(n) is P-recursive if and only if its ordinary generating

function u(x) = F(x) = En>o f(n)xn is d-finite.

Proof:

* First suppose u is d-finite, then (3.2) holds with Pd 0 O. Differentiate both sides i

times and multiply by xi to get

xju(i) -- E (n + i - j)f(n + i - j)x n .

n>O

(Here mj denotes the falling factorial m(m - 1) .-. (m - j + 1)). Equating the

coefficients of xn+k we get a polynomial recurrence for f(n). This will not be 0=0

as pd : 0.

* Now suppose f(n) is P-recursive in n, so (3.1) holds. Note that for any fixed natural

number i, the polynomials (n + i)j, j < 0 form a Q-basis for the vectorspace Q[n].



So Pi(n) is a Q-linear combination of series of the form EZ>o(n + i)jf (n + i)xz.

Now note that the left hand side almost agrees with xJ-iu(j ) , they can only differ

in finitely many terms with all negative coefficients. Let the sum of these terms be

Ri(x) E x-'K[xz-], a Laurent-polynomial. Therefore, if we multiply (3.1) by xn

and sum for all nonnegative n, we get

0 = (Z aj j - i (j) ) + R(x). (3.3)

Here the sum is finite by the definition of P-recursiveness and R(x) is a Laurent-

polynomial. If we multiply both sides by x q for q sufficiently large, the terms with

negative exponents will disappear and we get an equation of the form (3.2).

Lemma 15 Let f (n) and g(n) be P-recursive functions. Then the functions f + g and

the convolution h(n) = Enio f (i) g(n - i) are P-recursive as well.

Proof: Let F(x),G(x) and H(x) be the ordinary generating functions of f,g and h,

respectively.

* For f + g we don't even need them as it is clear that the sum of a polynomial

recursion for f and a polynomial recursion for g is still a polynomial recursion, and

f + g satisfies it.

* For the convolution, we will show that F - G is d-finite. Let K = V((x)) be the

quotient field of C[[x]] over C, and for any power series v E C[[x]], let V, be the

vector space over C(x) spanned by v and all its derivatives. Then let

4 : VF ®K((x)) VG - V



be the unique linear transformation satisfying 4(F(i) 0 G(j )) = F(i)G(j) for all i

and j. Now the image of (D contains VFG by the Leibniz rules. So dim VFG <

dim(VF 0 VG) = (dimVF) * (dimVG) < oo, showing that F - G is d-finite. This

implies our claim by Theorem 14. Indeed, one sees easily that H(x) = F(x) -G(x),

so H(x) is d-finite as so were F(x) and G(x) by Theorem 14 and therefore h(n) is

P-recursive by that same theorem.

Corollary 9 Let f(n) be a P-recursive function and let g(n) be a function which dis-

agrees with f on a finite number of n's only. Then g(n) is P-recursive as well.

Proof: Let p = g - f. Then the ordinary generating function of p is a polynomial and

thus d-finite, hence p is P-recursive and so is p + f = g. O

3.1.2 Earlier results

If q is the trivial pattern 21, then we simply have to count the number of n-permutations

with exactly r inversions. Let i(p) be the number of inversions in the n-permutation p.

Then it is well-known [28] that

E x i (p) = (1 + X)(1 + X + X2) .. (1 + X + X2 +.. + xn-1). (3.4)

This shows that Sq,,(n) = Er=o Sqj(n - 1), which is P-recursive in n by an induction

argument on r. Indeed, all but the last summands on the right-hand-side are P-recursive

in n by induction on r. Let the ordinary generating function of their sum be T(x), while

that of Sq,r(n) is V(x). Then we have T(x)/(1 - x) = V(x) and the statement follows.



As a more serious application of this theory, we examine permutations having exactly

zero 1 2 3 -- k patterns for some given k. As in Chapter 2, permutations avoiding these

patterns are not too hard to deal with. This is the content of the next theorem, mentioned

in [13] and [37].

Theorem 15 S,(12 ... k) is P-recursive for all k.

Proof: We know from the Robinson-Schensted correspondence [24] that permutations

not having increasing subsequences of length k can be associated with pairs of standard

Young-tableaux having at most k - 1 columns. In other words, Sn(12 ... k) = E fR ,

where A runs through all Ferrer's shapes of size n which have at most k-1 columns, and fA

denotes the number of Standard Young tableaux of shape A. Let A = (ml, m 2 ,... , mk-1)

be such a Ferrer's shape. Then mi Ž m 2  ... ink-1 > 0, and Ek-1 = n, mi denoting

the size of the ith column. It is well known by the famous Young-Frobenius ([38] or [24])

formula that

(mi + mi2 + ... + nk-l)!
fx = [1-i<i<j<k-1(mi - my + j - i+ m . (3.5)(m1 + k - 2)! ... (k-)(3.)

If we repeatedly apply Lemma 15, we can easily see that the right hand side is P-recursive

in each of its variables, and therefore so is its square. This implies that

E fA2 = Sn(12 ... k) (3.6)
ml,..mk-1, ml ".'mk-1=.

is P-recursive in n. O

Obviously, this result impies that Sn(q) is P-recursive for all q for which S,(q) =

S,(12 ... k). (Theorem 3 provides a lot of patterns of this kind). What is more surprising

is that these are almost the only patterns we can prove this conjecture! (The exceptions

are, as we said, 1342, and patterns of length 3).



3.1.3 Disjoint subsequences

Unfortunately, if r > 0, then we cannot directly apply this method to show that the

number of n-permutations containing exactly r copies of 1 2... k is P-recursive in n.

However, if we also require that the r copies be disjoint, (and of maximum size) then we

can proceed similarly. First we will need a lemma of Curtis Greene [14].

Lemma 16 Let al, a2 , ... ak denote the length of the first, second, ...- -, k-th row of the

P-tableau of a permutation p. Then for all i, 1 < i < k, the maximum size of the union

of i disjoint increasing subsequences is equal to al + a2 + ... - ai.

We point out that the fact that the maximum size of the union of i disjoint increasing

subsequences is equal to al +a 2 +. "- fai does not imply that the longest such subsequence

must have length al, the second must have length a2, and so on; we only have information

of the sum of their length.

Theorem 16 Let Dk,r(n) denote the number of n-permutations p in which the longest

increasing subsequences have size k and for which the r is the largest natural number so

that there are r disjoint increasing subsequences of maximum size in p. Then Dk,r(n) is

a P-recursive function of n.

Proof: Lemma 16 shows that necessarily al = k and al + a2 + - - + ar = r - k. Thus

necessarily al = a2 = -" = ar = k and ar+1 < k otherwise there would be (r + 1)

increasing subsequences of length k which are disjoint. This means that the size of the

last column is mk = r. Applying (3.5) with k variables instead of (k - 1) and fixing

mk = r we get the proof exactly as that of the last theorem. O

One special case of Theorem 16 is of particular interest, namely, when r = 1. In this

case the conditions mean that any two increasing subsequences of maximum size intersect.

The following proposition shows that this implies a seemingly stronger property:



Proposition 6 Let p be an n-permutation in which the longest increasing subsequences

have size k and any two of them intersect. Then all of them have at least one entry in

common.

Proof: We construct a directed graph G, associated to p. The vertices of G, are the

entries of p and there is an edge from the entry i to the entry j if and only if i < j

and i is on the left of j. So an increasing subsequence of length k in p corresponds to a

path of length k in G,. Now let us remove all edges not in any maximum-length-path

from G,, moreover add a "source" s and a "tail" t to get the graph G,. That is, s and

t are vertices so that s has indegree zero, and there is an edge from s to all left-to-right

minima of p, while t has outdegree zero and there is an edge to t from all right-to-left

maxima of p. So each increasing subsequence of size k corresponds to an s --+ t path of

maximum size in a natural way. Now suppose they do not have a vertex in common.

Then we can delete any vertex v and still have an s -+ t path in G,. In other words, G',

is 2-(s,t)-connected, which implies, by the famous theorem of Menger ([18]) that there

are at least two vertex-disjoint s -+ t paths in G,. This is equivalent to saying that there

are two increasing subsequences of size k in p which are disjoint, which is a contradiction

and the proof is complete. O

Corollary 10 Let Dk(n) be the number of n-permutations in which the longest increasing

subsequences have size k and they all have at least one entry in common. Then Dk(n) is

a P-recursive function of n.

3.2 An exact formula for q = 13 2 and r = 1

In the rest of this Section we will examine permutations with exactly r subsequences of

type 1 3 2 with r > 0. In this Subsection we count n-permutations containing exactly



one subsequence of type 132. (The same question for the pattern 1 2 3 has recently been

solved by Noonan [19], who found the simple formula (2n)) By a generating function

argument we show that the number of these permutations is (n-3). This formula is even

simpler than the one cited above and asks for a direct combinatorial proof. What is even

more surprising is the fact that this formula is simpler than that for the number of 132-

avoiding permutations, namely Sn(132) = (n) /(n+ 1). As mentioned in the Introduction,

our result implies the same formula for the number of permutations containing exactly

one subsequence of any nonmonotonic type, and so it completely arranges the problem

for all subsequences of length 3. This formula was conjectured by Noonan and Zeilberger

in [37]. We need one definition before starting the proof:

Definition 14 Let p be an n-permutation. Its elements on the left of the entry n will be

called front elements, whereas those on the right of n will be called back elements.

Theorem 17 Let b, be the number of n-permutations having exactly one subsequence of

type 132. Then bo = bl = b2 = 0 and for all n > 3 we have

bn = . (3.7)

Proof: Take any n-permutation p and suppose that the entry n is in the i-th position

in p. Then there are three ways p can contain exactly one subsequence S of type 1 3 2.

1. When all elements of S are front entries. Then any front entry must be larger

than any back entry for any pair violating this condition would form an additional

132-subsequence with n. Therefore, the i largest entries must be front entries n

(these are the entries n - 1, n - 2, - - -, n - i + 1), while the n - i smallest entries

must be back entries (these are the entries 1, 2, - --n-i). Moreover, there can be no

subsequence of type 132 formed by back entries. So all we can do is to take a 132-

avoiding permutation on the n - i back entries in cn-i ways and take a permutation



having having exactly one 132-subsequence on the i - 1 front entries. This yields

bi-lCn-i permutations of the desired property.

2. When all elements of S are back entries. The argument of the previous case holds

here, too, we must only swap the roles of the front and back entries. Then we get

that in this case we have ci-lbn-i permutations of the desired property.

3. Finally, it can happen that the leftmost element x of S is a front entry and rightmost

element z of S is a back entry. This case is slightly more complicated. Note that

here we must have 2 < i < n - 1, otherwise either the set of front entries or that

of back entries would be empty.

First note that there is exactly one pair (x, z) so that x is a front entry, z is a

back entry and x < z. (For any such pair and n form a 132-subsequence). This

implies that the front entries are n - 1, n - 2, -.. -, n - i + 2, n - i and the back

entries are 1, 2, ... n - i - 1, n - i + 1, the only pair with the given property is

(n - i, n - i + 1) = (x, z), and any other front entry is larger than both x and z.

Let us take these entries x and z. Clearly, all 132-subsequences of the given type

must start with x and must end with z. We claim that the middle entry of S must

be n. Indeed, if the middle element were some other w, then x n z and x w z would

both be 132-subsequences. (Recall that x < z and they both are smaller than any

other front entry). Moreover, we claim that x must be the rightmost front entry, in

other words, it must be in the position directly on the left of n. Indeed, if there were

any entry y between x and n, then x y z and x n z would both be 132-subsequences

for y is a front entry and thus larger than x and z.

Therefore, all we can do is put the entry n - i in the i - 1-st position, then take

any 132-avoiding permutation on the first i - 2 elements in ci- 2 ways and take any

132-avoiding permutation on the n - i back entries in cn-i ways. This gives us



ci-2Cn-i permutations of the desired property.

Summing for all permitted i in each of these three cases we get that

n-I

bn = bi-cn-i +
i=-1

n-1

Ci-ibn-i
i=1

n-1

+ E Ci-2Cn-i.
i=2

Note that the first two sums are equal for they contain the same summands. Moreover,

by (1.1) we can easily see that the last sum equals cn- - Cn-2. Thus the above recursive

formula for bn simplifies to

n-1

bn = 2 ( bi-lcn-i) + c,-1 - Cn-2.
i=l

(3.9)

Now let B(x) = %-o bnxn, the ordinary generating function of the sequence {b,}.

Then one sees by (3.9) and by equating the coefficients of Xn that the following functional

equation must hold:

B(x) = 2xB(x)C(x) + (x - x2 )C(x) _ x.

This yields
C(x)(x - x2) - x

B(x) = 21 - 2xC(x)
(3.10)

Recall that (1.2) provides an explicit form for C(x). Plugging it in (3.10) we get

1-V-4x. (1- x) -x
- 2

V1 - 4x

or, splitting the numerator into three parts,

1B(x) = 1
2-(V1J -- 4x)

x
(1 -x)-

1-X
2

(3.8)

(3.11)



We have already computed in the introduction, in the expansion of (1.2) that 1//1 - 4x =

2n>o (2n)x n . Therefore (3.11) is equivalent to

1 X) 2n n n2nn 1 - x
B(x)= (1-x)E "- x"+

2 n>o 0n n>o n 2

(2n 2n - 2 n 2n - 2n 1 x
=1/2 •> - 1/2 - n- n - n+• 2

n>O E a n>1 n n>we get that

Equating coefficients of x', with 2 < n we get that

2n - 2 1 . (2n - 2) = (2n - 1 -2n- 2) S2n( - 3)-n 2
\n-2/

=(2n- 2)
\n-2

(2n-3 = (2n-31
Sn-2 n-3 '

and the theorem is proved. O

Corollary 11 Let q be any pattern of length 3. Then Sq,i(n) is P-recursive in n.

The recursive method we have presented can also be used to give another

classical polygon-partitioning problem first fully solved by Cayley [9].

Theorem 18 The number of partitions of a convex (n + 1)-gon into (n -

noncrossing diagonals is bn = (2 -3)

proof for a

2) parts by

Proof: In other words, we are looking for the number of partitions of that polygon into

one quadrilateral Q and (n - 3) triangles. We prove the statement by induction on n.

Recall [28] that the number of partitions of a convex (n + 2)-gons into n triangles by

noncrossing diagonals is c,.

If n = 3, then our statement is true. Suppose we know the statement for all integers

larger than 2 and smaller than n. Let A1 , A2,. - , An+1 denote the vertices of the polygon.

bn = .2n
S 2 n



Let k be the smallest number so that there is a diagonal A1Ak in our chosen partition. (If

there is no such diagonal, then let k = n + 1. Thus 3 < k < n + 1.) The diagonal A1Ak

cuts our polygon into two parts; the part containing the vertex A 2 is called the front

whereas the other part is called the back. Now if the back contains Q (in bn-k+2 ways,

by the induction hypothesis), then the front is partitioned into triangles in Ck-3 ways as

the diagonal A 2Ak must be contained in our triangulation. If the front contains Q, but

A1 is not a vertex of the quadrilateral, then again, A 2Ak is contained in the partition

and we have cn-k+l ways to triangulate the back and then bk-2 ways to partition the

front. Finally, if A1 is a vertex of Q, then Q = AIA 2Ak-1Ak and we have ck-3 ways to

triangulate the rest of the front, in addition to the cn-k+l ways to triangulate the back.

Replacing k - 3 by i and adding for all i we get the recursive formula of (3.8) and our

claim is proved for n. O

3.3 A recursive formula for r = 2.

In this section we provide a recursive formula for dn = S132,2, proving this way that S132,2

is P-recursive in n. The method we use is similar to those of the last chapter, we have

still found it worth including as this way we can see how the computation gets more and

more complicated as r grows, and why we need a more general approach to treat the

general case.

Theorem 19 Let dn + S132,2 be the number of n-permutations containing exactly two

subsequences of type 132. Then the sequence {dj} is P-recursive.

Proof: We are going to distinguish three cases, according to the number of bad pairs,

that is, pairs (x, y) where x is a front entry, y is a back entry and x < y. Cleary, each

bad pair forms a 132-pattern with n, thus there can be at most two bad pairs. In each



case, we are going to go through all possible permutations according to the position of

n, but for shortness, we are not announcing it each time.

1. If there is no bad pair, then by an argument similar to that of the previous section,

we see that there are

n-1 n-1 n-1 n-1 n-1

E diiCn-i + E ci-ldn-i + E bi-ibn-i = 2 - E ci-idn-i + E bi-lbn-i (3.12)
i=0 i=0 i=O i=O i=O

permutations containing exactly two 132-patterns.

2. If there is one bad pair (x, y), then there are two subcases. Note that x, n and

y form a 132-pattern, so we must have exactly one more pattern of that kind.

Furthermore, note that the position of n determines our only choice for the pair

(x, y).

* If x is directly on the left of n, then we can proceed as in the previous section

and see that there are

n-1 n-1 n-1

E ci- 2bn-i + E bi-2cn-i = 2. ci-2b,-i = bn-1 - Cn-2 + Cn-3 (3.13)
i=2 i=2 i=2

permutations with the required property. (The last equality follows from

(3.9)).

* If there are some entries between x and n, then note that each such entry

would form a 132-pattern with x and y, so there can be only one such entry,

and therefore x must be exactly two positions to the left of n. There are no

other restrictions and there can be no more 132-patterns, which yields

n-1

E ci-2Cn-i = Cn-1 - 2 Cn-2 (3.14)
i=3



permutations with the required property. (Note that n must be preceded by

at least two elements).

3. If there are two bad pairs, then there are two subcases again. Note that the two bad

pairs with n provide the two 132-subsequences, thus there cannot be any additional

subsequence of that type.

* If the two bad pairs are (x, y) and (x, z), then x must be directly on the left of

n to avoid additional 132-patterns. (Again, x, y and z are determined by the

position of n). To ensure that no additional 132-patterns are formed, y and

z must be in increasing order, otherwise x completes them to a 132-pattern.

Observe that y and z are the largest two back elements, so we simply need

to compute the number of 132-avoiding permutations on n - i elements in

which the largest two elements are in increasing order. It is easy to see that

this number is cn-i - cn-i-1, since the only way those two elements can be

in decreasing order is when the larger one is in the leftmost position of the

permutation. Therefore, in this subcase we have

n-2

E Ci-2( Cn - i - Cn-i-1) = Cn-1 - 2cn-2 (3.15)
i=2

suitable permutations. (Note that n must precede at least two elements).

* Finally, if the two bad pairs are (x, z) and (y, z), then x, y and z are again

determined by the position of n. In order to avoid additional 132-patterns, x

and y must be in the two positions directly on the left of n. They can be in

either order as they are smaller than everything on their left and larger than

everything on their right, except n and z. There are no other restrictions and



no other 132-patterns, so this subcase gives us

n-1

2 ci-2Cn-i = 2cn_1 - 4cn-2 (3.16)
i=3

suitable permutations.

Summing for all cases we get that

n-1 n--1

d n = 2. ci-ldn-i + E bi-lbni + bn -
1 + 4cn-1 - 9cn- 2 + Cn-3- (3.17)

i=1 i=1

We know from Lemma 15 that the sum and the convolution of two P-recursive sequences

are P-recursive. So if hn denotes the sum of all the terms on the right hand side of (3.17)

except the first one, then h, is P-recursive. Let D(x) and H(x) be the ordinary generating

functions for {dn} and {h,}, respectively. Then (3.17) gives rise to the functional equation

D(x) = 2 - (C(x)D(x)x + 4x 4 ) + H(x),

that is,

D(x) = (x) + 4X(3.18)1- 2xC(x)'
thus D(x) is d-finite as 1/(1-2xC(x)) = 1 - 4x is d-finite. Therefore, dn is P-recursive,

which was to be proved. O



3.4 P-recursiveness for all r

3.4.1 The decomposition of the problem

In [37] Zeilberger and Noonan conjectured that for any given subsequence q and for any

given r, the number of n-permutations containing exactly r subsequences of type q is a

P-recursive function of n.

In this subsection we prove this conjecture for the subsequence 1 3 2. This is the first

result we know of when the case of each r is solved for some given q.

The proof will be based on a carefully built induction on r. In fact, we prove something

more general in Theorem 20: we prove that the statement remains true even if we restrict

ourselves to n permutations which contain exactly r subsequences of type 132 and end in

a subsequence of a given type, or whose largest elements form a subsequence of a given

type.

We will proceed as follows. First we prove our statements for r = 0. Then we suppose

that we know our statements, that is the statement without restrictions, and the ones

with restrictions for all natural numbers smaller than r. In Part One of the proof of the

induction step, we prove the statement without restrictions from the induction hypoth-

esis on r. In Part Two we prove the statements with restrictions, from the induction

hypothesis on r and the result of Part One, completing the proof. (In this last step we

also use induction on k, the length of the restricting subsequence).

Recall that the sum, difference and convolution of two P-recursive functions are P-

recursive as well. Therefore, the sum of finitely many such functions is P-recursive, too.

We will use this fact throughout our proof. However, in order to be able to do so, we

have to partition the set of all n-permutations with the desired property into a bounded

number of classes. This decomposition is the subject of this subsection. Whenever we

use the word "bounded", we mean an expression which is independent from n, that is,



it depends only on the fixed number r and maybe also on k, the length of some fixed

pattern q.

Definition 15 Front elements of p which are smaller than the largest back element of

p will be called red elements, whereas back elements of p larger than the smallest front

element of p will be called blue elements.

What is the advantage of this terminology? First, any red element is smaller than any

front element which is not red, while any blue element is larger than any back element

which is not blue. In other words, red elements are the smallest front elements, while

blue elements are the largest back elements. Moreover, any red and any blue element is

part of at least one 132-subsequence. Indeed, take any red element x, the entry n, and

any back element larger than x. Dual argument applies for blue elements. Finally, if a

132-subsequence spans over the entry n, that is, it starts with a front element and ends

with a back element, then it must start with a red one and end with a blue one.

Now we show several ways to partition the set of all n-permutations containing exactly

r subsequences of type 132. Our point is that we can partition them into a bounded

number of classes.

As we said above, any colored element is part of at least one subsequence of type

132. therefore if p has exactly r subsequences of type 132, and R (resp. B) denotes the

number of red (resp. blue) elements, then max(R, B) < r. This implies that we have at

most r2 choices for the values of R and B.

Once the values of R and B are given and we know in which position the entry n

is, then we only have a bounded number of choices for the set of red and blue elements.

Indeed, if x is the smallest red element, then x is larger than all but B back elements.

So if n is in the ith position, then x > n - i - B. On the other hand, x is the smallest

front element, so x < n - i + 1. Similar argument applies for the largest blue element.



Finally, there is only a bounded number of positions where a red element can be.

Indeed, if x is red and y > x is a back element, then x z y is a 132-pattern for all front

elements on the right of x which are not red (and so, are larger than any back elements).

We recall that x n y is such a pattern as well. Thus, if t is the number of such (x, z)

pairs, then we have t + R < r. In particular, the distance between any red element and

the entry n cannot be larger than r.

The following definition makes use of the observations we have just made:

Definition 16 We say that the n-permutations pi and P2 are in the same class if they

agree in all of the following:

* the position of the entry n

* the set of red elements

* the set of blue elements

* the pattern formed by the blue elements

* the position of the red elements

* the pattern starting with the leftmost red element and ending with the entry n.

In other words, permutations of the same class agree in everything that can be part of a

132-pattern spanning through the entry n.

Our argument shows that there are only a bounded number of classes of n-permutations.

Definition 17 Let p be an n-permutation. The subsequence of p consisting of

* all red and blue entries and

* all front entries which are preceded by at least one red entry and

* the entry n



is called the fundamental subsequence of p.

This means that permutations of the same class have fundamental subsequences of

identical type, and these subsequences are in the same positions in every permutation of

a given class.

Definition 18 The classes C and C' are called similar if their permutations have fun-

damental subsequences of the same type.

Thus in this case the subsequences don't need to be in identical positions.

Example 11 The classes containing the permutations 3 4 1 5 2 and 4 2 5 3 1 are similar.

3.4.2 The Initial Step

First we prove two lemmas which will later be used as the initial step of our inductive

proof. Recall the natural Definition 8 for inserting and deleting an element in or from a

pattern.

Lemma 17 Let q be any subsequence of length k. Then the number C,(n) of 132-avoiding

n-permutations which end with a subsequence of type q is a P-recursive function of n.

Proof: Induction on k. If k = 0, then Cq(n) = Cn = (2n)/(n + 1), the nth Catalan-

number and we are done. Suppose we know the statement for all subsequences of length

k - 1 and prove it for the subsequence q, which has length k.

If q is not 132-avoiding, then clearly C,(n) = 0. So we can suppose that q is 132-

avoiding. Now we consider two separate cases.

1. If the last element y of q is not the largest one, then let x be the rightmost element

of q which is larger than y. Then the entry 1 of our n-permutation p cannot be on

the left of x, so in particular, the entry 1 of p is one of the last k entries, which



form a subsequence of type q. Then it must be the smallest of these last k entries,

so we know exactly where the entry 1 of p is located. Let us erase the smallest

entry of q to get the subsequence q'. Apply the induction hypothesis to q' to get

that Cq, (n - 1) is P-recursive. Then insert 1 to its original place to see that C,(n)

is P-recursive.

2. If y is the largest element of q, then it is easy to apply what we have just shown

in the previous case. Let q" be the subsequence obtained from q by deleting y.

Moreover, let ql, q2, ... qk-1 (respectively) be the k-subsequences whose first k - 1

elements determine a subsequence of type q" and whose last elements (respectively)

are 1, 2, -(k - 1). Then it is obvious that

k-1

Cq(n) = Cql (n) - E Cqi (n) (3.19)
i=1

The first term of the right hand side is P-recursive by induction and the second

one is P-recursive by the previous case, and the lemma is proven as the sum and

difference of finitely many P-recursive functions are P-recursive.

The method of case 2 will be called the complementing method for obvious reasons.

Lemma 18 Let q be any subsequence of length k. Then the number Kq(n) of 132-

avoiding n-permutations in which the largest k elements form a subsequence of type q is

a P-recursive function of n.

Proof: As in the previous lemma, we proceed by induction on k. Again, if k = 0, then

K,(n) = C, and we are done. Suppose we know the statement for all subsequences of

length k - 1 and prove it for the subsequence q. We can suppose that q is 132-avoiding.

We consider two separate cases again.



1. If the first element of q is not the smallest one, then the leftmost of the k largest

elements of our n-permutation p must be at the very first position. (Otherwise

some smaller element precedes it and we get a 132-pattern). In this way we know

exactly what is the first element of p and can proceed as in case 1 of the proof of

the previous lemma.

2. If the first element of q is the smallest one, then we are done by the complementing

method of case 2 of the previous lemma.

3.4.3 The Induction Step

Now we announce and then prove the main result of this section.

Theorem 20 Let q be any subsequence of length k. Then the number Cq,r(n) of n-

permutations which contain exactly r subsequences of type 132 and end with a subsequence

of type q is a P-recursive function of n. Similarly, the number Kq,r(n) of n-permutations

which contain exactly r subsequences of type 132 and in which the largest k elements form

a subsequence of type q is a P-recursive function of n.

Thus in particular, S,(n) is P-recursive in n.

Proof: Induction on r. If r = 0, then the two statements are equivalent to Lemmas (17)

and (18). Now suppose we know both statements for r - 1.

PART ONE First we prove from this that Sr(n) is P-recursive in n. Choose any

class C of n-permutations. Suppose the fundamental subsequence type of C contains

exactly s subsequences of type 132, where s < r.

* Suppose for now that the fundamental subsequence is nonempty, then s > 1 holds

as well.



How can a permutation in C contain 132-patterns which are not contained in the

fundamental subsequence? Clearly, they must be either entirely before the entry n

or entirely after it. If i such subsequence is before and j is after, then i + j + s = r

must hold. Denote ql the pattern of all front entries in the fundamental subsequence

and q2 the pattern of all back entries there. Then with the previous notation we

have

f (ni, n 2 , q1 , q2 , i j, S) = CqK,i(nL1) Kq 2,j(n2)

such permutations, where nl (resp. n2) denotes the number of front (resp. back)

entries which are not in the fundamental subsequence. Indeed, elements of the fun-

damental subsequence are either the rightmost front elements, or the largest back

elements. We know by induction that Cq,,i(nl) is P-recursive in ni and Kq2,j(n2)

is P-recursive in n2. Therefore, their convolution

f (n, q, q2 i, j, S) = f(nn2, ql,q2, i, ,S) = ) Cql,i(n1) . Kq2,j(n2)
nl+n2=~n nl n2=

(3.20)

is P-recursive in n. Clearly this convolution expresses the number of n-permutations

with exactly r subsequences of type 132 in all classes similar to C. It is clear now

that we have only a bounded number of choices for i, j and s so that i + j + s = r,

so we can sum (3.20) for all these choices and still get that

f(n, q1 ,q 2) = f(n, ql, 2, i, j, ) (3.21)

is P-recursive in n. (Recall that s > 0, thus we can always use the induction

hypothesis). Summing (3.21) for all q, and q2 we get that

f(n) = E f(n, qi, q2 ) (3.22)
ql,q2



Now suppose that the fundamental subsequence of the permutations in C is empty.

Then any 132-subsequence must be either entirely on the left of the entry n or

entirely on the right of n. Moreover, the position of n completely determines the

set of the front and back elements. If n is in the ith position, and we have j

132-subsequences in the front and r - j in the back, then this gives us

g(i, j) = S(i - 1) - S,-j(n - i) (3.23)

permutations of the desired kind. If 1 < j < r - 1, then the induction hypothesis

applies for Sj and Srj, therefore, after summing (3.23) for all i

g(n) = Z Sj(i - 1) -Sr-j(n - i) (3.24)

is P-recursive in n. If j = 0 of j = r, then we cannot apply the induction hypothesis.

By similar argument as above we get nevertheless that in this case we have

2 · Sr(i - 1) Cn-i (3.25)

n-permutations with exactly r 132-subsequences. (Note that So(n - i) = C,_i, the

(n - i)th Catalan-number).

Summing (3.22), (3.24) and (3.25) we get

Sr(n) = f(n) + g(n) + 2 - Sr(i - 1) -C,_n. (3.26)

Let F, G, C and S denote the ordinary generating functions of f(n), g(n), Cn and Sr(n).

Then the previous equation yields

S(x) = F(x) + G(x) + 2x -C(x)S(x),



that is,
S(x) - F(x) + G(x)S( 1-)= C (3.27)1 - 2x -C(x)

Therefore S(x) is D-finite as the numerator is D-finite and 1/(1 - 2xC(x)) = 1/1 -4x

is D-finite. So Sr(n) is P-recursive and we are done with the first part of the proof.

PART TWO Now, using the induction hypothesis on r and the result of Part One,

we prove the rest of the inductive step.

1. Let q be any subsequence of length k. We must prove that the number Cq,r(n)

of n-permutations which end with a subsequence of type q and contain exactly r

subsequences of type 132 is a P-recursive function of n. Clearly, if q contains more

than r 132-subsequences, then Cq,r(n) = 0 and we are done. Otherwise we will do

induction on k, the case of k = 1 being equivalent to the result of Part One. We

consider three different cases.

* If q has more than r inversions, then it is obvious that no such permutation

can have its entry 1 on the left of the last k elements. Therefore, this entry 1

must be a part of the q-subsequence formed by the last k elements, in fact, it

is the minimal one among them. Now deleting this entry 1 we may or may not

lose some 132-patterns as there may or may not be inversions on its right, but

we can read off this information from q. (See the next example). Again, let

q' be the pattern obtained from q by deleting its entry 1. If we don't lose any

132-patterns by this deletion, then we are left with an (n - 1)-permutation

ending with the pattern q' and having r subsequences of type 132. If we lose t

such patterns, then we are left with an (n - 1)-permutation ending with q' and

having r - t such subsequences. Both cases give rise to a P-recursive function

of n by our induction hypothesis as q' is shorter than q.



Example 12 If q = 3416 5 2, then q' = 2 3 5 4 1 so we lose three subsequences

of type 132 when deleting 1. Therefore, we can apply our inductive hypothesis

for r - 3, then reinsert the entry 1 to its place. If q = 3 1 2 4, then we don't

lose any 132-patterns when deleting the entry 1 and getting q' = 2 1 3. So we

still need to count permutations with r 132-patterns, but they must end with

q', not with q. The pattern q' is shorter than q, thus the induction hypothesis

on k can be applied.

* If q has at most r inversions, but q is not the monotonic pattern 1 2 ... k,

then it can also happen that the entry 1 is not among the last k entries of our

permutation. However, we claim that it cannot be too far away from them.

Indeed, let y be an element from the last k elements of the permutation (so

one of those elements which form the ending q) which is smaller than some

other such element x on its left. Then clearly, if n is large enough, then y must

be smaller than r + k + 1, otherwise we would have too many 132-patterns

of the form w x y. So y is bounded. If the entry 1 of the permutation were

more than 2r + k + 1 to the left of y, then there would necessarily be more

than r elements between 1 and y which are larger than y, a contradiction.

So the distance between 1 and y is bounded. Therefore we can consider all

possibilities for the position of the entry 1 of the permutation and for the

subsequence on its right. In each case we can delete the entry 1 and reduce the

enumeration to one with a smaller value of r, (as q has at least one inversion),

then use the inductive hypothesis on r. So this case contributes a bounded

number of P-recursive functions, too.

* Finally, if q is the monotonic pattern 1 2 ... k, then use the complementing

method of lemma 17.

So we have proved that Cq,,(n) is always P-recursive in n.



2. Finally, let again q be any subsequence of length k; we must then prove that the

number Kq,,r (n) of n-permutations in which the k largest elements form a subse-

quence of type q and which contain exactly r subsequences of type 132 is P-recursive

in n. As in the proof of the previous statement, we can suppose that q contains at

most r subsequences of type 132. Then we proceed by induction on k, considering

three different cases in a similar manner.

* If q has more than r inversions, then it is clear that the leftmost of the k largest

elements must be the leftmost element of the whole permutation. (Otherwise

there would be too many 132-patterns containing the leftmost element of the

permutation). In this case we can simply delete the first element of q to get

the shorter pattern q", apply the induction hypothesis on k, then reinsert the

first element of q to the first position.

* If q has at most r inversions, but q is not the monotonic pattern 12 ... k, then

it can also happen that the leftmost of the k largest elements (say, x) is not

the leftmost element of the permutation. However, we claim that x cannot

be too far away from the front. In fact, if there were more than r elements

preceeding x, then each of these elements would form a 132-pattern together

with any inversion on the k largest elements, which would be a contradiction.

So x is at the rth position at most. This means that the susbsequence Q

consisting of the k largest elements and all the elements preceding x has at

most 2r elements. Therefore, we can consider all the possibilities for its type

as there are only a bounded number of them. In each of these possible cases we

can delete the leftmost element of the permutation, which is also the leftmost

element of Q and apply the induction hypothesis on r.

* Finally, if q is the monotonic pattern 1 2 ... k, then we can use the comple-

menting method again.



As we get a bounded number of P-recursive functions in all cases, their sum is

P-recursive as well, and the statement is proved.

This completes the proof of Part Two.

We have shown that if the statement of Theorem 20 holds for all natural numbers

smaller than r, then it holds for r as well. The initial step has been shown in Lemmas

17 and 18, thus the theorem is proved by induction. O

3.5 Beyond P-recursiveness

This far we have studied the class of P-recursive power series. Another, smaller class of

formal power series is that of algebraic series.

Definition 19 We say that the series v(x) E C[[x]] is algebraic if there exist polynomials

po(n),pl(n), - - 'Pd-1(n) so that Pd-1 # 0 and

vd(x) + Pd-1 (X)vd- 1(X) + . " 1 +P(X)V(X) p0 (X) = 0. (3.28)

The sum and product of two algebraic power series are algebraic, and again, if u and

v differ in finitely many coefficients, and u is algebraic, then so is v. Any algebraic power

series is necessarily D-finite.

Yet another, even smaller class of power series is that of rational functions, that is,

elements of C(x), the fraction field of the polynomial ring C[x]. In other words, the

elements of this class are fractions in which both the numerator and denominator are

polynomials of x. Clearly, rational functions are algebraic.

Now note that speaking in terms of ordinary generating functions, all operations we

made throughout the induction step were either adding or multiplying a finite number of



power series together. In particular, the ordinary generating function C(x) of our inital

cn-sequence (that is, when r = 0 and k = 0) is C(x) = 1-v:- that is an algebraic power

series. Therefore, the ordinary generating function of S,(n), the power series G,(x) is

algebraic, too.

Now note a bit more precisely that throughout or proof we have either added formal

power series together, or, as in (3.23), multiplied two functions of type Sj(i - 1) together,

or, as in (3.27), multiplied a power series by 1/(1 - 2x - C(x)) = 1/1' - 4x. Therefore,

the following proposition is immediate:

Proposition 7 Gr(x) E C(x, V1- 4x). Moreover, when written in smallest terms, the

denominator of Gr(x) is a power of (v1- -4x) if r > 1.

It is convenient to work in this setting as the square of 1 - 4x is an element of C[x],

which makes computations much easier.

We are going to determine the exponent f(r) of /1 -4x appears in the denominator.

Equations (3.23) and (3.27) show that

f(r) = maxl<i<rf(i) + f(r - i) + 1. (3.29)

We claim now that f(r) = 2r-1 if r > 1. It is easy to compute (see [4]) that f(1) = 1.

Now suppose by induction that we know our claim for all positive integers smaller than r.

Then (3.29) and the induction hypothesis yield that f(r) > (2i - 1) + (2r - 2i - 1) + 1 =

2r - 1, which was to be proved.

Recall now that 1//1- 4x = jn>o0 (2n)x and that the sequence 2n) satisfies a linear

recursion. Differentiate both sides of this equation several times. On the left-hand-side,

each differentiation will add two to the exponent of 1 - 4x in the denominator. On the

right-hand-side, it will add one to the degree of the highest-degree polynomials appearing

in the recursive formula for the coefficients. So differentiating r - 1 times we get that the



denominator of G,(x) gives rise to a polynomial recursion of degree r. The numerator of

Gr (x) cannot increase this degree.

We collect our observations in our last lemma:

Lemma 19 Let r > 1 and write G,(x) in lowest terms. Then the denominator of Gr(x)

is equal to

( )2r - 1 = (1 - 4x) r - 1 . V1-

Therefore, the sequence S,(r) satisfies a polynomial recursion with maximal degree r.

This result is useful for computational purposes: knowing the first few values of Sr(n),

one should be able to obtain these polynomial recursions of degree r.



Chapter 4

An Infinite Antichain of

Permutations

When considering a partially ordered set with infinitely many elements, one should won-

der whether it contains an infinite antichain (that is, a subset in which any two elements

are incomparable). It is well known that all antichains of Nk (where (xI, x 2,' '. ' k) <

(Y1, Y2, .. , Yk) if and only if xi < y, for 1 < i < k ) are finite. (See [16]). Another basic

result is that all antichains of the partially ordered set of the finite words of a finite al-

phabet are finite, where x < y if one can delete some letters from y to get x. (This result

is due to Higman and can be found in [17]). In this chapter we examine this question for

the partially ordered set P of finite permutations with the following < relation: if m is

less than n, and pi is a permutation of the set {1, 2, .. -, m} and P2 is a permutation of

the set {1, 2, ... , n}, then pi < P2 if and only if pi is contained in P2 as a pattern.

We would like to point out that any answer to this question would be somewhat

surprising. If there were no infinite antichains in this partially ordered set, that would

be surprising because, unlike the two partially ordered sets we mentioned in the first

paragraph, P is defined over an infinite alphabet and the "size" of its elements can be



arbitrarily large. On the other hand, if there is an infinite antichain, and we will find

one, then it shows that this poset is more complex in this sense than the poset of graphs

ordered by the operations of edge contraction and vertex deletion. (That this poset

of graphs does not contain an infinite antichain is a famous theorem of Robertson and

Seymour [22, 23]). This is surprising too, as graphs are usually much more complex than

permutations.

We are going to construct an infinite antichain, {ai}. The elements of this antichain

will be very much alike; they will in fact be identical at the beginning and at the end.

Their middle parts will be very similar, too. These properties will help ensure that no

element is contained in another one.

Let al = 13, 12, 10, 14, 8, 11, 6, 9, 4, 7, 3, 2, 1, 5. We view al as having three parts: a

decreasing sequence of length three at its beginning, a long alternating permutation start-

ing with the maximal element of the permutation and ending with the entry 7 at the

fifth position from the right, (in this alternating part odd entries have only even neigh-

bors and vice cersa; moreover, the odd entries and the even entries form two decreasing

subsequences so that 2i is between 2i + 5 and 2i + 3), and a terminating subsequence 3

2 1 5.

To get ai+l from ai, simply insert two consecutive elements right after the maximum

element m of ai, and give them the values (m - 6) and (m - 3). Then make the necessary

corrections to the rest of the elements, that is, increment all old entries larger than

(m - 3) by 2, increment the old entries (m - 6), (m - 5), (m - 4) by 1, and leave the rest

unchanged (see Figure 4-1).

Thus the structure of any ai is very similar to that of a--only the middle part

becomes two entries longer.

We claim that the ai form an infinite antichain. Assume by way of contradiction that

there are indices i, j so that ai < aj. How could that possibly happen? First, note that

the rightmost element of aj must map to the rightmost element of ai, since this is the
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Figure 4-1: The pattern of ai

only element in aj preceded by four elements less than itself. Similarly, the maximal

element of aj must map to the maximal element of ai, since, excluding the rightmost

element, this is the only element preceded by three smaller elements. This implies that

the first four and the last six elements of aj must be mapped to the first four and last

six elements of ai, thus none of them can be deleted.

Therefore, when deleting elements of aj in order to get ai, we can only delete elements

from the middle part, Mj. We have already seen that the maximum element cannot be

deleted. Suppose we can delete a set D of entries from Mj so that the remaining pattern is

ai. First note that D cannot contain three consecutive elements, otherwise every element

before those three elements would be larger than every element after them, and ai cannot

be divided in two parts with this property. Similarly, D cannot contain two consecutive

elements in which the first is even. Thus D can only consist of separate single elements

(elements whose neighbors are not in D) and consecutive pairs in which the first element

is odd. Clearly, D cannot contain a separate single element as in that case the middle

S5

.

3 \ \

a,



part of resulting permutation would contain a decreasing 3-subsequnce, but the middle

part, Mi, of ai does not. On the other hand, if D contained two consecutive elements x

and y so that x is odd, then the odd element z on the right of y would not be in D as we

cannot have three consecutive elements in D, therefore z would be in the remaining copy

of a. and z wouldn't be preceded by two entries smaller than itself. This is a contradiction

as all odd entries of Mi have this property.

This shows that D is necessarily empty, thus we cannot delete any change elements

from aj to obtain some ai where i < j.

We have shown that no two elements in {ai} are comparable, so {ai} is an infinite

antichain. O
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