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Abstract

This thesis is devoted to solution of two classes of enumerative problems.
The first class is related to enumeration of regions of hyperplane arrangements.

We investigate deformations of Coxeter arrangements. In particular, we prove a con-
jecture of Stanley on the numbers of regions of Linial arrangements. These numbers
have several additional combinatorial interpretations in terms of trees, partially or-
dered sets, and tournaments. We study a more general class of truncated affine
arrangements, counting their regions, giving formulas for their Poincard polynomials,
and proving a "Riemann hypothesis" on location of zeros of the latter. In addition,
we find a couple of new interpretations for the Catalan numbers.

The second class of problems comes from enumerative algebraic geometry and
Schubert calculus and is related to Gromov-Witten invariants of complex flag man-
ifolds. We present a method for their calculation using a new construction for the
quantum cohomology ring of the flag manifold. This construction provides quantum
analogues of results of Bernstein, Gelfand, and Gelfand on this subject and of the
theory of Schubert polynomials of Lascoux and Schiitzenberger. The quantum version
of Monk's formula is established, and a general Pieri-type formula is derived.

While being remote from each other at first glance, both these subjects can be
attacked with algebraic and combinatorial methods.

Thesis Supervisor: Richard P. Stanley
Title: Professor of Applied Mathematics
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What is this thesis about?

Enumerative problems come up in various areas of mathematical research. Some of
them can be formulated in purely combinatorial terms, while for others even such a
formulation can be the sole purpose of a highly nontrivial investigation.

In this thesis,' I concern with several problems that appear in two different fields
of mathematics.

The first topic is related to the classical question: "On how many pieces a certain
collection of hyperplanes subdivides a linear space?" It is usually not hard to answer
this question for a generic collection of hyperplanes. But for some special hyperplane
arrangements the answer can be much more interesting than for the generic case, and
yet not so easy to gain.

The second task of this thesis belongs to the area of enumerative geometry and
is similar to the (no less classical) question: "How many algebraic curves of a given
degree pass through a given set of points, assuming that the conditions imply that
this number is finite?" This, usually hard, question can sometimes be solved with the
help of recently discovered algebraic structures.

Although our two aims seem to be far from each other, our means are close. These
are the methods of algebraic combinatorics.

Two parts of the thesis are independent from each other and, consequently, the
reader may peruse them in whatever order he or she prefers. A person more inclined
to read about Schubert calculus and quantum cohomology may skip the first part and
directly proceed to reading the second part. On the other hand, a person more at
ease with hyperplane arrangements and combinatorics of trees and posets may choose
to ignore the second part and concentrate entirely on the first part of the thesis.

When determined on which part to start with, the reader should first acquaint
himself or herself with the corresponding introduction, afterwards keep on reading
the remaining sections.

1The thesis contains the results obtained in the papers [17, 20, 42, 43, 44] written in collaboration
with coauthors and without at various time during my graduate studies at M.I.T.





Chapter 1

Hyperplane Arrangements

This part of my thesis is based on a joint work with Richard Stanley [44]. It also
contains the results of [42] as well as some results of [20] obtained in collaboration
with Israel Gelfand and Mark Graev.

1.1 Introduction

The main objects in this chapter are arrangements of hyperplanes. The simplest
invariant of a hyperplane arrangement A in a real vector space is its number of
regions r(A), i.e., the number of connected components, on which hyperplanes sub-
divide the space. Another invariant is the cohomology ring of the complement to the
complexification of A. It can be shown that the dimension of the cohomology ring is
equal to r(A).

The Coxeter arrangement of type A•_ 1 is the arrangement of hyperplanes

xi-xj = 0, 1 < i < j <n. (1.1.1)

The regions of this arrangement, n! in number, correspond different ways of ordering
the sequence x, ... ,x~. The cohomology ring of the complement was calculated
by Arnold [1]. In particular, he showed that its Poincare polynomial, which is the
generating function for the Betti numbers, is equal to (1 + q) (1 + 2q) .. (1 + (n - 1)q).

In this chapter we study a more general class of arrangements which can be viewed
as deformations of the arrangement (1.1.1). One of them is the Linial arrangement 1,
given by

axi - xj -= 1, 1 i < j < n.1.1.2

A tree on the vertices labelled by integers is called alternating if the labels along
every path alternate, i.e., form an up-down or down-up sequence. Our main result on
Linial arrangements says that the number of regions of the arrangement 4n is equal
to the number of alternating trees on the vertices 1,..., n + 1.

The arrangement 4n was first considered by Linial and Ravid. They calculated
the numbers of regions of L~ for several first values of n. The statement above



was conjectured by Stanley on the base of their numerical results. Alternating trees
earlier appeared in [20] in the context of a certain hypergeometric system and a
related polyhedron, then they were studied in [42]. The formula for the number of
alternating trees, proved in [42], thus provides the one for the number of regions of
the Linial arrangements. Explicitly,

r(4n) = 2-n (n) (k + 1)n-1.
kI=1

In addition, these numbers have several other combinatorial interpretations. For
example, we show that r(~,) is also equal to the number of binary trees on the
vertices 1,..., n such that left children are always less than their parents and right
children are always bigger.

We study a more general class of arrangements called truncated affine arrange-
ments. They are finite subarrangements of the affine type An- 1 hyperplane arrange-
ment, and explicitly given by the following equations, where a and b are fixed integers,

xi - xj = k, 1 < i < j < n, -a < k < b. (1.1.3)

For instance, the Linial arrangement £n corresponds to the case of a = 0 and b = 2.
Remind that the characteristic polynomial of a hyperplane arrangement is related

to the Poincard polynomial by a simple transformation. For 0 < a < b, we prove
that the characteristic polynomial Xab(q) of the truncated affine arrangement (1.1.3)
equals

Xab(q) = (b - a)-1 (Sa + Sa+l + ... + Sb-l)n . qn-1

where S is the shift operator S : f(q) -+ f(q - 1).
As a byproduct of this statement, a "Riemann hypothesis" on zeros of the charac-

teristic polynomial is obtained. Namely, we demonstrate that if a $ b then all roots
of the characteristic polynomial Xab(q) have the same real part equal to (a+b- 1)n/2.
In contrast, for a = b, the roots are real. If a = b - 1 then all roots are equal to na.

An asymptotics of characteristic polynomials of Linial arrangements is found. In
particular, for "big" n, the distance between two adjacent roots of the characteristic
polynomial is "close" to ra, where a = 1.199678... is the root of the equation

e2a = ( + 1)(- 1)- 1  a > 1

We also investigate some arrangements related to the Catalan numbers, and prove
a reciprocity result for certain deformations of Coxeter arrangements with and without
central hyperplanes (1.1.1). In addition, we present several interpretations of the
Catalan numbers.

In the rest of Introduction we outline how this chapter is organized. Section 1.2 is
devoted to main definitions and general theorems from the theory of hyperplane ar-
rangements. We discuss regions, Poincare and characteristic polynomials, intersection
poset, and Orlik-Solomon algebra. In Section 1.2.3 we review several general theo-



rems on hyperplane arrangements, including a variant of the NBC Theorem, which is
our main technical tool. Then in Section 1.2.4 we apply this theorem to deformations
of Coxeter arrangements.

In Section 1.3 we study the hyperplane arrangements related, in a special case,
to interval orders and the Catalan numbers. In Section 1.3.2 we prove a general
reciprocity result for such arrangements. We also mention several new interpretations
of the Catalan numbers.

A discussion of alternating trees, Linial arrangements, and other related objects
is the purpose of Section 1.4. We give the main result on Linial arrangements and
alternating trees (Theorem 1.4.5), and introduce several combinatorial objects whose
numbers are equal to the number of regions of the Linial arrangement: local binary
search trees, sleek posets, semiacyclic tournaments, FIS and SIF trees. In Section 1.4.6
we prove a theorem on characterization of sleek posets in terms of forbidden subposets.

In Section 1.5 we study truncated affine arrangements. We provide a proof to the
result on numbers of regions of these arrangements and their characteristic polyno-
mials (Theorem 1.5.7). To do that, we first establish in Section 1.5.1 a functional
equation for the exponential generating function of the numbers of regions. Then we
deduce a "Riemann hypothesis."

In Section 1.6 we study "random" trees and asymptotics of characteristic polyno-
mials.



1.2 Arrangements of Hyperplanes

In this section we give main definitions and several general theorems from the theory
of hyperplane arrangements. For more details, see [61, 38, 39]. We prove a generalized
Whitney's theorem and its corollary-the NBC theorem. Then we apply them for
calculation of the numbers of regions and the Poincard polynomials of deformations
of type A Coxeter arrangements. Finally, we recall the construction of the Orlik-
Solomon algebra.

1.2.1 Regions and Poincard polynomials

An arrangement of hyperplanes or hyperplane arrangement is a discrete collection of
affine hyperplanes in a vector space. Let A be a finite arrangement of hyperplanes in
a real vector space V. We will always assume' that the vectors dual to hyperplanes in
A span the space V* and call A a nondegenerate arrangement in this case. A region
of A is a connected component of the complement to hyperplanes in the arrangement.
Let r(A) denote the number of regions of A.

The Poincare polynomial is a q-analogue for these numbers. Let Ac denote the
complexified arrangement A, that is the collection of the hyperplanes H 0 C, H E A,
in the complex vector space V C. A let CA be the complement to hyperplanes of Ac
in V 0 C. The Poincard polynomial PoinA(q) of A is the generating function for the
Betti numbers of CA:

PoinA (q) = dim Hk (CA, C) qk.
k>O

The intersection poset2 LA of the arrangement A is the collection of all nonempty
intersections of hyperplanes in A ordered by reverse inclusion. Thus the poset LA
has a unique minimal element3 0 = V. The characteristic polynomial of A is then
defined by

XA() = (, z) qdimz, (1.2.1)
zELA

where Ia denotes the M6bius function of LA (see [51, Section 3.7]). The general
properties of geometric lattices [51, Proposition 3.10.1] imply, for example, that the
sign of I(0, z) is equal to (-1)codimz

The following fundamental result of Orlik and Solomon [38] establishes a relation
between the Poincare and characteristic polynomials and the number of regions r(A)
as well as the number of bounded regions of A.

1without loss of generality
2Here and elsewhere the word "poset" stands for "partially ordered set."
3This poset has a unique maximal element if and only if the intersections of hyperplanes in A is

nonempty. In this case LA is a geometric lattice.



Theorem 1.2.1 Assume that A is a nondegenerate arrangement in an I-dimensional
vector space. Then

XA(q) = q' PoinA(-q- 1). (1.2.2)

The dimension of the cohomology ring dim H*(CA, C) = PoinA(1) = (-1)'XA(-1) is
the number of regions r(A) of A. Likewise, the alternating sum of the Betti numbers
PoinA(-1) = XA(1) is the number of bounded regions of A.

A combinatorial proof the last two statements of this theorem in terms of the
characteristic polynomial was earlier given by T. Zaslavsky in [61].

1.2.2 Coxeter arrangements

Let V be a real 1-dimensional vector space, and let 4 be a root system in V* with
a distinguished set of positive roots O+ = {(5, 2,... ,- - -N (see [8, Ch. VI]). The
Coxeter arrangement A(fi) is the arrangement of hyperplanes in V given by

0i(X) = 0, 1 < i < N, (1.2.3)

where x E V.
The number of regions (Weyl

corresponding Weyl group W.
chambers) of A(4) is equal to the order of the

Figure 1-1: The Coxeter hyperplane arrangement A3 .

In the case of a type A root system it is more convenient to use the augmented
index n = 1 + 1. Let Vn denote the subspace (hyperplane) of all vectors (x 1,... ,xn)
in Rn such that xl + ... + xz = 0. The Coxeter arrangement4 An = A(A,_1) is the
arrangement of hyperplanes in Vn explicitly given by

Xi - xj = 0, 1 < i < j < n.

4or Braid arrangement

(1.2.4)



To compute the number of regions of this arrangement is not much harder than to
compute the order of the symmetric group Sn-both these numbers are n!. Arnold [1]
calculated the cohomology ring H*(CA, C) (see Corollary 1.2.14). In particular, he
demonstrated that the characteristic polynomial of An is equal to

XA,(q) = (q - 1)(q -2) ... (q - n+ 1). (1.2.5)

Brieskorn [9] generalized Arnold's result to the case of any Coxeter arrange-
ment. His formula for the characteristic polynomial of (1.2.3) involves the exponents
mi,..., m, of the corresponding Weyl group W:

XA(t)(q) = (q - ml)(q - m 2) ... (q - mi ).

1.2.3 Whitney's formula

In this section we prove several essentially well-known results on hyperplane arrange-
ments that will be useful in the sequel.

Consider the arrangement A of hyperplanes in V 2 R' given by equations

hi(x) = ai, 1 < i < N, (1.2.6)

where x E V, the hi E V* are linear functionals on V, and the ai are real numbers.
We call a subset I in {1, 2, ... , N} central if the intersection of the hyperplanes

hi(x) = ai, i E I, is nonempty. For a subset I = {il, i2,... , i,}, denote by rk(I) the
dimension (rank) of the linear span of the vectors hi 1,..., him.

The following statement is a generalization of a classical Whitney's formula [57].

Theorem 1.2.2 [44, Theorem 4.1] The Poincare and characteristic polynomials of
the arrangement A are equal to

PoinA (q) = E(-1)III- rk(I) qrk(I), (1.2.7)
I

xA(q) = Z(-1)II I ql-rk(I), (1.2.8)
I

where I ranges over all central subsets in {1, 2,..., N}. In particular, the number of
regions of A is equal to

r(A) = E(-1) jI - rk(I),

I
and the number of bounded regions is equal to

We need the well-known cross-cut theorem.



Lemma 1.2.3 [51, Corollary 3.9.4] Let L be a finite lattice with the minimal ele-
ment 0 and the maximal element 1, and let X be a subset of vertices in L such that
(a) b0 X, and (b) if y E L, y 0 then x < y for some x E X (such elements are
called atoms). Then

L(, 1) = (1)k nk, (1.2.9)
k

where nk is the number of k-element subsets in X with join equal to 1.

Now we can easily deduce Theorem 1.2.2.

Proof - Let z be any element in the intersection poset LA, and let L(z) be the
subposet of all elements x E LA such that x < z, i.e., the subspace x contains z. In
fact, L(z) is a geometric lattice. Let X be the set of all hyperplanes from A which
contain z. If we apply Lemma 1.2.3 to L = L(z) and sum (1.2.9) over all z E LA, we
get the formula (1.2.8). Then, by (1.2.2), we get (1.2.7). O

A circuit is a minimal subset I such that rk(I) = III- 1. In other words, a subset
I = {(i, i 2 ,... , im} is a circuit if there exists a nonzero vector (A1, A2 , ... , Am), unique
up to a nonzero factor, such that Alhil + A2hi, + 2 i2 + Amhim = 0. It is not difficult
to see that a circuit I is central if, in addition, we have Alai, + A2ai, + ... + la i, = 0.
Thus, if al = . = aN = 0 then all circuits are central, and if the ai are generic then
there are no central circuits.

A subset I is called acyclic if III = rk(I), i.e., I contains no circuits. It is clear
that any acyclic subset is central.

Corollary 1.2.4 In the case when the ai are generic, the Poincard polynomial equals

PoinA(q) = qI,

where the sum is over all acyclic subsets I in {1, 2,..., N}. In particular, the number
of regions r(A) is equal to the number of acyclic subsets.

Indeed, in this case a subset I is acyclic if and only if it is central.

Remark 1.2.5 The word "generic" in the corollary means no I + 1 distinct hyper-
planes in (1.2.6) have a nonempty intersection. For example, it is sufficient to require
that the ai be linearly independent over rational numbers.

Let us fix a linear order p on the set {1, 2,..., N}. We say that a subset I in
{1, 2,..., N} is a broken central circuit if there exists i § I such that I U {i} is a
central circuit and i is the minimal element in I U {i} with respect to the order p.

The following, essentially well-known, theorem gives us the main tool for calcula-
tion of Poincard (or characteristic) polynomials. We will later refer to it as the NBC
Theorem.



Theorem 1.2.6 We have
Poin, (q) = q lI

I

where the sum is over all acyclic subsets I in {1,2,..., N} without broken central
circuits.

Proof - We will deduce this theorem from Theorem 1.2.2 using the involution
principle. In order to do this we construct an involution : I -+ t(I) on the set
of all central subsets I with a broken central circuit in such that for any I we have
rk(t(I)) = rk(I) and It -II = |II ± 1.

This involution is defined as follows. Let I be a central subset with a broken central
circuit, and let s(I) be the set of all i E 1,..., N such that i is the minimal element
of a broken central circuit J C I. Note that s(I) is nonempty. If the minimal element
s, of s(I) lies in I, we define t(I) = I \ {s,}. Otherwise, we define t(I) = I U {s,}.

Note that s(I) = s(t(I)), thus t is indeed an involution. It is clear now that all
terms in (1.2.7) for I with a broken central circuit cancel each other and the remaining
terms yield the formula in Theorem 1.2.6. O

Remark 1.2.7 Note that the number of subsets I without broken central circuits
does not depend on the choice of the linear order p.

1.2.4 Deformations of Coxeter arrangements

In this section we apply the results of the previous section to hyperplane arrangements
in Vn of the form

Xi - () = a , ... , ad) 1 < i < j < n. (1.2.10)

where kij are nonnegative integers and a.) E R.
These arrangements can be viewed as deformations of the Coxeter arrangement

of type Al. We give an interpretations of these results in terms of (colored) graphs.
It will be more convenient to use the index n = 1 + 1 instead of the index 1 = dim V.

Let A denote the collection of the real numbers aT) that appear in (1.2.10). We say
that G is an A-colored graph if G is a graph on the vertices 1, ... , n and each edge (i, j),
i < j, of G is labelled by a number (color) c E {a),..., a'j)}. We denote the edge
(i, j) of color c by (i, j)c. We will assume that (i, j)c = (j, i)-c. With a hyperplane
xi - xj = c in (1.2.10), we associate the edge (i, j)c. Then a subset I of hyperplanes
corresponds to an A-colored graph G. A graph G corresponds to an acyclic subset I
if and only if G is a forest. We say that a circuit (il, i2)C1, i, (i23)2,... , (im, il)cm in
G is central if cl + c2 + ..- + cm = 0 (cf. Section 1.2.3).

Fix a linear order on all edges (i, j)a, cE {aQ),..., a'). We call an A-colored
graph C a broken A-circuit if C is obtained from a central circuit by removing its
minimal element. In the case when all a$.) are zero, we get the classical notion of a
broken circuit of a graph.



We summarize below several special cases of the NBC Theorem (Theorem 1.2.6).
Here JIF denotes the number of edges in a forest F.

Corollary 1.2.8 The Poincare polynomial of the arrangement (1.2.10) is equal to

PoinA(q) = qlFI,
F

where the sum is over all A-colored forests F on the vertices 1,..., n without broken
A-circuits. The number of regions of arrangement (1.2.10) is equal to the number of
such forests.

One special case is the arrangement (1.2.10) is the arrangement in V, given by

xi - xj -a, 1 < i < <n (1.2.11)

where the aij are fixed real numbers.
In this case all kij = 1 and A-colored graphs are just usual graphs.

Corollary 1.2.9 The Poincare polynomial of the arrangement (1.2.11) is equal to

PoinA(q)= qlFI,
F

where the sum is over all forests F on the vertices 1,..., n without broken A-circuits.
The number of regions of the arrangement (1.2.11) is equal to the number of such
forests.

In the case when the a.) are generic these results become especially simple.
For a forest F on vertices 1, 2,... , n we will write k F := F kij, where the product

is over all edges (i, j) in F.

Corollary 1.2.10 Let A be an arrangement of type (1.2.10), where the a are
generic real numbers. Then

1. PoinA(q) - kFqlIFI,

2. r(A) = E kF,

where the sums are over all forests F on the vertices 1, 2,..., n.

Corollary 1.2.11 The number of regions of the arrangement (1.2.11) with generic
aij is equal to the number of forests on n labelled vertices.

This corollary is "dual" to the following well-known result (see, e.g., [51]).



Proposition 1.2.12 Let Perm, be the permutohedron, i.e., the polyhedron with ver-
tices (wl, ... , w) E Rn, where wl, ... , wn ranges over all permutations of 1,..., n.
Then the Erhart polynomial of Permn is equal to

Epermn (q) = E q FI,
F

where the sum is over all forests F on n vertices. In particular, the number of integer
points in Permn is equal to the number of forests on n vertices.

The connected components of the (n)-dimensional space of all arrangements of
type (1.2.11) correspond to (coherent) zonotopal tilings of the permutohedron, i.e.,
certain subdivisions of Perm, into parallelepipeds. The regions of a generic arrange-
ment (1.2.11) correspond to the vertices of the corresponding tiling, which are all
integer points in Permn.

1.2.5 The Orlik-Solomon algebra

Orlik and Solomon [38] gave the following combinatorial description of the cohomology
ring of an arbitrary hyperplane arrangement. Consider an arrangement A of affine
hyperplanes H 1, H 2,..., HN in a complex space V 2 C' given by

Hi : hi (x) = ai, i = 1,..., N,

where the hi(x) are linear forms on V and ai E C.
Recall that subset of indices I = {il,..., im} is called central circuit if I is a

minimal subset such that the codimension of the intersection Hi, n ... n Him is equal
to m - 1.

Let el,... .,eN be formal variables associated with the hyperplanes H 1,..., HN.

The Orlik-Solomon algebra OS(A) of the arrangement A is generated over the complex
numbers by el,..., eg subject to the relations:

eiej = -e j e2 , 1 < i < j < N (1.2.12)

ej, ... ejp = O, if Hj, n ..- n Hp = 0, (1.2.13)

(-1)j e i, .ei = 0, (1.2.14)
j=1

whenever {il,...,im} is a central circuit. (Here e'i. denotes that the term eij is
missing.)

Let CA = V - Ui Hi be the complement to the hyperplanes Hi of A.

Theorem 1.2.13 Orlik, Solomon [38] Let Ai be the cohomology class of the differ-
ential form dhil(hi(x) - ai) in the (de Rham) cohomology H*(CA, C) of CA. Then



the map : OS (A) -+ H*(CA, C) defined by

q$: ei A- A

is an isomorphism between the Orlik-Solomon algebra and the cohomology of CA.

As an example, consider the case of the Coxeter arrangement An of type A,_1
given by (1.2.4). The following well-know description of the corresponding cohomol-
ogy was found by Arnold [1].

Corollary 1.2.14 [1] The cohomology ring of the complement to the complexified
Coxeter arrangement An is generated by anticommuting generators eij, 1 < i < j < n,
subject to the following "triangular" relations:

eijej k - eijeik ± ejkeik = 0,

where < i < <j k < n.

1.3 Catalan Miscellanea

The sequence of Catalan numbers

1 2n
C n = -(1.3.1)

is, probably, the most famous combinatorial sequence. Some interpretations of the
numbers C, are can be found in [52, Chapter 6, Exercises].

The best known combinatorial interpretation of the numbers C, is given in terms
of Dyck words. A sequence w, w2, ... , W2n of O's and 1's is said to be a Dyck word if,
for any k = 1,..., 2n, we have wl + w 2 + --. + wk > k and w1 + w 2 + ... + W2n = n.
The number of Dyck words of length 2n is equal to Cn.

Recall that the generating function for the Catalan numbers is equal to

1 + Cntn 2t (1.3.2)
n>1

In this section we give several new and old interpretations of these numbers in
terms of hyperplane arrangements, posets, polyhedra, and trees.

1.3.1 Semiorders

A poset P on the vertices 1, 2, ... , n with the order relation <p is called a semiorder
if there are real numbers xl, x 2 , ... , sn Such that i <p j if and only if xi < xj - 1.
The symmetric group Sn acts on semiorders on n vertices by permuting the vertices.
Two semiorders are equivalent (isomorphic) if they are in the same Sn-orbit.

The following is a well-known result of Wine and Freund [58].



Theorem 1.3.1 [58] The number of nonisomorphic semiorders on n vertices is equal
to the Catalan number Cn.

The set l+ = {Eij I 1 < i < j _ n} of positive roots in the type An- 1 root system
can be partially ordered as follows: Eij 5 4ki if and only if ekl - ij is a sum of positive
roots, i.e., k < i < j < 1.

In the equivalence class of a semiorder P there is a unique representative which is
determined by a sequence x 1, x 2 , ... ,i X satisfying x1 < x 2 < ... < xn. By Ip denote
the subset in )+ such that Eij E Ip if and only if xi < xj - 1. The subset Ip is an
order ideal in the poset 4+, i.e., eij E Ip implies Ekl E Ip for all kl > fij. It is easy to
see that the map P ý-+ Ip is a bijection between the equivalence classes of semiorders
and order ideals in (I+. The latter are in an easy bijective correspondence with Dyck
words, and thus their number is the Catalan number Cn.

Consider two arrangements of hyperplanes in Vn C R": the first is given by the
equations

i - xj= 1, < i < j < n, (1.3.3)

and the second is given by

xi - = O, 1, 1 < i < j < n. (1.3.4)

The regions of (1.3.3) are in a bijective correspondence with semiorders on n ver-
tices. This correspondence is described as follows: take a point (xl, x 2,... , xn) in
a region of (1.3.3), the sequence x 1, x2,... ) Xn then determines a semiorder. The
symmetric group S, acts on the regions of the arrangement (1.3.4). Every Sn-orbit
consists of n! regions and has a unique representative in the dominant chamber, given
by x, < X2 < ... < X,. The regions of (1.3.4) in the dominant chamber thus corre-
spond to unlabelled (i.e., nonisomorphic) semiorders on n vertices. See [53] for more
results and relations between hyperplane arrangements and interval orders, the latter
generalize semiorders.

We can reformulate Theorem 1.3.1 as follows.

Proposition 1.3.2 The number of regions of the arrangement (1.3.4) is n! times the
Catalan number Cn.

The following expression for the generating function the number sn of regions of
the arrangement (1.3.3), i.e., the number of semiorders on n labelled vertices, can be
derived from results of Chandon, Lemaire, and Pouget [11].

Theorem 1.3.3 The generating function for the numbers sn of semiorders on n la-
belled vertices is equal to

1 + E ntn = -
n>1 2(1 - e- t )



II
Figure 1-2: Forbidden subposets for semiorders.

For example, s, = 1, 3, 19, 183, 2371, 38703, 763099, for n = 1,..., 9. This formula
is a special case of a more general statement (Theorem 1.3.5) that we prove in the
next section.

The following theorem, due to Scott and Suppes [47], presents a simple charac-
terization of semiorders in terms of forbidden subposets (cf. Theorem 1.4.10).

Theorem 1.3.4 [47] A poset P is a semiorder if and only if it contains no induced
subposet of either of the two types shown on Figure 1-2.

1.3.2 Reciprocity for hyperplane arrangements

Let us fix distinct real numbers al, a2,.. .,am > 0, and let A = (a,. .. , am). Let
C, = C,(A) be the arrangement of hyperplanes in V, = {x e R I X1l + -- + x; = 0}
given by

xi - xj = al, a2,... ,am, i - j. (1.3.5)

Also let CO = Co(A) be the arrangement obtained from C, by adjoining the hyper-
planes xi = xj. Explicitly CO is given by

xi - xj = O, a, ,2, . am, i j. (1.3.6)

The exponential generating functions for the numbers of regions of these arrange-
ments are given by

tn
fA(t) = Zr(Cn)-i.,

n>O

gA(t) = t(C n

n>O

The main result of this section is the following:

Theorem 1.3.5 [44, Theoreom 7.1] We have fA(t) 9 gA(1 - e- t) or, equivalently,

r(Co) = Zc(n, k) r(Ck),
k>0



where c(n, k) is the signless Stirling number of the first kind, i.e., the number of
permutations of 1, 2, ... , n with k cycles.

Note that Theorem 1.3.3 from the previous section is an immediate consequence
of Theorem 1.3.5, for A = (1), and formula (1.3.2).

We now proceed to the proof of Theorem 1.3.5. The symmetric group S, acts on
the regions of Cn and C%. Let Rn denotes the set of all regions of Cn.

Lemma 1.3.6 We have, r(C ) is n! times the number of Sn-orbits in Rn.

Proof - Indeed, the number of regions of C° is n! times the number of those in the
dominant chamber. They, in turn, correspond to Sn-orbits in Rn. O

It was explained in [53] that the regions of C, can be viewed as (labelled) gener-
alized interval orders. On the other hand, the regions of C° that lie in the dominant
chamber, correspond to unlabelled generalized interval orders. Lemma 1.3.6 says
that number of unlabelled objects is the number of Sn-orbits, which is, of course, a
tautology.

We can apply the following well-known lemma of Burnside. Its proof is straight-
forward, and it is left to the reader.

Lemma 1.3.7 Let G be a finite group which acts on a finite set M. Then the number
of G-orbits in M is equal to

1-- Fix(g, M),
gEG

where Fix(g, M) is the number of elements in M fixed by g E G.

By Lemmas 1.3.6 and 1.3.7 we have

r(C°) = Fix(w,C,),
wESn

where Fix(w, Cn) is the number of regions of Cn fixed by the permutation w.
Theorem 1.3.5 thus easily follows from the following statement.

Lemma 1.3.8 Let w E Sn be a permutation with k cycles. Then the number of
regions of Cn fixed by w is equal to the number of all regions of Ck.

Indeed, by Lemma 1.3.8, we have

r(C°) = E Fix(w, Cn)= c(n, k) r(Ck),
wESn k>O

which is precisely the claim of Theorem 1.3.5.

Proof of Lemma 1.3.8 - We construct a bijection between the regions of Cn fixed
by w and all regions of Ck as follows.



Suppose R is a region of C, fixed by a permutation w E S, and (xl,..., xn) E R.
Then xi - xj > as whenever x,(i) - xz(j) > as, for any i, j, s.

The permutation w is a product of several disjoint cycles: w = cl... Ck. Let us
denote by XQ the collection of the xi for all elements i of the cycle c,. We write
X, - Xp > a if xi - xj > a for all xi E X, and xj E Xp. The notation X, - X# < a
has an analogous meaning. We show that for any two classes X, and Xp and for any
s = 1,..., m we have either X, - Xp > as or X, - Xp < as.

Let xi be the maximal element in Xa, and let xj be the maximal element in Xp.
Suppose that xi - xj > as. For any integer p, we have xwp(i) - xWP(j) > as, due to
the w-invariance of the region R. Since xi 2 xzw(i) (xi is maximal in Xa), we have
xi-ZX,(j) > as. Thus for any q, xzW(i) -xzP+(j) > as. This implies that X, -X > as.

Analogously, suppose that xi-xj < as. Then for any p, we have xwp(i) -XwP(j) < as.
Since xj > xwp(j), we have xWP(i) - xj < as. Finally, we obtain xWp+q(i) - Xw~(j) < a8 ,
for any integer q. This implies that X, - Xp < as.

Let us choose elements x1l E X 1,... ,, Xk e Xk. Then the point x' = (xil,... , xk)
belongs to some region R' of Ck. Moreover, the region R' does not depend on the
choice of the xi,. Therefore we obtain a map q : R -+ R' from the set of regions of
C,, invariant under w, to the regions of Ck.

It is clear that q is injective. To show that q is surjective, take a point x' =

(x11,,... ,Xk') in a region R' of Ck. Let x = (Xl,x 2,... ,x~) E R'n be the point such
that xi = x1,' for i in cycle c,. Then x belongs5 to some region R of Cn. According
to the construction above, O(R) = R'. Thus the map k is a bijection.

This completes the proof of Lemma 1.3.8 and Theorem 1.3.5. O

1.3.3 Polyhedra and their triangulations

Recall that V,+1 = {x E ]Rn+ l Xl+- - +xn+1 = 0}. Let ij = ei-ej, 1 < i < j < n+1,
where E1, E2, ... Ef+1 is the standard basis of R±+ 1 . The polyhedron Pn in Vn+ 1 is
defined as the convex hull of the origin 0 and the vectors Eij, i < j.

The space V,+1 contains the n-dimensional integer lattice which is obtained by
intersecting Zn+ 1 canonically embedded into Rn+ 1 with Vn+ 1. The volume of any
polytope with integer vertices is a multiple of 1/n!.

Theorem 1.3.9 [20, Theorem 2.3(2)] The volume of Pn is the Catalan number C,
divided by n!

Cn
Vol(P,) = .

Below in this section we sketch a proof of this statement.6 Let T be a tree on
the vertices 1,..., n + 1, and let A(T) denote the convex hull of the origin and the
vectors Eij that correspond to edges (i, j), i < j, of T.

5 We use here the condition that the a, are nonzero.
6 The statements below are fairly straightforward and their rigorous proofs are left to the reader.



Lemma 1.3.10 The polyhedron A(T) is an n-dimensional simplex of volume 1/n!.
Every n-dimensional simplex in Pn with integer vertices which contains the origin is
of the type A(T).

We will study subdivisions of Pn into simplices A(T). Let us say that two trees T1
and T2 are compatible if the intersection of two simplices A(T 1) and A(T2) is their
common face. Define a local triangulation T of Pn as a collection of trees {T,... , Tk}
such that the following two conditions holds:

* The union of all simplices A(Ti) is Pn.

* Any two trees Ti and Tj in T are compatible.

We call such triangulation local, because every simplex A(Ti) contain the origin, and
therefore such triangulations are determined by their small neighborhood of 0.

First, we describe pairs of compatible trees. Let G(T1 , T2) be the ordered graph
such that (i,j) is an edge of G(T1 , T2) if and only if (a) i < j and (i,j) is an edge
of T1 ; or (b) i > j and (j, i) is an edge of T2.

Lemma 1.3.11 Two trees T1 and T2 are compatible if and only if the graph G(T, T')
is acyclic.

Not every simplex A(T) may appear in a local triangulation. A tree T on a
linearly ordered set of vertices is called alternating if the vertices along every path'
in T alternate: .. < a > b < c > d < -..

We will study alternating trees in more detail in Section 1.4.1.

Lemma 1.3.12 A tree T participates in some local triangulation if and only if T is
an alternating tree.

We say that an alternating tree T is non-crossing if there are no i < j < k < 1
such that both (i, k) and (j, 1) are edges of T. Analogously, we say that an alternating
tree in non-nesting if there are no i < j < k < 1 such that both (i, 1) and (j, k) are
edges of T.

Theorem 1.3.13 [20, Theorem 6.3] [20, Theorem 6.6]

1. The set of all non-crossing alternating trees on the vertices 1,..., n+ 1 is a local
triangulation of Pn.

2. The set of all non-nesting alternating trees on the vertices 1,..., n + 1 is a local
triangulation of Pn.

3. The number of non-crossing alternating trees on n + 1 vertices is equal to the
number of non-nesting alternating tree on n + 1 vertices and is equal to the
Catalan number C,.

It is an interesting problem to describe all (local) triangulations of Pn.

7It is sufficient to require this condition only for paths with three vertices.



1.4 Alternating Trees and the Linial Arrangement

In this section we study a sequence fo, fi, f2, ... of positive integer numbers which has
several combinatorial interpretations. Here we summarize the main interpretations of
this sequence. For definitions and proofs see corresponding subsections below. The
number f,, is equal to:

* the number of regions of the Linial arrangement 4,.

* the number of alternating trees with n + 1 vertices,

* the number of local binary search trees with n vertices,

* the number of FIS trees with n vertices,

* the number of SIF trees with n vertices,

* the number of sleek posets with n vertices,

* the number of semiacyclic tournaments with n vertices,

* the alternating sum E(-1)c(G) over all balanced graphs G with n vertices,
where c(G) is the cyclomatic number of G.

* the sum

k=O

1.4.1 Counting alternating trees

Recall that a tree T on a linearly ordered set of vertices is called alternating if the
vertices in any path i1,..., ik in T alternate, i.e., we have ii < i2 > i3 < ... ik or
il > i2 < i3 > '' ik. In other words, there are no i < j < k such that both (i, j) and
(j, k) are edges in T. Alternating trees first appear in [20] and were studied in [42],
where they were called intransitive trees, see also [53] and [44].

10 7 4 6 9

5 1 3 0 2 8

Figure 1-3: An alternating tree.



Let f, be the number of alternating trees on the vertices 0, 1, 2,..., n, and let

f(x) = Zfn n !
n>O

be the exponential generating function for the sequence fS.

Theorem 1.4.1 [42, Theorems 1, 2] For n > 1 we have

fn = 2-n (n) (k + 1)n-1. (1.4.1)
k=O

The series f = f(x) satisfies the functional equation

f = ex( 1+f)/2 . (1.4.2)

The first few numbers f, are given below.

fo fl f2 f3 fA f f f8 f fio

1 1 2 7 36 246 2104 21652 260720 3598120 56010096

We need some extra notation. We say that i is a minimal vertex in an alternating
tree T if T contains an edge (i, j) for some j > i. A vertex is called maximal it is not
a minimal vertex. If a vertex i is minimal (respectively, maximal) then for every edge
(i, j) in T we have j > i (respectively, j < i). For example, the tree on Figure 1-3
has minimal vertices 0, 1, 2, 3, 5, 8 and maximal vertices 4, 6, 7, 9, 10.

An alternating tree with a chosen vertex (root) is called a rooted alternating tree.
If the root is a maximal vertex we call such a tree top-rooted.

Proof of Theorem 1.4.1 - First, we prove the formula (1.4.2).

Let f, be the number of all top-rooted alternating trees on the vertices 1,..., n.
It is clear that, for n > 2, the number fn is half the number of all rooted alternating
trees on 1,..., n. Thus f, = nfn-1/2; also fi = (fo + 1)/2 = 1. We obtain the
following expression for the exponential generating function.

f(t) := fn- = t(f(t) + 1)/2.
n>1

To get an alternating tree on the vertices 0, 1,..., n, take a forest of top-rooted
trees on the vertices 1,..., n and connect 0 to each root. By the exponential formula

(e.g., see [23, p. 166]), we have
f (t) = ef(t).

This gives the formula (1.4.2).



Now we deduce (1.4.1). We have

f= t(1 + ef)/2.

By Lagrange's inversion formula (see [23, p. 17]), we get

[t]f [n-1] (I + n  1 n n kn-1
n 2n [  n2 nn  k (n - 1)!'tn k=0

where [tn]g denotes the coefficient of tn in g. Thus, for n > 2,

(1.4.3)fn-1 1 -1 () kn-1
n- 2n_1 =

k=0

The formula (1.4.1) is equivalent to (1.4.3).

Remark 1.4.2 It is also possible to calculate the inverse of the function f(x). It
follows from (1.4.2) that x = 2In(f)/(1 + f). One can expand it as the following
series:

=- -E(1 -
n>1

f)n (
k=O

1.4.2 Local binary search trees

A plane binary tree on the vertices 1, 2,..., n is called a local binary search tree (LBS
tree, for short) if for any vertex i the left child of i is less than i and the right child of i
is greater than i. These trees were first considered by Ira Gessel [21], and were studied
in [42]. The name "local binary search tree" was suggested by Richard Stanley [53],
see also [44].

1 4

Figure 1-4: A local binary search tree.

Theorem 1.4.3 [42, Section 4.1] For n > 1, the number of local binary search trees
on the vertices 1, 2, ... , n is equal to the number fn of alternating trees on the vertices
0, 1,2, ... ,n.



Proof - Let R•Z be the set of rooted alternating trees on the vertices 0, 1, 2,..., n;
and let Bn be the set of LBS trees on the vertices 0, 1, 2, ... , n such that the root has
only one child (left or right).

Clearly, IZnI = (n + 1)fn. On the other hand, IBn is n + 1 times the number of
LBS trees on 1, 2,..., n. Indeed, for a LBS tree B E BJ, the root r of B can be any
vertex 0 < r < n. Deleting the root r, we get a LBS tree T' on {0, 1,..., n} \ {r}.
Conversely, we can always reconstruct T if we know T' and r. In the case when the
roof r' of T' is less than r, we set r' to be the left child of r; otherwise, if r, < r, we
set r' to be the right child of r.

In order to prove Theorem 1.4.3, we construct a bijection ": Rn -+ B,. Let T be
a rooted alternating tree T E n,. We construct the LBS tree B = O(T) using the
following simple procedure:

First, we orient the edges of T away from the root (e.g. the vertices adjacent to
the root are children of the root).

If v is a minimal vertex in T and il < i2 < ... < il are the children of v in T
(v < ii), then set ii to be the right child of v in B, and ik+1 to be the right child of
ik in B, for k = 1, 2,...,l- 1.

Analogously, if v is a maximal vertex in T and jl > j2 > ... > j, are the children
of v in T (v > jl), then set jl to be the left child of v in B, and jk+1 to be the left
child of jk in B, for k = 1, 2,..., 1- 1.

Clearly, the construction of the map q is invertible. Thus q is a bijection. E

1.4.3 On stability and fickleness

Let On denote the set of rooted trees on the vertices 1, 2,..., n with edges oriented
away from the root.

We say that a path i, i2 ,... , ik in a tree T E O, is stable if all edges (i1 , i2 ),
(i2, i3), (i3 , i4), ... ,(ik-1, ik) are oriented in the same direction, i.e., the path either
approaches the root, or goes away from the root.

We also say that a path jl, j2,... , jk is fickle if the vertices in it alternate, i.e, we
have jl < j2 > j3 < * jk or j > j2 < j3 > ... jk (cf. Section 1.4.1).

A tree T in On is called a "fickle is stable" tree (FIS tree) if every fickle path in T
is stable. Likewise, a tree T in On is called a "stable is fickle" tree (SIF tree) if every
stable path in T is fickle.

Theorem 1.4.4 The number of FIS trees in On is equal to the number of SIF trees
in On and is equal to the number fn of alternating trees on the vertices 0, 1,... , n.

Proof - First, we notice that a tree T from On is a FIS tree if and only if every
vertex i in T has none, one, or two children, and in the last case one of the children
is less than i and the other is greater than i. We establish a simple bijection between
FIS and local binary search trees. For a LBS tree, orient its edges away from the
root, and then forget the structure of a binary tree, i.e., forget which child was left
and which was right. We obtain a FIS tree. Thus, by merit of Theorem 1.4.3, the



number of FIS trees in On is equal to the number f, of alternating trees on the
vertices 0, 1, 2,..., n.

SIF trees are more similar to alternating trees. In fact, they are almost alternating
in the sense that the condition for alternating tree is satisfied in every vertex but the
root (cf. Section 1.4.1).

A bijection between FIS trees and SIF trees can be constructed in a way similar
to the proof of Theorem 1.4.3. OE

1.4.4 The Linial arrangement

Recall that Vn denotes the hyperplane {(Xl,...,a n) I x + ... + xn = 0} in Rn .
Consider the arrangement 4n of hyperplanes in Vn given by the equations

xi - xj = 1, 1 < i < j < n. (1.4.4)

This arrangement was first considered by Nati Linial and
calculated the numbers r(£,) of regions of £, and the Poincare
for n < 9.

Shmulik Ravid. They
polynomials Poinc, (q)

Figure 1-5: Seven regions of the Linial arrangement C3.

Our main result on the Linial arrangement is the following:

Theorem 1.4.5 [44, Theorem 8.2] The number r(£,) of regions of 4n is equal to
the number fn of alternating trees on the vertices 0, 1, 2 ... , n and, thus, to the number
of local binary search trees on 1, 2,... , n.

This theorem was conjectured by Richard Stanley, who used the numerical data
provided by Linial and Ravid. In Section 1.5 we prove a more general result (see
Theorems 1.5.1 and Corollary 1.5.9). A different proof of Theorem 1.4.5 was later
given by C. Athanasiadis [3].

Corollary 1.4.6 The Poincare polynomial of the Linial arrangement is equal to

Poin'c (q) = E qn-dT(O)
T

(1.4.5)



where the sum is over all alternating trees T on the vertices 0, 1,..., n and dT(O)
denotes the degree of the vertex 0 in T.

1.4.5 Balanced graphs

Let C = (cl, c2, ... , Cm) denote a cycle on a linearly ordered set of vertices which has
the edges (cl, c2 ), (c2, C3),... , (cm-1, m), (Cm, C1). (Note that the sequence (cl,..., cm)
is defined up to a cyclic permutation.) By convention, co = cm. We say that an index
1 < i < m is an ascent in C if ci_l < ci. Analogously, an index 1 < j • m is a
descent if ci- 1 > ci.

We say that a cycle C is balanced if the number of ascents in C is equal to the
number of descents in C. A graph G is called balanced if every cycle in G is balanced.

A graph G on the vertices 1,2,.. ., n corresponds to a subset of hyperplanes
in (1.4.4): an edge (i, j) of G corresponds to the hyperplane xi - xj = 1, i < j.
Geometrically, a graph is balanced if and only if the corresponding hyperplanes have
a nonempty intersection.

Let c(G) denotes the cyclomatic number of G, i.e., the number of edges minus the
number of vertices plus the number of connected components. Theorem 1.2.2 implies
the following statement.

Corollary 1.4.7 For n > 2, the number of regions of the Linial arrangement is equal
to the alternating sum

r(Cn) = (-1)c(G)
G

over all balanced graphs on the vertices 1, 2,..., n. The Poincare polynomial of this
arrangement is equal to

Poinc. (q) = -(_q-1)c(G) qlGI,
G

where again the sum is over all balanced graphs on 1,..., n and IGI is the number of
edges in G.

Orlik and Solomon's result (Theorem 1.2.13) allows us to describe the cohomology
ring H*(Cc~, C) of the complement C c, to the complexified Linial arrangement in
terms of generators and relations.

Proposition 1.4.8 The cohomology ring H*(Cc, C) is canonically isomorphic to
the algebra (the Orlik-Solomon algebra) generated by eij = eji, 1 < i, j n, eii = 0,
subject to the following relations:

eijekl = -ekleij,

erlr2er2r3 ... erm•irmecm =c1 0, (1.4.6)

eabebceac - eabebcecd + eabeacecd - ebceacecd = 0,
eacebcebd - eacebcead + eacebdead - ebcebdead = 0.



where i, j, k, 1, ri,..., rm E {1,..., n} and 1 a < b < c < d < n (cf. Figure 1-7).

Proof - By Theorem 1.2.13, the Orlik-Solomon algebra of the Linial arrangement
is generated by the eij which are subject to the first two relation in (1.4.6) and also
the relation:

Z cec 2 . I ... e cc (1.4.7)
j=1

where C = (cl, c2,..., Cp) is a balanced cycle (cf. 1.2.14). We will show by induction
on p that the third and the fourth equations in (1.4.6) imply (1.4.7). If p = 4 then
C is a cycle of one of the four types C1, C2, C3, or C4 shown on Figure 1-7. Thus C
produces one of the relations (1.4.6). If p > 4, then we can find r # s such that both
C' = (Cr, Cr+1, ... ., c,) and C" = (cs, cs±+, ... , cr) are balanced. The equation (1.4.7)
for C is the sum of the corresponding equations for C' and C". O

This proposition is an analogue to Arnold's description of the cohomology of the
complement to complexified Coxeter arrangement (see Corollary 1.2.14).

1.4.6 Sleek posets and semiacyclic tournaments

Let R be a region of the arrangement Ln, and let (Xl,..., x,) be any point in R.
Define P = P(R) to be the poset on the vertices 1, 2,..., n such that i <p j if and
only if xi - xi > 1 and i < j in the usual order on Z.

We call a poset P on the vertices 1, 2,..., n sleek if P is the intersection of a
semiorder (see Section 1.3.2) with the chain 1 < 2 < ... < n.

The following proposition immediately follows from the definitions.

Proposition 1.4.9 The map R '-+ P(R) is a bijection between regions of 4n and
sleek posets on 1, 2,..., n. Hence the number r(4,) is equal to the number of sleek
posets on 1, 2, . . . , n.

There is a simple characterization of sleek posets in terms of forbidden induced
subposets (cf. Theorem 1.3.4).

Theorem 1.4.10 [44, Theorem 8.4] A poset P on the vertices 1, 2,..., n is sleek if
and only if it contains no induced subposet of the four types shown on Figure 1-6,
where a < b < c < d.

In the remaining part of this section we prove Theorem 1.4.10.
First, we give another description of regions in Cn (or, equivalently, sleek posets).

A tournament on the vertices 1,2,..., n is a directed graph T without loops such
that for every i # j either (i, j) E T or (j, i) E T. For a region R of In construct a
tournament T = T(R) on the vertices 1, 2,..., n such that for (xl,..., xz) E R if we
have xZ - xj > 1, i < j, then (i,j) E T, and if xi - xj < 1, i < j, then (j,i) E T.
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Figure 1-6: Obstructions to sleekness.
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Figure 1-7: Ascending cycles.

Let C = (cl,..., cn) be a cycle; and let asc(C) denote the number of ascents and
des(C) denote the number of descents in C. We say that a cycle C is ascending
if asc(C) > des(C). For example, the following cycles, shown on Figure 1-7, are
ascending: Co = (a,b,c), Ci = (a,c,b,d), C2 = (a,d,b,c), C3 = (a,b,d,c), C4

(a, c,d,b), where a < b < c < d.
We call a tournament T on 1, 2,..., n semiacyclic if it contains no ascending

cycles. In other words, T is semiacyclic if for any directed cycle C in T we have
asc(C) < des(C).

Proposition 1.4.11 A tournament T on 1, 2,..., n corresponds to a region R in
C,n i.e., T = T(R), if and only if T is semiacyclic. Hence r(£,~) is the number of
semiacyclic tournaments on 1, 2,... , n.

This fact was independently found by Shmulik Ravid.
For any tournament T on 1, 2,.. ., n without cycles of type Co we can construct

a poset P = P(T) such that i <p j if and only if i < j and (i, j) E T. The
four ascending cycles C1, C2, C3, C4 in Figure 1-7 correspond to the four posets on
Figure 1-6. Therefore, Theorem 1.4.10 is equivalent to the following result.

Theorem 1.4.12 [44, Theorem 8.6] A tournament T on the vertices 1, 2,..., n is
semiacyclic if and only if it contains no ascending cycles of the types Co, C1, C2, C3,
and C4 shown in Figure 1-7, where a < b < c < d.

Remark 1.4.13 This theorem is an analogue of a well-known fact that a tournament
T is acyclic if and only if it contains no cycles of length 3. For semiacyclicity we have
obstructions of lengths 3 and 4.



Proof - Let T be a tournament on 1, 2, ... , n. Suppose that T is not semiacyclic.
We will show that T contains a cycle of type Co, C1, 02, C3, or 04. Let C =
(cl, c2,..., cm) be an ascending cycle in T of minimal length. If m = 3, or 4 then C
is of type Co, C1, C2, C3, or C4. Suppose that m > 4.

Lemma 1.4.14 We have asc(C) = des(C).

Proof - Since C is ascending, we have asc(C) >_ des(C). Suppose asc(C) > des(c).
If C has two adjacent ascents i and i+1 then (ci-1, ci+l) E T (otherwise we have an as-
cending cycle (ci-l, ci, ci+l) of type Co in T). Then C' = (cl, c2,... , Ci-, Ci+ 1, ... , Cm)
is an ascending cycle in T of length m - 1, which contradicts our assumption that C
is an ascending cycle of minimal length. So for every ascent i in C the index i + 1 is
a descent. Hence asc(C) 5 des(C), and we get a contradiction. O

We say that ci and cj are on the same level in C if the number of ascents between
ci and cj is equal to the number of descents between ci and cj.

Lemma 1.4.15 We can find i, j E {1, 2,..., m} such that (a) i is an ascent and j is
a descent in C, (b) i f j ± 1 mod m, and (c) ci and cj- 1 are on the same level.

Proof - We may assume that for any 1 < s < m the number of ascents in {1, 2,... , s}
is greater than or equal to the number of descents in {1, 2,..., s} (otherwise take some
cyclic permutation of (Cl, C2 ,..., cm)). Consider two cases.

1. There exists 1 < t < m - 1 such that ct and cm are on the same level. In this
case, if the pair (i, j) = (1, t) does not satisfy conditions (a)-(c) then t = 2. On the
other hand, if the pair (i, j) = (t + 1, m) does not satisfy (a)-(c) then t = m - 2.
Hence, m = 4 and C is of type C1 or C2 shown in Figure 1-7.

2. There is no 1 < t < m - 1 such that ct and cm are on the same level. Then 2
is an ascent and m - 1 is a descent. If the pair (i, j) = (2, m - 2) does not satisfy
(a)-(c) then m = 4 and C is of type C3 or 04 shown on Figure 1-7. O

Now we can complete the proof of Theorem 1.4.12. Let i,j be two numbers
satisfying the conditions of Lemma 1.4.15. Then ci- 1, c, c, cj-1, cj are four distinct
vertices such that (a) ci- 1 < ci, (b) Cj_ 1 > cj, (c) ci and cj_ 1 are on the same level,
and (d) ci-1 and cj are on the same level. We may assume that i < j.

If (cj-, ci_1) E T then (ci-l,ci,..., cj-1) is an ascending cycle in T of length
less than m, which contradicts the requirement that C is an ascending cycle on T of
minimal length. So (ci-_, cj_1) E T. If cj_- < cj_1 then (cj_-1, cx, ... , cm, ... , ci- 1)
is an ascending cycle in T of length less than m. Hence, ci-1 > cj-1.

Analogously, if (ci, cj) E T then (cj, cj+l..., c,, cl,... , c) is an ascending cycle
in T of length less than m. So (cj, ci) E T. If ci > cj then (ci, ci+1,... , cj) is an
ascending cycle in T of length less than m. So ci < cj.

Now we have ci-1 > cj_1 > cj > c_ > ci- 1, and we get an obvious contradiction.
We have shown that every minimal ascending cycle in T is of length 3 or 4 and

thus proved Theorem 1.4.12. O



1.5 Truncated Affine Arrangements
In this section we study a general class of hyperplane arrangements which contains,
in particular, the Linial and Shi arrangements.

Let a and b be two integers such that a + b > 2. Consider the hyperplane arrange-
ment A b in V+ = {(X, ... , Xn) E Rn ,X + -- -+ Xn = 0} given by

xi - xj = k, 1 i < j 5 n, -a < k < b. (1.5.1)

We call Ab truncated affine arrangement because it is a finite subarrangement of
the affine arrangement of type An_1 given by xi - xj = r, r E Z.

1.5.1 Functional equations

Let fn = fab be the number of regions of the arrangement A b, and let

f(x) = fn (1.5.2)
n!0
n>O

be the exponential generating function for fn.

Theorem 1.5.1 [44, Theorem 9.1] Suppose a, b > 0.

1. The generating function f = f(x) satisfies the following functional equation:

fb-a eX 1 (1.5.3)

2. If a = b > 1, then f = f(x) satisfies the equation:

f = 1 +xfa, (1.5.4)

Note that the equation (1.5.4) can be obtained from (1.5.3) by l'Hospital's rule in
the limit b -+ a.

In cases a = b and a = b ± 1 the functional equations (1.5.3) and (1.5.4) al-
low to calculate the numbers f,nb explicitly. The following statement was proved by
P. Headley [24].

Corollary 1.5.2 The number fnaa is equal to (an)(an - 1) ... (an - n + 2).

The equation (1.5.3) is especially simple in the case a = b ± 1. We call the
arrangement An,a+l the extended Shi arrangement. In this case we get:

Corollary 1.5.3 The number f, of regions of the extended Shi arrangement given by

xi - xj = -a + 1, -a+ 2..., a, 1 < i < j n

is equal to fn = (an + 1)n-l1, and the exponential generating function f = f(x)
satisfies the functional equation f = ex' f



In order to prove Theorem 1.5.1 we need several new definitions. A graded graph
is a graph is a triple G = (V, E, h), where V is a linearly ordered set of vertices, E is
a set of (nonoriented) edges, and h is a function h : V -+ Z+ called grading. The
vertices v in V such that h(v) = r, r = 0, 1, 2,..., form the r-th level of G. Let
e = (u, v) be an edge in G, u < v. We say that the slope of an edge e = (u, v), u < v,
in E is the integer s(e) = h(v) - h(u). A graded graph G is of type (a, b) if the slopes
of all edges in G are in the interval [-a + 1, b - 1] = {-a + 1, -a + 2,..., b - 1}).
Analogously, we define graded trees, forests, and circuits of type (a, b).

Choose a linear order on the set {(u,s,v) u,v E V, u < v, -a < s < b}. Let
C be a graded circuit of type (a, b). Every edge (u, v) in C corresponds to a triple

(u, s, v), where s is the slope of the edge (u, v). Choose the edge e in C with the
minimal triple (u, e, v). We say that C \ {e} is a broken circuit of type (a, b).

We say that a graded forest is planted if each connected component contains a
vertex on the 0-th level.

Proposition 1.5.4 The number fnb of regions of the arrangement (1.5.1) is equal to
the number of planted graded forests of type (a, b) on the vertices 1, 2,..., n without
broken circuits of type (a, b).

Proof - By Corollary 1.2.8, the number f, is equal to the number of A-colored
forests F without broken A-circuits. For an A-colored forest F, there is a unique
planted graded forest F = (V, E, h) with the same sets of vertices and edges and such
that the slope s(e) of any edge e E E is equal to the color of e in the forest F. Then
F is of type (a, b) and without broken circuits of type (a, b) if and only if F has no
broken A-circuits. O

From now on we fix the lexicographical order on triples (u, s, v), i.e., (u, s, v) <
(u', s', v') if and only if u < u', or (u = u' and s < s'), or (u = u' and s = s' and
v < v'). Note the order of u, s, and v! We call a graded tree T solid if T is of type
(a, b) and T contains no broken circuits of type (a, b).

Let T be a solid tree on 1, 2, ... , n such that the vertex 1 is on the r-th level. When
we delete the minimal vertex 1, the tree T decomposes into connected components
T1, T2, .. , Tm. Suppose that each component Ti is connected with 1 by an edge (1, vi)
where vi is on the ri-th level.

Lemma 1.5.5 Let T, T1,..., TI, V,... , vm, and rl,..., rm be as above. The tree T
is solid if and only if (a) all T, T2, . . . ,Tm are solid, (b) for all i the r1 -th level is the
minimal nonempty level in Ti such that -a + 1 < ri - r < b - 1, and (c) the vertex
vi is the minimal vertex on its level in Ti.

Proof - First, we prove that if T is solid then the conditions (a)-(c) hold. Condi-
tion (a) is trivial, because if Ti contains a broken circuits of type (a, b) then T also
contains this circuit. Assume that for some i there is a vertex vi on the r'-th level
in Ti such that ri < ri and ri - r > -a + 1. Then the minimal chain in T that
connects the vertex 1 with the vertex v' is a broken circuit of type (a, b). Thus the
connectsv the~ vertex~ 1 wVith theI vertex vi 1 ~LLn~l~IUI ICYt UV.llL3 l



condition (b) holds. Now suppose that for some i the vertex vi is not the minimal
vertex vi' on its level. Then the minimal chain in T that connects the vertex 1 with v4'
is a broken circuit of type (a, b). Therefore, the condition (c) holds too.

Now assume that the conditions (a)-(c) are true. We prove that T is solid. For
suppose not. Then T contains a broken circuit B = C \ {e} of type (a, b), where C is
a graded circuit and e is its minimal edge. If B does not pass through the vertex 1
then B lies in Ti for some i, which contradicts to the condition (a). We can assume
that B passes through the vertex 1. Since e is the minimal edge is C, e = (1, 0v for
some vertex v' on the level r' in T. Suppose v E Ti. If v' and vi are on different
levels in Ti then, by (b), ri < r. Thus the minimal edge in C is (1, vi) and not (1, v').
If v' and vi are on the same level in Ti then, by (c), vi < v'. Again, the minimal
edge in C is (1, vi) and not (1, v'). Therefore, the tree T contains no broken circuit
of type (a, b), i.e., T is solid. O

Let 1i be the minimal nonempty level in Ti, and let Li be the maximal nonempty
level in Ti. By Lemma 1.5.5, the vertex 1 lies on the rth level for some 1i - b < r <
Li + a; for each r from this interval there is a unique way to connect Ti with the
vertex 1 in the rth level.

Let Pnkr denote the number of solid trees (not necessarily grounded) on the vertices
1, 2,..., n which are located on levels 0, 1,..., k such that the vertex 1 is on the rth
level, 0 < r < k.

Let

k(X) 
n 

k

Pkr Pnkr -, Pk(X) = Pkr ()-
n>1 r=O

By the exponential formula (see [23, p. 166]) and Lemma 1.5.5, we have

1-r (x) = exp(bkr (x)), (1.5.5)

where bkr(x) = n>l bnkr~ and bnkr is the number of solid trees T on n vertices
located on the levels 0, 1, ... , k such that at least one of the levels r - a + 1, r - a +
2,..., r + b - 1 is nonempty, 0 < r < k. The polynomial bkr(x) enumerates the solid
trees on the levels 1, 2, ... , k minus trees on the levels 1,..., r - a and trees on levels
the r + b,..., k. Thus we obtain

bkr(x) = Pk(X) - Pr-a(X) - Pk-r-b(X).

By (1.5.5), we get

pr (x) = exp(Pk(x) - Pr-a(x) - Pk-r-b(X)),

where p_1(x) = p- 2(x) = -- = 0, Po(x) = x, Pk(0) = 0 for k E Z. Hence

k

p'(x) = exp(pk() - pr-a() - Pk-r-b(X)).
r=O



Or, equivalently,

k

p'k(X) exp(-pk(x)) = exp(-pr-a(x)) exp(-pk-r-b)().
r=O

Let qk(x) = exp(-pk(x)). We have

k

qk (x) - - qr-a(x) qk-r-b(X), (1.5.6)

r=O

q-1 = q-2 ='= 1, 0 = e- , qk(O) = 1 for k E Z.
The following lemma describes the relation between the polynomials qk(x) and

the numbers of regions of the arrangement A b.

Lemma 1.5.6 The quotient qk-1(x)/qk(X) tends to -n> 0 f,,21 as k -+ 00.

Proof - Clearly, pk(x) - Pk-l(X) is the exponential generating function for the
numbers of grounded solid trees of height less than or equal to k. By the exponential
formula (see [23, p. 166]) qk-l(x)/qk(x) = exp (pk(x) - pk-l()) is the exponential
generating function for the numbers of grounded solid forests of height less than or
equal to k. The lemma obviously follows from Proposition 1.5.4. LO

All previous formulae and constructions are valid for arbitrary a and b. Now we
take advantage of the condition a, b > 0. Let

q(, y) = qk (x)y
k>0

By (1.5.6), we obtain the following differential equation for q(x, y):

Oa q(x, y) = -(ay + yaq(x, y)) - (by + ybq(x, y)),

q(O,y) (l-y)-1,

where ay := (1 - ya)/(1 - y).
This differential equation has the following solution:

q(x,y)= by exp(-xz by) - ay exp(-x a) (1.5.7)

ya exp(-x, ay) - yb exp(-x - by)

Let us fix some small x. Since Q(y) := q(x, y) is an analytic function of y, then 7 =

y(x) = limk-o qk-ll/qk is the pole of Q(y) closest to 0 (y is the radius of convergence of
Q(y) if x is a small positive number). By (1.5.7), ya exp(- x.a,) - yb exp(-x.b,) = 0.
Thus, by Lemma 1.5.6, f(x) = En>o fn 'n = -y(x) is the solution of the functional
equation

1- f b 1-fb
fa e 1 -f f e--X ---f

--x -l-f -f



which is equivalent to (1.5.3).
This completes the proof of Theorem 1.5.1.

1.5.2 Formulae for the characteristic polynomial

Let A = A b be the truncated affine arrangement given by (1.5.1).
characteristic polynomial Xb (q) of the arrangement Aab. Recall that
qn-1Poin•b (-q- 1).

Let Xab(x, q) be the exponential generating function

Xab(X, q) = 1 + Zx:l(q) x/nn!.
n>O

According to [53, Theorem 1.2], we have

Sab(x, q) = f(_-q,

Consider the
it is equal to

(1.5.8)

where f(x) = Xab(-X, -1) is the exponential generating function (1.5.2) for numbers
of regions of Aab.

Let S be the shift operator S : f(q) i-+ f(q - 1).

Theorem 1.5.7 [44, Theorem 9.7] Assume that 0 < a < b. Then

~ab(q) = (b - a)-"n(Sa + Sa+1 + + Sb-l) n qn-1.

Proof - The theorem can be deduced from Theorem 1.5.1 and (1.5.8)
Lagrange's inversion formula).

(using, e.g.,
O

There is an explicit formula for Xaa(q). The following statement, found in [24], is
not hard to derive from Corollary 1.5.2.

Proposition 1.5.8 We have Xan(q) = (q + 1 - an)(q + 2 - an) ... (q + n - 1 - an).

We can analytically extend xb(q) to complex values of a and b, since

Xab(q) = (Sa (Sb - a - 1)/((S - 1)(b - a))) n - qn-1

In the limit b -+ a, application of the l'Hospital's rule results in the expression8

xaa(q) = ( •alnS
Xn S-1)

n-1qQ

8 Comparing these two expressions for X"a (q), we obtain the formula

eD
Sqn-1 = (q-1)(q- 2)...(q- n + 1),

where D = '-ln(S) = d/dq. This formula yields an identity that involves the Bernoulli numbers,
which are coefficients of the Taylor expansion of x/(eO - 1), and the Stirling numbers of the first
kind.

(1.5.9)



There are several equivalent ways to reformulate Theorem 1.5.7, as follows:

Corollary 1.5.9 Let r = b - a.

1. We have
ab -nn-

X. (q) = r-- 1 (q - 0(1) O ¢(n))n - 1

where the sum is over all functions 0: {1,..., n} -4 {a,..., b - 1}.

2. We have

yab -n aR)n-1(q) = r (-1)'(q- s -
s' 1>0

3. We have

ab(q) = r-n
n ) (q - an, - - (b- 1)n,) n -

where the sum is over all nonnegative integers ni, n2,., nr such that nl + n2 ±
S- + nr= n.

Examples:

1. The Shi arrangement is the arrangement An2 given by

xi - xj = 0, 1, 1 < i j< 1 + 1.

By Corollary 1.5.9.1, we get the following known formula (see [48, 49])

n12 (q) = ( nn-l

2. More generally, for the extended Shi arrangement A•' +l, given by

xi -xj = -a + 1, -a + 2,..., a, 1<i<j<l+1,
(1.5.11)

we have (cf. Corollary 1.5.3)

Xa, a+1(q) = (q - an)n- 1.

3. For the Linial arrangement In = A02 (see Section 1.4), Corollary 1.5.9.3 gives

x02(q) = 2 () (q - k)-1 (1.5.12)

(cf. Theorem 1.4.5)

(1.5.10)

(n) (s + n- rl-1n-
1 n -1



4. More generally, for the arrangement Aa,,a +2 , we have

aa+2 (q) = 2-n ) (q - an - k) - 1

k=o

Formula (1.5.12) for the characteristic polynomial X 2 (q) was earlier obtained
by C. Athanasiadis [3, Theorem 5.2]. He used a different approach based on an
interpretation of the value of xn(q) for sufficiently large primes q.

1.5.3 Roots of the characteristic polynomial

Theorem 1.5.7 has one surprising application concerning the location of roots of the
characteristic polynomial x~a(q)

We start with the case a = b. One can reformulate Proposition 1.5.8 in the
following way:

Corollary 1.5.10 The roots of the polynomial Xna(q) are the numbers an - 1, an -
2,... , an - n + 1 (each with multiplicity 1). In particular, the roots are symmetric to
each other with respect to the point (2a - 1)n/2.

Now assume that a # b. We will prove the following "Riemann hypothesis."

Theorem 1.5.11 [44] All the roots of the characteristic polynomial xab(q) of the
truncated affine arrangement Aab, a $ b, have real part equal to (a + b - 1) n/2. They
are symmetric to each other with respect to the point (a + b - 1) n/2.

Thus in both cases the roots of the polynomial Xab(n) are symmetric to each other
with respect to the point (a + b - 1) n/2, but in the case a = b all roots are real,
whereas in the case a - b the roots are on the same vertical line9 in the complex
plane C. Note that in the case a = b - 1 the polynomial xb(q) has only one root
an = (a + b - 1)n/2 with multiplicity n - 1.

The following lemma is implicit in a paper of Auric [4] and also follows from a
problem posed by P61lya [40] and solved by Obreschkoff [37] (repeated in [41, Problem
V.196.1, pp. 70 and 251]).

Lemma 1.5.12 Suppose that a polynomial f(q) E C[q] is such that every zero has
real part a, and let A be a complex number satisfying IA I = 1. Then every zero of the
polynomial g(q) = (S - A)f (q) = f(q - 1) - Af(q) has real part a + 1/2.

Proof of Theorem 1.5.11. - All the zeros of the polynomial qn-1 have real part 0.
The operator (Sa + Sa+1 + .. + S b- 1) can be written as

Sa(S - A1) ... (S - Ab-a1),

9 Let Wn(q) = Xab(q - (a + b - 1)n/2), its roots are purely imaginary. The following interlacing

property of roots seems also to be valid: Between any two roots of kn(q) there is a root of Xn-1 (q).



where each Ai is a complex number of absolute value one. The proof now follows from
Theorem 1.5.7 and Lemma 1.5.12. O

1.6 Asymptotics and Random Trees

1.6.1 Characteristic polynomials and trees

According to Theorem 1.5.7, the characteristic polynomial of a truncated affine ar-
rangement can be easily expressed using the shift operator: S : f(q) '-4 f(q - 1).
Let us also introduce the differentiation operator: D : f(q) '-4 df/dq. Then Taylor's
theorem can be stated as

exp(-D) = S.

Consider the exponential power series

h(t) = ho + hit + h2t 2/2! + . + hktk/k! +...,

where the hi are some numbers and ho is nonzero.
Generalizing the expression (1.5.9), we define the polynomials fn(q), n > 0, by

the formula

fn(q) = (h(D))n qn- 1. (1.6.13)

The polynomials fn(q) are correctly defined even if the series h(t) does not converge,
since the expression for f,,(q) involves only a finite sum of nonzero terms.

Let Tn be the set of trees on the vertices 0, 1, 2,..., n. We will assume that the
edges of trees are oriented away for the root at the vertex 0. By di = di(T) we denote
the outdegree of a vertex i in a tree T E Tn. Define the weight of T by

wq(T) = qd-lhdl hd2 ... hdn.

Proposition 1.6.1 1. The polynomial f,(q) is the weight enumerator for trees on
n + 1 vertices, i.e.

fn(q) = S wq(T).
TETn

2. The coefficient of qk in f, (q) is equal to

hklk.. hk , .kl, k

where the sum is over all kl, . . . , k > 0 such that k + kl + - . + kn = n- 1.

Proof- Let D(k) = Dk/k!. Then, for k > 0, we have

D(k) m -(n) m-k



if m > k and 0 otherwise. By (1.6.13), we have

fn(q) = h(D)" qn-1 = h(D)- 1 E hk,D(ki) qn-1
kl >0

h(D)"- 1  hk (n qn-1- k

k0 ( 0
= hk1 ... hk ( n qk

k,kl ,...,kn>O "k ki, k2, .. . kn)

where k = n - 1 - k - - -- - kn. Using Priifer's coding [45], we obtain the first
statement of the theorem. O

Let

f(z,q) = 1 +q fnZ(q) -
n>1

Consider also the weighting on trees T E Tn given by

i(T) = hdohdi .. h -d.

Let gn = ETETn W(T) be the weighted sum of the trees, and let

Xn+l

n>0

be the exponential generating function for the gn. Note that ngn = fn+1(0).

Proposition 1.6.2 We have f(x, q) = exp(qg(x)). The series g = g(z) satisfies the
functional equation

g = x h(g). (1.6.14)

The statement of the theorem is proved by a standard argument with the expo-
nential formula.

1.6.2 Random trees

In this section we calculate the distribution of degrees of vertices of a "random infinite
tree." We will need these calculations in Section 1.6.3.

We use the notation of the previous section with the assumption that ho, hi, h2 ,..
are nonnegative integer numbers, and ho > 0.

Let I be the set of indices n for which gn > 0. If hi is nonzero for some i > 1,
then I is an infinite set. For n E I, consider the distribution on the set of trees on
n + 1 vertices given by P(T) = 'ii(T)/gn. Let Pn(k) denote the probability that a



random vertex of a random tree has outdegree k, i.e.,

P, (k) + 1 T-
(n + 1) k(T)gw(T),

STET,

where mk(T) is the number of vertices in T with outdegree k. Also let P(k) =
limn_ Pn(k), where the limit is taken over n E I.

Here is an example when we need to be careful about the index set. Assume that
h2m = 1 and h2m+1 = 0, for m > 0, then gm = 0 for odd n. In this case we have to
take the limit over even n.

We can interpret P(k) as the probability that a random vertex of a random infinite
tree has outdegree k.

Theorem 1.6.3 Assume that the series h(t) converges, h'(t) is unbounded on the
interval (0, +0oo), and t = a is the minimal positive solution of the equation

t = h(t)/h'(t). (1.6.15)

Then
hk akP(k) = h(a) kh(a) k!

Before we prove this statement, consider several examples. In the case when
hk = 1, k > 0, we obtain the uniform distribution on trees.

Corollary 1.6.4 The outdegrees of a random infinite tree have Poisson distribution:

P(k) = e-l/k!.

Proof - We have h(t) = et. The equation t = et/e t has a unique solution t = 1. 1O

Assume that h2m = 1 and h2m+l = 0, m > 0. We have the uniform distribution
on trees with even outdegrees. We will call such trees even.

Corollary 1.6.5 The outdegrees of a random infinite even tree have the following
distribution:

P(2m) = P(0) a 2m/(2m)!,

where a = 1.199678640257733 ... is a unique positive solution of the equation

t - 12t t > 1, (1.6.16)
t-l'

and P(0) = 1/ cosh(a) = 0.552434124530883 ....

Proof - In this case h(t) = cosh(t). The equation t = cosh(t)/ sinh(t) is equivalent
to (1.6.16). O



Proof of Theorem 1.6.3 - Let

p(x) = (n + 1) Pn(k) gnxn/n!,
n>O

d(x) = E(nl + 1) gXn/n!.
n>O

Then, by definition, P(k) is the limit of ratios of coefficients of xn in p(x) and d(x)
as n -4 oc. First, we note that if xo > 0 is the minimal positive pole of both p(x)
and d(x), then P(k) = lim_,,,op(x)/d(x).

We have d(x) = g'(x). By (1.6.14),

d(x) = h(g) +xh'(g)d(x),

h(g)
d(x) - h'(g) (1.6.17)1 - xh'(g)'

Let g(k) (x, y) be the following exponential generating function

g(k)(X, y) = E E ýw(T)ymk(T)Xn+l/n!.
nO TETn

Clearly,
1 = g(k)

1y Y=1

The function g(k) satisfies the equation:

9(k) = x (h(g(k)) + (y - 1)hkgkk)/k!).

Then

p(x) = xh'(g)p(x)+hkgk/k!,

p(hkg
k

p(x) = k! (1 - xh'(g)) (1.6.18)

Let x0 be the minimal positive number such that

1 - xo h'(g(xo)) = 0. (1.6.19)

Then x0 is the minimal positive pole of p(x) as well as of d(x). Assume not, then
there is a pole xl of g(x) (or h(g(x))) such that 0 < xl 5 xo (cf. (1.6.17) and (1.6.18)).
Since h'(t) is unbounded, there is a root of (1.6.19) between 0 and xj. Contradiction.

Therefore, by earlier remark,

p(x) hk a k
P(k) = lim h

X-+xo d(x) h(a) Ic!'



where a = g(xo). The equation (1.6.15) for a follows from (1.6.14) and (1.6.19). 1O

1.6.3 Asymptotics of characteristic polynomials

It is convenient to introduce the following shift the characteristic polynomial of the
Linial arrangement:

b(q) = 2n-1 02((q + n)/2).
Then, by Theorem 1.5.7,

bn(q) = S±S- l) qn-1 = cosh(D)n qn-1.

The first ten polynomials bn(q) are given below:

bl (q) = 1,
b2(q) = q,
b3 (q) = q2+3,

b4 (q) = q3 + 12q,
b5 (q) = q4 + 30q 2 +65,
b6 (q) = q5 + 60q3 + 480,

b7(q) = q6 + 105q 4 + 1995q2 + 3787,
bs(q) = q7 + 168q5 + 6160q3 + 41216q,
b9 (q) = qs + 252q6 + 15750q4 + 242172q2 + 427905,

blo(q) = q9 + 360q7 + 35280q5 + 1021440q3 + 6174720q,

Recall that a = 1.199678640... is a unique solution of the equation

e2t= (t + 1)/(t- 1), t > 1. (1.6.20)

Theorem 1.6.6 The functions b2m(q)/b'2m(0) converges to a limit beven(q) as m goes
to infinity and

beven(q) = sinh(aq)/a.

Theorem 1.6.7 The functions b2m+i(q)/b 2m+1(0) converges to a limit bodd(q) as m
goes to infinity and

bod d (q) = cosh(aq).

Consider the numbers bn,k given by

bn(q) = bn,_lqn - 1 + b,n-3qn-3+ bn,n- 5qn- 5 + bn,n 7q- 7  ... ,

and bn,k = 0 if n - k is even. Note that bn,n-1 = 1. Also let bn = bn,n-i + b,n-_3 +
bn,n-5 +... = bn(1).



For example, bi, b2, . .., blo = 1, 1, 4, 13, 96,541, 588, 47545, 686080, 7231801.
We say that T E T7 is an even tree if the outdegrees dl, d2, ... dn of all vertices T

(the root 0 excluded) are even. Equivalently, the degrees of all vertices in T but the
root are odd. Such trees are also called odd degree trees.

By Propositions 1.6.1 and 1.6.2, we obtain the following statement.

Corollary 1.6.8 1. The number bn,k is equal to the number of all even trees on
the vertices 0, 1,..., n such the degree of the root 0 is equal to k + 1.

2. The number bn,k is equal to the sum of polynomial coefficients (k,k1,..kn) over
all even kl,...,kn >_ 0 such that k + k+.. + kn = n - 1.

3. Let
Xn

b(x,q) = 1 + q b(q) .
n>1

2m+l

g(x) = b2m
m>O

Then b(x, q) = exp(q g(x)). The function g = g(x) satisfies the functional
equation

g = x cosh(g).

Proof of Theorems 1.6.6 and 1.6.7 - It is enough to show that b2m,2r+1/b2m,2r+3
tend to a-2(2r + 3)(2r + 2), and that b2m+1,2r/b 2m+1,2r+2 tends to a-2(2r + 2)(2r + 1)
as m goes to infinity, where a is given by (1.6.20).

By Corollary 1.6.8.2, we have bn,k (nk 1) Cn,k, where

Cnk= E kil, k2, ..., kn
kl,...,kn

the sum over all even nonnegative kl, k2 , ... , k1 such that E ki = n - k - 1.
Asymptotically,

bn,k Cn,k
S(k + 2)(k + 1)

bn,k+2 n 2 
Cn,k+2

as n goes to the infinity with preserving its parity.
Let M(1) be the set of maps q: {1,..., n- k - 1} -+ {1,..., n} such that |I-1(i)l

is even for i = 1,..., n. By definition, Cn,k is equal to IMMI.

Analogously, denote by M•(2 the set of maps : {1,..., n - k - 1} - {1,.. ., n}
such that jI-1(i) n {1,...,n - k - 3)1 is even for i = 1,...,n. It is clear that

n2 Cn,k+2 = IMkl.

Also let M(3) C M(2 be the subset of maps 4 : {1,.. ., n - k - 1} - {1,.. ., n
such that 4(k) E {1(n - k - 2),4 (n - k - 1)} for some k E {1,...,n- k - 3} .



The simple identity

-m>0

2l 21+1 m>0
1>0 1>0

implies that = MM3 I .
Recall that P(0) = 0.552434... is the "probability that a random vertex of a

random even tree has outdegree 0," which is calculated in Corollary 1.6.5. The
number of elements in M \ M is asymptotically equal to a M2 I, as n goes to
infinity (k is fixed). The proof of Theorems 1.6.6 and 1.6.7 now easily follows. Ol





Chapter 2

Quantum Cohomology of Flag
Manifolds

This part of my thesis contains the results of [17] obtained in collaboration with
Sergey Fomin and Sergei Gelfand as well as the results of [43]. Our notation and
exposition of results are close (though not always identical1 ) to that of [17].

2.1 Introduction

The purpose to this chapter is to present an algebro-combinatorial method for calcula-
tion of 3-point Gromov-Witten invariants of complex flag manifolds and to investigate
its various consequences. These invariants are structure constants of the quantum
cohomology ring of the flag manifold. In a special case, they are the Littlewood-
Richardson coefficients, which are the intersection numbers of Schubert varieties.

A central open problem of Schubert calculus is to find an explicit rule for calcula-
tion of the Littlewood-Richardson coefficients of flag manifolds that would imply that
they are integer nonnegative numbers. For example, one would like to have a combi-
natorial construction of a set, whose number of elements is equal to the corresponding
Littlewood-Richardson coefficient. We extend this problem to that of finding a rule
for the Gromov-Witten invariants. This extension may lead to a way to solve the
problem, since the Gromov-Witten invariants seem to possess more symmetries.

We give below a brief account of definitions and results related to the classical and
quantum cohomology rings of complex flag manifolds as well as formulate our main
results. Although many of the constructions can be carried out in a more general
setup of an arbitrary semisimple Lie group, only the case of type A,_1 is considered.

Let Fl, denote the manifold of complete flags of subspaces in the n-dimensional
linear space C". There are several ways to describe the cohomology ring H*(Fl" ,Z)
of the flag manifold.

The additive structure of H*(Fl~, Z) can be obtained from the decomposition
of Fln into Schubert cells, which are indexed by the elements of the symmetric

SOne apparent difference is our extensive use of nilHecke rings.



group S,. According to classical Ehresmann's result [15], the Schubert classes a,,
w E S,, corresponding to these cells, form an additive Z-basis of the cohomology ring
of Fl,.

The multiplicative structure of H*(FIn, Z) can be recovered from Borel's theo-
rem [7], which says that the cohomology of Fl, is isomorphic, as a graded ring, to
the quotient of the polynomial ring:

H*(Fln, Z) Z[zX, X2, / , (2.1.1)

where e0 is the i-th elementary symmetric polynomial in xz,... ,x and (e,... ,en)
denotes the ideal generated by the e . (The somewhat unusual notation with upper
indices will be handy when we use elementary symmetric polynomials in different
number of variables.) The isomorphism is given by mapping the generators xl,..., n

into the first Chern classes of n standard line bundles on Fl,, which are 2-dimensional
cohomology classes.

A way to relate these two approaches to the cohomology ring was found by Bern-
stein, Gelfand, and Gelfand in [5] and Demazure [14], using divided difference op-
erators. Later, Lascoux and Schiitzenberger [31] further clarified this theory by in-
troducing Schubert polynomials 6, E Z[zl,...,xn], w E Sn, whose images in the
quotient (2.1.1) represent the Schubert classes a,. An algebraic formalization and ex-
tension of Bernstein-Gelfand-Gelfand operators was given by Kostant and Kumar [30],
who studied the nilHecke ring.

A quantum version2 of the story surfaced when mathematicians, motivated by
ideas of physicists [60, 56], introduced the quantum cohomology ring QH* (X, Z), for
a Kdhler manifold X (see, e.g., [46, 28, 19] and references therein). This ring is
a deformation of the classical cohomology ring, its structure constants are 3-point
Gromov-Witten invariants, which count the numbers of certain rational curves and
play a role in enumerative algebraic geometry.

As a vector space, the quantum cohomology ring QH* (Fli, Z) of the flag manifold
is essentially the same as the usual cohomology, and can be described via Ehresmann's
result. More precisely,

QH*(Fln, Z) - H*(Fln, Z) ® Z[qi, ... , qn-1].

However, the multiplicative structure in QH*(Fin, Z) is different comparing to that
of the classical cohomology and specializes to the latter when ql = ... = qn-1 = 0.

A quantum analogue of Borel's theorem was suggested by Givental and Kim [22],
and then justified by Kim [27] and Ciocan-Fontanine [12]. Let En, En, ... , En E
Z[xz,..., xn; q,...,qn-1] be the coefficients of the characteristic polynomial

det(1 + ACn) = 1 + E A' (2.1.2)
i=1

2The reader should not be confused by our use of the word "quantum." The quantization that
we discuss in this chapter does not seem to be related, at least at first glance, to quantum groups.



of the following 3-diagonal matrix

/
x1  q 1  U ... U U

-1 X2  q2 ... 0 0

0 -1 Z3 "" 0 0
cn ..

0 0 0 " X - 1 qn-1i

0 0 0 ... .1 -1

(2.1.3)

The En are certain q-deformations of the elementary symmetric polynomials en and
are equal to them when ql = " = qn-1 = 0.

Givental, Kim, and Ciocan-Fontanine showed that the quantum cohomology ring
of the flag manifold is isomorphic, as an algebra over Z[ql,..., q,-1], to the quotient

QH*(Fln, Z) - Z[zXl, ... ,Xn; ql,... ,qn-1] / (E, ... , E") . (2.1.4)

A natural problem is to find the expansion of the quantum product a, * cr of two
Schubert classes in the basis of Schubert classes, where "*" denotes the multiplica-
tion in the quantum cohomology ring. Equivalently, one would like to calculate the
Gromov-Witten invariants of the flag manifold. We solve this problem, or at least
reduce it to combinatorics. Our construction provides the quantum analogue of the
result of Bernstein, Gelfand, and Gelfand and corresponding deformation of Schu-
bert polynomials of Lascoux and Schiitzenberger. The solution to the above problem
is essentially combinatorial, and only relies on a few geometrical properties of the
quantum cohomology, which are obvious' from its definition.

Let I be a sequence (il,..., in-,) such that 0 < ik < k for all k. Define standard
elementary polynomial ei and quantum standard elementary polynomial EI by the
formulas

eI = eil...i,_l = eii - - - e (2.1.5)

EI = Eil... = E ... E!1- 1  (2.1.6)
21 1 n-1

where, by convention, ek = E-1 = 1. The cosets of (quantum) standard elementary
polynomials form linear bases in the quotient rings (2.1.1) and (2.1.4).

For w E S,, the Schubert polynomial 6, can be uniquely expressed as a lin-
ear combination E a, e1 of standard elementary polynomials. Define the quantum
Schubert polynomial q E Z[Xl,..., x,; ql,... , qn-1] by

(3 = q a EI. (2.1.7)
I

Our result on the quantum cohomology of the flag manifolds can now be stated
as follows (cf. Theorem 2.3.6).

3 almost



Theorem 2.1.1 [17, Theorem 1.2] The image of a quantum Schubert polynomial 6W
in the quotient ring (2.1.4) represents the Schubert class a. in QH*(Fln, Z).

We also prove the quantum version of Monk's formula, which generalizes the
classical Monk's result [36]. Let sij be the element of Sn that transposes i and j, and
let si = sii+, i = 1,... ,n - 1, be the Coxeter generators of S,. Let us also denote

qij = qiqi+ 1 ... qj-1, for i < j.

Theorem 2.1.2 (Quantum Monk's formula) [17, Theorem 1.3] For w E Sn and
1 < k < n, the quantum product of Schubert classes a,, and o, is given by

ak* a = E Sab + E qcdcaWSC , (2.1.8)

where the first sum is over all transpositions Sab such that a < k < b and £(wSab) =e(w) + 1 (as in the classical Monk's formula), and the second sum is over all trans-
positions Scd such that c < k < d and e(WScd) = £(w) - e(scd) = e(w) - 2(d - c) + 1.

The formula (2.1.8) unambiguously determines the multiplicative structure of the
quantum cohomology ring QH*(Fln, Z) with respect to the basis of Schubert classes,
since this ring is generated by the 2-dimensional classes ak .

Our proof of Theorems 2.1.1 and 2.1.2 is based on the study of certain pairwise
commuting elements in the nilHecke ring. They allow us to (combinatorially) deform
a commutative ring4 equipped with an action of the nilHecke ring. For instance, the
deformation of the cohomology ring of Fl, is shown to be equal to the corresponding
quantum cohomology ring.

Another approach to the (quantum) cohomology ring of the flag manifold was
recently highlighted by Fomin and Kirillov in [18], where they studied the ring £,
generated by the elements Iij, 1 < i < j < n, subject to the relations

0j ij = 0, (2.1.9)

TijTjk TjkTik + TikTij ,

Tjkfij = TikTjk + 7tijTik ,

Tij Tk = TkTij , for distinct i, j, k, and 1.

This ring also contains a family of pairwise commuting "Dunkl" elements defined by

i = - :i + ik i = 1,2, .. ., n. (2.1.10)
j<i k>i

Fomin and Kirillov demonstrated that the subring generated by the Oi is isomor-
phic to the cohomology ring of Fln. The isomorphism is given by explicitly specifying
that the generator xi of (2.1.1) maps to Oi.

4It deformation is also a commutative ring.



A deformation Q, of the ring n, was also given in [18], along with the conjec-
ture that its subring generated by the Dunkl elements is isomorphic to the quantum
cohomology of the flag manifold. We provide a proof to this statement.

The ring Q, is generated by the elements -ij, 1 < i < j < n, subject to the same
relations with the tij replaced by the f-ij, but instead of the relation (2.1.9) we have

Sqi forj = i + (2.1.11)
-- 0 otherwise.

Define the elements 0i in the ring E£ by the same formula (2.1.10) with the 'ij replaced
by the ?ij. We can now formulate our result as follows.

Theorem 2.1.3 [43, Corollary 3.5] [18, Conjecture 13.4] The pairwise commuting
elements 01,... , On generate the subring in En isomorphic to the quantum cohomology

ring of Fln. The isomorphism is given by specifying that the generator xi of (2.1.4)
maps to Oi.

We deduce this theorem from a certain general Pieri-type formula. The latter also
implies Pieri's formula for the product in H*(Fln, Z) of any Schubert class a, with
the class ~c(k,m), where c(k, m) = Sm-k+1Sm-k+2 ... sm. This rule was first formulated
by Lascoux and Schiitzenberger [31] and proved geometrically by Sottile [50].

Another corollary is an analogue of Pieri's formula for the quantum cohomology
ring that was recently proved by Ciocan-Fontanine [13], using nontrivial algebro-
geometric techniques. By contrast, our proof is combinatorial, and does not rely
upon geometry at all-once quantum Monk's formula (2.1.8) is established. Our
proof seems to be new even in the classical case.

In the rest of Introduction we present the general outline of this chapter. In
Section 2.2, we review the necessary background from the theory of classical coho-
mology of the flag manifold, the nilHecke ring, and Schubert polynomials, together
with quantum cohomology definitions. In Section 2.3, we give a combinatorial con-
struction of quantization for a ring equipped with an action of the nilHecke ring.
This construction is based on a certain family of maximal commutative subrings in
the nilHecke ring. In Section 2.4, we study the standard elementary polynomials and
their quantum analogues. In Section 2.5, we define the quantum Schubert polynomi-
als and give a combinatorial proof of their orthogonality property (Theorem 2.5.5).
We prove an axiomatic characterization of these polynomials (Theorem 2.5.7), which
implies Theorem 2.1.1. We also conjecture there even stronger statement (Conjec-
ture 2.5.8). The proof of quantum Monk's formula, which is given in Section 2.6,
becomes now almost tautological. In that section we also prove a general Pieri-type
formula (Theorem 2.6.3). As corollaries we obtain Theorem 2.1.3 as well as several
other conjectures from [18].



2.2 Background

2.2.1 Flag manifold and Schubert cells

We start with a short review of the basic results [5, 7] on the classical cohomology of
the flag manifold. Most of the statements below can be extended to any semisimple
Lie group.

Let Fl, be the flag manifold whose points are the complete flags of subspaces

U. = (Ul C U2 C ... cUn = ) , dim Ui = i , (2.2.1)

in the n-dimensional linear space C". This is a projective algebraic variety.
A description of the additive structure of the cohomology ring H*(Fln, Z) is based

on a decomposition of Fln into even-dimensional cells indexed by the elements of the
symmetric group S, and called Schubert cells. These cells are described in terms of a
relative position of a flag U. with respect to a fixed reference flag V E Fl, as follows.

Let vl,..., v, be a basis in C", and let Vr denote the r-dimensional subspace
spanned by vi, v2 ,..., v,. For w E Sn , define the Schubert cell Qo as the set of all
flags U. E Fln such that, for all k, r E {1,...,n},

dim(Uk n V) = #{1 < i < k, n + 1 - w(i) < r}.

The cell Qo is homeomorphic to Rn(n- 1)- 21, where 1 = £(w) is the length of w
(the number of inversions). The collection of all Q' form a cell decomposition
of Fln. The Schubert variety RQ, is the closure of QO in Zariski topology. Let

[R,] E Hn(n•)-21(Fln , Z) be the fundamental cycle of Q, . Define the Schubert class

aU = [Q~]* e H2 1(Fl ,7Z)

as the cohomology class corresponding to the fundamental cycle [Q2,] under the natu-
ral isomorphism Hn(n- 1)-21(Fln, Z) a H21 (Fl , Z) . The following result of C. Ehres-
mann [15] is classical.

Theorem 2.2.1 The Schubert classes aw, w E S, form an additive basis of the
cohomology H*(Fln, Z) of the flag manifold. Thus the rank of H*(Fl, Z) is n!.

The manifold Fl, is equipped with the flag of tautological vector bundles 0 =
To c Tl c -.. c T,- 1 c Tn; the fiber of Ti at the point (2.2.1) is the subspace Ui .
Consider the ring homomorphism

p : Z[zl, ... , x,] -- + H*(Fl/, Z) (2.2.2)

given by p(xj) = -ci(T/7_1), where ci(T/7i-1) E H 2(Fln,Z), i = 1,..., n, is the
first Chern class of the line bundle T/Ti-1. Let Jn = (en, en,.. ., en) be the ideal in
Z[x1,..., x,,] generated by the elementary symmetric polynomials e' = ei(xl,... x,).
Equivalently, Jn is generated by all symmetric polynomials without constant term.
The following classical result is due to A. Borel [7].



Theorem 2.2.2 The map p is epimorphism. The kernel of p is the ideal Jn. Thus
the map p induces the isomorphism of graded rings

Z[xI, ... , Xn]/Jn - H*(Fln , Z). (2.2.3)

In particular, H2 (Fln, Z) is spanned by the classes p(xi) = asi - asi_, i = 1, ... , n,
where, by convention, aso = 0. There is an explicit rule for multiplying any Schubert
class by a 2-dimensional class k*.

Theorem 2.2.3 (Monk's formula [36]; cf. also Chevalley [10]) We have, for any
w E Sn and l <k <n,

OUSk OUW UOwsij

where the sum is over all transpositions sij such that i < r < j and f(wsij) = (w) + 1.

2.2.2 NilHecke ring and Schubert polynomials

Bernstein, Gelfand, and Gelfand [5] and Demazure [14] suggested a procedure, based
on divided difference recurrences, that can be used to compute the elements of the
quotient ring Z[x 1,..., x,]/Ajn which correspond to the Schubert classes. Even more
explicit combinatorial representatives called the Schubert polynomials were then dis-
covered by Lascoux and Schiitzenberger [31]. In this section, we review the main
definitions and basic facts of this theory. For more details see, e.g., Macdonald [35].

In the symmetric group S,, let si denote the adjacent transposition (a Coxeter
generator) that interchanges i and i + 1. For a permutation w E Sn, an expression
w = si Si2 ... si of minimal possible length is called a reduced decomposition of w,
and 1 = £(w) is the length of w. For example, the transposition sij , i < j, that
interchanges i and j has a reduced decomposition sij = sisi+l ... Sj-2j-18j-2 ... Si .

The nilHecke ring Af-Hln (see [30] for a general definition) is the ring with 1 gener-
ated by pairwise commuting elements X1, X2, ... , Xn and the elements 01, 02,..., ,a-1
satisfying the following nilCoxeter relations:

Oa Oj = 4j ,i for i - j > 1,

at a/+1 ai = ia+1 9i Ai+1 , (2.2.4)

02 = 0,

and also the relations involving both sets of elements:

ai Xj = Xj Oi for j i, i +1,

Oi Xi = Xi+1 Di + 1, (2.2.5)

di Xzi+1 - Xi - 1 .

For a permutation w, define the element a, E A-/Wn by ,, = d i ... di,, where
si, . si1 is a reduced decomposition for w. It follows from relations (2.2.4) that 0,



does not depend on the choice of such reduced decomposition. Moreover, for any two
permutations v and w

(9 8a if e(vw) = e(v) + e(w) ,
0 otherwise. (2.2.6)

Clearly the polynomial ring Z[X1,..., X,] is a subring of Af/VNi. Every element h
in .Af/j can be uniquely written as the sum h = EC f, (X) (,, where the f, are some
polynomials in the Xi. Analogously, it can be uniquely expressed as h = Ew a9 g•,( ),
with g, E Z[X1,..., Xn].

The symmetric group acts on polynomials f = f(x,... , x,) by permuting the
variables xi. Explicitly, w f = f(Ax-1(-),... ,z ,-1()), for w E S,. In the same
fashion S, acts on Z[X1,..., Xn].

The nilHecke ring also acts on the polynomial ring Z[xi,... ,z] as follows. The
element Xi acts as the operator of multiplication5 by xi. The action of the element 8i
is given by the divided difference operator:

9i - f = (xi - Xi+ 1)-
1(1 - si)f . (2.2.7)

One easily checks that Z[zl,..., xn] is invariant under 9k and that these operators sat-
isfy the nilCoxeter relations (2.2.4). The operators corresponding to the elements 0,
are also called the divided difference operators. The reader should not confuse 9, f,
which stands for the product of 9w, and f in A-/,n, with ,9 - f, the latter always
denotes the result of applying the operator 9w, to f. Note that the action of Af/1, on
the polynomial ring is exact.

The following "Leibniz formulas" hold the nilHecke ring Afin• (cf. [35, (2.2), 2.13]).

Proposition 2.2.4 * For any polynomial f E Z[X1,... , Xn] C A7/4, and any i,

A f = A -. f(xi, .. , xn) + (si f) Ai, (2.2.8)

where f(xl,..., x,) = f. 1 is the result of substituting the xi in place of the Xi
in f. In particular, (i commutes with any polynomial which is symmetric in Xi
and Xi+l .

* For a linear form f = A A Xi E A/Vi- , we have

,w f = (wf) 09w + Z(Aj - Aj) aw•,j , (2.2.9)

where the sum is over all i < j such that f(wsij) = e(w) - 1.

Let 6 = 6, = (n - 1, n - 2,..., 1, 0) and x6 = zX-1X n- 2 . 1. For each
permutation w E Sn, the Schubert polynomial 6~ E Z[zl,... , xn] of Lascoux and

5Notational remark. To avoid confusion, we decided to use two different sets of variables: the xi -
the generators of the polynomial ring-and the Xi E A/Kn,, which act on the polynomial ring by
multiplication by the xi (cf. also the elements Xi defined in Section 2.3).



Schiitzenberger is defined by applying the divided difference operator to x 6 :

6w = 0•-I.o • 6

where wo is the longest element in S,, given by wo(i) = n + 1 - i. Equivalently,

62 o = x6  and 6,, = ai - 6 whenever £(ws) = £(w) - 1.
(2.2.10)

More generally, for v, w E S,,

., 6 = 6WV-1 if £(wv-1) = e(w) - f(v), (2.2.11)S• - 0 otherwise.

The following fundamental result is an immediate corollary of [5] (cf. also [14]).

Theorem 2.2.5 The Schubert polynomials represent Schubert classes under the iso-
morphism (2.2.3), i.e., p(6,) = aw.

The Schubert polynomials have the following orthogonality property (see, e.g.,
[35, (5.4)]). For a polynomial f, define

(f) = (0o - f)(0,..., 0) . (2.2.12)

Theorem 2.2.6 For u, v E Sn,

(1 if v = WoU, (2.2.13)\uv/)=1o i0 otherwise.

2.2.3 Quantum cohomology and Gromov-Witten invariants

As an abelian group, the (small) quantum cohomology of the flag manifold Fln is
nothing more than the usual cohomology tensored with a polynomial ring:

QH*(Fl, ,Z) = H*(Fl, ,Z) Z[ql, .. q,qn-1]. (2.2.14)

Everywhere in this chapter the letter q will denote the collection of qi, q2,... qn-1 ;
and Z[q] will always stand for the ring Z[ql,..., qn- 1 ]. Likewise, x will abbreviate the
collection of the xi.

The multiplication in QH*(Fl ,Z) is a Z[q]-linear operation that is defined by
specifying its structure constants. These can be expressed via Gromov-Witten invari-
ants, to whose geometrical definition we now proceed, see [2, 6, 12, 16, 19, 22, 25, 26,
28, 29, 46] for details.

The homology classes [R~,,.,], i = 1,..., n - 1, of two-dimensional Schubert vari-
eties form a linear basis in H2 (Fln, Z). We say that an algebraic map f :1 P4+ Fln
(or a rational curve in Fln) has multidegree d = (dl,..., d-_ 1) if f.[P1] = E di [Qosil -



The di should be nonnegative integer numbers. The moduli space Md(P1, Fln) of
such maps is a smooth algebraic variety of dimension

D =() n-2 di (2.2.15)
i=1

For a subvariety Y C Fln and a point t E P 1, let us denote

Y(t) = {f E Md(P1, Fln) I f(t) E Y}. (2.2.16)

The codimension of Y(t) in Md(P1 , Fln) equals the codimension of Y in Fln.
Let W1,... , WN E Sn. The Gromov-Witten invariant6 associated to the classes

a,,..., a-, is defined as follows. Let gl,..., gN be generic elements of GLn, and let
t*,..., tN be distinct points in P1. Define

(W1 7 ... 7,wN fd # of points in n (gi5w,) (ti) if ZE (wi) = D,
0 otherwise. (2.2.17)

The condition E £(wi) = D ensures that this cardinality is finite. These invariants
independent of the choice of points ti E P' and generic linear transformations gi.

In other words, the invariant (l,,,..., Oa,) is the number of of rational curves
in Fl, which have multidegree d = (dl,..., d,_l) and pass through some general
translates of Schubert varieties Q ,,,..., RN

Only 3-point Gromov-Witten invariants (for N = 3) are needed to define the
quantum product. The (geometrical) quantum multiplication in the space (2.2.14) is
the Z[q]-linear operation * given in the basis of Schubert classes by

a, * a, = E qd (au, a a, a"w)od w , (2.2.18)
wES, d

for any permutations u and v, where d= (dl,d2,..., dl), and q = qd1 nd-
This operation is commutative and, remarkably, associative (see [46, 33]).

By definition, the quantum cohomology ring QH*(Fln, Z) of the flag manifold is
the linear space (2.2.14) equipped with the operation * of quantum multiplication, as
defined above.

The Gromov-Witten invariants (a0,, a), a•)(0,0,0) are the usual intersection numbers
of Schubert varieties, thus the quotient of QH*(Fln, Z) modulo the ideal generated
by the qi is the ordinary cohomology ring (or, equivalently, the Chow ring) of Fln.

It can also be shown that the quantum product of several classes is expressed
through Gromov-Witten invariants as follows. For any w1, w2 , ..-. , m E SW,

aw, * * w*~m = E E qd (aw awn),W,, )d aw ow
wCES d (2.2.19)

6This is a special case of a more general Gromov-Witten mixed invariant defined in [46].



where, as before, qd = ql' ... q-d 1 for d = (dx,..., dn-1). Therefore, any Gromov-
Witten invariant can be expressed via 3-point invariants using the associativity con-
dition.

The following description of the quantum cohomology ring of the flag manifold
was suggested by Givental and Kim [22], and then justified by Kim [25, 26] and
Ciocan-Fontanine [12]. Let gJq be the ideal in the ring Z[q][xl,... ,xn] that is gener-
ated over Z[q] by the coefficients Er,..., E, of the characteristic polynomial of the
matrix C, given by (2.1.3).

Theorem 2.2.7 [22, 25, 26, 12] The quotient Z[q][xl,...,xn]/J7q is isomorphic,
as an algebra over Z[q], to the quantum cohomology ring QH*(Fln, Z) of the flag
manifold. The isomorphism is determined by specifying that the polynomial xl + x 2 +
. . + xi maps into the Schubert class cr,i for i = 1,..., n.

2.3 Combinatorial Quantum Multiplication

In this section we give a combinatorial construction of quantization. First, we describe
a certain commutative subring in the nilHecke ring. Then, using this subring, we show
how to quantize a ring equipped with an action of AF7-n,.

2.3.1 Commuting elements in the nilHecke ring

Let us recall that Z[q] = Z[ql, ... , qn-]. Let An/VW = NA/V', O Z[q] be the nilHecke ring
with coefficients in Z[q]. It will be convenient to denote qij = qiqi+1  qj-1 for i < j.
Let X 1, X2 , ... , Xn be the elements of the nilHecke ring N-tqn given by7

Xk = Xk - qik O(ik) + I qkj O(kj), (2.3.1)
1<i<k k<j<n

where a(ij) = a,j = Oii+1 .. aj-2 0 j-1lj-2 '.. ai is the element of NA-q that corre-
sponds to the transposition sijy.

Notice that the Xi are homogeneous degree 1 elements in NW-q assuming that
deg(Xi) = 1, deg(0i) = -1, and deg(qj) = 2.

The following statement is essentially our Theorem 5.1 from [17], it is also related
to Lemma 2.6.2 given in this chapter below.

7These elements and the theory developed below in this section can be extended to any semisimple
Lie algebra (and, probably, any Kac-Moody algebra). In the associated nilHecke ring there is a family
of commutative subrings generated by the elements

f + E q (f, av) ( , ,

where f E I' is an element of dual Cartan subalgebra, the sum is over positive roots a E (+ such
that e(s,) = 21a1 - 1, and qa = q1 ... q"' for a = clal + - - - + clat . Note that Oa, is the product of
21a| - 1 generators corresponding to a reduced decomposition of the reflection s,.



Theorem 2.3.1 The elements X1, X2 ,..., Xn in the nilHecke ring KT-iq commute
pairwise. They are algebraically independent over Z[q].

To prove this result, we need the following lemma, in which [x, y] = xy - yx is the
usual commutator.

Lemma 2.3.2 The following commutation relations hold MlN'-l,.

1. [a(ac), Xb] = 0 unless a < b < c.

2. [a(ab), Xa + Xa+1 + - + Xb] = 0.

3. [0(ab), a(cd)] = 0 unless b = c or a = d.

4. For a < b < c, we have [(ac), Xb] + [a(ab), 9(bc)] = 0.

Proof - 1. The element Xi commutes with i0 unless j = i or j = i - 1.
2. Follows from Xa + " + Xb being a symmetric polynomial of Xa, ... , Xb.
3. Clearly, [O(ab), (cd)] = 0 unless a < c < b < d or c < a < d < b. In the latter case
e(Sabscd) < e(sab) + £(Scd) and thus O(ab)O(cd) = 0 (cd)O(ab) = 0 by (2.2.6).
4. From the "Leibniz formula" (2.2.9) with w = sac, we obtain

O(ac) Xb = Xb C(ac) - •sacSab + SacSbc

which is equivalent to the claim. O

Proof of Theorem 2.3.1 - By (2.3.1) and Lemma 2.3.2, we have, for a < b:

[xa, Xb] = [Xa, Xb - Xb] + [Xa - Xa, Xb] + [Xa - Xa, Xb - Xb]

= [Xa - qib (ib)] + [ qaj 9(aj), Xb]
i<a j>b

+ qgib [(ia,) , 9 (ab)] + E qj [ 9 (ab), 0 (bj)] - ab [a(ai), 7 9(ib)
i<a j>b a<i<b

= -qab [Xa, a(ab)] + bab [a(ab) , Xb] + ab E [a(ab), Xi]
a<i<b

=qab [ 9(ab), Xa + Xa+1 + ' + Xb] = 0,

as desired.
The nilHecke ring /'7Tq and thus the elements X1,..., Xn, act on the polynomial

ring Z[q][xl,... ,x,] via divided difference operators. Since the element Xi is equiv-
alent, modulo the ideal generated by the qj, to the element Xi in the nilHecke ring,
we have Z[q][Xi,..., X,] 1 = Z[q][xi,... ,7x]. The dimension argument shows that
the Xi are algebraically independent over Z[q]. O



Theorem 2.3.1 implies that the elements Xi generate a commutative subrings

Z[q][X] = Z[q][XI,..., Xn] in AFW- q isomorphic to the polynomial ring in n variables
with coefficients in Z[q].

2.3.2 Combinatorial quantization

Let R be a module over the nilHecke ring AJN-~ with an element v such that 0i -v = 0
for all i and AFN-, v = R. The polynomial ring Z[X] = Z[XI, ... , Xn] C .7V, then
acts on R, and Z[X] -v = R, due to (2.2.5). The module R is a quotient of Z[X] and,
thus, is endowed with a ring structure. In this ring v = 1, the identity element.

Equivalently, one can define R as the quotient ring Z[Xl,...., z,]/I, where I is an
ideal invariant under divided difference operators given by (2.2.7). It can be shown
that every such ideal I is generated by a sequence of symmetric polynomials. The
nilHecke ring then acts on R; the Oi act by divided differences and the element Xj acts
as the operator of multiplication by zj. By a slight abuse of notation, the xj denote
both generators of the polynomial ring and their cosets in R. Two basic examples are
the polynomial ring R = Z[zlx, ... , z,] and R = Z[zx,..., z,]/Jn, the quotient (2.2.3).

Given this data, we construct a quantum deformation R q of the ring R as follows.
As a linear space, R q is the tensor product R 0 Z[q]. The subring Z[q][X] in the
nilHecke ring .NA' acts on R q by Z[q]-linear transformations and Z[q][X]- 1 = Rq .

The linear space R q is then isomorphic to a quotient of Z[q][X] and, thus, inherits its
multiplicative structure. We will denote this new product on R q by T.

We have actually proved the following statement.

Proposition 2.3.3 There is a unique Z[q]-linear associative operation - on R q =
R 0 Z[q] such that, for any generator xi and any g E RQ ,

i ,g = Xi g.

Moreover, the operation ý is commutative.

Definition 2.3.4 The operation * that satisfies the conditions of the proposition
above is called the combinatorial quantum multiplication (as opposed to the opera-
tion * defined geometrically in Section 2.2.3). This operation makes the space R q =
R 0 Z[q] into a commutative and associative ring called combinatorial quantum de-
formation of the ring R. The tautological map

R 0 Z[q] -4 R q  (2.3.2)

is called the quantization map. This map is an isomorphism of Z[q]-modules (but by
no means a homomorphism of rings).

It is clear that the quotient of the ring R q modulo the ideal generated by the qi
coincides with R.

8In fact, it is a maximal commutative subring in the nilHecke ring.



The combinatorial quantum deformation of the polynomial ring Z[xl,...,x,,] is
isomorphic to the polynomial ring over Z[q]. The quantization in this case is the map p
that maps a polynomial f = f(xil,..., xn) to the polynomial p(f) = F(xl,..., x,)
such that

F(Xi,..., X,) - I = f(xl,..., xn).

The i -product of several generators is given by

Xil i2 ... XiN Xili2 N . 1.

For example,
x~ •x = x 2 + q1 ,

X1 * X2  2 X1 = X X2 - ql

X x1 j x1j = x~ + 2qLx 1 + q x2

This implies the following formulas for the quantization map:

lt(X2) = 2- q
p(XzX2) = Xl X2 ± ql,

p(xl) = x3 - 2q,1x - qix2 .

Recall that R is the quotient ring modulo an ideal I C Z[xl,..., Xn] generated
by a sequence of symmetric polynomials. (By Hilbert's basis theorem, it is always
possible to find a finite sequence of symmetric generators.)

Proposition 2.3.5 Suppose that R = Z[xi,...,x,]/I is the quotient ring modulo
the ideal I = (fl, f2,... ) generated by a sequence of symmetric polynomials fi. The
combinatorial quantum deformation of R is the ring R q = Z[q] [x1,... , xn]/Z, where
Z q = (F, F 2 ,...) is the ideal generated by quantizations Fi = P(fi) of the f .

Proof- Clearly R q is the polynomial ring modulo the ideal 1 q such that F E 1 q
if and only if F(X 1,..., Xn) - 1 E I. All polynomials Fi = p(fi) are in Z q . The
dimension argument shows that ZQ = (F1 , F2 , ... ). O

This proposition shows that p(I) = Tq. The quantization (2.3.2) can be described
as the map that maps the coset of a polynomial f modulo the ideal I to the coset of
the polynomial p(f) modulo the ideal Tq.

The most important for our purposes example is the cohomology ring of the flag
manifold: R = H*(Fln, Z). By Borel's result (2.2.3), it is isomorphic to the quotient
Z[xl,... ,xn]/J. The nilHecke ring acts on R via divided differences. The quanti-
zation R q of R is the quantum cohomology ring QH*(FIn, Z) of Fl,, as defined in
Section 2.2.3, due to the following statement.

Theorem 2.3.6 The operation ; of combinatorial quantum multiplication on the
space Z[q] 0 H*(Fl/, Z) coincides with the operation * of geometrical quantum multi-
plication, as defined in Section 2.2.3.



As we will see, this theorem is is essentially a reformulation of Theorem 2.1.1 from
Introduction. Until we prove these theorems in Section 2.5.3, we will distinguish the
geometric and combinatorial quantum multiplications.

The construction of the combinatorial quantum multiplication and the quanti-
zation map can be easily carried out for the polynomial ring R = Z[l, x 2,... ] in
infinitely many variables. Let us denote by k4 the analogue of the element 2k in the
infinite case. Explicitly,

k-1 00

Xk = Xk - Eqik a(ik) + E qkj (kj) . (2.3.3)
i=1 j =k+l

The Xk involve infinite sums, but only finitely many terms survive in k -f. Thus the
action of the Xk on the polynomial ring Rq = Z[ql, q2,... ][X1, x2,... is well-defined.
This action allows us to define the combinatorial quantum multiplication 5 on Rq .
The quantization map p : R ® Z[ql, q2,...] -+ R q is now given by

1 : f -+ F, F(, 1,; 2,...) 1 = f(xl,x 2 ,...). (2.3.4)

2.4 Standard Elementary Polynomials

In this section we give another description of the quantization map. First, the case
of the polynomial ring in infinitely many variables is considered. Then we specialize
results to finitely generated rings.

2.4.1 Straightening

Let e = el(xl, ... , k) be the i-th elementary symmetric polynomial of xl, . .. , x

e= Xj 1 Xj 2 " "ji"
1<jl <j2<...<ji<k

By convention, ek = 1 for k > 0, and ek - 0 unless 0 < i < k.
The polynomials ei generate the polynomial ring Z[x1,x 2,...] in infinitely many

variables because Xk = ek - ek - 1 . They satisfy the following obvious recurrence:

e = ek- 1 + Zke-1. (2.4.1)

Lemma 2.4.1 For i, j, k > 1, the following relations hold:

(ek+l - ek) ek-1 = (e+l 1 - ek) ek , (2.4.2)

k k k+lk +1k k k+1
ej ej = ej +e + E e e, - Eek-- ,l (2.4.3)> -1 j+ eir +i . (2.4.3)

1>1 1>1



Proof- By (2.4.1), we have (e + l - ef) e' 1 = k+1 e (ek+l -- e) e
Equation (2.4.3) follows from (2.4.2). O

Lemma 2.4.2 For i > 0 and k, 1 > 1 we have 01 - ei = 6k1l1 where 6ki is the
Kronecker delta. In particular, 01 commutes with the multiplication by ei if k = 1.

Proof - If k = 1, then 01 -e = 0 because ek is invariant under interchanging Xk and
Xk+1. For k = 1 is it easy to check that Ok ek = ek-l. The second statement then
follows by (2.2.8). O

For I = (il,..., im) such that 0 < ik < k, let

= ej...i = e .-ei e . (2.4.4)

We will call e1 a standard elementary polynomial. (These are the polynomials PI
of [31].) In other words, a standard elementary polynomial is any product of the ek
without repetitions of upper indices k.

Proposition 2.4.3 (Straightening) [17, Proposition 3.3] The set of all standard
elementary polynomials forms a linear basis in Z[xl, x2,...].

Proof - We will first show that every polynomial f E Z[xl, x2,... ] is a linear combi-
nation of standard elementary polynomials. As noted above, f is a linear combination
of some products of the ei . Choose such a linear combination and apply to it the
following straightening algorithm.

Suppose that some term in this combination is not standard. Find a term which
has some of its upper indices k repeated, with the smallest possible value of k. Say,
this term contains eke. Then substitute eYe by the right-hand side of (2.4.3). Note
that, because of our choice of k, we will not create any new repetition of upper indices
with a smaller k. Repeatedly using this procedure, we can express f as a combination
of standard elementary polynomials.

Now let us show that all standard elementary polynomials are linearly indepen-
dent. For suppose not. Find a nontrivial linear relation L with terms of minimal
possible degree. Let k be the minimal index such that some e , i > 0, appears in
some term in L. By Lemma 2.4.2, applying Ok annihilates every term not containing

ek, iz > 0, whereas ok ek +l = ek- 1 e+1 . Therefore applying ak to L results
in a nontrivial linear relation with terms of smaller degree. Contradiction. O

Recall that J, is the ideal in the polynomial ring Z[xl,..., x,] that is generated by
e, ... ., e". Let H, C Z[xl,.. ., x,] denote the n!-dimensional Z-linear space spanned
by all monomials x••'X 2 

. . xn - 1 such that 0 < ak < n- k for k = 1,..., n- 1. The
following result appears in [31] and [32, (2.6)-(2.7)]; see also [35, (4.13)].

Proposition 2.4.4 The subspace H, is complementary to the ideal Jn. Each of the
following families of polynomials is a Z-linear basis of the space Hn:

* the monomials xa1
... X 2-' such that 0 < ak • n - k;



e the standard elementary polynomials eili2..i,_l n

* the Schubert polynomials ,, for w E Sn.

Thus, the corresponding cosets modulo Jn form Z-linear bases of Z[Xl,... ,xn]/7n.

Proof- First note that eili2...in_ 1 E Hn. By Proposition 2.4.3, these standard poly-
nomials are linearly independent. As the number of them is n! = dim Hn, they form
a linear basis of Hn. The same arguments work for the Schubert polynomials CG,
which belong to Hn since E5o =- x-ln- 2 ... E Hn, and H, is invariant under the Oi
(cf. (2.2.10)).

Then observe that the quotient Z[Xl,..., xn]/J, is equal to

Z[Xl, ..., Xn, Xn+1, Xn+2, . .]/(e , .. , en, n+1, n+2, ...) . (2.4.5)

The ideal in (2.4.5) is generated by the standard elementary polynomials which are
not of the form eili2...i_. . It follows from Proposition 2.4.3 that the cosets of the
polynomials eii2...in-1 , exactly n! in number, form a basis in Z[x,..., x,]/,.n. In
particular, the dimension of the latter is n!. The same holds for the cosets of Schubert
polynomials 6,, which are related to the standard elementary polynomials by a non-
degenerate linear transformation. Ol

2.4.2 Deformation

We show how to quantize the basis of standard elementary polynomials. First we find
the quantum deformations of the elementary symmetric polynomials e .k

Recall that Ei = Ei(xl,... ,zk; q1,..., qk-1) is the coefficient of A'i in the charac-
teristic polynomial (2.1.2) of the 3-diagonal matrix (2.1.3), where n is replaced by k.
By convention, Ek = 0 unless 0 < i < k. Alternatively, one can define the Eik via the
following recurrence relations:

E = E- 1  xkE k-1  qk-1Eik2
2

(2.4.6)
E k =1.

for any k > i > 1, where we assume qgo = 0.
It is not hard to calculate the Ei explicitly using the following monomer-dimer

interpretation. Let us associate with each variable xj the "monomer" {j} and with
each q, the "dimer" {r, r + 1}. Then Ei is the sum of all products of the xj and qr
which correspond to disjoint collections of monomers and dimers covering i distinct
elements of the set {1, 2, ... , k}. The number of monomials in Ek is thus equal to the
k-th Fibonacci number.

For a polynomial F(x1 ,x 2,...), we denote F(X) = F(X1 , X2 ,... ) the result of
substituting the elements Xi given by (2.3.3) in place of the xi.



Theorem 2.4.5 [17, Proposition 5.4] Let f be a polynomial in Z[Xl, X2 ,...] which
is symmetric in the variables Xl,...,Zk+1. Then Ek(X) - f = e f. Equivalently,ei f = ei f.

Proof - Induction on k. If k = 0, then E°(X) - f = e° f = f. Suppose k > 0. Then,
using the induction hypothesis, Lemma 2.4.2, (2.4.1), and (2.4.6), we obtain:

Ez(X) . f = (E-(X) + XkE 1k-' 1 (X) +k - qklEik2
2 ()). f

=k-1 k-11 k-1 k-22

= e i -f + xkei_ 1 f - qkl-1kl-1i_ 1 f qkl-1e-2

=e f+ Xkeif- ei f,

as desired. O

Corollary 2.4.6 The polynomial E1k is the quantization /p(ek) of the elementary sym-
metric polynomial e .

Proof- Set f = 1 in Theorem 2.4.5. O

In particular, the quantization map sends the generators e , i = 1,...,n, of the
ideal J, to the generators E n of the Givental-Kim ideal J7 .

For a sequence (il,..., im) such that 0 < ik < k, define the standard quantum
elementary polynomial E, by

EI = Ell .i. -= El .. Em

Theorem 2.4.7 [17, Theorem 5.5] For I = (il,..., im), the polynomial El is the
quantization pu(ei) of the standard elementary polynomial ei defined by (2.4.4).

Proof - Repeatedly using Theorem 2.4.5, we obtain:

E1 .. E.ýE (X) - 1 = E} . . . E-1 ( X ) em~

SIm-2-\1 m m 1 Zm

= El.. .E-2 ( -1 m 2 emZ m-2 em,1 =...= ii ..

as needed. O

This theorem gives the following description of the quantization map (2.3.4). It
is a unique map pt, linear over Z[ql,q2,...], that maps the basis elements e1 to the
corresponding EI :

p : ej -±E1 for all I=(ii,...,im).



The monomer-dimer combinatorial construction can be used to describe the quan-
tization of any square-free monomial a = xal, Xa2  . Namely, consider the graph
whose vertices are the ai , and whose edges connect ai and aj if lai - aj = 1. As-
sign weight Xai to the vertex ai and weight qi to the edge (ai, ai + 1). Then every
matching in this graph (i.e., a collection of vertex-disjoint edges, or dimers) acquires
a weight equal to the product of weights of its dimers multiplied by the weights of
left out vertices. The sum of these weights, for all matchings, is the quantization of
the monomial a . A similar rule for computing the inverse image (dequantization) of
a square-free monomial can be obtained using M6bius inversion.' The only difference
from the quantization rule is in replacing each qi by -qi .

Proposition 2.3.5 and Corollary 2.4.6 imply that the combinatorial quantum de-
formation of the cohomology ring R = H*(Fl, Z) = Z[xl,... , x]/Jn is the quo-
tient ring RQ = Z[q][xl,..., Xn]/JQ, which is canonically isomorphic to the quantum
cohomology ring QH*(Fln, Z), due to Theorem 2.2.7. Thus the quantization map
establishes an isomorphism of Z[q]-linear spaces

H*(Fln, Z) 0 Z[q] --+ QH*(Fln, Z).

This however does not prove Theorem 2.3.6, which now amounts to claiming that the
quantization map is the tautological identification of the spaces in the right-hand side
and the left-hand side of (2.2.14).

Recall that Hn is the Z-span of the monomials x~al... •_a-i such that 0 < ak _
n - k for all k. Let us also denote Hnq = Hn 0 Z[q].

Corollary 2.4.8 The space Hn is invariant under the quantization map, and is com-
plementary to the ideal $n . The polynomials Ei,...in_ form a Z[q]-linear basis of Hgq .
Thus their cosets form a Z[q]-basis of the quotient Z[q][xl,... , xn]/ 7 .

Proof- By Proposition 2.4.4, the space Hn is spanned by the standard elemen-
tary polynomials e1, I = (i1,...,in-1). Consider their quantizations p(ey) = EI.
Each factor Ek in E, is a square-free polynomial in Xl,... ,xk. Hence every mono-
mial xal... X ·· -z in the expansion of EI satisfies the condition ak < n - k. Using
Proposition 2.4.4, we conclude that E1 E Hn . Hence this space is invariant under
quantization. Since the quantization map is a Z[q]-linear isomorphism that fixes Hnq

and sends the complementary ideal Jn to Jn (see Propositions 2.3.5 and 2.4.4), it
follows that Hnq is complementary to Jq, and the E, form a basis in H q . EO

Proposition 2.4.9 [17, Proposition 6.2] For any g E Hn, and any polynomial f
symmetric in X1,..., x, we have gi f = gf.

Proof- By Corollary 2.4.8, it is enough to consider the case when g = Eil...in_.
The statement then follows by repeatedly applying Theorem 2.4.5. EO

9In general, for monomials with squares, this simple method of dequantization does not work.



Theorem 2.4.10 In the nilHecke ring (7- q the element e (x,..., xn) coincides
with the element En(X, ... , X,). Thus in the ring Z[q][xl,... , x] the combinatorial
quantum multiplication by eý' coincides with the usual multiplication by e :

e g = eg, for any g E Z[q][z,...,x].

Proof - Since the action of the nilHecke ring on the polynomial ring is exact, it
suffice to show that Ein(X1,..., X,) -g = eý g for any polynomial g E Z[qJ[xI,... , ,l.

The polynomial g belongs to the space Hq for some N > n. Let us expand
g in the standard elementary polynomials ei ...iN,_ By Proposition 2.4.9, we have

eN * g = EN(X1,..., )N) -g = eN g. The statement easily follows, because e1 -e N

Ef - En, and Xj = Xj modulo the ideal (sn+1, ... , XN, qn,,..., qN-1), O

More generally, the following identity holds in the nilHecke ring Af/.

Theorem 2.4.11 For every i < k < n, we have

a12 "... · k (Ei(X1,..., Xk) - e(X1,..., Xk)) = 0. (2.4.7)

Proof - For a fixed k, let X, denote the element of the nilHecke ring A7i q given by

X= Xa - E qjOa a(,) + E oa ca)
1<i<a a<j<k

In other words, Xa is the image of the element Xa in KA7fT under the standard embed-

ding A7t C A /?I. Then Xa-Xa = -'=k+1 qaj D(aj) . Let us substitute Xa+(Xa-X,)
instead of the Xa in (2.4.7) and then expand.

Theorem 2.4.10, with n replaced by k, implies

Eif (Xi, ... , Xk) = ei X1,..., Xk).

To prove (2.4.7), it is thus sufficient to show that

al02 " O " "k Xi Xi2 " Xi r a(aj) = o, (2.4.8)

for any 1 < il < i2 < ... < ir < a k< j.

Lemma 2.4.12 For c < d, we have (ai+1, ... d) (0~0+l ... ad) = 0.

(The proof is left to the reader. 10 )
Notice now that 9(aj) = (,,9a+1 ... j-i)--. The only term in Xi, which does not

either commute with 0aa,+1 ... j-1 nor vanish upon composition with .a,+1aa ... j-1

'1Hint: Use the fact that 1(w 2 ) < 2f(w) for w = scc+_1 . S d.



is qi, a 0 (i a) . Moving all irrelevant factors to the right, we can write the expression
in the left-hand side of (2.4.8) as

... 0 k Xi ''I ... 1  ( 1ir, r+l1 ... j-1)'' •

Repeating this trick r times, we deduce that this expression is equal to

19 " 19k i(9i1ji1+1"" ".j-1) .l "  =  0,

as desired. O

The following quantum analogue of (2.4.2) can be used for the quantum straight-
ening algorithm.

Lemma 2.4.13 For k > j > 0, k > i > 0,

Eikk+l E k E qkE_ 1 E = Ek E + + k-Z+l - Ei+I i- j -j i+ 1 +E + Z +lZj-lzi

Proof - By (2.4.6),

E k (E+l - Ec+ ) = Ek (Xk+lE + qkE~_)1
i _j1 3+1 3 k-1

Eý (Ek+l - = E) (Xk+l E ) + qkEi_71-)3 \-i+1 3 2-1

Subtracting the second equation from the first, we obtain the claim. Ol

2.4.3 Straightforward deformation

Let R = Z[xl,... ,x,]/I be the quotient of the polynomial ring modulo the ideal I
generated by a sequence of symmetric polynomials fi. Proposition 2.3.5 says that
the combinatorial quantum deformation of the ring R is the quotient ring R q -

Z[q][xl,... , ,X]/Z modulo the ideal 1 q generated by quantizations Fi of the fi. It is
thus important to find the quantization of any symmetric polynomial.

For any partition A = (A1, A2 ... , A,), A1 > A2 > ... > AI > 0, let

n nn n . en
eA = e- eA

2  AIl

Analogously, we define
E = E E EE

Recall that the en form a Z-basis in the ring of symmetric polynomials of xl,..., n
(see, e.g., [34]). Thus any symmetric polynomial is a linear combination of the en

Corollary 2.4.14 The quantization p(en) of the symmetric polynomial en in the ring
Z[zl,..., x] is the polynomial En. The same, of course, holds for quantizations in
the ring R = Z[l,..., xn]/ of cosets of the en.



Proof - The polynomial el is not standard, but it is equivalent to the standard
elementary polynomial e', en+1 ... en+ - 1 in Z[X1, ... , Xn+-1] modulo the ideal gener-
ated by xn+l,... , n+1-1. The statement now follows from Theorem 2.4.7, since E"
is equivalent to En ... En+'-1 modulo the ideal (xn+1,..., n+q-1, qn,... , qn+1-2). O

It is thus possible to quantize any Schur polynomial via its expression as the
Jacobi-Trudy determinant. Let A' be the partition conjugate to A, see [34].

Corollary 2.4.15 In the ring Z[xl,...,zx], the quantization of the Schur polynomial

sy, = det (eA _i+j) i,j{1,...,l}

is the polynomial Syi given by an analogous expression

SY, = det (E j_i+j) i,jJ{1,...,1}

2.5 Quantum Schubert Polynomials

In this section we study quantum deformations of Schubert polynomials of Lascoux
and Schiitzenberger. We prove the orthogonality property and give their axiomatic
characterization, which implies Theorems 2.1.1 and 2.3.6.

2.5.1 Simple properties

Definition 2.5.1 For w E Sn, the quantum Schubert polynomial e q is the quan-
tization of the ordinary Schubert polynomial E,,. In other words, it is a unique
polynomial in Z[q][xl,..., xn] such that

6q(X1,.., n,) -1= ,(X,...,xn ) .

The quantum multiplication of ordinary Schubert polynomials translates into the
ordinary multiplication of the corresponding quantum Schubert polynomials.

We can apply Theorem 2.4.7 for explicit computation of the Se. First, we express
the ordinary Schubert polynomial 6, as a linear combination of standard elementary
polynomials

•' = Z OI el .

I=(i ,...,in -l )

Then we replace each term by its quantum deformationll:

W = a, El . (2.5.1)
I=(il ,...,in- 1)

The expansions of Schubert polynomials in terms of the standard elementary
polynomials can be computed recursively in the weak order of S,, starting from

"11This is our original definition of the 6q given in Introduction.



6wo = e12...n-1 , using the basic recurrence (2.2.10) together with the following rule
for computing a divided difference of standard elementary polynomials, which is an
immediate consequence of Lemmas 2.4.1 and 2.4.2.

Proposition 2.5.2 We have, for 1 < k < n and I = (i1,..., in-),

Ok .e = e, - E e i ,
r>0 r>1

where

Ir = (il, -.,ik-21 ik-1 + r, ik - 7 11 ik+l, .. inZ-1),

1" = (il, ..., ik-21 ik - r - 1, ik-1 + r, ik+l, ., in-1)

In more comprehensible terms, the proposition says that the divided difference ak
acts on the standard elementary polynomials eii...in-1 in the same way as the following
"divided sum" operator 12

f - (X - Xkl)-1 (1 + Sk-1) f (2.5.2)

il +n-I i2+n-2 i_-1acts on the monomials x+ x n-2 ... Xn_ 1 ,

For example, we have in S4:

64321 = 6wo = e123 ,

63421 = 01 64321= 01 e 1 2 3 = e023,

63412 = 03 63421 = 03 e023 = e022 - e013,

and so on. The corresponding quantum Schubert polynomials 67• are then obtained
by replacing each el(xi,... , k) by its quantum analogue. For instance,

63412 E022 - Eo13 = x + 2qlxlx 2 - q2 x1 + q + qlq2

Lemma 2.5.3 The quantum Schubert polynomials form a Z[q]-linear basis of Hn.

Proof - The quantum Schubert polynomials are related to the Ei,...iin, by an in-
vertible linear map, and thus form a basis of Hn, by Corollary 2.4.8. O

Let deg be the grading defined by deg(xi) = 1 and deg(qj) = 2.

Proposition 2.5.4 The polynomial e6 is of degree C(w), with respect to the grad-
ing deg. Specializing ql = " = qn- 1 = 0 yields 6e = 6 , the classical Schubert
polynomials.

12Such operators, of course, satisfy the nilCoxeter relations (2.2.4).



6321 = X 2 + q1x 1

6231 := X l 2 + q1

6213 = xl

312 = 2 - q

6132 = X2 + x2

6123 1

Figure 2-1: Quantum Schubert polynomials for S3

It follows that the transition matrices between the bases {f q} and {I6,} are
unipotent triangular, with respect to any linear ordering that is consistent with the
length function £(w).

2.5.2 Orthogonality property

The orthogonality of Schubert classes is not hard to establish from the quantum
cohomology definitions. At this point, however, we have not proved yet that quantum
Schubert polynomials eq represent Schubert classes in the quantum cohomology
ring. Moreover, the proof of this fact given in the following Section 2.5.3 relies on a
combinatorial proof of the orthogonality of the 6q, provided below in this section.

For a polynomial F E Z[q][xl,... ,x], we define ((F)) e Z[q] by

((F)) = (,woF(Xi, ... ,Xn) - 1)(0, ... , 0). (2.5.3)

If F is the quantization p(f) of a polynomial f then ((F)) = (f), where (f) is given
by (2.2.12). Note that ((F)) depends only on the coset of F modulo the ideal Jnq.

From Corollary 2.4.8 and Lemma 2.5.3, we know that Z[q][xl,..., xn]/J7• has the
following Z[q]-linear bases given by cosets of:

* the monomials xf' Xa2 .. . an-1 such that 0 < ak < n - k ,

* the quantum standard elementary polynomials Eili2...in_l ,

* the quantum Schubert polynomials 61.

Then ((F)) is equal, respectively, to the coefficient of:
* the top monomial x6 = n-1 n-2...

1 X2  ""Xn-1

* the polynomial E 12 ...n-1 ,

* the quantum Schubert polynomial eq

in the expansion of the coset of F in each of these bases.

The following result is the quantum analogue of Theorem 2.2.6.



Theorem 2.5.5 (Orthogonality property) [17, Theorem 3.9] For u, v E S,,

( 6) 1 ifv-Wo; (2.5.4)S = 0 otherwise.

By definition,

(6q 6q)) = (DWo (eq e q )(Xi,... ,n) _ 1)(0,...,0) =

- (Wo 6q(Xl,... ,Xn) 6•v(X1,...,Xn))(0,...,0).

The classical orthogonality property (2.2.13) together with the following identity,
which holds in the nilHecke ring A' n, implies now Theorem 2.5.5.

Theorem 2.5.6 We have, for any u C Sn,

aWo (Gu(Xl,...,xn) - u(xI,...,Xn)) = 0.

Proof - It is sufficient to show that, for any I = (i 1 ,..., in-1),

Wo (EI(Xi,... , Xn) - e/(Xi,... ,Xn)) = 0. (2.5.5)

We prove this identity by induction on n. The case n = 1 is trivial. Assuming
that n > 1 and omitting the variables Xj and Xj for briefness, we can write the
left-hand side of (2.5.5) as follows:

o en- (Eilin2 - e 1... I)n + o (Ein - en- ) Eix...in-2
n--1n- _e - . .

-- " a o' (Ei... in-2 - ei...in-2 '+ 1 a2 '' n-1 (Eni -1 
e - ) ,

where wo' denotes the longest element in Sn_ 1 acting on the first n - 1 variables,
thus wo,' commutes with e•_ -- symmetric polynomial in xl,..., n-1. The first
term in the last expression vanishes by the induction hypothesis and the second term
vanishes, due to Theorem 2.4.11.

This completes the proof of Theorem 2.5.6 and of the orthogonality property. EO

2.5.3 Axiomatic characterization

In this section we provide proof of Theorems 2.1.1 and 2.3.6.
Everywhere in this section QH denotes the quotient ring Z[q][xl,...,Xn]/,l

which is canonically isomorphic to the quantum cohomology ring QH* (Fin, Z). Recall
that deg is the grading such that deg(xi) = 1 and deg(qj) = 2. Thus the ring QH
acquires the structure of a graded ring since every generator En of the ideal Jnq is
a homogeneous degree i polynomial with respect to the grading deg. Let Z+[q] de-
note the set of all polynomials in the qj with nonnegative integer coefficients. Let us
also denote by G5 the image of the quantum Schubert polynomial G1 in the quotient



ring QH. Likewise, EE QH is the image of Ek, etc. We have the following axiomatic
characterization of the elements 61.

Theorem 2.5.7 [17, Theorem 9.1] Suppose that the elements b,, w E Sn, form a
Z[q]-basis of the quotient QH and satisfy the following four axioms:

1. (Degree condition) The element b, is homogeneous of degree £(w) with respect
to the grading deg.

2. (Classical limit) Modulo the ideal generated by the qj, the element b, coincides
with the coset of the corresponding Schubert polynomial 6,.

3. (Nonnegativity) The product in the ring QH of any two elements bu and by is
a linear combination of the b, with coefficients in Z+[q].

4. Any element Rk is a linear combination of the bw with coefficients in Z+[q].

Then elements bw coincide with the corresponding 6,.

Let & E QH be the element that corresponds to the Schubert class a, un-
der the canonical isomorphism of QH and QH*(Fln, Z). All four requirements of
Theorem 2.5.7 hold for the elements b, = a,. Indeed, the first axiom (degree con-
dition) is just the condition, clear from (2.2.17), that the Gromov-Witten invariant

(au, aV, aW)d is zero unless e(u) + e(v) + £(w) = e(Wo) + 2(dl + -.. + dn-1). The
second condition (classical limit) is equivalent to saying that the Gromov-Witten in-
variants (as, ,a,o)(o,...,o) are the usual intersection numbers of Schubert varieties,
which are the structure constants in the cohomology ring H*(Fln, Z). The third
condition (nonnegativity) is simply claiming that the Gromov-Witten invariants are
nonnegative integer numbers, which is apparent from their geometrical definition as
the number of certain curves. At last, the fourth condition is also satisfied, because
a formula proved by Ciocan-Fontanine [12, formula (3)] implies that E'k = &,(i,k),
where c(i, k) = Sk-i+1Sk-i+2 ...''' Sk

Theorem 2.1.1 from Introduction, which claims that i, = q,- is therefore a
corollary of Theorem 2.5.7. Moreover, Theorem 2.1.1 impliesl3 Theorem 2.3.6. In-
deed, for any u, v E Sn, the combinatorial quantum product ao 2 a, of two Schubert
classes oa, a, E H*(Fl, Z) ® Z[q] coincides with the geometrical quantum prod-
uct a, * a,, because both these products correspond to the usual product ( 6qG of

cosets of quantum Schubert polynomials-the former by definitions, the latter by
Theorem 2.1.1.

Proof of Theorem 2.5.7 - Let us denote by QH+ the Z+[q]-span of the elements b,
in QH. According to the nonnegativity condition, QH+ is closed under multiplication.
The fourth axiom implies that the , and thus all • =E E• , are in QH.

Let us now fix a nonnegative integer 1 < e(wo). By Proposition 2.4.4, the poly-
nomials 6,, £(w) = 1, are related to the e, with III = i + ... + i,_ 1 = 1, by a

13and is equivalent to



non-degenerate linear transformation. Moreover, each ej is a nonnegative integer
combinationl4 of the 6,,. Every 6, £(w) 1= , should enter the expansion of at least
one ei, III = 1. Therefore

Z ei= e a,,
I: j11=1 e(w)=l

with certain positive a,,. By (2.5.1) and the fact that ~ E QH+, we obtain:

a,6q E QH+. (2.5.1)
I(w)=l

The first two axioms imply that each 8,q is equal to bw plus a Z[q]-linear combi-
nation of some b, with £(v) < e(w). It follows that

a,, • = Z a b, + (linear combination of b, with e(v) < e(w)),
e(w)=l IeW)=l

and (2.5.1) yields

a,(w ( - b,) E QH+. (2.5.2)
I(w)=1

Let J = (ji,..., j,-1) be such that

ji + - - + in-1 > £(wo) - I. (2.5.3)

Since E• E QH+, the nonnegativity condition implies that, for any w,

((~J b,)) E Z+[q] . (2.5.4)

Likewise, (2.5.2) gives Ze-(w)=L a,, ((LBg (8~ - bw))) E Z+[q]. Using Theorem 2.5.5

(orthogonality property) and (2.5.3), we write the last statement as

- E aw ((j bw)) E Z+[q] . (2.5.5)
I(W)=l

Recall that the aw are strictly positive. Comparing (2.5.4) with (2.5.5), we con-
clude that ((E• bw)) = 0, for any 1, any w of length 1, and any J satisfying (2.5.3).
Therefore (( qo,b~)) = 0, for any v E Sn satisfying e(v) < f(w). Once again using
orthogonality, we conclude that the expansion of bw via the eq contains no terms
with e(v) < e(w), meaning that b, = W,, as desired.

This completes proof of Theorem 2.5.7 and thus of Theorems 2.1.1 and 2.3.6. O

It seems that a stronger statement than Theorem 2.5.7 is true, which does not
include the last axiom-the only condition for bw = a,~ not immediately clear from

140f course, this fact is well-know, but it also follows from axioms 2, 3, and 4.



definitions.

Conjecture 2.5.8 [17, Conjecture 9.3] In terms of Theorem 2.5.7, the first, second,
and third axioms imply that b, = S., the coset of quantum Schubert polynomial.

This conjecture has been verified for all Sn, n < 4.

2.6 Monk's Formula and its Extensions

In this section, we prove the quantum Monk's formula (Theorem 2.1.2), and then
we investigate its consequences and extensions. We give a general Pieri-type formula
following the approach developed by Fomin and Kirillov in [18] and obtain several
conjectures posed in their paper. As corollaries, a new proof of classical Pieri's formula
for cohomology of complex flag manifolds, and that of its analogue for quantum
cohomology are provided.

2.6.1 Quantum version of Monk's formula

By the classical Monk's formula (Theorem 2.2.3), quantum Monk's formula (Theo-
rem 2.1.2) can be formulated as follows.

Recall the notation qij = qiqi+l ... qj-1, for i < j.

Theorem 2.6.1 We have, for w E Sn and 1 < k < n, the geometrical quantum
product of ak and a, is equal to

ask * ao = sa, aU + E qij a6,,w, (2.6.1)

where the sum is over all transpositions sij such that i < k < j and £(wsij) =

e(w) - e(sij) = e(w) - 2(j - i) + 1.

We note that ask corresponds to x1 + ... + Xk.

Proof - More generally, for any linear form f = E Aixi, we have

f * , = f RO = fe6± +ZE(Ai - Aj) qij 6wsii

summed over all i < j such that £(wsij) = e(w) - f(sij). The fist equality holds
by Theorem 2.1.1, which was at last proved in the previous section, and the second
equality holds by the definition of combinatorial quantum product (Definition 2.3.4)
and (2.2.11). 1O



2.6.2 Quadratic ring

Let E. be the ring generated by the elements Tij and pij, i,j E {1, 2,..., n}, subject
to the following relations:

Tij = -Tji, Tii = 0, (2.6.2)

ri = pij, (2.6.3)

TijTjk + TjkTki + TkiTij = 0, (2.6.4)

[Pij, Pkl] = [ij,Tk1] = 0, for any i,j, k, and 1, (2.6.5)

[Tij, Tkl] = 0, for any distinct i, j, k, and 1. (2.6.6)

Here [a, b] = ab - ba is the usual commutator. It follows from (2.6.2) and (2.6.3) that
Pij = Pji and pii = 0. This ring was defined 15 by Fomin and Kirillov [18, Section 15].

The commuting elements pij can be viewed as formal parameters. The quotient En
of the ring En' modulo the ideal generated by the pij was the main object of study
in [18]. Also a ring EQ was introduced in that paper. It can be defined as the quotient
of £n by the ideal generated by the pij with li - jl > 2. The image of pii+l in E£ is
denoted qi.

Following [18, Section 5], define the "Dunkl" elements Oi, i = 1,... , n, in the
ring £n by

n

9O = Tij. (2.6.7)
j=1

The following important property of these elements is not hard to deduce from
the relations (2.6.2)-(2.6.6).

Lemma 2.6.2 [18, Corollary 5.2 and Section 15] The elements 01,0 2,... , n com-
mute pairwise.

Let z 1, x2 ,... ,n be a set of commuting variables, and let p be a shorthand for
the collection of py)'s. For a subset I = {il,..., i} in {1,2,..., n}, we denote by
x, the collection of variables xi, ... , xi,. Define the quantum elementary symmetric
polynomial Ek (xI; p) = Ek (Xi , xi2 , .. , Xim; p) by the following recursive formulas:

Eo(xi, xi 2 , .. ., im; p) = 1, (2.6.8)

Ek (xi ,i2,. ... X im; p) = Ek(xi,, i2 ,.. ,im-1; P)

+ Ek-1 (XiXi2 ,. .. Xm- 1;P) Xim (2.6.9)
m-1

+ ZEk-2(Xil, ... i,,... 7 i- i; ) ir im,,
r=1

1 5in slightly different notation



where the notation xi means that the corresponding term is omitted.
The polynomial Ek (x; p) is symmetric in the sense that it is invariant under the

simultaneous action of S, on the variables xi, and the pi. ij. One can directly verify
from (2.6.8) and (2.6.9) that

El(xil,xZi2,. ..,i, ;p) = Xi1 + Xi2 + + im ,

E2 (ilXi2~ ,. .. Xm;) = Z (xi xib +Pi, b)
1<a<b<m

The polynomials Ek(xl;p) have the following elementary monomer-dimer inter-
pretation (cf. Section 2.4.2). A partial matching on the vertex set I is a unordered
collection of "dimers" {al, bi}, {a 2 , b2}, ... and "monomers" {c }, {c 2 },... such that
all ai, bj,ck are distinct elements in I. The weight of a matching is the product
Pal blPa2 b2 ... c1 2 '' Then Ek(x; p) is the sum of weights of all matchings which
cover exactly k vertices of I.

For example, we have

E3 (x1,x 2, 3, x 4;p) = xIx 2x 3 + x1 x 2x 4 + x1x 3x 4 + x2x 3x 4

+ p12 (X3 + X4) + p13 (X2 + X4) + p14 (X2 + X3)
+ 23 (X +X4) + P24 ( 1 + 3) + p34 (1 + 2).

Specializing pij = 0, one obtains Ek(xI; 0) = ek(XI), the usual elementary sym-
metric polynomial. Assume that pii+l = qi, i = 1, 2,..., n - 1, and pij = 0, for
Ii - j 2. Then the polynomial Ek(x1,... , Xn; q) is the quantum elementary poly-
nomial Ek, which is a coefficient of the characteristic polynomial of the 3-diagonal
matrix (2.1.3). Here and below the letter q stands for the collection of ql, q2 , ... , qn- 1.

2.6.3 General version of Pieri's formula

For a subset I = {il,... ,i,} in {1,2,...,n}, let 0, denote the collection of the
elements oi,,..., ij, and let Ek(OI;p) = Ek(Oil,... ij; p) denote the result of sub-
stituting the Dunkl elements (2.6.7) in place of the corresponding ax in E(xi; p). This
substitution is well defined, due to Lemma 2.6.2. We can state our result as follows.

Theorem 2.6.3 (General Pieri's formula) [43, Theorem 3.1] Let I be a subset in
{1, 2,..., n}, and let J = {1, 2,..., n} \ I. Then, for k > 1, we have in the ring C4:

Ek (0; p) = Ta, bi 7a2 b2 Takbk, (2.6.10)

where the sum is over all sequences a,... , k, bl, ... , bk such that (i) aj E I, bj E J,
for j = 1,..., k; (ii) the a,,..., ak are distinct; (iii) bi <• ... bk-

The proof of Theorem 2.6.3 will be given in Section 2.6.5. In the rest of this
section we summarize several corollaries of Theorem 2.6.3.



First of all, let us note that specializing pij = 0 in Theorem 2.6.3 results in
Conjecture 11.1 from [18].

Corollary 2.6.4 [43, Corollary 3.2] [18, Conjecture 15.1] For k = 1, 2,..., n, the
following relation in the ring EPn holds

Ek, (81 2, 1 ... 7 8O; p) =0.

Proof - In this case, the sum in (2.6.10) is over the empty set. O

Define a Z[p]-linear homomorphism r by

7r : Z[xl, X2,..., xn; p] -+ 'np

Corollary 2.6.5 [43, Corollary 3.3] The kernel of r is generated over Z[p] by

Ek (X1, X2,... Xn; p) , k = 1,2,. .. , n. (2.6.11)

Proof - All elements (2.6.11) map to zero, due to Corollary 2.6.4. The statement
now follows from dimension argument (cf. [18, Section 7]). [O

In particular, we can define a homomorphism t by

Zl: Z[Z,...7Xn] -- + En ,

where #i is the image in ,n of the element Oi.

Corollary 2.6.6 [18, Theorem 7.1] The kernel of r is generated by the elementary
symmetric polynomials

ek(X1, X2,...,i n), I k= 1,2,...,n.

Thus the subring in E, generated by the #i is isomorphic to the cohomology of Fl,,
which is isomorphic to the quotient (2.1.1).

Likewise, let Oi be the image in E£ of the element Oi, and let fr be the Z[q]-linear
homomorphism defined by

7r : Z[Xl , - Xn; q] ---+ q ,

Corollary 2.6.7 [43, Corollary 3.5] [18, Conjecture 13.4] The kernel of the homo-
morphism fr is generated over Z[q] by

Ek (X1, X2,...Xn;q), k= 1,2,...,n.

Thus the subring in 6£ generated over Z[q] by the 02 is isomorphic to the quantum
cohomology of Fl,, the latter being isomorphic to the quotient (2.1.4).



2.6.4 Action on the quantum cohomology

Recall that sij is the transposition of i and j in S,, si = sii+l is a Coxeter generator,
and qij = qiqi+1 " *" "qj-1, for i < j.

Let us define the Z[q]-linear operators tij, 1 < i < j - n, acting on the quantum
cohomology ring QH*(Fln, Z) by

Sao,, if £(wsij) = £(w) + 1,
tij(a>) = qij as,,, if e(wsij) = £(w) - 2(j - i) + 1,

0 otherwise. (2.6.12)

By convention, tij = -tji, for i > j, and tii = 0.
Quantum Monk's formula (Theorem 2.1.2) can be stated as saying that the quan-

tum product of asm and ao is equal to

aSM *aw = Z tab(aw).
a<m<b

The relation between the ring Eq and quantum cohomology of Fln is justified by
the following lemma, which is proved by a direct verification.

Lemma 2.6.8 [18, Proposition 12.3] The operators tij given by (2.6.12) satisfy the
relations (2.6.2)-(2.6.6) with Tij replaced by tij, pii+l = qi, and pij = 0, for li-jl > 2,

Thus the ring Eq acts on QH*(Fln, Z) by Z[q]-linear transformations

7ij "o '-4 tij (arw)

Monk's formula is also equivalent to the claim that the Dunkl element 0i acts on
the quantum cohomology of Fln as the operator of multiplication by xi, the latter is
defined via the isomorphism (2.1.4).

Let us denote c(k, m) = Sm-k+18m-k+2 ... sm and r(k, m) = Sm+k-18m+k-1 ..'''Sm
These are two cyclic permutations such that c(k, m) = (m- k+1, m- k +2,..., m+1)
and r(k, m) = (m + k, m + k- 1,..., m).

The following statement was geometrically proved in [12] (cf. also [17]). For the
reader's convenience and for consistency we show how to deduce it directly from
Monk's formula. 16

Lemma 2.6.9 The coset of the polynomial Ek(1,... ,x m; q) in the quotient (2.1.4)
corresponds to the Schubert class ac(k,m) under the isomorphism (2.1.4). Analogously,
the coset of the polynomial Ek(Xm+1, m+2,... ,x7n) corresponds to the class ar(k,m).

Proof - By (2.1.4) and (2.6.9), it is enough to check that

Orc(k,m+l) = Oc(k,m) + (Osm+l - Osm) * 0 c(k-l,m) + qmUc(k-2,m-1)"

16A less obvious statement that, the opposite is true, i.e., that Monk's formula follows from the
claim of Lemma 2.6.9 has been actually demonstrated in previous sections.



This identity immediately follows from Monk's formula:

(0sm+l - Os,) * ac(k-l,m) = ( E tm+lb - E tam)(Oc(k-l1,m))
b>m+l a<m

The claim about ar(k,m) can be proved using a symmetric argument. O

It is clear now that Theorem 2.6.3 implies the following statement. This statement,
though in a different form, was proved in [13].

Corollary 2.6.10 (Quantum Pieri's formulas) For w E Sn and 0 < k < m < n, the
product in QH*(Fl,, Z) of Schubert classes ac(k,m) and a. is given by the formula

Uc(k,m) * w = E t blta2 b2  * tAk bm (aw), (2.6.13)

where the sum is over a 1 ,..., ak, bl,..., bk such that (i) 1 < aj 5 m < bj < n for
j = 1,..., k; (ii) the a, ... , ak are distinct; (iii) bi <• ... bk.

Likewise, the quantum product of Schubert classes ar(k,m) and oa is given by the
formula

Ur(k,m) * aUw tx di tc2d2 .. tk dk (aw), (2.6.14)

where the sum is over c1, ... , ck, bl,..., dk such that (i) 1 < cj 5 m < dj < n for
j = 1, ... , k; (ii) cl <_ ... ck; (iii) the d.,..., dk are distinct.

We would like to emphasize that Corollary 2.6.10 does not imply Theorem 2.6.3 (or
even its weaker form for En), since the representation rij F- tij of £n in the quantum
cohomology is not exact.

2.6.5 Proof of general Pieri's formula

For a subset I in {1, 2,... , n}, let Ek(I) denote the expression in the right-hand side
of (2.6.10). By convention, Eo(I) = 1. For k = 1, Theorem 2.6.3 says that

n

iEI jjI iEI j=1

which is obvious by (2.6.2).
It suffices to verify that the Ek(I) satisfy the defining relation (2.6.9). Then

the claim Ek(OI; p) = Ek(I) will follow by induction on k. Specifically, we have to
demonstrate that

EWk(I U {j}) = Ek(I) +Ek-l( )Oj + Ek-2(I \ {i})Pij,
iEl (2.6.15)

where I C {1, 2,... , n} and j V I. To do this we need some extra notation. For a



subset L = {lI, 12,... , lm} and r V L, denote

((L I))) = ZTU.,r'rur.'rmr,

where the sum is over all permutations ul, u2 ,... Urn of 11, 12,..., lm
For I and j as in (2.6.15), let J = {1, 2,..., n} \I = {j l,j 2, ... ,jd} with jl = j.

Then the first term in the right-hand side of (2.6.15) can be written in the form

Ek(I) (2.6.16)
I1...IdChI

where the notation I ... IdCkI means that the sum is over all pairwise disjoint (pos-
sibly empty) subsets 1, I2,.. ., Id of I such that E, IIsI = k. Let

Ek(I) = A + A2 , (2.6.17)

where A1 is the sum of terms in (2.6.16) with I, = 0 and A2 is the sum of terms with
/1 $ 0. Likewise, we can split the left-hand side of (2.6.15) into two parts:

Ek(I U}) =

2z'd'Ck'Ufj}
(2.6.18)

where B 1 is the sum of the terms such that j V I U ... U Id, and B 2 is the sum of
terms with j E I U ... U Id.
of (2.6.15) into 3 summands:

Ek-1(I) O =

We also split the second term in the right-hand side

1 ... l •"Ck-1l

S '" i d)) ~Tj
80i (2.6.19)

= C1 + C2 C3 ,

where C1 is the sum of terms with s E I \ (II' U I' U ... U Id); C2 is the sum of terms
with s E I' U I' U ... U Id U J; and C3 is the sum of terms with s E I,'.

It is immediate from the definitions that A1 = B 1. It is also not hard to verify
that A2 + C1 = 0, since for I, = 0

V(I1 1) = (d I1 \ {il} I ) d Tijl

iEI1

To prove the identity (2.6.15), it thus suffice to demonstrate that

B 2 = C2

C3 + Z k-2(I
iEI

\ fil)Pij = 0.

(2.6.20)

(2.6.21)

V1 I 1d) 22 1 i2)) " ((Id I d)),

V 2) V3 ) ... ((3Id I J d



The following lemma implies the formula (2.6.20).

Lemma 2.6.11 For any subset K in {1, 2,..., n} and j, 1 V K, we have

((K U {j} 1)) = E ((L 1))
LCK

((K \ L I)) E Ts.
sELU{1}

Indeed, let T = ((I I j2)) ... ((I I J)) be a term of B 2 . Then j E J' for some r. By
Lemma 2.6.11, T is equal the sum of all terms ((Ii I jil)) ... ((I' I d)) Tj in C2 with
fixed I"' = I for all u f r such that s E I, U {j,} and the subsets I" U I,' = I, \ {j}.
Thus B 2 = C2-

Proof of Lemma 2.6.11 - Induction on IKI. For K = 0, the both sides of (2.6.22)
are equal to T,1. For lKI > 1, the right-hand side of (2.6.22) is equal

E ((L I ) ((K
LCK

\L j)) TjS
s•LU{M}

L= (L 1))
L K (iEK\L

ij ((K \ L \ {i} I j)) E
sELU{1}

Tjs) + ((K 1))
sEKU{l}

= Tij ((K \ {i}) U {j} 1)) + ((K I1)) Z j,
iEK sEKU{I}

= ((KU {j} I1)).

The second equality is valid by induction hypothesis; the remaining equalities follow
from (2.6.4) and (2.6.6). O

Using a similar argument to the one after Lemma 2.6.11, one can derive the
formula (2.6.21) from the following lemma:

Lemma 2.6.12 For any subset K in {1, 2,..., n} and j V K, we have

E( K (K j )) Tj, +
sEK

E \ ((L I s) ((K\L\{s} l)) I j , =0.
LCK\{s}

This statement, in turn, is obtained from the following "quantum analogue" of
Lemma 7.2 from [18]. Its proof is a straightforward extension.

Lemma 2.6.13 For i, u , u2, ... , um E {1,..., n}, we have in the ring £Pn

m

Z Ti iu+ T i U, 1  Ti Um i U Ti u2 Ti Ur
r=1

=~ Piu, T Tr U+ UrU+2 . T7r um Tur U1TUr UU2 Tr Ur-1 ,

r=1

(2.6.23)

where, by convention, the index um+l is identified with ul.

(2.6.22)



Proof - Induction on m. The base of induction, for m = 1, is easily established
by (2.6.3): Ti,7Ti,, = piu,. Assume that m > 1. Applying
left-hand side of (2.6.23), we obtain:

m

Ti UTiUr+ T m1. (Ti Um Ti ) Tii 2 " Ti Ur

r=1

r=l

S7i"m-1,_TiTU17 
2 "

+ Tu rn ( Ti UT  * =2

mr=2

. TiumTiU2 Tii3 "

(2.6.4) and (2.6.6) to the

. Tiu r

•TiUr)

By induction hypothesis, this expression is equal to

Pir TU, Ur+TUr Ur+2 Tur Um-1 TUr U1Tr 2  ur Ur-1)
r=1

+ T7~mu1 (••PiUr=2 TUru+T1 Urr+ 2 TUr • TUu, 2 TUr U3

rTul Um

•Tur ur-1

SPiul1 TU712 Tu1 3  TU"1m npi TUm rn 1 TUmn 2 U 'TU m-1

m-1

+ ZPE Ur TUVUrr+1 TT,.rurn (TurU Tul mrn + Tnm 1Tur um) TUr U2

r=2

The latter expression coincides with the right-hand side of (2.6.23).

This completes the proof of Theorem 2.6.3.

" Tur r-1 "

= ETinTi,+1
r=1
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