
Power Reducing Algorithms in FIR Filters

by

Nitin Kasturi

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1997

@ Massachusetts Institute of Technology 1997. All rights reserved.

A uthor
Department of Electrical Engineering and Computer Science

May 15, 1997

Certified by
Anantha Chandrakasan

Analog Devices Career Development Assistant Professor of Electrical Engineering
9 4, f/ ,a TMesis Silunrvisor

Certified by
Alan V. Oppenheim

Ford•r fessor of Engineering
Thesis Supervisor

7

Accepted by......................
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

*

Power Reducing Algorithms in FIR Filters

by
Nitin Kasturi

Submitted to the Department of Electrical Engineering and Computer Science
on May 15, 1997, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering

Abstract

Power consumption has become a major concern in the design of integrated circuits for
reasons of portability, miniaturization, and conservation. Accordingly, there has been a
need to find ways to reduce power. One fundamental area of interest is the multiplication
component in the convolution process of a Finite Impulse Response (FIR) filter. Two classes
of power reduction techniques have been developed and investigated. Both classes approach
the problem of power with an intent to reduce transition activity. Transition activity is an
important factor in switching power, a major component of power consumption.

The first class uses block processing and additional memory to reorder the multiplica-
tions inherent in the convolution process. Two such methods are explored. The first seeks to
maintain the coefficient input to the multiplier as constant for several multiplications. The
second method, instead, maintains the signal input to the multiplier. Through simulations
across a range of multipliers, it was found that the first method (termed vertical unrolling)
was found to reduce power more.

The second class of power reduction techniques involved the perturbation of the coef-
ficients of the filter while maintaining various filter design constraints. In the developed
algorithm, the coefficients are first scaled within an allowable gain and then perturbed
though an iterative process that sets low-end bits of sets or subsets of the coefficients equal.
Through this method, coefficient transition activity was reduced up to 56%. Power in the
multiplier was reduced in the best case by about 25%. This approach does not need any
additional memory requirements. The cost of the power reduction is a slight alteration of
the results of the convolution.

Thesis Supervisor: Anantha Chandrakasan
Title: Analog Devices Career Development Assistant Professor of Electrical Engineering

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering

Acknowledgments

This thesis represents the conclusion of five wonderful years at MIT. I would like to take

this opportunity to thank all the professors, TAs, and fellow students who made this such

a great rewarding experience.

For this thesis, I would like to acknowledge several people who helped make it happen.

First, I'd like to mention my fellow graduate students in Course VI who supported me,

while at the same time were going through the same process themselves - Brad Bartley,

Erika Chuang, Joel Dawson, Scott MacGregor, Jennifer Shen, and Julianne Zhu.

While researching and writing this thesis, several graduate students selflessly provided

valuable assistance - Abram Dancy, Jim Goodman, Jeff Ludwig, Wendi Rabiner, and

Thucydides (Duke) Xanthopoulos.

This thesis would definitely not have happened without the guidance and support of

my thesis advisors - Anantha Chandrakasan and Al Oppenheim. They helped me develop

several ideas and made sure I thoroughly investigated them.

Finally, but foremost, I would like to thank my parents - Srinivasan and Tara Kasturi

- for allowing me to go to MIT and making sure I did my best while I was here.

Contents

1 Introduction 8

2 Power Consumption in CMOS Devices 10

2.1 Sources of Power 10

2.2 Switching Power 11

2.3 Power Simulation using PYTHIA 12

2.4 General Methods to Reduce Switching Power 13

3 Test Data 14

3.1 FIR filter 14

3.2 FIR Signal Data 15

3.3 Toeplitz Data 18

3.4 M ultipliers 18

4 Unrolling 20

4.1 Vertical Unrolling 20

4.1.1 Concept 20

4.1.2 Results 21

4.2 Diagonal Unrolling 27

4.2.1 Concept 27

4.2.2 Results 27

4.3 Unrolling Applied To Toeplitz Matrices 33

4.3.1 Concept 33

4.3.2 Simulation and Results 33

5 Coefficient Perturbation

5.1 Introduction

5.2 Previous Research

5.3 The Problem

5.4 Routine Overview

5.4.1 Filter Creation

5.4.2 Filter Constraints

5.4.3 Scaling

5.4.4 Perturbation

5.5 Pseudo Code

5.6 Results

5.7 Power Analysis

6 Conclusion and Future Research

A Multipliers

A.1 Sign-Magnitude Array Multiplier

A.2 Baugh-Wooley Multiplier

A.3 Booth-Encoding Multiplier . .

35

35

36

37

37

38

38

39

39

40

42

43
............
...........

......................

......................

......................

List of Figures

2-1 Circuit diagram of CMOS gate and power drawn from power supply in a

0 -+ 1 transition. 11

3-1 A 16-tap Hamming Window 14

3-2 Transition activity for different representations of two sets of data. 17

3-3 The dependence of power on the probability of non-sign-bit transitions . . . 19

5-1 Flow diagram for coefficient perturbation routine 38

5-2 An example of the coefficient perturbation routine. 41

5-3 Frequency response of original Lowpass Filter 1 (solid line) and perturbed

filter (dotted line). The offset gain between the two filters is due to the

scaling. A post-convolution multiplication can remove the offset. 42

A-1 Building block for sign-magnitude array multiplier. 50

A-2 4 x 4 Sign-Magnitude array multiplier 51

A-3 A multiplication performed with Booth's algorithm 56

List of Tables

3.1 Actual correlation values for data generated with Psynth 16

3.2 Transition breakpoints for selected synthesized data sets in terms of bits

(1=MSB, 16=LSB). 18

4.1 Power simulation results in mWatts for vertical unrolling with a = 1000

sign-magnitude data using a sign-magnitude array multiplier. 23

4.2 Power simulation results in mWatts for vertical unrolling with a = 1000 two's

complement data using a Booth-Encoding multiplier 23

4.3 Power simulation results in mWatts for vertical unrolling for a = 1000 two's

complement data using a Baugh-Wooley array multiplier 24

4.4 Power simulation results in mWatts for vertical unrolling with a = 100 two's

complement data using a sign-magnitude multiplier 24

4.5 Power simulation results in mWatts for vertical unrolling with a = 100 two's

complement data using a Booth-Encoding multiplier 25

4.6 Power simulation results in mWatts for vertical unrolling with a = 100 two's

complement data using a Baugh-Wooley multiplier 25

4.7 Range of power reduction for various multipliers, data sets, and vertical un-

rollings relative to conventional convolution multiplication with no unrollings. 26

4.8 Power simulation results in mWatts for diagonal unrolling with a = 1000

data using a sign-magnitude array multiplier 29

4.9 Power simulation results in mWatts in diagonal unrolling with a = 1000

using a Booth-Encoding multiplier 29

4.10 Power simulation results in mWatts in diagonal unrolling with a = 1000

using a Baugh-Wooley multiplier 30

4.11 Power simulation results in mWatts for diagonal unrolling with a = 100 data

using a sign-magnitude array multiplier 30

4.12 Power simulation results in mWatts for diagonal unrolling with a = 100 data

using a Booth-encoding multiplier 31

4.13 Power simulation results in mWatts for diagonal unrolling with a = 100 data

using a Baugh-Wooley multiplier 31

4.14 Range of power reduction for various multipliers, data sets, and diagonal un-

rollings relative to conventional convolution multiplication with no unrollings. 32

4.15 Power consumption in simulation of Toeplitz matrix multiplications 34

5.1 Results of routine applied to various lowpass filters 43

5.2 Results of routine applied to various lowpass filters 45

5.3 Results of routine applied to various lowpass filters 46

5.4 Power simulation with coefficients with and without perturbation. 46

A.1 4 x 4 Multiplier Partial Products 50

A.2 General two's complement multiplication. 53

A.3 General two's complement multiplication with all positive partial products . 54

Chapter 1

Introduction

Increasingly, the reduction of power consumption in digital systems has become a major

design issue. This consideration is driven by two primary forces - battery operated portable

computing and heat dissipation in high performance processors.

There has been a significant increase in the use of portable battery operated devices

such as cellular phones, laptop computers, and PDAs. Users desire lightweight devices that

are capable of running for extended periods of time. Thus, these devices must be able to

make optimal use of battery power. By reducing power consumption, batteries on such

devices may then be made lighter, smaller, and longer-lasting.

Even in non-portable applications, power issues are still a concern. The scaling of feature

sites to the submicron regime has resulted in millions of transistors being integrated on a

single chip. The scaling has closely followed Moore's Law, which predicts that the number

of transistors per chip quadruples every three years. As integrated circuits get denser, the

ability of cooling fans and other external heat dissipation sinks to quickly remove excess heat

becomes severely limited. By reducing the power that is consumed by devices, designers

can remove some of the restrictions placed on them by cooling requirements.

The third driving force behind power consumption has been in the interests of conser-

vation. Personal computers in the U.S. have been shown to use $ 2 billion dollars of elec-

tricity, indirectly produce as much CO2 as 5 million cars, and account for 5% of commerical

electricity consumption. These figures provide motivation to incorporate power-reducing

technology into digital systems. [3]

Current systems are often built around embedded processors, one important type being

Digital Signal Processors (DSPs). One of the most common components of DSP systems is

a Finite Impulse Response (FIR) filter. Filtering by an N-tap FIR filter is equivalent to the

convolution of a finite-length time-domain filter (N coefficients) with a discrete-time input

signal, and is represented by the equation,

N-1

Yk- =E CiXk-i = COXk + ClXk-1 + ... + CN-1Xk-(N-1), (1.1)
i=O

where the ci's are the coefficients of the FIR filter, and the Xk's and yk's are the discrete-time

input and output signals, respectively.

All physical representations of the convolution of an FIR filter involve some sort of

multiply and accumulate process, as suggested by Equation 1.1. In an FIR filter, multi-

plications have been shown to contribute significantly to the total power consumed during

filtering. In several types of multipliers, maintaining the inputs to the multiplier and, in

general, reducing the transitions between successive inputs will reduce power consumption

significantly. Consequently, careful ordering of the multiplications involved in the convo-

lution process will allow multiplier power consumption to be reduced. Furthermore, these

ideas can be generalized to special cases of matrix multiplication. Any inherent symmetries

within the matrices can be used to reorder multiplications and reduce power consumption.

Additionally, the dependence of power in the multiplier on transitions in the inputs mo-

tivates another approach in the case of convolution. The coefficients of the filter can be

perturbed slightly without significant change to the frequency response of the filter. Within

the constraints of maintaining this frequency response, the perturbation can reduce the

number of transitions between successive coefficients. It will be seen that an algorithm that

effects this purpose will be able to reduce the power consumption of the multiplier.

Chapter 2

Power Consumption in CMOS

Devices

2.1 Sources of Power

Although peak power consumption is an important design issue, average power is more

critical in considering the long-term lifetimes, sizes and weights of batteries. Average power

consumption in digital CMOS circuits can be tied to four main sources. These are, for a

given CMOS gate,

Pavg Pswitching + Pshort-circuit + Pleakage + Pstatic (2.1)

= ao41CLVd2dfclk + IleakageVdd + IscVdd + IstaticVdd. (2.2)

Pswitching is the switching (or dynamic) component of power, where ao•l is the switching

activity factor (the probability of a 0 -+ 1 transition during a clock cycle, or, equivalently,

the average number of transitions at a node during a clock cycle), CL is the load capacitance

of the gate, Vdd is the supply voltage, and fcLk is the system clock frequency. The second

component, short-circuit power, Pshort-circuit, is attributable to the direct-path short-circuit

current, Ic. This condition occurs when both the NMOS and PMOS transistors of a gate

are active, allowing current to flow from supply to ground. The next component, leakage

power, Pleakage, is caused by leakage current, Ileakage, which results from reverse bias diode

currents and sub-threshold effects, which arise in the course of fabrication. Finally, static

power, Pstatic, is a result of static currents, Istatic, that arise from circuits that have a

constant source of current between the power supplies. [3]

A 1

AN

Figure 2-1: Circuit diagram of CMOS gate and power drawn from
transition.

power supply in a 0 -+ 1

2.2 Switching Power

Among the terms in Equation 2.1, more than 90% of power is attributed to the switch-

ing component. Therefore, this thesis will focus on the minimization of switching power.

Figure 2-1 shows a CMOS gate with the physical load capacitance explicitly included.

Switching power arises when the CMOS gate undergoes a transition from 0 -+ l(Vdd) or

from 1 -+ 0. Energy is drawn from the power supply for a 0 -+ 1 transition at the output.

Ignoring short-circuit currents, the instantaneous power is given by

dE
P(t) = d• = iZsupply Vdd,dt (2.3)

where isupply is the instantaneous current drawn from the power supply through the capac-

itative load:

isupply = CL dt

2
LVdd

supply

C L

'V

(2.4)

Thus, the energy drawn from the power supply during the 0 -+ 1 transition is given by

E0- = P(t)dt = Vdd isppy(t)dt = Vdd CLdVout = CLVd2d, (2.5)
0 0

where T is the duration of the transition. The integration was changed from one in time

to one in output voltage using Equation 2.4 and by noting that at the end of the transition

the capacitor is fully charged to Vdd. From this derivation, it is seen that the energy drawn

from the power supply in a 0 -+ 1 transition is independent of the shape of the output

voltage waveform.

The average energy of 0 -+ 1 transitions is obtained by multiplying Eo0 1 by the proba-

bility of any such transition on a given clock cycle, a. The average switching power drawn

from the power supply is thus this energy times the clock frequency,

Pswitching = ao-+1Eo•+lfclk = o-+CLVd2dfdclk (2.6)

2.3 Power Simulation using PYTHIA

Most of the power estimates presented in this thesis were simulated by PYTHIA, a power

estimation tool that works with a structural Verilog circuit description. PYTHIA operates

at the gate/module level rather than at the transistor level. In PYTHIA, every circuit

net has an associated capacitance value. As the simulation involving a circuit progresses,

any transitions between 0 to 1 or 1 to 0 result in energy being dissipated on the order of

1CV2. Upon completion of the simulation, the total dissipated energy is divided by the

total simulation time to obtain the average power dissipated during the simulation. One

limitation of PYTHIA is that it is only capable of measuring the switching power contribution

in Equation 2.1. However, as stated in the last section, most of the power consumption is

attributable to this switching power component and, therefore, this limitation will not be

a significant concern.[l 1] All power simulations in this thesis were performed using the

hpl4 technology set with a voltage of 3.3 volts. One multiplication was computed every 40

nanoseconds.

2.4 General Methods to Reduce Switching Power

There have been many approaches to reducing this switching power component. These

methods can be categorized in four broad categories: (1) technology level, (2) circuit level,

(3) architecture level, and (4) algorithm level.

One architecture level method of reducing switching power makes use of its dependence

on the clock frequency and the supply voltage. If, at any point while a circuit is in use,

either of these variables are zero, no power will be consumed, switching or otherwise. Thus,

when no computation is necessary, the voltage applied may be turned off, and no power is

consumed. This method is limited to cases for which there are gaps in operation where the

circuit is not needed and may be turned off. However, this approach has limited benefits

and is useless when the circuit is actually on.

One method that combines a circuit level approach with an architectural one once

again takes advantage of the dependence of switching power on supply voltage and clock

frequency. By using parallel computation blocks, the clock rate can be reduced without

loss in throughput. For example, N-way parallelism allows the clock rate to be dropped

by a factor of N while preserving the original throughput. Hence the supply voltage can

be dropped without loss in performance. With the supply voltage and the clock frequency

decreased, the switching power is consequently decreased. [3]

Many algorithm-level methods reduce switching power by decreasing the activity factor

in Equation 2.6. For example, in an array multiplier, power dissipation is directly pro-

portional to the number of switchings in all the internal nodes of the multiplier. These

switchings depend on the multiplier input values and transitions. The transition density,

the average number of transitions of the signal per unit time, is measured by the Ham-

ming distance. The Hamming distance for a signal is the number of total bits that toggle

between successive samples of the signal. Many algorithm-level methods seek to decrease

power consumption by decreasing the Hamming distance. [6]

All of the power-reducing methods explored in this thesis seek to reduce power con-

sumption by using algorithm-level methods that reduce the Hamming distance.

Chapter 3

Test Data

3.1 FIR filter

In order to test the validity of power-reducing algorithms using the FIR filter computation

of Equation 1.1, two data streams were needed. One was ci, the FIR filter with length N.

In all of the FIR filter problems, a Hamming window of length 16 was used as the FIR

filter. This filter can be seen in Figure 3-1. The filter was scaled to fully span a 16-bit

sign-magnitude form.

0
U

I-

x 104

I, Tap Number

Figure 3-1: A 16-tap Hamming Window

3.2 FIR Signal Data

The second data stream that was needed was an input signal, xi. This signal was synthesized

with input parameters detailing the length (N), mean (p), standard deviation (a), and

correlation (p) of the data. For use with the different multipliers, the same data set was

represented in binary in both two's complement and sign-magnitude forms. It was also

necessary to provide a seed for the random number generator used by the program. The

data would be generated according to the recursion,

Xo = fA+a'R (3.1)

Xi = zi-1 + a - 2 , fori= 1... N, (3.2)

where R is a zero-mean, unit-variance normally distributed random number. The first term

of zi represents the part that is correlated with the previous sample. The second term is

randomly generated to be uncorrelated with the previous sample. The multiplicative terms

preserve the energy of the signal. In practice, though, correlation is also a random variable.

The expected value of this correlation random variable will be the correlation that is used

to generate the stream. However, since there is a variance associated with this variable, the

measured correlation of a data stream will not equal the correlation used for generating the

stream.

Two sets of data were created, one with a standard deviation of 1000 and another with

a standard deviation of 100. Each set contained data files ranging in correlation from -0.9

to 0.9, in increments of .1. Table 3.1 shows the correlations used to create the data and the

measured correlations.

Correlation was deemed an important parameter because data that was more highly cor-

related would tend to have more bits in common, thus having a lower transition activity[5].

In order to confirm this, the transition activity of each data file was analyzed bit-by-bit.

The results are displayed in Figure 3.2. The horizontal axis of each graph runs from most

significant bit (MSB) at 1 to least significant bit (LSB) at 16. The vertical axis displays

the probability of a zero to one transition (P(0 -+ 1)). The importance of this quantity

to switching power is readily apparent as this probability is precisely the factor, a0~1, in

Equation 2.6. A purely random 0 -+ 1 transition would have a probability of .25. (There

are four possible transitions - 0 -+ 0, 0 -+ 1, 1 -+ 0, and 1 -+ 1.) For each graph

a = 1000 a = 100

Psynth Pactual Paynth Pactual Psynth Pactual Psynth Pactual

-.9 -.9014 .1 .0931 -.9 -.8884 .1 .1008
-.8 -.8184 .2 .2154 -.8 -.8009 .2 .2461
-.7 -.7061 .3 .2633 -.7 -.6698 .3 .3148
-.6 -.6036 .4 .3650 -.6 -.6263 .4 .3221
-.5 -.4970 .5 .5059 -.5 -.5113 .5 .4986
-.4 -.3983 .6 .5740 -.4 -.4218 .6 .6359
-.3 -.2512 .7 .6940 -.3 -.3488 .7 .6805
-.2 -.1937 .8 .7580 -.2 -.1723 .8 .7816
-.1 -.1002 .9 .8729 -.1 -.1205 .9 .8962
0 -.0251 0 -.0318

Table 3.1: Actual correlation values for data generated with Psynth

the transitions of the whole set of data in the appropriate form with the given standard

deviation, a, is shown. Only the transition lines of the extreme cases, p = 0.9 or p = -0.9,

are labeled as the transitions lines proceed sequentially between these extremes.

From the graphs of the sign-magnitude cases, it can be seen that for the most part

correlation has little effect on transition activity. The only exception is the MSB, or the

sign-bit. However, it will be observed that in a sign-magnitude multiplier the sign-bit is

used independently of the lower bits in simple combinational logic to compute the sign-bit

of the result. Accordingly, it can be reasoned that the sign-bit contributes little to the total

power consumption. Another point that can be observed is that the bit-value at which the

probabilities of a 0 -+ 1 transition are random (.25) is lower (starts at a less significant bit)

for data with a lower standard deviation. This agrees with intuition as data with a lower

standard deviation is more closely distributed about zero.

Looking at the two's complement form, it is apparent that correlation has a greater

impact on the transition activity of data. The high-bits of more highly-correlated data

are less likely to transit than less correlated or negatively correlated data. Furthermore,

as in the sign-magnitude case, the data assumes a random nature at lower bits. In the

two's complement case, the breakpoints of the transition activity have been quantified in

terms of relevant parameters.[5] Starting from the MSB, the probability maintains its flat

structure, indicative of the sign of the number, until it reaches some first breakpoint, BP1 .

The probability of transition then changes to a random nature at a second breakpoint, BPo.

Sigma=1000 (Twos Complement)

5 10 15
Bit (1 =MSB, 16=LSB)

Sigma=100 (Twos Complement)

5
Bit (1=MSB,

10
16=LSB)

0.5

0.4

- 0.3
A

0
CO.2

0.1

A
0 5 10

Bit (1=MSB, 16=LSB)
Sigma=100 (Sign Magnitude)

U.0

0.4

0.3
A

n 0.2

0.1

n

0 5 10 15
Bit (1=MSB, 16=LSB)

Figure 3-2: Transition activity for different representations of two sets of data.

0

U.0

0.4

' 0.3
A

n60.2

0.1

n

U.0

0.4

0.3
A

"0.2

0.1

0

I P=.9

0o

Sigma=1000 (Sign Magnitude)

\

,,

t
I

II
i IYI

These breakpoints are

BP1 = N - log 2(l I + 3a) (3.3)

BPo = N- (log2 a + ABPo) (3.4)

ABPo = log 2(1p-2 + !i), (3.5)

where N is the bit-width of the data. The breakpoints for selected data used are calculated

in Table 3.2. For two's complement data with a = 1000, the range of the transition from

the end of the flat, sign-bit portion of the number (BPI) to the start of the random bit

transitions (BPo) is from bit 4 to about bit 7. This agrees with the upper left graph of

Figure 3.2. For two's complement data with a = 100, the range of the transition is from

bit 6 to about bit 10, which again conforms with the lower-left graph in the figure.

1 =0 = =0 p=0 /t=0
Breakpoint a = 1000 a = 1000 a = 100 a = 100

p = -.9 p = 0 p = ±.9 p = 0
BP1 4.45 4.45 7.77 7.77
BPo 6.90 6.03 10.22 9.36
ABPo -.867 0 -.867 0

Table 3.2: Transition breakpoints for selected synthesized data sets in terms of bits (1=MSB,
16=LSB).

3.3 Toeplitz Data

The data used to test out multiplications involved in a Toeplitz matrix multiplication was

derived from an actual speech waveform. The symmetries of a Toeplitz matrix and the

actual components within the matrix multiplication shall be discussed in Chapter 4.3.

3.4 Multipliers

The data described in this chapter was used in simulations of multiplications to estimate

the power consumed in various routines. Three distinct multipliers were used in these

simulations. The first one was a sign-magnitude array multiplier. The other two multipliers

both took data in a two's complement form. The Baugh-Wooley multiplier was based

structurally on the sign-magnitude array multiplier. The Booth-Encoding multiplier used

several bits of an input at a time to sequentially compute the result. A complete description

of the multipliers may be found in Appendix A. In summary, the conclusions drawn about

these multipliers are as follows. In general, the Baugh-Wooley multiplier will consume more

power than the sign-magnitude array multiplier, since, in the former multiplier, the sign of

the inputs is implicit in the number and an additional array level is necessary. Also, it is

concluded that the Booth-Encoding multiplier will not exhibit a significant dependence on

the correlation of its data inputs since several bits of an input are used at a time, and all of

these bits must be identical for the multiplication elements to remain the same. Therefore,

it is believed that the sign-magnitude multiplier will consume the least power.

The motivation behind all of the routines considered in this thesis is that the power

consumed in a multiplier is dependent on the number of transitions at its inputs. This

statement was validated by multiplying data streams by a constant using a sign-magnitude

array multiplier. The explicit dependence of power on the transition probability can be

seen in the results plotted in Figure 3-3.

7
Probability of a Bit Transition

Figure 3-3: The dependence of power on the probability of non-sign-bit transitions

Chapter 4

Unrolling

4.1 Vertical Unrolling

4.1.1 Concept

One of the methods that we considered to reduce transition activity used block processing

to compute the outputs of the convolution of an input signal with an FIR filter. Block

processing involves computing several outputs of the convolution simultaneously rather than

sequentially. The conventional order of multiplication within the convolution, as denoted

by the bold superscript numbers, is

1 2 3
YO = cozo + clz-1 + c2X-2 (4.1)

4 5 6
Y1 = coXl + C1zo + C2X-1, (4.2)

where the ci's are the coefficients of the FIR filter, and the xi's and yi's are the input and

output signals, respectively.

In vertical unrolling, block processing is used, and the coefficients, or taps are kept con-

stant for as many multiplications as possible. This will lower power consumption within

the multiplier. The argument for this is based on Equation 2.1. Switching power is directly

dependent on the probability of transition, ao-+1. By rearranging the multiplications in-

volved in the convolution, the number of transitions in the signal inputs to the multiplier

can be decreased. In the case of vertical unrolling, keeping inputs constant over successive

multiplications results in no transitions in those inputs for those multiplications. Based on

the formula for switching power, this should reduce power consumption.

For an unrolling of order 3, the order of multiplications is

1 6 7
YO = cozo + clz_1 + c2x-2 (4.3)

2 5 8
Y1 = coX1 + C1XO + C2X-1 (4.4)

3 4 9
Y2 = COX2 + CX1 + C2XO . (4.5)

One thing that can be noted is that not only are the taps held constant but also that the

signal always switches by only a single sample when the multiplications are ordered in this

manner (as opposed to all multiplications performed vertically downward). Thus, as seen

in Section 3.2, data in some representations has a high first-order correlation and exhibits

less transitions than purely random data. This will have the added benefit of reducing

transitions in the other input to the multiplier.

4.1.2 Results

The set of tables in this subsection show the results of vertical unrolling with various data

sets and types of multipliers. Block processing of order 1, 2, 3, and 4 was performed with

a sign-magnitude array multiplier, a Booth-Encoding two's complement multiplier, and a

Baugh-Wooley two's complement multiplier. The two data sets, described in Section 3.2,

have standard deviations of 100 and 1000 and contain data signals ranging in correlation

from -0.9 to 0.9. The range of the power reduction using vertical unrolling relative to the

conventional method of computing the convolution without any unrolling can be found in

Table 4.7.

First, looking at the sign-magnitude array multiplication data in Tables 4.1 and 4.4,

as expected there is no variation in the power results with respect to correlation. This

was expected because of the behavior of the transition probability of the sign-magnitude

relative to correlation. Looking at the right two graphs of Figure 3.2, it is seen that the

transition activity of the sign-magnitude data is largely independent of correlation. Only

the most significant bit (MSB), the sign-bit, has any dependence on correlation. Yet, as

seen in Appendix A, the combinational logic for the sign-bit of the array multiplier is quite

simple and does not consume a significant amount of power. Therefore, no dependence on

correlation is seen in the power simulations.

The Booth-Encoding multiplier was largely independent of the correlation of the data

as well, as seen in Tables 4.2 and 4.5. As explained in more detail in Appendix A, the

Booth-Encoding multiplier observes several bits of an input at a time and adds or subtracts

the other input based on those bits. Thus, the state of the circuit for those few bits will be

identical in successive multiplications only if all of the few bits are exactly the same in the

consecutive inputs. Even though the transition probabilities of two's complement vary with

correlation, as seen in the left two graphs of Figure 3.2, there is no reason that the variations

of identical bits will be the same between successive data inputs. Thus, correlation will not

affect power consumption significantly; however, in the extreme case when the inputs are

held constant, power will be reduced since all of the subset bits remain the same.

The Baugh-Wooley multiplier was significantly affected by the correlation of the data.

As seen in Section 3.2, correlation affects the transition probabilities of higher-order bits

when the data is in two's complement form. Negatively correlated data transitions more

than positively correlated data; consequently, since power consumption is proportional to

the number of transitions, in Tables 4.3 and 4.6, we see that negatively correlated data

consumes more power. Furthermore, as seen in Section 3.2, the transition breakpoints

are lower (less significant bit) for data with a lower standard deviation. Thus, looking at

Figure 3.2, for positively correlated data, more bits exhibit lower transition probabilities

for a = 100 data. Therefore, we see a greater dependence of power on correlation in the

a = 100 data set.

Comparing the three multipliers, we see that the sign-magnitude multiplier consumes the

least power. This was expected especially relative to the Baugh-Wooley multiplier since this

multiplier required additional dimensions within its array than the sign-magnitude array

multiplier. The Baugh-Wooley and Booth-Encoding multipliers are more on par in power

requirements, though the Baugh-Wooley multiplier is apt to consume less power when data

is positively correlated.

As summarized in Table 4.7, the power reduction through vertical unrolling of the

Baugh-Wooley multiplier was more than the other two multipliers, although the sign-

magnitude multiplier still consumes less power even with unrolling. In the comparison

between the two's complement multipliers, the Baugh-Wooley multiplier performed better

than the Booth-Encoding multiplier over all correlations when unrolling was used.

Correlation
No. of Unrolls -.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0

1 13.2 13.5 13.7 13.6 13.5 13.6 13.4 13.4 13.6 13.4
2 9.29 9.53 9.74 9.63 9.41 9.51 9.42 9.57 9.59 9.57
3 6.26 6.36 6.45 6.42 6.35 6.35 6.33 6.31 6.35 6.32
4 4.71 4.77 4.96 4.83 4.74 4.72 4.75 4.79 4.84 4.74

No. of Unrolls
1
2
3
4

.1 .2 .3 .4 .5 .6 .7 .8 .9
13.5 13.5 13.2 13.3 13.3 13.4 13.4 13.3 13.0
9.56 9.58 9.43 9.37 9.48 9.38 9.47 9.40 9.29
6.36 6.35 6.32 6.25 6.31 6.33 6.33 6.33 6.20
4.82 4.76 4.75 4.72 4.73 4.68 4.74 4.73 4.66

Table 4.1: Power simulation results in mWatts for vertical unrolling with
magnitude data using a sign-magnitude array multiplier.

No. of Unrolls
1
2
3
4

No. of Unrolls
1
2
3
4

-.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0
18.7 18.8 18.8 18.7 18.7 18.7 18.6 18.6 18.7 18.6
12.6 12.8 12.9 13.1 13.3 13.3 13.4 13.3 13.5 13.5
9.15 9.18 9.13 9.01 8.98 8.89 8.86 8.87 8.94 8.90
6.43 6.52 6.57 6.66 6.67 6.70 6.69 6.68 6.73 6.70

.1 .2 .3 .4 .5 .6 .7 .8 .9
18.6 18.6 18.6 18.6 18.5 18.5 18.4 18.4 18.4
13.3 13.5 13.4 13.4 13.2 13.2 13.0 12.9 12.8
8.92 8.91 8.86 8.86 8.82 8.88 8.71 8.75 8.57
6.70 6.76 6.70 6.71 6.64 6.65 6.59 6.57 6.46

Table 4.2: Power simulation results in mWatts for vertical unrolling with a = 1000 two's
complement data using a Booth-Encoding multiplier

Uorrelation

a = 1000 sign-

Correlation

uorrelation 06.70

Correlation
No. of Unrolls -.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0

1 21.2 21.5 21.3 20.5 20.6 20.1 19.7 19.6 20.0 19.6
2 11.2 11.6 11.9 12.2 12.6 12.5 12.8 12.5 13.0 13.0
3 9.01 9.11 9.02 8.67 8.65 8.45 8.45 8.36 8.57 8.48
4 5.82 6.02 6.12 6.31 6.34 6.34 6.47 6.35 6.49 6.42

No. of Unrolls
1
2
3
4

.1 .2 .3 .4 .5 .6 .7 .8 .9
19.6 19.2 19.6 19.5 18.7 18.8 17.9 18.0 17.9
12.8 12.8 12.8 12.8 12.4 12.5 12.0 11.8 11.7
8.52 8.44 8.46 8.49 8.30 8.46 8.04 8.12 7.92
6.41 6.45 6.44 6.49 6.24 6.35 6.16 6.11 5.99

Table 4.3: Power simulation results in mWatts for vertical unrolling
complement data using a Baugh-Wooley array multiplier

No. of Unrolls
1
2
3
4

No. of Unrolls
1
2
3
4

for a = 1000 two's

-.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0
8.91 9.04 8.88 9.09 9.14 8.03 9.19 9.13 9.23 8.81
6.44 6.47 6.23 6.48 6.50 6.49 6.49 6.44 6.44 6.38
4.30 4.39 4.23 4.37 4.36 4.30 4.35 4.32 4.40 4.19
3.23 3.21 3.12 3.23 3.27 3.23 3.25 3.22 3.24 3.20

.1 .2 .3 .4 .5 .6 .7 .8 .9
9.15 9.13 9.19 9.05 9.06 9.09 8.99 8.91 8.90
6.57 6.54 6.62 6.50 6.37 6.53 6.51 6.38 6.34
4.34 4.36 4.37 4.29 4.31 4.34 4.33 4.32 4.29
3.30 3.27 3.31 3.21 3.17 3.25 3.25 3.20 3.20

Table 4.4: Power simulation results in mWatts for vertical unrolling with a = 100 two's
complement data using a sign-magnitude multiplier

Correlation

Correlation

Correlation
| | | | | | | | |

..

Correlation
No. of Unrolls -.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0

1 16.9 16.9 16.7 16.8 16.8 16.7 16.7 16.7 16.6 16.6
2 10.9 11.3 11.4 11.5 11.6 11.8 11.9 11.9 11.7 11.9
3 8.50 8.24 8.12 8.10 7.97 7.94 7.89 7.93 7.93 7.88
4 5.60 5.78 5.81 5.85 5.96 5.89 5.97 5.92 5.87 5.98

No. of Unrolls
1
2
3
4

.1 .2 .3 .4 .5 .6 .7 .8 .9
16.6 16.7 16.6 16.5 16.5 16.6 16.4 16.3 16.3
12.0 12.0 11.9 11.7 11.7 11.5 11.6 11.4 10.9
7.92 8.00 7.92 7.85 7.83 7.79 7.78 7.65 7.40
5.96 6.00 5.93 5.89 5.91 5.85 5.91 5.78 5.60

Table 4.5: Power simulation results in mWatts for vertical unrolling
complement data using a Booth-Encoding multiplier

No. of Unrolls
1
2
3
4

No. of Unrolls
1
2
3
4

with a = 100 two's

-.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0
19.4 18.5 17.7 17.8 17.5 17.1 16.9 16.8 16.3 16.5
8.80 9.21 9.40 9.40 9.78 10.1 10.3 10.3 10.0 10.5
7.95 7.46 7.19 7.15 6.94 6.89 6.82 6.91 6.84 6.91
4.61 4.90 4.89 4.90 5.14 5.06 5.21 5.15 4.99 5.27

.1 .2 .3 .4 .5 .6 .7 .8 .9
16.3 16.0 16.1 15.7 15.2 15.2 14.7 14.2 13.7
10.5 10.5 10.2 10.1 10.0 9.90 9.73 9.35 8.69
6.83 6.96 6.84 6.73 6.67 6.67 6.59 6.37 5.97
5.18 5.27 5.11 5.08 5.10 5.10 5.04 4.87 4.56

Table 4.6: Power simulation results in mWatts for vertical unrolling with a = 100 two's
complement data using a Baugh-Wooley multiplier

Correlation

Correlation

Uorrelation
.. I

a = 1000 No. of Unrollings
Multiplier 2 3 4

Sign-Magnitude Array 28.5-29.0% 52.1-53.3% 63.8-65.3%
Two's Complement Booth-Encoding 27.4-32.6% 51.1-53.4% 63.7-65.6%
Two's Complement Baugh-Wooley 33.0-47.2% 54.9-58.0% 66.1-72.5%

a = 100 No. of Unrollings
Multiplier 2 3 4

Sign-Magnitude Array 19.2-30.2% 46.5-52.7% 59.8-65.0%
Two's Complement Booth-Encoding 27.7-35.5% 45.4-54.6% 64.0-66.9%
Two's Complement Baugh-Wooley 33.8-50.2% 55.1-62.8% 65.7-73.5%

Table 4.7: Range of power reduction for various multipliers, data sets, and vertical unrollings
relative to conventional convolution multiplication with no unrollings.

4.2 Diagonal Unrolling

4.2.1 Concept

Another method that was used to reduce transition activity also used block processing in

the same manner as vertical unrolling. In this method, the data was unrolled to compute

several outputs simultaneously, as before, but now the signal instead of the coefficient was

kept constant for as many multiplications as possible.[4] Thus, for an unrolling of two, the

order of multiplications, once again denoted by the bold superscript numbers, is

2 4 6
Yo = co0x + cix-1 + c2x-2 (4.6)

1 3 5
Yl = cox1 + cizo + c2X-1 . (4.7)

One observation that can be made is that for diagonal unrolling of order two, as shown

here, the signal is not only held constant for two multiplications, but the coefficients are

held constant for two multiplications as well. Furthermore, when the signal does change,

it is only by a single sample. This is taken advantage of when data is in a form where a

high first-order correlation decreases transition activity. These added benefits only occur

for diagonal unrolling of order two. In general, however, diagonal unrolling is useful when

there is greater transition activity in the data than in the set of coefficients, since the data

input is held constant for successive multiplications.

Again, as in all cases of block processing, the cost of holding the inputs to the multiplier

constant is the requirement of additional storage elements.

4.2.2 Results

The tables in this subsection show the effects of diagonal unrolling when performed on

various data sets and multipliers. The simulations were run in the same manner as in the

case of vertical unrolling. The power reduction through diagonal unrollings of 2, 3, and 4

can be found in Table 4.14.

The nature of the results as based on the type of multiplier are as seen before. There

is little dependence of power on the correlation of the data in both the sign-magnitude and

Booth-Encoding multiplier. However, once again, power is found to be inversely correlated

with the correlation of the data in the Baugh-Wooley multiplier.

In contrast with vertical unrolling, increasing the number of diagonal unrolls does not

cause power to go down monotonically. In all cases, there is a significant decrease in power

when diagonal unrolling of order 2 is used. Power consumption then goes up when additional

unrollings are used. As mentioned in Section 4.2.1, in diagonal unrolling of order 2, the data

input is kept constant between one multiply and the next; in the subsequent multiplication,

the FIR coefficient is held constant. Thus, only in diagonal unrolling of order 2 will at

least one input to the multiplier be kept constant between successive multiplications. This

structure is no longer taken advantage of when additional unrollings are performed. This

characteristic is most pronounced with a Booth-encoding multiplier. This can be attributed

to the fact that even in the case of high correlation, there will still be significant transitions

in this multiplier. As seen in Appendix A, in the Booth-encoding multiplier, several adjacent

bits of the multiplier must be identical for the state of the multiplier to remain the same.

Once again, the performance of the sign-magnitude multiplier is significantly better

than either of the two's complement multipliers. In terms of power reduction, summarized

in Table 4.14, the sign-magnitude multiplier is only outperformed by the Baugh-Wooley

multiplier, and even then not universally. The Baugh-Wooley multiplier, interestingly,

reduces power more as correlation increases in diagonal unrolling of order 2, yet increases

power consumption in diagonal unrollings of order 3 and 4. This is a result of the decreasing

dependence of power on correlation as unrollings increase in the Baugh-Wooley multiplier.

Regardless, the Baugh-Wooley outperforms the Booth-Encoding multiplier in all cases.

Comparing the two types of unrolling, it is evident that vertical unrolling reduces power

consumption more than diagonal unrolling. In diagonal unrolling, the signal input jumps

two samples between diagonals. In vertical unrolling, the signal input always changes by

only a single sample even between vertical columns. This results in less transitions and less

power.

No. of Unrolls
1
2
3
4

.1 .2 .3 .4 .5 .6 .7 .8 .9
13.5 13.5 13.2 13.4 13.3 13.4 13.4 13.3 13.0
9.85 9.82 9.62 9.69 9.63 9.72 9.70 9.62 9.45
10.5 10.5 10.4 10.4 10.4 10.4 10.4 10.4 10.2
10.4 10.4 10.2 10.2 10.2 10.2 10.3 10.2 10.2

Table 4.8: Power simulation results in mWatts for
using a sign-magnitude array multiplier

No. of Unrolls
1
2
3
4

diagonal unrolling with o = 1000 data

.1 .2 .3 .4 .5 .6 .7 .8 .9
18.6 18.6 18.6 18.5 18.4 18.4 18.5 18.3 18.3
13.6 13.6 13.5 13.4 13.2 13.2 13.2 12.8 12.6
17.0 17.0 17.0 16.9 16.9 16.9 16.9 16.8 16.9
17.1 17.1 17.1 17.1 17.1 17.0 17.1 16.9 17.0

Table 4.9: Power simulation results in mWatts in diagonal unrolling with o = 1000 using a
Booth-Encoding multiplier

Correlation
No. of Unrolls -.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0

1 13.2 13.5 13.7 13.6 13.5 13.6 13.4 13.4 13.6 13.4
2 9.55 9.73 9.87 9.87 9.81 9.83 9.68 9.73 9.91 9.75
3 10.3 10.6 10.6 10.6 10.5 10.6 10.5 10.4 10.6 10.5
4 10.2 10.4 10.5 10.5 10.4 10.4 10.3 10.3 10.4 10.3

Uorrelation

Correlation
No. of Unrolls -.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0

1 18.7 18.8 18.9 18.8 18.8 18.7 18.6 18.6 18.7 18.6
2 14.5 14.4 14.4 14.2 14.1 14.1 13.8 13.8 13.8 13.7
3 17.0 17.2 17.2 17.1 17.1 17.1 17.0 16.9 17.1 17.0
4 17.1 17.3 17.3 17.2 17.2 17.2 17.1 17.1 17.2 17.1

uorrelauon

I I | | I ! I | | I
I

1 I I I I I I I I]
I

No. of Unrolls
1
2
3
4

No. of Unrolls
1
2
3
4

Correlation
-.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0

21.7 21.8 21.6 20.9 20.9 20.5 20.0 19.7 20.2 19.6
14.8 14.7 14.6 14.2 14.1 13.8 13.4 13.3 13.5 13.2
14.8 15.0 15.0 14.6 14.7 14.5 14.3 14.1 14.6 14.2
14.5 14.8 14.8 14.4 14.5 14.3 14.1 13.9 14.4 14.0

.1 .2 .3 .4 .5 .6 .7 .8 .9
19.5 19.1 19.4 19.2 18.1 18.4 17.5 17.4 17.4
13.0 12.7 12.9 12.7 12.0 12.2 11.6 11.5 11.3
14.2 14.0 14.2 14.1 13.6 13.8 13.3 13.3 13.6
14.0 13.9 14.1 14.1 13.5 13.8 13.3 13.3 13.8

Table 4.10: Power simulation results
a Baugh-Wooley multiplier

in mWatts in diagonal unrolling with o = 1000 using

No. of Unrolls
1
2
3
4

No. of Unrolls
1
2
3
4

-.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0
8.91 9.04 8.88 9.09 9.14 8.93 9.19 9.13 9.23 8.81
6.47 6.59 6.50 6.66 6.67 6.56 6.74 6.71 6.79 6.50
7.02 7.11 6.89 7.10 7.13 6.95 7.11 7.04 7.18 6.82
6.92 7.03 6.80 7.02 7.04 6.83 7.00 6.93 7.09 6.72

.1 .2 .3 .4 .5 .6 .7 .8 .9
9.15 9.13 9.19 9.05 9.06 9.09 8.99 8.91 8.90
6.74 6.70 6.73 6.63 6.65 6.67 6.58 6.52 6.45
7.07 7.08 7.16 7.03 7.04 7.06 7.02 6.96 7.02
6.94 6.96 7.05 6.92 6.94 6.96 6.91 6.87 6.93

Table 4.11: Power simulation results in mWatts for diagonal unrolling with a = 100 data
using a sign-magnitude array multiplier

i-I --uorrelation

Correlation

uorrelation

ME=

No. of Unrolls
1
2
3
4

No. of Unrolls
1
2
3
4

Correlation
-.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0

17.0 17.0 16.8 16.8 16.9 16.8 16.8 16.8 16.6 16.6
13.6 13.4 13.0 13.0 12.8 12.7 12.6 12.4 12.2 12.1
15.5 15.5 15.4 15.4 15.4 15.3 15.3 15.4 15.2 15.3
15.6 15.6 15.5 15.6 15.6 15.5 15.5 15.5 15.4 15.5

.1 .2 .3 .4 .5 .6 .7 .8 .9
16.6 16.6 16.6 16.5 16.4 16.4 16.3 16.2 16.2
12.1 11.9 11.9 11.8 11.5 11.3 11.2 10.9 10.6
15.3 15.3 15.3 15.2 15.1 15.2 15.1 15.1 15.1
15.4 15.4 15.5 15.3 15.3 15.4 15.3 15.3 15.3

Table 4.12: Power simulation results
using a Booth-encoding multiplier

in mWatts for diagonal unrolling with a = 100 data

Correlation
No. of Unrolls -.9 -.8 -.7 -.6 -.5 -.4 -.3 -.2 -.1 0

1 19.8 18.1 18.2 18.4 18.1 17.7 17.5 17.1 16.3 16.7
2 13.2 12.7 12.0 12.1 11.9 11.6 11.4 11.0 10.6 10.7
3 12.6 12.3 11.8 12.0 12.0 11.7 11.7 11.7 11.2 11.5
4 12.3 12.0 11.6 11.8 11.8 11.5 11.6 11.5 11.0 11.5

No. of Unrolls
1
2
3
4

.1 .2 .3 .4 .5 .6 .7 .8 .9
16.1 15.7 15.6 15.4 14.6 14.5 14.0 13.5 13.1
10.5 10.1 10.0 9.93 9.34 9.16 8.84 8.46 8.06
11.2 11.2 11.1 10.9 10.6 10.8 10.5 10.3 10.3
11.1 11.1 11.0 10.9 10.6 10.8 10.6 10.5 10.4

Table 4.13: Power simulation results in mWatts for diagonal unrolling with a = 100 data
using a Baugh-Wooley multiplier

Uorrelatlon

Uorrelation

a = 1000 No. of Unrollings
Multiplier 2 3 4

Sign-Magnitude Array 27.0-28.0% 21.5-22.7% 21.5-23.4%
Two's Complement Booth-Encoding 22.5-26.3% 8.5-9.1% 8.0-8.6%
Two's Complement Baugh-Wooley 31.8-35.1% 21.8-31.8% 20.7-33.2%

a = 100 No. of Unrollings
Multiplier 2 3 4

Sign-Magnitude Array 26.2-27.5% 21.1-22.9% 22.1-24.2%
Two's Complement Booth-Encoding 20.0-34.6% 6.8-8.9% 5.6-8.2%
Two's Complement Baugh-Wooley 29.8-38.5% 21.4-36.4% 20.6-37.9%

Table 4.14: Range of power reduction for various multipliers, data sets, and diagonal un-
rollings relative to conventional convolution multiplication with no unrollings.

4.3 Unrolling Applied To Toeplitz Matrices

4.3.1 Concept

A toeplitz matrix is a symmetric matrix whose diagonals are equal. A well-used example

of a toeplitz matrix in speech processing is the autocorrelation matrix, R, used in linear

predictive coding (LPC):

I \ / I \

r(O) r(1) r(2) ... r(p--l)

r(1) r(O) r(1) .. r(p-- 2)

r(2) r(1) r(O) .- r(p-- 3)

r(p - 1) r(p -2) r(p - 3) .. r(O)

aCil

a2

Cf-D

r(1)
r(2)
-r(3) , (4.8)

r(vp)

where
N-1

r(k) = s s(m)s(m + k), (4.9)
m=O

and s(n) is a discrete-time speech signal.

Briefly, LPC analysis looks at a section of speech data and attempts to estimate the

data with

i(n) = L aks(n - k), (4.10)
k=1

where s(n) is the actual speech data. Equation 4.8 can be solved to find a. [9]

4.3.2 Simulation and Results

Since array multiplication is simply a series of multiplications, the structure inherent in a

Toeplitz matrix allows for judicious ordering of the multiplications to help reduce power

consumption within the multiplier. For the simulation, an actual speech waveform, s(n),

was used to generate the autocorrelation matrix R and determine the LPC coefficient vector,

a. Then, in a simulated experiment, the series of multiplications inherent in the matrix

multiplication Ra' was performed, first without taking advantage of the Toeplitz structure

and then with. The symmetries were utilized such that all the multiplications involving a

diagonal of the matrix R were performed at once. The multiplications were ordered starting

from the lower left corner of the Toeplitz matrix - a diagonal with only a single term. The

Ra=

U \1 "

L I x . .

F N -P X \Z- I

multiplications then progressed to the center diagonal and then to the upper right corner of

the matrix, with the number of multiplications along each diagonal first growing and then

shrinking back to a single term. Thus, depending on the diagonal, a different number of

inputs were kept constant to the multiplier.

The experiment was performed with a sign-magnitude multiplier first with the correla-

tions as the x input to the multiplier and the LPC coefficients as the y input, and then with

these inputs switched. In these examples R was a 16 x 16 matrix. The results can be seen

in Table 4.15.

These results show that there is significant room for reducing the power consumption

by a simple reordering of the multiplications in matrix multiplications involving Toeplitz

matrices. A reduction of 17-18% was realized by considering the Toeplitz symmetry in

performing the multiplications. The reduction in power would be greater as larger Toeplitz

matrices are considered.

Multiplier Method Power (mwatts)
Sign-Magnitude No regard to Toeplitz symmetry (xy) 4.10
Sign-Magnitude Using Toeplitz symmetry (xy) 3.33 (18.8%)
Sign-Magnitude No regard to Toeplitz symmetry (yx) 6.62
Sign-Magnitude Using Toeplitz symmetry (yx) 5.79 (17.1%)

Table 4.15: Power consumption in simulation of Toeplitz matrix multiplications

Chapter 5

Coefficient Perturbation

5.1 Introduction

The methods that have been discussed in Chapter 4 rely on block processing. Thus, the

power reductions all come at the cost of additional memory. There may be times when

excess memory is not available or prohibitively expensive. In these cases, other methods

must be utilized in order to reduce power. Although generally one does not have any control

over the input signal in an FIR multiplication, often, in non-adaptive filtering, the actual

FIR filter is known beforehand. Accordingly, if the transition activity of the filter can be

reduced in some manner, the power consumption within the multiplier can also be reduced,

since it has been established that power consumption is proportional to the number of

transitions in the inputs. Perturbation of the coefficients is one method that can reduce

the transition activity. By selectively changing bits of the filter coefficients, the number of

transitions between the successive coefficients can be reduced. It will be seen that small

perturbations can be made to the coefficients without significant changes to the frequency

response of the filter.

As long as obtaining an exact result is not an important concern, the coefficients of a FIR

filter can be perturbed without sacrificing the frequency response of the filter. It has been

found to be more useful to look at the actual bit representation of the coefficients rather

than to use a systems-driven signal-processing approach. This observation is motivated by

the randomness of the low-order bits of even when the data is correlated (Section 3.2). Since

the perturbation is intended to preserve the general frequency response of the filter, it is

these low-order bits that will be perturbed. Thus, in order to be effective, any proposed

routine must address the bit representations themselves.

5.2 Previous Research

The idea of perturbing coefficients in order to reduce transition activity and thus power con-

sumption was addressed by Mehendale, Sherlekar, and Venkatesh in VLSI Signal Processing,

VIII [6]. The algorithm they created was designed to reduce the number of transitions in

the coefficients while maintaining the response characteristics that were desired.

The optimization algorithm has two stages. The first stage uniformly scales the co-

efficients, {ci}, constraining the gain to ±3db. This scaling does not distort the overall

frequency response of the filter, but only introduces a gain term. The second stage of the

algorithm perturbs individual coefficients in an iterative process. In each step of the pro-

cess, a new set of coefficients, {ci} is potentially generated with only a single coefficient

perturbed. In order to create this new set, 2N sets of coefficients are first created in the

following manner. First, a coefficient is selected. Then this coefficient is incremented until

the number of transitions between it and its adjacent coefficients decreases. This produces

a candidate set of coefficients. The filter response of these coefficients is then tested to see

if it fits the desired constraints of passband ripple and stopband attenuation. If the filter

passes these tests, then the coefficients are rated by the measure,

Pdbreq - Pdb Sdb - Sdbreq x HD7 = + x HDred, (5.1)
Pdbreq Sdbreq

where HDred is the reduction in the total Hamming Distance (or number of transitions) for

the new set of coefficients from the current best set of coefficients, Pdbreq is the required

passband ripple, Sdbreq is the required stopband attenuation, Pdb is the passband ripple of

the new set of coefficients, and Sdb is the stopband attenuation of the new set of coefficients.

If the set did not fulfill the filter constraints, 7 is set to zero. For the same coefficient,

another potential set of coefficients is constructed by decrementing the selected coefficient

to produce a set with fewer transitions. These procedures are repeated for each of the N

coefficients to produce the 2N sets of coefficients. From these candidate set of coefficients,

the new set of coefficients is selected by choosing the set that had the largest non-zero

measure, 7. This new set becomes the starting point for the next step of the iteration. The

iteration continues until no non-zero ys were available.

__ _ __.

The algorithm allows for the option to maintain any existing linear phase. With this

requirement, coefficients are perturbed in pairs (ci and cN-1-i) and only the first N+

coefficients are analyzed in each stage of the iteration.

The results of applying this algorithm to several Parks-McClellan filters with and with-

out the linear phase constraint produced up to a 36% reduction in transition activity.

The algorithm that will be described in this chapter has some similarities to Mehendale,

et. al. There will be a scaling component before any perturbation and the perturbation will

exhibit an iterative nature as well. The performance of the algorithm will also be tested

against Parks-McClellan filters. However, the algorithm will be different in several respects.

The effect of the rigidity of the filter constraints on the algorithm will be addressed more

thoroughly. The algorithm itself approaches the problem by looking at larger subsets of the

data. Each step of the iteration also uses the original set of coefficients as a starting point.

No arbitrary measure will be used to determine the goodness of a set of coefficients; the

number of transitions will solely determine a new set of coefficients. Finally, the validity

of the effect that reducing transitions through perturbation has on power will be explored

and tested.

5.3 The Problem

The coefficient perturbation problem can be stated as follows:

Given a N-tap FIR filter with coefficients {ci} that satisfy the filter response in terms of an

initial passband ripple and initial stopband attenuation, find a new set of coefficients {ci}

such that the number of transitions between successive coefficients is reduced while satisfying

the desired filter characteristics in terms of a final passband ripple and a final stopband

attenuation. In addition, if desired, any linear phase characteristics will be maintained.

5.4 Routine Overview

Figure 5-1 shows a flow diagram of the proposed routine. There are three major sections

to the routine. The first is the filter creation stage where an initial set of coefficients based

on the desired parameters is created. The remaining stages seek to reduce the transitions

in this initial set of coefficients. The second stage is an optional scaling stage which scales

the data within an allowable range. The third and final stage perturbs the coefficients to

Modified
Filter

W PB Ripple

SB Attenuation

Figure 5-1: Flow diagram for coefficient perturbation routine

reduce transition activity under the passband and stopband constraints.

5.4.1 Filter Creation

The filters were created using a Park-McClellan algorithm to create an optimum FIR filter

with a passband frequency of wp and a stopband frequency of ws. The filter is optimal in

that it has the smallest maximum weighted approximation error with the given passband

and stopband. Two additional parameters were used to control the passband ripple and

stopband attenuation of the filter. These were N, the number of coefficients, or taps, of the

filter, and W, the weight given to the stopband error relative to passband error. [7]

5.4.2 Filter Constraints

An important factor in modifying the coefficients is the flexibility of the passband ripple and

stopband attenuation constraints. The initial filter was created such that initial values of

the passband ripple and stopband attenuation were within the desired constraints. However,

due to the optimality of the initial filter, any perturbation of the coefficients will inevitably

have a larger passband ripple and/or a smaller stopband attenuation. Therefore, in order for

the routine to be effective, the design constraints have "gray zones", where a filter will have

a larger passband ripple and smaller stopband attenuation than the initial filter created by

the Park-McClellan algorithm. As the size of these "gray zones" increase, there is greater

flexibility in reducing bit transitions, as will be seen in Section 5.6.

5.4.3 Scaling

The first step in reducing the transition activity of the coefficient involves uniformly scaling

the data by some constant K. The range of this constant is restricted to ±3dB. Scaling

of the coefficients, {ci}, preserves all of the original frequency characteristics of the filter,

only introducing a gain factor. This is seen by applying the constant scaling K to each

coefficient in Equation 1.1:

N-1 N-1

y = Kcisk- = K j cxik-i = Kyk. (5.2)
i=O i=O

The constant, K, is not restricted to integers, so the bit pattern of the binary representation

of the scaled set of coefficients, {Kci}, is different and can have a reduced number of

transitions. The optimal scaling constant, K, is obtained by selecting the constant within

the range ±3db that minimizes the number of coefficient transitions. This modified set of

coefficients, {Kci}, is used as the starting point of the coefficient perturbation stage. In

some cases a gain may not be tolerated and the perturbation problem is approached by

omitting the scaling component (or by constraining K to be 1). Furthermore, testing of any

proposed filters was done after accounting for the scaling factor. Scaling has the benefit of

reducing the number of transitions without altering the frequency response. Scaling then

allows the perturbation module to use the constraints to further reduce transitions. It must

also be noted that scaling is a reversible process. If desired, the final output of the perturbed

filter may be multiplied by K - 1 to undo the effect of the scaling.

5.4.4 Perturbation

In coefficient perturbation, the lower k bits of the coefficients are extracted, with k starting

from 1 and ranging to all of the non-sign bits. First, the lower k bits of the complete set of

coefficients, {ci}, is analyzed. These low k are converted back to a decimal equivalent and

averaged. Then all the low k bits of the coefficients are replaced by the binary equivalent

of the average. If the transitions of the new set of coefficients is found to be less than the

previous best set, and the set fulfills the frequency requirements, the new set becomes the

best set. If not, the procedure is successively repeated with subsets of the coefficient set.

When a best set that works for a given value of k is found or the transition of a set of

potential coefficients is less than the current best set, the routine is iterated with the low

k + 1 bits. This is because any further sets of coefficients with the same value of k cannot

do better than the current best set. The routine is also iterated when a potential set with

subsets of only two coefficients fails, since all perturbation opportunities are exhausted for

that given value of k.

5.5 Pseudo Code

In this section, pseudo code describing the coefficient perturbation routine is presented.

TAbest = TA({ci})

{Ci,best}= {Ci}

for the low k order bits (k = 1, bit width) {

foo=TRUE

for I = N* to 2 AND while foo is TRUE {

Divide coefficients into subsets of length 1.

for each subset {

Average the last k bits of each original coefficient in subset.

Generate a new subset of coefficients by replacing last k original

bits of each coefficient in subset with the average.*

}
The potential set of coefficients {cj} consists of all of the modified subsets

and any unmodified coefficients.

Compute the passband ripple (PBrip') and stopband attenuation (SBatten').

if((PBrip' < PBripreq) AND (SBatten' < SBattenreq) AND (TA({cj}) < TAbest)) {

TAbest = TA({ci})

{Ci,best}= {c'}
foO=FALSE

}
* Under Linear Phase constraint, restrict routine to first A coefficients and apply any

perturbations to coefficient ci to coefficient cN-1-i as well.

It must be noted that when the number of coefficients, N, is not a multiple of 1, the length

of the subsets, there will be some coefficients that will not fit in a subset. These coefficients

are kept unaltered in the modified set of coefficients. Without the linear phase constraint,

the unmodified coefficients will be at the end of the set of coefficients. However, with the

linear phase constraint, the unmodified coefficients will be symmetrically distributed in

the middle of the set of coefficients. Furthermore, even when phase is not a concern, the

linear phase constraint is applied first to see if a solution that preserves any symmetries is

possible.. Then, the routine is applied without the constraint. This method allows one to

ascertain whether a better solution that maintains linear phase is obtainable.

Figure 5-2: An example of the coefficient perturbation routine.

An artificial example working through the routine is shown in Figure 5-2. The Initial

Filter is generally created using the Park-McClellan algorithm. In this example, an arbitrary

set of coefficients is chosen for illustration purposes. This initial filter has 24 transitions.

Since we desire to maintain linear phase, the coefficients will be perturbed in pairs. Thus,

the first h = 4 coefficients (i.e. co - c4) are analyzed for averaging purposes. Step 1 replaces

the lowest bit with the average of the bits (rounded). This filter is found to fit desired filter

constraints and reduces the number of transitions to 18. Step 2 looks at the two lowest order

bits and replaces them with their average. This filter works and has only 14 transitions.

Step 3a now looks at the three lowest bits. However, this filter is found to violate the

desired constraints, and we disregard this filter even though there are fewer transitions.

Step 3b continues to look at the lowest three bits, but now looks at subsets of length 3.

This filter is found to work, and this solution becomes the new set of coefficients with 12

transitions. Note that the unperturbed coefficients are the fourth and fifth coefficients,

thereby maintaining symmetry and linear phase. The routine would continue to look at a

Initial Filter Step 1 Step 2 Step 3a Step 3b
co 001111 001111 001110 001101 001100
Cl 010100 010101 010110 010101 010100
c2 111001 111001 111010 111101 111100
c3 011110 011111 011110 011101 011110
c4 011110 011111 011110 011101 011110
c5 111001 111001 111010 111101 111100
c6 010100 010101 010110 010101 010100
c7 001111 001111 001110 001101 001100

Number of
Transitions: 24 18 14 49 12

larger number of the low-order bits. In the case where none of these filters work and provide

a better set of coefficients, the solution of Step 3b would become the final modified filter

with linear phase maintained.

5.6 Results

Tables 5.1 - 5.3 describe 5 lowpass filters and the results of applying the coefficient perturba-

tion routine to the filters. The routine is performed with and without including the scaling

module. Additionally, a constraint of maintaining linear phase is applied. In many cases,

the results only show a case with linear phase. These instances did not have a perturbation

with fewer transitions without the linear phase constraint. For each filter, several groups

of runs were made with each group having different routine constraints. The percentages

attached to the resultant number of transitions represents the reduction in transition ac-

tivity of the filter. Figure 5.6 shows the frequency response of the original Lowpass Filter

1 and the perturbed filter, namely the first perturbation that yielded a 56% reduction in

transitions.

0 0.5 1 1.5 2 2.5 3
Frequency

Figure 5-3: Frequency response of original Lowpass Filter 1 (solid
filter (dotted line). The offset gain between the two filters is due to
convolution multiplication can remove the offset.

line) and perturbed
the scaling. A post-

Lowpass Filter 1
Sampling Frequency=16kHz
Passband Frequency=3kHz
Stopband Frequency=4.5kHz
Initial Number of Transitions = 100

Number of Coefficients = 16
Passband Ripple = .2092
Stopband Attenuation = 30.84

Routine Constraints Number of
Scaling? Lin. Phase? PB Ripple SB Attenuation Transitions

No Yes .210 30 80 (20.0%)
Yes Yes .210 30 44 (56.0%)
No Yes .215 30 66 (34.0%)
Yes Yes .215 30 44 (56.0%)

Lowpass Filter 2
Sampling Frequency=16kHz
Passband Frequency=3kHz
Stopband Frequency=4kHz
Initial Number of Transitions = 224

Number of Coefficients = 50
Passband Ripple = .0636
Stopband Attenuation = 62.49

Routine Constraints Number of
Scaling? Lin. Phase? PB Ripple SB Attenuation Transitions

No Yes .075 62 190 (15.2%)
Yes Yes .075 62 196 (12.5%)
No Yes .1 60 190 (15.2%)
Yes Yes .1 60 170 (24.1%)
Yes No .1 60 164 (26.8%)

Table 5.1: Results of routine applied to various lowpass filters

From the results, relaxing the routine constraints allows for a greater reduction in tran-

sition activity. Relaxed constraints imply a larger "gray zone". More more possible filters

exist with relaxed constraints, so there is a greater opportunity to find a solution that

reduces transitions more. In most cases, utilization of the scaling module improves the

effectiveness of the routine.

Generally, there is less improvement when the routine is applied to a filter with a odd

number of coefficients then when it is to an even-length filter. Furthermore, with odd-length

filters, the linear phase constraint became more significant.

5.7 Power Analysis

The effectiveness that the reduction of transition activity by the coefficient perturbation

had on power was tested using Lowpass Filter 1. A simple convolution with a signal was

performed with the filter, before and after the coefficients were perturbed. The best pertur-

bation of Filter 1 was chosen, namely the one with a passband ripple constraint of .210 and a

stopband attenuation of 30dB. The signals were the p = 0 streams taken from the a = 1000

and a = 100 data sets. The results of the power simulations are shown in Table 5.7. The

power simulations were done using both PYTHIA and POWERMILL. POWERMILL is a more

accurate transistor-level power simulator. The results indicate that the coefficient pertur-

bations do have an impact on power, reducing power consumption by about 25% in the

PYTHIA simulation. The results were even more dramatic using POWERMILL, reducing

power by over 30%. The power values in POWERMILL are lower than those in PYTHIA since

PYTHIA is more conservative in its power estimation routines.

Lowpass Filter 3
Sampling Frequency=lOkHz
Passband Frequency= 1.8kHz
Stopband Frequency=2.5kHz
Initial Number of Transitions = 182

Number of Coefficients = 41
Passband Ripple = .0956
Stopband Attenuation = 60.08

Routine Constraints Number of
Scaling? Lin. Phase? PB Ripple SB Attenuation Transitions

No Yes .100 60 156 (14.3%)
Yes No .100 60 148 (18.7%)
Yes Yes .100 60 158 (13.2%)
No Yes .150 60 150 (17.6%)
Yes No .150 (.1003) 60 132 (27.5%)
Yes Yes .150 60 158 (13.2%)
No Yes .100 58 156 (14.3%)
Yes No .100 58 148 (18.7%)
Yes Yes .100 58 158 (13.2%)
No Yes .150 58 142 (22.0%)
Yes Yes .150 58 158 (13.2%)
Yes No .150 58 132 (27.5%)

Lowpass Filter 4
Sampling Frequency=12kHz
Passband Frequency=2kHz
Stopband Frequency=3kHz
Initial Number of Transitions = 124

Number of Coefficients = 28
Passband Ripple = .1169
Stopband Attenuation = 46.01

Routine Constraints Number of
Scaling? Lin. Phase? PB Ripple SB Attenuation Transitions

No Yes .12 45 96 (22.6%)
Yes Yes .12 45 84 (32.3%)
No Yes .13 45 88 (29.0%)
Yes Yes .13 45 84 (32.3%)
No Yes .13 44 82 (33.9%)
Yes Yes .13 44 84 (32.3%)

Table 5.2: Results of routine applied to various lowpass filters

Lowpass Filter 5
Sampling Frequency=lOkHz
Passband Frequency=2kHz
Stopband Frequency=3kHz
Initial Number of Transitions = 150

Number of Coefficients = 29
Passband Ripple = .0458
Stopband Attenuation = 57.90

Routine Constraints Number of
Scaling? Lin. Phase? PB Ripple SB Attenuation Transitions

No Yes .05 57 130 (13.3%)
No No .05 57 132 (12.0%)
Yes Yes .05 57 112 (25.3%)
Yes No .05 57 100 (33.3%)
No Yes .05 56 126 (16.0%)
No No .05 56 124 (17.3%)
Yes Yes .05 56 112 (25.3%)
Yes No .05 56 96 (36.0%)
No Yes .055 57 102 (32.0%)
No No .055 57 100 (33.3%)
Yes Yes .055 57 112 (25.3%)
Yes No .055 57 98 (34.7%)

Table 5.3: Results of routine applied to various lowpass filters

Power (mWatts)(PYTHIA) Power (mWatts)(POWERMILL)
Filter a = 100 a = 1000 a = 100 a = 1000

Original Filter 5.43 (100%) 8.50 (100%) 3.63 (100%) 6.32 (100%)
Filter w/perturbed coefficients 4.20 (77.3%) 6.40 (75.3%) 2.38 (65.6%) 4.27 (67.6%)

Table 5.4: Power simulation with coefficients with and without perturbation.

--

Chapter 6

Conclusion and Future Research

Several different methods to reduce power consumption in the multiplication component

of the convolution of an FIR filter with a signal have been investigated. These methods

fell into two classes of power reduction techniques. The first class used block processing

to reorder the multiplications inherent in such a convolution. These methods involved the

use of additional memory elements but did not change the result of the convolution in any

manner. The second class sought to preprocess the FIR filter to reduce transitions within

the coefficients of the filter. This preprocessing stage altered the coefficients and thereby

changed the result of the convolution. However, any reductions of power would be gained

without the cost of additional memory.

Two major block processing techniques were used. The first type was vertical unrolling.

In this method, the filter coefficient was kept constant as an input to the multiplier through

several multiplications. As additional unrollings were used, power was seen to go down

monotonically. Overall, the sign-magnitude multiplier performed the best. Between two's

complement multipliers, the Baugh-Wooley multiplier consumed less power than the Booth-

Encoding multiplier. The second type of block processing was diagonal unrolling. In this

method, the signal instead was kept constant for several multiplications. Power was re-

duced significantly with two unrollings, but increased with additional unrolling. Diagonal

unrolling of order two kept at least one input to the multiplier constant between succes-

sive multiplications, thus accounting for this behavior. Once again, the sign-magnitude

multiplier consumed the least power. In this case, the Baugh-Wooley multiplier performed

significantly better than the Booth-Encoding multiplier. Comparison of the two methods

showed that vertical unrolling was a more effective method of reducing power.

The idea of unrolling could be applied to any set of multiplications with some sort of

structure. In illustration, a simple experiment was performed with a Toeplitz matrix with

and without consideration of the symmetry of the matrix. It was seen that significant

reduction in power was realized when the symmetry was taken into account.

The second class of power reduction techniques involved coefficient perturbation. The

method developed had two parts. The first part uniformly scaled the data to minimize

transition activity within a range of allowable gain. The second stage iteratively considered

the low order bits of the coefficients and set sets or subsets of these bits equal. Any modifi-

cation to the coefficients was only accepted if the desired filter constraints were maintained.

This method reduced transition activity within the coefficients by up to 56%. A power

simulation of the largest reduction showed a reduction in power of 25% when the modified

coefficients were used, with the filter characteristics maintained and no additional memory

necessary.

There are several avenues for additional research in reducing power consumption in FIR

filters. Using block processing, various other structures could be considered. The symmetry

of most FIR windows could be taken advantage of to keep inputs to the multiplier constant

for more multiplications. Additional research could also be performed in the second class

of power reduction techniques. Many of the techniques that have been developed have

been ad hoc. The theory behind such techniques could be investigated. The algorithm

created in this thesis could be viewed as adaptive quantization. The general effect of such

quantization on filters could be investigated. Finally, the idea of adaptive quantization could

be incorporated with the Parks-McClellan algorithm to develop a self-contained algorithm

that creates an optimal FIR filter with the additional constraint of minimizing transitions.

From the results in the two parts of this thesis - unrolling and perturbation - it is seen

that there is a dependence of power on transition activity within multipliers when used

in FIR filter convolution. If the costs of memory or slight alterations of results can be

tolerated, power consumption can be reduced significantly by reducing transition activity,

as seen in this thesis. There exists the opportunity for additional research in applying such

techniques to make circuits more efficient in their computations.

Appendix A

Multipliers

In the course of running simulations to estimate power consumption, three multipliers were

used. For data in sign-magnitude form, an array multiplier was used. For data in two's

complement form, two multipliers were used - a Booth-encoding multiplier and a Baugh-

Wooley multiplier.

A.1 Sign-Magnitude Array Multiplier

Sign-magnitude array multiplication is based on the premise that multiplication is the sum

of several parallel products that can be computed in parallel. Two unsigned binary integers,

X and Y, have values,

m-1
x = X i2' (A.1)

i=O

n-1

Y = EYj2j , (A.2)
j=O

where Xi and Yj are the ith and jth bit values of X and Y, respectively. The product of

these two values, P, is

m-1 n-1

P = Xx Y = (:Xi2i)(Y2j) (A.3)
i=O j=o

m-1ln-1

= (X•iY)2'+j (A.4)
i=O j=O

m+n-1

O Pk2

k=O
(A.5)

The terms, Pk, are called summands. For a given value of k, several partial products can

be summed together. In Table A.1, the specific terms and their placement is shown for a

4 x 4 multipiler. From this presentation it is apparent that each bit of the product is a sum

of terms that AND a bit of both the multiplicand, X and the multiplier, Y.

X3 X2
Y3 Y2

X3Yo X2Yo
X2y X1YI
XIY2 XOY2
XoY3
P3 P2

x 4 Multiplier

x1

Xl Yo

XoY1

P1

Partial

Xo
Yo

XoYo

P0

Products

Multiplicand
Multiplier

Product

Figure A-1: Building block for sign-magnitude array multiplier.

The basic structure of the partial products allows the multiplier to be built from building

blocks of the form depicted in Figure A-1. The input, Pi, is the previous partial product

in the chain. The output, Po is the partial product output of the current block. The carry

input, Ci is the carry output from the next lower chain, while the carry output, Co is the

carry output of the current block. Finally, the inputs to the AND, X and Y, are single bits

of the multiplicand and multiplier, repectively.

This building block can be used to construct a multiplier. A 4 x 4 version is shown

in Figure A-2. [10] The sign-bit of the product is computed through combinational logic

X3Y3
P7 P6

X3Y2
X2Y3

P5

Table

X3Y1
X2Y2
XI Y3

P4

A.1: 4

acting upon the sign-bits of X and Y:

Psb = XsbYsb + XasbY sb.

In the simulations, a larger 16 x 16 multiplier was used.

X- 3?2XI X0

P7 P6A-2: 4 x 4 Sign-Magnitude arr P P

Figure A-2: 4 x 4 Sign-Magnitude array multiplier.

(A.6)

A.2 Baugh-Wooley Multiplier

Data is often represented in the two's complement form. In two's complement, multiplica-

tion is more difficult because the sign of a number is embedded in the number itself. Thus,

the sign cannot be separated from the number as is the case in sign magnitude form, making

multiplication more complicated. One multiplier that has been developed to handle two's

complement inputs is the Baugh-Wooley multiplier.

In the multiplication to be performed, X is the m-bit multiplicand and Y is the n-bit

multiplier. In two's complement form, these numbers are respesented in binary form by

m-2

X = -Xm-12m-1 + x2 i (A.7)
i=O

n-2

Y = -yn12n-1 + 1yi2', (A.8)
i=O

where xi and yj are the ith and jth bits of X and Y, respectively. The value of the product

of X and Y, P is

m+n-2

P = -Pm+n-12m+n -1 + P i2i = XY (A.9)
m-2 n-2

=(-xm-12m-1 + x2i2)(-y 2l n-1 + Z yi2 i) (A.10)
i=O i=O

n-2 m-2

= (yn-1xm-12m+n-2 + E yixy2i+ j) (A.11)
i=O j=O

m-2 n-2

- (y yn-lxi2n-l+i + Xm-lyi2m-l+i). (A.12)
i=O i=O

In calculating P by summing the partial products, the sign of the products must be con-

sidered, particularly in terms containing xm-1 and yn-1. These partial products can thus

be reorganzed and written out in Table A.2. The first n - 2 lines are added while the last

two lines are subtracted.

The process of both adding and subtracting partial products can be cumbersome. How-

ever, instead of substracting partial products, the negation of these partial products can be

added. For example, the negation of a k-bit two's complement number, Z, is

k-2

-Z = 1 - k-1 2 k - 1 + 2zi2', (A.13)
i=0

____ ii

Xm-1 .. 23 X2 X1 20

Yn-1 ... Y2 Y1 YO

Xm-2YO ... X2yo zlYO XOYO

Zm-2YIl ... X2Y1 Xiyl XOyi

Zm-2Y2 ... X2Y2 21Y2 20Y2

Xm-lYn-1 0 Xm-2Yn-2 ... 2Yn-2 zIYn-2 Z0Yn-2

0 0 Xm--2Yn--1 m--3Yn-1 ... " zXn-1 XOYn-1

o 0 Xm-1ln--2 Xm--1Yn--3 " " m--1YO

Pn+m-1 Pn+m-2 Pn+m-3 . Pm-1 Pn-1 ... P2 P1 PO

Table A.2: General two's complement multiplication

where 2i is the binary complement of zi. Therefore, the subtraction of

m-2

2n-,(-O - 2m + O 2m-l + Z y1-lxi2')
i=O

(A.14)

can be replaced with the addition of

m-2

2n-1(--1 2m + 1 2m-1 + 1 + y-l).
i=O

(A.15)

Thus, in the partial product represention of Table A.2, the line

0 0 Xm-2Yn-1 Xm-3Yn- ... XOYn-1 (A.16)

is replaced by

1 1 Xm-2Yn-1 Xm-3Yn-1 ' "XOYn-1, (A.17)

with an additional "1" added in the pn-1 column. Similarly, the row

0 0 Xm-1Yn-2 Xn-lYn-3 - Xm-lYO (A.18)

is replaced with

1 1 Xm-lYn-2 2n-Yn-3 ... Xm-1YO, (A.19)

with a "1 added in the p,-1 column. However, the introduction of Equation A.15 introduces

a nonuniformity with regard to the partial product bits since in some cases a NAND is used

while in others a AND is needed. This can be simplified by noting the Equation A.15 has

the value
0,

2"-1(-2 m + 2m- 1 + 1 + m-n2 ,i2i),

Therfore, Equation A.15 can be rewritten as

for yn-1 = 0

for yn-1 = 1

m-2

2n-1(-2m + 2m - 1 + In-12m-1 + -n-1 E+ :Yn-jli 2i)

i=0

This equivalence and a similar one can be used to

that these rows can now be added. The resultant

replace the last two rows of Table A.2 so

structure is described in Table A.3

Xm--1 X • 23 X2 X1 20

Yn-1 ... Y2 Y1 YO

Xm-2/0 .*. X2YO 1YO 20OYO

Xm-2Y1 ... X2Y1 x21Y1 2OY
zm-2Y2 ... X2Y2 X1Y2 20Y2

Xm-lYn-1 0 Xm-2Yn-2 ... X2Yn-2 1XYn-2 X0Yn-2

Vn-1 2m-2Yn-1 Xm-33Yn-1 "' " 21n--1 20n-1

Xm-1 Zm-1Yn-2 Xm--1n-3 ... " m-1•0

1 zm-1 Yn-1

Pn+m-1 Pn+m-2 Pn+m-3 Pm-1 Pn-1 ... P2 P1 PO

Table A.3: General two's complement multiplication with all positive partial products

As only AND and ADD components are needed, the structure of the Baugh-Wooley multi-

plier is easily implemented by modifying the sign-magnitude array multiplier of Section A.1.

In several partial products the complement of an input bit must be used. Also, the addi-

tional partial products, Xm-1, Xm-1, Yn-1, 1n-1, and "1", must be added. One fundamental

difference between the sign-magnitude array multipier and the Baugh-Wooley multiplier is

the independence of the sign bits in the first multiplier. Thus, a 5 x 5 sign-magnitude array

multiplier will only have have a 4 x 4 array. In a Baugh-Wooley multiplier, on the other

hand, the sign is implicit in the number. Thus, the same 5 x 5 multiplication will have a

5 x 5 array. This additional dimension results in Baugh-Wooley multipliers consuming more

power than an equivalent sign-magnitude multiplier.[1]

(A.20)

(A.21)

--

A.3 Booth-Encoding Multiplier

Another multiplier that uses two's complement data as inputs is the Booth-Encoding mul-

tiplier. The concept for Booth-Encoding was developed by Andrew Booth. [2] Booth's

technique was that multiplication could be performed irrespective of the sign of the inputs

by using a method that observed several bits of the input at a time. Booth's algorithm was

governed by a set of rules. In the multiplication of two numbers m and r, the nth digit of

m (m,) is examined:

(1)If mn = 0, mn+l = 0, multiply the existing sum of partial products by 2-1,

i.e. shift one place to the right.

(2)If m, = 0, m,n+ = 1, add r into the eisting sum of partial products and multiply

by 2-1, i.e. shift one one place to the right.

(3)If mn = 1, m,+l = 0, subtract r from the existing sum of partial products and

multiply by 2-1, i.e. shift one place to the right.

(4)If mn = 1, mn+1 = 1, multiply the sum of partial products by 2-1, i.e. shift one

place to the right.

(5)Do not multiply by 2-1 at mo in the above processes.

It is assummed that if m is given to n bits, then mn+, = 0. Furthermore, all computa-

tions in the algorithm are performed modulus 2. An example multiplication using Booth's

algorithm is shown in Figure A-3. A variation of Booth's algorithm is employed in the

Booth-Encoding multiplier used in the simulations. This modified Booth algorithm uses a

Radix-4 multiplication scheme two bits of the multiplier and a previous bit are analyzed

at each stage. As the Booth-Encoding multiplier is quite common, no further detail shall

be provided here. A complete description of the multiplier can be found in Principles of

CMOS VLSI Design [10].

The nature of the Booth-Encoding multiplier is that several bits of the input are ob-

served at one time. This makes it difficult for the multiplier to take advantage of single-bit

correlation, as adjacent bits may vary independently of a given bit. This results in variation

of the three-bit samples successive inputs. Accordingly, it can be expected that a Booth-

Encoding multiplier will not benefit significantly from single-bit correlation in consecutive

inputs.

m

m3 = 1, (m4 = 0)

m2 = 1, m3 = 1
mi = 0, m2 = 1

mo = 1,mi = 0

= 1.011(-)
subtract r
shift right
shift right
add r

shift right
subtract r

= 0.110(+)
1.010

1.11010
0.110

0.10010

0.010010
1.010

1.100010
no shift

Figure A-3: A multiplication performed with Booth's algorithm

1.1010
1.11010

0.010010

1.100010(= - 15

