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Abstract

In this thesis we introduce and solve three privacy problems in Secure Database
Access protocols: Database Privacy, the Data Replication Problem, and the Secure
user Identity problem. Database Privacy is concerned with keeping the databases
information secure from the user. The Data Replication problem (DRP) deals with
a new security concern for databases that emanates from the need to replicate and
distribute their contents in order to achieve security for the user. The Secure user ID
problem is concerned with keeping private the user's identity, so that no information
can be associated with or learned about that identity.

Our results rely on an existing Private Information Retrieval scheme which achieves
privacy for the user's query by relying on the multiple database model. This model
allows for information theoretic results and sublinear communication complexity in
the size of the database. We present two schemes which solve, in addition to what
was achieved previously, Database Privacy and the Data Replication problem.

We achieve two different degrees of security for DRP. The first one is private-data-
distribution which means that all the databases in the scheme are k-wise independent
for some constant k. The second is no-data-distribution security which means that
the database's in the scheme contain data that is completely independent. The user's
security in our scheme relies on the Private Information Retrieval scheme introduced
in [14] which guaranties that the message the user sends to a database is uniformly
distributed over all possible queries.

We show two reductions:
Theorem: For any k > 2 given any Private Information Retrieval k-database

scheme for n data bits with communication complexity R(k, n) there exists a private-
data-distribution and database private 2k-database scheme with communication com-



plexity O(R(k, n) log(n)) where each database holds O(n) bits.
Theorem: For any k > 2 given any retrieval k-database scheme for n data bits with

communication complexity R(k, n) there exists a no-data-distribution and database
private 2k-database scheme with communication complexity O(R(k, n) log(n)) where
each database holds O(n) bits.

Secure ID
In addition, we solve the Secure ID problem by presenting a protocol for a network
of a user U, n databases of size m with an additional server S. A database in the
network does not know whether U asked him a query or asked a query from another
database. Therefore, we say that he does not know the identity of the users that are
querying him. The communication complexity of that scheme is O(log(n)R(n, kl) +
log(m)R(m, k2)) for constants k1 and k2.

Thesis Supervisor: Shafi Goldwasser

Title: RSA Professor
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Chapter 1

Introduction

In this thesis we introduce and solve three privacy problems in secure database access

protocols: Database Privacy, the Data Replication Problem (DRP), and the Secure

User Identity problem. Database Privacy is concerned with keeping the databases

information secure from the user. The Data Replication problem deals with a new

security concern for databases that emanates from the need to replicate and distribute

their contents in order to achieve security for the user. The Secure User ID problem

is concerned with keeping private the user's identity, so that no information can be

associated with or learned about that identity. But before we are able to discuss these

problems further, let us give some background and motivation as to what brings forth

these database security problems.

Since the propagation of the World Wide Web users grew to expect almost all

types of data to be available on the internet. In many cases, information that cannot

be found on the web is considered non existent. Therefore, even databases that

contain sensitive information find it necessary to make their data available on the

web. Access to this sensitive information introduces a privacy risk not only to the

database, but to the user as well, because the database can electronically record the

user's identity and the type and contents of the user's query. This is not the case

for data retrieved by users from books in libraries, for example, because there is no

electronic trace or record of the page the user accessed, or of the user's identity.

Therefore, this new internet scenario brings forth the problem of Secure Data Access,



which is concerned with keeping private the users's query, the user's identity, and the

database's information other than the value of a particular query that is offered to

the user.

Previously, work was done on protecting databases from the access of malicious

users who destroy contents [21, 2]. This work, however, was not concerned with

the user's security at all. Recently, a solution to protect only the user's privacy was

proposed and called Private Information Retrieval [14]. Private Information Retrieval

protects the user from the database by giving the database no knowledge about the

type or value of the user's query. Those results are achieved using a multiple database

model, in which a user obtains the value of his query by communicating with a few

copies of the database as opposed to only one. However, the databases holding copies

of the data, are not allowed to communicate amongst themselves, in order to keep

the user's query private.

We would like to offer some motivation for why the Databases Security and Private

Information Retrieval must be satisfied simultaneously. We observe that security for

both the user and the database is crucial for the emerging applications of today's

world. For example, consider an investor who decides on a stock based on information

he receives from a database containing stock information. In this scenario, it is

likely, that the user wishes to keep his choice of stock, or query, secret while the

database itself would like to keep the stock information private to itself, except for

the particular stock that the user has paid for. Therefore, the security of both should

not be compromised.

The first goal of this thesis was to simultaneously satisfy these two problems in

the multiple database model. Let us examine the plausibility of the multiple database

model. In general it contains many databases that are not communicating with each

other, and only the user talks to each one separately. In the Private Information

Retrieval scheme [14] the contents of all the databases are identical and are created

by replicating the original database. Later, the auxiliary databases holding the dis-

tributed copies are assumed not to communicate with the original database. This

assumption seems implausible to us because according to it the database, in a sense,



gives its information to parties which can use it to create their own database black

market service and sell the data independently. There is little that can be done by the

database to prevent this from happening since those other parties must be separate

entities with which it is not allowed to communicate. If the database cannot be secure

about its data then it is not likely to agree to participate in a Private Information

Retrieval protocol and then the user is at risk. Thus we are faced with a new problem:

how to prevent the databases from being copied to non communicating entities in the

multiple database model which is essential for achieving user privacy. We call it the

"Data Replication Problem".

In this thesis we present schemes that solve the "Data Replication Problem" and

"Database Privacy" while maintaining all the other properties accomplished by a Pri-

vate Information Retrieval scheme. The novel idea in those schemes is to construct

auxiliary databases that contain data which is independent of the original data yet

gives the user the appropriate value that will help construct his query. In other words,

we propose a protocol for communication between a user, a database and auxiliary

databases whose contents are not dependent on the original database. This protocol

allows the user to keep his query secret from the databases, and allows the database

to keep its data secret from the auxiliary databases and from the user (except for the

value of the particular query). Then we will show how to extend that scheme into a

protocol for a network of databases that solves the Secure ID problem. Those pro-

tocols rely on no cryptographic assumptions and maintain sublinear communication

complexity in the size of the database, where by communication complexity we mean

the total bits sents between all the parties per query.

We note that the Database Privacy concern was addressed previously in [7], but

this work did not allow for a constant number of databases, and one round of com-

putation. No work was previously done towards the Data Replication Problem. All

information theoretic multi database schemes never required nor achieved that the

databases will be independent. The general multi party computation protocols can be

used toward solving the problem with auxiliary databases with independent contents,

but then the communication complexity is very high. In addition, those schemes re-



quire many rounds of computation, and a non constant number of auxiliary databases.

Our scheme is the first that is explicitly concerned with the Data Replication prob-

lem and that solves it with information theoretic security, sublinear communications

complexity, a constant number of auxiliary databases and 1 round of communication.

The third problem is the Secure User ID problem which is concerned with keep-

ing private the user's identity, so that no information can be associated with or

learned about that identity. Not much work has been done in order to solve the

Secure ID problem. There is, however, a sight in Carnegie Mellon University called

anonymizer which allows one to "surf the web without revealing any personal in-

formation". It is currently restricted to Carnegie Mellon Computer Science sites.

The URL for this page is Http://anonymizer.cs.cmu.edu:8080/ maintained by Justin

Boyan (jab@cs.cmu.edu). Still, the privacy of the user on this site is conditional on

the fact that the user trusts this particular anonymizer server since this server itself

can obtain information about the user when the user surfs through it.

1.1 Our Results:

We present two schemes which solve Database Privacy, the Data Replication problem,

while also achieving User Privacy, no cryptographic assumptions, a constant number

of databases, and sublinear communication complexity.

More specifically, we present two schemes which solve the Data Replication Prob-

lem (DRP) achieving two different degrees of security. The first one achieves private-

data-distribution which means that all the databases in the scheme are k-wise indepen-

dent for some constant k. The second scheme achieves no-data-distribution security

which means that the databases in the scheme contain data that is completely in-

dependent. Both achieve Database Privacy as well which means that after the user

interacts with all the databases, he does not get any information about the database,

except for its value at a single location. The user's security in our schemes relies on

the Private Information Retrieval scheme introduced in [14] which guaranties that

the message the user sends to a database is uniformly distributed over all possible



queries.

We show two reductions:

Theorem: For any k > 2 given any Private Information Retrieval k-database

scheme for n data bits with communication complexity R(k, n) there exists a private-

data-distribution and database private 2k-database scheme with communication com-

plexity O(R(k, n) log(n)) where each database holds O(n) bits.

Theorem: For any k > 2 given any retrieval k-database scheme for n data bits with

communication complexity R(k, n) there exists a no-data-distribution and database

private 2k-database scheme with communication complexity O(R(k, n) log(n)) where

each database holds O(n) bits.

Remarks:

In all the schemes there is a trade off between increasing the number of databases

and the number of faulty databases who in a coalition could break security.

If we use the [3] scheme, then R(n, k) = n1/2k-1

Secure ID

In addition, we solve the Secure ID problem by presenting a protocol for a network

which consists of a user U, n databases of size m with an additional server S. A

database in the network does not know whether U asked him a query or asked a

query from another database. Therefore, we say that he does not know the identity

of the users that are querying him. The communication complexity of that scheme is

O(log(n)R(n, kl) + log(m)R(m, k2)) for constants k1 and k2.

1.2 Outline of Thesis.

Since our results for the Secure ID problem largely rely on the results of the Data

Replication Problem, we begin by describing previous work related to the Data Repli-

cation problem in chapter 2. Then, chapter 3 will describe the security notions, as-

sumptions, and protocols used in our schemes. In chapters 4 and 5, we describe two

schemes that together achieve Database Privacy and Private Data Distribution. In

chapter 6, we describe a scheme that satisfies an even stronger security requirement,



No Data Distribution, and protect the database from distributing its data. Then, we

discuss the similarity between our problem and the Oblivious Transfer problem, in

chapter 7. In chapter 8, we present a scheme which solves the Secure ID problem.

Finally we offer some suggestions for future work in chapter 9.



Chapter 2

Previous Work

In this chapter we concentrate on the database's security, meaning Database Privacy

and the Data Replication Problem, since our solution to it is a subprotocol of the

Secure ID solution. In addition, there is not much work done on the Secure ID

problem other than the site we mentioned in the introduction.

The new problem of Data Replication (DRP) originates in a multiple database

model and is concerned with the distribution of original data to non communicating

parties. If this problem arises in this model than why use this model at all, or what

are the properties of this model that make it so desirable? In order to explain that, let

us first state the properties we would like our model to satisfy. Having this as a goal

in mind, we will go through various models explored in previous work and find the

best match with our properties. One of the models that we examine is the multiple

database model with databases of feasible size introduced in the PIR scheme [14]

which satisfies all of our desired properties except for Database Privacy and DRP.

In the rest of the thesis we will present various schemes that solve Database Privacy

and DRP in this model.

2.1 Our Goals

The main goal of our work is to provide privacy for the user while not compromising

the database's security. This means that the user is the only one who knows the value



of his query, and that the database is the only one who knows the data. In order

to make the solution stronger we require no cryptographic assumptions. In addition,

we insist on low communication complexity and a constant number of databases

otherwise the solution would be too costly and make no sense in the context of our

application.

More formally our desired properties can be described as follows:

* Security for the Database from the auxiliary databases - For databases D 1, D2 , ... , Dk.

D 1 contains the original database, and the rest of the databases Di for i : 1 con-

tain data whose distribution is independent of D. Therefore, a single database

having only the view of Di, without communicating with other databases, can-

not get any information about D.

* Security for the Database from the user - After the user interacts with all the

databases, D 1 , ..., Dk, the user does not get any information about D, except

for its value at a single location (presumably bq). That is, the view that the

user gets is independent of the values in D in indices i : q.

* Security for the user - Private Information Retrieval - No database communi-

cating with the user can get any information about the user's query q, or the

value at q. That is, all the communication between the user and the particular

database is distributed uniformly, for all indices.

* No computational assumptions - Information Theoretic Security - No matter

how much computational power a party has it cannot gain any knowledge from

the information that it has.

* Communication complexity: The total number of bits exchanged between the

user and all the databases per query is sublinear in the size of the database.

* All of the above properties can be achieved with a constant number of databases.

k is a constant.



2.2 Overview Of Previous Work

Having stated our goals, we proceed by giving an overview of the different models

used in previous work. The models are illustrated through the schemes that use

them, where the schemes are interactive protocols between a database (or a party

with information) and a user (a party that wants to get a piece of information). We

examine the achievement of each protocol in light of our goals and then relate these

to the properties of the model they use.

2.2.1 The One Database Model - Oblivious Transfer

We start with the simplest and most intuitive model - the one database model -

which consists of a database and a user, because it immediately eliminates the Data

Replication problem. This model is used in the Oblivious Transfer protocol [11, 12,

20, 15, 8, ?] where the database is a party called Alice who has the secret S and the

user is a party called Bob who wants to obtain the secret. After the protocol Bob

either receives the bit S with probability 1/2 or Bob gains no further information

about the value of S. Alice does not know which of the events occurred. This basic

Oblivious Transfer was introduced by Rabin for the purpose of exchanging secrets and

was later extended to the (') OT in which Alice has two secrets S 1 and So, while Bob

has a bit b. At the end of the protocol Bob has Sb and knows nothing about Sl-b, and

Alice does not know b. Furthermore, OT was extended to an even more general form

in which Alice has n secrets S1, ...Sn and bob has an index i in n. At the end of the

protocol Bob has Si and nothing more than that, while Alice does not know anything

about i. This achieves security for both Alice and Bob. The extended version of

the Oblivious Transfer protocol found other applications such as a subprotocol for a

multi party computations which only used n as a constant of at most four. Therefore,

there was no need to worry about the high communication complexity of the protocol

O(n * securityparameter).

However in our application for the Oblivious Transfer protocol with the size of

the database n being polynomial, communication complexity of order n is too large



to be reasonable. So the Oblivious Transfer protocol does not match our goals in

that respect. Actually the Oblivious Transfer protocol does not match our goals in

another respect as well. The OT protocol also relies on computational assumptions,

whereas we are interested in information theoretic security. This property is not only

a property of the protocol but it is inherent in the one database model because both

parties have the whole transcripts of the conversation so that nothing is hidden from

them. Therefore we will have to examine other models in order to satisfy all of our

goals. But before that, let us summarize the properties of the one database model.

Model - One database and one user. The properties of the protocols that were

implemented using this model so far achieve the following properties.

* User privacy.

* Database Privacy and No Data Distribution.

* Requires only 1 Database.

Note that it does not achieve:

* Information theoretic security because it relies on the existence of Trapdoor

functions.

* Reasonable communication complexity: The communication complexity is O(n*

k) where k is a security parameter.

Non Interactive OT

An interesting variation of the OT protocol which tries to reduce the cost of communi-

cation is the Non Interactive OT [8] which introduces a variation of the one database

model. This protocol reduces the cost of Oblivious Transfer not by lowering the

communication complexity but by eliminating the interactive step. The traditional

OT requires the following interactive step: first the user sends n trap door functions

to the database knowing the trap door information to only one of them, then the

database applies the function to his secrets and sends the results to the user. The



non interactive OT modifies the one databases model to include a public file as well.

Using this public file the interactive step is removed by having the user choose his

trapdoor functions ahead of time and place them in the public file. Having access to

the public file, the database could send messages to the user at a convenient time for

him. The keys placed in a public file can be used for many or different applications.

This application is also useful for fractional OT where a user obtains only a fraction

of the messages sent to him during the protocol. However, the Non Interactive OT

still makes cryptographic assumptions which we would like to avoid.

2.2.2 Software Protection - Oblivious RAM

Another model we consider is the model used in the Oblivious RAM protocol which

is proposed in [17] for the software protection problem. This problem is not con-

cerned with the copying of software, rather it is concerned with hiding the software

program's access pattern to the memory. Meaning that the access should be uni-

formly distributed over all locations in memory. This problem cannot be solved by

encryption alone because it does not hide everything, for example accesses to the

same location. The Oblivious RAM protocol solves this software protection problem

and produces interaction between the CPU and the memory such that the software

holder who views this interaction has no information about the software. Meaning

that the interaction, or access pattern, seems independent of the software.

The model of this program consists of two parties the CPU and the software

holder. (Note that the software holder can also be called a user or one who buys

the software, but in this case we choose not to call him a user because in this thesis

we limit the term user only to those who access databases in order to get some

information and here the software holder holds the software or information and does

not query it and thus he is not a user in our sense). The CPU holds the input to the

software according to which the program will run. The CPU is protected by hardware

therefore its size is limited and it cannot hold the contents of the software's memory.

Therefore, the memory must be first encrypted and permuted by the CPU and then

stored by the Software Holder. Thus, the software holder knows about all the accesses



to the memory. The software holder in a sense stores the CPU as well but since the

CPU is protected by hardware, the software holder does not have any information

about it. The CPU is the only one who has all the permutation and decryption keys

to the memory.

Having set the model, let us describe in more detail what was achieved in the

Oblivious RAM protocol and how it pertains to our application. When a memory is

encrypted and permuted, it does not reveal which specific address is accessed or what

was the contents of it. However, it does reveal information about the access pattern

such as which address is accessed more than once and in what order that occurs.

Through the Oblivious RAM protocol the CPU can communicate with the memory

such that the software holder does not gain this information. In fact, the interaction

is such that it is indistinguishable from an interaction of another software. This is

achieved using cryptographic assumptions and amortized polylogarithmic communi-

cation complexity in the size of the program.

We do not describe how the protocol is implemented here. Rather we concentrate

on examining the parallels between this model and the database model and using

ideas from the Oblivious RAM protocol for solutions in our schemes.

Let us then describe the similarities between the models. In the database model

there is a database with n bits of information and a user who wishes to retrieve

some of that information without giving away its query. In the software protection

model there is a software holder who has encrypted and permuted memory and a

CPU who wants to access that memory without revealing its access pattern. Those

two problems are the same, except that the software holder does not know the real

contents and addresses of the memory and the Database does have the real data and

thus also knows the values and real locations of each query (not only the repeated

ones). In our scheme if we find a way to encrypt and permute the database without

giving the database the encryption and permutation keys while not compromising

the database's security, we can use the Oblivious RAM method of access to achieve

privacy for the user. We will describe this in more detail when we describe the actual

scheme in Chapter 6.



2.2.3 Multi Prover Scheme

All the models we examined so far were variations of the one database models which

achieved their security by relying on cryptographic assumptions. Those results are

actually inherent in the one database model because it is impossible to obtain an

information theoretic two party protocol that does not disclose the secrets of the other

party because the two parties have exactly the whole transcript of their conversation

[18]. Since we want to achieve information theoretic results we proceed by examining

models that involve more than one database. This way, one database alone does not

have the whole transcript of the conversation, and therefore, cannot compute all the

information by itself. This means that the communication between the databases

must be limited, otherwise a database could obtain the whole transcript. Adding a

database does increase the cost of the protocol in terms of space but it is a worthwhile

price to pay for information theoretic security, especially since the distribution of data

is inherent in the current systems setting of the internet.

The first scheme to introduce and use the idea of distributing one of the protocol's

parties into two separate ones in order to achieve information theoretic results was the

Multi Prover Scheme [9]. The motivation for this scheme comes from an interactive

proof system which consists of an all powerful prover who attempts to convince a

probablistic polynomial time bounded verifier of the truth of a proposition. The

prover and the verifier receive a common input and can exchange upto a polynomial

number of messages, at the end of which the verifier either accepts or rejects the

input. In a zero-knowledge interactive proof the prover is trying to convey a proof

to the verifier without giving him any more knowledge. Such computationally zero-

knowledge interactive proof system were shown to exist by [16] for every NP language

if non-uniform one way functions exist. In the one prover model it was not possible

to achieve information theoretic results as we explain before. However, in the multi

prover model in which two provers were used instead of one it was shown that a

perfect zero knowledge interactive proof system exists for every NP language making

no intractability assumptions.

Let us describe the multi prover model in more detail. In their model there is still



one verifier. The two provers can decide on an optimal strategy before interacting

with the verifier. But once the interaction starts they can no longer send each other

messages. In addition, the two provers share either a polynomially long random pad

or a function which they can compute but the polynomially bounded verifier cannot.

One of the Provers' function is to give the proof. The other Prover's function is to

periodicly output segments of the random pad he shares with the other Prover.

Inspired by this model we proceed to examine distributed database models which

can achieve information theoretic results. We cannot use the Multi Prover scheme

directly because its provers specialize in proving propositions and in our case we are

interested in a party that holds data and gives pieces of that data to a user upon

request. Another difference between the schemes is that they show that adding more

provers does not add power to the multi prover model. In our case though, we show

that if we have more databases we can reduce the communication complexity further.

2.2.4 Multi Party Computation

Since the multi prover model is specificly designed for proof systems we must examine

a more general model designed for computing all functions, introduced in the Multi

Party Computation protocol. This model consists on n parties that are equally pow-

erful, yet they must cooperate in a computation because none of them alone have all

of the necessary information. Each party does not want to disclose its information;

therefore some security must be guarantied. Again, using the fact that the parties are

distributed and not communication outside of the protocols specification it is possi-

ble to obtain a multi party computations for any function with information theoretic

security [10].

The model of computation is a complete synchronous network of n processors.

The pairwise communication channels between players are secure. In one round of

computation each of the players can do an arbitrary amount of local computation,

send a message to each of the players, and read all messages that were sent to it. For

simplicity, they restrict themselves to the computation probablistic functions f from

n inputs to n outputs. The player i holds the i-th input at the start of computation,



and should obtain the i-th output at the end, but nothing else.

What happens when the parties do not follow the protocol and they communicate

outside of the permitted messages? (This was not the problem for the multi prover

scheme because there the parties do not communicate at all so it is easier to verify that

they are not communicating forbidden information). In this work, they allow for two

types of faulty parties. A party can either try to learn more by sharing information

that it receive through extra communication additional to the specified protocol, or

by using a completely different protocols altogether. It is shown in [10] that for every

probabilistic function and for every t < n/3 there exists a protocol that allows for no

more than t faulty parties of each kind that was just described. They achieve those

results by using constructions based on Algebraic Coding Theory, particularly the

use of general BCH codes.

This result is general for any probablistic function and for many parties that are

all interested in finding some value of the function. In our application we are dealing

with a special case where the function is a database and the user is the only party

who gets the value of the computation. Since their result is general they are not

able to achieve the number of databases, communication complexity, and rounds of

computation which we desire.

2.2.5 Multi Oracle Model - Instance Hiding

A more specific scheme for multi party computation is the Instance Hiding scheme

[1, 4, 5]. This scheme assumes the following model: for some function f (could be

exponential) and n parties, n - 1 of the parties (thought of as oracles) contain the

same data of how to evaluate f, while the n'th party (user) on private input x wishes

to compute f(x) but is unable to do so without the help of the n - 1 parties. The

Oracles are not allowed to communicate with one another, but only with the user.

Based on this model, Instance Hiding gives an interactive protocol involving a

computationally limited user (verifier) U and m > 1 powerful Oracles D 1, ..., Dn. For

a given exponential function f accessible only to the oracles, and input i E {1, ..., n},
accessible only to the user, outputs xi to the user only, while requiring only polynomial



communication complexity.

The protocol allows U to obtain the value of f(i) without revealing to any database

any information about i, thus achieving our security demands for the user. One

attempt to provide security for the database using the Instance Hiding scheme is

show in [7] using a proof system. In that work they use a proof system which gives

the user zero knowledge about f with only a small increase in cost. This achieves

Data Privacy. However, the data replication problem is not solved because all the

databases know the same information, f. In addition, another one of our goals -

a constant number of databases - is not solved because this scheme requires the

number of databases to be logarithmic in the size of the function in order for the

communication complexity to be low.

Model: There are k = O(log(n)) databases D 1, ..., Dk where n is exponential and a

user U. D therefore is an oracle which helps U the user compute a value. The D's are

not allowed to communicate. The properties of the protocols that were implemented

using this model so far achieve:

* User privacy.

* Privacy is information theoretic.

* Communication Complexity is O(log(n)).

Note that it does not solve:

* Data Privacy.

* The Data Replication problem.

* Constant number of databases. The number is O(log(n))

This number of databases result is appropriate for the general goal of the Instance

Hiding protocol, which is designed for a user (Verifier) which has the data necessary

(i) and needs to communicate with other processors (the computationally unbounded

databases) because it lacks the power to carry out the computation on its own. Thus

the Instance Hiding scheme is also beneficial for users who want the value of an



exponential function and only have polynomial power. But our specific application of

database access does not benefit from that case because our f is polynomial and can

be described as (f(i, xl, ... , xn) = i). Therefore, we can look at a more specific model

which is not general for all functions but only applies to the database function.

2.2.6 Multi Database Model - Private Information Retrieval

A more specific variation on the multiple oracle model of Instance Hiding is the model

of multiple databases of feasible size, introduced in the Private Information Retrieval

protocol [14]. The PIR scheme is a protocol for communication between a user and

multiple databases of feasible size which are not allowed to communicate between

themselves but with which the user communicates in order to obtain his query. Based

on this model the PIR protocol achieves information theoretic security for the user,

sublinear communication complexity, and a constant number of databases.

In this protocol they were able to reduce the number of databases to a constant by

changing the Instance Hiding model to include databases of a feasible size instead of

exponential size. Thus, the Private Information Retrieval protocol is not constructed

for the purpose of helping a user compute a value of any function with the help of

all powerful databases, but it is constructed for querying a feasible database for the

value of a special purpose type of function (f(i, xl, ..., zn) = i) in a secure manner

and low cost.

The Private Information Retrieval scheme copies database to other entities and

forbids their communication. Therefore, we are still left with the Data Replication

problem, and Data Privacy.

Model: k > 2 copies of the Database which is of a feasible size, and a user. The

databases are not allowed to communication with one another and are not allowed

to view the interaction of the user with the other databases either. The properties

of the protocols that were implemented using this model so far achieve the following

properties.

* User Privacy.



* Constant number of databases.

* Privacy is information theoretic.

* Communication Complexity - O(n 1/ (l + k )) for k = 2 and O(nl/ k) for k > 2.

Note that it does not solve the Data Replication problem, and does not achieve

Database Privacy.

In the rest of the thesis we will show how to solve the rest of our goals and use

PIR as a subprotocol in order to achieve its other properties as well.

2.3 Summary - The Model We Choose

Having examined different possible models and schemes we note that the model of

the Private Information Retrieval scheme achieves goals most similar to ours. In

other words, a model involving a user and feasible databases which are not allowed

to communicate allows for protocols which achieve all of our goals except for the

Data Replication problem and Data Privacy. Therefore, in this thesis we will present

schemes that solve these problems in that model. Our schemes are a reduction to the

Private Information Retrieval scheme. We use PIR as a subprotocol of our schemes.

In some cases we also rely on results from Oblivious RAM.

2.4 Related Work

In this section we describe work that is related to our work, but was achieved inde-

pendently from our results.

Private Information Storage

Ostrovsky and Shoup [19] have extended the results of [14] and designed schemes

for private information storage. Using their schemes, the user can both read and

write to the database without revealing which bit is accessed. They have shown that

any protocol for private information retrieval can be transformed to the protocol for



private information storage with a slight increase in the number of databases and

communication.

Private Information for the user [3]:

In this work the results of the PIR scheme introduced in [14] were improved by

achieving communication complexity of O(n1/(2k-1)). This was achieved through con-

structing a new scheme from two PIR schemes one for k = 2 databases and another

for k > 2 databases such that the k > 2 scheme is a subprotocol for the k = 2 scheme.

Computational Private Information Retrieval [13]:

In this work they show how to achieve PIR based on computational assumptions such

that the communication complexity can be O(n~) for any e > 0.



Chapter 3

Preliminaries and Notation

3.1 Model

Multi Database Model

The model of computation of all the schemes consists of original data D which con-

tains n bits, D = {bl,..., b,b, were n is a feasible parameter, k multiple databases

D 1, ..., Dk, and a user U. U has a query q E {1, ..., n}. D 1, ... , Dk consist of different

values depending on the scheme, they can either consist of D, or some random data.

The user, U, interacts with D1, ..., Dk while the D's are not allowed to communicate.

Network Model

The model of the network consists of n different original databases of length m, 2n

databases of random bits, 2n permutation databases, a server S, and a user. Each

group of 1 original database 2 random databases and 2 permutations are assigned a

location by the server. The databases and the server are not allowed to communicate.

3.2 Notions of Security

We are concerned with the following notions of privacy.

User Privacy: No database communicating with the user can get any information

about the user's query q, or the value bq. That is, all the communication between the

user and the particular database is distributed uniformly, for all indices.



Database Privacy: After the user interacts with all the databases, D1, ..., Dk, the user

does not get any information about D, except for its value at a single location (pre-

sumably bq). That is, the view that the user gets is independent of the values in D

in indices i : q.

Private Data Distribution: Only D1 has a copy of the original data D. The rest

of the databases Di for i - 1 contain data whose distribution is independent of D.

Therefore, a single database having only the view of Di, without communicating with

other databases, cannot get any information about D.

No Data Distribution: Only D1 has a copy of the original data D. The rest of the

databases Di for i : 1 can be determined ahead of time and contain some random

data that is determined independently of D. This privacy is different than the Pri-

vate Data Distribution above because in Private Data Distribution even though each

database Di on its own is independent of D, a coalition of databases can be dependent

on D, whereas here any coalition that does not contain D1 is independent of D.

Secure ID: No database in the network can get any information about which database

the user is querying. That is, all the communication between the user and the

databases is distributed uniformly for all databases.

3.3 Assumptions

There are two types of assumptions we make about the databases. One is concerned

with their faultiness. The second is concerned with the amount of communication we

allow them to have with each other.

Faultiness of the Databases:

Faultiness only pertains to whether the database follows the protocol or not, and it

is not concerned with extra messages that the databases might send.

Honest but curious: The databases and the user are following the specification

of the protocol exactly but try to extract as much knowledge as they can from the

information that they receive.

Malicious: The databases do not follow the protocol and send some other message



instead of the one that they were supposed to.

Communication:

The databases are not allowed to communicate with one another, where by commu-

nication we mean two different things: No messages, and No communication.

No messages: The databases are not allowed to send extra messages outside of

the specification of the protocol to another databases. This assumption can be re-

laxed by increasing the number of databases and then allowing certain databases to

communicate as long as a coalitions of a certain size will not form.

No communication: The databases are not allowed to talk to another database

at all by any means of communication, not only through extra messages but also

through pretending to be a user and following the user's protocol.

3.4 Protocols

We describe here two schemes, Oblivious Transfer [11], [15], [8] which we will show

to be equivalent to our problem in chapter 7, and the Private Information Retrieval

scheme [14] scheme, which we use in our schemes as a subprotocol.

3.4.1 Oblivious Transfer

(') Oblivious Transfer: In this protocol, Alice has n secret bits S1,..., S, and

Bob has a selection index i E {1,..., n}. At the end of the protocol, the following

three conditions hold.

1. Bob learns the i'th secret Si.

2. Bob gains no further information about the other secrets Sj for j 5 i.

3. Alice learns nothing about the value of i.

A general (n) oblivious transfer protocol based on the existence of one way func-

tions is described in Goldreich's notes [15].



3.4.2 Private Information Retrieval

The PIR scheme is an interactive protocol between a user and multiple databases

of feasible size which are not allowed to communicate between themselves but with

which the user communicates in order to obtain his query. The databases obtain no

information about the user's query, because the messages the user sends them are

uniformly distributed over all queries.

In [14] a few schemes are described.

* A scheme for k = 2 databases with communication complexity of O(n1 /3).

* A scheme for k (constant) databases with communication complexity of O(nl/k).

* A scheme for k = O(log(n)) databases with communication complexity of

O(log2(n) log log(n)).

In [3] a scheme is described that achieves communication complexity of O(n1/(2k -1))

for k databases.

For the remainder of the thesis we will denote the communication complexity of

the Private Information Retrieval scheme as CCPIR(n, k).

Here we describe the simplest scheme of [14] k = 2 databases, which suffices for

explaining the technique used to keep the user's request secret. To start with, this

simpler version is not better than the trivial O(n) solution (of sending the whole

database to the user), but after small modifications using error correction codes it

achieves communication complexity of O(n3).

In this simple example there are two databases D1, D2 and a user U.

At setup time:

* The database D = (bl, ..., bn) is duplicated into two identical copies D 1, and D 2

both contain the data values bl, ..., b,.

On Line: At this stage D1 and D2 are not allowed to communicate with one another.

* The user U is interested in the value of the query q E {1, ..., n} an index of the

database.



* U chooses at random a subset S of indices j E {1, .., n}. U then sends the

subset S to D1 and S' = S G q to D2, where Se a = {iS(:\ if aES

* D 1 sends to U the XOR of the values at the indices in S, meaning ejES bj

* D2 sends to U the XOR of the values at the indices in S'

* U XORs both of the values he has received from D1 and D2 and produces bq,

the qth value.

Neither D1 nor D2 can obtain any information about q from S, a uniformly dis-

tributed subset of n over all choices of indices.

Note that the databases are not allowed to talk to one another, otherwise they

could find q trivially.

Again the scheme we just described with only two databases is O(n) (the size of

the subset S) communication complexity. However, as it is shown in [14] it is possible

to restrict the subsets S that U chooses and to treat D1 and D2 as if they where 8

databases, thus reducing the complexity of communication to O(n1 /3 ).



Chapter 4

Random Pointer Scheme-

Protecting the Privacy of the

Database

In this chapter we present the Random Pointer scheme which guaranties Data Pri-

vacy. The security of the Random Pointer scheme is information theoretic and the

communication complexity is O(log(n) * t * CCPIR(n, k)) where CCPIR(n, k) is the

communication complexity of the PIR scheme with k databases of size n.

Before we present the scheme which achieves Data Privacy, we explain how Data

Privacy is violated in a PIR scheme in order to motivate the construction of our

scheme. In a PIR scheme, only the user's privacy is guarantied. Therefore, the user

sends the database information that is related to its query but is uniformly distributed

over all queries. On the other hand, the database sends the user information that is

directly related to its data which the user uses in order to compute his query. Thus,

this direct information might supply the user with more knowledge than just about

one query.

In our scheme, we avoid sending the user information that is directly related to

the data, yet send him something which he could use to compute his query and this

way prevent the user from gaining more information about the data. In order to do

so, we use additional random auxiliary databases so that D does not give the user



direct information about its data, rather it gives the user information about pointers

to the random database such that the value at the pointer is the same as D's data.

Using the pointers, the user only knows the data of the pointers which he followed and

accessed, and he is able to follow only one pointer by accessing the random database

directly. Therefore, the user only obtains the value of one data bit and privacy for

the database is achieved.

It remains to show how the user accesses the random database directly without

revealing the value of his query to it. This is achieved by introducing two random

databases instead of just one. The database then gives the user a pair of pointers

to locations in the random databases R1 and R2, such that the xor of the values at

those locations is the same as the value at the related index in the original database.

When the user follows the pointer directly this time R1 and R2 can't tell the value of

the user's query because they do not communicate and thus do not know the value

of the other bit of the xor that the user accessed from the other database.

4.1 The Random Pointer Scheme

This scheme consists of a user U with query q, original data of n bits D = bl, ..., bn, k

databases Di for all i E {1,..., k}, and two random databases R1 and R2. R1 and R 2

each consist of a random string with an equal number of zeros and ones. D1,..., Dk

contain the original data, D, and a copy of R1 and R2. The user interacts with the

Dis and the R's and obtains bq. At the end of this protocol, no Di or R knows q, and

U does not know more than bq about D. The Di are not allowed to communicate

with each other and with R1 and R2 after the setup time.

4.1.1 Overview

We give here an informal overview of the scheme, which allows us to achieve Data

Privacy. We start with the last stage of the protocol and go backwards. During the

final stage of the protocol the user asks R1 and R2 for their values at indices j and

1, Ri(j) and R2(1), respectively (where j and 1 are pointers to R's contents that the



user obtained by communicating with the Dis). Using the values of those pointers

the user can compute the value of his query

Ri(j) E R 2 (1) = bq (4.1)

The values of these pointers are chosen by Di's in such a way that a pair of pointers

only gives information about at most one data bit.

The rest of the interaction between the user and D 1,..., Dk serves the purpose

of allowing the user to obtain an appropriate pair of indices (j, 1) that satisfy (5.1),

without revealing any information about his query q. This is done by running a PIR

subprotocol in which D 1,..., Dk use n pairs of the form (jl, 11), (j2, 12 ), ... (jn, n) for

the n pieces of data, and q as the query of the user.

In order for the user to receive the correct value bq in (5.1), the pairs used as data

in the subprotocol must satisfy

Ri(j,i) R 2(r) = br Vr E {1,...,n} (4.2)

These data pairs cannot be chosen deterministically, because (jq, lq) will be sent to

R 1 and R 2 respectively in the clear by the user, so it should not reveal any information

about his interest q. Thus, D1,..., Dk need to share some randomness (in our case,

they share a few random permutations on n bits).

We now turn to describing the scheme formally.

4.1.2 Setup Stage

In this stage the databases get their contents.

* R 1 consists of a random string, chosen uniformly from all strings of n bits, with

equal number of O's and l's.

* R 2 consists of a random string, chosen uniformly from all strings of 2n bits,

with equal number of O's and l's.



* Every Di have the bits bl,..., b,, the contents of R 1, R 2, and three random

permutations 7r,, Ai, r : {1,..., n} --+ {1,... , n}. (The subscripts indicate

whether the permutation will be used to find a location in R 1 or R2 , and the

superscripts indicate the value of the bit that should be found in that location).

We make another assumption here that the D's and R's are honest and do not

agree on any other protocol, or do not give the R's their permutations.

4.1.3 On Line Stage

During the online stage the databases D 1,..., Dk are not allowed to communicate

with each other and with R 1 and R 2 according to the no messages assumptions, and

the R's are not allowed to communicate with each other and with the D's according

to the no communication assumption. The user obtains his desired information bq

through communicating with all of them.

* Each Di computes n pairs (jl,11), (j2,12), ... ,(j, n) from 7rlr, ,7 , {bl ... , b,},

and the content of R 1, R 2, as follows:

- j, = i,(r) for r = 1,... ,n, hence all the j's are chosen completely ran-

domly.

- lr (r = 1, . . ., n) are chosen randomly so that the contents in the j locations

and the I locations will xor to the data bits. To do that, start by letting

b = RI(jr,) b, and m = irb(r). Note that in order to satisfy (5.2) we need

to choose 1, such that R 2(1r) = b. Thus, we let 1, = the index of the m'th

b in R 2. That is, if b = 0 we choose 1, to be the index of the m'th 0 in R 2 ,

and similarly for b = 1. (Note that R2 has 2n bits, consisting of n O's and

n l's. Thus, for any b E {0, 1} and m e {1,..., n}, 1, is well defined).

* D 1,..., Dk and U run the subprotocol PIR with (j, l), (j2, 12), - - (jn, n) as

the data of Di's, and q as the selection index of the User. At the end of the

subprotocol, the User has the pair (j, 1) = (jq, lq).



. The uses sends j to R 1, and I to R2.

* R 1 sends the user the bit RI(j), and R 2 sends the user R2(l).

* The user computes the exclusive-or of these two values, yielding bq = R1 (j) E

R2(l).

Note that we chose 2 random databases R1 and R2. This number of random

databases can be increased in order to allow for the possibility that a coalition of

adversary R can be formed without gaining any information about the user's query.

4.2 Proofs of the RP scheme

Claim 1 (Correctness) If the underlying PIR scheme is correct then the RP

scheme is correct.

Proof: By reduction from the correctness of PIR, after running PIR with all the Di,

the User receives the pair (j, 1) = (jq, lq) corresponding to his selection index q. From

the way 1, was constructed, it is a location in which R2 has the bit b = Ri(j) e bq.

Thus, Ri(j) E R 2 (1) = bq and the user receives the correct value bq.

according to the way (jq, lq) is chosen

Claim 2 (User Privacy) If PIR is user private, then the random pointer scheme

is also user private.

Proof: Since the user communicates with the Di only through PIR, by reduction

from PIR, none of the Di's gets any information about the user's query from their

communication with the user. The extra information the databases have on R1, R2,

7rl, and 7r2 was created before the user asks his query, and they give not information

about the user's query either.

The only communication R 1 gets is the index j = 7r (q) j is a uniformly distributed

index in {1, ... , n}, independent of q. Thus, R 1 cannot get any information about q.

The only communication R 2 gets is the index 1, which is the location of the m'th b-

bit in R 2, where b = Ri(j) ( bq, and m = 7ri(q). Since we showed above j is uniformly



distributed, and since R 1 has half O's and half 1's, it follows that RI(j) Eu {0, 1}, and

therefore b Eu {0, 1}, independent of q. m is uniformly distributed in {1,..., n} by

randomness as above. We showed that b and m are both distributed independent of q,

in fact uniformly, and thus 1 is also uniformly distributed (in {1, ... , 2n}), independent

of q.

4.2.1 Privacy of Database

Theorem 2 (informal statement) For any strategy the user has (possibly cheat-

ing), if all Di and R's follow the protocol, the user cannot get any information about

more than one bit of data bq of his choice.

To state the theorem formally and prove it, we define the view of the user (for any

strategy), and prove that its distribution is independent of all but one bit of data.

Let U be any strategy for the recipient. U runs a PIR subprotocol with the Di's

and the data (jl, 11),... ,(ji, I,), at the end of which he receives (jq, ,l) and possibly

additional information about these data bits which the subprotocol leaks. We assume

a worst case in which U receives the full information about all the data bits, namely

he gets (jl, 11), (j2,12), ... , (jn, n), and we show that even in this worst case, U cannot

obtain any information about the real bits bl,..., b, other than a single bit bq of his

choice.

Let V(j, 1) = [(jl, 11),..., (j,, 1), Ri(j), R2(1)], V(j, 1) is the view received by a U

sends queries j, I to R 1, R 2 respectively. (This is the assumption mentioned above.

In reality, the view of U can be derived from V(j, 1), but is possibly much smaller).

Note that an honest U should set j = jq, 1 = lq, but we allow a possibly cheating U,

who may choose arbitrary j, 1.

Consider a partial view V- = [(jl, l1),...,(jn, In), Rl(j)] where the last answer

(from R 2 ) is omitted. Let M be the domain of all possible partial views V-. Thus,

IMI = 2n!(2n). We will prove that the partial view V- is uniformly distributed over

M, and from this we will be able to prove that the distribution of the complete view

V depends only on one bit of data.

In what follows, the notation X , U[M] means that the random variable X is



distributed uniformly over the domain M.

Theorem 1 Vj, 1, the distribution of V(j, 1) may depend on at most one bit of data.

More specifically, for any possible view V(jr, ,1,) E M X {0, 1},

C if Rl(j,) E R2(I,) = br,
Prob[V(jr, lr,)]

1- otherwiseIMI
where c = 1 if r = r', and E = 1 - 2 if r : r', and probabilities are taken over

the choices of 7•1 ,, 7i, R1, R 2.

Note that from this theorem, if j, 1 correspond to a pair (jr, l,) (as in the honest

user case), then the view provides complete information about br (since e = 1, so

br = Rl(jr) E R 2 ( lr)), whereas if j, I do not correspond to such a pair, only partial

information about br, is provided (since there is a positive probability for both brl = 0

and bl, = 1).

In either case, the last two components of the view contain information about the

bit br, but the view does not depend on any other bit.

We proceed with a sequence of lemmas that will prove the theorem, by gradually

adding components to the view, while maintaining its independence of all data bits

except blr. The first three lemmas will establish the uniform distribution of the V-,

and lemma 4 will complete the calculation for the last component in the view.

Lemma 1 Vj, Ri(j) -, U[{0, 1}] (probability is taken over choice of Ri).

Proof: Obvious, since R 1 is chosen uniformly from all strings of length n with half

O's and half l's, and thus for any particular location j, R, (j) is 0 or 1 with equal

probability. C

Lemma 2 Vj, [ji, ... jn I Ri(j)] - U[all permutations on {1,..., n}] (probability

is taken over choice of ?rl).

Proof: 7rl is a uniformly distributed permutation

This is true independent of R 1(j), and thus [j1,..., jI I Ri(j)] = [jl,..., j,] is also

uniformly distributed. C



Lemma 3 Vj, [i, . . . , I, R,(j), j, ... , jn] , U over all sequences of n distinct loca-

tions in {1,..., 2n} (probability is taken over choices of R1, R 2 , 7 r, ).

Proof: Given values R, (j), ji,..., j,, we want to prove that every sequence 11,..., 1,

is equally likely (i.e. uniform distribution). Fix an arbitrary R, with a suitable Ri(j).

This defines a sequence of bits {t, = Ri(r) ( br}=,. Then, for r E {1,...,n}, 1, is

chosen to be the index of the m,'th bit with value t, in R 2 , where Mr = 2rt (r). Thus,

for any particular sequence 11,..., 1,, Prob[ll,..., , I R 1, Ri(j), ji,..., j,] = Prob[Vr :

R 2 (r) = tr A 7r' (r) = mr if I, is the mr'th bit with value t, in R 2]. This probability

(for a fixed R1) is taken over R2 and 7r2, 7rl. It is not necessary to calculate the exact

probability to see that it is the same for each sequence 11,... In, since r and 7r' are

both uniformly distributed permutations. We have some number k of restrictions on

the values of Ar and n - k restrictions on the values of 7r', which yields a certain

probability that these restrictions will be satisfied, regardless of the actual values

11,..., 1,n of the restrictions'. Thus for each sequence we have the same probability,

and thus [l,... , In I R 1, R,(j), jl,..., ij] ~ U over all sequences of n distinct locations

in {1,..., 2n}. (where probability is taken over the choice of R2 , lr° , r21). This is true

for any fixed R1, and thus it is also true when R, is chosen randomly. O

Lemma 4 Vj = jr, I = Ir,

Prob[R2 (r) = 0 R,(jr), ji, .... In, 11. . ..I i] = if br, = R, [rl
1 - E if bri = R, [jr]

IFor a direct calculation, it is not hard to check that the probability is

() (n- k)! k! 1 1
(2n) n! n! (2n)! (2n)(2n - 1)...(2n - n)

which is exactly the probability of uniformly selecting a sequence of n distinct locations in
{1,...,2n}, as needed.



2(n-1) if r - r'and b,, = Ri[jr]

2 + 2(n-1) if r Z r'and br, = R [jr]

1 if r = r'and br, = R [j,]

0 if r = r'and br, = RI[jr]

where E = 1 if r = r' , and e = 2 - 1 if r : r'. (probability is taken over choices

of R 1)

Proof: Given Ri(jr), ji,..., j,, 11,..., I,, from the way the lr's were chosen, R 2(lr) =

Rl(ji,) e br,, and thus R 2(lr') = 0 4== Rl(jr,) = br. Therefore,

Prob[R2(r,) = 0 R1 (jr), ji,..., j,, li,..., l,] =

= Prob[Ri(jr() = bri I Ri(jr),ji, ... ,n, li,... ,ln]= Prob[Ri(jr) = bri Ri(jr)]
(n-2) if r r'and br Rj

_ - if r - r'and b,o = Ri[j,]

1 if r = r'and br, = Ri[jr]

0 if r = r'and br, = Ri[j]r
For r = r' this is obvious. For r : r' this is true because R1 is a random string of

length n with 2 O's and 1 l's. Given R [jrl], there are ( 1) possible strings for R1,

each equally probable. Out of those, the number of possibilities where R [jr'] = br, is

(,2), if br, = Rl[jr], and (,1j) otherwise.
n-2 1 1 2and 1 1 which

Now it is easy to verify that = 2 2(-1 + 1 which

completes the proof of the lemma. O

Proof of Theorem 2: Vj = jr, = lr, VV = [(j, ll), ... , (jn, in), Ri(jr)], VV =

[v-, R 2(lr')],

Prob(v-) = Prob[Ri(jr)] -Prob[jl,... j, I Rl(jr)].

-Prob[ll,..., In I Ri(jr),ji,..., j,] =

Since by lemmas 1,2,3 all three terms in the product are uniformly distributed over

their domain of possible values, and therefore V- is uniformly distributed over its



domain M. Now, from lemma 4 we have that

Prob[v v-] =
6

1-c

if R[j,] ® R2 [lr,] = b,,

otherwise

Combining these equations, we get

Prob[v] = Prob[v-] - Prob[v I v-] = 1-M
1--E

if Ri(jr) q R 2(lr) = blr

otherwise

which completes the proof of the theorem. O

Claim 3 (Communication Complexity)

The communication Complexity is O(log(n)PIR(n, k)) where PIR(n, k) is a private

information scheme with k database of n bits.

The communication complexity of this scheme is O(log(n)) to communicate with

R1 and R2. The complexity for communicating with the rest of the databases is

the same as PIR done for log(n) bits, O(log(n)CCPIR(n, k)). Thus the over all

communication complexity is O(log(n)CCPIR(n, k)).



Chapter 5

Randomized Approach for Secure

Data Distribution

In the previous chapter we showed how to achieve Database Privacy. However, that

scheme does not solve DRP. In this section we present a scheme which solves the Data

Replication Problem by achieving Private Data Distribution security. By private-

data-distribution security we mean that any t + 1 auxiliary databases contain infor-

mation that is t-wise independent from the original database and can be prepared

ahead of time. We assume that there are no more than t faulty databases. Therefore,

the auxiliary databases cannot construct the original data from their data and the

problem is solved. In addition we describe how to combine it with the RP scheme

of the previous section in order to achieve a scheme which guaranties Private Data

Distribution, Data Privacy, and User Privacy. The results are achieved by a reduction

on a PIR scheme with only a constant factor t > 2 increase in the communication

complexity.

We achieve this by replacing "real" copies of the database D by t random databases

(R's). These R's are constructed such that any set of up to t R's is independent of the

actual data (and thus no information about the data can be extracted from it), but

still all R's together can simulate real copies of the original database when interacting

with users who wish to retrieve information.



5.1 The Random DB Scheme

This scheme consists of a user U with query q E {1, ..., n}, and t * k + 1 Databases:

the original database D of n bits D = bl,..., b,, and t * k auxiliary databases RR4, for

all i E {1, ..., t} and j E {1,..., k} for constant t > 2 k > 1. During the setup stage, D

computes all the R's and distributed them. Then, during the runtime stage, the user

interacts with D and Rjis in order to obtain bq. At the end of this protocol, neither

D nor the Ri~s know q, and no coalition of RP,j'a of size < t has any information

about D. The Ris for different j's are not allowed to communicate with each other

or with D after the setup time, no coalition of t Rj,'s with the same j but different

i's is allowed to communicate.

5.1.1 The Setup Stage:

The original database D prepares k * t random databases denotes by:

R 1,1  R 2,1 ... Rt,

Rl,k R2,k ... Rt,k

Such that:

* The databases R1,i, ..., R(t-1),i for all i E {1, ..., k} are chosen uniformly from all

possible databases of size n.

* The databases Rt,i for all i E {1, ..., k} are computed by xoring D with all

the random Rj,i for all j E {1, ..., t}. In other words, Rt,i is chosen such that

R,i •E ... @ Rt,i = D.

Note that for each row, i E {1, ..., t} all but one of the R's can be prepared in

advance. We suggest that D does not have to prepare them at setup time, rather D

can access a special web server designed for this purpose and choose ready R's for

this protocol.



5.1.2 Assumptions:

We assume that no t databases of the same row, RI,j, ...R(t-1),j communicate with

one another.

5.1.3 Proofs of Setup Stage

Claim 4 (Communication Complexity) The communication complexity of the

setup stage of the RDB scheme is O(ktn) which is a constant factor t larger than the

setup communication complexity of the PIR scheme (when the databases is copied to

k auxiliary databases).

Claim 5 (Private Data Distribution) The view of a coalition of size < t) R's is

uniformly distributed over all D 's, and thus gives no information about D and thus

achieves Private Data Distribution security.

Proof: Any coalition of (t - 1)R from the same row is uniformly distributed over D.

Fix some t - 1R's we compute their xor. Given this xor for any D there is a possible

Rt which matches it to the xor, since all the R's are chosen randomly from a uniform

distribution, R E D is also uniformly distributed over all R, we gain no information

about D because each D is still equally likely. This is true for any subset of t - 1 R's.

5.1.4 On Line

During the runtime stage the user interacts with D and Ri,js in order to obtain bq.

At the end of this protocol, neither D nor the Ri,js know q, and no coalition of Ri,j'a

of size < t has any information about D. The Rijs for different j's are not allowed to

communicate with each other or with D after the setup time, no coalition of tRi,j's

with the same j but different i's is allowed to communicate.

User U with query q E {1... n} and the databases execute a protocol using any

Private Information retrieval PIR scheme with the restriction that PIR(((D G R) E

R), D, q) = PIR(D E R, D, q) e PIR(R, D, q) our example is [14], :

* U prepares random subsets of indices S1,..., Sk as in [14].



* U sends Si -+ Rl,i,..., Rt,i for each i E {1,..., k}

* Each database Rj,i for i E {1, ..., k} and j E {1, ..., t}, upon receiving Si sends

the user eindESi Rind Where Rind is the value R has in the ind index.

* U XORs the values he has received from all of the databases and produces bq,,

the qth value.

5.1.5 Proofs of the Online Stage

Claim 6 (correctness) The value obtained when using the RDB scheme with an

intended query q and the underlying PIR scheme is bq.

Proof: From our construction, Vi Rl,i e ... E RP,i = D, the xor of any database row

is D. Therefore, after asking each of these databases the same query and xoring the

answers, the user gets the answer he would get from D to the same query (since the

kinds of queries used involve xoring of subsets and other operations which are closed

under xor).

This is true for every row i, and thus the value obtained by combining the an-

swers of the rows is the same value obtained by combining the answers of the copies

D 1,... , Dk in the [14] scheme. O

Claim 7 (User Privacy) The messages the user sends in the RDB scheme with

a PIR underlying scheme satisfies User Privacy, i.e. are independent of the user's

query.

Proof: Since the messages the user sends to D and each Rij are the same as the

messages that he would send using PIR, his messages are independent of his query

by reduction. The R's and D's do not communicate with one another and hence

cannot find out the query. The only databases that can communicate are the ones

from one row, but they all receive the same message so they get no information by

communicating. O



Claim 8 (Communication Complexity) The communication complexity of the

Online stage of the RDB scheme is O(t * CCPIR(n, k)) where CCPIR(n, k) is the

communication complexity of a PIR scheme with k databases of size n.

Proof: The communication complexity of the RDB scheme is exactly the same as

in the PIR scheme, except that for each database in the underlying scheme we have

a row of t databases here. Thus, the communication complexity is O(t * CCPIR(n)).

Assumptions

The Ri,js for different j's are not allowed to communicate with each other or with D,

after the setup time. In addition, no coalition of t Ri,j's with the same j but different

i's are allowed to communicate at all times.

5.2 Combining RP and RDB

In the above description of the RP scheme we treated Di as if it was a database

in a PIR scheme, instead in order to satisfy the properties of RDB we treat it as

a database in the RDB scheme. In other words, in the RP scheme every Di for

i E {1, ..., k} we replace by R and Di @ R (for the simple case of t = 2). The user

sends to R and Di @ R what he would have sent to Di using a PIR scheme. When,

the user gets the xors of the locations he first finds the location given to him by R,

by xoring the results from all the R's. Similarly the user gets the locations given to

him by Di E R. The user asks R1 and R2 for the values at the locations given to

him by R and by Di E R and then xors the results to obtain Xq. Note that the main

idea here is that when the RDB scheme used the [14] it did not matter which xor

it performed first. Here it is important to first ask R1 and R2 for the values in the

locations and then xor the values, and not xor the locations and ask R1 and R2 in a

xored location.



Chapter 6

Oblivious Database Scheme for No

Data Distribution

In this section we present a scheme which solves Database Privacy and the Data Repli-

cation Problem by achieving no-data-distribution security. By no-data-distribution

security we mean that all auxiliary databases contain information that is completely

independent from the original database and can be prepared ahead of time. There-

fore, the original data is not distributed to the auxiliary database and the problem is

solved.

Before we go on to describe the scheme let us offer some motivation as to why

we prefer no-data-distribution to the private-data-distribution level of security which

we achieved in the previous chapter. Or in other words why completely independent

databases are more desirable than pairwise independent databases. There are two

immediate reasons for this. First, we would like the auxiliary database's data to be

such that it will not give any information about the database even if the auxiliary

databases break the rules and communicate among themselves. Otherwise, the data

would enable them to regroup and form a new database which they could sell without

the help of the original database. Second, we would like the auxiliary databases to be

prepared ahead of time so that they will not have to compute their random contents

immediately upon the request of the database, rather they can prepare it at a more

convenient time, and also use it for other applications.



6.1 Overview of the Scheme

This scheme involves a user, a database, and 2 random and independent auxiliary

databases. As before, the user interacts with all those databases in order to obtain his

query, while all the databases are not allowed to communicate with one another. This

type of interaction, however, is not immediate in our current scenario because if the

auxiliary databases are completely independent then how can the user obtain relevant

information from them. This difficulty is solved by assigning the auxiliary databases

a new and different purpose or function than the one they had in the previous scheme.

Their new purpose is to function as encryptors and permutors that are used to create

an oblivious database from the original database. By an oblivious database we mean

an n bit uniformly distributed string to which the database cannot find a mapping

from the bits of the original data with probability greater than chance. The random

auxiliary databases are used in two different settings. At setup time they encrypt and

permute the original database to create an oblivious database as we mentioned. At

runtime they provide the user with the decryption keys to his query to the oblivious

database.

Instead of dividing the computation in our scheme into two stages, we could have

used any multi party computation scheme. However, the communication complexity

of multi party computation schemes is too large for our purposes (more than sublinear)

and it involves many rounds of computation. By dividing our scheme into two stages,

we are able to reduce the communication complexity of the runtime stage in which

a multi party computation is not performed. On the other hand, the setup stage, in

which a multi party computation is performed is executed only at the beginning of

many queries, and we consider it no more expensive than the stage in the previous

schemes in which the databases are duplicated. The runtime stage is the one that

is executed as much time as there are queries. Therefore, the overall communication

complexity is sublinear.

At the setup stage the oblivious database is created via a multi party computation

scheme between the original database and the two random auxiliary databases. Dur-



ing the computation the Database is encrypted by one of the auxiliary database and

permuted according to the contents of the other auxiliary database. The result of the

multi party computation goes to the original database. Following this computation,

the user, at run time, is able to privately query the oblivious database by accessing

it directly. The direct access is private because the data is oblivious to the original

database and thus he cannot find the original query from the index that was accessed.

The user knows the new permuted location of his query through communicating with

the auxiliary database, and similarly he knows how to decrypt his value based on

the communication with the other auxiliary database. The communication with the

auxiliary database is done through a PIR scheme so the user's query is again secure.

Before we give the detailed description of the multi party computation scheme,

let us summerize what this scheme achieves. No data distribution privacy for the

database is achieved because the auxiliary databases are random and prepared ahead

of time. In addition, the user's privacy is achieved because the user's direct accesses is

distributed uniformly for all the queries since the oblivious database does not give any

information about its real query. The user's interaction with the auxiliary databases

is also private because it is done through a PIR scheme. Furthermore, data privacy

is achieved because the user receives the encryption of only one value, his query,

and no other. The communication complexity of this scheme is a factor of log(n)

times the communication complexity of the Private Information Retrieval scheme.

The scheme achieves information theoretic security that depends on the assumptions

we make about the faultiness of the databases. In this scheme we assume that the

databases are honest in addition we assume that they follow the No Communication

assumptions meaning that they do not communicate with one another via any form

of communication.

6.2 Setup Stage: Creating the Oblivious Database

We will now describe the multi party computation which occurs during the setup

stage and creates the oblivious database using the auxiliary databases. Later we will



describe the runtime stage.

During the setup stage the original database, D, performs a multi party compu-

tation with the auxiliary databases, R and P. The result of this computation goes

to the database and it is an oblivious version of it which is uniformly distributed in

{0, 1}" over all choices of P and R.

The oblivious database is created through a xor of the original database with R

and then permuting the result with a random permutation which is the value of P.

More formally:

* Database D contains the bits bl,..., b,

* R contains a random sequence of n bits: {xz,..., x,} which we denote by R.

* P contains a permutation P of the indices of D, (jl,... ,in).

* D, R, P perform a Multi Party computation described below to compute the

encryption of D which is a xor with R and permutation using P. E(D) =

P(R @ D) and is held by D at the end of the computation.

The multi party computation is done as follows:

D prepares a random database D1 and computes D2 such that D = D1 E D2.

R prepares random R1 and computes R2 such that R = R1 D R2.

P prepares a random permutation P1, and computes P2 such that P(D) = P2(Pl(D)).

Note that even though we ask the parties to prepare their values for the computation

now, those values are independent of one another and can also be prepared ahead of

time, i.e. R can also prepare R1 and R2 ahead of time. The following information is

sent between the parties in secure channels:

* D - R: D1

* D -- P: D2

SP--R: P1

* R--P:R2



* P-+D:P2

* P -+ D: P(R2ED 02)

D computes P2([P1(R1 e Di)]) e [P(R2 D 02)] which we will show to be P(R e D),

where the contents of [] he received. D now has P(R e D)

P and R discard all the values that were sent to them during the multi party

computation. (they discard D1 D2 R2 and P1)

After the computation

* D has E(D)

* P and R do not know D.

* E(D) is uniformly distributed over all choices of P and R.

The communication complexity of the setup stage is high - but so it is in the

PIR case when the databases are duplicated they need to send the whole data to the

auxiliary database.

6.2.1 Assumptions:

For the multi party part of the protocol we assume that the databases are Honest

But Curious: they follow the protocol meaning that they do not exchange some other

information such as an agreement of how to act later in order to get the user's query.

In addition the databases follow the no-messages assumption meaning that they do

not send each other extra messages outside of what the protocol permits.

After the MPC P and R do not need the information that was sent to them

during the computation. Therefore since they follow the protocol they can discurd

this information right afterwards. One thing to notice here is that during the multi

party computation R and P gain information that is not completely independent of

D. If P and R would get together they could obtain all of D's secrets from D1 and

D2. We still consider this scheme to achieve no-data-distribution security because P

* R -+ D: PI(R1 $ D1)



and R do not need to keep this knowledge in order to function as a database. So we

assume that they discard those bits before they have a chance to become malicious.

The assumption that the auxiliary databases indeed discurd the information which

they do not need requires honest databases. In order to relax this assumption we can

allow only less than t > 2 faulty auxiliary databases. Therefore, if we increase the

number of auxiliary databases, such that instead of having just two R and P, we

can have R1, R2, ...Rt/2, P1, P2, ...Pt/2 databases, then D can construct D1, ...Dt

instead of D1 and D2 for the multi party computation, and only a coalition of t

databases will be able to compute D from it. But we are only allowing less than t

faulty databases.

6.3 Proofs of the Setup Stage

Claim 9 (Correctness) D has P(ReD) at the end of the multi party computation.

Proof: D computes P2([Pl(R1 e Dl)]) @ [P(R2 e D2)]. Let X = (R1 ÷ D1) and

Y = (R2 @ D2) This comes down to showing that P(X) $ P(Y) = P(X E Y) In the

left side of the equation we first permute all the bits and then xor them. In the right

side of the equation we first xor the bits and then permute the bits. Thus, both sides

are equal. We also note trivially that R @ D = (R1 4 D1) @ (R2 @ D2).

Claim 10 (Security) We define the view of R to be R.V. At the end of the multi

party computation R.V is independent of D.

Proof: R.V = D1UP1 which are random sequences of bits and are chosen randomly

from all sequences {0, 1 } independently of D.

Claim 11 (Security) We define the view of R to be R.V. At the end of the multi

party computation R.V is independent of P.

Proof: R.V = P1UD1 which are chosen randomly from all sequences {0, 1}) inde-

pendently of P.



Claim 12 (Security) We define the view of P as P.V. At the end of the multi

party computation P.V is independent of D and R.

Proof: P.V = R2, D2. R2 and D2 are uniformly distributed in all sequences {0, 1}n

taken over all choices of R and D since they are the result of a xor of a bit string with

a random bit string. Therefore, the probability that P communicates with a certain

R and D is equal for all R and D's so P gets no information about them and its view

is independent of R and D

Claim 13 (Obliviousnes of E(D)) At the end of the multi party computation D's

view is an oblivious database: E (given D) is uniformly distributed over all sequences

{0, 1}". Taken over all possible R and P.

Proof: D is fixed. For every possible P we can find an R that will encrypt D to

become E. Since P and R are unformly distributed and they are chosen randomly

from those choices. Each pair of P's and R's are equally likely and therefore all E's

are equally likely and are of the same distribution.

The view of D is actually Pl(R1eD1), P2, P(R2ED2). D can compute P(R(D)),

and using P2, D can find P1(R2@D2), P1(R(D)), and he has P1(R1D1). Suppose

that D tries all possible permutations P1. For each possible permutation P1, D can

compute a properly fitting R, R1, R2 such that R = R1 e R2, by first permuting

E(D) with the inverse of P1 and then xoring the result with D. Since P, R and R1

are chosen randomly and independently , all those possibilities are of equally likely.

Therefore, D is not able to get anything new about P1 and therefore P. Similarly,

D does not learn anything new about R.

Claim 14 (Communication Complexity) The communication complexity of the

setups stage is scheme is 5n + 2n log(n) for all the messages sent in the multi party

computation.



6.4 On Line - The User's Query

Having described how E, the oblivious database, is created, we will describe how it

is used during runtime in order to achieve privacy for the user and privacy for the

database.

The on line phase involves a user U with query q E {1,..., n}. A database D

which holds the original data and the resulting oblivious database, E. In addition,

there are two auxiliary database R and P as during the setup stage.

When the user wishes to get the value of his query q, from the database D, he first

queries P using a PIR (Private Information Retrieval) scheme for the q'th index and

gets the permuted location or the corresponding location in E, jq. The user queries

R for the decryption of the value of q, using the PIR scheme. Then, the user goes to

D and asks directly for the value at jq. He then receives an encryption of his desired

value and decrypts it using the values he received from R.

More Formally: By A PIR B we mean interaction between A and B trough the

PIR protocol, and similarly DIRECT means interacting directly in the clear.

* U PIR P: q, and p PIR U:jq.

* U PIR R: q, and R PIR U:xq.

* U Direct D: jq*

* D Diret U: E(D)jq

* U decrypts by computing E(D)jq, xq in order to obtain bq.

6.4.1 Assumptions:

We assume that the databases are honest bur curious and that they follow the protocol

and do not send the user some other information then what they are supposed to.

The databases also follow the No-Communication assumption which means that they

are not allowed to communicate in any form, they are not allowed to send extra



messages and they are not allowed to act as a user for example, and interact with

another database in that way.

6.5 Proofs of the Online

Claim 15 (User Privacy) The oblivious database scheme is User Private: Given

D and E, the user's query jq is uniformly distributed for all indices i in D.

Proof: Pr•" is the permuted location of i for some i] =

All possible permutations such that j-+i given D&E
All possible permutations given D&E

Since E is uniformly distributed over all P and R which we proven in the setup stage

proofs.
All permutations s.t.j-i

All possible permutations
Because all P's are chosen randomly with the same probability from the same distri-

bution, the number of all possible permutations with one bit fixed (j --+ i) is (n - 1)!.

Therefore, the probability is:

n! - n

Therefore the probability that j is related to a particular i is the same as the

probability of guessing any i. Thus one j is not related to a particular i with any

more probability than chance. So the database cannot match the user's question jq

with the query q with probability greater than chance.

Claim 16 (User Privacy) The query the user sends P and R is uniformly dirsributed.

Proof: The user uses PIR directly to talk to P and R so therefore based on PIR

schemes P and R receives information that is uniformly distributed over all queries.

Claim 17 (Data Privacy) The oblivious database scheme satisfies Database Pri-

vacy.

Proof: D does not give extra information to the user, since the user only gets one

encrypted bit, the one of his query.



Claim 18 (No-Data-Distribution) The oblivious database scheme satisfies No

Data Distribution.

Proof: As shown in the setup time proofs, R and P do not have any information

about D, and their data was prepared ahead of time and is completely independent

of D.

Claim 19 (Correctness) If PIR is correct then this scheme gives the user the

correct value bq.

Proof: Based on the correctness of the underlying PIR scheme the user gets the

correct new location of the index q from P, and the correct xq from R. Therefore, he

is able to get the correct value from the correct location and decrypt it properly.

Claim 20 (Communication Complexity) The communication complexity is O(log(n)*

CCPIR(k, n)). Where CCPIR is the communication complexity of a PIR scheme

with k databases of n bits.

Proof: We analyze the communication complexity here, in terms of the communica-

tion complexity of the PIR [14] scheme, denoted by CCPIR(n, k). The communi-

cation complexity is log(n) to retrieve the encrypted bit, because the user sends an

index to D of size log(n). The communication complexity is O(log(n) *CCPIR(k, n))

to get the permuted location of q because it is log(n) bits to represent the in-

dex to n and we do PIR for all those bits. The communication complexity is

CCPIR(k, n) to get the random bit from R. Over all the communication complexity

is O(log(n)CCPIR(k, n))

6.6 Extensions

So far the results achieving No data distribution guarantee privacy for the user for

a single application of the scheme. However, when this scheme is used repeatedly,

the database is able to tell whether the user is asking for the same query. This

compromises the security of the user. We have not fully examined a way in which



this problem is solved, but we do suggest a scheme which can be used in future

examination.

First let us examine the following trivial solution: after each query set R and P to

be new random values and rerun the setup stage. Obviously this is too costly for the

database. Therefore, we would like to run the scheme consecutively with the same

setup stage. Another trivial solution is for the user to scan the whole database. This

way the Database does not know which query the user actually wanted. But this is

not efficient either.

In order to achieve a secure yet feasible solution we propose to use a method that

is a compromise between the two trivial methods. This solutions is inspired by the

Oblivious RAM [17] scheme. In this solution, the user does not have to scan the whole

database, instead he scans a smaller section (we propose the size n1/3 ) which we call

the shelter. Only when the shelter is full, after some queries (n1/3), we reinitialize the

setup stage, and not after every query as suggested in the trivial solution.

The scheme works by adding two parts to the oblivious database, a shelter and

a dummy section. The shelter is a separate part of memory to which the user can

write, and it holds the values of indices that were already queried along with their

permuted address. The dummy section consists of garbage values and its contents

are interwined with those of the oblivious database such that the dummy section

is indistinguishable from the other parts of the oblivious database. When the user

queries the Database he first scans the shelter. If his query is in the shelter then he

obtains it and accesses a dummy location. If his query is not in the shelter he accesses

the permuted location of his query. Since the locations of the dummy section and

the real section are indistinguishable, the Database cannot tell those two cases apart

and therefore cannot tell whether the user is accessing something for the second time.

Whichever value the user accessed (real or dummy) he then places its content along

with its address in the shelter. This way the user never accesses the same location

twice because if something was already accessed then it is in the shelter.

This gives us a method to hide the user's access pattern for multiple queries.

Since the whole shelter is scanned at each query. The communication complexity is



increased according to the size of the shelter. Therefore, the size of the shelter should

be as small as possible. On the other hand we can only have number of accesses as

the size of the shelter before we need to reinitialize the setup stage. We would like

the number of repeated steps to be as large as possible. In our case we can fix the size

of the shelter to be n1/ 3 which is the same as the PIR communication complexity so

it would only add a constant factor in our over all communication complexity and it

is a pretty large number for repeated queries without reinitialization.

We will now describe the details of how the scheme works for a shelter of size k:

Before the multi party computation:

* R adds k random bits to its data so that now it has x1, ..., ,+k

* P is a new random permutation of n + k locations.

The Multi Party Computation is performed as before.

* D receives an oblivious database of size n + k.

* D adds a size k empty shelter to its data. This shelter is write accessible to the

user.

At runtime the user has the query q which is his m'th query to the database

since the setup stage.

* The user uses PIR to get q's decryption key Xq from R as before.

* The user uses PIR to get q's new location from P, j,, as before.

* The user scans the shelter to check whether j, was already accessed. (In the

shelter the encrypted bits are tagged with their permuted location.)

* If the user finds the tag j, then he decrypts it using Xq and has his query.

- Now the user needs to access something in the oblivious database so that

the database will not know that the user is accessing the same thing again.



- The user ask P using PIR for the m'th dummy location, n + m and gets

jn+m back.

- The user directly sends jm+n to E. and receives the garbage value Xm+n.

- The user places Xm+n and a tag jm+n in the shelter.

* If the user does not find the tag jq in the shelter:

- The user asks P using PIR for the location at q, and gets jq again. (This

is done because the user needs to ask P again so that P will not know that

the user found his query in the shelter).

- The user sends directly to E jq and receives Ej3 .

- The user places Ej, in the shelter along with the tag j,.

Then for everybody:

* The user decrypts the value he obtained using xq and gets the value of his query

bq.

* P updates its public counter of how many times it has been accessed since the

setup time. So that the user will have the value of m next time.

Since the user talks to P using PIR, P cannot know whether the user is asking

for the address of a dummy location or of q again.

The user does not gain any information by looking at all the shelter because it

cannot map the tags of the shelter to the real database bits.

6.7 Draw Back of the Oblivious Database Scheme

We wish to point out a disadvantage of this scheme. The database cannot communi-

cate with the random databases R and P at all, not even as a user. In the previous

schemes if the database queried the supplementary databases as a user he could not

get information about user's queries. However, in this scheme if it queried R or P as



a user it would be able to get information about what the decryption keys are, and

therefore information about the user's queries. Although, this scheme has this disad-

vantage we feel that using it for no data distribution security constitutes a worthwhile

tradeoff since we assume that the database is trustworthy and that it will not com-

municate with forbidden parties as long as those parties do not hold information that

is dependent on its own.



Chapter 7

Similarity To Oblivious Transfer

Database Privacy and User Privacy togetehr, as achieved in our schemes are identical

to the (') oblivious transferproblem, since we defined security to mean the privacy of

the user's query and the privacy of the database's information.

In (;) oblivious transferthere are two parties Alice and Bob. Alice has a n secrets

Si, ... , S, and Bob has an index i E {1, ..., n}. At the end of the protocol, Bob gets

Si, and no information about any Sj for j : i, and Alice does not know i. In the

secure information retrieval problem the database is Alice and the user is Bob.

Previously, the Oblivious Transfer problem was only studies in a model with one

Alice. In the one Alice model it was shown that the protocols communication com-

plexity cannot be smaller then linear in n.

In this paper, the (n) oblivious transferproblem was studies in a multiple Alice

model. In this model, we have shown that the communication complexity can be

reduced to size sublinear in n. This is a major improvement because up until now

the communication complexity of (n) oblivious transferwas thought to be linear. In

addition, we achieve information theoretic security which is unattainable in the one

Alice model.



Chapter 8

Hiding User's ID

8.1 Introduction

So far we showed how to achieve Database Privacy, Private Data Distribution, and

User Privacy. This prevents the database from knowing which query the user is

interested in. However, it allows the database to gain information about the user

nontheless, because the database knows that the user is interested in one of its bits.

This is important information in cases where the access to the database itself is

controversial, and not so much which bit is accessed, as is the case of databases of job

listings. Sometimes the user wishes to conceal the fact that he is looking for a new

job but he does care to hide exactly which job he is looking for. Therefore, in this

chapter we deal with preventing the database from knowing whether a certain user

accessed it or not. We call this problem the Secure Identity problem not because we

are hiding the user's identity but because we prevent information from being linked

to the user's identity that might be used against him.

Not much work has been done in order to solve this problem. There is, how-

ever, a sight in Carnegie Mellon University called anonymizer which allows one

to "surf the web without revealing any personal information". It is currently re-

stricted to Carnegie Mellon Computer Science sites. The URL for this page is

Http://anonymizer.cs.cmu.edu:8080/ maintained by Justin Boyan (jab@cs.cmu.edu).

Still, the privacy of the user on this site is conditional on the fact that the user trusts



this particular anonymizer server since this server itself can obtain information about

the user when the user surfs through it.

In order to solve the Secure ID problem, we consider a network model which must

include more than one database or one user, otherwise since the information is sent

and retrieved, it will be clear to the database that a retrieval is occurring between it

and the sole user. Such a network can be modeled using multiple users or multiple

databases. In this thesis, we choose to use the multiple databases approach by in-

cluding in the network databases with different real data (as opposed to duplicates

or random auxiliary ones that are needed for the other scheme). This prevents a

database from knowing whether the user is accessing its contents or the contents of

another database in the network. For example the network would consist of the fol-

lowing databases: a job listing, stocks information, movies in Cambridge, a university

technical report listing. Using such a network the job listing database would not know

whether the user is interested in its data or in any other data in this network and

thus will not give the database information that is meaningful about the user.

One trivial solution to the secure ID problem is to have the user query all the

databases in the network. This way each database does not know whether the user

was interested in its bits or not. We assume that each database is queried using

PIR so that the user's query to the database will not be revealed. The commu-

nication complexity of this result is O(n * CCPIR(m)), where CCPIR(m) is the

the communication complexity to query one database of length m using PIR. This

communication complexity is too large.

Our solution achieves communication complexity of O(log(n)CCPIR(n)+log(m)CCPIR(m)

by introducing another party S which is a server who helps with the protocol. Thus

our model now consists of a user, a server, and n different databases of length m.

Each database also has a pair of R and P with which it creates an oblivious version

of it using the oblivious database scheme described in chapter 6. However, here, in-

stead of sending the oblivious database to the original database as in chapter 6, the

oblivious database is sent directly to the server S. Then the server according to a

random permutation sends it to another database in the network. The databases do



not know, and cannot determine, whose oblivious database they received. The user

queries the database as in the oblivious database scheme of chapter 6, which means

that he directly accesses the oblivious database. In order to find the new address of

the oblivious database the user queries the server S using a PIR scheme. The user

asks his query from the oblivious database in its new location in the network. Thus,

the communication complexity of this scheme is O(log(n)CCPIR(n)) for querying

the oblivious database and O(log(m)CCPIR(m)) for querying S.

8.2 Scheme

This scheme consists of n different original databases of length m, 2n databases of

random bits, 2n permutation databases, a server S, and a user. Each group of 1

original database 2 random databases and 2 permutations are assigned a location by

the server.

8.2.1 At Setup Time:

There are n databases. Each database Di has a location i in the network. The server

S contains a random permutation, NEW - LOC, that maps location i E {1, ..., n}

of each database Di to some random location 1 in the network. The permutation is

represented in S in a way that the ith index in S's database contains the location 1.

Each database Di performs a multi party computation as described in chapter 6

with the random R and P of his group. Except that now the result of the multi party

computation go to S instead of to Di. So that S receives [Pli(Rli e Dli)], P2i,

[Pi(R2i @ D2i)], and computes P2i([Pli(Rli @ Dli)]) @ [Pi(R2i E D2i)], in order

to receive E(Di) = Pi(Ri D Di). Once S has E(Di) for each i E {1, ..., n} it sends

E(Di) to the location 1 in the network, 1 = NEW - LOC(i).

At the end of this, each database in the network holds an oblivious version of

another randomly chosen database in the network whose identity it cannot determine

without communicating with the server S.

So at the end of the setup stage the network consists of databases Di which



hold their original value Di, and an encrypted database E(Dj), such that NEW -

LOC(j) = i, and S contains the value i in its j'th index.

Then S also relocates the R's and P's according to the same permutation.

8.2.2 At Run Time:

When the user wishes to ask his query q, from a database Di, he first queries S to

find NEW - LOC(i) = 1. Then, he goes to the lth place in the storage of P's and

asks Pi's for the q'th index and gets jq back. The user then asks the Ri in the lth

location for the value of q, and receives Xq. Then, the user goes to the location I in

the network and asks DI for the value in the jqth index from the oblivious database

it holds. He then receives E(Di)jq and computes E(Di)jq e z, = Diq = bq. All the

communication with P R and S are done through the PIR scheme so that P and R

do not know the user's query and S does not know the user's database.

* U PIR S: i, and S PIR U NEW - LOC(i) = 1.

* U~' Pt: q, and Pl P U: jq.

* U_-- RI: q, and R,1 R. U: Xq.

* UI_ rctD: jq, and D PIR + U: E(Di)j, = Xq bq.

* U decrypts by computing (x, @ bq) e Xq = bq.

Since Dl does not know whose oblivious database it holds, it does not know which

database the user is querying. In addition, since Di does not know which database

holds its encrypted contents, it will not be able to know whether the user is asking it

a question. In addition, the server does not know the user's query because the PIR

scheme is their means of communication.

8.2.3 Assumptions

We hold the same assumptions about the databases as we did in the oblivious database

scheme. In addition, we assume that all the databases do not communicate with the



server according to the No Communication assumption which means that they are

not even allowed to talk to the server by pretending to be a user or in any other way.

The sever does not communicate with the database according to the No messages

assumption.

8.2.4 Proofs

Claim 21 (Security:) Database Dj cannot decide that E(Di) is the encryption of

Di: E(Di) is uniformly distributed over all possible D's.

Proof: Given the view of Dj E(Di) can be the encryption of each D with the

same probability. The probability that a certain D is the database that is encrypted

depends on the appropriate P's and R's that would compute E from that D. For each

database D, Dj can produce the same number of pairs R and P that would encrypt

D to E(Di). The number of pairs is the same as the number of possible P's, because

for every P there is exactly one R which encrypts D into E and it is possible to find

an R for every P that would encrypt D to E. All the possible pairs are the same

probability because each P and R are chosen independently and randomly. This is

independent of D. Therefore, each D has the same probability of being the one that

is encrypted. So E is uniformly distributed over all D's.

In addition to hiding the user's identity, the database DI is not able to find which

query q the user is asking because the user asks jq and receives xq, bq which gives

DI no information about the value of bq, or the location of q.

Claim 22 Correctness: At the end of the scheme the user gets bq if the underlying

PIR scheme is correct.

Proof: The correctness of this scheme is trivial. Since the server S distributes the

encryptions, the user gets the correct new location from S, based on the correctness

of the PIR scheme used. The user then gets the correct new location of the index q

from Pi, and the correct xq from Ri for the same reasons. Finally the user asks for

the value at E(Di)jq and xors it with xq to obtain bq.



Claim 23 (Communication Complexity:)

The communication complexity is O(log(n)CCPIR(n) + log(m)CCPIR(m)).

Proof: The communication complexity is log(n)CCPIR(n) to get the new location

(of logn bits) of the oblivious database. It is a constant to retrieve the encrypted bit.

The communication complexity is log(m)CCPIR(m) to get the permuted location

of q (of log(m) bits). The communication complexity is CCPIR(m) to get the ran-

dom bit from R. Over all the communication complexity is O(log(n)CCPIR(n) +

log(m)CCPIR(m)).

At setup time the server has to send n databases which is communication com-

plexity n * m.



Chapter 9

Future Work

* Repetitions: The schemes in this thesis were proven to be secure for one applica-

tion of the protocol. However, for the application of those schemes it is natural

that they work for multiple executions as well. Since restarting the scheme in

every execution is too expensive because of the setup time, we would like to

guarantee that our scheme will also work for consecutive queries.

* Removing the No Communication assumption: In order for our scheme to be

secure we must assume that certain databases must not communicate with

others by any means. We would like to relax this assumption and allow for

the databases to communicate as a user for example, but still forbid them from

sending extra messages.

* Reducing communication Complexity even further.



Chapter 10

Conclusion

In this thesis we introduced and solved three privacy problems in Secure database

access protocols: Database Privacy, the Data Replication Problem, and the Secure

user Identity problem. Database Privacy is concerned with keeping the databases

information secure from the user. The Data Replication problem deals with a new

security concern for databases that emanates from the need to replicate and distribute

their contents in order to achieve security for the user. The Secure user ID problem

is concerned with keeping private the user's identity, so that no information can be

associated with or learned about that identity.

We solve those problems by using our scheme for communication between a user,

a database and auxiliary databases whose contents are not dependent on the original

database. This protocol allows the user to keep his query secret from the databases,

and allows the database to keep its data secret from the auxiliary databases and

from the user (except for the value of the particular query). We also showed how to

extend that scheme into a protocol for a network of databases that solves the Secure

ID problem. Those protocols rely on no cryptographic assumptions and maintain

sublinear communication complexity in the size of the database.

We showed two reductions:

Theorem: For any k > 2 given any Private Information Retrieval k-database

scheme for n data bits with communication complexity R(k, n) there exists a private-

data-distribution and database private 2k-database scheme with communication com-



plexity O(R(k, n) log(n)) where each database holds O(n) bits.

Theorem: For any k > 2 given any retrieval k-database scheme for n data bits with

communication complexity R(k, n) there exists a no-data-distribution and database

private 2k-database scheme with communication complexity O(R(k, n) log(n)) where

each database holds O(n) bits.

In addition, we solve the Secure ID problem by presenting a protocol for a network

of a user U, n databases of size m with an additional server S. A database in the

network does not know whether U asked him a query or asked a query from another

databases. Therefore, we say that he does not know the identity of the users that are

querying him. The communication complexity of that scheme is O(log(n)R(n, kl) +

log(m)R(m, k2)) for constants k1 and k2.
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