
Recognition of Hand-Drawn Circuit Diagrams

by

Joanne M. Mikkelson

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Science and Engineering
and Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1997

@ Joanne M. Mikkelson, 1997. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant

others the right to do so.

Author.
Department of Electrical Engineering and Computer Science

August 27, 1997

Certified by

Paul A. Viola
Assistant Professor

Thesis Supervisor

--7;)

Accepted by

Chairman, Department
Arthur C. Smith

Committee on Graduate Theses

iT)f

Recognition of Hand-Drawn Circuit Diagrams

by
Joanne M. Mikkelson

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 1997, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Electrical Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes a partial implementation of a pen-based recognition system for hand-
drawn circuit diagrams. The finished system will become a part of an electronic engineers'
notebook. The system incrementally recognizes pen strokes as either wires or circuit ele-
ments. These are then connected through a series of rules. A C++ implementation will be
described. Discussions include steps to take to complete the project, as well as touching on
some general issues which need to be solved to recognize circuit diagrams.

Thesis Supervisor: Paul A. Viola
Title: Assistant Professor

Acknowledgments

First I'd like to thank my advisor, Paul Viola, for giving me the chance to work with him

when I wandered by last spring. I've learned quite a lot since then, and he has always been

understanding and willing to help.

I should also thank Andre DeHon and Tom Knight for helping me wander in the right

direction.

David Krikorian has been a wonderful source of support during my work on this thesis.

He has always been there to listen to my frustrations and complaints, to help me figure

out what steps to take when I faced a tricky problem to solve, and to give me emotional

support.

I'd also like to mention my friends, who, during the final stages of the thesis, were there

when I took the time to look for them. It was always a great boost, helping me through

the slow times.

Finally, a special word of thanks must go to Terri Iuzzolino; without her generous

actions, I would not be where I am today.

Contents

1 Introduction 11

1.1 The Natural Log 11

1.2 Preview 12

2 Drawing Circuits with The Natural Log 15

2.1 G oals 15

2.2 Scope of This W ork 17

2.3 A Sample Circuit 18

3 Implementation 21

3.1 Overall Project 21

3.2 Naming Convention 22

3.3 Important Data Types 22

3.3.1 Strokes 22

3.3.2 Paths 23

3.3.3 Recognized Objects 25

3.3.4 N odes 26

3.3.5 W ires 28

3.3.6 Elem ents 30

C ircles 33

3.4 Other Data Types 33

3.4.1 UnRecObj 33

3.4.2 List Classes 33

The Stroke Registry 34

3.4.3 Painter 34

.. 36

3.4.5 W indow Classes 37

3.4.6 Other Kinds of Recognized Objects 38

3.5 Overview of Control Flow 38

3.5.1 User Input 38

3.5.2 Output from the Recognizer 39

3.5.3 Control Flow in the Recognizer 39

Recognizing the Strokes as Parts of a Circuit 40

After Recognition 41

The Adjustment Methods 42

Back to strokeDone 42

3.6 Algorithms Employed in the Recognizer 43

3.6.1 Rules for People 43

3.6.2 Rules for Making Connections 44

How the Recognizer Identifies Possible Connections 44

Choosing the Best Connection 47

3.6.3 The Adjustment Methods 48

A Detailed Look at adjustWireEnds 48

Noteworthy Differences 50

Why Do We Need Both Directions? 51

3.6.4 Other Algorithms 52

3.7 A Closer Look at the Example Circuit 53

4 Future Directions 59

4.1 Complete the Implementation 59

4.1.1 M ore Elements 60

Recognizing Elements 60

Redrawing of Elements 61

4.1.2 Let the User Draw Nodes 61

4.1.3 Connect Nodes in the Middle of Wires 61

4.1.4 Find Connections Before Redrawing 62

Implementation 63

3.4.4 Recognizer

4.1.5 Redraw-On-Command

4.1.6 The Output of Circuit Recognition

Spice.........................

Transfer Function

4.1.7 Draw Circuits Better

4.2 Combine with Other Parts of The Natural Log

4.2.1 Adapt Recognizer

M odes .

Threads

4.2.2 Matching Numbers with Elements

4.3 What Does Not Work

4.3.1 Error Handling

4.3.2 Too Much Code

4.3.3 Connections Maintained by Wnodes

4.3.4 Adjustment Algorithms

4.3.5 Wires on top of Others

4.4 Improvements

4.4.1 Small W ays

findSegmentsCrossing

Automatically Create Leads

Methods for Finding Object Crossings

Multiple Connections to One Place for Wnodes

List Classes

4.4.2 Bigger Ways

Use a Ruleset

Re-Couple Representation and Topology

De-Localize Connection Decisions

Draw Elements on Wires

Training

4.4.3 Questions to Ask

Close to Parallel

Wnode Connections

.. 64

. 65

.. 65

.. 66

............ 66

. 67

.. 67

.. 68

.. 68

. 69

.. 670

.. 70

.. 71

. 71

.. 73

.. 75

.. 75

.. 75

.. 75

.. 76

. 76

. 76

.. 77

.. 77

.. 77

. 78

. 78

.. 79

.. 79

.. 80

. 80

. 81

Moving Wnodes on Elements 81

Other Ways to Determine Topology 81

5 Conclusion 83

List of Figures

2-1 A Circuit

First Stroke of Example Circuit

Second Stroke of Example Circuit

Third Stroke of Example Circuit

Fourth Stroke of Example Circuit

Continuing As Before, to Produce a Circuit . .

Another Stroke, Demonstrating More Features

Final Result

3-1 A Loop Denoting Crossing Wires Which Do Not Connect .

The First Stroke

The First Stroke, Redrawn ..

The Second Stroke

The Second Stroke, Redrawn .

The Third Stroke

The Fourth Stroke

Three More Strokes, Redrawn.

The Final Stroke

The Final Circuit

A Stroke Which Will Be Misinterpreted

Two Different Ways to Connect Nearby Wires.

Two Lines Which Might Connect

Two Lines Which Should Not Connect

2-2

2-3

2-4

2-5

2-6

2-7

2-8

. 15

. 18

. 18

. 19

. 19

. 19

. 20

........ . 20

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

4-1

4-2

4-3

4-4

.. 53

.. 54

.. 54

.. 55

.. 56

.. 56

.. 57

.. 57

.. 58

Chapter 1

Introduction

Engineers and students often draw electrical circuits. Sometimes, when the circuit is fin-

ished, a student needs to sketch the transfer function of the circuit. Or, the circuit might

be destined for a simulation, and would need to be translated into a non-pictorial form so

that it may be understood by a simulation program. Or, even more simply, the circuit just

needs to be stored away, so that it can be referred to later.

All of these functions could be carried out much more simply if only the circuit could

be drawn on a computer, with the same interface as a piece of paper. The circuit could be

drawn freehand with a pen, without requiring the use of a drawing program for which a

complex user interface must be learned. The computer would then recognize the parts of

the circuit, build up a correct description of the topology, and then send the appropriate

representation of the circuit to a mathematical package, a circuit simulator, or a file on a

hard disk. Then, an engineer need only draw the circuit once, and it can be used for many

different types of analysis, converted into a component of a larger circuit, or printed onto

paper for distribution.

This thesis documents a system under development which, when completed, will carry

out these tasks. This circuit recognition system is part of a larger project called The Natural

Log.

1.1 The Natural Log

The Natural Log is a project to develop an electronic engineers' notebook. It is a pen-based

system; input is collected from the user by his drawing with a pen on a display. This display

collects input, and draws a line where the pen has traversed the display, so that the user can

see where he has drawn. This interface is similar to the popular small pen-based computers

such as the Newton or the Pilot, except that The Natural Log is larger, about the size of a

paper notebook.

The Natural Log will be able to understand many kinds of input which an engineer

might use. Minimally, text, equations, circuit diagrams, and sketches of functions will be

accepted. As in a paper notebook, these different forms of input might be intermixed; text

might be illuminated with a graph, equations might augment a circuit, and so forth. The

Natural Log will be able to perform many useful actions for each form of input. A circuit

might be given to a simulation package. Certain text might lead The Natural Log to do a

document search, so that the user may see additional information on what is being written.

Equations could be evaluated, simplified, or graphed.

The first step is recognizing the individual parts of the input. The Natural Log must

identify strokes drawn by the user as circuit elements, or letters, or axes of a plot. Then,

combinations will be built, to form a circuit, a paragraph of text, or an entire equation.

These logical units can each be acted upon independently, or combined to produce another

larger unit.

1.2 Preview

The rest of this document is devoted to discussing work on the circuit recognition aspect

of The Natural Log. This work is not completely independent of other portions of The

Natural Log, especially equation recognition. However, much of the work can be considered

by itself.

Chapter 2 presents a more complete picture of the goals and progress of circuit recog-

nition in The Natural Log.

In Chapter 3, details about every part of the circuit recognition in The Natural Log

are presented. Some of this information is useful to anyone who will continue work on the

project. Some is needed to understand the problems and solutions discussed in Chapter 4.

Chapter 4 discusses many things to consider in future work. The implementation of

circuit recognition is not yet complete; proposals for completion are listed. More important

are the subsequent observations on what the system has demonstrated to be insufficient

approaches, and what better methods can be employed.

Chapter

Drawing Circuits with The

Natural Log

There are many aspects to understanding a circuit as it is being drawn. Ultimately, The

Natural Log will serve as a useful tool in drawing, understanding, and creating circuits.

The work discussed in this document takes steps towards achieving these goals.

Figure 2-1: A Circuit

2.1 Goals

The first step in recognizing circuits is to recognize the individual circuit elements as they

are drawn. Not only is it necessary to recognize single-stroke and multiple-stroke elements,

but other lines must be recognized as wires. Wires can be drawn in an arbitrary fashion, so

almost any stroke may potentially be intended to represent a wire. It will be imperative to

be able to distinguish a stroke which is a component of an element from a stroke denoting

a wire. Success in this part of the circuit recognition problem is very important to a good

system. Information about what is currently in the circuit will prove useful for making

these distinctions.

After the elements and wires have been distinguished, the next step is to understand

how they are intended to be connected together, as a particular assortment of transistors

and resistors is not interesting until wired together. The drawing could be a bit sloppy; for

example, two wires may not actually meet, or a wire which was supposed to terminate on

another may overshoot. The Natural Log must be able to produce an accurate description

of the topology of the circuit in such cases. Also important to this step is allowing nodes

to be drawn, to connect wires otherwise assumed to simply cross and not connect.

A picture of a circuit alone might communicate enough, as in a drawing of a simple filter,

or an amplifier. But elements need to be given values before the exact behavior of a circuit

can be determined. The Natural Log will provide a method to input these values. The

values might be written directly on the circuit, next to the elements. Then, the numbers

might stay, or they might vanish, to reduce visual clutter.

Once the topology of the circuit has been determined and the values of elements are

assigned, many interesting actions may be performed. A linear circuit produces a transfer

function. The Natural Log could graph it, or suggest a simpler circuit which produces a

similar function. A more complicated circuit might be translated into a format suitable

for a simulation program such as Spice. The Natural Log might point out floating nodes.

Certain element values could be marked as unknown, and constraints placed on others.

The Natural Log need only recognize these cases and then use a simulator or search for

information which will help determine the values needed.

As part of the interface, The Natural Log needs to be able to draw the circuit in a clear,

clean fashion. If a sloppy circuit is drawn, and a neater one results, it will be easier to add

to the circuit, or catch errors. It would be easy to connect elements by drawing wires across

long distances, but this could be very difficult for a human to understand. The Natural Log,

armed with information about the topology of the circuit, could straighten wires and route

them around elements. Elements might be moved to a less crowded location. The Natural

Log could also present changes to the overall layout which convey additional information

about signal flow through the circuit.

There may be different ways for a person to draw a circuit. He may do it in a scattered

fashion, or from left to right. Different drawing styles may lend themselves to different

ways of presenting the circuit. While some people might appreciate having each part of

the circuit redrawn as they proceed, others might prefer instead that the circuit only be

recognized and redrawn after several parts of the circuit have been drawn. The Natural

Log must be able to recognize and redraw the circuit both incrementally and in batches of

strokes.

2.2 Scope of This Work

This set of goals calls for a large body of work. Presented here is the scope of the problems

chosen for initial work, and the progress made towards achieving these goals.

The problem of recognizing elements, wires, nodes, and the numbers and symbols de-

scribing element values is in itself a complex problem. A way to improve recognition and

understanding of elements and wires, as well as recognition of numbers and equations for

elements, involves using information about surrounding characters and circuit structure. As

there is other closely related work for The Natural Log, recognizing multiple-stroke charac-

ters specifically in the context of equation recognition, this portion of the circuit recognition

is not dealt with here.

The first simplification of this problem involved deciding that the picture for any element

should be drawn only with consecutive strokes. That is, if the user is drawing a capacitor,

he cannot draw the first I, then move to another part of the circuit and draw a resistor, then

return and draw the second I. If he were to do so, the two halves of the capacitor would be

interpreted as something else, most likely two unconnected wires.

As a further simplification, avoiding the initial recognition problem to a large extent,

only one element was allowed: a circle. This allowed the topology to be worked on first.

The topology recognition does not depend on the number of elements possible, and on only

certain pre-defined aspects of what they look like. Hence, additional elements may now be

added, without them having complicated earlier work on topology.

Currently, the circuit recognition will connect wires and circles together based on the

distance between them. If the user draws a wire, each end of the wire is connected to the

nearest element, if it is within a certain distance of the end of the wire. If an end does not

connect to an element, it may be connected to another wire. After this step, any leads of

elements or ends of other wires are then connected to the new wire, again, if they are close

enough to the new wire. Similarly, if the user most recently drew a circle, any ends of wires

close enough to the circle will be connected to the circle.

2.3 A Sample Circuit

A clarification of what The Natural Log will do during the circuit-drawing process can be

seen in a simple example circuit. The user starts by drawing a wire, figure 2-2. Only sharp

Figure 2-2: The first stroke drawn.

changes in direction will be detected as corners in the wire. This straightens the wires,

making the circuit look better. It also reduces the number of separate parts of a wire which

need to be dealt with by The Natural Log. Next, an element is drawn, seen in figure 2-3.

The end of the first wire is connected to the element, and a lead is created, which is not

O

Figure 2-3: The first stroke has been redrawn (in grey), and the user
has drawn another stroke.

visible in this case. If the user draws a third stroke as in figure 2-4, the element is connected

to this newest wire.

In figure 2-5, the middle of the new wire will be connected to the older wire. Adding

some more elements and wires in the same manner produces a simple circuit (figure 2-6).

The Natural Log will also route new connections to elements to the right place on the

element, attaching them to the lead. If the line in figure 2-7 is now drawn, the wire will be

connected to the lead on the element, not another point on the element, as seen in figure 2-8.

Figure 2-4: The second stroke was redrawn as a circle, again shown
in grey. It has been connected to the first wire. The third stroke has
also been drawn.

Figure 2-5: Another wire, which should be connected to in the mid-
dle.

Figure 2-6: Note that the middle of the wire drawn in figure 2-5 has
been connected. Shown is the resulting circuit after several more
strokes.

Figure 2-7: The newest stroke.

Figure 2-8: The final circuit. Note that the connection was made to
the wire below the element, rather than the element itself.

This circuit illustrates many of the abilities of The Natural Log. A full explanation

of the process by which this circuit is produced will be seen in Chapter 3, including a

walk-through in section 3.7.

Chapter 3

Implementation

In this chapter, most aspects of the implementation of circuit recognition for The Natural

Log will be discussed. After a brief overview of recognition in The Natural Log, sections 3.3

and 3.4 discuss the many data types in use. Section 3.5 explains how control is passed

between these data types. The algorithms used for circuit recognition are examined in

detail in section 3.6. Finally, the way in which the data, control flow, and algorithms fit

together is clarified by returning to the example circuit seen in section 2.3, in which the steps

taken to recognize and redraw each stroke of the example circuit are presented. Readers

only interested in an overview are encouraged to read section 3.7 first.

3.1 Overall Project

Presently, The Natural Log runs in Windows NT. It is written in C++, using the Microsoft

Foundation Classes (MFC) libraries.

Each time the user draws on The Natural Log, a stroke is generated. This stroke must

then be interpreted in the context of previous strokes for The Natural Log to recognize

circuits. The stroke is first recognized as a particular circuit object, for example, a resistor.

Then the resistor needs to be connected to other parts of the circuit being drawn, if the

user so intended. Then the resistor can be redrawn cleanly, connected properly to the rest

of the circuit and drawn with straight line segments. At present, all of this processing

is done in one class, CRecognizer, which will be discussed in further detail below (see

sections 3.4.4, 3.5.3, and especially 3.6). A single instantiation of this class, which will

be called the Recognizer, takes each stroke as it is drawn and makes a decision about the

action to take. Should this stroke be taken to be a part of an equation, or as part of a

circuit? If the Recognizer labels the stroke as part of a circuit, the precise actions taken are

independent of those needed if the stroke were part of an equation.

Making the details of circuit recognition independent of other forms of recognition is

a simple division of labor which allows the project to easily develop in several directions

simultaneously. This straightforward plan underlies the structure of the Recognizer as seen

here.

3.2 Naming Convention

Following the naming convention of MFC, all classes are named with a "C" at the beginning

of the name. Throughout the rest of this document, a reference to a class will be to the full

name, e.g. CRecognizer. A reference to any given instantiation of a class will be referred

to by everything after the 'C', e.g. the Recognizer.

3.3 Important Data Types

3.3.1 Strokes

A stroke, as mentioned above, is generated by the user as he draws. It represents primarily

an ordered list of screen locations. The first point is the location of the pen down event.

Each subsequent point represents a sample of the position of the drawing pen, until the final

point, which is the location of the pen up event. The time at which the sample points are

collected is not recorded. If the user sets the pen down and waits a long time before moving

it, there are no extra samples at the pen down location, and after the fact, one cannot tell

by looking at the data in a stroke that the user had waited, instead of moving the pen

immediately. This means that since samples are taken only when the pen has moved, the

samples can not be assumed to be taken at equal time intervals.

The class used to represent such a stroke is CStroke. A Stroke maintains the list of

locations in an array. These locations are added to the Stroke one at a time, as the user

draws. A Stroke also has members which keep track of the minimum and maximum x and

y value of the sampled points, a length (the sum of the Euclidean distances between each

point and the next sequential point), and another array, distvec, which holds the length

computed for each screen location which has been added to the Stroke. In other words, the

first element of distvec is 0, then the distance between the pen down location and the

first sample, then the sum of that distance and the distance between the first sample and

the second sample, and so forth.

The length information is used to resample the Stroke during recognition. The meth-

ods used for recognition are not discussed here, 1 and CStroke was developed prior to the

addition of circuits to The Natural Log. It is the most basic form of information about the

user's input, so it is still vital to work on the circuit recognition problem. A Stroke can be

thought of as principally a unit of data. The most important method of CStroke is used to

add new points to the Stroke during data input.

3.3.2 Paths

An object of class CPath is similar to a Stroke, but more powerful. Paths are generated to

serve as part of the representation of parts of the circuit. A Path may either be a series

of points to connect, like a Stroke, or it may be an arc of a circle. A set of Paths can

describe any part of a circuit which contains only line segments and arcs. Some potentially

interesting elements of a circuit, like OR gates, can be represented this way, but will not

look right, as the curves are not arcs of circles. If necessary, other kinds of curves may be

added to CPath. Alternately, such a curve may be represented as a series of line segments.

This sort of representation, at least for objects containing arcs, is avoided by CPath.

An arc is specified by the a Point at the center of the arc, another marking the beginning

of the arc, another marking the end of the arc, and a radius. The arc is always assumed to

proceed counterclockwise, the direction of positive increasing angle, from the starting Point

to the ending Point. If the two points are at the same location, the arc will be interpreted

as a circle, not a zero-length arc. If a Path is not an arc, it is a series of locations, connected

in order.

A Path keeps track of its own bounding box. It also will compute such useful information

as whether a line segment crosses part of the Path, the minimum distance of a point from

the Path, etc.

segmentCrosses (CPoint *segStart, CPoint *segEnd) returns TRUE if the line segment

'This work is being carried out by Erik Miller, and will be published at some point in the future.

between segStart and segEnd crosses the Path at any point. Otherwise, it returns

FALSE.

findConnectionPoint (CPoint *segStart, CPoint *segEnd) computes locations where

the entire line described by segStart and segEnd intersects with the Path. A pointer

to a Point at the location nearest to segEnd is returned. If there are no intersections,

NULL will be returned.

findCrossings (CPoint *segStart, CPoint *segEnd) returns an array of pointers to

Points. The Points are the locations at which the line described by segStart and

segEnd intersects with the Path.

pointWithin(CPoint *pt, int howfar) returns TRUE if the Point pt is on the Path or

lies within howfar pixels of the Path.

distance (CPoint *pt) returns the Euclidean distance from pt to nearest point on the

Path.

The following methods may only be called if the Path is an arc. The angles employed here

use the standard definitions of 0 angle and positive angle, as seen by the user; however,

the window coordinates have increasing y values as one moves towards the user. Thus,

the y-axis is flipped, and converting these angles into window coordinates and vice versa

requires one more negation than normally seen. computeAngle0f and computeLocation0f

are designed to be used together; if they are always used together, no problems should arise.

computeAngle0f (CPoint *pt) computes the angle of the line through the center point of

the arc and pt, using the definitions above. The value returned will be between 0 and

27r.

computeAngle0f (double x, double y) is the same as above, except that the x-value and

y-value are specified, rather than hidden in a Point. They can also be doubles this

way; Points contain only integers.

computeLocationOf (double angle) is the inverse of computeAngle0f. This method re-

turns a pointer to a Point which is at the location specified by the radius of the arc

and angle.

A Path has other methods, needed to use the Path for drawing:

· _____

isArc () returns TRUE if the path is an arc, FALSE if the path is a series of line segments.

boundingBox () returns a pointer to a Rect describing the bounding box of the Path.

linePoints () returns an array of Points representing the Path. The first Point in the

array is the start of the Path, and segments should be drawn between each Point and

the next. This method can only be used if the Path is not an arc.

The following four methods apply only if the Path is an arc.

arcCenter() returns a Point representing the location of the center of the are.

arcStart () returns a Point representing the location of the start of the arc. The arc, as

described above, goes counterclockwise from this location.

arcEnd() returns a Point representing the location of the end of the arc. The arc proceeds

counterclockwise from the starting location to the location returned by this method.

arcRadius () returns the radius of the arc.

Finally, there is a set of constructors, methods for specifying the important information

for each kind of Path, and for resetting a Path so that new values may be used.

3.3.3 Recognized Objects

The Recognizer needs to be able to identify Strokes as specific objects: the number 2, the

letter a, a resistor, a circle, etc. As any of these may be produced by the user, it is useful

to have an abstract class for all objects which have been recognized as something specific.

This class is CRecObj. There are no instantiations of this class; it is merely a parent class

for all other kinds of recognized objects. As such, it has a minimal interface; it does not

contain any data, but there is a small set of methods.

Each instantiation of a subclass of CRecObj (a RecObj) is expected to implement this

set of methods.

inputStrokes() returns a pointer to a list of the Strokes drawn by the user which are

considered part of the RecObj.

isRedrawn() returns FALSE if the RecObj should be displayed as the Strokes drawn by

the user; returns TRUE if the RecObj should be displayed in a standard fashion.

The next two methods are related to a very simple method to provide run-time type infor-

mation. CRecObj and each of its subclasses are assigned a unique integer identifier.

getType () returns the identifier for the class of the RecObj.

isKind0f (int) returns TRUE if the integer is the identifier for the class of the RecObj or

one of its parent classes. Otherwise it returns FALSE.

Calling code should take care not to use getType in situations where the return value

is tested against the identifier for a parent class. If the object is a subclass, the identifier

for the subclass will be returned, and a test for the parent class will fail. Code like

switch(obj->getType()) {

case T_ELEMENT:

should be avoided, since the ELEMENT type is subclassed (section 3.3.6). The identifiers are

assigned via an enum:

enum {T_RECOBJ, TUNRECOBJ, T_WNODE, TWIRE, TELEMENT, TCIRCLE};

There are no other specifications for subclasses of CRecObj.

3.3.4 Nodes

Class CWnode, 2 a subclass of CRecObj, represents a node in the circuit. Every connection

between wires and elements in the circuit is maintained by a Wnode. Each connection has

two parts: a pointer to the specific RecObj connected to the Wnode, and a pointer to the

location of the "other end" of the connected part of the RecObj. The location of the Wnode

is expected to be at one end of a line segment representing part of the RecObj, and the

second part of the connection is the other end of this line segment. If the Wnode was at one

end of a simple L-shaped wire, the "other end" would refer to the location of the corner in

the L. A Wnode may have any number of connections to a single RecObj, but it is required

that there not be more than one connection for which the "other end" is the same. For

elements with arcs in them, this paradigm must be stretched, as arcs do not have straight

lines inherent to them. The intention of this representation of connections is to simplify

computation of good layout for the circuit. For example, by looking at all the connections of

2The W stands for "wire"; there was already a CNode class in MFC.

a Wnode, the Recognizer might be able to determine that a certain location for the Wnode

would allow each line segment connected to the Wnode to be strictly horizontal or vertical.

Connections are added to Wnodes by calling the addConnection(CRecObj *, CPoint*)

method. The first argument is the RecObj being connected to; the Point describes the

location of the "other end". Connections may be removed based on the location of the "other

end" via the removeConnectionAt (CPoint*) method, or all connections to a particular

RecObj may be removed by the removeConnectionsTo(CRecObj*) method. If there are

more than three connections, the Wnode is drawn as a dot, 9, otherwise it is invisible.

A Wnode, unless specified otherwise, has no limit on the number of connections to other

RecObjs. A maximum number of connections may be assigned to the Wnode; once that

number is reached, the Wnode will not add any new connections. The isFull() method

returns TRUE if the Wnode is in this state. It is advisable for calling code, when changing

connections on Wnodes, to remove the old connection first, then add the new connection;

otherwise, if the Wnode is full, adding the new connection first would fail.

The Wnode maintains a pointer to a Point which represents the location of the Wnode.

This data member is public because it is commonly used by the Recognizer and other

RecObjs. The pointer value is always used, so that when the Wnode moves, the change

in location takes effect everywhere. Since the pointer is used, there was no purpose in

protecting the data and then adding a method to return the pointer. Calling code must be

careful to change neither the pointer value nor the data in the Point; Wnodes may only be

moved by calling the moveTo(CPoint) method.

The remaining data members are: a pointer to a Stroke, for the case where the Wnode

was drawn by the user, a pointer to a Path describing how the Wnode looks on the screen,

a boolean for the return value of isRedrawn() (as described in section 3.3.3), and a pointer

to the owner of the Wnode. The owner of the node can be any RecObj in the circuit, and

it is that RecObj which is responsible for deleting the Wnode should it be appropriate.

Assignment of the owner may be fairly arbitrary; typically if the Wnode's owner is deleted,

the owner will change the Wnode's owner to another one of the Wnode's connected objects.

When a Wnode is deleted, it does not delete the Point representing its location. Thus,

if nothing else refers to the Wnode's location, the calling code should delete the Wnode's

location before deleting the Wnode.

As explained above, a Wnode may only be moved by calling the moveTo(CPoint)

method. The Wnode then alerts each RecObj connected to it by calling the object's

nodeMoved method (see sections 3.3.5 and 3.3.6 for discussion of this method). The re-

turn value of moveTo is a pointer to a Rect describing the area which needs to be redrawn,

because parts of the circuit have changed location. If nothing needs to be redrawn, NULL is

returned.

To combine two Wnodes A and B, one should use A->connectNode(B); A will assume

the connections of B and alert each RecObj connected to B by calling changeNode. The

changeNode (CWnode *from, CWnode *to) methods should assume that A has already as-

sumed B's connections; only data internal to a RecObj should be changed by its changeNode

method. See sections 3.3.5 and 3.3.6. Like moveTo, connectNode returns a pointer to a

Rect describing the redraw area, or NULL.

3.3.5 Wires

Class CWire provides the representation of the wires in a circuit. The parent class is

CRecObj. A Wire can be described as an ordered set of locations; the Wire is displayed by

connecting these locations with line segments.

The most critical part of a Wire is the collection of Wnodes and corners which describe

the Wire. The endpoints of the Wire are each a Wnode. Between these Wnodes, called

the startNode and the endNode, there may be any number of other Wnodes or corners.

A corner is a location at which the Wire changes direction. No other circuit elements are

connected to the Wire at a corner. Each connection to the Wire must be to a Wnode.

During the lifetime of a Wire, a corner may need to be converted to a Wnode to allow a

connection at that location. Connections may also be made to a point on a segment between

two Wnodes or corners; the Wire achieves this by adding a Wnode there.

The CWire class contains a large amount of code; most of it is devoted to properly

maintaining this list of Wnodes and corners. A few of the key methods related to this are:

addNodeAt (CWnode *node, CPoint *where) adds node to the Wire at the location spec-

ified by where. If where is at the same location as a Wnode already in the Wire, the

Wnode in the Wire is absorbed by node via the connectNode (CWnode*) method. If

where is at the same location as a corner in the Wire, the Wire converts the corner

to node, adding connections to node as necessary. Finally, if where falls along a line

between two corners or Wnodes A and B, node is added to the wire between A and

_~~

B, adding connections to node to the locations of A and B, and changing connections

of A and B if they are Wnodes.

If node is at a different location than where, the Wire will change to pass through

node's location. The return value is either NULL, or a pointer to a Rect describing

a rectangle to be redrawn, in the case where adding node changed the shape of the

wire.

changeNode (CWnode *from, CWnode *to) is called by to during a call to its connectTo

method (see section 3.3.4). The Wire will change all its pointers to from so that they

refer to to. Also, any connections in other Wnodes to from's location will be removed,

and connections will be added to to's location. As a final step, if the Wire has two

references to to in sequence, that is, not separated by another corner or Wnode, the

Wire will drop one reference. This is to prevent the connections of the Wnodes in

the Wire from becoming inconsistent with those implicit in the shape of the Wire.

The return value is NULL, if nothing needs to be redrawn, else a pointer to a Rect is

returned.

nodeMoved(CWnode *node, CPoint *washere) is called by node after it has moved. The

Point washere represents the location of node before it moved. The Wire uses this

information to re-compute its representation. A pointer to a Rect is returned to

describe the area needing to be redrawn.

-CWire () must look at each Wnode in the Wire. If the owner of the Wnode is not the

Wire, it should not be deleted, and connections of the Wnode to the Wire are removed.

Otherwise, the owner of the Wnode is the Wire. If the Wnode has only connections

to the Wire, deletion of the Wire will result in the Wnode having no connections, so

the Wnode should be deleted. Otherwise, the connections on the Wnode to the Wire

are removed, and the owner of the Wnode is changed to one of the other RecObjs to

which the Wnode is connected.

The Wnodes and corners are maintained in a list. Pointers to the startNode and endNode

are kept track of separately, and are not in the list of corners and Wnodes.

A Wire maintains a list of Strokes input by the user which describe the Wire, along with

a bounding box of these Strokes. The Wire also has a pointer to a Path which describes its

representation. Finally, as with most RecObjs, there is a boolean which is the return value

of isRedrawn(), specifying whether the Wire should be drawn using the strokes input by

the user, or drawn using the Path.

Creating a Wire involves building the wire by successively adding points to the Wire, us-

ing either the addLine(CPoint*) method or the addLineAtBeginning(CPoint*) method.

The first Point added to the Wire, an argument to the constructor, becomes the startNode.

Each time a Point is added using addLine the location of that point becomes the endNode,

and the previous endNode is converted into a corner unless endNode has connections to

other objects. addLineAtBeginning, as its name implies, adds a new startNode, convert-

ing the previous startNode to a corner if possible.

3.3.6 Elements

A circuit with only wires and nodes to connect them would not be very interesting. CElement

is the parent class for all circuit elements. Its parent class is CRecObj.

While CElement will have subclasses, they are in general for special cases, not to allow

a separate class for each kind of circuit element. Providing a class for each element is not

difficult for a small number of elements, but as the list of supported elements grows, this

becomes more difficult. Also, the user should be able to add an element to The Natural

Log's vocabulary. This would be quite difficult if the process involved writing a new class

and recompiling the appropriate piece's of The Natural Log. Hence there is a need for a

general description of all elements, with specifics for each available at run-time, most likely

stored in a file.

A description of a particular circuit element needs to inform The Natural Log what the

element should look like when displayed. Each kind of element is assigned a unique integer

as an identifier. Of great importance is the location of places on the element to which one

can connect wires and other elements, places to which nothing should be connected, and

places which need to have something connected. The latter case is provided by adding a

Wnode to the element at that location.

When an object of type CElement is created, the setElement (int) method should be

called. The argument is the identifier for the kind of circuit element that the Element

should represent. When the Element is redrawn by a call to setRedrawn, it creates a list

of Paths (Paths are described in section 3.3.2) representing itself, based on the description

for the particular element named by setElement. The Element also will add any Wnodes

to its representation if they are necessary.

These Wnodes are set up such that they have a maximum number of connections one

larger than the number of connections to the Element itself. This allows at most one

connection to a Wnode directly on the Element; when a RecObj is to be connected to the

Wnode, the Element will create a short Wire, to act as a lead. One end of this wire is

connected to the Wnode in the Element, causing it to become full; the other end of the

Wire is then free to connect to as many other Elements and Wires as needed. Hence the

RecObj connecting to the Element will actually be connected to the other end of the lead.

After this connection is made, other connections will be forced to connect to the far end of

the lead, as the end connecting to the Element has a Wnode which is full.

In this manner, another RecObj may either connect to a Wnode on the Element, filling

the Wnode, or it my connect to the end of a lead of the Element. There remains one other

mechanism to connect an object to an Element. Consider a Wire whose startNode can

connect to an Element. If the Element has only strictly defined connection locations, the

startNode must connect to another Wnode on the Element, whose position is determined by

the description of that particular Element. Some Elements, however, can have an unspecified

number of connections in unspecified places. An obvious example is a rectangular box, often

used to represent an abstraction. Only the user of the abstraction knows how many inputs

and outputs the box can have. Another example might be a logic gate, say AND. When the

user draws an AND gate, The Natural Log has no way of knowing if there will be only two

inputs or ten. The region of an Element which can be connected to in an unspecified manner

is a "connectable" Path. If our Wire's startNode can connect to part of a connectable Path,

in much the same way as the startNode connecting to another Wire between corners, the

Element will add a new Wnode at the location where the startNode would connect. Then,

similar to the mechanism for connecting to a Wnode on the Element, a lead is created and

connected to the new Wnode. The new Wnode's maximum number of connections is set so

that it will be full, and the startNode of the Wire will be connected to the far end of the

lead.

A list of Wnodes directly on the representation of the Element is maintained. Each

element of the list is actually an instance of class CE1Node, which has no methods and five

public data members. In this manner, each Wnode is stored with additional information

necessary for changing the location of the Wnode if the representation of the Element

changes by being scaled, rotated, or moved. One number informs the Element which Path

the Wnode is on. If this Path is an arc, the angle at which the Wnode is found on the

arc is provided. If the Path is a series of connected points, two numbers are needed: the

first tells the Element which Point on the Path the Wnode is after; the second number is

between 0 and 1 and describes the location of the Wnode along the segment between the

Point described by the first number and the next Point in the Path. This information allows

the Element to move each Wnode as necessary so that it remains at the same location on

the Element.

An Element has a list of Paths, and also keeps track of which are connectable. Other

data members of an Element include: an angle at which the Element should be drawn,

otherwise when redrawn an Element will always have the same orientation; a list of Strokes

drawn by the user to represent the Element; a set of Points to specify the bounding box of

both the input Strokes and the Paths representing the Element; an integer to keep track

of which kind of circuit element is being represented; and, as usual, a boolean specifying

whether the Element should be displayed as redrawn or as the input Strokes.

Like CWire, CElement provides the following three important methods:

addNodeAt (CWnode *node, CPoint *where) will add node to the element, as described

above. The return value is a pointer to a Rect describing the area needing to be

redrawn due to changes in the representation of the Element. NULL will be returned

if no redrawing is needed.

changeNode (CWnode *from, CWnode *to) changes all references in the Element to from

to refer instead to to. Here, only the Wnodes on the Element are changed.3 Then the

Element calls changeNode for any Wires representing leads, if they contain from. A

pointer to a Rect is returned if any redrawing is necessary, otherwise NULL is returned.

nodeMoved(CWnode *node, CPoint *where) updates the each Path representing the El-

ement, since the Wnode has moved. The Point represents the previous location of the

Wnode. Either NULL or a pointer to a Rect describing a redraw area is returned.

3However, in the current implementation, from should never be a node on the element.

Circles

One example of a circuit element needing a subclass of CElement is the circle. Currently

circles are the only circuit elements The Natural Log will recognize. Circles are a special case

because one proposed method for quickly achieving good recognition of circuit elements is

that the user will draw a circle where an element should be. Then, by drawing the particular

element desired inside of the circle, The Natural Log can match these Strokes against only

circuit elements.

As this functionality is not present, the CCircle class offers little advantage over using

the more general methods for creating Elements. An additional data member, the radius,

is present. This is primarily used to create the Path.

3.4 Other Data Types

3.4.1 UnRecObj

This subclass of CRecObj is employed by the Recognizer to create an object whose class is

a subclass of CRecObj in cases where the Stroke drawn by the user cannot be recognized

as any particular part of a circuit. This is necessary because the Recognizer is required to

produce a RecObj for every Stroke drawn by the user.

Since what the Stroke was intended for is unknown, the functionality is as minimally

required by CRecObj. The inputStrokes() method returns a list containing the single

Stroke making up the UnRecObj. The isRedrawn() method always returns FALSE, since

an UnRecObj can only be interpreted as the original Stroke. Finally, isKind0f (int) and

getType () behave as expected.

3.4.2 List Classes

The Natural Log uses lists based on the templated list classes provided by MFC. The

templated class is CTypedPtrList. The templates require two classes specified, the MFC

list class to base the list on, and the kind of object stored in the list. The two classes

available to base the list on are CPtrList and CObjList, with the latter rarely used

in The Natural Log. Hence, a list containing pointers to Points would be declared as

CTypedPtrList<CPtrList,CPoint*>.

These classes did not have an assignment operator, and to add one, CTypedPtrList was

subclassed, creating CMyPtrList. This is the class used throughout the system. This class

was then subclassed to produce CStrokeList, a list containing pointers to Strokes, which

is essentially CMyPtrList<CPtrList,CStroke*>.

The Stroke Registry

A subclass of CStrokeList provides an important service to The Natural Log. This class,

CStrokeRegistry, has only one instantiation. Each Stroke, as it is created, is added to the

StrokeRegistry. This is because Strokes, being essentially low-level data, may be referenced

many times, by very disparate objects. Hence, any given object does not know if a Stroke

should be deleted. There were two obvious solutions to the difficulty: implement reference

counts as a part of CStroke, or maintain a list of all Strokes and delete them at the end

of the session. Reference counting, as it is not provided in C++, would have made Strokes

much more cumbersome to use and provided an avenue for many bugs. The StrokeRegistry

implements the second solution, and is simple to use: any time a Stroke is created (unless

it is known to be temporary), it is immediately added to the StrokeRegistry. After this,

the Stroke requires no further attention. If it is known that specific Stroke will not be

referenced, it may be removed from the StrokeRegistry and deleted, but in general this

does not occur.

3.4.3 Painter

CPainter is a layer which is responsible for communication between the Recognizer and the

windows maintained by The Natural Log. It is an abstraction designed to make porting

code to another system easier, as the portion of The Natural Log most dependent on the

platform and operating system is accessed through a standard interface defined by that of

a Painter. The Painter can be expected to draw Strokes and Paths, redraw rectangles, and

even draw an Element properly. Extensions to CPainter would allow it to control other

parts of the user interface.

The Painter is initialized with a pointer to the Recognizer's lists of RecObjs to draw

and Strokes to draw, and the window to draw in. The Painter controls many aspects of

the output. If, for example, it is desired that lines can be changed to be drawn a different

width, it is the Painter which should have a method to change this property.

redraw() redraws the entire window.

invalidateRect (CRect&) invalidates the window only inside of the rectangle specified, so

that only that area will be redrawn.

redrawAll(CDC*) will draw every RecObj and Stroke on the drawing context provided.

The window will call this method when it has been requested to redraw, which occurs

after events such as a window resize.

getCurrentPen() returns a pointer to the Pen object currently being used to draw lines.

drawLine(CClientDC *dc, CPoint &prev, CPoint &curr) draws a line segment from

prev to curr on the drawing context using the current Pen.

drawStroke (CStroke*, CDC*) draws the Stroke on the drawing context, using the current

Pen.

dravArc(CPoint *start, CPoint *end, CRect *bb, CDC *pDC) draws an arc starting

at start and going counterclockwise to end. The bounding box bb determines the

radius of the arc.

invalidateRectangle (CRect, int extraGutter = 0) is meant to be called by the Rec-

ognizer; invalidateRect is called with the rectangle specified by the Rect, enlarged

in each direction by extraGutter.

invalidateRectangle(CRect*, int extraGutter = 0) same as the above, but taking

a pointer to a Rect.

drawWire (CWire*, CDC*) draws the Wire on the drawing context. If the Wire is redrawn,

its Path is used, otherwise, the Strokes returned by the Wire's inputStrokes method

are drawn.

drawElement (CElement*, CDC*) same as for drawWire except that an Element may have

more than one Path, so they are all drawn.

drawCircle(CCircle*, CDC*) draws the Circle on the drawing context; generally called

by drawElement.

redraw(CRecObj*, int extraGutter = 0) redraws the RecObj, widening the redraw

area in each directly by extraGutter.

drawPathList (CMyPtrList<CPtrList ,CPath*>*, CDC *) is generally called by methods

such as drawWire; each Path in the list is drawn on the drawing context.

3.4.4 Recognizer

The Recognizer, an instantiation of CRecognizer, which has been discussed briefly earlier,

does most of the work for The Natural Log. Each Stroke created by the user is handed

to the Recognizer, which then must attempt to recognize the Stroke as an wire, single-

stroke element, one stroke of many making up a multi-stroke element, and so forth. With

support for writing element values directly into the circuit, the Recognizer will also be called

upon to distinguish numbers, letters, and other symbols. After this step, the Recognizer

must determine if a newly-drawn Wire or Element should be connected to earlier Wires or

Elements. Then, if this is the case, the connections are made, and if necessary, the window

will be redrawn to display changes to the circuit.

Most of this work is done by private, internal methods. The external interface of

CRecognizer is fairly simple. As a user draws in The Natural Log's window, Strokes

are created. When the pen is set down, the Recognizer's newStroke () method is called.

This method will create a Stroke, add it to the Recognizer, and return a pointer to the new

Stroke, which at this point contains only one Point. As the pen moves, the window collects

data about the movement and stores Points in the Stroke. When the user lifts the pen,

the Stroke is done, and the window calls strokeDone (). This method alerts the Recog-

nizer that the most recently created Stroke is now complete. If appropriate, the Recognizer

can then identify the Stroke and connect it to the circuit. The Recognizer will change the

appearance of the circuit as necessary.

Some data members of interest are mrecObjList, a list of all RecObjs produced by the

Recognizer; m_inputStrokes a list containing all Strokes drawn by the user, in the order

drawn; and m_outputStrokes, yet another list, containing only Strokes which the Painter

should display. A short list of Strokes, mcurrentStrokes, holds a number of recently drawn

Strokes, in order, which are expected to be used for Element recognition. See section 3.5.3

for a description of the use of this latter list.

Section 3.5.3 also discusses the many steps taken by the Recognizer in processing a

Stroke, and section 3.6 describes the algorithms used.

3.4.5 Window Classes

Descriptions of The Natural Log to this point have referred to "the window", which the

user draws in. A general description is desired, as the details of the user interface have

changed over time, and will continue to do so. The Natural Log has been designed with this

in mind. The user interface need only construct Strokes and use the appropriate methods

of CRecognizer and CPainter, and the recognition process will continue to work.

The user interface for The Natural Log differs from the simpler one used for development

of the circuit-drawing portion of the Recognizer. Since both provide the same information

to the Recognizer, the interface has been referred to more generally as "the window".

A short description of the window classes provides a sense for the structure of the

windows. The user interface used for development is taken largely from an example program

provided by MFC. When the application is started, an instantiation of CScribble opens

the first window, a MainFrame, which contains the menus and tool bar. Then, when a

new document is opened (this happens by default on startup, but the user can create a

new document afterwards), a ChildFrame is created. It is filled with a ScribbleView, which

deals with representing a ScribbleDoc. The ScribbleView is the key component; it is the

view which collects input from the user, including pen down and up events and movements

of the pen, in short, the ScribbleView collects Strokes for the Recognizer. If the Recognizer

changes the representation of something being displayed, it effects this change through the

Painter. When window events such as redraws occur, the ScribbleView dispatches drawing

to the Painter, providing the drawing context (a CDC or appropriate subclass).

Most of this complication is handled by the user interface window classes and the Painter.

A newer interface for The Natural Log, which does not use the example code, does not

support multiple documents. This reduces the number of windows necessary, as the view

can inhabit the equivalent of the MainFrame. This interface is actually "dialog-based,"

meaning that the classes used are somewhat different, but the overall structure is very

similar.

3.4.6 Other Kinds of Recognized Objects

As functionality is added to The Natural Log, other kinds of recognized objects will need

to be added. Another grouping of RecObjs distinct from parts of a circuit would include

characters. Numbers, too, would be RecObjs. Perhaps these would both be subclasses of

a more general Glyph, whose parent class would be then CRecObj. Other symbols, such as

p, might be glyphs as well.

Combinations of RecObjs would also be RecObjs. A circuit example might be an am-

plifier, built of transistors and wires. An equation might contain a fraction, built of two

number glyphs and an appropriately placed line.

While none of these RecObjs are to be seen in the circuit recognition discussed here, it

can be seen that the Recognizer will eventually manage and combine a variety of different

objects.

3.5 Overview of Control Flow

The broadest view of the flow of program control in The Natural Log starts at the drawing

window. This window waits until the user has drawn a Stroke, and then passes control

to the Recognizer. The Recognizer does not return control to the window until it is done

processing the Stroke. As part of this processing, the Recognizer may use methods of the

Painter, which in turn may return control to the window for specific tasks.

Control flow between the window classes, the Recognizer, and the Painter is not sig-

nificantly more complex than in this short description. The most complex control is to be

found within the Recognizer itself, as will be seen below.

3.5.1 User Input

Nothing interesting happens until the user draws a Stroke. It is with a pen down event that

circuit recognition starts. A pen down event in the drawing region marks the beginning

of a Stroke. To create the Stroke, the window calls the Recognizer's newStroke () method

(see section 3.4.4). This method will return a pointer to a Stroke to be filled out by the

window. At this point, the window samples the locations crossed by the pen, until the pen

is lifted, generating a pen up event.

As the user moves the pen, a line is drawn between each new location sampled and the

previous location, so that the user may see where the pen has traversed the window. The

window requests a pointer to a drawing context (a subclass of the MFC CDC class) on which

the lines are being drawn. Then, the window dispatches the drawing to a Painter, which

operates on the drawing context. After the line is drawn, control returns to the window

when the pen is moved again.

When the user has lifted the pen, the Stroke has been populated with data representing

the movement of the pen, and the Recognizer may begin to recognize the circuit element

represented by the Stroke. The window passes control to the Recognizer for this purpose

through the strokeDone () method. Control will not be returned to the user input portion

of the window until the Recognizer has completed its work.

3.5.2 Output from the Recognizer

The Recognizer receives program control from the window, as discussed above. After it

processes the most recent Stroke, it may be necessary to redraw part or all of the window,

to reflect changes made to parts of the circuit. These changes may be a simple as redrawing

an Element or Wire in a clean, rectified form. They may also be due to more complex

processes, such as the Recognizer connecting Wires and hence changing their appearance

because ends or corners have been moved. All of these changes in the window are achieved

through methods of CPainter. These methods need to change some part of the state of the

window. Hence control is passed from the Recognizer to the window through the Painter.

When added, other forms of output, such as writing a transfer function to a file, will

not necessarily pass control to the Painter, or even result in control leaving the Recognizer

at all.

3.5.3 Control Flow in the Recognizer

When the strokeDone () method of the Recognizer is evaluated, the Recognizer will de-

termine which environment is the best in which to perform recognition. Examples of such

modes are: circuits, equations, text, etc. When The Natural Log is performing circuit

recognition, the Recognizer's private recognizeCircuitMode () method is called.

Recognizing the Strokes as Parts of a Circuit

In recognizeCircuitMode, the Recognizer must first identify the circuit element repre-

sented by the most recent Stroke. When the methods for this recognition, developed sep-

arately, are folded into the circuit recognition, several possible interpretations of each of

the most recent Strokes will be produced, along with information about the likelihood of

each. This will allow recognition of Elements requiring multiple Strokes. If the most recent

Stroke is part of a multi-stroke Element, the Recognizer will determine whether that inter-

pretation of the Strokes in the Element allocates a Stroke to more than one Element. If so,

an alternate interpretation of the affected Elements must be produced.

However, as only one single-stroke Element is included in the circuit recognition at

present, there is no need at present to compute whether an Element containing the most

recent Stroke has overlapping Strokes, as overlaps are not possible. Hence the Recognizer

continues on to the next portion of the circuit recognition process.

Another effect of the fact that full recognition is not yet implemented is also manifested

in the way in which the most recent Stroke is identified. In order to provide a simple

alternative to the full recognition, the Stroke is first tested to see if it represents a node

in the circuit drawn by the user (a e, following convention). If so, appropriate action is

taken, although nodes are not yet recognized. If not, the Stroke is tested to see if it is

an Element, a circle in this case. If it is, the Recognizer connects the newly-recognized

Element. Otherwise, the Stroke is recognized as a Wire. Since almost any Stroke may be a

Wire, it is very likely that this final recognition will succeed. If the Stroke is a Wire, it is

also connected into the circuit. Finally, if the newest Stroke has not been recognized as any

of these three major parts of a circuit, it is converted into an UnRecObj (see section 3.4.1).

When full recognition is added, only one step is needed for recognition, and decisions about

whether the most recent Stroke is a node, part of an element, or a wire will be based on

the interpretations returned and on the interpretations of previous Strokes instead of on a

failure to recognize the Stroke as a particular object.

Each attempt to recognize the most recent Stroke results in a call to a method. These

methods have no arguments, and will look at the list of recent Strokes maintained by the

Recognizer, mcurrentStrokes. They may only return a new instantiation of the appro-

priate kind of circuit object if the newest Stroke is included in set of the Strokes which

produced said object. Otherwise, NULL is returned. The algorithms for recognition will be

seen in section 3.6.

After Recognition

The steps taken by the Recognizer after the recognition step depend on what was produced

by identifying the part of the circuit represented by the most recent Stroke. In general,

the object is redrawn. Then, if appropriate Elements or Wires are nearby, the object

is connected into the circuit. Then the window is told to redraw areas so that the new

representation of the circuit will be seen. Finally, the RecObj produced by recognition is

returned to strokeDone.

If the most recent Stroke is a hand-drawn node, a Wnode is produced which then

needs to be connected to the Wires which cross the area covered by the Wnode. This will

connect Wires which crossed but were not connected. This code has not been written, but

is straightforward.

If the most recent Stroke is an Element, the Element must be connected into the circuit.

First, the Element is redrawn. This involves passing control to the Element by calling its

setRedrawn(BOOL) method with TRUE. The Element will then generate as many Paths as

needed to represent itself, scale a representation of the particular element in question, and

set the Paths up to produce the redrawn representation of the Element. After the Element

performs this task and any other modifications needed, a pointer to a Rect is returned. This

Rect represents the area needing to be redrawn so that the changes to the Element are visi-

ble. The Rect is added to a list of areas to be redrawn. Then adjustElement (CElement*)

and adjust0ther0bjsToElement(CElement*) are called. Each produces a list of Rects

representing areas needing to be redrawn because part of the element has moved, or a

Wnode was added, etc. These Rects are collected into a list, and given to the Painter.

When the Painter is finished redrawing the window, the Recognizer returns the Element to

strokeDone.

If a Wire is produced by the recognition step, similar steps are carried out. As before,

the Wire is redrawn by a call to setRedrawn(BOOL). The Wire generates a single Path

as its representation, and returns a pointer to a Rect representing the redraw area. Now

adjustWireEnds(CWire*) and adjust0ther0bjsToWire(CWire*) are called. The list of

Rects is collected and sent to the Painter. Finally, the Wire is returned.

The Adjustment Methods

The adjustment methods adjustElement, adjustWireEnds, adjust0ther0bjsToElement,

and adjust0ther0bjsToWire follow the same basic plan. Each cycles through the entire

list of RecObj which have been generated by the Recognizer; this list is the data member

mrec0bjList. Each RecObj in the list except the most recently created one (which is

assumed to be the Wire or Element being adjusted 4) which is close enough to the Wire

or Element is then passed to another Recognizer method, getConnInfo. This method will

provide information about how the Wire or Element may be connected to the RecObj. See

section 3.6.3 for more detail.

Each adjustment method uses this information to either choose the best connection, us-

ing chooseBestConn (section 3.6.2), or to connect several RecObjs to the Wire or Element.

As mentioned earlier, each method returns a list of pointers to Rects; these rectangles repre-

sent the areas needing to be redrawn in order to reflect changes made to the representation

of the circuit due to the connection process.

Back to strokeDone

After the most recent Stroke has been recognized, identified as part of an Element or

Wire, and connected to other objects in the circuit if possible, and the circuit has been

redrawn, control is returned to the strokeDone () method. At this point, the Recognizer

can determine if the list of recent Strokes, m currentStrokes, can be shortened. Strokes

old enough to not be recognized as part of a new Element may be dropped from the list,

in the order they were added. It is possible that re-interpretation of newer Elements may

propagate backwards to cause re-interpretation of older Strokes, but in general, this should

not happen for a significant number of Strokes. Taking care to not drop any Strokes of

an Element until all Strokes in the Element are too old should reduce the chance of this

occurring, and in the event it does happen, the Recognizer can then turn to the list of all

Strokes, m_inputStrokes, to get more information. 5

After this manipulation of mcurrentStrokes, the Recognizer has completed its work

for the most recent Stroke, and the new RecObj is returned. The window is once again in

4If it isn't, then something which should connect might not; adjusting a Wire or Element to itself will
not cause any ill effect.

5With inclusion of the rest of The Natural Log, this particular method for dealing with multiple-stroke
elements might be replaced.

control, ready to collect more user input.

3.6 Algorithms Employed in the Recognizer

Several important methods of the Recognizer remain to be discussed; these methods imple-

ment such things as production of information about possible connections, recognition of

circles, and so forth. Before looking at the rules used to interpret the topology of circuits,

it will be useful to briefly consider the rules the user follows as he draws the circuit.

3.6.1 Rules for People

There are a few basic rules, which when followed, make a circuit easier to understand. An

obvious rule is that wires should not cross through circuit elements; wires should be drawn

around the element. Circuits are often considered clearer if they are laid out such that

corners in wires are right angles wherever possible, and elements are presented in locations

which provide information about their purpose. By convention, two wires which cross are

assumed to not be connected. If a node (represented by a e) is drawn at a place where

wires cross, the wires are then considered to be connected together at that point. Preferably,

when a wire is drawn crossing another but should not be connected to other wire, a half of

a loop is drawn at the crossing point. An example is presented in figure 3-1.

-A-i
Figure 3-1: The loop denotes that the black wire is not connected to
the grey wire.

People draw circuit diagrams in which the lines are crooked, and wires which should

be connected to elements do not quite touch. Sometimes the end of a wire goes past the

connection point. Cases like these, where parts of the circuit should be connected but the

pen has not crossed the same point, do not affect the ability of people to understand that

the connection was intended by the person who drew the circuit. The Natural Log must be

able to deal with sloppy diagrams as well.

It is these situations which are of the most concern to The Natural Log. The most

crucial portion of the circuit recognition process is to produce an accurate representation

of what the user intended. While The Natural Log should be able to produce diagrams

with straight lines and right angle corners, with no wires passing through elements, this

is a separate problem involving a fair amount of computation for simply producing a nice

output as seen by the user. Even better, The Natural Log might present a better layout

for the circuit. These features may be developed and added incrementally, but they rely on

information about the topology of the circuit.

Therefore, the goal of greatest concern is to create a mechanism for producing accurate

decisions about how the parts of the circuit drawn by the user are intended to be connected.

3.6.2 Rules for Making Connections

Decisions about whether to connect two Elements or Wires are made based on several

metrics. The most important is the requirement that the distance between the two locations

to be connected is below the threshhold used to determine if a circuit object is close enough

to another. After a connection under consideration passes this first requirement, others

might come into play. One example of such a constraint requires that if the end of a Wire

is being connected to another circuit object, the change in angle of the final segment of the

Wire due to making the connection cannot be too large. Elements may have Wnodes which

are full, disallowing any new connections. It should be noted that all of the constraints

currently employed by The Natural Log are based on a small portion of the circuit. Hence,

The Natural Log produces only a localized solution to the problem of deducing connections.

How the Recognizer Identifies Possible Connections

As mentioned in section 3.5.3, getConnInfo produces information about a possible con-

nection between a Wire or Element and another circuit element. This information is

stored in a struct internal to the Recognizer, CONNECTINFO. How the Recognizer uses the

CONNECT_INFOs produced by getConnInfo will be discussed shortly, in section 3.6.3.

When used to determine possible connections to a Wire, getConnInfo takes three ar-

guments. In order to clarify the arguments, imagine that a Wire has just been drawn, and

adjustWireEnds is testing to see if the startNode of the Wire can connect to another object

in the circuit. The first argument to getConnInfo is a pointer to the Wire. The second

argument is a pointer to the particular Wnode on the Wire which is under consideration for

connection to another part of the circuit, in this case, the startNode. The third argument

is a pointer to the RecObj to which the Recognizer is attempting to connect the startNode.

This is generally a Wire or an Element. getConnInf o has two overloads; one has a pointer

to a Wire as the first argument, and the other has a pointer to an Element as the first

argument.

In order to shorten getConnInfo and separate the algorithms for Wires and Elements,

two methods, getConnInfoWire and getConnInfoElement, are called by getConnInfo.

The former is used when the RecObj is a Wire, the latter if the third argument is an Element.

Otherwise, these two methods have the same arguments and overloads as getConnInfo itself.

A large part of the code in getConnInfoWire and getConnInfoElement can be con-

densed into a simple explanation of the rules followed in connecting Wires and Elements to

any other object and the rules followed in allowing an object to connect to a Wire or to an

Element. The first test which must be passed requires that the Wnode passed as the second

argument must not already have a connection to the RecObj passed as the third argument.

If the Wnode is already connected, getConnInfo will return NULL. Otherwise, the following

rules are used.

A Wire Connecting to Another Object Only the endpoints of the Wire may con-

nect to another object. For a given Wnode representing one of the two endpoints, several

conditions must be fulfilled to make a valid connection. For clarity, call this Wnode the

startNode. First, the startNode must be close enough to the location of the connection.

This is determined, as are all closeness measures, by the Euclidean distance between these

two locations and a threshhold. If the potential connection on the other object is at a

Wnode on the object, then that Wnode must be able to add all of the connections of the

startNode without becoming full before all of the connections are added. Each potential

connection on the object satisfying these conditions is then possible as far as the other

object is concerned; the remainder of the conditions on the connection are due to the Wire

itself. The angles of the segments of the Wire which terminate at the startNode are not

allowed to change by more than 90' if the connection were to be made. 6 Finally, if making

the connection would cause the Wire to cross itself, the connection is not allowed. If there

6This restriction could be relaxed in a number of different ways.

are more than one valid connections of the startNode to the other object, the connection

point which is closest to the location of the startNode is chosen. If more than one connec-

tion point is at the closest distance, there is an ambiguity about the intention of the user,

and no connection should be made; getConnInfo will return NULL.

An Element Connecting to Another Object Only Wnodes on the Element may

connect to the other object. Wnodes on the Element's end of a lead should be full, and will

not generate valid connections. For Wnodes on the far end of a lead, the rules for connection

are identical to those listed above for a wire connecting to another object. Wnodes on the

Element for which a lead has not yet been generated7 are not part of any line segment and

are expected to not move. Hence the connection rules are simpler. In the case where the

Wnode on the Element is being tested for a connection to a different Wnode on the other

object, the latter Wnode would be moved to the location of the end of a newly-created lead

if connected to the Element. This eliminates all requirements on the Element except that

the two Wnodes are close enough. The other object may have additional rules. In any other

case, a line segment is needed to determine the location on the other object which should

be connected to. A Point representing an initial guess for the location of the end of a lead is

created, and the segment thus described by this point and the location of the Wnode on the

element is then subjected to the same rules as for segments at the end of Wires listed above.

Note that some Elements may not have any Wnodes in the initial representation; in this

case no connections will be possible until Wnodes are added by another object connecting

to the Element.

Another Object Connecting to a Wire Objects attempting to connect to a Wire

should first attempt to connect only to the Wnodes on the Wire. This is because if the

user draws a circuit object with an end very close to a node in the circuit, he probably

wanted the two objects to connect. If the object connecting to the Wire cannot generate

any valid connections to any Wnode on the Wire, the object should then attempt to connect

to the corners of the Wire. It is common to draw a wire with corners in a circuit and then

later connect another part of the circuit to these corners. If no connections to any corners

are possible, then the object may try to connect to part of the Wire between corners and

7These Wnodes necessarily have been created by the Element evaluating the setRedrawn(BOOL) method.

Wnodes. This is generally achieved by describing a line which might intersect with the

Wire and then testing the intersection point to find out of it is a possible connection point.

The object connecting to the Wire will call the findConnectionPoint (CPoint *segStart,

CPoint *segEnd) method of the Path representing the Wire. segEnd is always the location

of the Wnode which was the argument to getConnInfo. The Path will then compute the

closest point to segEnd which is on the Path and on the line described by segStart and

segEnd. If this line does not intersect with the Path, NULL is returned. If a Point is

returned, the object connecting to the Wire must then make sure that the distance between

this crossing point and the location of segEnd is smaller than the threshhold. If so, the

final requirement is that the crossing point is either between segStart and segEnd or past

segEnd, that is, the crossing point must be on the line described by

segStart x + a segEnd-> x - segStart-> x

segStart-> y segEnd-> y - segStart-> y

where a is positive.

Another Object Connecting to an Element The rules here are very similar to those

for connecting to a Wire. The object should first try to connect to the Wnodes on the

Element. If there are no valid connections, the object should try to connect to the con-

nectable Paths of the Element. As for connecting to a Wire, a line is described, and

findConnectionPoint is called for each Path. The same requirements on crossing points

are imposed. Finally, if more than one Path on the Element may be connected to, the con-

nection which is closest to segEnd will be returned. If more than one potential connection

is at the smallest distance, the connection is ambiguous and getConnInf o will return NULL.

Choosing the Best Connection

The Recognizer, during adjustment of the circuit, may potentially collect up a large num-

ber of CONNECT_INFOs for a given Wire or Element. In cases where only one connection

should be made, one of these CONNECTINFOs must be chosen as the "best" connection

possible. The chooseBestConn (CONNECT-INFO *cil, CONNECTINFO *ci2) method of the

Recognizer serves this purpose. A pointer to the better connection of the two is returned.

If one of the CONNECTINFOs describes a connection to an Element, and the other does

not, then the CONNECT-INFO for the Element is returned. Next, if one of the connections

is to a Wnode and the other is not, the CONNECTINFO for the connection to the Wnode is

returned. Then, if both connections are to Wires, and one CONNECT-INFO is for a corner, and

the other is not, the connection to a corner is preferable and is returned. The final metric

is related to the distances stored in the CONNECT-INFO. There are two numbers: one is the

distance of the Wnode attempting to make the connection from the connection point on

the object being connected to, and the other is the distance by which the connection point

on the object being connected to would have to move when the connection is made. This

latter number is usually zero. It is desired that the object being connected to need move as

infrequently as possible, so a simple weighting of distances is used. The CONNECT-INFO for

which the sum of the first number and three times the second is smallest is returned.

3.6.3 The Adjustment Methods

adjustElement(CElement*) and adjust0therObjsToElement(CElement*) are called by

the Recognizer when an Element has been drawn. adjustWireEnds(CWire*) and its

companion adjust0ther0bjsToWire(CWire*) are used when a Wire has just been cre-

ated. These four adjustment methods contain much of the logic regarding when Ele-

ments and Wires may be connected. As seen in section 3.5.3, they call getConnInfo and

chooseBestConn. Which results are used when varies among the four adjustment methods,

but otherwise they are all similar.

Here, adjustWireEnds is discussed in detail; differences between this method and the

others will be noted later.

A Detailed Look at adjustWireEnds

adjustWireEnds attempts to connect the Wnode at each end of the Wire to other objects

in the circuit. Arbitrarily starting with the startNode of the Wire, the Recognizer walks

the list of RecObjs, m.recObjList, testing each RecObj, first to see if it is a circuit object,

as a Wire should not attempt to connect to other kinds of RecObjs, such as numbers; then

to determine if the startNode is close enough to the RecObj. The latter is determined

by a simple threshhold on the Euclidean distance between the startNode and the near-

est part of the RecObj. If the RecObj in question is a Wire, the Path representing the

Wire can provide this information through the pointWithin(CPoint *pt, int howfar)

method (see section 3.3.2). When given the location of the startNode and the distance

threshhold as arguments, this function will return TRUE if the startNode is close enough to

the Wire. If instead the RecObj is an Element, a simpler metric is used. While a Wire

always maintains a Path for its representation, an Element only generates Paths when it

is redrawn. Furthermore, if the Element has open spaces, like a circle does, the startNode

of the Wire might be inside of the Element and also too far from the lines making up the

Element. Thus the startNode is close enough to the Element if it is either inside of the

bounding box of the Element, or close enough to the bounding box. The Recognizer will

use its private isNear(CPoint*, CRect*) method to determine this, passing the result of

a call to CElement ::boundingBox() as the second argument.

After another Element or Wire has been determined to be close enough, another im-

portant method of the Recognizer is called: getConnInfo. As explained in section 3.6.2,

this function takes three arguments: the first is a pointer to the Wire whose ends are being

adjusted, the second is a pointer to the Wnode of the Wire under consideration (at this

point, the startNode), and the third is a pointer to a RecObj, which is the Wire or Element

close enough to the startNode. If it is possible to connect the startNode to the RecObj,

getConnInfo returns a pointer to a CONNECTINFO struct. Otherwise NULL is returned. A

CONNECTINFO contains the information necessary to make a decision on an optimal connec-

tion for the startNode and to actually connect the startNode to the RecObj.

If getConnInfo does not return NULL, the CONNECTINFO is added to a list containing

CONNECTINFOs. After each RecObj in the Recognizer has been tested, this new list is

considered. If there are no CONNECTINFOs in the list, then the startNode cannot be con-

nected to anything. Otherwise, one connection must be chosen. The Recognizer uses the

chooseBestConn(CONNECTINFO *cil, CONNECTINFO *ci2) method to choose the best

CONNECTINFO. (This method is also discussed in section 3.6.2.) Once the best CONNECTINFO

is chosen, the actuallyConnect (CWire*, CONNECTINFO*) method uses it to connect the

startNode to the Element or Wire referred to by the CONNECT-INFO.

actuallyConnect uses the information in the CONNECTINFO to create the connections.

If the startNode is being connected to another node, then the connectNode (CWnode*)

method of other node is called, so that it may absorb the startNode (see section 3.3.4).

If the startNode is being connected to a Wire, then the Wire must add the startNode

to itself.8 This is achieved by calling CWire: :addNodeAt(CWnode*, CPoint*); the first

argument is the startNode, and the second is the location on the Wire to which the startNode

should be connected. The Wire will then pass through the location of the startNode; see

section 3.3.5. Finally, if the startNode is to be connected to an Element, in the same manner

as with Wires, CElement::addNodeAt(CWnode*, CPoint*) is called (see section 3.3.6).

The Rects returned by these methods and any calls to CWnode: :moveNode(CPoint*) are

combined to produce a single Rect representing the area to be redrawn, which is returned.

adjustWireEnds adds this Rect to a list of redraw rectangles.

At this point, the startNode of the Wire has been adjusted, and the entire process is

repeated for the endNode.

Noteworthy Differences

The adjustElement method contains the same ideas, but CONNECT_INFOs are collected by

a different method. Each Wnode in the Element is added to a list. Paired with the Wnode

is a list of CONNECTINFOs. Then each RecObj in the Recognizer is checked, as above.

For each Wnode in the list, if the RecObj is close enough, getConnInfo is called.9 Each

CONNECTINFO generated is added to the list of CONNECTINFOs of the appropriate Wnode.

It is necessary to build these lists because there may be situations where more than

one Wire is drawn as a connection to an Element before the Element itself is drawn. If

two connections are close and should connect to two different Wnodes on the Element, a

simple distance measure as used for Wires would fail to produce correct' connections if both

connections are closer to one Wnode on the Element.

After the lists are built, all Wnodes on the Element for which only one CONNECT-INFO

was generated can be connected. Once a particular Wnode on a RecObj is connected, all

CONNECTINFOs for that RecObj are removed from all of the lists. When this is done, the

only remaining Wnodes to be connected are those for which more than one CONNECT-INFO

is still valid. This is left as an ambiguous case, so no connections are made. The user may

then draw more lines to connect the Element properly.

More complex is the adjust0ther0bjsToElement method. This is because while an

8Note that if the startNode is connecting to a Wnode, this satisfies the first case. Hence it is known that
a connection to a Wire requires a connection to a corner or a segment of the Wire, not a Wnode.

9Since getConnInfo is overloaded, the first argument in this case is an Element.

Element may only connect to other circuit elements by connecting Wnodes, the other parts

of the circuit may connect to any "connectable" paths on the Element. So a different list is

built, this time containing Points paired with lists of CONNECTINFOs. As the Recognizer tests

each RecObj, any CONNECTINFOs generated are added to the list of Points. The location

on the Element which is being connected to (the otherPoint field of a CONNECTINFO) is

stored in the list. If that location is already in the list, the new CONNECTINFO is added

to that Point's accompanying list. Otherwise, the location is added to the list, with a list

containing the CONNECTINFO.

When all of the RecObjs have been looked at, the final result is a list of locations on the

Element which may be connected to. These locations may include both locations of Wnodes

and locations on connectable Paths. Each location has a list of CONNECT.INFOs referring

to the same location. The locations representing Wnodes on the Element are connected

first. The connection described by the first CONNECTINFO in the list for that location is

connected with actuallyConnect. Then each subsequent CONNECTINFO for that location

is connected. To take into account that the first connection may have produced a lead if

one was not present before, the subsequent CONNECTINFOs are recomputed in that case.

After this process, the remaining Points represent locations on connectable Paths of the

Element. Arbitrarily, the most recently created RecObjs are treated first. As done earlier

with connections to Wnodes, the connection described by the first CONNECTINFO is made,

then further CONNECTINFOs for the same Point are recomputed if necessary.

Finally, adjust0ther0bj sToWire cycles through the list of RecObjs, testing each, as in

adjustWireEnds. If a Wnode on the RecObjs is close enough and getConnInfo returns a

CONNECTINFO, a connection is possible, and the Wnode is connected. This, in effect, causes

more recent objects to connect to the Wire first but if there is more than one RecObj which

can connect to the Wire, the order in which connections are made should not be relevant.

Why Do We Need Both Directions?

One might ask why there are methods to adjust the new object, as well as methods to adjust

other objects in the circuit to the newest one. Looking at the rules for valid connections

as seen in section 3.6.2, it can be seen that only the endpoints of a Wire can be connected

to another object. It does not make sense for the Wire to identify corners or locations

between corners which other objects should connect to, as the most important information

is part of the other object. Hence, having an adjustment method which will attempt to

connect the other object to the Wire provides for the case where a connection might be at

or between corners without the Wire needing to maintain information about each location

through which the Wire passes. Likewise, if an Element has no predefined Wnodes, it is

difficult to determine where other RecObjs should connect to it, as the connection could

potentially be to any point on the Element. adjustOtherObjsToElement deals with this

case.

3.6.4 Other Algorithms

The algorithms used to recognize circles and create wires are temporary. As discussed

previously, the problem of recognizing elements was laid aside to allow work on topology to

proceed. Yet the algorithms used, especially for wires, are worth mentioning.

To create a Wire from a stroke, the Recognizer must locate the corners in the Stroke.

Recall that a Stroke is a series of Points, and is drawn by drawing a line segment between

each consecutive pair of points. The Recognizer uses these line segments to locate corners.

First, the angle between each line segment and the next is computed, by normalizing the

segments to a length of 1, and then taking the dot product between each consecutive pair.

Then a simple threshhold is applied; larger angles are considered corners and the Point

between the two segments is added to the Wire to become a corner. With the first and last

Point in the Stroke added to the Wire, the Wire will be a simpler version of the Stroke, and

for Strokes without slowly drawn curves, will have straighter lines. 1'

The circle recognition was written as a simple way to get reasonable recognition of

circles, was derived quickly and empirically, and is not sufficient for general use. Circles are

recognized in the following manner: a Point at the middle of the bounding box is created.

Then the distance of each location in the Stroke from this center Point is computed. If the

average distance divided by the minimum distance subtracted from the maximum distance

is greater than the threshhold value 2.2, and the distance between the first and last Points

in the Stroke is less than twice the difference between the maximum and minimum distance,

the Stroke is identified as a circle.

As the full recognition necessary to recognize multiple and more complex elements is

10Slowly drawn curves tend to be full of single-pixel and other extremely short line segments, which can
have large angle changes between them and still appear fairly linear.

added, these two recognition methods will change. The circle identification can be removed

as a special case, and recognition will improve. The recognition of Wires could also be

improved at this point; two possible avenues for improvement include making the threshhold

vary depending on global conditions or using other recognition methods for determining

where straight lines should be.

3.7 A Closer Look at the Example Circuit

Returning to the sample circuit seen in section 2.3, the various steps The Natural Log takes

as the user draws can now be followed in detail.

The window waits for a pen down event. When this occurs, CRecognizer: :newStroke ()

is called. The window adds Points to the new Stroke until a pen up event, then calls

CRecognizer: : strokeDone (). The user has drawn what is seen in figure 3-2.

Figure 3-2: The first Stroke.

The Recognizer evaluates its recognizeCircuitMode() method. The Stroke is first

tested as an element. testElement () finds that the most recent Stroke, as seen above, is not

a circle, and returns NULL. Hence recognizeWire () is called. The angle between each line

segment is computed, and two corners are found. A new Wire is created, with the startNode

in the lower left, two corners, and the endNode in the lower right. This Wire is returned.

Back in recognizeCircuitMode (), the Recognizer adds this Wire to its m.recObjList and

then proceeds to adjustWireEnds(CWire*). This method goes through all but the most

recent RecObj in m.recObjList, and since here there is only one element in the list, simply

returns an empty list of Rects. The Recognizer calls adjust0ther0bjsToWire(CWire*)

and again, there are no other objects, and an empty list is returned. The two lists are

combined, and the wire is redrawn by calling CWire: : setRedrawn(TRUE).

In this method, the Wire need do very little as it always maintains the Path rep-

resenting itself. A pointer to the Rect describing the area needing to be redrawn is

returned. This is added to the still-empty list of Rects by the Recognizer, and then

CPainter: :invalidateRectangle (CRect*, int) is called for each Rect. The Painter calls

the appropriate method of the window to invalidate each rectangle. Finally, the Recognizer

returns a pointer to the new Wire, and control is returned to the window. See figure 3-3

for the result.

Figure 3-3: The Stroke has been recognized as a Wire, and redrawn.

The user then draws a second stroke, in figure 3-4. All actions performed are the

same until recognizeCircuitMode(). This time, testElement() creates a new Circle

to represent the most recent Stroke. This Circle is returned, and the Recognizer deter-

mines unsurprisingly that the Stroke making up the circle does not overlap with those in

any other object in the circuit. The Circle is added to m.recObjList and redrawn by

CElement: : setRedrawn(TRUE).

O

Figure 3-4: The newest Stroke is in black.

In this method, the Element will generate a new set of Paths necessary to represent itself.

In this case, only one path is needed. After the Path is created, the Element will add all

Wnodes which should be created, but as there are no predefined nodes in a Circle, none are

added. A pointer to a Rect is returned. The Recognizer, still in recognizeCircuitMode (),

calls adjustElement (CElement*). As there are no Wnodes on the Element, nothing hap-

pens, and an empty list is returned. In adjust0ther0bjsToElement (CElement*), the list

of RecObjs is traversed. The first and only RecObj on the list which is not the new El-

ement is the Wire. getConnInfo(CWire*, CWnode*, CRecObj*) is called, first with the

startNode. The startNode of the Wire cannot connect to any Wnodes on the Element, as

there are none. The segment described by the startNode and the first corner (upper left)

is passed to CPath: :findConnectionPoint(CPoint*, CPoint*) so that the Path repre-

senting the Circle may compute the nearest location on the circle where the line segment

crosses the circle. The Point returned is placed in a CONNECTINFO. The endNode of the

Wire is too far from the Element, so getConnInfo is not called. Only one valid connection

to the Element is found, so the startNode is connected to the Element by a call to the

CRecognizer :actuallyConnect (CElement*, CONNECTINFO*) method.

The connection is actually made by CElement: addNodeAt (CWnode*, CPoint*). A lead

is built, with one end at a new Wnode residing at the location described by the Point

returned by findConnectionPoint. The other end is about five pixels away, along the

line described by the connection point and the startNode of the Wire. The startNode

is then connected to the Wnode at the far end of the lead by calling the startNode's

CWnode: : connectNode (CWnode*) method. In this method, the startNode assumes the con-

nections of the Wnode at the end of the Wire. There is only one connection in this case.

connectNode results in a call to CElement: :changeNode(CWnode *from, CWnode *to);

the first argument is the Wnode that was at the far end of the lead and the second ar-

gument is the startNode of the Wire. The Element will pass this method on to the Wire

representing the lead by calling CWire: :changeNode (CWnode *from, CWnode *to), which

will change the lead's pointer (which happens to be its endNode) to point to the startNode.

When the connection is finished, adjust0ther0bj sToElement redraws and returns. The

Recognizer returns the Circle and control is returned to the window to collect more input.

The result can be seen in figure 3-5.

F

Figure 3-5: The second Stroke has been recognized, redrawn as a
circle, and connected to the previous Wire.

If now the user draws a third Stroke, as in figure 3-6, this will be interpreted as a Wire.

This time, adjustWireEnds has two RecObjs to look at. Only the startNode of the Wire

is close enough to any other object, the Element. In getConnInfo, the Wnodes on the

Element are first tested. None are close enough to the startNode, so a connection point

is found on the Path representing the Element. After the connection is made, creating a

lead, adjust0ther0bjsToWire is called. The Wnode at the end of the lead just created is

Figure 3-6: The newest Stroke.

already connected to the Wire, so a connection cannot be made. No other object in the

circuit is close enough, so no further connections are made.

When the next stroke is drawn, yet another Wire is created (figure 3-7). The endpoints

Figure 3-7: The second Wire has been redrawn, and connected to
the circle.

of this new Wire are not close to any other circuit element, so adjustWireEnds does not

make any connections. However, during adjustOtherObjsToWire, the first Wire drawn

generates a connection from its endNode to the newest Wire. Since the endNode is too far

from the endpoints of the newest Wire, it cannot connect to them. Corners are tested next,

and these are also too far away. Thus, the Path representing the newest Wire generates

the Point at which the connection can be made. This connection is the only CONNECT_INFO

generated, so the connection is then made. Next, the user draws two more circles, which

are each connected in the same manner as the first (to the startNode and endNode of the

most recent Wire, respectively). A final Wire is drawn; its startNode and endNode are each

connected to a Circle by adjustWireEnds, and the bottom Wire is then connected to it

through adjustOther0bjsToWire. See figure 3-8.

A final Stroke is drawn (figure 3-9). In adjustWireEnds, the startNode is near an

Element. When getConnInfo is called with the newest Wire, the startNode, and the

Element, the Wnodes of the Element are checked first. Note that the startNode cannot

Figure 3-8: The three most recent Strokes have all been connected
and redrawn.

Figure 3-9: The final Stroke to be recognized.

connect to the Wnode on the Element's end of the lead, because that Wnode is full. This

forces the startNode to be allowed only to connect to the far end of the lead, which is the

desired behavior. Since a connection to a Wnode was possible, connectable Paths on the

Element are not considered. If the startNode was farther away from the lead, a connection

to the lead would not be possible, and then a connection would be created on the Path of

the Element at the appropriate place.

This illustrates the critical difference between Wnodes and the rest of the representation

of a circuit object. The Wnode, in effect, attracts connections in order to avoid making

excessive new connection points. While many of these would not affect the final topology

of the circuit, they make the circuit more complicated and harder to understand.

The CONNECTINFO for the Element is not the only one generated. A connection is

also possible to the endNode of the Wire connected to the Element. This proves to be

two connections to the same Wnode, but this is not necessarily true in general. Since

there is more than one valid CONNECTINFO for the startNode, one must be chosen. The

Recognizer uses chooseBestConn(CONNECT-INFO*, CONNECTINFO*) to make this decision.

The connection to the Element will be chosen, as connections to Elements are preferred. In

this case, it would not matter which is chosen. If there were two connections generated to

the same Wnode, and both connections were to Wires, chooseBestConn would return the

first connection. This final choice, obviously, is not relevant.

adjustWireEnds then moves to the endNode of the newest Wire. This Wnode is only

close enough to one RecObj, a Wire. No Wnodes of the Wire are close enough. However,

a corner is, and a connection is possible. Since a corner produces a valid connection, the

possibility of the newest Wire connecting to a location between corners or Wnodes of the

other wire is not considered. This is very similar to the precedence of Wnodes in Elements,

except that there is an added level, the corners. Only one CONNECTINFO is produced for

the endNode, so that connection is made, producing the final circuit, in figure 3-10.

Figure 3-10: The final circuit.

Chapter 4

Future Directions

Work on circuit recognition for The Natural Log is not yet complete. With the addition of

a few more pieces of functionality, the current system could be quite useful. What is needed

is discussed first, in section 4.1. Circuit recognition also needs to be folded into the rest

of The Natural Log, currently being worked on separately. This integration is necessary

for such things as allowing the user to write an equation for the value of an element. The

interface will also improve, and the allocation of resources between different parts of The

Natural Log will change. This is seen in section 4.2.

But what has been learned from the work to date? It can now be seen that several parts

of the circuit recognition, and even The Natural Log in general, do not work sufficiently well

to provide a final solution. Section 4.3 discusses what does not work well. This knowledge

provide some direction on what improvements should be made to the system. As seen in

section 4.4, there are many possibilities, ranging from small changes in the representation

of data, to more comprehensive changes, which if undertaken, would essentially require

a rewrite. At least several good questions have been produced, which are discussed in

section 4.4.3. Answering these questions early in development will help produce a more

effective system.

4.1 Complete the Implementation

With the addition of several features, the circuit recognition in The Natural Log would be

fairly complete and useful. The first addition necessary is the ability to recognize elements

other than circles. This is the most difficult and complicated feature of those necessary for

a useful implementation. Other necessary features are comparatively less work.

Of the two additions listed here which are not necessary, code to draw the circuit better

is the largest task. With the addition of this code, The Natural Log would draw circuits

with right-angle corners and a cleaner layout. This problem could prove to require as much

code as the rest of the circuit recognition; see section 4.1.7 and section 4.4.2 for further

discussion.

4.1.1 More Elements

One of the first changes necessary is to add recognition and use of at least several different

kinds of elements.

Recognizing Elements

As discussed briefly elsewhere (primarily in sections 3.5.3 and 3.6.4), work on recognition

of multi-stroke characters has progressed in parallel to the circuit recognition. While in-

corporating this work will increase the number of elements which are recognized, adequate

recognition may only be achieved if elements are drawn in a particular orientation. Since,

unlike letters and numbers, there are no restrictions (except for aesthetics) on the orienta-

tion of circuit elements. Additional work must be done to allow for this situation.

One workaround which would allow a circuit to be drawn correctly, would be to expect

all elements to be drawn first as circles. The user then may draw the element desired inside

a circle, in the appropriate orientation. The recognition phase would then only have to

deal with one or two orientations of any given element. The Recognizer would then be

required to determine a good orientation for the element, based on the connections which

had previously been made to the circle in which the element was drawn. The angle at which

the new Element should be drawn would then be passed to the Element, so that when the

Paths representing the Element are created, they can be rotated as necessary.

When recognition develops to the point where circuit elements can be recognized at

many angles, it will no longer be necessary to draw inside of circles. In this case, the

angle representing the orientation will be produced by Recognizer in the recognition step,

instead of afterwards. As before, this angle can be used by the Element to create the proper

representation.

Redrawing of Elements

An Element must be able to redraw itself by creating a set of Paths which represent the

Element to the user. As seen in section 3.3.6, each Element has a description of what it

should look like, which Paths are connectable, and where Wnodes should be added to the

Element during the setRedrawn method (also discussed briefly in section 3.7).

This sort of information should not be coded directly into the Recognizer. This makes

the description of an Element difficult to change, and makes adding a new Element to the

system prohibitive. Hence, an input file should be created to contain the description for

each known Element. This small addition would then allow new Elements to be generated

by the user of The Natural Log. This functionality is an important part of building a useful

system for recognizing circuits.

4.1.2 Let the User Draw Nodes

As with a circuit drawn on paper, a circuit drawn with The Natural Log may need the

addition of nodes to clarify that two crossing wires should be interpreted as connected;

otherwise convention will indicate that the wires are not touching.

The first step towards adding this functionality is to recognize * as a Wnode. If the full

recognition, when added, does not adequately recognize these solid circles, a special case

would have to be added. Once a Stroke has been identified as a Wnode, several actions

need to be taken. First, all circuit objects (Wires and Elements) for which the Wnode as

drawn by the user covers a Path or Stroke representing the object must be found. Then, a

connection to the new Wnode must be added to each. The Wnode should be visible to the

user, even if there are few enough connections to the Wnode that it would not normally be

visible.

4.1.3 Connect Nodes in the Middle of Wires

Another similar functionality of nodes is missing. If the user draws a new Wire on top of

a Wnode in another Wire, the new Wire should be connected to the old at the location of

the Wnode. Presently, this will only happen if the Wnode in the older Wire is either the

startNode or the endNode.

Adding this functionality requires that when the new Wire is drawn, each other Wire is

checked to see if the new Wire crosses at any point. If so, each location at which the Wires

cross needs to be checked; if a Wnode is located there, the Wires should be connected. The

addition of a method to Wires and Elements which can provide information about crossings

(section 4.4.1) will facilitate this. Also, because of the way in which Wires are redrawn, this

probably will not be very accurate until connections can be determined before the Wire is

redrawn, as discussed in the next section.

4.1.4 Find Connections Before Redrawing

One difficulty in using the circuit recognition in The Natural Log stems from the fact that

all circuit objects are redrawn before connections are made. This causes trouble, especially

when a Wire containing a curve is drawn. If the user draws a big curve in a new Wire

because the middle should connect to another circuit element, like in figure 4-1, the wire

Figure 4-1: The black Stroke will be recognized as a Wire with a
single straight line segment. This will cause the Wire to be too far
from the grey Wire to connect.

recognition algorithm in the Recognizer (see section 3.6.4) will smooth out the wide corner.

This smoothing causes the Wire to be quite some distance from the intended connection

point, so no connection is made.

This can prove frustrating to the user, so it would be good to have The Natural Log check

for connections before the Wire is redrawn and pulled away from possible connection points.

Likewise, straightening the Wire too early can cause connections which were intended to be

avoided by a curve in the wire.

While these two problems can be alleviated by lowering the sharpness of a corner neces-

sary to be recognized as a corner, so that the resulting Wire looks more like the Stroke, this

does not solve the most important problem: currently, it is not possible for the Recognizer

to only redraw the circuit when requested by the user. Each Stroke drawn by the user must

be redrawn before the next Stroke can be recognized. If this does not happen, the user will

certainly be able to draw a circuit which appears to be connected but that the Recognizer

does not connect properly, because the redrawn representation may not resemble the hand-

drawn representation closely enough. If circuit elements can be connected to before they

are redrawn, the Recognizer can build up a correct topology as the user draws, without

interrupting the user to redraw each Stroke.

Implementation

Since a single Stroke represents a Wire, adding the ability to create connections on a new

Wire is not difficult. The Wire can be recognized, and then not redrawn. Then, when

the Recognizer looks for possible connections, the Wnodes on the Wire may be checked

first, then the corners. If no connections are possible for these two cases, connections may

be made to the Stroke drawn by the user. Note that the Points of the Stroke as well as

the line segments between the Points should be tested. If a connection is to be made in

this case, a Wnode should be added to the redrawn version of the Wire at the appropriate

location. When the Wire is finally redrawn, the Wnodes created this way will cause the

redrawn Wire to pass through those locations, as was desired by the user. A data structure

maintaining the correspondence between certain Points in the Stroke and the locations of

corners and Wnodes on the Wire will facilitate the addition of Wnodes due to connections

made to the Wire before it is redrawn. This information is also necessary for the case where

two connections are made to a particular location on the Wire before it is redrawn; if the

Wnode moves for the first connection, the Wnode's original location will be needed to test

certain connection rules for the second connection, and the new location will be needed for

other rules.

For Elements, creating connections on the version drawn by the user can prove more

difficult. When the Element is created, the locations of automatically added Wnodes on the

version of the Element drawn by the user must be determined. These locations would be

different than those for the clean version generated by the Element itself. For multi-stroke

elements where Wnodes should be created at ends of lines, for example, this may prove

a difficult calculation, as the order in which the Strokes are drawn may vary, and even

though an angle at which the Element is drawn may be provided by the recognizer, it will

require very careful searching of all of the Strokes to determine the location of the Wnodes.

This will require that either additional information be provided in the description of the

Element, or that careful routines are provided which will match each part of a hand-drawn

Element against the Paths of a redrawn version. If the recognition step provides enough

information about each Stroke which is a component of an Element, it may be possible

to match locations without a large amount of extra information about what the Element

looks like. Once the locations of the Wnodes are determined, the areas of the Strokes

which correspond to connectable Paths must also be determined. This information is likely

to be easily created while the Element is generating correspondences between locations of

Wnodes.

The locations of the Wnodes on the Paths created by the Element and the corresponding

locations on the Strokes drawn by the user must be maintained until the Element is redrawn.

If a connection is to be made to a Wnode at the Element's end of a lead, little need be done,

as this Wnode should not be moved. Wnodes at the far end of a lead may be moved to

make a connection. If another connection to this Wnode is considered, the starting location

should be used to determine if the Wnode is close, but the new location should be used

to determine if making the connection would violate any rules for the object connecting to

the Wnode. Connections made to connectable Paths should follow the same rules, but as

making such a connection creates a lead, this case should be fairly simple.

If it is not required immediately that the Recognizer be able to recognize a circuit

only after many Strokes have been drawn, or this capability is provided by delaying any

recognition until after the circuit is completed, this functionality is less needed. However,

it is still important to improve the interface for the user. Fortunately, this functionality is

most important to the user for Wires, which are easier to implement than Elements.

4.1.5 Redraw-On-Command

If The Natural Log could recognize and redraw a circuit only when instructed to by the

user, the drawing process would not have to be interrupted to redraw each Stroke drawn

by the user. This redrawing can change the appearance of the circuit a great deal.

One easy way to implement this is to simply collect each Stroke drawn into a list of

unrecognized Strokes, until the user requests that the circuit be recognized. Then, the

Recognizer can look at each Stroke in turn, as if it had just been drawn, until all the

Strokes are processed.

This could also be implemented fairly directly after code is written which allows Wires

and Elements to be connected to before they are redrawn, as discussed in section 4.1.4.

In this case, recognition would again occur with each Stroke, but no changes would be

presented to the user until he requests it. At that point, all Wires and Elements need only

be redrawn to make the changes visible. The advantage of this approach is that recognition

is performed incrementally, which allows The Natural Log to change the interpretation

invisibly. Additionally, idle time could be spent checking the circuit to determine if certain

connections should be different, improving overall performance. See section 4.4.2 for one

possible example of such a process. If the circuit is not redrawn until the user desires, he

does not have to observe changes made in this manner.

4.1.6 The Output of Circuit Recognition

Without the ability to analyze circuits, The Natural Log would be little improvement over

paper. Several ways in which The Natural Log could evaluate and analyze circuits are

presented in section 2.1. One means of circuit analysis involves writing out a representation

of the circuit and using a preexisting analysis program to return results.

One disadvantage of including output at this stage of development is that after the

output file is written, the user will have to edit the file in order to put the actual values of

the Elements in. The Natural Log will have to be able to associate output from equation

recognition with particular circuit elements before the output files can be written fully

automatically (see section 4.2.2). In the meantime, it would not be too difficult for The

Natural Log to request the element values from the user before writing the output, so that

the file need not be edited by hand.

Spice

Spice is a common, powerful simulation tool which can produce data for the behavior of

circuits containing non-linear elements, such as transistors.1

The advantage of using Spice for circuit analysis is that a translation from the repre-

sentation of the circuit used by The Natural Log to that needed for input to Spice is fairly

straightforward. The input file (called a "Spice deck") allows any number of nodes. Each

need only be given a unique name starting with the letter n. All elements are described by

first naming the element, then listing the nodes to which each terminal is connected, then

1In fact, the name "Spice" stands for "Simulation Program with Integrated Circuit Emphasis."

adding the value or values associated with the element. For linear, two-terminal elements

like resistors, a line might look like this:

ri ni n2 10k

For more complex elements like transistors, more nodes and parameters are necessary.

Every piece of information needed to write a Spice deck is already present in the repre-

sentation of the circuit, except for the element values. This, combined with the fact that

Spice can handle very complex circuits, makes it an attractive engine for computation.

Transfer Function

Often, the sort of analysis desired for linear circuits may be as simple as graphing the

frequency response, or a step response, or simplifying the transfer function. Hence, another

useful output of The Natural Log's circuit recognition might be a transfer function. This

transfer function could be handed to a mathematics package such as Maple, Mathematica,

or Matlab. The results produced can be returned to The Natural Log, and displayed for

the user.

To produce a transfer function, the impedance will have to added to the specification of

an Element. Also, the locations of the pairs of Wnodes representing the input and output

must be determined. If the circuit is drawn in a left-to-right fashion, a reasonable guess

may be produced by locating the leftmost and rightmost pairs of unconnected Wire ends.

Otherwise, The Natural Log will either need to ask the user when evaluation is requested,

or a special character or gesture can be created so that the user may convey the information

by drawing on the circuit.

4.1.7 Draw Circuits Better

As mentioned earlier, adding logic which will beautify the resulting circuit will be difficult.

However, there are many different ways in which this functionality can be improved.

The Wire recognition method could be changed to pull corners to places which produce

right angles in the Wire. Wires or Elements which pass over the bounding box of previously

drawn Elements can be moved (at least one addition mentioned in section 4.4.1 will help

with this). Elements can be drawn a fixed size, or only at certain rotations, i.e., at multiples

of 45 ° . Wires which are parallel but not along the same line could be connected by a short

perpendicular line, instead of changing the angle of one Wire. See figure 4-2 for an example.

Figure 4-2: At left, two Wires. In the middle is a possible result
produced by The Natural Log. The right-hand picture would be a
better result. Note that the top Wire has been shortened.

There are potentially many other rules for drawing a circuit nicely. Some of them will

be difficult to implement, such as requiring that Wires have corners only at certain angles.

This is because extra information about the representation of a Wire is needed while the

Recognizer is making decisions about valid connections. Also, making a connection may

require many parts of the circuit to move, including objects which are not directly involved

in the connection. The structure of connections in Wnodes (a pointer to the object being

connected to, and the other end of the line segment the Wnode is on) is designed to help,

but that is not enough information.

4.2 Combine with Other Parts of The Natural Log

Significant progress has been made on The Natural Log since the undertaking of circuit

recognition. To facilitate early development, the circuit recognition development was done

separately from equation recognition. Integrating the two is an important step which must

be undertaken before certain aspects of the project may be accomplished. One benefit of

integration directly related to circuit recognition is that recognition of circuit elements will

improve. The project as a whole will also need to develop ways to allow the user to freely

use both equations and circuits in the same session, and then more modes of operation can

be added. As there are many unanswered questions in this area in addition to those in the

recognition of circuits and equations, the project will continue to evolve.

4.2.1 Adapt Recognizer

The largest differences between how the circuit recognition currently works and what will

need to be changed lie in the Recognizer itself.

L_

Modes

As discussed in section 3.1, the Recognizer will receive a Stroke from the window. This

Stroke may be intended to be part of a circuit, or an equation, or something else entirely.

One scheme for choosing how to interpret a Stroke involves recognizing it in a particular

mode. If the last several Strokes were part of a circuit, it is reasonably likely the next will

be also.

Obviously, the Recognizer needs to be able to change modes. The simplest way is to

have the user click a button. But this is not a very natural way to draw in a notebook. A

better choice would be to allow the Recognizer to evaluate each Stroke to determine if the

mode should be changed. For example, a Stroke registering as extremely likely to be a q,

for example, might cause the Recognizer to switch out of circuit mode, because there are

not any elements which match well.

The use of modes, if it is sufficiently easy to change modes, would allow the Recognizer

to interpret a horizontal straight line as a Wire, if Elements were drawn immediately before

and after. Otherwise, it might be a minus sign. Modes can provide constraints on the use

of a character, which will be important in producing a final interpretation.

Threads

The Natural Log is evolving to use a more complex, partially asynchronous processing

of Strokes, taking advantage of multi-threading capabilities of MFC. As the Strokes are

produced by the user, they are matched against models for all parts of The Natural Log:

numbers, mathematical symbols, circuit elements, etc. A listing of possible matches is

generated, so that a thread for equations and a thread for circuits can both evaluate the

possibilities for the true identity of the stroke in their separate contexts. Thus each mode

may look at the data, and each will publish its own interpretation of the Stroke.

The introduction of threads allows many different modes to test a given Stroke. This

introduces greater flexibility, but at a cost: now an dispatcher is needed, to decide which

mode each Stroke belongs to, based on how well it fits in each. History can be also used.

After the decision is made, the modes to which the Stroke is not assigned may need to

reinterpret surrounding Strokes, especially since more Strokes may have been drawn and

interpreted before the decision was made.

Hopefully this task can be made simpler by introducing ideas such as the notion that

parts of a given equation are likely to be laid out on a line. They will not be spread about

the drawing area. Likewise, circuit elements should be relatively close, and connect together

well.

In order to accommodate threads, several changes must be made to the Recognizer. Each

mode as described earlier would become a separate thread. Hence, most of the Recognizer

would be moved into a circuit thread. Then the thread must be given the ability to read

Strokes. Most of the changes will be in the production of data. Instead of just producing

RecObjs, the circuit thread may need to produce the entire interpretation of the circuit.

Some metric of how well the new Stroke fits into the circuit will also be needed. The exact

information produced will need to be decided upon during the integration process.

Another unknown is how redrawing will be handled. Options include: the circuit thread

will produce information about what areas need to be redrawn, as it does now; the circuit

thread will produce only RecObjs, and they are redrawn by another thread; and the circuit

thread will retain control of the output area given it, and will redraw very much the way it

does so now. The first two of these particular options depend on the existence of another

thread which takes over the functionality of the Painter. The latter option does not need a

painter thread, but some control must be exercised over which threads may draw where. It

is quite likely that more than one thread would request to draw in the same place. Even if

segmentation of Strokes between threads is perfect, an equation could be drawn on top of

a circuit element.

The difficulties in coordinating asynchronous interpretation of the same Stroke and in

redrawing will require much work. However, most of these decisions will not require much

reworking of the circuit recognition, as the rules will not change, only the way in which the

results of the rules are returned.

4.2.2 Matching Numbers with Elements

After Strokes are divided between threads, they can be interpreted as part of a circuit or an

equation. The next step is to combine the interpretations of separate threads, if appropriate.

If an equation is written next to an inductor, is the equation supposed to specify the value

of the inductor? Or is the equation a proposed transfer function of the circuit? The Natural

Log should do very different evaluations of the circuit depending on which interpretation is

correct.

If the Strokes in an equation or circuit are sufficiently grouped, it may be possible to

treat them as a new kind of atom. Then, another thread could combine these groups. Rules

for this might be determined empirically. It may prove that a good solution to this is very

similar to a solution for grouping parts of an equation. This is a difficult problem to solve,

and will be the subject of much further research.

4.3 What Does Not Work

Certain aspects of the circuit recognition do not work well. Most problems can be fixed;

others would probably be left for a rewrite, should one happen.

4.3.1 Error Handling

Error handling in The Natural Log is insufficient. Very little has been done to decide how

to deal with error cases. At present, the best mechanism for dealing with errors is to print

a message to a console window and then proceed as best possible, which is inadequate.

One problem with error handling is that a functional programming style has been used

in C++, a language not best fitted for this. An argument can be made that methods should

be changed to return error codes, rather than the values produced by the method. Many

methods would need to be able to produce several different error codes, and the calling

code would become much more lengthy, as tests for the error conditions must be added.

One possible alternative, provided by C++, is the use of exceptions. The use of exceptions

would achieve the same goals, while easily allowing certain errors to be recoverable and

others fatal; fatal errors would simply not be caught when the exception is thrown.

To use either method of error handling would require changing the code used in every

part of The Natural Log. However, this is necessary if The Natural Log is to continue

to work smoothly as new functionality is added. Also, while it is easy to add some error

handling to each thread, a method for dealing with an error returned by any particular

thread must be designed. Certain errors may be ignored, while others may not. Errors

generated by one thread may provide information which needs to be passed on to other

threads. No mechanism for these cases is in place at the present.

4.3.2 Too Much Code

A lot of code in the four methods which make up getConnInfo, discussed in section 3.6.3,

is repeated in each. There are sometimes subtle variations between methods. This, coupled

with the length of the methods, makes the code very difficult to understand. Breaking up

the methods further might help, but the differences between the four cases will remain.

This situation also makes the methods hard to maintain, and adding functionality requires

a full understanding of each method.

A great improvement can be made by combining the connection methods into one

method. It should be fairly easy to add a set of if statements at each difference in logic.

Then, not only will code no longer be duplicated with minor changes, which is especially

hard to maintain, but the differences between the different cases will be much more clearly

laid out.

The four adjustment methods, seen in section 3.5.3, are similarly duplicated. These

methods share fewer similarities; adjustElement and adjust0therObjsToElement have

a very similar process involved, which is quite different from that of adjustWireEnds and

adjust0ther0bj sToWire, which are themselves even more similar. However, these methods

are also quite long and difficult to interpret; modification depends on a very complete

understanding of what is already present. The adjustment methods are not as easily broken

up as the connection methods, but each pair might be combined intelligently.

The implementation of a general ruleset for adjustment and connections would be fur-

ther improvement (see section 4.4.2), because then both the adjustment methods and the

connections methods would be very general. In this way, only the rules need to be modified

to change or add behavior, and the code would be much cleaner.

4.3.3 Connections Maintained by Wnodes

Wnodes are very important to the circuit. Almost all information about what objects are

connected and where resides in Wnodes. Most circuit elements can only find out what they

are connected to by obtaining the listing of objects to which the Wnodes are connected.

Unfortunately, the way in which Wnodes deal with connections needs improvement.

One quick improvement would be to add methods which allow the Recognizer or objects

in the circuit to get all information on connections from a Wnode. Currently either a list

of objects to which the Wnode is connected, or a list of places to which the Wnode is

connected, is available. These two pieces of information should be provided together as

well.

More importantly, the choice of data stored in a connection proves to have been inad-

equate. As explained in section 3.3.4, a connection consists of a pointer to the object to

which the Wnode is connected, and a Point representing the location of the "other end" of

a line segment, since the Wnode is assumed to be one endpoint of this line segment. This

was designed to make it easier for the Recognizer to determine ideal locations for Wnodes,

as it can easily be determined if moving a Wnode will cause the line segments which it

terminates to be horizontal or vertical. A Wnode which is part of a vertical line segment

might be constrained to move only vertically, and likewise for horizontal line segments.

Since The Natural Log does not yet produce circuit diagrams drawn in a particular

manner, as in section 4.1.7, this functionality of the Wnodes is not used. An important

negative aspect of the functionality is that it creates very fragile data. Consider a simple

case of a Wire with two end Wnodes and one between the endpoints. If the Wnode in

the middle needs to be moved, the Wire is required to do a large amount of work in its

nodeMoved method. Each Wnode on the Wire which is connected to the location of the

middle Wnode must be located. Then, connections to that location must be removed, and

new ones added, to reflect the change. The detail work required to maintain the proper

connections of Wnodes on a Wire to other parts of the Wire and vice versa makes it very

easy to create bugs, leaving poorly-built Wires in the circuit, which shortly leads to serious

problems. Also, any small change in Wires or Wnodes can cause many different failures.

Elements place more requirements on Wnodes. Wnodes on the Element itself can be

marked as full, to prevent new connections, but they cannot easily be marked as unmovable.

Hence Elements have to rely on the Recognizer to make a distinction between these Wnodes

and others, so that they will not be requested to move. The introduction of Paths which are

arcs also complicates matters. The "other end" of a connection assumes that the Wnode is

on a line segment, which is not the case when it is on an arc. It might seem easiest to make

connections to either end of the are, and add another special case to the Recognizer, but if

the Path is a circle, another problem appears. There may not be more than one connection

to a given location, but a circle is an arc with the beginning and end in the same place.

The difficulties described above demonstrate that the connection mechanism in Wnodes

is not robust enough. It is also not easily generalized, as shown by the problems arising

with Elements. These problems will be alleviated if a better representation of connections

is designed and implemented. See sections 4.4.1 and 4.4.3 for some additional discussion.

4.3.4 Adjustment Algorithms

The adjustment algorithms, despite being long and complex (as noted in section 4.3.2),

are not complete. Each is missing tests for certain cases, or more cases are considered

ambiguous than should be. See section 3.6.3 for a description of these four methods.

adjustWireEnds will attempt to adjust only the ends of a Wire. This is not adequate,

as a Wire may be drawn on top of a preexisting Wnode. If this happens, the Wire should

be connected to the Wnode (see section 4.1.3). In order to achieve this, any locations where

the Wire crosses another Wire or Element must be examined, to determine if there is a

Wnode at that location which should be connected to the Wire.

adjust0ther0bjsToWire immediately makes a connection to the Wire as soon as one

is found to be possible. This means that the most recently drawn RecObjs will be con-

nected first, since the list of RecObjs is traversed from newest to oldest. All possible

connections should be collected instead. This would allow the Recognizer to make the best

connection, which may be based on criteria other than distance. This is very similar to

adjust0ther0bj sToElement. Then, other connections could be made if still possible.

adjustElement faces additional difficulties. If the user draws two parallel Wires, then

an Element with two Wnodes which should connect to both Wires, the Recognizer must

take care to connect one Wire to each Wnode. Possibly both Wires are closer to one Wnode,

so factors other than distance must be taken into account. First, for each Wnode on the

Element, all possible connections are collected into a list. Next, connections need to be

chosen so that the combination of all connections made is optimal, since a Wnode on a

given object may produce a connection for more than one Wnode on the Element. One

possible method for choosing an optimal set of connections is to choose the set for which

the sum of distances traveled by Wnodes in making the connections is minimized. This is a

multi-variable minimization problem. During minimization, care must be taken to prevent

a combination from being created which will break rules, such as causing two Wires to

cross. A less optimal solution is currently in use; all Wnodes for which only one connection

was produced are connected. CONNECTINFOs for Wnodes on other objects which have been

connected are then removed from the lists for the other Wnodes on the Element. This is

done until only Wnodes of the Element with more than one possible connection remain.

It is possible that these Wnodes may be reasonably connected by choosing the connection

with the minimum distance, but it is safer to leave these Wnodes unconnected, so that

the user may then connect them by drawing more precisely. Fewer connections would be

labeled as ambiguous if a optimization such a minimization of total distance is used.

adjust0ther0bj sToElement cycles through each RecObj, and stores a CONNECT_INFO

for each Wnode which can connect to the Element. Since other objects may connect to

either Wnodes on the Element or connectable Paths, a list of CONNECTINFOs is made for each

location on the Element, not just each Wnode, as in adjustElement. Again, certain Wnodes

may be able to connect to multiple locations on the Element, and the best combination of

these connections must be found. An added complication is that connections on connectable

Paths may have been generated very close together. Ordinarily, when the connecting objects

are drawn after the Element, the first such connection would create a lead, and the others

would connect to the lead. Similarly, close connections should not create many close leads.

In this situation, the best of a set of near connections must be chosen. Then the other

connections should be connected to the new lead, if possible. Otherwise, they can be

connected to the Element to make another lead. It is not clear how to choose which

connection should be made first; presently adjust0ther0bj sToElement will arbitrarily use

the first connection found, which would correspond to the most recently drawn circuit object

of the set.

The best plan for sorting the connections might be to connect all CONNECTINFOs which

connect to Wnodes on the Element first, using the same optimization as in adjustElement.

Then, remaining locations on the Element are on connectable paths. Another minimization

problem arises; the total distance traveled by Wnodes to connect to the Element should be

minimized, while also ensuring that no two leads are too close together. At present, the

Recognizer attempts to group connections which are a certain distance from each other;

however, this is not a sufficient method, as a number of connections is a row could be

collapsed into one, where two or more separate leads would be desired. Fortunately, this

situation will not arise often, as it would require that the user draw many connections to

the Element before drawing the Element itself.

4.3.5 Wires on top of Others

If the first or last segment of a Wire is drawn directly on top of a segment of another Wire,

some problems may arise. This is because the two segments are parallel, and on the same

line. If only the first or last segment matches exactly, the startNode or endNode will be

moved to the same location as the corner or Wnode at the other end of the segment. A

more serious problem arises when more segments than this one match. Wnodes and corners

should be removed from the end of the new Wire until the new Wire diverges from the older

Wire. This is almost impossible to achieve in the current system, as this situation might

not be discovered until a set of CONNECT_INFOs has been generated for the original location

of the Wnode. These CONNECTINFOs must be discarded, the startNode or endNode moved,

intervening corners removed, and the traversal of all RecObjs in the Recognizer must be

restarted. There is no mechanism available in the Recognizer to signal the need for such

action. This is an ideal case for the addition of exceptions (section 4.3.1).

4.4 Improvements

Improvements to circuit recognition in The Natural Log can be made on many levels.

First, smaller improvements are listed. These do not cause any significant change in the

control flow and algorithms of the Recognizer, but will make code simpler, or more robust,

or improve performance. In section 4.4.2, some proposals which could require a rewrite

are discussed. Finally, some unanswered questions remain; any new work on the circuit

recognition should start by choosing answers to these questions.

4.4.1 Small Ways

findSegmentsCrossing

This method of CPath, depended upon greatly, even if indirectly, by the Recognizer to

compute locations for connections, should be rewritten. It computes the slopes of the two

lines, described by endpoints of two segments, taking into account the special case of infinite

slope, then uses these slopes and the locations of the segments to compute the intersection

point. Slopes are generally a poor way to carry out this sort of computation.

One alternate method would involve writing an equation with a scale factor as the

unknown, instead of the crossing point. The scale factor represents the distance along one

of the line segments from the starting point to the crossing point. A value of I is at the

ending point of the segment, 0 is at the starting point. Once this scale factor is computed,

the crossing point of the two lines can easily be determined from the scale factor and the

endpoints of the segment.

Automatically Create Leads

When Elements are redrawn, Wnodes which should always be on the Element are added

(section 3.3.6). Some Wnodes of an Element have been added automatically and do not

have leads, and some are on the far ends of leads. Connecting to an Element would be

much simpler if leads are created at the same time as the Wnodes on the Element; then

there would never be a case where the Wnodes created automatically during redrawing are

available for connections.

Methods for Finding Object Crossings

Methods should be added to CWire and CElement which will return a list of locations

where the representation of another object crosses the Wire or Element in question. These

methods are mentioned in sections 4.1.3 and 4.1.7.

Multiple Connections to One Place for Wnodes

As seen earlier (in sections 4.3.3 and 3.3.4), a Wnode may only have one connection to a

given location. This requirement should be implicitly enforced by the rules of drawing a

circuit, since any connection of a Wnode implies a Wire between the two locations (zero

impedance, in an ideal circuit), so there should not be two different objects in the same

place, unless they too are connected.

However, it has proven useful to be able to have more than one connection to the same

location. It should not be used in general, but there are cases where it might be used (i.e.,

on circles, as mentioned in section 4.3.3). It would also make it easier to write fault-tolerant

code, because the current implementation is free to either replace a connection or ignore

the new one in situations where a connection is added to a location already connected; it

would be better if the connections were allows so that information is not lost.

List Classes

Section 3.4.2 lists the subclasses of MFC list classes used by circuit recognition. As dis-

cussed, CMyPtrList was created to add an assignment operator. However, the assign-

ment operator is rarely used, and declarations are no less cumbersome. Given the relative

difficulty in using CObjList compared to CPtrList,2 the subclass should have been de-

clared to always use CPtrList. This would allow assignment to be added, while simultane-

ously reducing clutter in the code: CMyList<CPoint*> would then be sufficient, replacing

CMyPtrList<CPtrList,CPoint*>.

4.4.2 Bigger Ways

Use a Ruleset

Discussions of the adjustment methods and getConnInfo refer to the need to combine the

different methods involved in each, so that they will be easier to understand (section 4.3.2,

less in section 4.3.4). In order to allow both of these sets of methods to be flexible enough to

accommodate any new rules for connections, the best plan would be to write these methods

very generally, and then provide a ruleset for them.

If the rules are to be added without significantly changing the code, they should be

resident in a file which The Natural Log can read. A format for the rules needs to be

created, and code must be written to apply these rules to the circuit when it is drawn.

However, once this is done, a generic adjust0bjTo0bj method and a generic version of

getConnInfo will exist. Written properly, this system would allow additions and changes

to the ruleset without requiring that someone learn each detail of the adjustment methods

and connection methods first, then edit them, as is the case now. This latter process would

likely produce poorly working code.

Another advantage of the use of a ruleset is that the rule format and the code might

then be adapted for other uses. Any other drawings using a similar sort of paradigm could

work this way, such as an architect's sketch of a building.

2The two options provided by MFC for a base class in the template.

Re-Couple Representation and Topology

One of the largest contributions to the difficulties described in this chapter is the fact that

early work attempted to decouple the representations of Elements and Wires from the com-

putations determining how they should be connected together. However, too much informa-

tion about the representation of circuit objects is needed by the connection calculations for

the two to be decoupled. Since it is extremely difficult to separate the representation and

the topology, attempts to do so interfere with the topology computation. Another effect is

that the topology computations are sufficiently insulated from the representation that good

decisions about the locations of connections can be hard to make, especially when attempts

are made to draw circuits neatly (section 4.1.7). Very little separation is needed for this

problem to arise.

At present, Elements and Wires do not have very much useful information about what

they are connected to. Wnodes, being the significant part of the data on topology, do not

have information about what the Wires or Elements look like. Changing the system to

allow Wires and Elements to maintain all the necessary information about connections as

well as representation, thereby re-coupling the two sets of information, will make much of

the Recognizer's work easier.

De-Localize Connection Decisions

Another significant problem with the circuit recognition in The Natural Log is that all

connection decisions are made locally. As seen in section 3.6.2, a connection can be made if

the distance between the two locations being connected is small enough, and if other criteria

are met, e.g., the connection would not cause line segments to change angle by too much.

All connections are based solely on the two objects under consideration for a connection.

While modifying the adjustment methods as described in section 4.3.4 would factor in other

neighboring objects in certain connection decisions, this is still a local decision.

Circuits could be drawn more cleanly with global information about the locations and

connections of circuit elements. A broader view of surrounding elements could restrict some

choices of connections. The Natural Log cannot produce a better version of the circuit as

envisioned in section 2.1 without considering all parts of the circuit.

If Wires and Elements are changed to contain direct information about what they are

connected to, as discussed in the previous section, the Recognizer will be able to work with

data which is less local in character. This will allow connection decisions to be made with

more consideration of the surrounding circuit.

Another way in which the overall topology of the circuit can be used is to add means by

which the Recognizer can search for a topology which fits certain constraints better than

the current topology. This could be done while The Natural Log is idle, waiting for more

input from the user. One way in which this could be done is by loosening the connections,

and then testing different combinations of connections, possibly using an algorithm similar

to simulated annealing. To be able to do this, connections may need to be more reversible,

which would cause another change in the way in which Elements, Wires, and Wnodes store

connections.

Draw Elements on Wires

One common drawing mechanism used in circuits is to draw an element on top of a wire.

Perhaps the person drawing the circuit forgot to add the element earlier, or discovered that

a capacitor was needed, or simply waited until later to extend the diagram. Whatever the

reason for this behavior, it would be useful for The Natural Log to be able to handle such

a change in the circuit.

In order to allow this, the Recognizer must be able to identify Elements which are

drawn on top of Wires. However, the definition of "on top" is ambiguous. If the Wire

passes through the center of the Element, the user probably intended the Element to be

added to the middle of the Wire. If the Wire passes through a corner of the Element, it

may be due to sloppy drawing or an intended connection. Metrics for which of these cases

is the appropriate interpretation must be determined, and then added to the Recognizer. A

simple threshhold may not be enough; which parts of the Element the Wire passes through

could be an important metric.

Training

In the beginning of the Natural Log project, when there is a limited set of elements, creating

the models and the description of what they look like and how they may be connected can

be done by a separate data collection program and careful specification by the programmer.

Later, if the system is to be extensible, there must be provisions for a user to enter a new

element and the extra information necessary. One possibility is for The Natural Log to

enter a training mode, where the user draws several examples of the element. Then, a guess

for what the clean representation is can be displayed. With extra effort, The Natural Log

might allow the user to edit this representation. Then, the user can be prompted for which

locations should have Wnodes added automatically, and which portions of the Element

should be connectable Paths. This, and any additional information collected, can be added

to a data file. This may be the global data file as proposed in section 4.1.1, or an additional

user-specific file. In this manner, the circuit recognition of The Natural Log can include

new types of elements as needed.

4.4.3 Questions to Ask

Here are some questions which those working on future implementations of circuit recogni-

tion, or rewrites of the current one, should ask. These are issues which have come up during

this project, and good answers have not necessarily been found yet.

Close to Parallel

Should the two lines in figure 4-3 be connected?

Figure 4-3: It is unclear whether the two lines shown here should be
connected, and where.

If the answer is yes, then the circuit recognition must allow for this case. It could be decided

that it is always safer to not connect these Wires; the user can always draw another line to

connect them.

If these Wires are to be connected, simply increasing the threshhold for the distance

from endpoints to the crossing point is not an adequate solution, as this would cause too

many connections; the two Wires in figure 4-4 probably will have an Element drawn between

them, and connecting them would be undesirable.

Rules for this case will need to be added to the Recognizer, if it is to be supported.

When these lines are permitted to connect, it would also be good to make sure that they

Figure 4-4: Increasing the distance threshhold will connect these two
Wires, although it is apparent they should not be connected.

are connected with a small line between them, in the manner of figure 4-2.

Wnode Connections

The mechanism by which Wnodes maintain connections to other circuit elements has been

the subject of much discussion (especially in section 4.3.3, 3.3.4, and a small amount in

section 4.4.1). The way in which these connections should be maintained should be decided

upon very early; keeping insufficient information cripples the Recognizer.

The information present in Wnodes was designed to give the Recognizer information

about good locations for a Wnode. How can this information be kept without making

connections cumbersome? It does not make sense to expect the Wnode to know where the

other end of a line is. If an alternate representation of connections is proposed, will it be a

noticeable improvement?

Moving Wnodes on Elements

As mentioned in section 4.3.3, Wnodes on Elements should not be allowed to move, except

in cases where the representation of the Element changes and the Element itself moves

the Wnode. A question to answer is how Wnodes should be changed to enforce this.

One solution is to always create leads, as suggested in section 4.4.1. Others are available,

including adding a data member to CWnode, describing whether the Wnode may move or

not. This might even be extended to describe constraints on Wnode movement, or ideal

directions of movement, to improve the way in which the circuit is drawn.

Other Ways to Determine Topology

The entire circuit recognition portion of The Natural Log is centered around one mechanism

for determining the topology of the circuit being drawn. This mechanism assumes that

certain features of the Strokes drawn by the user, most notably end points and sharp

changes in direction, betray the intended connection locations. One alternate method might

instead look for regions of the circuit enclosed by wires and elements. This would be a good

approach for recognition of images of circuit diagrams, as there is no stroke information

present. If other methods of finding connections are developed, several might be employed

at once. Agreement between methods would then be a strong case for a given interpretation.

Chapter 5

Conclusion

The implementation of circuit recognition discussed in this document, while not fully com-

plete, is a good start on the problem. At this point, the circuit recognition for The Natural

Log can be extended reasonably easily as proposed in Chapter 4 until it is fairly useful.

Chapter 3 provides enough information about the workings of the system to introduce a

new person to the project. Even if the circuit recognition already implemented is rewritten,

the lessons learned in creating the original will provide information on directions to take

during the rewrite.

The work presented here also gives advice about some pitfalls to avoid, should a similar

system be implemented. The questions posed in the final chapter will be important for

continuing work on circuit recognition; a good set of answers to these question will be part

of a good final result.

