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ABSTRACT

This thesis builds on the work of Fekete et al. [1], who defined an eventually-serializable
data service (ESDS) and an abstract algorithm for it. ESDS allows its users to relax
consistency requirements in return for improved responsiveness, while providing
guarantees of eventual consistency of the replicated data. An important consideration in
formulating ESDS was that it could be employed in building real systems.

We formulated a framework that assists a programmer in mapping algorithms specified
using I/O Automata notation [3] to distributed implementations. Using the framework,
we developed a distributed implementation of ESDS and explored its behavior in a
distributed setting. We combined the implementation of ESDS with different data types
and clients, thus demonstrating the suitability of the service as a general building block.
The implementation was experimentally evaluated on a network of workstations. In this
setting the implementation scaled in the number of processors and reflected a designed
trade-off between consistency and performance.
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Chapter 1

Introduction

Specification of distributed systems building blocks and development of supporting algo-

rithms is one of the main research areas at the Theory of Distributed Systems group (TDS)

at the MIT Laboratory for Computer Science. TDS recently defined a flexible eventually-

serializable data service (ESDS) [1]. The definition includes a formal specification of the

data service and an abstract distributed algorithm that implements the service. ESDS re-

laxes consistency guarantees provided by serializable distributed data services to improve

system efficiency and availability. It also provides provable guarantees of long-term consis-

tency of the data. An important consideration in the design of ESDS was that it could be

employed in building real systems. In this work we develop a distributed experimental im-

plementation of the ESDS algorithm. Using this implementation, we explore the practical

issues associated with using the ESDS specification and abstract algorithm in real systems.

1.1 Background

As outlined in [1], replication is used in distributed systems to improve availability and to

increase throughput. The disadvantage of replication is the additional effort required to

maintain consistency among replicas when serializing operations submitted by clients. Sev-

eral notions of consistency have been defined. The strongest notion of consistency is atom-

icity, in which replicas emulate a single centralized object. Methods to achieve atomicity

include write-all/read-one [4], primary copy [5, 6, 7], majority consensus [8], and quorum

consensus [9, 10]. Achieving atomicity often has a high cost, some applications, such as



directory services, are willing to tolerate some transient inconsistencies. This gives rise to

different notions of consistency. Sequential consistency [11], guaranteed by systems such as

Orca [12], allows operations to be reordered as long as they remain consistent with the view

of isolated clients. Other systems provide even weaker guarantees to the clients [13, 14, 15]

to get better performance.

Improving performance by providing weaker consistency guarantees may lead to more

complicated semantics. While in practice, replicated systems are often incompletely or

ambiguously specified, it remains very important to provide formal consistency guarantees.

Ladin, Liskov, Shrira, and Ghemawat [18] define one highly available replicated data service.

They specify general conditions for such a service, and present an algorithm based on lazy

replication, in which operations received by each replica are gossiped in the background.

Responses to operations may be out-of-date, not reflecting the effects of operations that

have not yet been received by a given replica. Building on the work of [18], Fekete et al. [1]

specify a flexible eventially-serializable data service that we use in this work.

1.2 Experimental ESDS Implementation

The ESDS algorithm is specified as a composition of I/O Automata. I/O Automata [2]

are specified as state machines using a declarative description language. To implement

ESDS, we need to convert the abstract algorithm to a design specification for a distributed

program. To our knowledge, no general method for converting I/O Automata specifica-

tions to distributed programs has been published. We develop a framework for converting

I/O Automata-based algorithms to distributed implementations that use message passing.

We use the framework in designing the ESDS system. We believe that the techniques in

the framework are general and that they can be used to implement other I/O Automata-

specified algorithms.

The design of a distributed ESDS system is an important part of our work. The abstract

ESDS algorithm is specified to be independent of the serial data type of the replicated data

object. Our implementation of ESDS is built using object-oriented techniques to ensure

that this independence is preserved in the implementation. Our design provides a layer of

abstraction between the objects that implement the ESDS algorithm and the objects that

vary with each specific data service application built on top of the ESDS system.



We implement a functioning ESDS system and build three simple applications on top of

it to demonstrate the viability of our design as a generic building block for real distributed

data services. The implementation relies on a standard message-passing subsystem to ensure

portability. Implementation and testing were done on a network of Sun workstations running

the SunOS 4.1.4 operating system.

1.3 Empirical Testing and Analysis

We instrumented an optimized implementation of ESDS with tools for monitoring inter-

esting parts of the state of the data service and collecting information about performance

characteristics of the system. Characteristics of interest include response time to user re-

quests, system throughput, and deviation from strict consistency in system responses.

The empirical tests provided data on the behavior of the implementation with varying

number of participating replicas and with varying system load. The tests also confirmed that

ESDS represents a tradeoff between consistency and performance, and that it is possible to

shift the tradeoff balance in either direction according to the user's needs.

1.4 Roadmap

The rest of this thesis is organized as follows. Chapter 2 gives the models and definitions

used in other chapters and describes the hardware and software environment in which

the ESDS prototype was implemented. Chapter 3 describes a framework for converting I/O

Automata-specified algorithms to distributed implementations. Chapter 4 describes how an

experimental ESDS service was implemented using that framework. Chapter 5 discusses the

empirical results obtained using the experimental service. Our conclusions and suggestions

for future work are in Chapter 6.



Chapter 2

Models, Definitions, and Platforms

This chapter gives an overview of the models and terminology that we use throughout the

rest of the thesis. Section 2.1 gives a brief introduction to the I/O Automata model, which

was used to specify the ESDS service [1]. Section 2.2 describes the hardware and software

environment and tools used in implementing and testing the ESDS service. Section 2.3

defines a nomenclature used to identify and distinguish different versions of the ESDS

algorithm specification and corresponding implementations. It also introduces terminology

for use in later chapters.

2.1 Models: An Introduction to I/O Automata

We now overview a formal model for asynchronous computation, the Input/Output Automa-

ton (I/O Automaton) model. This is a general model, suitable for describing distributed

algorithms. The model provides a precise way of describing and reasoning about asyn-

chronous interacting components. For a complete description of the I/O Automaton model,

the reader is referred to [2] and [3], from which this section is abstracted.

An I/O Automaton models a distributed system component that can interact with

other system components. It is a state machine in which the transitions are associated

with named actions. The actions are classified as either input, output or internal actions.

The inputs and outputs are used for communication with the automaton's environment,

while the internal actions are visible only to the automaton itself. The input actions are

not under the automaton's control, while the automaton itself specifies what output and



internal actions should be performed.

An Input/Output automaton's "signature" is a description of its input, output and

internal actions. A signature S is a triple consisting of three disjoint sets of actions: the

input actions in(S), the output actions out(S) and the internal actions int(S). The external

actions, ext(S), are in(S) U out(S), the locally controlled actions, local(S), are out(S) U

int(S), and acts(S) are all the actions of S. The external signature, or external interface,

extsig(S), is defined to be the signature (in(S), out(S), ).

An I/O automaton consists of five components:

* sig(A), a signature,

* states(A), a set of states,

* start(A), a nonempty subset of states(A) known as the initial states,

* trans(A), a state transition relation, and

* tasks(A), a task partition, an abstract description of "threads of control" within the

automaton (not used in the ESDS specification).

We call an element (s, r, s') of trans(A) a transition or step of A. The transition (s, 7r, s')

is called an input transition, output transition, etc., based on whether the action 7r is an

input action, output action, etc.

If for a particular state s and action 7r, A has some transition of the form (s, 7r, s'), then

we say that 7r is enabled in s. Since every input action is required to be enabled in every

state, automata are said to be input-enabled.

I/O Automata are often described in a precondition-effect style. This style groups to-

gether all the transitions (s, 7rn, s') that involve each particular type of action into a single

piece of code. The code specifies the preconditions under which the action is permitted to

occur, as a predicate on s. Then it specifies the effects that occur as a result of applying

7rn to s. The code in the effects clause gets executed atomically.

Next, we define (informally) the operation of composition for I/O Automata.

The composition operation allows an automaton representing a complex system to be

constructed by composing automata representing individual system components. The com-

position identifies actions with the same name in different component automata. When



any component automaton performs a step involving 7r, so do all component automata that

have 7r in their signatures.

We impose certain restrictions on the automata that may be composed. First, since

internal actions of an automaton A are intended to be unobservable by any other automaton

B, we do not allow A to be composed with B unless the internal actions of A are disjoint

from the actions of B. At most one component automaton "controls" the performance of

any given action; that is, we do not allow A and B to be composed unless the sets of output

actions of A and B are disjoint.

When we compose a collection of automata, output actions of the components become

output actions of the composition, internal actions of the components become internal

actions of the composition, and actions that are inputs to some components but outputs of

none become input actions of the composition.

The states and start states of the composition automaton are vectors of states and start

states, respectively, of the component automata. The transitions of the composition are

obtained by allowing all the component automata that have a particular action r in their

signature to participate simultaneously in steps involving 7r, while all the other component

automata do nothing. Since individual component automata are input-enabled, so is their

composition. It follows that a composition of several automata is an I/O Automaton.

2.2 Platforms

In this section we describe the hardware and software environment in which the ESDS

system was developed and tested.

2.2.1 Hardware and Operating Systems

The prototype ESDS service was developed and tested on a network of Sun workstations

running SunOS 4.1.4. The MPI (see Section 2.2.2) implementation used with the prototype

was MPICH version 1.0.12 [17]. Three clients for sample ESDS service applications were

developed. One client was developed for Win32 and tested under Windows 95 on an Intel

Pentium machine. Two other clients ran under SunOS 4.1.4.



2.2.2 Interprocess Communications

This section describes MPI, our choice of the method of communication between distributed

components of the ESDS implementation. It explains its advantages and disadvantages.

In selecting a method for communication, we took into account

* Suitability for implementing I/O Automata,

* Simplicity of communication semantics,

* Availability of development tools, and

* Portability

We chose to use the Message Passing Interface (MPI) Standard [16] in implementing

ESDS. MPI is a practical and portable message passing system. It contains a large set of

communication primitives, and it makes it possible to write message passing applications

using only a few primitives. This has the advantage of simplifying programs and making it

easier to reason about their behavior.

Main reasons for choosing MPI are as follows:

* Simplified mapping of I/O Automata to message-passing code,

* MPI message-passing primitives have simple semantics,

* MPI is implemented on many distributed platforms, together with development tools.

An MPI program is a collection of MPI nodes. Each node is a sequential thread of

control with a private memory space. MPI nodes are specified to execute concurrently and

asynchronously.

We used a small set of MPI features in our implementation. The message passing

primitives we used are:

MPI-Send Sends a point-to-point message from one MPI node to another. MPI-Send

operates in three different modes of communication. In standard mode, MPI is free

to decide whether to buffer the message and return from MPI-Send immediately or

wait until a matching MPI-Recv has been posted. A buffered mode send operation



Algorithm A

Automaton A1 Automaton A2

Input/Output Combinations

Figure 2.1: I/O Automata Composition

forces MPI to buffer the message and return as soon as that is done. A buffered send

is local - its completion does not depend on an occurrence of a matching receive. In

synchronous mode a send will block the caller node until a matching receive has been

posted. In the ESDS prototype we used the standard mode and left memory and

performance management to the MPI implementation.

MPI-Recv Receives a point-to-point message from another MPI node. Messages sent

between any two MPI nodes are guaranteed to arrive exactly once in FIFO order.

MPI-Recv blocks the caller node until a matching MPI-Send has been posted.

MPI-Iprobe Returns a boolean value that indicates whether the calling MPI node has

any pending messages from another MPI node, or from any one of a group of other

nodes.

2.3 Definitions and Terminology

In this section we assign names to different variations of the ESDS algorithm [1] and its

implementations. We also introduce additional terminology relating to I/O Automata that

State: StA 1
Transitions:

Output W
Output Y
Input Z

State: StA 2
Transitions:

Internal X

Input Y
Output Z



we use later.

Two definitions needed in the description of a framework for converting I/O Automata

to distributed implementations relate to composition of I/O Automata. As described

in Section 2.1, individual automata in a composition communicate among each other by

means of input and output actions with the same name. We distinguish between two types

of actions in an I/O Automata composition.

Definition 2.3.1 Let an I/O Automaton A be a composition of I/O Automata A 1 , A 2 ,...,

Am. If there is an output action X E A that occurs as an output action in some Ai and as

an input action in some Aj (i # j), we call such action in A an Input/Output combination,

or I/O combination for short. We call Ai the output end with respect to X and we call Aj

the input end with respect to X. Any action Y E A that appears in one and only one Ak

is called a regular action.

Figure 2.1 gives an example of an automaton A composed of two component automata,

A1 and A 2. In the composition, W and X are regular actions and Y and Z are I/O

combinations.

The following names identify abstract ESDS algorithms and their implementations:

ESDSAlg refers to the unoptimized abstract algorithm for ESDS [1].

SimpleESDSAlg is a simplified version of ESDSAIg that replaces channel automata with

I/O combinations. This is done in two steps. The first step is removing channel

automata from the composition. The second is substituting an I/O combination

for each pair of channel connection points of the form Output send2,j(<"msgtype",

argl,arg2,... >) and Input receivei,j(<"msgtype", argl,arg2,... >). The substi-

tuted I/O combination is named msgtypei,j(< argl, arg2,... >) at both ends.

ESDSOptAlg is an optimized version of ESDSAlg. The optimizations included in ESDS-

OptAlg and an I/O Automata description of the optimizations are presented in Sec-

tion 4.3.1.

ESDSImpl, SimpleESDSImpl, and ESDSOptImpl are distributed programs (written in

C++ using MPI) that implement ESDSAlg, SimpleESDSAlg, and ESDSOptAlg re-

spectively.



Chapter 3

A Framework for Converting I/O

Automata to Distributed Programs

I/O Automata have been effectively used for describing message-passing distributed algo-

rithms and in proving correctness properties of the algorithms. In this chapter we present a

framework for converting such commonly occurring algorithms specified with I/O Automata

compositions into distributed implementations using an imperative language (we used C++

in our work).

The source I/O Automata composition being converted is called the source composition.

We also call the algorithm represented by the source composition the source algorithm. The

result of the conversion is a program. We call it the target program.

It is important to be able to reason that the target program is an accurate implemen-

tation of the source algorithm specification. Because of this, the techniques discussed here

are conservative and will usually lead to an overspecification of the I/O Automata-specified

algorithm, but they still allow for a large and interesting subset of behaviors to be reflected

in the target implementation.

3.1 Overall Approach

I/O Automata notation can be used to specify distributed algorithms involving a collection

of communicating nodes. This is normally done by encapsulating the behavior of each node

I as a separate automaton Ai. The entire algorithm is represented by the composition A of



component automata A 1 , A 2, ..., Am. The internal actions of each component automaton

Ai represent local processing at the corresponding node. The Input/Output combinations

represent communication between the nodes. The input and output actions of each au-

tomaton that do not participate in an Input/Output combination represent the interaction

of the corresponding node with its external environment.

In the target program produced from the source composition A, each of A's component

automata Ai is represented by a sequential process Pi. (It is also possible to combine

several automata to run as a single process if there is a reason to do so.) Note that if the

composition does not model a distributed system, the techniques presented in this chapter

can still be applied to convert it to an imperative language program, but of course this will

not yield a distributed implementation of A.

Each action of the source composition will have a corresponding fragment of code in the

target program that implements the action. The conversion techniques ensure that each

such fragment of code appears to be atomic.

The rest of this chapter describes the procedures to be followed for converting a compo-

sition A of I/O Automata to a distributed program. A is assumed to consist of component

automata A 1,..., Am. An action with the name X belonging to automaton Ai is defined

to have preconditions clause PXAi and effects clause EXAi. A component automaton Ai

will correspond one-to-one with an implementation process Pi.

Section 3.2 describes how to represent the state of A's component automata in the target

program's processes. Section 3.3 describes how to convert precondition-effect style actions

to code. Section 3.4 presents our implementation of these techniques in C++.

3.2 Representing Component I/O Automaton State

The local state of a component automaton Ai is represented by the state variables local to

the corresponding process Pi. We do not make provisions for representing global state of

A. If A utilizes global state, it may not be easily implementable as a distributed program.

Global state must be removed from such algorithms if one wishes to apply these techniques

to them.



3.3 Converting Individual Actions to Code

In this section we describe the procedures to be used to convert individual actions to se-

quential code.

3.3.1 Converting Preconditions Clauses into Procedures

The purpose of the preconditions clause PXAi in an action X is to determine whether the

state transition EXA, is enabled in the current automaton state. The preconditions clause

should be converted to a predicate procedure Enabled that checks the current state of the

automaton and returns true if the action is enabled and false otherwise.

An action X may represent infinitely many state transitions of the automaton containing

it, one per each instantiation of its arguments. More than one of these transitions may be

enabled simultaneously. If that is the case, we require the predicate Enabled to return true

for action X, but we leave it to the programmer to specify means for selecting the state

transition. In our framework, the selection must be made at the time of execution of Enabled.

This is done by choosing values for X's local variables such that the preconditions clause

is satisfied. The chosen values are then used in the execution of the Transition procedure

that implements the effects clause EXAi (see Section 3.3.2). It is up to the programmer

to ensure that the algorithm used in selecting the state transition gives all enabled state

transitions a chance to execute.

3.3.2 Converting Effects Clauses into Procedures

The effects clause EXAi describes the state transition(s) represented by action X. The

effects clause is converted to a procedure named Transition. Transition requires X to

be enabled and the desired state transition to be chosen among all enabled transitions

represented by X (see Section 3.3.1). Transition's effect on the state of Pi must correspond

to the effects of EXAi on the state of Ai.

3.3.3 Converting Regular Actions to Code

Conversion of a regular action or an input action to code is straightforward. All that needs to

be developed are the Enabled and Transition procedures that implement the preconditions



Automaton Ai
Output X

Preconditions: PXAi
Effects: EXAi

Process Pi
IF Enabled(PXAi)

Send(Pj, "Initiate X");
Transition(EXAi);
Receive(Pj, "Done X");

ENDIF

Automaton Aj
Input X

Preconditions: None
Effects: EXAj

Process Pj
IF NBReceive(Pi, "Initiate X");

Transition(EXAj);
Send(Pj, "Done X");

ENDIF

Figure 3.1: Converting an Input/Output Combination to Code

and effects clauses of the action (in the case of an input action, the Enabled procedure will

always return true and have no side effects). (We have already described the techniques for

creating Enabled and Transition procedures in Sections 3.3.1 and 3.3.2.)

3.3.4 Converting Input/Output Combination Actions to Code

Implementation of an I/O combination is trickier because it must rely on asynchronous

messages to implement the combination atomically. We give a technique for implementing

an I/O combination in the special case when only two automata participate in the com-

bination. This is sufficient for most existing I/O Automata algorithms. The general I/O

Automata model allows multiple automata to participate in one such combination. The

mechanism of negotiation presented here should be extensible to the more general case, but

we do not address this here.

The rule for converting an I/O combination to code is illustrated in Figure 3.1. Here

automata Ai and Aj correspond to processes (or nodes) Pi and Pj. The Send() and Re-

ceive() calls in the pseudocode for processes Pi and Pj stand for sending and receiving



asynchronous messages. They are implemented by MPI-Send and MPI-Recv, respectively.

The NBRecieve() in the process Pj is a non-blocking receive of a message, implemented

by calling MPI-Iprobe and then calling MPI-Recv if there is a pending message of type

"Initiate X" from Pi. If a message of the type "Initiate X" has not arrived at Pj, then the

IF block is skipped.

An I/O combination is always initiated at the process that represents the output end of

the combination (Pi in Figure 3.1). When the call to Enabled(PXAi) returns true, Pi sends

a message to Pj initiating the combination. Any argument that X may have is passed to

Pj in the same message. Next Pi performs the local state transition associated with X by

invoking the Transition(EXAi) procedure. Pi then waits for an acknowledgment message

"Done X" from Pj. This step synchronizes the execution of X at the two participating

processes.

At the input end of the I/O combination, Pj watches for requests from Pi to initiate X.

While the NBReceive call returns false, Pj can continue executing other actions. When Pj

receives an "Initiate X" message, it executes its local state transition for X and then sends

the acknowledgment message to Pi.

[[revise]]

In a distributed implementation that follows this design, the effects of multiple actions

and Input/Output combinations can be executed concurrently. For a regular action, the

effects will be local to the automaton executing it. For an I/O combination (like the one in

Figure 3.1), both effects clauses will finish executing before either participating automaton

is able to continue with other actions. Therefore, only the state local to the participating

automata can be changed by the effects clauses. It follows that the procedures representing

regular actions and Input/Output combinations are atomic.

3.3.5 Deadlock Avoidance

As presented, the design is safe, but it suffers from deadlock. If two automata running

concurrently enter the output part of two different Input/Output combinations and simul-

taneously attempt to initiate a combination with each other, it is possible for them to block

at the Receive(Aj, "Done X") line and wait for each other indefinitely.

The deadlock problem can be resolved by setting up a reservation system for performing
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Input/Output combinations. Each process Pi maintains its reservation status in a state

variable. The states of the reservation status are: free, reservedj, holding reservationj and

negotiating,, where j is the process number of another process (i ý j). Reservation status's

initial state is free. In this state the process is free to initiate or accept reservation requests.

In the reservedj state Pi is waiting for process Pj to initiate an I/O combination. In the

holding-reservationj state Pi may initiate an I/O combination with Pj. In the negotiatingj

state Pi is waiting for Pj to respond to a reservation request. The complete finite state

automaton for the reservation status of one process is depicted in Figure 3.2.

The reservation system imposes the following restrictions on the execution of Pi. Pi

can initiate an Input/Output combination with Pj only if its reservation status is holding-

reservationJ. Pi can participate in an Input/Output combination initiated by Pj only if

its reservation status is reservedj. The rules for obtaining and granting of reservations are

specified in Figure 3.2.

When a process Pi wants to initiate an Input/Output combination with process Pj, its

first step is to send a message to the receiving process Pj requesting a reservation. Pi is

allowed to do this only when its reservation status is free. After the request for a reservation

is sent to Pj, Pi enters negotiating, reservation status and waits for a response to the request.

If the reservation was granted by Pj, Pi enters holding-reservationj and Pj enters reservedj.

Pi is then free to initiate an Input/Output combination as described in Section 3.3.4. If the

reservation request was rejected, Pi bounces back to free reservation status.

Whenever a process is in free reservation status and there is an incoming reservation

request, the process may grant the request. Although we do not require that the process

grant the reservation every time, it is necessary to accept them for the system to make

progress.

It should be possible to prove that under the reservation system deadlock cannot occur.

We informally argue why that is so.

The key is Invariant 3.3.1.

Invariant 3.3.1 Let P be the set of process identifiers in the target program. Then Vi,j E

P s.t. i / j, Pi is in holding-reservationj =i Pj is in reservedi.

Invariant 3.3.1 holds because process Pi must receive a reservation acceptance message

from Pj before it can enter the holding-reservationj state. Pi must enter the reservedi state



to send a reservation acceptance message to Pi. Pj remains in reservedi until it executes

an I/O combination with Pi. When executing this combination, Pi must leave the holding-

reservationj state. It follows that while Pi is in the holding-reservationj state, Pi must be

in reservedi state.

Because of Invariant 3.3.1, process Pj cannot initiate an I/O combination when process

Pi is in the holding-reservationj state. So when Pi initiates an I/O combination with Pj,

Pj is not blocked and is able to participate. Therefore, the I/O combination executes

successfully.

3.3.6 Optimizing Abstract I/O Channels Away

The proposed mechanism for avoiding deadlock is costly, as it reduces potential concurrency

in the system. For better performance it is desirable to avoid such a mechanism. For I/O

Automata-specified algorithms that use channels with asynchronous message delivery for

communication between its distributed components, an implementation that can preserve

more concurrency is possible.

This is done by taking advantage of the fact that the message passing model used by

MPI already implements the asynchronous channel discipline. The implementation of an

algorithm that is specified using channels can use the message passing library instead of

explicit channel automata. This removes a significant portion of the code that otherwise

would have to be executed every time the algorithm interacts with a channel. Specifically,

this optimization removes two I/O combinations (one at each the sending and the receiving

end of the channel) and a separate process for the channel automaton. Since a channel-

based composition of I/O automata uses I/O combinations only at the points where the

channel connects to the sender and the receiver, the optimized implementation would not

need to execute any (expensive) I/O combinations.

ESDSAIg uses asynchronous channels for communication among frontend and replica

automata and thus can benefit from this optimization.



3.3.7 Abstract Algorithm Relaxation Through Introduction of I/O Chan-

nels

Some abstract algorithms that need to be converted to a distributed programs do use

I/O combinations (e.g. when the atomic property of I/O combinations is needed to prove

algorithm properties). While the atomic property is useful in proving correctness, it may

have a severe performance penalty. When the algorithm is converted using the framework

presented in this chapter, the performance of the target program may be adversely affected

due to the costs imposed by the synchronization of communications needed to preserve

atomicity (Section 3.3.4) and the overhead of the reservation system (Section 3.3.5).

When appropriate, we can relax the abstract algorithm by replacing I/O combinations

with asynchronous channels. The channels are then optimized away during conversion of

the algorithm to a distributed program (as in Section 3.3.6). This approach can lead to

a significant performance improvement in the target program due to more concurrency.

At the same time, the program would no longer be an implementation of the original

algorithm, but instead will implement the relaxed channel-based version that may not have

the same provable properties. In applications that remain correct under such relaxation,

this optimization can be beneficial.

3.4 Object-Oriented Implementation of the I/O Automata

Framework

In the previous sections of this chapter we presented a framework that is useful in converting

abstract algorithms to distributed implementations. We designed a set of C++ objects

to complement the framework. The objects encapsulate the common functions of I/O

Automata. They have been designed in accordance with the conversion techniques described

in Sections 3.2 and 3.3 and are intended to be used as a foundation in converting specific

algorithms to programs. This section briefly describes their design.

3.4.1 Components of the Framework Implementation

The overall design goal was to minimize redundant work in converting different I/O Auto-

mata-specified algorithms to distributed programs. The design includes four categories of



objects:

The base IOAutomaton class This class encapsulates components needed in all imple-

mentations of I/O Automata. In our implementation this class handles scheduling

actions for execution (subject to them being enabled) and the reservation system for

I/O combinations.

The base IOAction class IOAction encapsulates components needed in implementing

any locally-controlled I/O Automaton action. We decided to create a separate class

to represent such actions rather than encapsulate them in the class that represents an

entire automaton. The need for having separate objects representing locally-controlled

actions arises from the fact that locally-controlled action scheduling is handled in the

IOAutomaton class. To schedule actions for execution, IOAutomaton needs to be able

to test the Enabled predicate of the action and call Transition to execute the effects

clause, knowing nothing about specifics of the I/O Automaton that is built on top of

it. IOAutomaton works exclusively with the base class representing locally-controlled

actions, IOAction. In an implementation of a specific I/O Automata-based algorithm

the classes for all locally-controlled actions are derived from the base IOAction class.

C++ polymorphic capabilities (virtual functions) ensure that the IOAutomaton class

calls the correct Enabled and Transition code at runtime.

To perform its scheduling task, IOAutomaton class requires that IOAction class and

all specific action classes derived from IOAction support the two procedures already

familiar to us from Section 3.3.1:

Enabled This method returns a boolean value that indicates whether the action is

currently enabled, i.e. if its preconditions are satisfied. If the method returns

true, it is required to provide its IOAutomaton class with local variable values

that unambiguously identify the state transition to be performed.

Transition This method executes the effects clause of the local action, using local

variable values provided by an earlier call to Enabled. Note that Transition

should never be called without a call to Enabled immediately preceding it.

The argument to both methods is the object representing the automaton containing

the action. This argument is needed so that the action object has access to its automa-



ton's state variables, plus (in the case of Transition) the values for the local variables

that have been selected by Enabled. The scheduler contained in the base IOAutoma-

ton class checks the preconditions clause by calling Enabled and, if all preconditions

are satisfied, executes the effects clause by calling Transition.

The derived I/O Automaton class A specific I/O Automaton is represented by a class

derived from the base IOAutomaton class. The state of the derived class consists

of a representation of the automaton state and an instance of each locally-controlled

action. The derived class handles initialization of the automaton state, processes input

actions, and calls the base class's scheduler to invoke locally-controlled actions.

Recall that input actions are not under control of the I/O Automaton containing

them. As such, they are not controlled by the base IOAutomaton class's scheduler.

It follows that the base IOAutomaton class does not need to know anything about

the input actions. So in our design the derived I/O Automaton object representing

a specific automaton takes care of processing its input actions directly by calling a

method that implements the input action's effects clause.

The derived I/O Action class This class overrides IOAction's base versions of Enabled

and Transition for every action with new versions that do processing specific to a

particular action. As we mentioned before, C++ polymorphic features ensure that the

correct version of the method gets called by the base IOAutomaton class at runtime.

3.4.2 Execution Scheduling

The target program process running a component automaton handles locally-controlled

actions by calling the base class scheduler to execute them. It also looks for incoming

messages from other automata and from the external environment. When such a message

arrives, the process dispatches it to the appropriate input action procedure.

We implemented a random action scheduler and a round-robin action scheduler for the

IOAutomaton class. If the source algorithm requires more sophisticated scheduling seman-

tics, the scheduler can be re-implemented in the derived I/O Automaton class. Receipt of

messages initiating input actions is always scheduled in the derived I/O Automaton class.



3.4.3 Notes on Implementing Deadlock Avoidance

In the deadlock avoidance scheme in Section 3.3.5 processes cannot grant reservations when

they are waiting for a response to their own reservation request. This can lead to contention

among system processes and result in livelock: processes would repeatedly request reserva-

tions and get rejected by other processes, who are also waiting for responses to reservation

requests.

To deal with livelock resulting from contention, we used an exponential backoff sche-

me [19]. Process Pi maintains a variable qi,j, an interval of time that Pi waits between

sending reservation requests to process Pj (i # j). Pi doubles the value of qi,j after each

rejected reservation request to Pj, and adds a random term from a fixed range to qi,j.

Exponential backoff reduces contention by reducing the time Pi spends trying to get a

reservation from busy processes. This makes Pi available to grant more reservation requests

itself.



Chapter 4

Design and Implementation of

Experimental ESDS Systems

Using the framework and the classes implementing the I/O Automata foundation from

Chapter 3, we created distributed implementations of two versions of the unoptimized ab-

stract ESDS algorithm, ESDSAlg [1] and SimpleESDSAlg. We also created and implemented

an optimized version ESDSOptAlg of the abstract algorithm that incorporates some of the

optimizations necessary to produce a more practical implementation of ESDS.

For reference, we provide a description of ESDSAlg component automata from the ESDS

paper [1] in Figures 4.1 and 4.2. To avoid a complete restatement, we refer the reader to

the paper for a detailed description of the algorithm.

This chapter describes the design of our implementations ESDSImpl, SimpleESDSImpl,

and ESDSOptImpl. Section 4.1 gives an overview of the major design goals and meth-

ods used to achieve them. ESDSImpl and SimpleESDSImpl are described in Section 4.2

(their designs are similar). Section 4.3 deals with the optimized implementation ESDSOp-

tAlg. Finally, three specific data service applications that were built on top of the ESDS

implementation are described in Section 4.4.

4.1 Overview

The main design goal was to make ESDSImpl completely independent of the data object

that implements the serial datatype. The design carries through the idea presented in [1]



State
waitf, a subset of O, initially empty
repty, a subset of 0 x V, initially empty

Actions

Input requestc(x)
Eff: wait +-- waitf U {x}

Output sendf,,(( "request", x))
Pre: x E wait;

Input receiver,, (("response", x, v))
Eff: if x E wait; then repty +- reptf U {(X, v)}

Output responsec(op, v)
Pre: (x, v) E reptf

x E wait;
Eff: wait; 4 waitj - {x}

rept1 - reptf - {(x, v') : (x, v') E rept }

Figure 4.1: ESDSAlg: Automaton for frontend f

State
pending,, a subset of 0; the messages which require a response
rcvd,, a subset of 0; all operations that have been received
doner[i] for each replica i, a subset of 0; the operations r knows that i has "done"
solid,[i] for each replica i, a subset of 0; the operations that r knows are "stable at i"
minlabel, : -* £ U {oo}; the smallest label r has seen for x E 0
Derived from done,[r] and minlabel,: val ,: doner[r] -* V; the value for z E done,[r] using the minlabel,

order

Actions
Input receive f,,(("request", x))

Eff: pending, +- pending, U {x}
rcvdr + rcvd, U {x}

Internal doit,.(z, 1)
Pre: x E rcvd,.

x 0 done,[r]
x.prev C done,[r].id
I > minlabel,(y) for all y E doner[r]
(1 E £, equivalently 1 • oo)

Eff: done,[r] +- done,[r] U zx}
minlabelr() +- I
solid,[r] +- solid,[r] u ni done,[i]

Output send,,,. (("gossip", R, D, L, S))
Pre: R = rcvd,; D = done,[r];

L = minlabel,; S = solidr[r]

Input receive,,,,( ("gossip", R, D, L, S))
Eff: rcvd, - rcvd, U R

done,[r'] -- done,[r'] u D u S
done,[r] - done[r] U D US
doner[i] -- doner[i] U S for all i # r, r'
minlabel, = min(minlabel,, L)
solid,.[r'] - solid,[r'] U S
solid,[r] - solidr[r]U SU (i done,[i])

Output send,,; (("response", x, v))
Pre: z E pending,

x E done,[r]
x.strict == x E ni solid,[i]
v = valr(x)
f = frontend(client(z.id))

Eff: pending, +- pending, - {x}

Figure 4.2: ESDSAlg: Automaton for replica r
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that the ESDS components need to be designed and implemented only once. ESDSImpl's

ESDS components can be used by an application programmer as building blocks for any

type of data service. All that is required of the programmer is to implement the data object

and add to it the few methods needed to make it work with ESDS.

Figure 4.3 depicts the hierarchy of the objects that comprise the system. Arrows in

Figure 4.3 represents the relationship "is used by." The objects are divided into three groups.

The generic I/O Automata objects are the base IOAutomaton and IOAction classes. They

encapsulate functions shared by all I/O Automata, as described in Section 3.4. The ESDS-

specific objects implement ESDSAlg [1]. These objects are independent of the particular

data service application and do not require modification when one wishes to implement

a new data service. Finally, the application-specific objects implement a particular data

service. Application-specific objects have to be written for each such service.

Figure 4.4 illustrates the mapping of distributed components of ESDS to system pro-

cesses. In the figure MPI nodes are represented by circles. Each MPI node runs as a

single system process. Non-MPI processes are represented by rectangles. A more detailed

discussion of the mapping is found in Section 4.2.6.

4.2 Implementing ESDS: ESDSImpl and SimpleESDSImpl

In this section we present the high-level design considerations and key low-level details of

ESDSImpl and SimpleESDSImpl. The main design goal was to demonstrate that the ESDS

algorithm is suitable for implementation as a building block from which a variety of concrete

applications can be build with minimal effort. We now give low-level details about the C++

structure of the ESDSImpl program, ESDS-specific and application-specific objects data

representation, ESDSImpl-specific scheduler, and the ESDSImpl runtime environment.

An abstraction layer is required to separate ESDS-specific code from application code.

The application object supports a standard interface that forms this abstraction bound-

ary. We used the round-robin algorithm to schedule locally-controlled and input actions in

ESDSImpl.

Top level design of ESDSImpl has four major components: application object, ESDS

operation, replica automaton, and the frontend automaton.
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4.2.1 Application Object

ESDSAlg does not place any restrictions on the serial data type of the application object.

An implementation of the application data type object needs to support a special interface

to be compatible with ESDSImpl. We do not publish the details of the interface in this

work, but describe it informally below.

The prototype provides three base classes from which the application classes are derived:

ESDSApplicationState, ESDSApplicationOp, and ESDSApplication Value. An application-

specific class derived from ESDSApplicationState represents the application state main-

tained by the data service. ESDSApplicationState provides routines for instance construc-

tion and destruction, and for packing and unpacking the object into binary representations.

The packing and unpacking procedures are called when the application state needs to be

communicated to other processes in the distributed environment.

An application-specific class derived from ESDSApplicationOp represents all operations

that the application datatype supports. It must support the same methods as the ESDS-

ApplicationState-derived class, plus an Apply method that takes the application state object

as an argument and changes its state according to the semantics of the operation. The Apply

method must generate and return a value for the operation, in the form of an ESDSAppli-

cation Value-derived object.

An application-specific class derived from ESDSApplication Value represents the range

(or the set of return values) of the application operations. It must support the same methods

as the ESDSApplicationState-derived class. ESDSImpl returns a value for a submitted

operation as an instance of ESDSApplication Value.

4.2.2 ESDS Operation Object

An ESDS operation object represents a single request submitted by the user to the system.

The object encapsulates all the information about the user request and all the bookkeeping

information about the operation's status in the system. Below is a description of the ESDS

operation object's state components.

Operation Descriptor The operation descriptor corresponds to the operation descriptor

specified in [1]. The descriptor has the following components:



* an operation identifier id that is unique for the current invocation of the system.

In ESDSAlg the identifier contains a reference to the frontend that originated

the operation. We implement this by including a separate component sender in

the descriptor. Sender identifies the originating frontend for the operation.

* a set prev of operation identifiers that indicates which operations must precede

the owner of the descriptor in the order of application to data object state.

* a boolean flag strict that specifies whether the responses to the operation must

be consistent with the eventually established serialization.

* an object appl that contains application-specific information about the opera-

tion. The information includes the operator that must be applied to the current

data object, along with supporting parameters and data for the operator. The

application programmer derives the class of appl from ESDSApplicationOp.

The id, prey, and strict descriptor components represent identically named descriptor

components in ESDSAlg. The appl descriptor component represents the op descriptor

component in ESDSAlg.

When deciding on the choice of representation for operation identifiers, we looked

at several considerations. Since ESDSAlg devolves the responsibility of assigning

operation identifiers and ensuring their uniqueness on the clients of the system, there

needed to be a way to do this without consulting the rest of the system, and therefore

without any a priori knowledge of the identifiers that have already been used for other

operations. Another consideration is the size of the identifier, which affects the size of

gossip messages and memory requirements in ESDSImpl. We settled on the 128-bit

universally unique identifier (UUID) scheme defined by OSF/DCE [20]. This scheme

allows the client application to pick an identifier using only the resources available

on the local machine. The identifier was implemented in an object-oriented manner

to allow other representations to be substituted. In particular, for the purposes of

running empirical tests we implemented identifiers as integers issued in sequence.

Operation Minlabel ESDSAlg represents the order in which user operations are applied

by a function minlabel from the set of all operations 0 to some well-ordered set £.

The minlabel function is implemented by assigning a minlabel state component to

each operation.



Minlabels are represented as pairs of integers (counter-value, rid). The rid component

is the unique numerical identifier of the replica that created the minlabel. Each

replica keeps a counter value which it assigns to the first component of newly created

minlabels. The counter is incremented each time the replica creates a new minlabel,

ensuring uniqueness of minlabels. The order on minlabels is the same as the order of

their counter-value component, with ties broken by the order of the rid component.

Operation Value This is an application-specific object used to represent the value that

ESDSImpl returns to the user after the operation is completed. The type of the

object is a class derived from ESDSApplication Value. When a replica performs the

user operation, it computes this value and passes it along with the operation identifier

to the frontend. The frontend stores the value until it is ready to give the response to

the user who submitted the operation.

Sets of Operations The frontend automaton and the replica automaton in ESDSAlg

group user operations into sets as specified by the algorithm. The majority of ES-

DSAlg's actions deal with a single operation. We represent the sets of operations in

ESDSAlg as doubly-linked lists. The links reside inside the operation objects them-

selves. This arrangement has advantages over explicit set representation with respect

to the operations most frequently performed by the algorithm.

Remark: When the program obtains a reference to an operation, inserting, deleting,

and testing for membership in a set requires 0(1) time with respect to all sets that the

operation might belong to. The initial search for an operation in a set still requires

O(n) time in the doubly-linked list set representation, so the design is open to the

possibility of replacing linked lists with more efficient data structures. However, we

did not attempt to optimize this data structure, since simplicity of the implementation

was an important factor in our work.

In addition to representing algorithm state components, ESDSImpl maintains book-

keeping information.

Front End bookkeeping Front ends maintain counters for each operation that indicate

how many times the operation was sent to each replica. In ESDSAIg frontend is

allowed to send an operation to (nondeterministically chosen) targets arbitrarily many



times until it receives a response. In a practical system it is desirable to limit the

number of such requests to reduce the amount of unnecessary communication. This

limit depends on a number of factors. If the system is under light load and replicas

can provide fast responses to an operation, it may be sufficient for a front end to

submit each operation only once. If the system is under heavier loads, or if some

replicas are slow to respond, the frontend can benefit by submitting the operation to

several replicas in hope of a faster response. Another factor affecting the submission

pattern is communication reliability. In a reliable network that guarantees delivery

of messages, it is unnecessary to submit the operation more than once to any single

replica. However, in an unreliable system more than one submission may be necessary

before a replica receives the operation.

The prototype design allows us to experiment with all of these behaviors. (see Sec-

tion 6.3 for future work suggestions).

4.2.3 Replica Automaton Design

The class representing a replica automaton is built on the IOAutomaton class discussed

in Section 3.4.1. In ESDSImpl the replica implementation corresponds to the automaton

presented in [1]. The replicas are numbered from 0 to N - 1, with N replicas participating

in the system. The state of each replica includes this number as the replica identifier.

Each of the pendingr, rcvdT, done,(i), and solid,(i) sets in ESDSAlg is implemented by

linking all operations belonging to one set into a circular doubly-linked list.

Replicas assign unique minlabels to operations as follows. Each replica keeps a counter

variable lbl-counter,. When replica r does an operation, it assigns minlabel (Ibl-counterr, r)

to the operation. Using replica identifiers guarantees system-wide uniqueness of minlabels.

In ESDSAlg a gossip message from replica r consists of the minlabel, function and the

entire sets rcvdr, done,[r], and solid,[r]. In ESDSImpl the corresponding gossip message

consists of all the operations in the rcvd, set. A gossip message includes boolean flags that

indicate which sets each operation belongs to.

Otherwise, the basic implementation of a replica corresponds to the ESDSAIg replica

automaton code [1].



4.2.4 FrontEnd Automaton Design

The implementation of the frontend automaton in ESDSImpl follows the frontend automa-

ton code in ESDSAlg [1].

4.2.5 Application Clients

In ESDSAlg system users interacting with the data service frontends are represented as

application clients. The application programmer is free to choose how the client should be

implemented. Our design of ESDSImpl specifies only the mechanism for communication

between clients and frontends and the protocol that the clients use to submit operations

and receive responses from frontends. Section 4.2.7 discusses the choice of communication

mechanism for ESDSImpl clients.

4.2.6 Mapping Component Automata to System Processes

ESDSImpl and the other ESDS implementations run on a network of Sun workstations

using the MPICH implementation of MPI [17]. The prototype is based on MPI Standard

1.1 [21].

There is a deficiency in the MPI standard version 1.1 and the MPICH library that

limited implementation choices. This version of the standard does not allow dynamic man-

agement of processing nodes. The number of available processes is determined statically

at invocation and cannot change during execution. For the purposes of a distributed data

service, this means that application clients, which need to be created and destroyed dy-

namically, cannot be integrated in the MPI framework. ESDSImpl sidesteps this issue by

using Berkeley Sockets instead of MPI mechanisms for communication between application

clients and ESDS frontends. At the time of this writing, the work on the next version of the

MPI standard and the MPICH implementation includes the dynamic process management

capability. It is not known whether this capability in the next version of MPI can be used

with ESDSImpl.

The limitations of the current MPI standard dictated the mapping of ESDS components

to system processes depicted in Figure 4.4. In the figure ESDS replicas and frontends run

inside the MPI environment, and the application clients connect to the system from outside

the MPI environment. At the invocation of the program the ESDS system administrator



specifies the number of MPI nodes that will participate in the execution. Three MPI nodes

are reserved for system use (they are not depicted in Figure 4.4). The rest are divided

between ESDS replicas and frontends. The administrator specifies how many nodes to

allocate for each use.

After the invocation the number of replicas and frontends remains static throughout

the execution. Replicas use MPI messages to receive requests from frontends, send gossip

message to each other, and send responses back to the frontends. Client processes are

dynamically created and destroyed by system users. Clients use sockets to connect to one

of the frontends. When the connection is established, the client can submit an operation to

the frontend and receive a response when it is available.

4.2.7 Communication Between Clients, FrontEnds, and Replicas

As we have already stated, ESDSAlg uses asynchronous channel automata for communica-

tion between replicas and frontends and for gossip among replicas. Application clients and

frontends communicate via I/O combinations.

We implemented two different systems of communication among frontends and replicas.

The first version implements communications in SimpleESDSImpl. It is produced using the

techniques for converting I/O combinations to distributed programs (see Section 3.3.4).

The second version implements communications in ESDSImpl. This version takes ad-

vantage of the fact that ESDSAlg relies on asynchronous channels for communication among

frontends and replicas. It uses reliable FIFO channels implemented by MPI, as discussed

in Section 3.3.7. ESDSImpl is a more efficient implementation of ESDS than SimpleES-

DSImpl because it avoids the overhead of synchronizing communications among frontends

and replicas.

Integration of this approach into ESDSImpl implementation is straightforward. Instead

of negotiating with the receiving automaton for synchronized execution, each automaton is

free to send an asynchronous request, gossip, or response message and continue executing

normally. The pending messages accumulate in the MPI subsystem, which implements

reliable FIFO channels and thereby relieves the programmer of that responsibility. In this

implementation, the system is free to execute asynchronously, thus taking advantage of the

distributed nature of the application.



Different methods of interprocess communication constitute the only difference between

ESDSImpl and SimpleESDSImpl. For convenience, both implementations are combined

into a single program. The desired method of communication can be set with a switch in

program's configuration file.

4.3 Implementing ESDS: ESDSOptImpl

In addition to implementing ESDSAIg, we implemented some of the optimizations suggested

in the ESDS paper [1]. In this section we describe the implementation of the optimizations.

We also present an I/O Automaton for the optimized ESDS replica.

Section 4.3.1 presents abstract descriptions of the optimizations that have been applied

to ESDSAlg to produce ESDSOptAlg. At the end of the section we present the updated

replica I/O Automaton. Most ESDSOptImpl's design is identical to ESDSImpl, and the im-

plementation of the differences is straightforward and lacks interesting features. Therefore,

we do not present design details for ESDSOptImpl, as we did for ESDSImpl.

4.3.1 Abstract Description of Optimizations

We describe the optimizations to ESDSAlg included in ESDSOptAlg and present the revised

replica automaton.

Incremental Gossip

ESDSAlg is specified in terms of identical servers, each of which contains an object replica.

Replica r periodically sends entire doner[r] and solidr[r] sets to other replicas in gossip

messages (Fig. 4.2). Thus, a typical gossip message contains a lot of information that has

been gossiped previously between the same two replicas. Furthermore, the amount of such

redundant information increases linearly with the number of new operations. ESDSImpl,

as an implementation of ESDSAlg, requires gossip messages of unbounded size, and thus

cannot be used continuously for long time periods without exhausting system resources or

leading to unacceptable deterioration of system performance.

If we assume that replicas do not fail and that replicas communicate via reliable FIFO

channels (as is the case with ESDSImpl), we can modify the replica automaton to send only



the incremental gossip updates. Each replica keeps track of changes in its state and gossip

only new information. This change improves system performance, but reduces the system's

ability to tolerate lost gossip messages.

Remark: Explicit sequencing of gossip messages combined with retransmission and

removal of duplicates is needed to make the optimization work with unreliable channels

that allow message losses, duplicate messages, and out of order delivery.

Removal of Self-Gossip

ESDSAlg assumes that each replica sends gossip messages to itself as well as to other

replicas. This behavior is inefficient in a practical implementation, but if we removed it

from the ESDSAlg replica automaton, its behavior would be incorrect when there is only

one replica in the system. The reason is that ESDSAlg updates a replica's set of operations

that it knows to be stable only during receipt of gossip messages. In a one-replica system

execution without self-gossip messages the operations would never stabilize, thus violating

the requirement of eventual serializability. This optimization adds another action to the

replica automaton to preserve correctness. The new action detects one-replica executions

and updates the set of stable operations independently from gossip actions.

Memoizing Stable State

ESDSAlg ignores the cost of local computation at the replicas. A replica r gets the cur-

rent value the value for operation opn from the initial state o0 by re-computing it as

f+(ao, (op1, op 2, ... , op.)) for op , op2, ... , op in minlabel, order (the function f+ ap-

plies opl, op2,..., op,, in that order, to ao [1]). ESDSImpl faithfully implements the same

inefficient behavior. Testing ESDSImpl under heavy operation load confirmed that the time

consumed by recomputation can be significant. In addition, the algorithm requires all op-

erations to stay in memory indefinitely to enable recomputation. These problems make the

naive implementation of the algorithm unsuitable for practical applications.

Our optimized implementation uses a variation of the stable-state optimization sug-

gested in the ESDS paper [1]. It adds a state component to each replica that keeps track

of the stable state, which is the result of applying all completely ordered operations to the

initial state. To compute the current state, replica r needs only to apply all operations



in done,[r] that have not yet stabilized to the stable state. This optimization is a part of

ESDSOptImpl.

The computation of the new stable state takes place every time replicas receive gossip

messages (see Fig. 4.5). Among all operations that have not yet entered the stable state,

replica r finds one with the highest minlabel that has entered the solid,[r] set. Call this

operation max-stabler. All operations with minlabels lower than max-stabler's minlabel are

guaranteed to never change minlabels again, and no operation with a lower minlabel can be

received later. This means that the order of operations up to and including max-stable, can

never be altered again at replica r. Thus, the replica applies all operations with minlabels

lower than max-stabler's minlabel to the old stable state to compute the new stable state.

Note that our version of the stable state optimization differs from the scheme presented

in the ESDS paper [1]. We apply operations to the stable state of a replica as soon as they

have stabilized at that replica, whereas the ESDS paper version of the optimization waits

until the operation stabilizes globally before applying it. We conjecture that our version of

the optimization results in faster stabilization of operations and a corresponding increase

in performance.

Remark: This optimization makes it possible to discard almost all information about

the operations as soon as they enter the stable state. In ESDSOptImpl operation identifiers

are kept around forever because they may enter the prey sets of future operations. However,

if this optimization is combined with the multipart timestamp optimization (see Section 6.1),

even the operation identifiers may be discarded. We have not implemented this.

4.3.2 Optimized Replica I/O Automaton

This section formalizes the optimizations discussed in the previous section. It presents

a modified version of the ESDSAlg replica automaton [1], reflecting the optimizations in

Section 4.3.1. The optimized replica automaton is presented in Figure 4.5.

The modified replica automaton r maintains a gossip,[i] state variable in addition to

other state variables from the ESDSAlg replica automaton. The sendr,r,(("gossip", R, D,-

L, S)) action that sends a gossip message from replica r to replica r' is enabled only if the

gossipr [r'] set is non-empty. When it is enabled, only the operations in the gossipr [r'] set

are gossiped. Thus, an operation x needs to be added to the gossip,[i] set for all i whenever



Data types

P = {1,... ,n}, the set of replica IDs

State

pendingr, a subset of 0; the messages which require a response

rcvdr, a subset of O; all operations that have been received

done,[i] for each replica i, a subset of 0; the operations r knows that i has "done"

solidr[i] for each replica i, a subset of 0; the operations that r knows are "stable at i"

gossipr[i] for each replica i, a subset of 0; the operations that r needs to gossip to i

minlabelr: O - £ U {oo}; the smallest label r has seen for x E O

Derived from solid,[r] and minlabel,: max-stable, E solid,[r] s.t. Vy E solid,[r], minlabelr(max-stabler) >
minlabelr(y)

stable-stater E E, initially 0o; the state resulting from doing all the operations up to and including
max-stable,

stable-valuer: solid,[r] -* V, initially empty; the values of the stable operations in the eventual total order

Derived from doner[r] and minlabelr: valr: done,[r] --+ V; the value for x E done,[r] using the minlabel,
order

Actions

Input receivej,,r(("request", z)) Internal solidifyr
Eff: pending,r -- pending, U {x} Pre: IPI = 1

rcvdr 4- rcvd, U {x} Eff: solidr[r] - solid,[r] U (ni doner[i])

gossip,[i] N- gossip[i] U {x} for all i for y s.t. minlabelr(y) < minlabelr(max-stabler)

Internal doit, (x, 1)
Pre: x E rcvd, - done,[r]

x.prev C done,[r].id
1 > minlabel,(y) for all y E done,[r]

Eff: done,[r] +- done,[r] U {x}
minlabel,(x) 1

gossip, [i] +- gossip [i] U { } for all i

Output send, ,f(("response", x, v))
Pre: x E pendingi n done,[r]

x.strict ==-. x E fi solid,[i]

(stable-value,(x) if x E solid,[r]

val,(x) otherwise
f = frontend(client(x.id))

Eff: pending, +- pending, - {x}

Output send,,,r (("gossip", R, D, L, S))
Pre: R = rcvd, n gossip,r[r];

D = done,[r] n gossip,[r];
S = solid,[r] n gossipr[r];
L = minlabel,; r # r'

Eff: gossip,.[r] - {}

and stable-value,.(y) is undefined,
in minlabel, order:

(stable-stater, stable-value,(y)) <-
f(stable-stater, y.op)

Input receive,r',,(("gossip", R, D, L, S))
Eff: gossip,[i] - gossipr[i] U (R - rcvd,)U

u(s - (nj doner[j]))U
u(S - (solid,[r] n solidr[r]))U
u(D - (done,[r] n done,[r]))U
U{x : minlabel,(x) > L(x)}
for all i

rcvd, +- rcvdr U R
done,[r'] -- done,[r'] U D U S
done,[r] - doner[r] U D U S
done,[i] - done,[i] U S for all i $ r, r'
minlabel, = min(minlabel,, L)
solidr[r'] - solid,[r'] U S

gossip,.[i] +- gossip,.[i]U
u((Nj done,[U]) - solid,[r]) for all i

solid,[r] +- solid,[r] u S U (ni done,[i])
for y s.t. minlabelr(y) < minlabel,(max-stable,)

and stable-value,-(y) is undefined,
in minlabel, order:

(stable-stater, stable-value,(y)) 4-

f(stable-state,, y.op)

Figure 4.5: ESDSOptAlg: Automaton for optimized replica r



replica r has new information about x. The gossipr[i] state variables get updated inside

receive f,,(("request", x)), doitr(x, 1), and receiver,,(("gossip", R, D, L, S)) actions.

Since a replica r can update its solid,[r] set only when receiving a gossip message, the

algorithm behaves incorrectly in the case when there is only one replica if we remove self-

gossip messages. As we want to compare single-replica performance with multiple-replica

performance in the empirical tests, the single-replica execution of ESDSOptImpl must be

correct. We add a new internal action solidifyr, which corrects the problem by making

updates to the solid,[r] set independently from gossip actions (see Figure 4.5). We omit

performing the solidify, action whenever there are two or more replicas. This optimization

is worthwhile since it restricts the need for potentially costly set operations required by the

solidifyr action.

The optimized automaton contains memoization of stable state. Three new state compo-

nents are added to the replica automaton. The stable-stater and stable-valuer components

represent, respectively, the current stable state of the automaton and the stable values of

the operations that enter stable-stater. These state components are identical in function to

the same components in the stable state memoization code presented in the ESDS paper.

The significance of the third new state component, max-stabler, and the procedures for

maintaining stable-stater and stable-valuer were described in Section 4.3.1.

As explained in Section 4.3.1, our version of the stable state memoization optimization is

different from the one presented in the ESDS paper. The complete code given in Figure 4.5.

4.4 Applications

This section describes the three data service applications that were implemented.

String Concatenation Service

The String Concatenation Service is a simple data service application. The data object is

a single string that supports two operations: Read and Concatenate. The Read operation

gives the current value of the string. The Concatenate operation appends its argument to

the string and gives back the new value.

The advantage of the String Concatenation Service is the simplicity of its implemen-



tation. It was used for testing ESDSImpl and ESDSOptImpl during development and for

running empirical measurements of ESDSOptImpl performance.

Counter Service

The Counter Service is another simple data service application, similar to String Concatena-

tion in its level of sophistication. The data object is a integer counter variable that supports

two operations: Read and Add. The Read operation gives the current value of the variable.

The Add operation adds an integer argument to the current counter value and gives back

the new counter value.

The Counter Service differs from the String Concatenation Service in one important

respect. Its update operation Add commutes with other Adds, whereas the Concatenate

operation of the String Concatenation Service does not commute with other Concatenate

operations (unless one of them has the empty string as an argument. The Counter Ser-

vice was created with the purpose of testing whether commutative update operations like

Add lead to a smaller percentage of inconsistent responses than non-commutative update

operations like Concatenate (as we will see in the next chapter, it does not).

Distributed Spreadsheets

The purpose of creating a third, more sophisticated client was to demonstrate the viability

of ESDS as a platform for creating diverse and capable data service applications. This ap-

plication was constructed as a proof-of-concept. The Distributed Spreadsheets client makes

use of ESDS capabilities to create an environment where several people can simultaneously

enter spreadsheet data into the same Microsoft Excel workbook. Their additions get sent

to ESDS replicas, which maintain the current state of the workbook and can refresh each

user's copy on demand. One use of this combination of Excel and ESDS is to allow multiple

users to enter disjoint data into a single Excel file concurrently, see the updates of others

automatically, and not worry about overwriting other people's additions with your own.



Chapter 5

Empirical Testing and Analysis

5.1 Test System Configuration

All performance tests were done on a 10 Mbps Ethernet LAN of 12 Sun workstations running

SunOS 4.1.4. The tests were performed using the ESDSOptImpl implementation.

The workstations we used were not dedicated to this project, and their loads fluctuated

with time. To account for the variance in test results due to this factor, we performed each

test 10 times and averaged the results to minimize the variance due to other tasks running

concurrently with the tests. In testing our implementation, we ran it with over 20 replicas.

However, for performance testing we used up to 10 replicas only. This allowed us to run

performance tests in a setting where a replica corresponded to a networked processor. Due

to limited time available for testing, we limited the number of operations submitted to the

system to 300 for each test run.

5.2 Definitions

We measured two performance characteristics of the prototype: (1) average response time,

and (2) average throughput.

Definition 1: The response time for an operation is the elapsed time between submis-

sion of the operation to a replica and response from the replica.

Definition 2: The system throughput is the number of operations the system processes

per unit time in a given execution of the implementation



We also wanted to know how the percentage of strict operations among all operations

submitted to the system affects performance and the degree of inconsistency in responses.

For a given execution of the implementation, a response to a user operation is inconsis-

tent if its value differs from the value of the same operation in the eventual total order of

operations. Formally,

Definition 3: Let responser(x,vX) be a response sent by replica r to a front end.

Let valto(x) be the value of x in the eventual total order to of all operations. Then

responser(x, v) is inconsistent iff vx 0 valto(x).

Definition 4: In a finite execution of the implementation, the degree of inconsistency

is the percentage of inconsistent responses among all responses to user operations returned

by the system during the execution.

5.3 Test Setup

We conducted three series of tests. The purpose of the first series was simply to ensure that

ESDSOptImpl can, if necessary, run more than one replica on a single processor and still

show decent performance. The purpose of the second series was to determine how system

performance, characterized by response time and throughput, depends on the number of

replicas participating in the computation. Our third series of tests measured the changes

in system performance and degree of inconsistency in response to changing percentage of

strict operations among the operations submitted to the system.

The first and second series were set up as follows. A total of 12 workstations were avail-

able for the testing. One workstation ran the master process. This process was responsible

for initializing the system, setting up the test parameters, and submitting a fixed number of

non-strict operations to the system. Another workstation ran a front end that distributed

the operations to available replicas in a balanced fashion. Ten other workstations ran repli-

cas, with more than one replica per machine if the number of replicas in the execution

exceeded 10.

The test software measured three quantities for each run:

1. Average time Tfe from the submission of an operation by the frontend to one of the

replicas to the receipt of replica response by the frontend



2. Average time T, from the receipt of an operation by a replica to the replica sending

back a response for that operation

3. Total time r it took the system to process and respond to all 300 operations.

From these measurements we obtained two different measures of response time and one

measure of system throughput as follows. For each number of replicas from N = 1 to

N = 10, we averaged the results of 10 runs and computed the average time ATf, it took a

frontend to receive a response from a replica after it sent the request message, the average

time AT, it took a replica to process a request after the replica received it, and the average

system throughput AP = 300/r.

In preliminary testing we determined that a single replica can keep up with the user

requests if they come approximately once in 30 milliseconds. If the rate of request submission

is faster, a single replica gets overwhelmed and cannot keep up. Incoming requests pile up

in the MPI message queue, waiting to be processed by the replica. In this case, the average

response time to an operation at frontends, Tfe, suffers dramatically because the response

time depends on how long the operation has to wait in the MPI queue before being received

by a replica.

Our third series of tests measured the changes in system performance and degree of

inconsistency in response to changing percentage of strict operations. The tests used the

same workstation configuration as in the first two series of tests. One workstation ran a

front end distributing 300 operations to a constant number of replicas as the percentage of

strict operations varied from 0 to 100 in 10% increments.

In the next three sections we present the results of the tests. In analyzing the test results,

we are primarily concerned with the performance trends exhibited by ESDSOptImpl. We

did not seek to minimize the absolute performance numbers. In particular, we made no

attempt to run the tests on faster processors, or to use faster networks.

5.4 Test Series 1: Virtual Replicas

This purpose of this test is to demonstrate that it is possible to run ESDSOptImpl on a

system where the number of available physical processors was smaller than the number of

distributed system components. The test increased the number of replicas from N = 1
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Figure 5.1: System Throughput (submission rate is 330 operations/second)

to N = 20 and submitted operations to the system at the constant rate of 330 opera-

tions/second. It measured system throughput for each number of replicas. The collected

data is plotted in Figure 5.1.

The system's throughput rises as the number of replicas participating in the system and

performing submitted operations increases. However, the throughput drops off again at the

point where the system runs out of physical processes for replicas (this happens at N = 10)

and puts additional replicas on processors that already run other replicas. The overhead of

context switches and the forced serialization of communications between replicas that share

a single processor has an adverse impact on system performance. Therefore, in all other

tests we limit the number of replicas to the number of available processors.

5.5 Test Series 2: System Performance

In this section we examine how average system throughput and average response time at

replicas (AT,) and frontends (ATf,) are affected by varying number of replicas and varying

rate of submission of new operations.

I
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5.5.1 System Throughput

We expect the following factors to affect system throughput:

* The rate of submission of new operations. This rate is the upper bound on system

throughput.

* The number of participating replicas. Each additional replica should increase the total

throughput by adding its own capacity to the total capacity. However, the magnitude

of the increase in throughput is expected to be adversely affected by the amount of

gossiping that replicas need to do.

To verify our hypotheses, we ran the throughput test with three different rates of sub-

mission of new requests, each time varying the number of replicas from 1 to 10.

At first the rate of submission was set to one operation every 30 milliseconds, or approx-

imately 33 operations per second. As explained in Section 5.3, at this rate one replica is

able to keep up and process all incoming requests without adverse queuing effects. There-

fore, we expected that additional replicas would not increase the throughput. The empirical

results shown in Figure 5.2 confirm the expectation. The system throughput is close to its
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number of replicas)

theoretical limit of 33 operations per second, and it actually declines slightly as the number

of replicas is increased. The decline may be attributable to the increasing gossip overhead.

In the next test setup the rate of submission was set to start at 33 operations/second

again for one replica and increase proportionally with the number of replicas, topping out at

330 operations per second for 10 replicas. In this setup we expected the system throughput

to rise with the number of replicas. The empirical results are shown in Figure 5.3. The

throughput rises nearly linearly with the number of replicas, although it does not come

close to reaching its theoretical limit of 330 operations per second. This result suggests

that all replicas are working at full capacity and are still unable to keep up with the rate

of submission. This might be explained by the increasing gossip overhead.

In the final test of system throughput we set the rate of submission constant again, this

time at 330 operations/second. At this point we already know that throughout this test

all replicas are working at full capacity. Therefore, we expect an increase in throughput as

more replicas join the effort. The empirical results in Figure 5.4 confirm the expectation.

Unlike the previous graphs, this time there are secondary effects in the trend. We do not

have an explanation, but this could be due to the fluctuating load on the test workstations.
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5.5.2 Response Time

Response Time at Replicas (ATr)

In ESDSOptImpl the scheduling algorithm for replica actions is such that after receiving a

non-strict operation from a frontend, a replica immediately applies the operation and sends

back a response. The replica does not send or receive gossip messages in the meantime.

Based on this fact, we expect the following factors to affect average response time AT,

at replicas:

* The number of non-stable operations that the replica needs to re-apply to get the

value for the new operation (re-application takes a non-negligible amount of time).

* The number of participating replicas. When a small number of replicas are running,

operations stabilize faster, decreasing the number of operations that need to be re-

applied to get the value of a new operation. With a large number of replicas, actions

take a long time to stabilize, since a replica needs every other replica to tell it that the

operations is done there before stabilization can occur. Therefore, we expect higher

response times as the number of replicas increases.
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Figure 5.5: Response Time at the Replicas (submission rate is 33 operations/second)

To verify our hypotheses, we tested the average response time at replicas in ESDS-

OptImpl with three different setups, each time varying the number of replicas from 1 to

10.

In the first test setup the rate of submission of new requests was set at 33 opera-

tions/second. Our hypotheses explain the experimental results in Figure 5.5. The response

time is small when only one replica is running, since in ESDSOptmpl all new operations

immediately stabilize through the solidify, action, meaning that no re-application of old

operations takes place when the replica computes the value for the new operation. As the

number of replicas increases, operations take longer to stabilize. This increases the number

of re-applications of old operations and drives the response time up. The response time

levels off at N = 4, which means that for N > 4 virtually no operations manage to stabilize

before the end of the test run, meaning that almost all of them need to be re-applied when

computing the value of new operations for N > 4.

For the second test, the setup was identical to the second test in Section 5.5.1. The

rate of submission started at 33 operations/second and increased proportionally with the

number of replicas. Since we do not identify the rate of submission as having a significant

-- ---------
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Figure 5.7: Response Time at the Replicas (submission rate is 33 * N operations/second,

N is the number of replicas, gossip is disabled)

impact on the response time at replicas, the trend for this test was expected to remain the

same as it was for the first test in this section. The empirical results in Figure 5.6 confirm

that this is so. Together with the second test in Section 5.5.1, this test demonstrates that for

larger numbers of replicas it is possible to increase the rate of submission for new operations

and achieve better throughput without incurring a penalty in the form of a higher response

time at replicas.

The final test in this section duplicates the setup of the second test, except the gossip

messages have been disabled. Without gossip, replicas only know about the operations that

were sent to them directly by the front end. In this setup, we expect the response time to

go up at first as in the previous two tests, but then drop as the number of operations that

individual replicas know about and have to re-apply goes down. The empirical results in

5.9 bear out this hypothesis.



Response Time at FrontEnds ATf,

The response time for an operation at a frontend is the sum of the response time for the

operation at a replica, the time the request message spends in the MPI channel from the

frontend to the replica, and the time the response message spends in the MPI channel from

the replica to the frontend.

We therefore expect the factors that were shown to affect the response time at replicas

in Section 5.5.2 to also affect the response time at frontends. In addition, the following

factors may affect average response time ATfe at frontends:

* The load of replicas and frontends. If the replicas or frontends cannot keep up with

incoming messages, the messages lose time waiting in the MPI queue to be received

by the process. This increases ATf,.

* The roundtrip time between frontends and replicas. This factor should be negligible

in our testing because the network connections between test workstations are fast.

To verify our hypotheses, we tested the average response time at frontends ATfe in

ESDSOptImpl with the same setups that were used in Section 5.5.2 to test the response

time at replicas.

For the first test with the rate of submission of new requests at 33 operations/second

we expect AT, to grow with the number of replicas because of the results in Section 5.5.2

and the average time spent by new request in the MPI channel from frontends to replicas

to grow because replicas become busier with a growing number of gossip messages. As a

consequence, ATfe should grow with the number of replicas as well. The results in Figure 5.8

confirm these expectations.

The same considerations apply to the second test, where the rate of submission grows

proportionally with the number of replicas. In this case the replicas should be even busier

than in the first test, and we would expect even longer response times at frontends. The

empirical evidence in Figure 5.9 confirms this, but show that ATf1 does not exhibit the

expected steady upward trend in the response time. The best we can say is that the

evidence warrants further exploration to determine additional factors that influence ATfe

in this setting. However, the next test indicates that gossip plays a large role in determining

ATfe.
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Figure 5.8: Response Time at the FrontEnd (submission rate is 33 operations/second)
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Figure 5.9: Response Time at the FrontEnd (submission rate is 33 * N operations/second,

N is the number of replicas)
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Figure 5.10: Response Time at the FrontEnd (submission rate is 33 * N operations/second,

N is the number of replicas, gossip is disabled)
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Figure 5.11: Response Time at the FrontEnd (submission rate is 330 operations/second)

The third test has the same setting as the second, except gossip messages are disabled.

The results are presented in Figure 5.10. It is evident that without gossip Tfe is much

smaller than it was when gossip was enabled. In the first part of this graph Tfe's trend

is the same as T,'s trend in Figure 5.9: a jump in the beginning, followed by a steady

decline. For larger numbers of replicas an upward trend takes over. This trend is due to the

increasing rate of submission of new requests, which leads to busy replicas and long queue

waits for new requests.

Finally, we run the system with the rate of submission of new requests at 330 oper-

ations/second. The results are presented in Figure 5.11. At this high rate replicas are

overwhelmed when there are only a few of them. Messages with new requests wait a very

long time in the MPI queue before the replicas receive them. Consequently, the response

time is very high when the number of replicas is low, but it drops down as more replicas

join the system and assume some of the load.

I ,,,,-- -------- -



Figure 5.12: Tradeoff Between Response Time and Consistency (2 Replicas)

Figure 5.13: Tradeoff Between Response Time and Consistency (4 Replicas)
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Figure 5.14: Tradeoff Between Response Time and Consistency (6 Replicas)

5.6 Test Series 3: Performance/Consistency Tradeoff

This test was conducted using the Counter Service application, using Add operations. The

results for 2, 4, and 6 replicas are summarized in Figures 5.12, 5.13, and 5.14.

Predictably, the percentage of inconsistent responses goes down linearly as the per-

centage of strict operations climbs. However, since strict operations require the system to

stabilize the operation's value at all replicas before responding, the latency of responses to

strict operations is dramatically higher than the latency of responses to non-strict opera-

tions. This is reflected in the linear increases of average latency with percentage of strict

operations in Figures 5.12, 5.13, and 5.14. The coefficient of the linear increase is higher for

a larger number of replicas, since the time required to synchronize all replicas with respect

to a particular operation increases with the number of replicas participating in the system.

The trade-off between consistency and performance is clearly demonstrated by these results.

We also conducted this test using the String Concatenation Service application, using

Concatenate operations. We did not observe substantial differences in the results. This

suggests that the percentage of inconsistent responses to non-strict commutative operations

such as Add is not substantially lower than the percentage of inconsistent responses to
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non-commutative operations such as Concatenate.



Chapter 6

Conclusions and Future Work

We defined a set of techniques for converting source algorithms specified as I/O Automata

compositions into target distributed programs written in an imperative language. We

demonstrated that the techniques support object-oriented design for target programs by

implementing a set of C++ objects that encapsulate common properties of I/O Automata

and can be used in designing the target program. Our techniques are applicable to com-

monly occurring algorithms that use asynchronous channels or Input/Output combinations

involving two automata for communications between distributed components. An interest-

ing topic for future work is to generalize these techniques to cover all types of I/O Automata

compositions.

Using our techniques, we implemented the abstract ESDS algorithm ESDSAlg [1] as a

distributed program ESDSImpl. The modular design of ESDSImpl allowed us to write code

specific to the ESDS service once and then create several distinct data services without

modifying this code. In this way we showed that ESDSAlg can be effectively used as a

building block for distributed systems.

We strove to create a faithful implementation of ESDSAlg and its derivatives, but it

remains to be shown that ESDSImpl does in fact implement ESDSAlg. More ambitiously,

it would be interesting to develop a framework for showing that a practical implementation,

treated as a mathematical object, correctly implements a formal specification of an abstract

algorithm.

After implementing ESDSAlg, we implemented several optimizations suggested in the

ESDS paper [1] and produced an optimized abstract algorithm ESDSOptAlg. We then



introduced the optimizations to ESDSImpl to produce ESDSOptImpl, which implements

ESDSOptAlg. By producing ESDSOptImpl we fixed some inefficiencies of ESDSImpl and

moved our implementation of ESDS closer to being a practical system. Much work remains

to be done in this area. One important optimization that could be applied to ESDSOptImpl

is discussed in Section 6.1.

We conducted empirical tests on ESDSOptImpl and learned how its performance, char-

acterized by response time and throughput, is affected by changing the number of replicas

participating in the execution and by the system load. We also obtained empirical evidence

confirming that ESDS performance reflects a tradeoff between performance and consistency.

The balance can be shifted toward consistency and away from performance by increasing

the number of strict operations submitted to the system, and vice versa. Future work in

empirical evaluation of ESDS is discussed in Section 6.4.

6.1 Future Optimizations: Multipart Timestamps

Although the prey sets used by ESDS to identify dependencies between operations are very

intuitive from the point of view of the ESDS developer, they do not give the user of a

data service based on ESDS a manageable way of specifying those dependencies. Users of

a practical ESDS-based system are not aware of operation identifiers and could not specify

long dependency arrays. Furthermore, prey sets are memory-inefficient. A prey set may

include any operations that have been previously submitted to the system, and therefore the

upper bound on the size of prey sets grows linearly with the number of operations submitted

to the system. As discussed in Section 4.3.1, the system is not able to take advantage of

stabilization of old operations and discard their identifiers because the identifiers may later

appear in a new operation's prey set.

The goal of the multipart timestamp optimization is to remove the inefficiencies that

result from using prey sets. This optimization utilizes the multipart timestamp technique

in place of prey sets to keep track of system dependencies. The approach is similar to the

timestamp-based implementation in [18].



6.2 Dealing with Unreliable Channels

Explicit sequencing of gossip messages combined with retransmission and removal of dupli-

cates is needed to make the incremental gossip optimization work with unreliable channels

that allow message losses, duplicate messages, and out of order delivery.

6.3 Formally Defining ESDSImpl Behaviors

The goal of this project was to create a faithful implementation of ESDSAlg and its deriva-

tives, but it remains to be shown that ESDSImpl does in fact implement ESDSAlg. More

ambitiously, it would be interesting to develop a framework for showing that a practical im-

plementation, treated as a mathematical object, correctly implements a formal specification

of an abstract algorithm.

6.4 Future Empirical Investigation

The empirical results presented in Chapter 5 cannot answer whether it is possible to create

an implementation of ESDS the can be effectively used as a practical data service. The

next step toward answering this question is to create a complete and useful distributed

data service based on the ESDS algorithm and run it with real-world users.
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