Using System Dynamics in Business

Simulation Training Games

by
Jennifer Ching-Wen Han

Submitted to the Department of Electrical Engineering
and Computer Science in Partial Fulfillment of the
Requirements for the Degree of

Masters of Engineering in Electrical Engineering and
Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 9th, 1997

© Massachusetts Institute of Technology, 1997. All Rights Reserved.

AUNOT oo et
Department-of Electrical Engineering and Computer Science

May 9th, 1997
h ~ (\ -
Certified by _ e T T T ivaacseesenseeesnsnnaeas
R1chard C. Larson
W /esm Supervisor
Accepted by f....oomceeene _ e

P

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

Using System Dynamics in Business Simulation Training
Games

by

Jennifer Ching-Wen Han

Submitted to the Department of Electrical Engineering and Computer Science

May 9th, 1997

In Partial Fulfillment of the Requirements for the Degree of Masters of Engineering in

Electrical Engineering and Computer Science

ABSTRACT

This thesis project includes researching and designing a system dynamics model for use in
an existing Andersen Consulting Education (ACE) project management training game.
This serves two major purposes. The first is to show how system dynamics can be used as
a realistic and potentially superior method of business modeling. The second is to actually
improve the existing game. The current training game, Project Management Fundamentals
School, leads trainees through managing a project via a series of case studies. The
improved game will include a computerized system dynamics model so that trainee inputs
can effect the outcome of the game. This change will allow players to test their sugges-
tions, making the game more interactive and interesting. The base system dynamics model
is from Tarek Abdel-Hamid’s 1984 Ph.D. thesis “The Dynamics of Software Development
Project Management: An Integrative System Dynamics Approach.” This model was
ported from DYNAMO, an outdated system dynamics modeling software package, to
Vensim, a newer modeling software package which is compatible with many others on the
current market. The Abdel-Hamid model is well tested and accepted. However it does not
meet all of ACE’s requirements for their game engine, PERIOD1. ACE sent a list of initial
design suggestions for this engine. These potential variable and structural changes to the
base model will be discussed in this thesis.

Thesis Supervisor: Richard C. Larson
Title: Professor of Electrical Engineering

Acknowledgments

This thesis is dedicated to my parents Shih-Ping and Winnie Han. I would not have been able to
make it through these five years without their love, encouragement, and confidence in me.

I would like to thank my thesis advisor Professor Richard Larson for his support on my thesis
project. He presented me with many opportunities to learn new skills throughout this project -
from supervising undergraduate students to giving presentations to managing my time more
effectively. I sincerely appreciate all of his feedback regarding my thesis and my ACE and
MasterWorks presentations.

I would also like to thank my advisors Professor Steven Lerman and Professor John Sterman,
who have both helped me considerably on my thesis.

I would like to thank Tom Long of Andersen Consulting Education for his continued interest
and funding of this project. I especially appreciate his invitations to St. Charles to meet and
present to ACE professionals. These opportunities have improved my communication skills and
increased my confidence in giving professional presentations.

I would also like to thank my UROP students, Autumn Steuckrath and Eugen’e Fung. They have
both contributed significantly toward this project. I would especially like to thank Eugene for
creating the figures for my thesis on such short notice.

I would like to thank Scott Rockart for his help regarding Vensim and DYNAMO.

Finally, I would like to thank the following people, who have made my five years at MIT a
much more enjoyable and interesting experience:

Alice and Sophia Han - For being the best sisters ever and showing me that family is forever.
Jennifer Liu - For being my best friend since kindergarten. Scott Van Woudenberg - For having
so much confidence in me and being someone I can always turn to. Julie Kissel, Fuyiu Yip - For
being my friends since high school! Natalie Burger - For being my roommate and co-social
chair. For sharing so much of MIT with me. Paolo Narvaez, Craig Barrack, Carol Lee - For
making my years at New House so much more fun. Lisa Hsieh - For following me
everywhere...and giving me pressure to set a good example!!! Thomas Burbine - For
proofreading my thesis twice. For a really good time in Ashdown. Benjie Sun - For stressing
about our thesis together. And teaching me what could happen if I procrastinated.

Table of Contents

1 INrOQUCLION. ..ccveeueiertreeteeeneet ettt cr et sbs s et b e bbb e bbb s b s b e besansnnen 7
1.1 General Backgroundoccocoveniirvintinennensininnisisinisnicnssnnssssesesesesens 7
1.2 OVErview Of PTOJECLcccoueviriiirineiinntcinenincsisisstscsssaetessssessessessssesssssssesnens 7
1.3 Outline of Thesis........ccccenireerrnininccinininccstc e enes 9

2 Business Simulation Games..........coceceetrveeerinniesisisissensisenisssesessissisessssesssssssssessens 10
2.1 Brief History of Business Simulation Games...........ccccooeeeeernveecccrsennensecsuenneene 10
2.2 Benefits of Business Simulation Games..........c.ccoceiveirernrinnscnscisninenssensesnenns 10
2.3 Typical Games and Examples.........ccccccuvuvrenrerieenenrniennncnnsiceientenicncenscnenns 11
2.4 Effectiveness of Business Simulation Games...........c.coceecvrenrevernensinccncsnnncsnenns 14

3 Modeling and System Dynamicscoceervercnirnninininiinieincnssnitiseeeseessesessessesens 15
K70 D Y (4 T4 3 1117 SO 15
3.2 Founder of System Dynamics.........cccecevviruirecmneninicnnisinnneesesnnissesssnens 16
3.3 Main Components of System Dynamics..........cccceveirerruerrneiisisversesseeneercsseesnenns 16

3.3.1 Stocks and FIOWSc.cocenurneriiniiinininenicccneneeesnesssc s 17
3.3.2 Feedback LOOPScoorerirerinniinenneinninisininisseesncssessesssssessnessssssesneess 17
3.3.2.1 Positive Feedbackccocevirccerneincensinnecninnnininciiennnesecceaes 18
3.3.2.2 Negative Feedback.........cccceevevmrmnrirvennrnincninenneeecneenetecnenes 23
3.3.2.3 Why Feedback Loops are of Interestcoceevverereevrnrnnence. 25
TN TG D 1] . RSN 27

4 Using System Dynamics in Project Management Simulationc.cccceevveeeccevennenne 29

4.1 Why Model Project Management?ccccoueierirnernresinnernnsseesneentensesseseessenses 29
4.1.1 Project Manager Responsibilitiescccuoereernriuerscenenneeneesecnseesennennnenne 29
4.1.2 Examples of Common Management Misconcetionsc..coccevvecvenuenne 30

4.2 Why Use System DynamiCs........c.ceccereereerrrsersnenecnerserssssenseeseesessesssessessessassesnes 32

5 The Existing ACE Project Management Fundamentals Training..........ccccocerevveurnenee. 34
5.1 Orientation and InitialiZationccccoverviereenercrrenrerneesirseeee s eessreeeseseens 35
5.2 Case StudY L.ttt ste st see st st sae st e sr e ne e 35
5.3 Case StudYIL.......cccoiniiciiiiiinceeneseneeeeeestsee e resae e e e ressese e s s ae st asaene e saenens 36
54 Case Study IILcccoveimimrerereieteeeeeceeresrecne s esaeenens cersensesreete s eeaneaes 36
5.5. Case Study IV and Case StudY Vccccceververenrrnerenesenneessssesesesssnesssessssssenes 37

6 The ACE Game Using System DyRamiCsccovreereereereereesensenrensnessessessessessessnas 38
6.1 The Tarek Abdel-Hamid Model............ccoevevermrineeninnnenreentnerereereetecneseesenenens 39

6.1.1 HUman RESOUICESc.couvieerririereeerrnreerennenssennssessesessesssesssessssassesens 41
6.1.2 Software ProducCtion...........ccceveveerereruerererieseessseesessessesessesessssessssesessesensens 41
6.1.3 CONLIOL.....ucutieciitiirrietecnieectresesseesseesaste st s e ssssesesaeessssene e sesesseneseaseans 42
6.1.4 Planningcocoveiveeieineeenenineneneneniessssissssssssssesssssssssssneesesssassssssssasananes 42

6.2 Porting the Model from DYNAMO t0 Vensim.........ceceeueuereeerereenererererecsnacnns 43
6.3 The Abdel-Hamid Model and ACE Specificationscccceuevreeernnerrnerensnncnes 45
6.3.1 Calculating Base EffiCiency..........ccoceceveverrerrerereerernsereeennseserenseseseseceenens 46
6.3.2 Calculating Changes to EffiCiency...........ccceevvvrerreerrrvrerererereeccesaressesens 47
6.3.2.1 COmMMUNICAION.......coeeeererreerrrerererererenraraenesssesenesesesesesessasasssnssesenes 47

6.3.2.2 OVETLIMEo.uveeererreecriteeeee s ssrssssessssssessssssenes 48

6.3.2.3 Development NEed..........cceureeeruerereeeerereernsesesessesesesesssesssesssesens 48

6.3.2.4 Team MOTAE.....ooueeiieeeiieeiisirrneeeeriecsessssssssesseesssessssssassessesssssrs 49

6.3.2.5 Skill MatCh.......coeeiiiiiririrnntitnetnectneesee s 49

6.3.2.6 WOIKIOrce MiX......ceoeruieirenrennirciniinninienicssececssensesscsaenns 49

6.3.2.7 Schedule PIESSUIEccceevuirenrriennninninicsinsesinnssesssssesaessenns 50

6.3.2.8 Learningccccceeerriierncneennrnincsenitiiesessessentesssssssssetssssesnsnessenes 50

6.3.3 Scope Changes and ReWorK...........ccccocevvvinreuinininincnicnnniccninncinnncens 51

6.3.4 Design Steps Recommendationccoeevirriesineecnninenncerenceecseensssenanns 51

7 CONCIUSION ...outineniirennieirctietrstiiertsisessssseetestessossessssssssssstesessssssessasssssossassesasssssseenes 53
7.1 The Final Presentationccecceivnreniinienienneeinssensensensseeseessesssssssensscssassessanns 53

7.2 Project Plan for the Next TWO Years.........cocvvveiicrvrinnnniniecnsinncnenienesnencsennnas 54
Bibliographyc..ccoouiiiiiiiiiiii st 57
Appendix A Vensim Model EQUAtiOnsc..cccceririinnircrennceneennesnensesseesseessesssesssesssens 59
Appendix B Vensim Modelooviiiiiininiiiiiiinciictnencesetsnencsseesssssessesnens 83
Appendix C ACE Specifications for PERIODIccoccoeviieienieevenrnneneecircnreeneenns 94

List of Figures

Figure 3.1: Stocks and FIOWS.........cccecivieiniiniicniticcintcennnneicecececsescneasseessenens 17
Figure 3.2: Stock and Flow EQUAtion ... 17
Figure 3.3: Salesforce Positive Feedback Loop........ccccccovmmvireeinieninceneniieciicnncinninne 19
Figure 3.4: Graph for Positive Feedback Loops.......c..cccceurverrnniierniniienicccinenicincencns 19
Figure 3.5: High Tech Companies Positive Feedback Loopcceceeeeriviiniiinninencnnns 20
Figure 3.6: VHS vs. Beta System Dynamics Model...........cccocviineninennninncecrennccncnnns 22
Figure 3.7: Number of Orders Negative Feedback Loopcocovceucviciinirirncccincnnnnne 23
Figure 3.8: Graph for Negative Feedback Loops.........cccoceuevuenrnuvsvinininninsiccccenncnnanne 24
Figure 3.9: Defect Rate Negative Feedback LoOp........ccccoccenrieniineccinsericciccnencncnn 25
Figure 3.10: Graph for Delays Within @ System........c.cecceeveevreinienernncncninneeneniececeenne 28
Figure 6.1: Abdel-Hamid Model..........cccoouiimiiiniiniiiiiceeccceceecne et saenes 40

1. Introduction

1.1 General Background

This Masters of Engineering thesis project involves the work of MIT professors, MIT students,
and Andersen Consulting Education (ACE). Andersen Consulting Education is currently inter-
ested in improving its training process. They are looking to decrease costs, increase the number of
employees trained, and improve current modeling techniques. MIT and ACE have jointly agreed
to research the possibility of a distributed, multi-user business simulation game using system

dynamics modeling techniques.

There are three professors from MIT working on this project with ACE, each serving as an expert
in his specific field. Professor Richard C. Larson is the Director of the Center for Advanced Edu-
cational Services (CAES). Professor Steven R. Lerman is the Director of Center for Educational
Computing Initiatives (CECI). Professor John D. Sterman is the Director of the System Dynamics
Group at the Sloan School of Management. There are also two undergraduate students and one

graduate student from MIT involved in this project.

1.2 Overview of Project

This project focuses on ACE’s goal of improving current modeling techniques. In preparation, an
intensive study on existing business simulation games was done. Computerized business simula-
tion games from the 1960s through the1990s were found using resources such as the World Wide

Web, books, articles, and game manuals. An annotated bibliography was created using informa-

tion collected, such as the goals of the game, the time it takes to play the game, and the number of
players needed. This bibliography will allow Andersen employees to look for existing business
simulations and to obtain a quick summary of the game. The bibliography is currently in HTML
format and on a MIT based web page (http://www-caes.mit.edu/.) The web page allows Andersen
employees to run searches on games based on type (general, functional, industry specific), year,
title, and authors. Furthermore, the web page will allow the public to e-mail CAES if they know
of any games not inclﬁded in the current bibliography. Members of CAES (either a graduate
research assistant or undergraduate student) will review the new game and insert the game, if
accepted, into the annotated bibliography. This is a relatively easy way to maintain the web page
and keep the bibliography updated. Since Andersen will most likely be interested in the latest and

greatest games, the ability to dynamically add new games is very valuable.

Nine of the games in the bibliography were chosen to be researched in depth. The games which
were chosen are all created in the 1990s and contain fairly sophisticated engines. A summary
report of these games was compiled, containing information such as the company who published
the game and the retail cost of the game. ACE would then be able to contact these companies if

there is an interest in the game engine.

This thesis explores the possibility of utilizing system dynamics to model major components of
project management in an existing ACE training game. This serves two main purposes. The first is
to show how system dynamics can be used as a realistic and potentially superior method of busi-
ness modeling. The second is to actually improve the existing game. The current training game,

Project Management Fundamentals School, leads trainees through managing a project via a series

of case studies. Each of the first three cases represents different decisions made by project manag-
ers such as headcount, budget, quality level, and schedule. In these three case studies, trainees
analyze and discuss why certain parameters are unrealistic and how they should be changed. The
trainees, however, will not be able to test their suggested changes. The improved game will
include a computerized system dynamics model so that trainees will be able to input their own
parameters. This change will allow players to test their suggestions, making the game more inter-

active and interesting.

It must be noted that the first draft of the system dynamics model of project management is peda-
gogical. Real data often takes years to obtain. Also, the game should not be used for actual train-
ing purposes until it has gone through extensive testing for accuracy. Training students on a faulty

model can be extremely harmful and dangerous.

1.3 Outline of Thesis

This thesis will begin with background information on business simulation games and system
dynamics modeling. Next, it will describe how system dynamics can be successfully used to
model project management. The main part of this thesis will focus on describing the existing
Project Management Fundamentals School training process, and the initial design of the new
computerized system dynamics model. The final section gives suggestions regarding the future

steps and goals of this project.

2. Business Simulation Games

2.1 Brief History of Business Simulation Games

The first business simulation games were introduced in the late 1950s, contributed by develop-
ments in war games, operational research, computer technology, and education theory [1]. In the
early 1960s, some business games such as the Carnegie Tech Management Game and INTOP
were widely available. By 1968, virtually all business schools were using at least some form of
gaming in their teaching programs [2]. The purpose of these educational simulation games was to
help students learn to apply the knowledge they had gained in the classroom to actual business
problems. As soon as the games became available, companies realized their potential in training
employees. By 1970, it was estimated that over 200 games were in existence and over 100,000

executives had been exposed to them [2].

There are two main purposes for business simulation games - education and research [2]. Busi-
ness simulations have been used to help students apply their conceptual knowledge to business
problems. Business simulation games have also been used in research to analyze decision-making
processes. Since this project uses simulations for training purposes, the rest of this paper will con-

centrate on using business simulation games for education.

2.2 Benefits of Business Simulation Games

There are many benefits to training employees and students using business simulation games.

Business simulation games allow players to make decisions without risks to any companies, per-

10

sons, or environments. This gives the player a chance to gain experience and learn about the pos-
sible outcomes prior to actually implementing a potentially bad idea [3]. Furthermore, business
simulation games provide rapid feedback, allowing the player to see the effect of his decisions
more clearly [4]. In the real world, delays make it difficult for people to link causes and effects.
Another advantage of business simulation games is being able to play multiple times. Often times
in industry, an employee has only one chance to make a decision. Trying different paths will help

a trainee test his mental model of the business world.

Many advocates of business simulation games state that the greatest asset of simulations is the
power of immediate feedback. The time it takes from the day a business decision is made to the
day feedback is received can easily be over a year. This delay makes it difficult for people to link
the cause of an effect to their decisions. One marketing executive cites that his project managers
routinely “assuage short-term pain” by cutting prices to make sales, only to see retail inventories
climb and then drop steeply a few months later [5]. Simulation games can help these managers see

that their short term gains are causing the long term disasters.

2.3 Typical Games and Examples

In a typical business simulation game, players have to analyze situations, identify problems and
opportunities, and make decisions over a number of iterations composed of simulated months,

quarters, and/or years.

11

Beyond trying to reproduce the numbers in business (profits, revenues, losses), many successful
software simulations try to reproduce human frailties and unexpected events that complicate
working life [5]. Examples include losing work days due to sickness and sudden increases in ven-
dor prices. The most realistic simulations also include workplace personalities which range from a
workaholic who feels she doesn’t get enough credit to an ornery veteran who is no longer moti-

vated to work hard.

Simulations have been used in many situations to correct an employee or student’s faulty mental
model of business dynamics. The Planning and Control Inc. (PCI) is a New York based training
firm which has been commended by many of its clients. A process control engineer at GE was
involved in one of PCI’s leadership training programs. The PCI software challenged his team of
GE employees to finish a project within a certain budget and deadline. His team’s inclination was
to add more people into the project, assuming that more people would finish the project faster.
The simulation showed, however, that the extra workers took longer to learn the job and caused
more communication problems. A GE project manager commented that when this happens in a
real plant or office, managers rationalize it by thinking they added the wrong people [5]. As
another example, a properties claim manager noticed that managers who “skimp on the claim pro-
cess” and get through paperwork quickly with low headcount were rewarded with promotions. A
simulation he used showed that as a result, months later, his company was making higher pay-

ments months on claims which were not adequately investigated [5].

A common phenomenon was mentioned by John Sterman, the Director of the System Dynamics

Group at the MIT Sloan School of Management. A manager may make a decision which leads to

12

small short term gains, but huge losses after a delay of a few quarters. The manager makes the
decision, and before the delay is over, he is promoted to a new position within the company. The
employee who takes his previous position will then be blamed for the huge losses caused by the
original decision. If no one notices this effect, the bad decision maker will be continuously pro-
moted, leaving a trail of disastrous events behind him and potentially leading to the downfall of
the entire company. Business simulation games can compress space and time in a realistic way so

that people can see the ramifications of their decisions.

The People Express simulation, created by John Sterman, is another business game which has
been commended by multiple sources [6, 7]. The game allows students to take over an airline
company and make decisions such as hiring, buying more airplanes, and changing the fares. The
original company strategy included intensive training and rapid growth. This led the company to
bankruptcy because a high percentage of the employees were inexperienced and too much time
was spent on training [8]. Business games such as this one gives students a chance to explore the

consequences of various strategies and gain experience without risking a real company.

There are many effective business simulation games, such as the ones mentioned in this section of
the paper, used around the world. Some of these games are included in the annotated bibliography
web page for ACE. The bibliography will be updated as new games are found, hence maintaining

its value to ACE.

13

2.4 Effectiveness of Business Simulation Games

A number of studies have been aimed at measuring the effectiveness of simulation games. A few
internal validity studies have been conducted, comparing learning from business games to learn-
ing from case studies. Superior results were found for students playing the games in terms of
course grades, performance on concepts examinations, goal-setting exercises, basic management
skills, and management ethics [1]. The external validity of business games have shown a strong

correlation between successful executive game play and career success [1].

Ultimately, however, the effectiveness of the game depends on the quality of the simulation in rep-
resenting the behavior of the real world [1]. By the very definition, a model eliminates some
details of the actual business environment. A good model will contain all the main components of
the business sector simulated, while eliminating extraneous details [1]. A bad model is very dan-
gerous since it will teach and reinforce unrealistic business models. Therein lies a major difficulty
in creating a good business simulation game. There are many different ways to model a business
environment. In the next section, modeling and system dynamics, a relatively new way to model,

will be discussed and assessed.

14

3. Modeling and System Dynamics

3.1 Modeling

Before delving into a description of system dynamics modeling, it is important to understand why

computerized modeling is used.

Computerized models are important because there are limitations to mental models. People use
mental models everyday to make decisions. Decisions and actions are based not on the actual state
of the environment, but on mental images of the state of the world and how the various parts of the
system are related [9]. Humans consistently make suboptimal decisions when faced with complex
systems [4] because they are not adept at interpreting the assumptions of their own mental models
and are unable to correctly infer any but the most simplistic causal maps. This is due to “bounded
rationality” - the human limitations of attention, memory, recall, and information processing
given the time constraints imposed [4]. Furthermore, people are effected by organizational con-
text, authority relations, peer pressure, cultural perspective, and selfish motives [9]. Computerized
models, on the other hand, are not biased and can infallibly compute the logical sequences of the
system, given the modeler’s assumptions. Another advantage to using computerized models is
that they are explicit and their assumptions can be reviewed by multiple people [9]. This increases
the probability that the base assumptions are correct. System dynamics modeling encompasses all

these advantages.

15

3.2 Founder of System Dynamics

Jay Forrester is credited as the founder of system dynamics. Forrester went to the Massachusetts
Institute of Technology (MIT) for graduate school, where he majored in electrical engineering.
While at MIT, he invented magnetic core memory, which became the dominant way to store data
in a computer for about twenty years. In the late fifties, he decided to learn more about manage-
ment and enrolled in MIT’s Sloan School of Management. During this time, he talked to many
managers from major corporations who were puzzled about the large fluctuations in variables
such as inventory and work force level needed within their organization. For example, General
Electric did not understand why their household appliance plants in Kentucky sometimes worked
at full capacity with overtime and then two or three years later, needed to lay off half their
employees because there was not enough work for everyone. Forrester set out to simulate the situ-
ation using variables such as inventory, number of employees, and production rate. This first

inventory control system was the beginning of system dynamics [10].

3.3 Main Components of System Dynamics

A dynamic system is a system which changes with the progress of time. The components in a
dynamics system interact to create a progression of system conditions. The main features of a sys-
tem dynamics model are stocks, flows, and feedback loops. The following paragraphs will explain
each of these components in more detail. It is important to note that the concepts of system

dynamics stem from control theory. Stocks, for example, are analogous to system state variables

in engineering.

16

3.3.1 Stocks and Flows

Stocks, also referred to as ‘levels,” are the accumulations within the system. Flows, also referred
to as ‘rates, are simply the rate at which a stock increases or decreases. For example, if inventory

is expressed as a stock, production rate and shipment rate can be expressed as flows (Figure 3.1).

(r=— s %)

Inflow Outflow

Figure 3.1: Stocks and Flows

Production rate increases inventory, and shipment rate decreases inventory. It is important to note
that stocks depend only on flows and not other level variables. Similarly, flows are solely depen-

dent on stocks and not other rates. Mathematically, stocks are the integration of flows (Figure 3.2).

stock = j(inﬂow — outflow)dt

Figure 3.2: Stock and Flow Equation

3.3.2 Feedback loops

One of the most powerful aspects of system dynamics is its use of feedback loops. A feedback
loop is a closed path within which all decisions are made. For example, someone will make a

decision based on the observed state of the model. The decision will alter the parameters, chang-

17

ing the state of the model, and lead to even more decisions and changes. Basically, the feedback
loop implies a circularity of cause and effect. There are two types of feedback loops - positive and

negative.

3.3.2.1. Positive Feedback Loops

A positive feedback loop is one which activity changes the condition of the system in such a
direction as to produce even greater activity. For this reason, positive feedback loops are often
called “reinforcing loops.” Positive feedback loops lead to exponential growth or decline. For
example, sales force, number of orders, profit, and a manager’s ability to hire more salespeople
may form a reinforcing feedback loop (Figure 3.3). When the sales force increases, the number of
orders also increase. The larger quantity of orders adds to the company’s profits. The profits
increase the managers ability and incentive to hire more salespeople. This leads to more sales peo-
ple and even more orders. In this scenario, the sales force, number of orders, profits, and man-

ager’s ability to hire more salespeople all increase exponentially (Figure 3.4).

18

Hiring Attrition

Rate
Rate Sales O
NZ
(J—>X—> Force AN
+
+
+ Number of
Orders
Ability to Hire
New People
-~ Profit
+
+
Figure 3.3: Salesforce Positive Feedback Loop
A
Sales
Force
» lime

Figure 3.4: Graph for Positive Feedback Loops

19

There are many real life examples of positive feedback loops. One example involves firms enter-
ing an industry and choosing their locations so as to maximize profit. Assume that a company’s
profit increases if they are near other firms - who are typically their supplier or customers. The
first firm which enters the industry chooses a location purely due to geographical preference. The
second decides based on preferences including being located near the first company. The third
company is influenced by the first two, and so on. The large number of high-tech companies in
Santa Clara County California (Silicon Valley), is the result of such a positive feedback loop. [11]
In the late 1940s and early 1950s, key people in the electronics industry - the Varian Brothers,
William Hewlett and David Packard, William Shockley - chose to open companies near Stanford
University. The local availability of engineers, supplies and components that these early compa-
nies helped furnish, made Santa Clara County extremely attractive to the 900 or so firms that fol-

lowed [11] (Figure 3.5).

Number of High

Technology

Companies in N

Santa Clara A
Rate of Rate of
Growth Exit

+
D
+
Attractiveness of
Santa Clara

Figure 3.5: High Tech Companies Positive Feedback Loop

20

The history of VHS and Beta is another good example of positive feedback loops. The VCR mar-
ket started with two competing formats selling at approximately the same price. Panasonic owned
the VHS format, and Sony owned the Beta format. They both had equal market shares. Due to
luck and corporate maneuvering, Panasonic’s VHS format, accumulated a slight advantage. The
larger number of VHS recorders encouraged video outlets to stock more prerecorded taped in
VHS format. This, in turn, enhanced the value of owning a VHS recorder and even more people
purchased the VHS format recorders. This positive feedback loop allowed the VHS customer base
to grow exponentially (Figure 3.6). Within a few years, the VHS format had taken over virtually

the entire VCR market [1]

21

Number of

Attractiveness)/_*_”_— VHS Tapes

of VHS

Total
Potential
Customers

Attractiveness of

Beta \
+

Figure 3.6: VHS vs. Beta System Dynamics Model

+

VHS Customer Base

2
N
\

Beta Customer Base

+

Number of
Beta Tapes

Total Number
of Video
Tapes
Produced

Nothing in the real world is completely made up of positive feedback loops. There will always be

limits. In the VHS and Beta example, the limit is the customer base. Once VHS owned the entire

customer base, it could no longer continue to grow exponentially. This means there exists another

type of feedback loop - negative feedback loops.

22

3.3.2.2 Negative Feedback Loops

Negative feedback loops are goal seeking and adjust activity toward some target value - typically
called the equilibrium. For this reason, negative feedback loops are often called “balancing feed-
back loops.” For example, number of orders, shipment rate, invoice mistakes, and customer satis-
faction may form a negative feedback loop (Figure 3.7). If the number of orders increase, the
shipment rate also increases, assuming that there are no inventory limitations. An increase in ship-
ment rate increases the percentage of mistakes in the invoice. More mistakes lead to reduced cus-
tomer satisfaction, which decreases the rate of sales and number of orders. On the other hand,
when the number of orders is low, rate of shipment is slow, reducing mistakes in the invoice. This
increases customer satisfaction and hence the number of orders. The loop is balancing because it
prevents the number of orders from being too high or too low. If the number of orders is too high,
customer dissatisfaction drives it down. If the number of orders is too low, an increase in customer

satisfaction drives it up (Figure 3.8).

Ordering Fulfillment
Ordering (Shipment)

Rate) Number of Rate
Orders yas ’Q

L) *
Invoice
Mlstakes

Customer
Satisfaction

Figure 3.7: Number of Orders Negative Feedback Loop

23

Number
o) S
Orders

» Equilibrium

» lime

Figure 3.8: Graph for Negative Feedback Loops

There are also many real world examples involving negative feedback loops. One example
involves a study done by Art Schneiderman, vice president of quality and productivity improve-
ment at Analog Devices Inc. He concluded that, typically, defect level decreases at a constant rate
so that when plotted on semilog paper against time, it falls on a straight line. In other words, if it
took 3 months to find and solve the first 10 errors, it would take 3*2 = 6 months to find and fix the
next 10 errors. This process could continue up to a certain limit, often due to inherent equipment
limitations [12]. This phenomenon is due to the fact that the biggest and easiest to solve errors are
typically solved first. Also, there are more errors in the beginning, so that it is easier to find errors.
With each iteration, errors are harder to find and more difficult to solve. The following negative

feedback loop models this phenomenon (Figure 3.9).

24

Defect
Elimination
Rate

Defect Defect Rate

e Rate TR

-

Gap

Average Time
+ to Eliminate
Errors
Theoretical
Minimum

Figure 3.9: Defect Rate Negative Feedback Loop

3.3.2.3 Why Feedback Loops are of Interest

Feedback loops are of particular interest to this thesis project because they are one of the major
strengths of using system dynamics modeling. Complex systems, such as those involving project
management, are highly connected, and there is a high degree of feedback between sectors [9]. A
model which does not incorporate feedback effects tends to rely on exogenous variables. In other
words, the variables in the model are given by a set of numerical values over time. This is less
realistic because variables in a model often effect one another significantly. Ignoring feedback can
result in policies that are delayed and diluted, as well as decisions which generate unanticipated

side effects [9].

25

One study conducted by John E. Collins, Professor of Urban Studies at MIT, and Jay Forrester
showed that actions taken to alleviate the difficulties of a city can actually make the situation
worse [13]. For example, the mayor of a town may increase the number of low-income housing to
alleviate the problems of homelessness in the city. Thinking linearly, the solution is sound - low
income housing will lead to fewer homeless people, increasing the attractiveness of the city. How-
ever, an unintended side effect may be that land used for projects takes away land which can be
used to build companies and increase the number of jobs available. Also, the increase in cheap
housing, will increase the attractiveness of the city to people with low incomes. As more people
with low incomes move in, the demand for low income housing increases. Excess low income
housing attracts more low income families. The positive feedback loop involved is far from insig-

nificant, and causes a decline in the city’s economic condition.

The use of feedback loops also implies that system dynamic models are non-linear. Often times,
to simplify a simulation model, all the relationships in a system are assumed to be linear. Linear-
ity, although mathematically convenient, is almost always unrealistic [9]. For example, a company
may try to model a relationship between inventory and shipment. Collected data may show that
when the inventory of products in a warehouse is 10% below normal, shipments are reduced by
2% because certain items are out of stock. If the relationship was linear, an empty warehouse will
still allow 80% of the shipments to be made - obviously unrealistic. As another example of a non-
linear system, consider the plight of the passenger pigeon. Before the colonization of North
America, there was a large population of passenger pigeons. Since they caused extensive damage
to crops, they were hunted both as a pest and for food. For years, hunting had relatively little

impact on the birds, who were able to reproduce quickly. However, the fertility of the pigeons

26

depended nonlinearly on their population density. As hunting reduced the population, fertility fell,
accelerating the decline in population. Lower population lowered the birth rate, and so forth in a

positive feedback loop. By 1914, the passenger pigeon was extinct [9].

Studies have shown that people significantly and consistently underestimate exponential growth
and decline, tending to extrapolate linearly rather than exponentially [4, 13]. System dynamics
modeling incorporates the non-linearities and can help improve people’s intuition on exponential
growth and decline. Since non-linear relationships are more realistic, it makes sense to train

employees using non-linear modeling techniques such as those in system dynamics.

3.3.3 Delays

System dynamics also takes into account the delays in a system. Delays in a system cause oscilla-
tions (Figure 3.10). Take for example, a manufacturing plant. If the demand for a product
increases, inventory will start dropping. A manager may want to increase inventory by increasing
the rate of production. However, since production is not instantaneous, inventory continues to
drop. The manager will further increase his order. After a month or so, the first set of products he
ordered is finished and added to inventory. The manager waits until inventory is high enough and
- stops increasing his orders. However, there are still large amounts of work in progress (WIP) due
to his past orders, and he will end up with excess inventory. For another month, the manager may
decrease his orders because inventory is too large due to the large number of WIP being com-
pleted. A month later, the decreased orders start coming out of WIP, and the manager is again met
with insufficient inventory. This cycle of excess inventory and a depleted inventory continues

despite the fact that customer demand has since remained constant.

27

Inventory > Desired

Inventory

Time

Figure 3.10: Graph for Delays Within a System

There are also real examples of delays and oscillation in the real world. One such example
involves the building and profitability of oil tankers [14]. When oil tankers were making a large
profit, investors were encouraged to build more oil tankers. It took approximately three years for
an oil tanker to be ordered and built - a delay of three years. During those three years, the few
existing oil tankers were making large profits. Then three years later, oil tankers started coming
out of production. There were too many oil tankers, profitability per tanker dropped, and some
tankers were even sold very cheaply for scrap metal. Investors stopped the building of tankers -
after all, it didn’t make sense to build something that would be unprofitable. Another three years
later, there was once again a shortage of oil tankers since building of tankers had basically ceased.
The existing tankers made large profits, and again many investors jumped into the ship building

business. The cycle continues periodically regardless of economic conditions.

28

System dynamics modeling uses delays to make simulations more realistic. Most useful system

dynamics models are made out of both negative and positive feedback loops with some delays.

4. Using System Dynamics in Project Management Simulations

4.1 Why Model Project Management?

There is a need to simulate project management because project management is very complex and
often poorly understood. Cost overruns are the rule rather than the exception [15]. Projects are
often delayed to the point where the market conditions for which they were designed have
changed [15] Client specifications change, often disrupting the entire organization. Many manag-
ers have misconceptions about adding new employees to a project to increase productivity [16]
This section of the paper will describe common responsibilities of a project manager, as well as
some typical pitfalls in the project management process. This section will also explain why sys-

tem dynamics is an efficient and realistic way of modeling project management.

4.1.1 Project Management Responsibilities

A project manager assumes many responsibilities. Project managers must estimate a reasonable
budget, schedule, and headcount for a project. They are often in charge of allocating project
resources, such as manpower, facilities, and equipment. They decide who to hire, who to train,
and how to motivate employees to get the maximum effective work week. There are many risks

such as client scope changes, unreliable subcontractors, and attrition of experts on the team which

29

a good project manager must be prepared for. Furthermore, project managers are responsible for
making crucial decisions when a project which falls behind schedule, is over budget, or has qual-
ity problems. For example, if a project is behind schedule, a project manager can increase head-
count, pressure current employees to work overtime, revise the completion date, or lower the
quality of the product. Each of these choices come with its own ramifications, which must be

weighed by the project manager.

The above paragraph only mentions the most basic responsibilities of a project manager, and
already it is complex. Many of the variables interact. For example, hiring affects parameters such
as the budget, productivity, and allocation of resources. Overtime can cause fatigue affecting the
quality of the product and increasing attrition rate. The human mind does not have the capability
to make optimal decisions faced with such a complex, nonlinear, interactive system [15]. Even the
best project manager is bounded by limitations of attention, memory, and information processing

capability. For these reasons, many managerial misconceptions exist.

4.1.2. Examples of Common Management Misconceptions.

In this section three common managerial misconceptions are discussed: Brook’s Law, the 90%
Syndrome, and Overtime/Schedule Pressure. Brook’s Law states that “adding more manpower to
a late software project makes it later” [16]. A dangerous misconception is that humans and time
are interchangeable. In other words, the more people on a project, the less time it takes and vice
versa [16, 18]. This hypothesis does not take into account the communication overhead involved

when many people work on one project. Furthermore, when a task cannot be partitioned because

30

of sequential constraints, the application of more effort will obviously not speed up the project at
all [16). Increasing headcount also means adding people who are unfamiliar with the project.
Each new worker must be trained on the technology, the goals of the effort, the overall strategy,
and the plan of work {17]. The experienced employees often become responsible for bringing the
new hires up to speed. This takes away time that they could be using to work on the project. A
good project manager must take these issues into account and resist the temptation to add more

people at the end of a project in order to make a deadline.

Many projects also suffer from the 90% syndrome, where a project is thought to be 90% finished
for half of the total time required. This is partially because people on the project are often overly
optimistic [16, 18]. For example, software engineers may assume that no major design errors will
crop up during integration testing. Workers may also purposely distort the status of the project to
the manager [18]. A good project manager must realize this phenomenon, monitor progress more

carefully, and use better progress estimation techniques.

The last example includes overtime and schedule pressure. When a project falls behind schedule,
there is temptation to push for overtime. It seems intuitive that longer hours lead to higher produc-
tivity. This is often not the case. Overtime does not increase productivity in the long run [17, 18].
When employees put in overtime, their productivity will temporarily rise. However, if they work a
significant amount of overtime, burnout lowers their productivity, increases the error rate, and
decreases the error discovery rate [17]. Studies have shown that work force turnover increases
when schedule pressures persist in an organization [18]. The company typically loses its best

employees, who can easily find work elsewhere. Their replacements are new hires who are unfa-

31

miliar with the project and need extra training. The net result is often a project which is even fur-

ther behind schedule.

4.2 Why Use System Dynamics?

Because project management is so complex and poorly understood, it is important to train future
project managers on business simulation games. This section explains why system dynamics

should be used as the underlying model in such games.

Large scale projects belong to the class of complex dynamic systems. Such systems consist of
multiple interdependent components, are highly dynamic, involve multiple feedback processes,
and involve non-linear relationships [15]. Each of these aspects of project management are

addressed by system dynamics modeling.

Project managers make many decisions involving interdependent variables. For example, subcon-
tracting a piece of the project effects budget, headcount, and risk. Multiple interdependencies
complicate analysis beyond the capabilities of mental models [15]. However, system dynamics
models represent multiple interdependencies very well. In fact, one of the major uses for system
dynamics is to model interdependencies so that causal impacts of changes can be easily traced

throughout the system [15].

The project management position is also a very dynamic position. Processes such as training

unfold over time and never happen instantaneously. There are many delays in the process caused

32

by hiring, responding to quality issues, and dealing with sudden, unexpected changes in project
scope. For example, after hiring a new employee, there is a large delay in training the person on
skills required for the specific project. During this time, many of the experienced hires may be
responsible for bringing the new person up to speed. As a result, productivity decreases tempo-
rarily. System dynamics was developed to handle exactly such dynamics [15]. Of all the formal
modeling techniques, system dynamics has the most highly involved guidelines for proper analy-

sis, representation, and explanation of the dynamics of complicated managerial systems [15].

There are many feedback loops involved in project management. For example, when a project
falls behind schedule, a manager may pressure employees to work overtime. The overtime may
bring the project back on schedule. This is an example of a negative feedback loop. However, if
the project is very behind schedule and employees must put in weeks of overtime, fatigue may set
in causing quality problems and low employee morale. This may cause the project to fall behind
schedule even more. This is an example of a positive feedback loop. System dynamics is the most

efficient and effective way of modeling when there are many feedback loops [15].

Project managers must handle nonlinear relationships between many variables. In complex sys-
tems, causes and effects rarely have simple, proportional relationships [15]. One example is test-
ing a large project which includes many interacting components. Assuming integration and
modular testing, a project with three components takes more than three times longer to test than a
project with only one component. System dynamics, more than any other formal modeling tech-

nique, stresses the importance of including nonlinearities in formulating a model [15].

33

Given the strengths of system dynamics, system dynamics modeling lends itself to project man-
agement very naturally. Playing a simulation game with a system dynamics engine can help train-
ees avoid common pitfalls of project management. Trainees can test their mental model and

discover their own misconceptions.

5. The Existing ACE Project Management Fundamentals Training

Before delving into a detailed description of the changes made to the current Andersen Project
Management Fundamentals training game, it is first important to understand the existing method
of training. The goals of the training as well as each step will be explained in this section.

The purpose of ACE Project Management Fundamentals is to train newly promoted project man-
agers. The ultimate goal is for these employees to become effective project managers. The current
game consists of a number of sections: pre-reads, project initiation, and six case studies. Each of
these sections will be described briefly. A complete, detailed explanation can be obtained from

ACE.

Prior to attending the training program, students are expected to prepare by reading relevant arti-
cles on project management. These articles are provided by ACE, and include topics such as the
importance of project management and specific management concepts. Furthermore, students are
expected to be familiar with acronyms such as BCWS (Budgeted Cost of Work Schedule), the

sum of all budgets for work scheduled to produce program deliverables.

34

5.1 Orientation and Initiation

The formal training program begins with project orientation and initiation. Coaches, who are ACE
volunteers, greet the trainees and give them an overview of the course. The coaches are responsi-
ble for explaining key project management concepts, the project management process, and the
role of the project manager. The acronym SQERT is introduced during this initiation phase.
SQERT stands for Scope, Quality, Effort, Risk, and Time - five major components of project man-
agement. Next, the students are given their specific project to manage, the “Order Capture
Project.” A program manager, an ACE volunteer, explains the process of confirming the baseline.
Confirming the baseline involves using estimation techniques to validate a proposed budget and
schedule. Trainees are reminded that project managers have the opportunity to negotiate the base-

line.

5.2 Case Study I

The first case involves confirming the baseline.The trainees are responsible for analyzing the pro-
gram-level Order Capture Project documentations and negotiating a more reasonable baseline
with the program manager. In order to do this, trainees must understand program-level documen-
tation as it relates to the project and have a solid understanding of the expected project deliver-
ables. They must also verify the reasonableness of the project baseline regarding scope, quality,
effort, risk, and time. As it turns out, the baseline presented by the program manager is not feasi-
ble. For example, more training time than planned will be needed, and there are no full-time users
on the project team. The trainees must defend their request for increased time and budget. The

goal of this section is for the project manager and program manager to reach a consensus on the

35

baseline. However, regardless of any baseline changes agreed upon by the project manager and

program manager, the training course continues using the original, unreasonable baseline.

5.3 Case Study II

The second case focuses on developing the project plan with emphasis on scope, effort, and time.
Participants review and analyze the initial project plans for completeness, correctness, and reason-
ableness. They are then to develop a list of observations, concerns, and suggested revisions to the
initial project plan. Finally, the trainees meet with the program manager to propose and justify
suggested revisions to the initial, suboptimal project plan. For example, a player may point out
that project milestones are set too far apart or that the basis used for estimating work are not doc-
umented. Trainees are reminded that project managers can make a change to project plans as long
as it does not effect the overall budget, schedule, quality, and dependencies of the project. How-
ever, none of the suggested changes will effect the next case. The project will continue using the

original project plan despite the improvements proposed by the students.

5.4 Case Study III

The third case also involves developing the project plan, but this time, with emphasis on quality
and risk. ACE students are asked to identify and prioritize risks and develop mitigation strategies
for risks that apply at the project level. Some risks identified by trainees may include expanding

solutions requirements, non-availability of project personnel, and underestimated efforts. Trainees

36

recommend ways to reduce risk while maintaining a high level of product quality. Again, these

recommendations are ignored in the next case.

Included in the third case is a Project Status Assessment and Measurement Workshop. This work-
shop teaches ACE students how to measure the progress and future headcount, budget, and sched-

uling needs of the project.

5.5 Case Study IV and Case Study V

The final two cases involves assessing project status and giving presentations. The students are
required to assess project status using information from project reports, identify corrective
actions, and prepare a report. They must then present the project status to both the program man-
ager and the program executive. Trainees are expected to gear their presentations appropriately to
the different audiences. The status report to their project manager should be somewhat technical
and more detailed. The presentation to the executive manager, on the other hand, should be higher
level and less technical. Trainees are evaluated on the accuracy, completeness, and professional-

ism of their report.

The training session ends with a wrap-up given by the coach. The coach recaps the skills devel-

oped during the training, and reminds students to apply what they have learned to their actual job

assignments.

37

6. The Project Management Game Using System Dynamics

One major drawback to the original game is its lack of dynamics. Any suggestions from the stu-
dents, regarding the parameters, cannot be incorporated into the game. In order to improve the
game, ACE has decided to look into the possibility of a using a system dynamics model as its
game engine. The engine would allow the trainees to input major parameters. For example, the
trainees may decide on the percentage of the development process they want to spend on testing.
Creating a system dynamics model from scratch is very time consuming. The equations relating
the variables need to be well tested. Feedback loops need to be analyzed to make sure they output
realistic numbers. Furthermore, data generated by the model should be tested against actual data
from real case studies. In project management, there are many soft variables such as team morale
and level of fatigue. Data used for equations involving these variables are often obtained through

extensive interviewing of company employees.

Given that creating a realistic system dynamics model from scratch is very difficult and time con-
suming, it was decided that the initial engine should be based on an existing model. The model
chosen was one created by Tarek Abdel-Hamid for his 1984 Ph.D. thesis from the MIT Sloan
School of Management. His thesis included a well-tested and accepted system dynamics model of

the software project management process.
The existing model by Abdel-Hamid was created using DYNAMO, an old and outdated system

dynamics modeling software package. DYNAMO is not compatible with many of the newer mod-

eling software tools. Since putting the game engine on the ACE intranet is a possibility for the

38

future, it was important that the model be created using a newer software package which may
include networking and web capabilities in the near future. The model was, therefore, ported to
Vensim, a more current software package which is compatible with many other modeling tools on
the market. This Vensim model serves as an example of how system dynamics can be used to suc-
cessfully model project management. It will also be used as the base model for the ACE game
engine. ACE’s needs for the game engine is obviously not perfectly replicated by Abdel-Hamid’s
model. There will be changes to both the structure and parameters to the base model. The initial

design changes suggested by ACE will be addressed in this section of the paper.

6.1 Abdel-Hamid’s model

Before delving into the design changes proposed by ACE, it is first important to understand the
overall structure of the original software project management model from Tarek Abdel-Hamid’s
thesis. The model is fairly large, consisting of five major subsystems and approximately 200 equa-

tions. The ported Vensim equations are included in Appendix A.

The overall structure of the model is shown in Figure 6.1. The various sections influence each
other as shown by the arrows. For example, the development section generates how many tasks
are completed. The controlling sector uses the number of completed tasks to decide if more effort
and people are needed. If more people are needed, the human resource sector makes decisions on

hiring new employees. A complete system dynamics model of these and other subsectors is

included in Appendix B.

39

Some of the major inputs of this system dynamics model are estimated man-days needed, esti-
mated size of project, initial work force size, and percent of effort for development and testing.
The major outputs include scheduled completion date, equivalent work force, cumulative errors
committed, and cumulative man-days expended. Each of the subsystems will be reviewed very
briefly in these next few sections of the paper. For a more detailed description, as well as the
actual DYNAMO equations, please refer to “Software Project Dynamics. An Integrated

Approach” by Tarek Abdel-Hamid and Stuart E. Madnick [18].

Human Resource
Management

Work
Force

Available
Progress Work Force
Status Software Needed
Production

Tasks
Completed Schedule

Controlling > Planning

Effort Remaining

Figure 6.1: Abdel-Hamid Model [18]

40

6.1.1 Human Resources

The human resource sector of the model controls the number of people working on the project.
There are two main types of people working on the project: experienced employees and new hires.
New hires assimilate into experienced workers through training overhead. Hiring rate increases
when there is a larger discrepancy between the number of people needed and the actual number of

employees.

6.1.2 Software Production

The software production sector is made up of four subsectors: manpower allocation, software
development, quality assurance and rework, and system testing. The manpower allocation sector
handles what percentage of the manpower goes toward the various parts of the development pro-
cess. For example, variables include the total cumulative man-days spent on quality assurance,
rework, and training. The software development section calculates the amount of work done. This
section takes into account the effects of overtime, exhaustion, and communication overhead to the
overall project productivity. The quality assurance sector includes equations relating the error
density, the error detection rate, and the amount of manpower needed to detect and fix an error.
The error generation rate increases with schedule pressure, since there is often an inverse relation-
ship between working faster and working better. This is because emphasis is placed on getting as
many tasks done as quickly as possible. Less time is spent on trying to meet the quality objectives
and testing for defects. The last major part of the software production sector is system testing.
Testing can catch two types of errors - passive and active. Active errors are errors which lead to

more errors. For example, an error in design is an active error since it will lead to errors in coding

41

and perhaps other aspects of lower level design. Passive errors, on the other hand, are errors which
do not lead to more errors. Obviously, since active errors induce even more errors, they are of
greater concern. The system testing sector includes equations which calculate the percentage of

passive and active errors, the cumulative tasks tested, and the error correction rates.

6.1.3 Control

The controlling subsystem of Abdel-Hamid’s model includes measurement, evaluation, and com-
munication. This section first measures an activity such as total man-days still needed. It then
evaluates its significance by comparing information on what is actually happening with some
standard or expectation of what should be happening. For example, total man-days still needed
would be compared to total man-days perceived still needed. Next, a report of what has been mea-
sured and assessed is communicated, so that the behavior can be altered if the need for doing so is
indicated. As an example, if total man-days needed is much higher than the total man-days

remaining, hiring rate may increase.

6.1.4 Planning

In the planning subsystem, initial project estimates are made at the start of the project, and then
the estimates are revised when necessary throughout the project lifecycle. For example, there
exists an initial scheduled completion date. If the project falls behind, the scheduled completion

date will need to be pushed back.

42

6.2 Porting the Model from DYNAMO to Vensim

The original Abdel-Hamid system dynamics model was created using DYNAMO, an old system
dynamics modeling software package. It was necessary to port the model to Vensim because
DYNAMO lacked many of the features new modeling software packages contained. Furthermore,
DYNAMO is not compatible with the newer modeling tools on the current market.

As a whole, porting the Abdel-Hamid model from DYNAMO to Vensim was successful. To test
the overall correctness of the ported model, three steps were taken. First, the equations were
checked by hand with the published equations in “Software Project Dynamics - An Integrated
Approach” [18], as well as the original equations in Tarek Abdel-Hamid’s Ph.D. thesis. Next,
variables were checked for obvious errors. For example, work force was tested to make sure the
number of employees was never a negative number. The number of tasks tested was compared
against the number of tasks developed to ensure that the number of tasks tested never exceeded
the number of tasks developed. Anything cumulative (Cumulative Man-Days, Cumulative Tasks
Tested, Cumulative Training Days, etc.) was graphed to show that it was monotonically increas-
ing. The final test on the ported Vensim model was to compare the results it generated to the ones
generated by the DYNAMO model. “Software Project Dynamics - An Integrated Approach”
included DYNAMO generated results from an example software project with fictitious parameters
as well as an actual case study on a NASA software project. The ported model ran for 400 simu-
lated days, with time steps of half a day. For most variables, the results matched the DYNAMO
model simulations exactly. A few variables, however, had discrepancies starting at about day 350.
This discrepancy was analyzed, and it seems as if the problem is caused by an equation from the
testing subsector. This was deducted because testing does not occur until the very end of the

project at approximately the same time as when the discrepancies started to occur. Equations

43

regarding the testing subsector were analyzed. One equation regarding the stock Planned Testing

Size in Man-Days did not seem correct. The DYNAMO equation states:

Planned Testing Size in Man-Days = Planned Testing Size in Man-Days + Time Step * Rate of
Increase in Development Man-Days Due to Discovered Tasks + (Rate of Adjusting the Job Size in

Man-Days if the Fraction of Effort for Testing is greater than .9).

In other words, if the Fraction of Effort for Testing is greater than .9, Planned Testing Size in
Man-Days is the integral of Rate of Increase in Development Man-Days Due to Discovered Tasks
plus the integral of Rate of Adjusting the Job Size in Man-Days multiplied by Time Step. It does
not make sense to multiply Rate of Adjusting the Job Size in Man-Days by the Time Step because
it seems unreasonable for the rate to depend on the time step chosen for a specific simulation run.
Hence, it is speculated that there is a missing parenthesis in the original equation, which should

read:

Planned Testing Size in Man-Days = Planned Testing Size in Man-Days + Time Step * (Rate of
Increase in Development Man-Days Due to Discovered Tasks + (Rate of Adjusting the Job Size in

Man-Days if the Fraction of Effort for Testing is greater than .9)).

An e-mail requesting a discussion on this potentially erroneous equation was sent to Dr. Tarek

Abdel-Hamid in April, 1997. As of May, 1997, no response has been received.

6.3 The Abdel-Hamid Model and ACE Specifications

Although Tarek Abdel-Hamid’s model of software project management is solid and well-
accepted, it does not meet all of ACE’s requirements. Some parts are too detailed for ACE’s pur-
poses, and there are some aspects of project management which ACE would like to place more
emphasis upon. ACE calls their game engine the PERIOD1 engine, and has sent initial design
specifications regarding changes to Abdel-Hamid’s model. The design specification are included
in Appendix C of this paper. The next section of the paper is a response to the ACE PERIOD1

engine specifications.

A few of the initial ACE designs took into account very detailed variables, such as an individual
team member’s skill level. Before delving into the details of the ACE design specifications, it is
first important to know what types of decisions are most effectively modeled using system
dynamics. System dynamics is a method of modeling which is good at showing changes and
trends in a system. The strengths of system dynamics modeling lie in representing higher level

system structures rather than depicting lower level details.

It is not effective to include too many micro decisions in a system dynamics model because minor
decisions can make the simulation more complex and even misleading. For example, assume there
are two skill levels - inexperienced and experienced. A student can then decide to test how train-
ing effects the overall productivity of a team. It would be easy to observe, via Vensim graphs and
tables, that training improves the productivity of new hires by 50%, but experienced workers by
only 5%. Policies such as training new hires more aggressively can then be implemented to maxi-

mize team productivity. If the model had been more detailed, and each team member was given a

45

specific personality and skill level, the fact that new hires benefit more from training may be lost.
It might be mistaken that certain personalities learn faster or that a specific employment back-

ground makes someone more productive.

This is not to say that certain human aspects - emotions, personality, tolerance - do not factor into
the equations. They do. However, the pros and cons of a more detailed model should be weighed

carefully.

6.3.1 Calculating Base Efficiency

In this section, ACE’s calculations for base efficiency will be addressed. The ACE specifications
gives each team member an efficiency level (skill level of person/skill level of task). This may be
too detailed to effectively use system dynamics modeling. In the Abdel-Hamid model, base effi-
ciency is calculated using three major variables. Experienced workers receive an efficiency
parameter of 1. Newly hired work force receive a parameter of .5, meaning that they are only half
as efficient as experienced workers. Base efficiency also depends on the average amount of time
the team members can devote to a specific project. For example, a .5 means the average team
member spends half his time on this project and the other half on other projects. Finally, we give
each person a parameter of .6, meaning that under normal conditions, about 60% of a person’s
work day is devoted to the project. The other 40% takes into account coffee breaks, personal con-

versations with office mates, and other ineffective time usage.

46

Individual task dependencies are not dealt with in the Abdel-Hamid model. However, it does take
into account the fact that there are multiple phases of completing a task - development, testing,
and quality assurance, which depend on one another. For example, tasks cannot be tested before

being developed.

6.3.2 Calculating Changes to Efficiency

There are a few variables which can increase and decrease efficiency. ACE’s suggestions to these
variables, as well as variables in the Abdel-Hamid model, which are not mentioned by ACE, will

be addressed in this section.

6.3.2.1 Communication

ACE suggests calculating communication efficiency using the number of communications used
for actions divided by the number of actions requiring communication. For example, employees
may have communicated ten times during the course of a task, where communication can be mea-
sured by the number of meetings held, telephone calls made, e-mails sent and so forth. The task,
however, may be set by ACE to require employees to communicate twenty times. In this case,
communication efficiency would be 10 /20 = .5, half of the optimal communication efficiency. In
the Abdel-Hamid model, the amount of communication a project needs depends on how many
people are working on the project. The more people there are on a team, the more communication
is needed to coordinate the project. The Abdel-Hamid method of calculating communication
overhead is less detailed and easier to implement since there already exists well-tested data on the

relationship between the amount of communication needed and the number of people working on

47

a project. However, ACE may prefer their level of detail, which can be incorporated as a multi-

plier to the Abdel-Hamid’s communication overhead variable.
6.3.2.2 Overtime

The issue of overtime is a major component in the Abdel-Hamid model. Overtime is used when-
ever the time remaining is insufficient to finish the tasks still left. Team members do not chose to
work overtime if it is not needed. If team members are working too many continuous days of
overtime, they will have an exhaustion breakdown. During this time, they are no longer willing to
work overtime. This current overtime subsystem can be improved. For example, working over-
time has been shown to cause decreases in productivity as employees become more fatigued and
frustrated. Also, too much overtime may cause morale to drop. ACE’s suggestion to include self-
induced overtime to the model structure is also a good one since employees may have incentives
other than schedule pressure to work overtime. For example, employees may want to work extra

hours for overtime pay or to position themselves for a promotion.

6.3.2.3 Development Need

The ACE specifications include a variable which matches an employee with his development
need. For example, an employee may want to learn certain skills and hence prefer to be assigned
to a specific task. The Abdel-Hamid model does not have an equivalent to this variable. Matching
an individual with a specific task he likes, dislikes, or feel indifferent towards is too detailed for a
project management system dynamics model. A better approach may be to incorporate a compar-
ison between the average skill level needed for the project and the average skill level of the work

force. This comparison can then be used to effect the overall team morale. If someone is working

48

on something they find too easy and tedious, their morale would decrease. On the other hand, if

the job is too challenging, morale may also drop because the person becomes frustrated.

6.3.2.4 Team Morale

In the Abdel-Hamid model, morale is never addressed explicitly. There is a variable called “multi-
plier to productivity due to communication and motivational losses,” which tries to capture the
fact that as team size increases, motivation for working harder decreases. Morale is another area
which should be expanded upon for ACE’s training needs. Morale can have a very big impact on
productivity. For example, morale may go down if the percentage of time spent on training falls
below a certain threshold. The assumption would be that employees feel frustrated that their com-

pany is not investing in them. In addition, if morale is very low, attrition rate should increase.

6.3.2.5 Skill Match

The ACE design specifications include a variable called skill match. This variable compares the
skill of an employee and the skill level needed for the task assigned to him. The Abdel-Hamid
model is not detailed enough to match an individual to a specific task. Skill level is only taken into

account by assuming more experienced workers are more efficient.

6.3.2.6 Work Force Mix

The ACE specifications do not mention work force mix, whereas the Abdel-Hamid model does.
Work force mix is the fraction of experienced work force which influences the number of errors

made per task. The rationale behind this is that new hires are more likely to make mistakes. There-

49

fore, too many new people on a task may decrease the overall productivity by introducing errors

in the product which must be reworked at a later date.

6.3.2.7 Schedule Pressure

The ACE specifications also did not mention schedule pressure. Schedule pressure also influences
the number of errors made. In the Abdel-Hamid model, schedule pressure influences the percent-
age of day the team members put into the project. It seems intuitive that this will increase produc-
tivity. In fact, it initially does. However, schedule pressure also increases the number of errors
made per task. Working faster is not equivalent to working better. Quality assurance typically
slackens during time of schedule pressure. The result is an increase in errors and lower quality
work which may need to be redone at a later date. Therefore, net productivity may decrease due to

schedule pressure.

6.3.2.8 Learning

Another factor noted in the Abdel-Hamid model, but not discussed by the ACE specifications is
the age of the project. As time passes, productivity increases since employees become more famil-
iar with the project. All team members, experienced or not, need to get acquainted with the
dynamics of a specific project. The longer the project has been under production, the less uncer-

tainty there is and the more standards there are. This increases productivity.

50

6.3.3 Scope Changes and Rework

The ACE specifications mention the importance of scope changes. Scope can easily be increased
or decreased in the Abdel-Hamid model by changing a variable called “real job size in tasks.”

This should solve the scope creep issues addressed by ACE.

The ACE design specifications does not include rework as part of the PERIOD1 engine. Rework
should definitely be included in the engine model because it has such a big impact on projects.
Many times, rework can be a large factor in dragging a project beyond the scheduled completion
date. For example, working people too hard may lead to more rework later, when the tasks are
tested and errors are detected. This is a fairly important feedback loop which would be lost with-

out considering rework.

6.3.4 Design Steps Recommendation

Given that there are a few discrepancies between the ACE specifications and the current software
project management model, a few steps should be taken. The goal is to have a model of the
PERIOD1 engine based on Abdel-Hamid’s system dynamics model, but with appropriate changes

as needed for ACE training purposes. Three major steps should be taken.

First, it must be decided which parts of the current model are too detailed or not relevant for ACE
training purposes. It must be warned, however, that the original model has been well tested and
the data it generates matches the results of many case studies. Any changes should be tested to

maintain accuracy.

51

Next, additions to the base model must be incorporated. The specifications given by ACE includes
a few variables and concepts which were not addressed in the Abdel-Hamid model. One example
is treating tasks individually such as having certain tasks dependent on others and deducting effi-
ciency when a team member starts on an task which is already underway. These issues can be

incorporated by changing the structure of the current model slightly. Structural changes are obvi-

ously more difficult than variable changes and require more complete testing.

Finally, members of this project must agree on which parameters should be hard coded and which
parameters should be set by the trainees. For example, it is possible that an Andersen Consultant
does not take as many breaks as a typical software engineer. In that case, the percent of day an
average consultant spends on projects may be 80% rather than 60%. Also, if Andersen only hires
new consultants from other firms, the average efficiency for a new hire may be higher than the
default .5 for an inexperienced hire. There are many parameters which can be preset based on
research done on Andersen Consulting. Other variables should be set by the trainee. For example,
trainees may decide on what percentage of the time he wants to spend on development versus test-
ing. Trainees may also decide how many new people to hire. One issue to note again is that the
current data sets used in the model are researched and tested. It is highly recommended to test new

data sets before incorporating them into the model in order to maintain correctness.

52

7. Conclusions

7.1. The Final Presentation

This thesis project was wrapped up with a presentation in St. Charles, Illinois. The presentation
was given by the author, and two undergraduate students, Eugene Fung and Autumn Steuckrath.
About fifteen ACE professionals were in attendance, and the talk was video taped for ACE
employees who had interest in the thesis project, but were not able to attend. Background
research, goals obtained, and future milestones were mentioned in the presentation. Autumn
Steuckrath presented the annotated bibliography, which is now on the World Wide Web for public
access. The web page was designed and created by Steuckrath. Next, Eugene Fung recommended
nine business simulation games for ACE to look into. Some of the games were commercial, while
others could only be obtained through company contacts. All of the games contained sophisti-
cated engines, and many had impressive user interfaces. Finally, the author discussed the Abdel-
Hamid software project management model and addressed the ACE specifications regarding the
game engine model. Emphasis was placed on using the Abdel-Hamid model as a base model and
making changes, rather than start an entire model from scratch. The talk was well received by the
ACE professionals, who asked questions throughout the presentation and joined in discussions.
There were many ACE professionals who had heard of system dynamics modeling before and
were eager to both increase their knowledge and put their knowledge to use in the creation of a

business simulation game.

53

7.2. Project Plan for the Next Two Years

The overall goal for the next two years is to complete the PERIOD1 engine. On MIT’s side, the
project should be split into two areas of expertise. One area should be headed by Professor John
Sterman, who is a professor in System Dynamics. His group should include one or two Ph.D. can-
didates with an interest in modeling project management using system dynamics. Next academic
year (1997-1998), Professor Sterman will be on sabbatical. During this time, the chosen Ph.D.
candidate(s) should take both the introductory system dynamics class and the advanced class at
the MIT Sloan School of Management. By the time Professor Sterman returns from his sabbatical,
the student(s) should have a solid conceptual and working knowledge of system dynamics model-
ing. Furthermore, the student(s) should be very familiar with at least one of the major system
dynamics modeling software packages available on the current market. These include Vensim,
PowerSim, iThink, as well as others. The student(s) should have a solid understanding of ACE’s
needs, and more specifically, the Andersen Project Management Fundamentals training game and

the Tarek Abdel-Hamid software project management system dynamics model.

The following year, the Ph.D. student(s) will go through a more detailed version of ACE’s needs
in a system dynamics game engine. This means ACE professionals and the student(s) need to
review the Abdel-Hamid model and decide which parts are important, which parts should be
deleted, and what other aspects of project management should be added. The level of detail for the
PERIOD1 engine should also be discussed. The student(s), under the supervision of Professor
Sterman, will use the Vensim system dynamics model ported by the author and make appropriate
changes. The implementation of the PERIOD1 engine may be fairly complex, involving many

changes to the base model and requiring thorough testing. Professor Sterman will serve as the

54

expert on this end of the project and make sure that the changes made are both reasonable and

effective.

CECI and CAES will work on the other half of the project - creating an effective user interface.
Professor Steven Lerman and Professor Richard Larson will serve as the experts and supervisors.
There should be at least two research assistants working on this area of the project. During the
first year, the students should familiarize themselves with the various multimedia technologies
available, especially those involving the internet and distance learning. The students should take
at least the introductory system dynamics class at the Sloan School of Management. Although, the
students will probably not be deeply involved in the design aspect of the model, the students
should be familiar with system dynamics concepts so that they can understand the model they are
creating the user interface for. The students do not necessarily need to be computer science
majors, but experience with computers will help during major phases of the project such as the
implementation of the user interface and porting the game onto an ACE intranet. There is cur-
rently a web-based system dynamics modeling software package on the market called PowerSim.
PowerSim will be researched at MIT as a potential tool for porting the game engine onto the

world wide web.

During the second year, the research assistants will work extensively with ACE professionals and
the Sloan Ph.D. candidate(s) on this project. They need to decide which parameters in the game
should be hard coded, and which the trainees should be able to modify. The actual user interface
will then be created. As soon as parts of the game can be played, volunteers (ACE professionals

and MIT students) should be called in to use the game and give feedback.

55

After the computerized version of the Andersen Project Management Fundamentals training
game has been implemented, many more doors should open. Given the gained expertise in system
dynamics modeling in game engines, future needs regarding the use of system dynamics for ACE
training will be more easily designed and implemented. ACE can use the knowledge of web-based
business games and system dynamics to computerize currently manual games as well as to create
new game engines. Furthermore, there will also be a vast amount of knowledge gained on effec-
tive user interfaces, how trainees learn, and distance learning. CAES and CECI at MIT hope to

maintain a close relationship with ACE and collaborate on future projects.

56

Bibliography

[1] Keys, Benard, and Joseph Wolfe. “The Role of Management Games and Simulations in Edu-
cation and Research.” Journal of Management 1990, Vol. 16, No. 2: 307-336.

[2] Larreche, Jean-Claude. “On Simulations in Business Education and Research.” Journal of
Business Research.Vol. 15, 1987.

[3] Larson, Richard, et al. “MIT PM Game Proposal.” June 17, 1996.

[4] Sterman, John. “Learning in and about Complex Systems.” System Dynamics Review. 1994,
Vol. 10: 2-3.

[51 Solomon, Jolie. “Now, Simulators for Piloting Companies - Computers Let Managers Test
Various Tactics.” Wall Street Journal. July 31, 1989: B1.

[6] Hollis, Robert. “Program Lets Users Pilot, Crash Airline Company.” MacWEEK. October 16,
1990: 24.

[7] Fiske, Edward B., and Bruce Hammond. “Computer Savvy in the B-Schools.” Lotus. Septem-
ber 1989.

[8] Whitestone, Debra. “People Express(A).” Harvard Business School Publishing. May 1995.

[9] Sterman, John. Foresight and National Decisions. University Press of America, 1988

[10] Forrester, Jay. From the Ranch to System Dynamics: An Autobiography. JAI Press,1991.

[11] Arthur, Brian. Increasing Returns and Path Dependence in the Economy. The University of
Michigan Press

[12] Kaplan, Robert. “Analog Devices: The Half-Life System.” Harvard Business School Publish-
ing, 1990

[13] Forrester, Jay. “Counterintuitive Behavior of Social Systems.” Technology Review. January,
1971, Vol. 73, No. 3.

[14] Salpukas, Agis. “For Supertankers, Super Profits.” New York Times. December 5th, 1989:
D1

[15] Sterman, John. System Dynamics Modeling for Project Management, 1992

[16] Brooks, Frederick Jr.. The Mythical Man-Month. Addison-Wesley Publishing Co.,1995

57

[17] Smith, Bradley J., and Nghia Nguyen. “Death of a Software Manager: How to Avoid Career
Suicide Through Dynamic Software Process Modeling.” American Programmer, May 1994

[19] Abdel-Hamid, Tarek, and Stuart E. Madnick. Software Project Dynamics - An Integrated
Approach. Prentice-Hall Inc., 1991

58

Appendix A:

Vensim Model Equations

59

active detection and correction rate = MIN(testing rate*active error density,undetected active errors
/TIME STEP)

~ errors/day

~ |

time of last exhaustion breakdown =INTEG(Input time of last breakdown-breakdown flush,-1)
~ day
~]

exhaust switch = I[F THEN ELSE(exhaustion/maximum tolerable exhaustion>=0.1, 1, 0)

~ dimensionless
~ |

day dimension = 1
~ day
~ |

tasks discovered = INTEG(rate of discovering tasks-rate of incorporating discovered tasks into project
’ O)

~ tasks

~ 1

rate of discovering tasks =undiscovered job tasks*percent of undiscovered tasks discovered per day/100
~ tasks/day
~ |

rate of incorporating discovered tasks into project =DELAY3(rate of discovering tasks,average delay in
incorporating discovered tasks

~ tasks/day
|

~

rate of increase in dev man days due to discovered tasks = (rate of incorporating discovered tasks into project
/assumed dev productivity)*fraction of additional tasks added to man days
~ (man*day)/day
~ 1

exhaust inflow = |
~ dimensionless

currently perceived job size in tasks = INTEG(rate of incorporating discovered tasks into project,perceived
job size in dsi
/dsi per task)

~ tasks

~ |

exhaust variable flush = IF THEN ELSE(breakdown switch=1 :OR: exhaust switch=1, variable that controls
time to de exhaust
/TIME STEP+exhaust inflow,0)

~ dimensionless

~ |

dev man days = total man days*percent effort assumed needed for dev
~ (man*day)

~ |

60

Input time of last breakdown =breakdown switch*(Time/TIME STEP)
~ dimensionless

percent boost in work rate sought = IF THEN ELSE(perceived excess or shortage in man days>=0,handled
man days
/(full time equivalent workforce
*(overwork duration threshold+days zidz3)),handled man days/(total man days perceieved still needed
-handled man days+man days zidz3))

~ dimensionless

~ |

testing overhead = (1*dimension factor)/1000
~ (man*day)/dsi
~ |

rate of increase in testing due to discovered tasks = (rate of incorporating discovered tasks into project
/perceived testing productivity)*fraction of additional tasks added to man days

~ (man*day)/day

~ I

total dev time = schedule compression switch*((19*2.5*EXP(0.38*LN(total man days/19*dimensionless
man day
)))*schedule compression factor
y+(1*day dimension-schedule compression switch
)*time to devl
~ day
~ |

initial experienced workforce = tcam size at beginnng of design
~ man
~ |

scheduled completion date = INTEG(rate of adjusting schedule,total dev time)
~ day
~ |

days zidz2 = 0.001
~ day
~ |

breakdown flush = breakdown switch*(time of last exhaustion breakdown/TIME STEP)
~ dimensionless
~ |

breakdown switch = IF THEN ELSE(overwork duration threshold = 0,1,0)
~ dimensionless
~ |

man day dimension = |
~ (man*day)
~ |
dimension factor =1
~ (man*day)/dsi
~ |

days zidz3 = 0.0001

61

~ day
~ !

total man days =man day switch*(((2.4*EXP(1.05*LN(perceived job size in dsi/1000*dimensionless dsi))
)*19)*(1-man days underestimation fraction
))+(1*man day dimension-man day switch)*total man days|

~ (man*day)

~]

dimensionless dsi = 1
~ 1/dsi

~ |

undetected passive errors = INTEG(active error retirement rate
+passive error generation rate-passive detection and correction rate
,0)

~ errors

~ I

undiscovered job tasks = INTEG(-rate of discovering tasks,real job size in tasks-currently perceived job size
in tasks
)

~ tasks

~ I

dimensionless man day = |
~ |/(man*day)
~ !

variable that controls time to de exhaust = INTEG(exhaust inflow-exhaust variable flush,0)
~ day
~ |

active error density = undetected active errors/(cumulative tasks QAed+tasks zidz)
~ errors/tasks

~ |

active error generation rate = (error escape rate+bad fixes generation rate)/fraction of escaping errors that will
become active

~ errors/day

~]

active error regeneration rate = software dev rate*SMOOTH(active error density,time to smooth active error
density
*multiplier to active error generation due to error density)

~ errors/day

~ l

active error retirement rate = undetected active errors*active error retiring fraction
~ errors/day
~ 1

active error retiring fraction =table active error retirement fraction(percent of job actually worked

~ 1/day
~ 1

actual fraction of man day on project = INTEG(work rate adjustment rate

62

.nominal fraction of man days on project)
~ dimensionless
~ |

actual fraction of manpower for QA = IF THEN ELSE(Time = O,planned fraction of manpower for QA,
planned fraction of manpower for QA*(1+percent adjustement in planned fraction of manpower for QA))
~ dimensionless
~ i

actual rework manpower needed per error = nominal rework manpower needed per error/multiplier to
productivity due to motivation and communication losses

~ (man*day)/errors

~ |

actual testing productivity = cumulative tasks tested/(cumulative testing man days+man days zidz2)
~ tasks/(man*day)
!

~

all errors = cumulative errors reworked in testing phase+cumulative reworked errors during development
+detected errors+potentially detectable errors+undetected active errors+undetected passive errors

~ errors

~ ~:SUPPLEMENTARY

|

all errors reworked in dev and testing = cumulative errors reworked in testing phase+cumulative reworked
crrors during development

~ errors

~ ~:SUPPLEMENTARY

1

all errors that escaped and were generated =cumulative errors reworked in testing phase+undetected active
errors
+undetected passive errors

~ erTors

~ ~:SUPPLEMENTARY

i

assumed dev productivity = projected dev productivity*weight of projected productivity+perceived dev
productivity
*(1-weight of projected productivity)

~ tasks/(man*day)

~ |

percent of task reported complete = IF THEN ELSE(Time = 0,0,
SMOOTH((100-(man days reported still needed/total job size in man days)*100),
reporting delay))

~ dimensionless

~ ~:SUPPLEMENTARY

|

average daily manpower per staff = 1
~ dimensionless
~ |

average delay in incorporating discovered tasks = 10

~ day
~ |

63

planned fraction of manpower for QA =table planned fraction of manpower for QA(percent of job actually
worked
)*(1+quality objective/100)

~ dimensionless

~ |

average nominal potential productivity = fraction of experienced workforce*nominal potential productivity
experienced
+(1-fraction of experienced workforce)*nominal potential productivity new

~ tasks/(man*day)

~ 1

average number of errors per task = MAX(potentiaily detectable errors/(tasks dev+tasks zidz3),0)

~ errors/tasks
~ |

average QA delay = 10
~ day
~ |

bad fixes generation rate = percent bad fixes*rework rate
~ errors/day
~ I

potentially detectable errors = INTEG(+error generation rate
-error detection rate-error escape rate,0)

~ eITors

~ l

projected dev productivity = tasks perceived remaining/(man days perceived remaining for new tasks+man
days zidz

~ tasks/(man*day)
~ I

communication overhead =table communication overhead(total workforce)
~ dimensionless
~ l

control switch = 1
~ dimensionless
~ allows us to test policy of no overwork
l

cumulative dev man days = INTEG(daily manpower for dev and testing*(1-fraction of effort for system
testing
).0)

~ (man*day)

~ ~:SUPPLEMENTARY

l

cumulative errors detected = INTEG(error detection rate,0)
~ errors

~ |

cumulative errors generated directly during working = INTEG(
error generation rate,0)
~ eITors

cumulative errors reworked in testing phase = INTEG(active detection and correction rate
+passive detection and correction rate,0)

~ errors

~ |

cumulative errors that escaped = INTEG(error escape rate,0)
~ errors
~ ~:SUPPLEMENTARY
|

cumulative man days expended = INTEG(total daily manpower,0.0001)
~ (man*day)
~ |

cumulative QA man days = INTEG(daily manpower for QA,0)
~ (man*day)
~ ~:SUPPLEMENTARY
1

cumulative rework man days = INTEG(daily manpower allocation for rework,0)
~ (man*day)
~ ~:SUPPLEMENTARY
1

cumulative reworked errors during development = INTEG(rework rate,0)
~ erTors
~ I

cumulative tasks dev = INTEG(software dev rate,0)
~ tasks
~ |

cumulative tasks QAed = INTEG(QA rate-testing rate,0)
~ tasks
~ |

cumulative tasks tested = INTEG(testing rate,0)

~ tasks
~ |

cumulative testing man days = INTEG(daily manpower for testing,0)
~ (man*day)

cumulative training man days = INTEG(daily manpower for training,0)
~ (man*day)
~ ~:SUPPLEMENTARY
|

daily manpower allocation for rework =IF THEN ELSE(Time = 0,0,
MIN(desired error correction rate*perceived rework manpower needed per error
,daily manpower for software production))
~ (man*day)/day

I

daily manpower available after training overhead = total daily manpower-daily manpower for training

65

~ (man*day)/day
~ I
daily manpower for dev and testing =daily manpower for software production-daily manpower ailocation for
rework

~ (man*day)/day

~ [

daily manpower for QA = MIN((actual fraction of manpower for QA*total daily manpower),0.9*daily
manpower available after training overhead

~ (man*day)/day
|

daily manpower for software dev = daily manpower for dev and testing*(1-fraction of effort for system
testing

~ (man*day)/day

~ |

daily manpower for software production =daily manpower available after training overhead-daily manpower
for QA
~ (man*day)/day
~ !

daily manpower for testing = daily manpower for dev and testing*fraction of effort for system testing
~ (man*day)/day
~ [

software dev productivity = potential productivity*multiplier to productivity due to motivation and
communication losses

~ tasks/(man*day)

~ I

day zidz2 = 0.001
~ day
~ !

delay in adjusting job size in man days = table delay in adjusting job size in man days(time remaining

)
~ day
~ |

desired error correction rate =IF THEN ELSE(Time = 0,0,detected errors/desired rework delay)
~ errors/day

~ |

desired rework delay = 15
~ day
~ l

detected errors = INTEG(error detection rate-rework rate,0)
~ errors
~ |

dsi per KDSI = 1000

~ dsi/KDSI
~ I

66

dsi per task = 60
~ dsi/tasks
~ |

effect of exhaustion on overwork duration threshold =table effect of exhaustion on overwork duration
threshold

(exhaustion/maximum tolerable exhaustion)
~ dimensionless
~ |

effect of work rate sought = IF THEN ELSE(work rate sought>=actual fraction of man day on project,1,
0.75)

~ dimensionless
~]

error density =(average number of errors per task*1000/dsi per task)
~ errors/dsi

crror detection rate = MIN(potential error detection rate,potentially detectable errors/TIME STEP)
~ errors/day
~ |

crror escape rate = QA rate*average number of errors per task
~ errors/day

~ |

error generation rate = software dev rate*errors per task
~ errors/day

~ |

errors per task = multiplier to error gencration due to schedule pressure*multiplier to error generation due to
workforce mix
*nominal errors committed per task

~ errors/tasks

~ |

errors zidz2 = 0.001
~ errors
~]

exhaustion = INTEG(+rate of increase in exhaustion level-rate of depletion in exhaustion level
,0)
~ exhaust units

exhaustion depletion delay time = 20
~ day
~ 1

experienced transfer rate = MIN(experienced workforce/TIME STEP, transfer rate-newly hired transfer rate
)
~ man/day

|

experienced workforce = INTEG(-experienced transfer rate+workforce assimilation rate
-quit rate,initial experienced workforce)

67

~ man
~ |

fraction of additional tasks added to man days = table fraction of additional tasks added to man days
(relative size of discovered tasks/(maximum relative size of additions tolerated without adding to project man
days
+0.001))
~ dimensionless
~ I

fraction of effort for system testing = table fraction of effort for system testing(tasks perceived remaining
[currently perceived job size in tasks)

~ dimensionless

~ l

fraction of escaping crrors that will become active = table fraction of escaping errors that will become active
(percent of job actually worked)

~ dimensionless

~ |

fraction of experienced workforce =experienced workforce/total workforce
~ dimensionless

~ I

full time equivalent workforce = total workforce*average daily manpower per staff
~ man
~ |

full time experienced workforce = experienced workforce*average daily manpower per staff
~ man
~ |

handled man days = IF THEN ELSE(perceived excess or shortage in man days>=0,MIN(maximum man days
shortage handled
,perceived excess or shortage in man days),-man day cxcesses that will be absorbed)*control switch

~ (man*day)

~ |

table willingness to change workforce 2 ([(0.86,0)-(1,1)},(0.86,0)
,(0.88,0.1),(0.9,0.2),(0.92,0.35),(0.94,0.6),(0.96,0.7),(0.98,0.77)
,(1,0.8))

~ dimensionless

~ |

tasks dev = INTEG(software dev rate- QA rate,0)
~ tasks
~]

indicated completion date = Time+time perceived still required
~ day
~ I

indicated workforce level = (man days remaining/(time remaining+day zidz2))/average daily manpower per

staff
~ man

initial understaffing factor = 0.5

68

~ dimensionless
~ |

man day excesses that will be absorbed = MAX(0,table man day excesses that will be absorbed(total man
days perceieved still needed
/man days remaining)*man days remaining-total man days perceieved still needed)

~ (man*day)

~ |

man day switch =1
~ man*day
~ |

man days perceived needed to rework detected errors = detected errors*perceived rework manpower needed per
error
~ (man*day)

~]

man days perceived remaining for new tasks = MAX(0,man days remaining-man days perceived needed to
rework detected errors
-man days perceived still needed for testing)

~ (man*day)

~ I

man days perceived still needed for testing =tasks remaining to be tested/perceived testing productivity
~ (man*day)

~ |

man days remaining =MAX(0.0001,total job size in man days-cumulative man days expended)
~ (man*day)
~ |

man days reported still necded = man days remaining+reported shortage excess in man days
~ (man*day)
~ l

man days underestimation fraction =0
~ dimensionless
~ |

man days zidz =0.1
~ (man*day)
~ I

man days zidz2 = 0.001
~ (man*day)
~ 1

man days zidz3 = 0.0001
~ (man*day)
~ |

maximum boost in man hours = 1
~ dimensionless
~ |

maximum man days shortage handled = (overwork duration threshold*full time equivalent
workforce*maximum boost in man hours

69

y*willingness to overwork
~ (man*day)
~ |

maximum relative size of additions tolerated without adding to project man days = 0.01
~ dimensionless
~ I

maximum schedule completion date extension = 1e+006
~ dimensionless
~ |

maximum tolerable completion date =maximum schedule completion date extension*total dev time
~ day
~ !

maximum tolerable exhaustion = 50
~ exhaust units

~ |

multiplier to active error generation due to error density = table multiplier to active error generation due to
error density
(SMOOTH(active error density*1000/dsi per task,time to smooth active error density))

~ dimensionless

~ I

multiplier to detection effort due to error density = table multiplier to detection effort due to error density
(error density)

~ dimensionless

~ !

multiplier to error generation due to schedule pressure = table multiplier to error generation due to schedule
pressure
(schedule pressure
)
~ dimensionless
~ |

multiplier to error generation due to workforce mix = table muliplier to error generation due to workforce
mix
(fraction of experienced workforce
)
~ dimensionless
~ |

multiplier to potential productivity due to learning = table multiplier to potential productivity due to
learning
(percent of job actually worked)

~ dimensionless

~ |

multiplier to productivity due to motivation and communication losses = actual fraction of man day on
project
*(1-communication overhead)

~ dimensionless

~]

multiplier to productivity weight due to dev = table muitiplier to productivity weight due to dev(

70

percent of perceived job dev/100)
~ dimensionless
~ 1

mulitiplier to productivity weight due to resource expenditure =table multiplier to productivity weight due to
resource expenditure
(1- man days perceived remaining for new tasks/(total job size in man days-planned testing size in man days
)

~ dimensionless

~ I

newly hired transfer rate =MIN(transfer rate,newly hired work force/TIME STEP)
~ man/day

undetected active errors = INTEG(+active error generation rate
+active error regeneration rate-active detection and correction rate
-active error retirement rate,0)

~ errors

~ |

nominal errors committed per dsi = table nominal errors committed per KDSI(percent of job actually worked
Y*(1/dsi per KDSI)

~ errors/dsi

~ I

nominal errors committed per task =nominal errors committed per dsi*dsi per task/1000
~ errors/tasks
~ !

nominal fraction of man days on project = 0.6
~ dimensionless
~ |

nominal overwork duration threshold = table nominal overwork duration threshold(time remaining)
~ day
~ I

nominal potential productivity experienced = 1
~ tasks/(man*day)
|

~

nominal potential productivity new = 0.5
~ tasks/(man*day)
l

-~

nominal QA manpower needed per error = table nominal QA manpower needed per error(percent of job
actually worked
)

~ (man*day)/errors

~ |

nominal rework manpower needed per error = table nominal rework manpower needed per error(percent of
job actually worked
)

~ (man*day)/errors

~ |

7

normal work rate adjustment delay = table normal work rate adjustment defay(time remaining)
~ day
~ |

overwork duration threshold =nominal overwork duration threshold*effect of exhaustion on overwork
duration threshold

~ day

~ |

passive detection and correction rate = MIN(testing rate*passive error density,undetected passive errors
/TIME STEP)

~ errors/day

~ |

passive error density = undetected passive errors/(cumulative tasks QAed+tasks zidz3)
~ errors/tasks
~ |

passive error generation rate = (error escape rate-+bad fixes generation rate)*(1-fraction of escaping errors that
will become active
)

~ errors/day

~ !

perceived dev productivity = cumulative tasks dev/(cumulative man days expended-cumulative testing man
days
)

~ tasks/(man*day)

~ l

perceived excess or shortage in man days =total man days perceieved still needed-man days remaining
~ (man*day)
~ |

perceived job size in dsi = real job size in dsi*(1-tasks underestimation fraction)
~ dsi
~ 1

perceived rework manpower needed per error = INTEG((actual rework manpower needed per error-perceived
rework manpower needed per error
)time to adjust perceived rework manpower needed per error,0.5)

~ (man*day)/errors

~ |

perceived size of discovered tasks in man days = tasks discovered/assumed dev productivity
~ (man*day)

~ |

perceived testing productivity = SMOOTH(IF THEN ELSE(0>=cumulative tasks tested,planned testing
productivity
,actual testing productivity),time to smooth testing productivity
)
~ tasks/(man*day)
~ 1

percent adjustement in planned fraction of manpower for QA =table percent adjustment in planned fraction
of manpower for QA
(schedule pressure)

72

~ dimensionless
~ |

percent bad fixes = 0.075
~ dimensionless
~ |

percent effort assumed needed for dev = 0.8
~ dimensionless
~ 1

percent errors detected = 100*cumulative errors detected/(cumulative errors generated directly during working
+errors zidz2)

~ dimensionless

~ ~:SUPPLEMENTARY

|

percent of dev perceived complete = SMOOTHI(MAX((100-((man days reported still needed-man days
perceived still needed for testing
)(total job size in man days-planned testing size in man days))*100),percent of dev perceived complete
).reporting delay, 0)

~ dimensionless

~ |

percent of job actually worked =cumulative tasks dev/real job size in tasks
~ dimensionless
~ |

percent of perceived job dev = (cumulative tasks dev/currently perceived job size in tasks)*100
~ dimensionless
~ 1

table willingness to change workforce 1 ([(0,0)-(3,1.5)],(0,0)
,(0.3,0),(0.6,0.1),(0.9,0.4),(1.2,0.85),(1.5,1),(1.8,1),(2.1,1)
(2.4,1),(2.7,1),(3,1))

~ dimensionless

~ |

percent of tasks tested = cumulative tasks tested/currently perceived job size in tasks
~ dimensionless
~ ~:SUPPLEMENTARY
|

percent of undiscovered tasks discovered per day = table percent of undiscovered tasks discovered per day
(percent of perceived job dev)

~ 1/day

~ 1

planned testing productivity = currently perceived job size in tasks/planned testing size in man days
~ tasks/(man*day)
|

-~

planned testing size in man days = INTEG(rate of increase in testing due to discovered tasks+(rate of
adjusting job size in man days
/TIME STEP)
*IF THEN ELSE(fraction of effort for system testing>=0.9,1,0),testing man days)
~ (man*day)

~ |

73

potential error detection rate =daily manpower for QA/QA manpower needed to detect an error

~ errors/day
~ i

potential productivity = average nominal potential productivity*multiplier to potential productivity due to
learning

~ tasks/(man*day)

~ i

tasks zidz3 = 0.0001
~ tasks
~ |

team size = (total man days/total dev time)/average daily manpower per staff

~ man
~ [

QA manpower needed to detect an error = nominal QA manpower nceded per error*(1/multiplier to
productivity due to motivation and communication losses
Y*multiplier to detection effort due to error density
~ (man*day)/errors
~ |

QA rate =DELAY3(software dev rate,average QA delay)
~ tasks/day
|

~

quality objective = 0
~ dimensionless
~ |

testing manpower needed per task = (testing overhead*dsi per task/1000+testing manpower needed per error
*(passive error density+active error density))/multiplier to productivity due to motivation and
communication losses

~ (man*day)/tasks

~ |

rate of adjusting job size in man days = (man days reported still needed+cumulative man days expended
-total job size in man days)/delay in adjusting job size in man days
~ (man*day)/day

~ |

rate of adjusting schedule = (indicated completion date-scheduled completion date)/schedule adjustment time
~ dimensionless
~ |

rate of depletion in exhaustion level = IF THEN ELSE(O>=rate of increase in exhaustion level,exhaustion
/exhaustion depletion delay time,0)

~ exhaust units/day

~ |

rate of increase in exhaustion level = table rate of increase in exhaustion level((1-actual fraction of man day
on project
)/(1-nominal fraction of man days on project))

~ exhaust units/day

~ |

74

real job size in dsi = 64000
~ dsi
~ |

real job size in tasks =real job size in dsi/dsi per task
~ tasks

~ |

relative size of discovered tasks = perceived size of discovered tasks in man days/(man days perceived
remaining for new tasks
+ man days zidz3)

~ dimensionless

- I

reported shortage excess in man days = perceived excess or shortage in man days-handled man days
~ (man*day)
~ |

reporting delay = 10
~ day
~ |

rework rate =daily manpower allocation for rework/actual rework manpower needed per error
~ errors/day
~ |

schedule adjustment time =table schedule adjustment time(time remaining)
~ day
~ |

schedule compression factor = 1
~ dimensionless
~ |

schedule compression switch = |
~ day
~ |

schedule pressure = (total man days perceieved still needed-man days remaining)/man days remaining
~ dimensionless
~ |

table multiplier to productivity weight due to dev ({(0,0)-(1,1.5)],
(0,1),(0.1,1),(0.2,1),(0.3,1),(0.4,1),(0.5,1),(0.6,0.975),(0.7,0.9)
,(0.8,0.75),(0.9,0.5),(1,0))

~ dimensionless

~ |

software dev rate = IF THEN ELSE(Time = 0,0,
MIN(daily manpower for software dev*software dev productivity,
tasks perceived remaining/TIME STEP))

~ tasks/day

~ |

table active error retirement fraction ([(0,0)-(1,1)1,(0,0),
(0.1,0),(0.2,0),(0.3,0),(0.4,0.01),(0.5,0.02),(0.6,0.03),(0.7,0.04)
,(0.8,0.1),(0.9,0.3),(1,1))

~ 1/day

75

~ |

table communication overhead (
[(0,0)-(35,1)1,(0,0),(5,0.015),(10,0.06),(15,0.135),(20,0.24)
,(25,0.375),(30,0.54))

~ dimensionless

~ |

table delay in adjusting job size in man days (((0,0)-(22,5)],
(0,0.5),(20,3))

~ day

~ I

table effect of exhaustion on overwork duration threshold ([(0,0)-(1,1)],
(0,1),(0.1,0.9),(0.2,0.8),(0.3,0.7),(0.4,0.6),(0.5,0.5),(0.6,0.4)
,(0.7,0.3),(0.8,0.2),(0.9,0.1),(1,0))

~ dimensionless

~ !

table fraction of additional tasks added to man days ([(0,0)-(2,1)],
(0,0),(0.2,0),(0.4,0),(0.6,0),(0.8,0),(1,0),(1.2,0.7),(1.4,0.9)
,(1.6,0.975),(1.8,1),(2,1))

~ dimensionless

~ i

table fraction of effort for system testing ([(0,0)-(0.25,1)],
(0,1),(0.04,0.5),(0.08,0.28),(0.12,0.15),(0.16,0.05),(0.2,0)
)

~ dimensionless
~ |

table fraction of escaping errors that will become active ([(0,0)-(1,1.2)},
(0,1),(0.1,1),(0.2,1),(0.3,1),(0.4,0.95),(0.5,0.85),(0.6,0.5)
,(0.7,0.2),(0.8,0.075),(0.9,0),(1,0))

~ dimensionless

~ |

table man day excesses that will be absorbed ([(0,0)-(1,1)1,(0,0)
,(0.1,0.2),(0.2,0.4),(0.3,0.55),(0.4,0.7),(0.5,0.8),(0.6,0.9)
,(0.7,0.95),(0.8,1),(0.9,1),(1,1))

~ dimensionless

~ |

table muliplier to error generation due to workforce mix ([(0,0)-(1,2.5)],
(0,2),(0.2,1.8),(0.4,1.6),(0.6,1.4),(0.8,1.2),(1,1))

~ dimensionless

~ |

table multiplier to active error generation due to error density (
[(0,0)-(100,10)1,(0,1),(10,1.1),(20,1.2),(30,1.325),(40,1.45)
(50,1.6),(60,2),(70,2.5),(80,3.25),(90,4.35),(100,6))

~ dimensionless

~ |

table multiplier to detection effort due to error density ([(0,0)-(10,60)],
(0,50),(1,36),(2,26),(3,17.5),(4,10),(5,4),(6,1.75),(7,1.2),
(8,1),(9,1),(10,1))

~ dimensionless

76

-~ |

table multiplier to error generation due to schedule pressure (
[(-0.6,0)-(1.2,2)},(-0.4,0.9),(-0.2,0.94),(0,1),(0.2,1.05),(0.4,1.14)
,(0.6,1.24),(0.8,1.36),(1,1.5))

~ dimensionless

~ l

table muitiplier to potential productivity due to learning (
[(0,1)~(1,1.5)],(0,1),(0.1,1.0125),(0.2,1.0325),(0.3,1.055),
(0.4,1.091),(0.5,1.15),(0.6,1.2),(0.7,1.22),(0.8,1.245),(0.9,1.25)
(1,1.25))

~ dimensionless

~ |

transfer rate = MAX(0,-workforce gap/transfer delay)
~ man/day

~ |

table multiplier to productivity weight due to resource expenditure (
[(0,0)-(1,1.5)],(0,1),(0.1,1),(0.2,1),(0.3,1),(0.4,1),(0.5,1)
,(0.6,0.975),(0.7,0.9),(0.8,0.75),(0.9,0.5),(1,0))

~ dimensionless

~ i

table nominal errors committed per KDSI ([(0,0)-(1,30)},(0,25)
,(0.2,23.86),(0.4,21.59),(0.6,15.9),(0.8,13.6),(1,12.5))

~ errors/KDSI

~ |

table nominal overwork duration threshold ([(0,0)-(60,60)1,(0,0)
,(10,10),(20,20),(30,30),(40,40),(50,50))

~ day

~ |

table nominal QA manpower needed per error ([(0,0)-(1,0.5)],
(0,0.4),(0.1,0.4),(0.2,0.39),(0.3,0.375),(0.4,0.35),(0.5,0.3)
,(0.6,0.25),(0.7,0.225),(0.8,0.21),(0.9,0.2),(1,0.2))
~ (man*day)/errors
~ |

table nominal rework manpower needed per error (
{(0,0)-(1,1)},(0,0.6),(0.2,0.575),(0.4,0.5),(0.6,0.4),(0.8,0.325)
(1,03))
~ (man*day)/errors
~ |

table normal work rate adjustment delay ({(0,0)-(40,12)],(0,2)
,(8,3.5),(10,5),(15,6.5),(20,8),(25,9.5),(30,10))

~day -

~ |

table percent adjustment in planned fraction of manpower for QA (
[(0,-0.6)-(0.5,1)]1,(0,0),(0.1,-0.025),(0.2,-0.15),(0.3,-0.35)
,(0.4,-0.475),(0.5,-0.5))

~ dimensionless

~ |

77

table percent of undiscovered tasks discovered per day ([(0,-1)-(100,100)],
(0,0),(20,0.4),(40,2.5),(60,5),(80,10),(100,100))

~ 1/day

~ I

table planned fraction of manpower for QA ([(0,0)~(1,1)},
(0,0.15),(0.1,0.15),(0.2,0.15),(0.3,0.15),(0.4,0.15),(0.5,0.15)
,(0.6,0.15),(0.7,0.15),(0.8,0.15),(0.9,0.15),(1,0))

~ dimensionless

~ |

table rate of increase in exhaustion level ({(-1,0)-(1,3)],
(-0.5,2.5),(-0.4,2.2),(-0.3,1.9),(-0.2,1.6),(-0.1,1.3),(0,1.15)
,(0.1,0.9),(0.2,0.8),(0.3,0.7),(0.4,0.6),(0.5,0.5),(0.6,0.4)
,(0.7,0.3),(0.8,0.2),(0.9,0),(1,0))

~ exhaust units/day

~ |

table schedule adjustment time ([(0,0)-(5,5)1,(0,0.5).(5,5)
)

~ day

~ |

testing rate = MIN(cumulative tasks QAed/TIME STEP.daily manpower for testing/testing manpower
needed per task
)

~ tasks/day

~ |

time perceived still required = man days remaining/(workforce level sought*average daily manpower per staff
)

~ day

~ |

time remaining =MAX(scheduled completion date-Time, 0)
~ day
~ |

tasks perceived remaining = currently perceived job size in tasks-cumulative tasks dev
~ tasks
~ |

tasks remaining to be tested = currently perceived job size in tasks-cumulative tasks tested
~ tasks

~ |

tasks underestimation fraction =0
~ dimensionless

~ |

tasks zidz = 0.1
~ tasks
~ |

willingness to change workforce = MAX(willingness to change workforce 1,willingness to change
workforce 2

)

~ dimensionless

78

~ |

willingness to change workforce 1 = table willingness to change workforce 1(time remaining/(hiring delay
+average assimilation delay))
~ dimensionless

~ |

team size at beginnng of design = initial understaffing factor*team size
~ man
~ ~:SUPPLEMENTARY
I

testing man days = (1-percent effort assumed needed for dev)*total man days
~ (man*day)
~ i

testing manpower needed per error = 0.15
~ (man*day)/errors
~ |

work rate adjustment rate =(work rate sought-actual fraction of man day on project)/work rate adjustment
delay
~ l/day

~ |

work rate sought = (1+percent boost in work rate sought)*nominal fraction of man days on project
~ dimensionless
~ I

total daily manpower = total workforce*average daily manpower per staff
~ (man*day)/day
~ !

workforce gap = workforce level sought-total workforce
~ man
~ |

workforce level needed = MIN(willingness to change workforce*indicated workforce level+total workforce
*(1-willingness to change workforce),indicated workforce level)

~ man

~ |

time to adjust perceived rework manpower needed per error = 10
~ day
~ 1

time to devl =0
~ dimensionless
~ |

time to smooth active error density = 40
~ day
~]

time to smooth testing productivity = 50

~ day
~ 1

79

weight of projected productivity =multiplier to productivity weight due to dev*multiplier to productivity
weight due to resource expenditure

~ dimensionless

~ |

total job size in man days = INTEG(rate of adjusting job size in man days
+rate of increase in dev man days due to discovered tasks+rate of increase in testing due to discovered tasks
,dev man days+testing man days)

~ (man*day)

~ |

total man days perceieved still needed =man days perceived still needed for testing+man days perceived
needed to rework detected errors
+total man days perceived still needed for new tasks

~ (man*day)

~]

total man days perceived still needed for new tasks = tasks perceived remaining/assumed dev productivity
~ (man*day)
~ I

total man daysl =0
~ dimensionless
~]

workforce level sought =MIN(ceiling on total workforce,workforce level needed)
~ man

~ |

willingness to overwork = IF THEN ELSE(Time>=time of last exhaustion breakdown+variable that
controls time to de exhaust
» 1,0)

~ dimensionless

~ |

work rate adjustment delay = effect of work rate sought*normal work rate adjustment delay
~ day
~ |

willingness to change workforce 2 = table willingness to change workforce 2(scheduled completion date
/maximum tolerable completion date)

~ dimensionless

~ 1

average assimilation delay = 80
~ day

~ |

average employment time = 673
~ day
~ |

ceiling on new hires = full time experienced workforce*most new hires per full time experienced staff
~ man

~ |

ceiling on total workforce = ceiling on new hires+experienced workforce
~ man

80

daily manpower for training = newly hired work force*trainees per new hire
~ (man*day)/day

~ |

hiring delay =40
~ day
~ I

hiring rate = MAX(0, workforce gap/hiring delay)
~ man/day

~ |

most new hires per full time experienced staff = 3
~ man/man
~ |

newly hired work force = INTEG(hiring rate-newly hired transfer rate-workforce assimilation rate,0)
~ man
~ |

quit rate =experienced workforce/average employment time
~ man/day
~ |

total workforce = experienced workforce+newly hired work force
~ man
~ !

trainees per new hire = 0.2
~ dimensionless
~ I

transfer delay = 10
~ day
~ I

workforce assimilation rate = newly hired work force/average assimilation delay
~ man/day
~ |

3 o e 2 s ok ok e ok ok o dke * 3¢ 30 b 3k ok 3k 2k *
.Control

% sk ok %k e e o ofe 3k Kk,

Simulation Control Paramaters
|

FINAL TIME =100
~ day
~ The final time for the simulation.
|

INITIAL TIME =0
~ day
~ The initial time for the simulation.
|

81

SAVEPER =
TIME STEP
~ day

~ The frequency with which output is stored.

TIME STEP =0.5
~ day
~ The time step for the simulation.
|

82

Appendix B:
Vensim Model

83

78

cumulative
tasks QAed

<testing rate>

<table 1QA

<percent of job
. actually worked> <dsi per KDSI>
<table nominal

errors committed ! <softwarg dev rate>

per KDSI> 1

nominal errors
commiutted per dsi

<ervors per task>

nominai errors
communed per
task

tasks 2idz3 =g, average number of

/

manpower needed per
eror>

nominal QA
manpower needed
per error

<percent of job
actually worked>

<QA nte>
<tasks dev>
<dsi per task>
{tiplier to product error density
ivity due 1o motivatio
n and communication |
osses>

]

\-.QA manpower needed to

detect an error

errors per task

multiplier to detection
effort due 10 error
density

<table multiplier to
detection effort due 10
error density>

potential estor
detection mate

<daily manpower W

a

nominal rework
manpowet needed per

etror

<table nominal rework
manpower needed per
error>

g WRREITOTS per task

<nominal errors
commitied per 1ask>

multiplier 1o etror
generation due 1o

multiplier 10 error

workforce mix generaton due to
schedule pressure
<table muliplier to error
generation due 10
workforce mix>
' <schedule pressure>
<fraction of <table mulaplier to error
experienced generation due 10 schedule
workforce>

pressure>

<daily manpower
allocaton for
rework>

actual rework
manpower needed
per error

potentially detectable
ermors

error escape rate

Fumulative errors

y

cumulative
reworked errors
during
development

<muluplier to productivity due to
mouvation and communication

losses>

E|error detection rate that escaped
<TIME STEP>
' cumulative errors
generated directly
i
detected errors duning working
lative errors
detected
percent
errors
detected
] rework rate
<error genenation rate>
errors nndz2

]

<total workforce>

<average daily manpower full ime ‘—/
per staff> —_— equivalent
workforce

cumulative training
man days <team size at

trainees per new hire
\ beginnng of |
design> /»cen ing on new
\ hires \
daily manpower for \ full ume

ini 1 !
training average assimilation delay el experienced cxpc::nced most new hires per ful
i workforce .
- aver . time experienced staff
hiring delay » workforce average xer;r:‘glo) ment
1
newly hired experienced
work force workforce
.. quit rate
hiring rate workforce
assimilation rate
experienced

newly hired

transfer rate transfer rate

<TIME STEP> ‘

<TIME STEP> total workforce
ceiling on total

workforce

transfer rate <transfer rate>

i

transfer delay

<newly hired
transfer rate>

workforce gap
<workforce level sought>

98

<table planned fraction

<
table percent manpower for QA>

adjustment in planned
fraction of manpower

for QA> . average daily
cumulative man manpower per staff
<percent of job days expended

actually worked>

of
quality objective

planned fraction of

’ manpower for QA

Q

percent adjustement in

planned fraction of \‘ ‘ /

manpower for QA

<schedule pressure> cumulative QA

man days

total daily
<Time> manpower
actual fraction of
manpower for QA
daily manpower
available after training
overhead

[——__ daily manpower for /
QA

<actual rework
manpower needed per
ermror>

perceived rework

manpower needed per production
— s error N
daily manpower /

\daily manpower for software

time to adjust perceived
rework manpower needed per
error

<detected errors>

— A

allocation for rework

<l' 1me> \

desired error correction L daily manpower for
rate dev and testing

cumulative rework
man days

<Time>

desired rework delay

<total workforce>

<daily manpower for

training>

<fraction of effort
for system testing>

cumulative dev
man days

L8

<currently perceived job
size in tasks>

fraction of effort for
system testing

<daily manpower for dev

and testing>

daily manpower for

\> software dev

<tasks perceived

<table fraction of effort
for system testing>

remaining>

€3

Y

tasks dev

QA rate

<TIME STEP>

‘___.__—-4 ime>
uil software dev rate

<software dev
productivity>

average QA delay

88

<expenenced workforce> <table communication
vvertead> exhaustion

) depletion delay
nominal potential \ <total workforce> time

productivity new

nominal potential /
|!xpeﬁ::z fraction of
expenienced
average nominsl workforce

tential productivit; communication
/ potential pr y - overhead
potential
productivity multiphier 10
productivity duc to
molivation and
communication
‘/ losses ominal fraction
w‘[)\‘\lvne dev of man days on exhaustion
productivity H
<percent of job project
actually worked>
rute of increase

Y in exhausion
Sevel

muluplm 1o potential
productivity due o
ol effect of work «fr= =T acwal fraction of man

<table multiplier to learming rate sought day on project

potential
produclivity due to /
leamning> 1
P

excess oF
shnﬂng: n man
<man days '=v'-mme> days R wark rate
.:.f,."ﬁ';",'ﬂ:.“,i‘(,‘,",;}', “”x‘l’“"“ work rate <table rate of increase
Yy adjustrent in exhaustion level>
rate
<total man dnyg percent boost in work
still rate sought
~ uork rate nommal work rate
adyustment delay

P
effect of exhaustion on

overwork durstion
threshold

sought
days zidz3

control switch ‘

handled man

<man days 21ds3>

<table nomal wa
k rate adjustmen
Udelay>

<time remaining>

<full ime ived
equivalent Spereeiv days
Kforoe> excess or
woskloree shortage in man
days> nominal overworh
4 duration threshold
c1 of exhaustion on
/ overwork Quration threshold>
ma:
:'h:y e <table nominal <ume nShaining>
absorbed maximum man days overwork overwork duration
<table man da shortage handled duration threshold>
:xeelm that vnl{be threshold
‘\\—/ <exhaustion> maxsmam
toleruble
<man days remaining> exhaustion
maxynum boost in man
exhaust /
willingness to inflow exhaust
ovenwork switch
variable that # 3
c«mlml‘sl:zz tode exhaust vanable

© Nush

\/

<TIML STEP>

<overwork durstion
threshold>

<TIME 4 breakdown
switch

<table multiplicr to active 1 per task>
eror generation due 10 ervor /b
densiy>
TS~ multiplier to active emor

gencration due 1o cror

density W, 1M 10 smooth

alive crror
density

<persent of job sctually
P verbeds " <uable fraction of excaping <soltware dev rate>

eroes that will become ‘/‘——\
active> gactive eror density

active error
regeneration rate

fraction of escaping tasks zidz
esvors that will become
aclive
prdetected active
erors
<error bad fix . " .
gmlll: :ne sctive error active detection
and th U
generation rate correction rate <TIME STEP>
<rework rate> active error
retinng fraction
active emor

retirement rate uve enors |
reworked in
testing phase

<percent of job <table active error
sctualhy worked> retirement

fruction>

<TIME STEP> cumulative

indetected passive ":’:‘:i";“" esting man days
ervors
generation rate testing rate
<tasks zidz3>
ssive detection dai £
oo e ity g o
ing
<TIME § \
jcumulative tasks <fraction of effort
tested for sysiem testing>
testing

testing

m\\ er
dimension factor manpower per
noeded per error 13 .
<cumula <daily manpower for
umulative errors
dev and testing>
reworked i tesling testing ing
phase> overhead
<M|meg>m“t _\\ / <dsi per task> ent of tasks
cror: "Baperc
<aclive error density> tested

ol errors that escaped and

many
1as!

were generated <multiplier 16 productivity due to <passive cror density>
<undetected motivation and communication
pessive errors> all ervors reworked losses> <currently
in dev and testing perceived job

size in tasks>

<detected errors> st errors -y <cumulative rework
"ad errors during dev

clopment>

R

<potentially detectable crrors>

89

06

<rate of increase in

testing duc to
<table multiplicr to)
<total job sizc in man days> productivity weight due discovered tasks>
1o resource expenditure> /
<detected errors>
planncd testing

manpower nceded per
emor> weight due 10
resource
expenditure <TIME STEP>

rocived rework multiplier to size in man - <frctionol effon
o \ productivity -7 for system
~—a testing>
man days perceived man days perceived

noeded 10 WOk em——==8® remaining for new tasks
detected errors

<rate of adjusting job
size in man days>

multiplier 10
productivity weight due
10 dev

man days zidz
projecied dev
productivity
<table multiplier 10
<tasks perceived <man day$ remaining> productivity weight due 1o
remaining> weight of dev>
::J“‘ ef’ § <percent of
<cumulative man 4 dev ‘/p uctivity man days reponed still perceived job
days expended> assume needed dev>
productivity
schedule pressure ‘
rcported shorudge excess
<cumulative in man days
lestingman g, perceived dev
> 1otal man days
days> productivity L.rccived still necded /
for new lasks .
<perceived excess or
shortage in man days>
hand}
<cumulalive tasks dev> \ © u,:::m

total man days

perceieved still

<real job size in needed
tasks> \

N\

man days perceived still .
pervem ot} i time to smooth
actually wo,y::d nceded for testing Lcstig produeniity
nily perceived job / \ /
fumulative tasks dey size in tasks> ~ pereied esting
tasks remaining to productivity
actual testing

<cumulaine tasks lested>

be tested
. e ——— productivity ‘\

<cumulative

<software dev raie> planned esting tcsting man
iy days>
. L ___,’ productivity
<planned testing size in man days sidz2
man days>

16

<dsi per task>

<o mg)

size in tasks

<qable percent of
undiscovered tasks
discovered per day>

percent of undiscovered
tasks discovercd per day

percent of perceived
jobdev

<cumulative tasks dev>

tasks perceived remaining

'man days remaning

<cumulative man

percent of task
/ reporied complete

days expended>
<man days <table delay in
undiscovered job reported suill adjusting job size in
tasks PO ded> man days>
raie of adjusting job
sizc in man days .
<time remaining>
rate of
discovering
tashs delay 1n adjusting job size in
man days
average delay in .
sks di incorporating (otal job size in man days
tasks discovered discovered usks <pereeived testing
productivity>
<assumed dev
productivity> rate of increase in
' v man days due
rate of incorporating to discovered
dnscovcrcq :::ks into tasks rate of increase in
pro) testing due to
discovered tasks
ly perceived
job size in tasks fraction of additional tasks
added to man days
<assumed dev ‘\
perceived size of productivity>
discovered tasks in man <table fraction of
days additional tasks added to
man days>
relative size of
. discovered tasks
cuasks discovered> <;:a:c:1\ae\: _/ maximum relative size of
remaining & additions tolerated without
gl adding t ject man days
new tasks> . ing to proj -
man day's zidz3
<Time> <man days

reported still

<total job
" size in man

days>
Y <man days perceived

still nceded for testing>

reporting delay

<planncd testing size in

percent of dev /

man days> ——l perceived
complete

26

<table willingness to
change workforce 2>

maximum schedule

completion date
extension

<ceiling on total
workforce>

orkforce level sought

<total workforce>
\ <man days remaining>
workforce level needed (y &

day zidz2 time perceived still
required
indicated workforce

level

willingness to change

workforce \
willingness to change ‘_\ <average daily

workforce 1 time remaining manpower per

/' staff>
<hiring delay> \

<average assimilatio,
delay>

<Time>

<table willingness to
change workforce 1>

willingness to
change workforce 2
scheduled completion

date indicated
completion date

maximum tolerable
completion date

ate of adjusting
schedule

schedule adjustment
time

<table schedule
adjustment time>

<total dev time>

€6

dsi per task
real job size in dsi
<average daily

dsi per KDSI manpower per staff>

perceived job size in dsi

tasks underestimation fraction

/,ﬂ team size
man days total man days

man day switch

underestimation

fraction team siz¢ at beginnng

of design

dimensionless dsi

man day dimension initial

understaffing
dev man days total inan days! factor
/ total dev time
percent effort schedule
assumed needed for {esting man days compression switch schedule

dev compression factor

time to dev]

. . day dimension
dimensionless man day Y

Appendix C:
ACE Specifications for PERIOD1

94

Project Management Practices - Module 1
Functional Specification for Period (engine)
Phase: Detailed Design Date: 03/31/97

Efficiency
Thresholds

0% <= efficiency <= 150%
Base efficiency

Normal: Skill level of person/Skill level of task

Outside Resource: 0 % for first period on project. AN outside person is one who has
never worked on the phase before

Task dependency - If an individual is working on a task that is dependent on an
unfinished task, then that person’s efficiency is 15%

Deductions (only applied to “normal” case from above, all other “base” efficiencies stand
alone)

10% deduction when internal resources start a task that is already underway (> period
1)

5% deductions are taken for each additional task that a resource is working on. For
example, 1 task assigned = no deduction, 2 tasks assigned = 5% efficiency deduction on
each. Clarification, the coefficient, 5 in this case, is multiplied by the number of tasks
over 1. So 1 task = no penalty, 2 tasks = 5% penalty on each, 3 tasks = 10% penalty on
each

Overtime deductions will be taken based solely on the number of assigned hours in that
period.

Morale deductions/additions are pulled directly from the current morale score. A
morale score of 2 means add 2% to efficiency, a morale score of -2 means subtract 2%
efficiency

20% deduction if the tasks scope creep flag is set to true

Skill-building efficiency deductions (these deductions kick-in when the resource is
engaged in either knowledge capital or coaching mode

There is no rework coefficient in this system

MORALE

The morale score will take a value between -10 and 10. It is based on five variables. The
following table summarizes how to compute the morale score. For each variable there are two
rows in the table. The first row contains the value that should be added or subtracted to the

Projman/FuncReq/Engine

© Andersen Consulting, 1997. All rights reserved. For Internal Use only.

Project Management Practices - Module 1
Functional Specification for Period (engine)
Phase: Detailed Design Date: 03/31/97

morale score. The second row contains the lookup for the current value of the variable. The
computation to determine the current value of each variable is explained elsewhere. For each
period, morale starts at 0 and has these numbers applied.

Communication | -2 0 2
efficiency

<=40% >40%, <80% >=80%
Skill match -2 0 2

>=2 >=7,<2 <1
OT trend -2 0 2

>=25% <25%,>10% <=10%
Team Morale -1 0 1

<=3 >3, <7] >=
Development -3 0 3
need being met

>=-1, <-.33 >=-33, <=.33 > .33, <=1

COMMUNICATION EFFICIENCY

Certain actions that the user takes in one part of the system will have a complimentary
“message” that the manager should tell his or her team. The communication score indicates
how well the manager follows through on his or her actions by communicating to the team.

Communication efficiency = # of communications for actions/# of actions requiring
communication

NOTE: Both of the variables that make up communication score are reset to zero at the
beginning of each period. (i.e., the manager only gets “credit” if he or she communicates an
action prior to hitting the “run” button.

Implications

For each action that can be taken (e.g., making a change to the start date, assigning
resources, designing resources, etc.) we (the developers) need to be able to designated
whether it is an action which requires communication to the team and associate some
type of message (“I changed the start and end dates in the workplan, please take a
look”). We need to identify how detailed these messages will be. For example, if we
just say (“I changed our schedule, please review the workplan”), then there would only
need to be one statement regardless of the number of tasks for which we changed

Projman/FuncReq/Engine

- © Andersen Consulting, 1997. All rights reserved. For Internal Use only.

Project Management Practices - Module 1
Functional Specification for Period (engine)
Phase: Detailed Design Date: 03/31/97

schedule. If on the other hand, we want it to say, “I changed the schedule for task
XXX”, then each change will have to have its own communication. For simplicity, I am
tending to lean toward the former. Any thoughts?

When the user takes an action that needs to be communicated, the associated message
needs to be added to the team conversation tool as something the user can say (this
happens within the period, not after the run).

We need to keep a variable around that counts the number of actions that require
communication. This number should be an aggregate of all actions requiring
communication. The following table summarizes some considerations for updating and
tracking this value.

Action sequence # of items requiring communication
User makes change to action that | 1
requires comm
User make change to actionnot | 0
requiring comm
User makes change to action 1
requiring comm, then makes
second change to same action
that does not set it back to
original value

User makes change to action 0
requiring comm, then makes
second change to same action
that sets it back to original value

User makes change, 1 after first change
communicates to team and then | 0 after communication

makes another change to same 0 after second change (even if it
action resets action)

One way to handle this is as follows:

Keep a queue of actions and their original values. When a user makes an action that
requires comm, the queue is checked. If the action is not in the queue it gets added, if
the action is in the queue but takes a different value (not its original value) then nothing
happens, if the action is in the queue and it takes its original values, the action is
removed from the queue. In addition, if a user makes the statement associated with the
action it is also removed from the queue and a variable tracking # of communicated
actions gets incremented.. Then when the simulation is run, the total number of actions
requiring communication will be the total number of communicated actions plus the
length of the queue.

Projman/FuncReq/Engine

© Andersen Consulting, 1997. All rights reserved. For Internal Use only.

Project Management Practices - Module 1
Functional Specification for Period (engine)

Phase: Detailed Design Date: 03/31/97

We need to have a variable that count the number of actions that have been
communicated (see prior paragraph for ideas on how to update)

We'll need to have a property associated with statements in the tree which indicate
what action (if any they are communicating)

SKILL MATCH
skill match = | person’s skill - task skill |

In cases of multiple tasks for an individual, the match should be the average across
tasks for the individual

OT TREND
(Z’:Z OT)/ 3, where p = current period

Team morale
Average team morale from prior period

Development need

-1 0 1

Current task is
one | want to
avoid

Current task is
one for which |
am indifferent

Current task is
one that I want
to pursue

For each individual we will need to have two properties: tasks-I-want-to-avoid and tasks-I-
want-to-pursue. Any task which is not in either list can be considered indifferent. If team
member is on multiple tasks then use the average.

Developers: Information regarding the tasks I want to pursue and avoid should come out
through team member biographies and team conversation. In the bio, it should be indicated as
“development areas” or “areas for improvement” like from a CMAP form. In conversation it
should come out as, “I'd really like to do X” or “I’'ve done a lot of Y, I’d like to move on”. In
general, 90% of tasks should be indifferent with 5% falling into each property of want-to or
avoid.

RESET THRESHOLD

Users will be reset to the beginning of a scenario under any of the following conditions

SQERT Meter
Projman/FuncReq/Engine

© Andersen Consulting, 1997. All rights reserved. For Internal Use only.

Project Management Practices - Module 1
Functional Specification for Period (engine)
Phase: Detailed Design Date: 03/31/97

3 red T’s in a row
3 red E’s in a row

Trend meters

3 extreme CV downwards
3 extreme SV downwards

Absolute numbers

Ledger actual exceeding budget by x%
Current date exceeding milestone date by x%

The reset decision should be made after all of the other engine computations are made. At that
point if the thresholds are exceeded the user should be reset. The only exception to this rule is
if the user has completed all tasks but has exceeded the thresholds they should NOT be reset.
The only reset criteria which should be impacted by this are the absolute numbers. It would be
highly unlikely that the phase could be finished on the third red or downward trend.

Scope creep

The scope creep flag is an indicator that the current task is creeping in scope. When it is turned
on, the resources assigned to the task will lose an additional 20% efficiency each. The scope
creep flag needs to turned on/ off via the simulation. When the flag is turned on any other
tasks and/or substasks within the same competency strand that are open or not started will
also have their flags turned on. Conversely, turning off the flag at point should turn off all of
the other flags in a similar manner.

There is no scope creep threshold.

Overtime
Minimum and maximum overtime thresholds

In the workplan, the user will be able to identify project-level thresholds for maximum
allowable and minimum required. The thresholds will be applied as follows:

Maximum allowable OT is used when determining self-induced overtime. SI overtime
cannot exceed maximum allowable, however, OT assigned to a task overrides if it is

greater

Projman/FuncReq/Engine

© Andersen Consulting, 1997. All rights reserved. For Internal Use only.

Project Management Practices - Module 1
Functional Specification for Period (engine)

Phase: Detailed Design

Date: 03/31/97

Minimum OT - this is the lowest value that Self induced OT can take Task assigned
OT overrides minimum OT.

Self induced overtime

Self induced overtime is intended to simulate the fact that people will tend to work mode as
deadlines approach or as they fall behind. Self induced overtime is computed as follows:

Self induced overtime =

Greater of:

MinSI

or

Self Induced OT Factor * MaxAllowableSI (which defaults to 50% but can be set by the

user)

The following table is used to compute the self-induced OT Factor:

Percentage of time into task

0-25| .26-.5| .51-.75 .76 -1 1.01 +

0-.25 4 .6 .8 1 1

SPI .26 - .50 3 4 .6 8 1

(BCWP/ | .51-.75 2 3 4 .6 1

BCWS) .76 - .99 1 2 3 4 1

1+ o o] 0 0l 0l
Projman/FuncReq/Engine

© Andersen Consulting, 1997. All rights reserved. For Internal Use only.

