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Abstract

Let G be a connected simple algebraic group over the complex numbers with Lie algebra
g. Let N be a nilpotent element in g and let ZG(N) be the centralizer in G of N. In
general, ZG(N) is not connected and many applications require computing the group of
components of ZG(N).

When G is of adjoint type, we give a unified description of the conjugacy classes in the
group of components of ZG(N), generalizing the Bala-Carter classification of nilpotent
orbits in g. Then we study how the group of components changes when we pass to the
simply-connected cover of G. We conclude the first part of the thesis by showing that
the irreducible representations of the group of components come from representations of
a parabolic subgroup of G associated to N. This result should be useful for computing
the G-module structure of the regular functions on any cover of the orbit in g through
N.

In the second part of the thesis, we study a family of representations Us of the affine
Weyl group Wa. The main result here identifies Ut as the representation of Wa on the
total homology of the space of affine flags which contain a family of elements nt in the
affine Lie algebra. We also compute the Euler characteristic of the space of partial flags
containing nt and give a connection with the characteristic polynomials of hyperplane
arrangements.
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Introduction

This thesis is divided into two independent parts.
Let G be a connected simple algebraic group of adjoint type defined over the complex

numbers with Lie algebra g. For a nilpotent element N in g, one often needs to compute
the finite group A(N) := ZG(N)/ZG(N), where ZG(N) is the centralizer of N in G under
the adjoint action and ZG(N) is its identity component. For example, these groups play an
important role in the Springer correspondence [Spl]. The computation of A(N) appears in
the literature [All, [Mi] and in three texts on the subject [Ca2], [CM], [Hu2], but without a
satisfactory unified approach.

In the first part of the thesis, we give a unified approach to the determination of the
groups A(N). The Bala-Carter classification of nilpotent orbits in g states that nilpotent
orbits are in bijection with conjugacy classes of pairs ([1, N), where N is a distinguished
nilpotent element in the Levi subalgebra [ [BC1], [BC2]. In Chapter 2, we generalize the
Bala-Carter classification by proving there is a bijection between conjugacy classes of pairs
(N, C), where N is nilpotent and C is a conjugacy class in A(N), and conjugacy classes of
pairs ([, N), where [ is the centralizer in g of a single semisimple element in G and N is a
distinguished nilpotent in [. We also study the conjugacy classes in ZG(N)/ZG(N) when G
is simply-connected. The structure of these groups is also already known [LI], [CM], but the
methods presented here are more unified.

Let P be the parabolic subgroup of G determined by a Jacobson-Morozov triple for
N. It is known that ZG(N) is contained in P. In Chapter 3, we show that all irreducible
representations of ZG(N)/ZG(N) arise from irreducible representations of P which are trivial
on ZG(N). This fact should be helpful for determining the G-module structure of the regular
functions on any cover of the nilpotent orbit in g through N, in a manner similar to the
work of McGovern [Mc] and Graham [Gr].

In the second half of the thesis, we study some aspects of the affine flag manifold. Let
Wa be the affine Weyl group associated to the Weyl group W of G of rank n. For w E Wa
let s(w) be the least number of reflections needed to write w as a product of reflections. In
Chapter 4, we construct a permutation representation U1 of Wa of dimension t' for t E N.
This representation has the property that for w of finite order, the trace of w on Ut equals
t"- (w) when t is not divisible by certain primes.

Let Ut also denote the restriction of Ut to W J , the finite Weyl subgroup of W. corre-
sponding to a subset J of simple reflections for Wa. We show that Ut decomposes into a
direct sum of representations induced from a parabolic subgroup of W g . This fact leads to
a new way to determine the characteristic polynomials of certain hyperplane arrangements
which were computed by Orlik and Solomon in [OS2].



In Chapter 5, we recall the construction by Lusztig of certain regular, semisimple, nil-
elliptic elements nt in an affine Lie algebra. Fan has shown that the Euler characteristic of
the space of affine flags containing nt is tn; this extends a result of Lusztig-Smelt in type An
[F],[LS]. Generalizing to the space of partial affine flags associated to W' containing nt, our
result is that the Euler characteristic is

(t + mI)(t + m2)...(t + mj)t in-j

iW l
where m1, ... , mj are the exponents of W 1 . D. S. Sage [Sa] independently proved this
formula for the classical groups.

Finally, using work of Lusztig [L3] and Alvis-Lusztig [AL], we show that the virtual
representation of W J on the total homology of the space of affine flags containing nt is Ut.



Chapter 1

Preliminaries

In this chapter we fix notation and review results from the theory of algebraic groups and
Coxeter groups. Good references for such material are [Sp2], [OV], and [Hul].

1.1 First Definitions

Let G be a complex reductive algebraic group and let T C B C G be a maximal torus
contained in a Borel subgroup in G. Let n be the dimension of T.

A (rational) character of G is a homomorphism of algebraic groups X : G -+ C*. The set
of all rational characters of G, denoted X*(G), becomes an abelian group under pointwise
multiplication. In the case G = T, X*(T) is a free abelian group (also called a lattice) of
rank n. We will often use L instead of X*(T) and refer to characters of T as weights.

A cocharacter of G is a homomorphism of algebraic groups X : C* -+ G. When G = T, the
set of cocharacters, denoted X.(T), becomes an abelian group under pointwise multiplication
and is a lattice of rank n. Since every homomorphism from C* to C* is of the form z -+ zk ,
there is a pairing ( , ) X*(T) x X.(T) -+ Z. Explicitly, if x E X*(T) and A E X.(T), then
X (A (z)) = z (x,').

We will often use the next lemma (see [OV, Theorem 3.2.5])

Lemma 1. There is a bijection V between the closed subgroups of T and the subgroups of
X*(T), which to a subgroup Y C X*(T) assigns the subgroup

T Y = {x E T
I X (x) = 1 for all x E Y} C T.

Moreover, let rl, . . . , rm(m < n) be the nonzero invariant factors of Y (as subgroup of the
free abelian group X*(T)). There is an isomorphism : T -+ (C*)" such that

p(T') = {(x, ... ,x,) E (C*)nlI xr=. - _ = 1}.

The root system P of G is a subset of X*(T) and the coroot system V' of G is a subset
of X.(T). For a E 4', let av E v be the corresponding coroot. The choice of Borel
subgroup determines a set of positive roots ( + and a set of simple roots II = {fai} in 4). Let
aij = (ai, aj). When i $ j, aij < 0 and aijaji equals 0, 1, 2, or 3, and we can construct the
Dynkin diagram from this information.



Any a E b+ can be expressed in L as E', a•ai where the ai are non-negative integers.
The height of a, denoted ht(a), equals E ah. If G is simple, there exists a unique highest
root 0 e 4 for which ht(0) > ht(a) for all a E (I.

The key property of 9 is that 0 + ai is not a root for any simple root aj.
Set a0 = -0 and let fl = II U {ao}. The key property of 0 implies (ao, ay) 5 0 for all

i > 1; thus we can build the extended Dynkin diagram from the Dynkin diagram by adding
an extra node which corresponds to a0 . Define the coefficients ci of 0 from the equation

0 = E, ciai and set co = 1. We label the ai-node in the extended Dynkin diagram with
the number ci as in the figures of Chapter 6.

For any subset J of Hfl (always proper), let Lj be the lattice in L = X*(T) generated
by J. Instead of Ln, we will write L for the lattice generated by HII (the root lattice). The
intersection 4 n Lj is an abstract root system, denoted by 4j. The key property of 0 implies
that J is a set of simple roots for 4 j.

For J C fl, let dj be the greatest common divisor of those ci for which ai J. Define
Tj E L to be

Tj :=- ciai
ai EJ

=-1 E cia,. (1.1)
di

aiEHI-J

Then the torsion subgroup of L/Lj is isomorphic to Z/dj and is generated by the image of
Tj-.

Let W = NG(T)/T be the Weyl group of G. For w E W denote by tb E NG(T) any
representative of w. For a E (, let so be the unique Weyl group element which acts as the
identity on the kernel of a. For J C H, let Sj = {s[ a E J} and let Wj be the subgroup of
W generated by the elements in Sj. So Wj is the Weyl group of the root system (j.

The Weyl group acts on T and hence also on X*(T) and X,.(T).

1.2 Pseudo-Levi subalgebras

Assume G is simple and connected. Let t C b C g be the Lie algebras of T C B C G.
Denote the adjoint action of G on itself and on g by Ad and the adjoint action of g on itself
by ad.

By abuse of notation, we also view the characters of T as elements of t* (these are the
differentials of the characters of T). In particular, 4D is also a subset of t*. For a E (,
there exists a isomorphism xa from C onto a unique closed subgroup U" of G such that
txa(u)t- 1 = xQ(a(t)u) where t E T and u E C [Sp2, 9.3.6]. Let

g9 = {X e g I [H,X] = a(H)X for all He t}.

The Lie algebra of U, is g9.
If S is a subset of T, then the centralizer of S in G is denoted ZG(S) and the centralizer

of S acting on g via Ad is denoted Zg(S). The Lie algebra of ZG(S) is Zg(S) [Sp 2 , 4.4.7].



By [Ca2, Theorem 3.5.3] the identity component of ZG(S) is generated by T and those Ua
with a(S) = 1. Also Z,(S) is spanned by t and those g9 with a(S) = 1.

For J fI, we define G¢ to be the subgroup of G generated by T and those U, with
a E Vj. Then Gj is a connected reductive algebraic subgroup of G with root system lj.
The Lie algebra of Gj is

OtED 0a

Since Gj is reductive, the center Z of Gj is contained in T. Hence Z consists of the elements
of T which lie in the kernel of all the roots in (j. In other words, Z - TLJ. Thus by Lemma
1, the identity component Zo of Z is isomorphic to a torus whose dimension is the rank of
L/L; and Z/Zo is isomorphic to the torsion subgroup of L/Lj. In particular, if G is adjoint
(meaning L = L), then Z/Zo is cyclic of order dj.

When J C H, then Gj is a Levi subgroup of G and gj is a Levi subalgebra of g. For lack
of better terminology when J C HI, we call any G-conjugate of Gj a pseudo-Levi subgroup
of G and any G-conjugate of gj a pseudo-Levi subalgebra of g. We call Gj (resp. g j) a
standard pseudo-Levi subgroup (resp. subalgebra). Note that a Levi subgroup/subalgebra
of a pseudo-Levi subgroup/subalgebra is again a pseudo-Levi subgroup/subalgebra.

A Levi subgroup is characterized by the fact that it is the centralizer of a torus in G
(and so it is automatically connected). By choosing an element as regular as possible in the
torus, the Levi subgroup is the connected centralizer of that element. More generally,

Proposition 2. Pseudo-Levi subgroups are the subgroups of G of the form ZG(x) where x
is a semisimple element in G. Pseudo-Levi subalgebras are the subalgebras of g which are of
the form Zg(x) where x is a semisimple element in G.

Proof. We prove the second statement, the statements being equivalent. We can assume
that G is adjoint, so that L = L. The proof follows Springer-Steinberg [SS]. Recall that
every compact torus S contained in an algebraic torus S possesses an element y such that
yk (k e Z, k # 0) is not in the kernel of any non-trivial character of S. Such a y is called a
topological generator for S.

Let gj be a (standard) pseudo-Levi subalgebra. Since the torsion subgroup of L/Lj is
cyclic of order dj, we have by Lemma 1 that TLJ - (C*)r x Z/dj. Choose x, e (C*)r to
be a topological generator of the compact torus in (C*)r and x 2 to be a generator in Z/dj.
By Lemma 1, Lj consists of the characters of T which are trivial on x = x1x 2 and hence (j
consists of the roots of G which are trivial on x. It follows that g9 = Zg(x).

Conversely, let x E T and consider the subalgebra Z (x). Let Y= {x e X*(T)I x(x) = 1}.
Then as above, T Y _ (C*)' x A where A is some finite abelian group. Now x E T Y so we
can write x = x 1x 2 where x, E (C*)r and x 2 E A. Since A is finite, x2 has finite order. It is
now clear that A must be the subgroup generated by x 2 , i.e. A is cyclic, for otherwise the
characters of T which are trivial on x would be more than just Y.

Pick x' to be a topological generator in the compact torus (Sl)r C (C*)r C T Y . Then
x' x=x2 e (S)" C T has the property that Z,(x') = Z,(x).

Let p : V -+ (S1)n be the universal cover of the compact torus in T. Let v E V be a
representative of x'. Conjugate v via the affine Weyl group Wa into the fundamental domain



for the action of Wa on V (see Chapter 4 for definitions). Let J be the roots in ft which are
integral on v. Then #j are the roots of 4 which are integral on v. Hence, 1j is W-conjugate
to the roots which are trivial on x'. In other words, Z,(x') is conjugate under G to

t eD 9a "" J,

which completes the proof. O

Remark 3. When G is adjoint, a corollary of the proof (repeated for the group version) is
that the center Z of ZG(x) has the property that Z/Zo is cyclic and the image of x generates
z/zo.

The following proposition addresses the question of when gj is G-conjugate to gy, for

J, J' f.

Proposition 4. For J, J' C I, the following are equivalent

1. J is W-conjugate to J'

2. 4 J is W-conjugate to DJ,

3. Wj is W-conjugate to Wy

4. gj is G-conjugate to gyj,

Proof. The implications (1) =* (2) =* (3) =: (4) are clear.
For the implication (4) =4 (1) suppose Ad(g)gy = gj, for some g E G. Then Ad(g)t is a

Cartan subalgebra of gyj. Hence there exists g' eG , such that Ad(g'g)t = t. Consequently,

g'g E NG(T) and we denote by w the image of g'g in W. Then wJ is a set of simple roots
for Dj,. It follows that there exists w' e Wy such that w'wJ = J'. O

1.3 Equivalence classes of subsets of 1I

Assume G is simply-connected, simple, and connected. In order to apply Proposition 4, we
need a way to determine the equivalence classes of subsets of H, where J is equivalent to J'
if and only if J = wJ' for some w E W. The next proposition is helpful for this.

Let A = L/L (the character lattice modulo the root lattice). A is a finite abelian group
because the two lattices have the same rank.

For J C HI, let (Wo)j be the longest element of the Weyl group Wy. We write w0 instead
of (wo)n. Let WA = {w E W1 wH = HI}. The proof of the following proposition can be found
in [IM].

Proposition 5 (Iwahori-Matsumoto). The non-identity elements in WA are of the form
wo(wo)j where J is a maximal proper subset of II and ci = 1 for ai e H - J. Moreover WA
is isomorphic to A and acts simply-transitively on those ai E H with ci = 1.



We indicate the action of WA on IHI in the figures of Chapter 6.
We can now determine the equivalence classes of subsets of fl under W. We repeatedly

apply Proposition 5 both for fI itself and for the extended Dynkin diagram associated to
any proper subset of II.

For A., C., G2 , F4 , E6 , and Es, we find that the equivalence class of the subset J of fl is
determined by the isomorphism type of 1Ij and the length of the roots in J. We distinguish
between different root lengths by placing a tilde over any summand of (Ij containing only
short roots.

For B, the isomorphism type of (Ij determines the equivalence class of J in fI if we
distinguish between the following pairs: A1 and B 1; D2 and 2A 1 ; D 3 and A3 .

In E 7 there are three instances of subsets J', J" (up to conjugacy) which are not conjugate
under W but for which (b, - 4(j,,. This happens when 4Ig, (bji,, is of type As, 3A 1, or
A 3 + A1 . We can detect that J', J" are not conjugate by computing the torsion subgroup
of the abelian groups L/L, ,L/Ly,. For one subset the torsion part is trivial, but for the
other the torsion part is Z/2 (see Section 2.4). When we want to distinguish between these
two cases, we give the root system corresponding to the former situation one prime and the
latter two primes.

In Dn the isomorphism type of (Ij determines the equivalence class of J in II unless
ýIj _ Ai 1 + Ai 2 + - - -+ Aik where all ij are odd and E(ij +1) = n (this is called the very even
case). As in type Bn, we are distinguishing between the following pairs: D 2 and 2A 1 ; D 3 and
A 3. In the very even cases, however, there exists two subsets J', J" (up to conjugacy) which
are not conjugate but for which (Ig ! (I g,. We can detect that J', J" are not conjugate
because the images in L/L _ Z/2 e Z/2 of the torsion subgroup of L/L, and L/L y, are
different.



Chapter 2

Component Group of the Centralizer
of a Nilpotent

Let N E g be a nilpotent element. Let ZG(N) be the elements of G which centralize N and
let ZG(N) be the identity component of ZG(N). We want to understand the finite group of
components ZG(N)/ZG(N), both when G is simply-connected and when G is adjoint. Let

ON C g be the G-orbit through N. When G is simply-connected, the group of components
coincides with the fundamental group of ON, so we denote it by lrl(ON). When G is of
adjoint type, we denote the group of components by A(N). So 7r (ON) is a central extension
of A(N).

In this chapter we prove a generalization of the Bala-Carter theorem for nilpotent orbits
in g. The generalization together with results in the next chapter will allow us to determine
each A(N) and write down its character table. We also study the conjugacy classes in each
17 (ON) and write down its character table.

2.1 Review of results about nilpotent orbits

To each nilpotent orbit 0 there is a weighted Dynkin diagram which completely determines
the orbit; we now recall how to construct the weighted Dynkin diagram.

For N E 0, the Jacobson-Morozov theorem implies the existence of M, H E g such that
[H, N] = 2N, [H, M] = -2M, and [N, M] = H. So {N, H, M} generate a subalgebra of g
isomorphic to sl,(C). This implies in particular that H is semisimple in g and conjugating
{N, H, M} via an element of G, we can assume that H E t. By siz(C)-theory, it follows that
a (H) E Z for a e HII. Conjugating {N, H, M} via an element of W, we can assume that
a1 (H) > 0 for all a, E H. Assigning ai(H) (which turns out to be 0, 1, or 2) to the ai-node
(1 < i < n) of the Dynkin diagram yields the weighted Dynkin diagram associated to O.

We refer to H in the s[2-triple {N, H, M} as the neutral element.

Definition 6. A nilpotent element N in a reductive Lie algebra g' is called distinguished
if the conditions X e g' semisimple and [X, N] = 0 imply that X is in the center of g'. We
also call a nilpotent orbit distinguished if any (hence all) of its elements are distinguished.

Note that N is distinguished in g if and only if ZG(N) is unipotent.



In type An, only the regular nilpotent orbit is distinguished. For other simple g, the list
of distinguished nilpotent orbits can be found in [Ca2].

Remark 7. We observe that distinguished nilpotent orbits in a simple Lie algebra g are
invariant under any automorphism of g since their weighted Dynkin diagrams are unchanged
under any automorphism of the Dynkin diagram.

This fact continues to hold for the reductive Lie algebras g j, except for the cases in C,
and D, where there are two isomorphic simple components of gj of type Ck (k > 2) and
Dk (k > 4), respectively. In these cases, there exists an element w E WA which induces an
automorphism of gj and interchanges the two isomorphic simple components that are not
of type A. We see that this automorphism will conjugate a nilpotent orbit 0 in gj to a
different nilpotent orbit if and only if 0 intersects the two non-type A simple components
in different nilpotent orbits.

2.2 Generalization of the Bala-Carter Theory

In this section G is assumed to be simple, connected, and of adjoint type, i.e. L = L.
The Bala-Carter classification of nilpotent orbits in g states that the nilpotent orbits in

g are in bijection with pairs ([, N), where [ is a Levi subalgebra of g and N is a distinguished
nilpotent in [ (up to simultaneous conjugation of both factors by G) [BC1], [BC2].

We will extend the Bala-Carter classification in order to understand the conjugacy classes
in A(N). More precisely, we will establish a bijection between pairs (N, C), where N is a
nilpotent element in g and C is a conjugacy class in A(N) (up to conjugation by G), and
pairs (1, N), where N is a distinguished nilpotent in the pseudo-Levi subalgebra [ (up to
simultaneous conjugation of both factors by G).

We will need a series of propositions to establish the bijection. Our approach follows the
exposition in [Ca2].

Proposition 8. For J C HI there exists w E W such that w(J) = J and the action of w on
L/Li generates the automorphism group of the torsion subgroup of L/Lj.

Proof. We may assume dj > 3, for otherwise there are no non-trivial automorphisms of the
torsion subgroup of L/Lj. Note &o E J since co = 1 and otherwise we would have dj = 1.
The isomorphism types of 4j for the cases that arise are: A 2 in G2 ; A 2 + A 2, A3 + A1 in F4;
3A 2 in E6; 2A3 + A, A5 + A2, 3A 2 in E7; 2A4, A5 + A2 + A1, A1 + A7 , D5 + A3, 2A3 + A1,
As, E6 + A2, A2 + As, 3A 2 + A1 , 3A 2 in E8 .

First, we note that in these cases the longest element w0 takes J to -J. This is trivial in
all exceptional groups except E 6 since w0 is just multiplication by -1. In E 6, the action of
w0 on J is multiplication by -1 followed by interchanging a, with a5 and a2 with a 4 . There
is only one subset J in E 6 for which dj _ 3, namely fl - {&a3}, and so indeed wo(J) = -J.
Since (Wo)J maps J to -J, it follows that w = Wo(Wo)g has the property that w(J) = J.

Let aj E J be such that w(aj) = ao and let J' = J - {ao}.
Next, consider the action of w on Tj, the generator of the torsion subgroup of L/Lj. We



have from (1.1)

djT = E ciai + cjaj. (2.1)
aiEJ,i~j

Now w(a2 ) e L, for all ai E J with i : j. Therefore, applying w to both sides of (2.1)
yields

w(djTj) = cjao modulo L .

On the other hand, from (1.1) we see that ao = djTj modulo L, and thus

w(djTj) = cjdjTj modulo Li,

which means

dj(w(rj) - CjTj) e Li.

But L/Lj, is torsion free, which implies

w(Tj) - cjTj E L,.

Hence w(Tj) = cjTj modulo Li, (and also modulo Lj D L ,).
Now in each case we find (by inspection) that cj is congruent to -1 modulo dj. In other

words, w is an automorphism of order 2 of the torsion subgroup of L/Lj. Thus the only case
left unresolved is the one in Es where J = fl - {a4}. Here dj = 5 and the automorphism
group is isomorphic to Z/4. To handle this, we consider the following permutation a of the
elements in J

ao -+ a - 5 -- a8 -+ a0

a2 -+ a6 - a3 a7 - a2

and extend a linearly to the real span of L. Then

ar(a4) = a1 + 2a2 + 3a 3 + 3a4 + 2a5 + a 6 + as,

which is a root; hence a preserves 4. One checks that a is actually an automorphism of D
and consequently a coincides with the action of an element w E W since all automorphisms
of Es come from W. Finally, because w(as) = ao and c8 = 3, we see that w generates the
automorphism group of the torsion subgroup of L/L . O

For J C ft consider the standard pseudo-Levi subgroup Gj. As we noted in Section
1.2, the center Z of Gj coincides with TLJ and Z/Zo is cyclic of order dj. Let x be such
an element of Z whose image generates Z/Zo. Any such x E T is thus characterized by
the fact that a(x) = 1 for a E J and Tj(x) is a primitive d -th root of unity. Let N be a
distinguished nilpotent element in giJ. Clearly, x E ZG(N) which means that the image of x
defines an element in A(N). Although there are many choices for x, we have the following
proposition.



Proposition 9. The image of x in A(N) is well-defined up to conjugacy in A(N).

Proof. Suppose X1, x 2 E Z both generate Z/Zo. Then x 2 = xi modulo Z' for some 1 prime
to dj.

By Proposition 8 there exists w- 1 E W such that w- 1 (J) = J and w- 1 acts on the torsion
subgroup of L/Lj by multiplying each element by 1. We thus have Ad(?))xl = x1 = X2
modulo Zo.

In addition Ad(b) is an automorphism of gj. By Remark 7, the distinguished nilpotent
orbits in gj for g exceptional (which is the case we are considering) are invariant under any
automorphism of gj. Hence N and Ad(tb)N are in the same nilpotent orbit in gj and so
there exists g E Gj such that Ad(gzb)N = N, i.e. gib E ZG(N). Since g E Gj, we have
Ad(gwb)xi x=2 modulo Zo. But Z' C ZG(N), thus x, and x 2 are conjugate in A(N). O

Proposition 10. Let K be a reductive algebraic subgroup of G. Let x, y be two semisimple
elements in K whose images in K/Ko are in the same conjugacy class. Let S be a maximal
torus in the reductive group ZK(x).

Then for some g E K and s E S, we have gyg-1 = xs. In particular, Zg(x,S) C
Ad(g)Zg(y).

Proof. This is a result about the semisimple automorphisms of the connected reductive
algebraic group Ko and can be found in [OV, Chapter 4.4]. O

Let N E g be a nilpotent element and let m = {N, H, M} be an s[2-triple for N. The
centralizer ZG(m) of m in G is reductive and there is a decomposition ZG(N) = ZG(m)UN
where UN is the unipotent radical of ZG(N). Moreover, the natural map from ZG(m)/ZG(m)
to A(N) is an isomorphism since UN is connected (see [CM]).

Definition 11. Let L 1 be a pseudo-Levi subgroup with center Z and Lie algebra [. Given
a conjugacy class C in A(N), we say that I has the key property for (N, C) if N E [and
there exists x E Z such that

1. The image of x generates the cyclic group Z/Zo.

2. The image of x in A(N) belongs to C.

Given a pair (N, C) as in the definition above, we will now locate a pseudo-Levi subalgebra
[ with the key property for (N, C). Let x E ZG(m) represent an element in the conjugacy
class C in A(N). Let x = xx, be the Jordan decomposition of x in ZG(m). Since x,, is
unipotent, we have x,, E ZG(m) which means that the image of x, in A(N) coincides with
the image of x. In other words, we can assume x is semisimple.

Let K = ZG(m). Certainly, x E ZK(x) and there exists an integer k such that xk E ZK (x).
Let S be a maximal torus in ZKO(x) containing the semisimple element xk and pick s E S a
topological generator of the compact torus in S. Then

[:= Zg(x, S) = Zg(xs) (2.2)
is a pseudo-Levi subalgebra containing N with corresponding group L1 = ZG(xs). Note that
x generates the component group of the center of L 1. Hence, I has the key property for
(N, C).



Proposition 12. The subalgebra [ in (2.2) is minimal among the pseudo-Levi subalgebras
with the key property for (N, C). Moreover, any other minimal pseudo-Levi subalgebra with
the key property for (N, C) is conjugate to I by an element in ZG(N). -

Proof. Suppose [' is another pseudo-Levi subalgebra with the key property for (N, C) and L'
its corresponding group. Then there exists x' in the center of L' whose image generates the
component group of the center of L' and whose image in A(N) belongs to C. Multiplying x'
by an appropriate element in the identity component of the center of L', we can just assume
that •' = Zg(x').

Let m' = {N, H', M'} be an s[2-triple in ['. Clearly, x' centralizes m'. By Kostant's
theorem there exists g E Z°(N) such that Ad(g)(m') = m. Conjugating [', L', x' by g, we
can assume that x' and x are semisimple elements in ZG(m) and they represent the same
conjugacy class in the component group of ZG(m). Applying Proposition 10, there exists
g E ZG(m) such that Z.(x, S) = [ is contained in Ad(g)Z.(x') = Ad(g)['.

Now if [' is also a minimal pseudo-Levi subalgebra with the key property, then [ =

Ad(g)['. V

Proposition 13. Let I be a minimal pseudo-Levi subalgebra with the key property for (N, C).
Then N is distinguished in [.

Proof. Let c be the center of [. Suppose N is not distinguished and let X e [be a semisimple
element such that [X, N] = 0 but X V c.

Then the centralizer of c U X is a proper Levi subalgebra of [ which contains N. Hence
it is a pseudo-Levi subalgebra of g and it has the key property for the conjugacy class C,
contradicting the minimality of [. O

With these results we can extend the Bala-Carter bijection.

Theorem 14. There is a bijection 0 between G-conjugacy classes of pairs ([, N), where [ is
a pseudo-Levi subalgebra and N is a distinguished nilpotent in [, and G-conjugacy classes of
pairs (N, C), where N is a nilpotent element in g and C is a conjugacy class in A(N).

Proof. Given the pair ([, N), let x be any element in the center Z of L which generates Z/Zo.
Then 0 maps ([, N) to (N, C) where C is the conjugacy class of the image of x in A(N).
This is well-defined by Proposition 9.

Proof of surjectivity: the construction preceding Proposition 12, together with Proposi-
tions 12 and 13 give surjectivity.

Proof of injectivity: suppose 0([, N) = q([', N'). Then there exists g E G such that
Ad(g)N' = N. Now both Ad(g)[' and [ have the key property for the pair 0([, N). Since
N is distinguished in both of these subalgebras, they must both be minimal for the key
property. Hence by Proposition 12 there exists g2 e ZG(N) such that Ad(g 2g)[' = [. Since
Ad(g2g)N' = N, that completes the proof of injectivity. U

Consider the trivial conjugacy class C in A(N). Let [ be a minimal Levi subalgebra
containing N with corresponding group L1 . Since the center of L1 is connected, it follows
that 0([, N) = (N, C) under the bijection. We call the pair ([, N) a Bala-Carter pair when [
is a Levi subalgebra. The fact that the trivial conjugacy class C is always represented by a
Levi subalgebra leads to two easy corollaries of the theorem.



Corollary 15. Any gj with dj = 1 is a Levi subalgebra of g.

Corollary 16. Any pair (g j, N) with dj > 1 gets mapped under ¢ to a non-trivial conjugacy
class in A(N).

Now suppose ¢(gj, N) equals (N, C) for some non-trivial conjugacy class C in A(N).
What can we say about the order of an element in C? By construction, we represented C
by an element x in the center Z of Gj such that the image of x generates the cyclic group
Z/Z 0 _ Z/dj. Therefore the image of x in A(N) has order different from 1 and dividing dj.
If dj is prime or N is distinguished in g, then elements in C have order exactly dj.

Remark 17. The G-conjugacy classes of pairs (1, N), where N is a distinguished nilpotent
in the pseudo-Levi subalgebra 1, are in bijection with the equivalence classes under W of
pairs (J, Jdynkin), where J C II and Jdynkin is the weighted Dynkin diagram of a distinguished
nilpotent orbit in gj. This is a consequence of Proposition 2, Proposition 4, and Remark 7.

Remark 18. Proposition 9 implies that for every element x e A(N), x is conjugate to x' for
all 1 prime to the order of x. Consequently, the characters for the representations of A(N)
take their values in the integers ([DF, Exercise 20 in 15.4]). We will find the characters of
the irreducible representations of A(N) in the next chapter.

2.3 Computing the bijection

Given a nilpotent orbit (9 in g, we would like to find all pairs (1, N) up to G-conjugacy such
that N e O and N is a distinguished nilpotent in the pseudo-Levi subalgebra [. Then for
any N (9, we would know the number of conjugacy classes of A(N) and some information
about the order of elements in each conjugacy class.

Let T denote the map from pairs (1, N) appearing in the bijection (up to conjugacy) to
nilpotent elements in g (up to conjugacy) given by '((, N) = N. To compute the fiber of
T above any element in the orbit 0, we only need to consider pairs (g j, N) such that N is
distinguished in gj and N E (9. Moreover by Remark 17, each conjugacy classes of these
pairs is in bijection with pairs (J, Jdynkin) up to equivalence under W, where Jdynkin is the
weighted Dynkin diagram of N in gJ.

We now present an algorithm for computing T. For each pseudo-Levi subalgebra gj,
we make a list of the weighted Dynkin diagrams of the distinguished nilpotent orbits in gj
by looking at tables in [Ca2]. Fix such a weighted Dynkin diagram for the distinguished
nilpotent N E gj. This tells us the values of ai(H) for ai E J, where H E t is the neutral
element of an sl2-triple for some conjugate of N. Moreover, H belongs to the semisimple
part of gj and this fact uniquely determines the values of ai(H) for all ai E II. Then we
locate w E W such that ai(Ad(tb)H) Ž> 0 for all ai E II. These positive integers yield the
weighted Dynkin diagram of the nilpotent orbit in 9 through N.

In fact, the location of w is not difficult. If ai(H) < 0 for some ai E 1I, then the number
of positive roots a such that a(Ad(ýi)H) < 0 is one less than the number with a(H) < 0.
We also have aj(Ad(si)H) = si(aj)(H) for aj E 1I. The integers aj(Ad(ii)H) for aj G II
yield a new labeled diagram and we continue applying simple reflections in this manner until
all nodes of the diagram are non-negative, arriving at the desired weighted Dynkin diagram.



Example 19. Let G be of type G2 . Consider the example of the regular nilpotent in the
pseudo-Levi subalgebra of type A, + A1. For the neutral element H in the s[2-triple cor-
responding to the regular nilpotent in A1 + A1, we have ao0(H) = 2(H) = 2 (a2 is the
short simple root). Because a, = !(-ao - 3a 2 ), it follows that a, (H) = -4. We encode
this information in a weighted diagram with respect to a,, a 2 ; the diagram looks like -4 2.

Following the algorithm above, we apply the simple reflection s, to H and the diagram be-
comes 4 -2 because s8 (a2) = a2 + a. Then we apply s2 and the diagram becomes -2 2

since s2 (a1) = a1 + 3a2. Finally applying s, yields 2 o, the weighted Dynkin diagram of the
subregular nilpotent orbit in G2. For gj of type A1 + A•1, we have dj = cl = 2 and so the
component group of a subregular nilpotent in G 2 contains a conjugacy class with elements
of order 2.

The only other pseudo-Levi subalgebra in G2 (up to conjugacy), which is not a Levi
subalgebra, is of type A2 . Choosing the regular nilpotent in A2 yields the weighted diagram
2 -2. Applying the element w = sls2s1s2 gives the weighted Dynkin diagram 2 0. For gj of
type A2 , we have dj = c2 = 3 and therefore the component group of a subregular nilpotent
contains a conjugacy class with elements of order 3.

These calculations and Theorem 14 imply that when N is not a subregular nilpotent in
G2 , we have A(N) = 1. When N is a subregular nilpotent, A(N) contains two non-trivial
conjugacy classes, one with elements of order 2 and the other with elements of order 3.
Let x e A(N) have order 3. Since x2 also has order 3, there exists y E A(N) such that
yxy - 1 = x 2 . Conjugating both sides by y gives y2 xy- 2 = X4 = xwhich forces y to have even
order. But then y must have order 2 and the subgroup generated by x and y is isomorphic
to S3, the symmetric group on 3 letters. Since this subgroup intersects all conjugacy classes
in the finite group A(N), we conclude that A(N) = S3.

2.3.1 Exceptional groups

We carried out the algorithm for the exceptional groups. We use the notation Sm for the
symmetric group on m letters and Bala and Carter's notation for a distinguished nilpotent
in a semisimple Lie algebra. There are five cases that occur:

1. The fiber of T consists of one element, namely a distinguished nilpotent in a Levi
subalgebra (the Bala-Carter pair). Thus A(N) is trivial.

2. The fiber of T consists of two elements. In addition to the Bala-Carter pair, there
is another pair which contributes a conjugacy class to A(N). Thus A(N) = S2 since
A(N) has only two conjugacy classes.

We find that when gj is of type 2A 3 + A1 in E7 or of type 2A 3 + A1 , A1 + A7 , or
D5 + A 3 in E8, the regular nilpotent in gj gives rise to an element of order 2 in A(N)
even though dg = 4.

3. The fiber has three elements. In addition to the Bala-Carter pair, there is one conjugacy
class with elements of order 2 and another with elements of order 3. The same argument
given in Example 19 shows that A(N) = S3 .



4. The distinguished nilpotent orbit F4 (a 3 ) in F4. Since F 4 (a3 ) is distinguished, the con-
jugacy class in A(N) corresponding to a pair (g j, N) contains elements of order exactly
dj. We find that there are four non-trivial conjugacy classes in A(N) corresponding to
A3 + A1 , A 2 + A 2, B4 (a1 ), and A1 + C3 (al) consisting of elements of order 4, 3, 2, and
2, respectively. I am not sure if it is possible to conclude immediately that A(N) = S4,
but we will see this in the next chapter.

5. The distinguished nilpotent orbit E8 (a7) in Es. There are six non-trivial conjugacy
classes in A(N) corresponding to As + A2+ A1 , 2A 4 , D5(al)+ A3 , EA6 (a3 )+ A 2 , D8 (as),
and E7 (a5 ) + A1 consisting of elements of order 6, 5, 4, 3, 2, and 2, respectively. We
will see shortly that A(N) = S 5.

The results for the bijection in the exceptional groups are listed in the tables in Chapter 6.

2.3.2 Classical groups

In type An, dj always equals one and hence all A(N) are trivial.
For the other classical groups, dj = 1 or 2 and so every (non-identity) element in A(N)

has order two and therefore A(N) must be an elementary abelian 2-group. Using the usual
description of the classical groups and their nilpotents, we will now describe the fiber of the
map TI above the nilpotent N.

Let e = 0, 1. All congruences are modulo 2.
Consider a complex vector space V of dimension m (m is even if e = 1) with basis

el, e2 , ... , em and an inner product (,) satisfying (ei, ej) = 0 if i+j 0 m+1 and (ei, em+1-i) =
(-1)E(em+,i,ei) = 1.

Let G1 be the identity component of the subgroup of GL(V) which preserves (,) and let
G = Gad be the quotient of G1 by its center. Their Lie algebra g consists of the elements
X E gl(V) for which

(X.v1 , v2) + (Vl, X.v 2) = 0 for all v1, v2 E V.

We choose t to be the diagonal matrices in g C g[(V) and b to be the upper triangular
matrices in g C g[(V). The rank of g is n = [m/2J. Let us describe the simple components
of the pseudo-Levi subalgebras in g containing t.

For 1 < k < 1 < m/2, let V1 be the subspace of V spanned by ek, ek+1, ... , el and V2 be
the subspace of V spanned by em+1-k, em-k, ... em+,-. Then

{X egj X.V1 C V1, X.V2 c V2, and X.ej = 0 for all ej 0 V, + V2}

is isomorphic to g[l-k+1 and it is a summand of gj where J = {fk,... , a-_1}.
On the other hand, for k = 1 and 1 < I < m/2, we have

{X E gi X.(V1 + V2) c V1 + V2, and X.e, = 0 for all e V VI1 + V2}

is isomorphic to so 21 if E = 0 and is isomorphic to sP21 if e = 1. This is a summand of gj
where J = {cjao,..., a-,1} (we assume 1 > 1 if e = 0).



Finally, if I = [m/2] and 1 < k < 1, then

{X e g1 X.(Vi + V2 ) C V1 + V2 , and X.ei = 0 for all ei V V1 + V2 }

is isomorphic to 5 0 m-2k+2 if e = 0 and is isomorphic to SPm-2k+2 if E = 1. This is a summand
of gj where J = {ak,.., ,an} (we assume k < 1 if e = 0 and mis even).

Each nilpotent N E g has a Jordan normal form in g[(V) and so we can associate to N a
partition [P1 Ž P2... Ž! Pk] of m, abbreviated [pj]. Let p(i) be the number of times i appears
in the partition. The only partitions which actually arise are the ones where i e6 implies
p(i) is even. The partition completely determines the nilpotent orbit in g except for the very
even orbits in D., n even, where all the parts in the partition are even (see Section 1.3).

The distinguished nilpotents in g correspond to partitions where i e E implies p(i) = 0
and i 0 E implies p(i) = 1.

Given a distinguished nilpotent element in a pseudo-Levi subalgebra 9j, corresponding
to a partition in each simple component, which partition does it correspond to in g? The
answer is clear: the parts in the partition for each sl are doubled and taken together with
the parts in the two simple components not isomorphic to s[. These yield a partition of m
after we tack on the appropriate number of l's. This partition automatically satisfies the
condition on parts imposed by g.

Conversely, given the partition [pj] for a nilpotent N E g, what is the fiber of the map T
above N? We now answer this question.

Define the following sets which depend on the partition [pj] and e:

Sodd = {iE NI i # E, pI(i) =1}
Seven= {i E NI i 6, p(i) 0}.

Let s = EiESodd i.

Choose TI C Sodd and T2 C Seven. Let ti = EiET, i and t 2 = -iET2 i. Define a(i) as
follows

(i) if i -~e or i E Seven- T22
a(i) - IA(i)-1 if i E Sodd

12
2'- 1 if i E T2

Type Cn

Here s, t1 t2 are automatically even. To the triple (N, T1, T2) we can associate the stan-
dard pseudo-Levi subalgebra with simple components siptl+t2, Pt2 +s-t 1 , and a(i) copies of
type Ai- 1 for each i E N. Choose the regular nilpotent in each Ai- 1 component. Choose the
distinguished nilpotent in sPtx+t2 corresponding to the partition whose parts are the elements
of the set T, U T2 and choose the distinguished nilpotent in 2Pt2 +s-t 1 corresponding to the
partition whose parts are the elements of the set T2 U (Sodd - T1).

In this manner, we obtain all the pairs (gj , N') in the fiber of T above N. Note that
interchanging T1 and Sodd - T1 yields conjugate pairs. This is the phenomenon discussed in
Remark 7.



Example 20. Consider the nilpotent orbit in C6 with partition [4, 4, 2, 2]. So e = 1 and
p(2) = p(4) = 2. We have Sodd = 0 and Seven = {2, 4}. The possible choices for T 2 are
0, {2}, {4}, or {2,4}.

If T2 = 0, then a(2) = a(4) = 1 and we get the regular nilpotent in A3 + A1 (this is the
Bala-Carter pair).

If T2 = {2}, then a(2) = 0 and a(4) = 1 and we get the regular nilpotent in C0 + A3 +CO.
If T2 = {4}, then a(2) = 1 and a(4) = 0 and we get the regular nilpotent in C2+ A1 +C2.
Finally, if T2 = {2, 4}, then a(2) = a(4) = 0 and we get the pseudo-Levi subalgebra

C3 + C3 with the subregular nilpotent [4,2] in each C3 factor.
We see that A(N) = Z/2 x Z/2.

Type Bn

Here s is automatically odd. We require that t1  t 2 . To the triple (N, T 1, T2) we can
associate the standard pseudo-Levi subalgebra with simple components sotl+t2 , sot2+8-tl and
a(i) copies of type Ai- 1 for each i E N. Choose the regular nilpotent in each Ai- 1. Choose
the distinguished nilpotent in sotl+t2 corresponding to the partition whose parts are the
elements of the set T, U T2 and choose the distinguished nilpotent in sot2+8-t1 corresponding
to the partition whose parts are the elements of the set T2 U (Sodd - T 1).

In this manner, we obtain all the pairs (gj, N') in the fiber of T above N.

Example 21. Consider the nilpotent orbit in B 4 with partition [5, 3, 1]. So e = 0 and
p(1) = L(3) = I(5) = 1. We have Sodd = {1, 3, 5} and Seven, = 0. The possible choices for T1
are 0, {1, 3}, {1,5}, or {3, 5} since t2 = 0 and so t1 must be even. For all choices of T1 and
for all i, we have a(i) = 0.

If T1 = 0, then we get the nilpotent [5, 3, 1] in B 4 (the Bala-Carter pair).
If T1 = {1, 3}, then we get the pseudo-Levi subalgebra D 2 + B 2 with the nilpotent [3, 1]

in D 2 and the nilpotent [5] in B 2 .
If T1 = {1, 5}, then we get D 3 + BS with the nilpotent [5, 1] in D 3 and the nilpotent [3]

in B 1.
Finally, if T, = {3, 5}, then we get the subregular nilpotent [5, 3] in D4 .
We see that A(N) = Z/2 x Z/2.

Type Dn

Here s is automatically even. We require that t, t2 . To the triple (N, T1, T2) we
can associate the standard pseudo-Levi with simple components sot+t 2 , 502 +8-t1 and a(i)
copies of type Ai- 1 for each i E N. Choose the regular nilpotent in each Ai- 1. Choose the
distinguished nilpotent in sotl +t 2 corresponding to the partition whose parts are the elements
of the set T1 U T2 and choose the distinguished nilpotent in sot 2 +8-t 1 corresponding to the
partition whose parts are the elements of the set T2 U (Sodd - T1).

We thus obtain all the pairs (gj, N') in the fiber of T above N. As in type On, inter-
changing T1 and Sodd - T1 yields conjugate pairs. In the very even case, only a Bala-Carter
pair maps to N under T, so our carelessness above with partitions is harmless.



2.3.3 Relation to known results about A(N) for classical groups

Assume g is of type Bn, Cn, or D,. We have already seen that A(N) is an elementary
abelian 2-group. We now recall the usual way to see this and to see which conjugacy classes
correspond to the triples (N, T1, T2) described in the previous subsection.

Let [pj] be the partition of N and form an s[2-triple m = {N, H, M}. The action of m
on V = Cm decomposes V into irreducible modules for m of dimension equal to the parts of
[pj]. Denote by M(r) the sum of the modules of dimension r.

For i E N, let K be the subgroup of GL(V) which preserves (,), commutes with m, and
acts as the identity on M(r) for r : i. Then K is determined by its action on the highest
weight space of M(i) and K is isomorphic to O(p(i), C) if i 0 e and to Sp(p(i), C) if i E
(see [CM, Chapter 5]).

Hence ZG1 (m) is isomorphic to

J O((i), C) x 7 Sp(u(i), C) if e = 1 (2.3)
ife i_6e

and S(H O(p(i), C) x lSp(I(i), C)) if e 0. (2.4)
isE i-E

In type C, and D, the center of G, has two elements which we need to ignore if we are
interested in A(N). Taking the center of G, into account, we see that the conjugacy classes
in A(N) are parameterized by subsets T1 C Soad and T2 C S.even satisfying the conditions of
the previous subsection. Namely, given such a pair of subsets, the corresponding conjugacy
class in A(N) is represented in ZG1 (m) by an element which has determinant -1 on the
highest weight space of M(i) for i E T1 U T2 and determinant 1 on the highest weight space
of M(i) for i 0 T1 U T2. In type B,, and D., the condition that t t2 is imposed by the
determinant 1 condition above and in type C,, and D, the equivalence of interchanging T1

and Sodd - T1 comes from the presence of the center in G1.
On the other hand, given the pair (T1, T2), define g E GL(V) to be multiplication on the

basis vector ej by the scalar

-1 if 1< i < 1 + 2- - 2

1 if tl+2 < i< M -_ t l +t2
_1  if 122 <t < im -

2 2-1 ifm - t •*<i~m

Then the image of g in G = Gad belongs to the center of the pseudo-Levi subgroup L1 deter-
mined by the triple (N, T 1, T2) in 2.3.2. Moreover, g does not lie in the identity component of
the center of L1 and so represents the conjugacy class in A(N) corresponding to (N, T1, T2 )
under our generalized Bala-Carter bijection. We also see that g gives rise to same conjugacy
class specified by the pair (T1 , T2) of the previous paragraph. This is the relation between
the classically known conjugacy classes in A(N) and our bijection.

2.4 Conjugacy classes in 7r (O)

In this section, G is connected, simple, and simply-connected. We will write 7r (ON) for
ZG(N)/ZG(N) and A(N) for the same group when we have in mind Gad, the quotient of G



by its center.
Although the groups 7r (ON) have been computed in the literature [Ll], [CM], we thought

it would be fun to use the bijection and elementary facts about root systems to give a some-
what unified approach to the conjugacy classes in 7r (ON). This at least has the advantage
of making the thesis self-contained.

The center of G is isomorphic to the finite abelian group L/L (actually to the dual of
L/L, which is isomorphic to L/L). If N is a distinguished nilpotent in g, then no element
of the center (which consists of semisimple elements) lies in Z°(N) (which is unipotent).
Hence w (ON) is a central extension of A(N) by a finite group isomorphic to L/L.

Consider the following generalization

Proposition 22. Let N be a distinguished nilpotent element in gj, a Levi subalgebra. Then
7 1 (ON) is a central extension of A(N) by a finite group isomorphic to the torsion subgroup
of L/LJ.

Proof. The center Z of G is isomorphic to (C*)r x K, where K is isomorphic to the torsion
subgroup of L/Lj, and we can view K as a quotient of the center of G.

Since Gj is a Levi subgroup and N is distinguished in gj, the Bala-Carter classification
implies that Zo is a maximal torus of ZG(N). If Zo were not maximal, N would be contained
in the centralizer of the maximal torus in Z°(N), which would be a proper Levi subalgebra
of gj.

Therefore, the image of the center of G in Wr (ON) generates a central subgroup precisely
isomorphic to K. l

We can use a similar trick even when gj is not a Levi subalgebra. The previous proposition
is a statement about how the trivial conjugacy class lifts from A(N) to 7rl (ON). We can ask
the same question for any other conjugacy class.

Suppose N is distinguished in gj. By studying the torsion subgroup of L/L , we can see
how the conjugacy class C in A(N) associated to the pair (gj, N) lifts to lrl(ON). But we
have to be careful, because when the identity component of the center of Gj is not a maximal
torus in ZG(N), it can happen that the inclusion of L/Lj into L/Lj is not an isomorphism
even when 7r (ON) " A(N).

We will use these ideas to study the conjugacy classes in rl(ON).

Type A,

We have seen that A(N) = 1 and all pseudo-Levi subalgebras are actually Levi subal-
gebras. Thus 7r,(ON) is isomorphic to the torsion subgroup of L/Lj where N is a regular
nilpotent in g• and J C HI.

Let II - J consist of the simple roots ail, . . ,aik. Let d = gcd(n + 1, il,.. ., ik). If d = 1,
then L/Lj is torsion free. If d > 1 then

1 2 d-1 1 1 d-1A =-(dld ... ,- d  -,0, d,...,0,d " d,., •

(in the basis of simple roots) belongs to L. Now A V Lj but dA E Lj and in fact A generates
the torsion subgroup of L/Lj. Hence 7r (ON) _ Z/d.



In the notation of partitions, d also equals gcd(pi,..., Pk) where [pj] is the partition
corresponding to N.

We have seen that A(N) is an elementary abelian 2-group in types Cn, B, and Dn
because all the coefficients of the highest root 0 are 1 or 2.

Type Cn

The group L/L has order 2 and is generated by the weight !a e L. Take J C f•. There
are three cases:

1. an, ao ý J. Then L/Lj is torsion free.

2. an, a 0 E J. Then the torsion subgroup of L/Lj is isomorphic to Z/2 E Z/2.

3. Otherwise, the torsion subgroup of I/Lj is isomorphic to Z/2.

Case (2) implies that the lifting of an element of order 2 from A(N) to rl (ON) still has
order two. Conclusion: 7r (ON) is also an elementary abelian 2-group.

Let N be distinguished in the Levi subalgebra gj with J C H. Then an E J implies
wl(ON) c A(N) x Z/2. If an V J, then 7r (ON) - A(N). In the notation of partitions, the
latter case happens only when all parts occur an even number of times in [p] .

Type Bn

The group L/L has order 2 and is generated by the weight

T = 2( a2) EL.
i odd,i>1

Let IIodd = {ai e HII i is odd} and Heven = II - IIodd. If J C II, the cases that arise are:

1. Hodd 0 J. Then L/Lj is torsion free.

2. Hodd C J. Then the torsion subgroup of L/Lj is isomorphic to Z/2.

If J is not conjugate to a subset of H (so a0 , a, e J), the cases are:

3. HOdd C J. Then the torsion subgroup of L/Lj is isomorphic to Z/2 e Z/2.

4. leven C J. Then the torsion subgroup of L/Lj is isomorphic to Z/4.

5. Neither (3) nor (4) holds. Then the torsion subgroup of L/Lj is isomorphic to Z/2.

Consider the non-identity element w E WA defined in Proposition 5. Namely, w =

Wo(Wo)j,, where J' = II - a,. Then w interchanges a0 and a, and fixes all other ai E HI, as
noted in the figure.

Proposition 23. In cases (3) and (4), the element w acts by non-trivial automorphism on
the torsion part of L/Lj. Hence as in the proof of Proposition 9, the two liftings of the
element corresponding to (9g, N) in A(N) are in the same conjugacy class in r1 (ON).



Proof. In both cases w(J) = J and W(T) - T. In case (4), we have

w(T,) = -T modulo Li,

proving the first statement since the image of Tc generates the torsion subgroup in L/Lj "

Z/4. In case (3), we have

w(T-) _ T + Tj modulo Lj,

proving the first statement since the images of T, and Tj generate the torsion subgroup in
L/Lj _ Z/2 e Z/2.

The second statement follows as in Proposition 9 because w induces an automorphism
of gj preserving each simple component. Hence there exists g E ZG(N) which interchanges
the two lifts of an element in the conjugacy class C in A(N). O

Case (2) tells us when 7r (ON) is bigger than A(N). The condition Hodd C J C II implies
gj contains no simple components of type Ak for k even. Thus in the notation of partitions,
each odd part in [pj] appears only once.

Assume 7r (ON) is bigger than A(N) and let x e 7r (ON) be the image of the non-trivial
central element in G. Let y E 7lr(ON) be different from 1,x. The previous proposition
implies that y and yx are in the same conjugacy class in r1 (ON). We conclude that r1 (ON)
has one more conjugacy class than A(N). We will need these facts when we search for the
irreducible representations of r1 (ON) in Chapter 3.

Type D,, n is odd

The group L/L _ Z/4 is generated by the weight

Trc = 2( a Oi) +[ 4 (On-I - a~n) E L.

i odd,i>1

Let nodd = {f C III i is odd} U {an- 1} and IIeVen = - nHodd . If J c H, the appropriate
cases are:

1. an-1 J or an V J. Then L/Lj is torsion free.

2. I1 odd _ J, but an-1, an E J. Then the torsion subgroup of L/Lj is isomorphic to Z/2.

3. Ilodd C J. Then the torsion subgroup of L/Lj is isomorphic to Z/4.

Assume now that J is not conjugate to a subset of II. We must have a0 , 7 , an-1, an E J.
The cases are:

4. Hodd CJ or .even C J. Then the torsion subgroup of L/Lj is isomorphic to Z/4EZ/2,
with r, generating the Z/4 and Tj generating the Z/2.

5. Otherwise, the torsion subgroup of L/Lj is isomorphic to Z/2 e Z/2.



Assume J is as in case (4). Let y e r" (ON) be a lift of an element in C, the conjugacy
class in A(N) determined by (gj, N). Let x be the element in the center of G determined
by Tc(x) = (, where ( is a primitive fourth root of unity.

As in type B., consider w = wo(wo)j, where J' = H - a,. Then w interchanges a0 and
a, and interchanges an-1 and an, but fixes all other ai E HI. So in case (4), w(J) = J and

w(Tc) - Tc + Tj modulo Li. (2.5)

As in Proposition 23, w gives rise to an element g E ZG(N) which conjugates y to yx 2 and
yx to yx 3 in 7rN(ON).

In addition, (3), (4) and (5) imply that in the group G1 = G/(x2 ) (which is the special
orthogonal group), all elements in A(N) = ZG1 (N)/ZG1 (N) have order two. Conclusion: if

7r (ON) - A(N), then r (ON) is an elementary abelian 2-group; if rl(ON) is bigger than
A(N), then rl (ON) has two more conjugacy classes than A(N).

The latter situation occurs when (3) is satisfied. The condition Hldd C J c H implies
gj contains no simple components of type Ak for k even. In the notation of partitions, this
means that each odd part in [pj] appears only once.

Type Dn, n is even

The group L/L _ Z/2 e( Z/2 is generated by the weights

Ti =1( Z ai)
i odd,i>1

1
T2 = - n-1 + n)*2

Let IIodd - (ai E HII i is odd} U {an} and Ieven = I - IIodd. If J C HII, the appropriate cases
are:

1. an- 1 ( J or an V J. Then L/Lj is torsion free.

2. Hodd _ J, but an- 1, an e J. Then the torsion subgroup of L/Lj is isomorphic to Z/2,
generated by 72.

3. Hodd C J. Then the torsion subgroup of L/Li is isomorphic to Z/2 e Z/2.

Assume that J is not conjugate to a subset of H. We must have a0 , a1 , an-i, an E J. The
appropriate cases are:

4. HIodd C J. Then the torsion subgroup of L/Lj is isomorphic to Z/2 ( Z/2 ( Z/2, with
generators Tr1 , T2, and Tj.

5. H~-'" C J. Then the torsion subgroup of L/Li is isomorphic to Z/4 e Z/2, with
generators Tr1 (of order 4) and T2 (of order 2).

6. Otherwise, the torsion subgroup of L/Li is isomorphic to Z/2 e( Z/2.



Take J as in case (4) or (5). Let C be the conjugacy class in A(N) determined by (gj , N).
Let x be the element in the center of G defined by r (x) = -1 and T2(x) = 1. Let y E rl(ON)
be a lift of an element in the conjugacy class C.

The Weyl group element w (defined as for n odd) has the same action on fl as before.
In case (4),

w(Tr1 ) =_ 1 + -Tj modulo Li (2.6)

and in case (5),

w(T1) -T 1 modulo Li. (2.7)

The implication is that in cases (4) and (5), w gives rise to an element g E ZG (N) as in
Proposition 23 that conjugates y to yx. Furthermore, for G1 = G/(x) (special orthogonal
group), all elements in ZGI (N)/ZGO (N) have order two. We have the same conclusions as
for the case when n was odd.

Type E 6

Here L/L _ Z/3 and is generated by the weight

12 12
S= (-, - 0 - - 0).

3 3' '3 3

Let J C H. We have L/Lj is torsion free unless 3T- E Lj in which case L/Lj _ Z/3. Now
3 T7 E Lj if and only if a,, a 2 , a4, a5 E J, which means (j is of type 2A2 , 2A 2 +A, A5s, or E6.

Only for the nilpotent E6 (a3) does it happen that IA(N)I > 1 and the center of G
contributes to ir (ON). In this case our calculations show that A(N) has only two conjugacy
classes forcing A(N) = S2 . Then ir (ON) has 6 elements with a central subgroup isomorphic
to Z/3. So r (ON) -- S2 x Z/3.

Remark 24. By looking at the weighted Dynkin diagram for the nilpotent orbits in E6,
we observe that if lr (ON) is bigger than A(N), then the weighted Dynkin diagram for N
has a non-zero value on the nodes corresponding to a, and a 5 . Note that the fundamental
weights w, and w5 corresponding to a, and a 5 do not lie in the root lattice and their images
in L/L _ Z/3 are the two generators.

In the next chapter we will see that the remark leads to another reason that 7r (ON) is
a split central extension of A(N) when N is E6 (a3 ).

Type E7

Here L/L • Z/2 and is generated by the weight

1 11r = (0 , 0 , o ' 1, o 2 1 2 1

Let J C HII. We have I/LL is torsion free unless 2Tc E Lj in which case L/L.j _ Z/2.
The latter case occurs if and only if a 4, a 6 , •7 e J, which implies that (Dj is of type
(3A 1)", 4A, A2 + 3A 1, (A3 + A1)",A 3+2A 1,D 4 +Ai, A3+A 2 +A 1,A'5, As+Al, Ds+A 1,D6,
and Ez.



Remark 25. By looking at the weighted Dynkin diagram for the nilpotents in E7, we ob-
serve that wr (ON) is bigger than A(N) if and only if the weighted Dynkin diagram for N
has a non-zero value on one of the nodes corresponding to a4, a6, or a7. Note that the
fundamental weights w4, w6 , and w7 are exactly the set of fundamental weights which do not
lie in the root lattice.

In the next chapter we will use Remark 25 to show that 7r (ON) is always a split central
extension of A(N) when G is of type E7 .

Remark 26. The entries for rr (ON) for the nilpotents 4A, and A" are incorrect in [CM].



Chapter 3

Representations of 71r (ON)

Now G is simply-connected, connected, and simple. We write r1 (ON) for ZG(N)/ZgI(N)
and A(N) for the same group when we have in mind Gad, the quotient of G by its center.

Let N E g be a nilpotent element and let m = {N, H, M} be an s[z-triple for N. We
assume that H E t and a&(H) _> 0 for a& e II. By si[-theory, ad(H) acts on g with integral
eigenvalues. Define

gi = {X e gj [H,X] = iH}.

We have g = EiNZi. The subalgebra p = Gi>ogi is a parabolic subalgebra of g and I = go is
the Levi subalgebra of p containing t. Let L1 C P be the subgroups of G with Lie algebras
[ C p. Denote by U the unipotent radical of P. Recall that ZG(N) = Z8(m)UN where UN
is the unipotent radical of ZG(N) and UN C U. It is known that ZG(N) C P.

For A E X*(T) (dominant with respect to the positive roots of G coming from Lj), we
denote by VA the representation of L1 of highest weight A extended to P by letting U act
trivially. In this chapter we prove

Theorem 27. Let V be an irreducible representation of 7r (ON). Then there exists A E
X*(T) such that VA satisfies

1. V, is trivial on ZG(m) C L1 . Since V\ is trivial on UN by construction, V\ descends to
a representation of 7r1 (ON).

2. V !- V as representations of 7r (ON).

The proof will be by explicit construction in each case. In general there is more than one
choice for A, but for the moment we will be content to find one such A in the classical groups
and give enough information in the exceptional groups to find all such A. Recall that wi are
the fundamental weights for T corresponding to the coroots in IP. It will turn out that it is
always possible to choose a A that is W-conjugate to some wi .

We will first find all representations of 7r (ON) which descend to A(N), i.e. which are
trivial on the image of the center of G. Therefore, for the time being, A belongs to the root
lattice.



Let A E L. We present an algorithm that checks whether VA descends to A(N) and, in
this case, computes the character of VA as a representation of A(N).

Let A1 = A, A2 ,.., A, be the weights on T on V\. Checking that V\ is trivial on ZG(m)
is equivalent to checking that A1,..., Ak are trivial on a maximal torus of Z°(m). How do
we locate a maximal torus in ZG(m)? Conjugate m via an element w E NG(T) such that
m'= Ad(wb)m C gj where gj is a Levi subalgebra and N'= Ad(tb)N is distinguished in g9.
Then a maximal torus in Z4(m') is given by S' = TLJ and so a maximal torus in Z4(m) is
given by S = Ad(?b-1)S'. Now A1,..., Ak are trivial on S precisely when wA 1,..., wAk e Lj.

Finding w is just as in Section 2.3. Given a Bala-Carter pair (gj, N') for N, then w- 1

takes the weighted diagram for N' in gj to the weighted Dynkini diagram for N in g.

Example 28. Consider the example of the nilpotent D 4(al) in E6 . Let H' be the neutral
element of the s[2-triple m' corresponding to the nilpotent D 4 (al1) in the Levi subalgebra
D 4. The weighted Dynkin diagram for H' in D 4 is 2 2 . Writing H' in terms of the simple
coroots of E6, we have H' = 4a' + 6a' + 4a• + 4a'. Therefore, the weighted diagram for
H' in E6 is -4 2 0 2 -4 . Applying w- 1 = s3s2s4s683s2s48185 where s = s to H' yields the
weighted Dynkin diagram oo 0 0 0 of D 4(al) in E6.

The fundamental weight w6 in a basis of simple roots is 1 2 2 1 . Consider the repre-
sentation V,6 of the Levi subgroup of type A 2 + A2 + A1 (extended trivially to P). Then
V, 6 is two dimensional with weights A1 = w6 , A2 = 6- 06. Applying w to A1 and A2 yields
respectively 0 1 2 1 0 and 0 1 1 1 0 which both lie in Lj, the characters spanned by the roots
in D 4. Hence V16 is trivial on Z4(m).

Our assumption remains that A E L. Assume that we have checked that V\ is trivial on
Z4(m) and so descends to a representation of A(N). We show how to compute the character
of V\ as a representation of A(N).

To compute the character of the representation V\ on the conjugacy class C in A(N)
represented by (g•j, N'), we proceed as follows. As above, let ib conjugate m to an s[2-triple
for N' in g•j. The fact that A1, . . . , Ak are trivial on a maximal torus of Z°(m) implies that the
images of wA 1,..., wAk in L/Lj are multiples of Tj. This is because the identity component
of TLJ is a torus (not in general maximal) in Z4(m'). Let Ai - airj in L/Lj and let ( be a
primitive dj-th root of unity. A representative of C in T is given by any element x E TLJ

such that Tj(X) = ý. Therefore, the trace of x on V\ equals E ~a1 . Repeating this process
for each conjugacy class C in A(N) we arrive at the character of V\.

Example 29. Let us compute the character of V, 6 from the previous example on the conju-
gacy class represented by 3A 2 (the notation means the regular nilpotent in the pseudo-Levi
subalgebra of type 3A 2). Here Tj = -a 3 and (3 = 1. The weighted diagram in E6 looks
like 2 2 -6 2 2. We find that w- 1 = 8382848681838582848681838582848683 maps m' to m. Then
wA 1 = -j and wA2 = 2rj and therefore the character value is ( + (2 = 1.

By computing the character of V16 on the conjugacy class represented by A 3 + 2A1, we
find that V16 is the irreducible representation of A(N) = S3 of dimension 2.



3.1 Exceptional Groups
We carried out this algorithm for the exceptional groups. In the tables we list all fundamental
weights wi which lie in the root lattice such that V, descends to give a non-trivial irreducible
representation of A(N).

Certainly whenever the weighted Dynkin diagram of N has a non-zero value on the
ai-node, we automatically get a one-dimensional representation Vj of P coming from the
fundamental weight wi. There is no reason why V,, should descend to rl (ON). Nevertheless,
we checked that this always happens in G2, F4, E7 , E8 (even when 7r (ON) = 1 and even when
wi is not in the root lattice). This means that Z,(m), which we know belongs to 1, actually
belongs to [[, []. In many cases, this is true because Zg(m) is semisimple, but in the remaining
cases it seems surprising. In E6 , the same fact holds whenever 7 1 (ON) is non-trivial (even
when wi is not in the root lattice). Consequently, we omit the trivial representation from
our tables since we get a trivial representation of 7r (ON) for each node of the weighted
Dynkin diagram with non-zero value which does not contribute a non-trivial representation
of 7r (ON).

We also checked in E 6 (resp. E7) that if w is a fundamental weight not in the root lattice
and w corresponds to a node with non-zero value in the weighted Dynkin diagram, then 3w
(resp. 2w) descends to a trivial representation of 7rx (ON). This implies that the kernel of
the representation V, is a normal subgroup of 71 (ON) isomorphic A(N) and hence 7rl (ON)
is a split central extension of A(N). But we observed in Remarks 24 and 25 that whenever
7r (ON) is bigger than A(N), there is always one such node in the weighted Dynkin diagram.
Conclusion: 7r (ON) is always a split central extension of A(N) in E 6 and E7.

It follows that by tensoring the one-dimensional representations coming from these funda-
mental weights (which are trivial on A(N)) with the representations that we found for A(N)
(which are trivial on the image of the center of G), we get all the irreducible representations
for 7r (ON) in E6 and E7.

It remains to show that the representations listed in the tables in Chapter 6 for F4 (a3 )
(respectively Es(a 7)) are irreducible and that the component group is S4 (resp. S5).

Lemma 30. Let x be a character of a representation of a finite group K with the property
that X takes only the values 0,1,-1 at the non-identity elements of K and X(1) 2 < IKI. Then
x is an irreducible character.

Proof. The inner product of x with itself yields

gEK

< (X(1) 2 + JK - 1) < 2.JK
Therefore, (x, x) = 1 and x is irreducible. []

F4 (a3 )

Let C1i, C~2 , C31 04 be the conjugacy classes in A(N) corresponding to F4 (a3 ), A1 +
C3(a,), B4 (a,), A 2 + A 2, A 3 + A• (the subscript denotes the order of the elements in each



conjugacy class). We abbreviate the representations V, listed in the table in Chapter 6 by
Vi.-

First, the order of A(N) is divisible by 12 because A(N) contains elements of order 3 and
4. The lemma then immediately implies that V2 , V3 , and V4 are all irreducible since the order
of A(N) exceeds the square of the dimensions of these representations. Now V1 is irreducible
because the elements in C3 are acting on V1 with eigenvalues equal to primitive third roots
of unity. Hence, if V1 splits into 2 one-dimensional representations, the characters of these
representations would have non-integral values, contradicting Remark 18. We have located
as many irreducible representations of A(N) as there are conjugacy classes in A(N). By
taking the sum of the squares of the dimensions of these representations, we find that A(N)
has order 24.

To determine the isomorphism type of A(N), let x e C3. There exists y E A(N) such
that yxy - 1 = x 2. Then y2 xy- 2 = X4 = x. In other words, y2 commutes with x and so y
must have order 2 or 4. If y2 is not the identity, then xy 2 would have order 6, which cannot
happen. Hence y2 = 1 and the subgroup K generated by x and y is isomorphic to S3. Now
the character table of A(N) reveals that V1 and V2 are not faithful and therefore A(N) has
exactly two non-trivial normal subgroups: N1 consisting of CO U C0 U 03 of order 12 and N2

consisting of C1 U C2. Since the inner product of the characters of V1 and V3 must be zero,
we see that C2 has 3 elements (and therefore N2 has order 4). It follows that K does not
contain any non-trivial normal subgroups of A(N). Hence the permutation representation
of A(N) on the cosets of K gives a faithful embedding of A(N) in S4, which must be an
isomorphism since A(N) has order 24.

Es(ar)

Let C1, C21, 2 3, C4, C 5, 06 be the conjugacy classes corresponding to Es(a7 ),
E7(as) + A1, Ds(as), E6(a3)+A 2, Ds(al)+A 3, 2A4, and A5+A 2+A1 . (the subscript denotes
the order of the elements in each conjugacy class). We abbreviate the representations Vj
listed in the table in Chapter 6 by Vi.

The order of A(N) is divisible by 60 since A(N) contains elements of order 5, 4, and 3.
The lemma then implies that V1, V4, and V8 are irreducible. For V5 and V7, the eigenvalues
of elements in C5 are primitive fifth roots of unity, forcing V5 and V7 to be irreducible by
Remark 18. The representation V6 is clearly not a sum of some combination of the six
irreducible representations that we have already found. Hence if V6 were reducible, the
remaining irreducible representation of A(N) would be a summand of V6 and it would have
dimension less than 6. But then the sum of the squares of the dimensions of the irreducible
representations would be greater than 60, but less than 120, contradicting the fact that A(N)
is divisible by 60. We have thus located the seven irreducible representations of A(N) and
have shown that A(N) has order 120.

The character table reveals that there is a single non-trivial normal subgroup K of A(N)
of order 60. We have K = C, U CU U Ca U C5. The orthogonality of the characters of V6
and V1 immediately implies that C2 contains 15 elements. Moreover, C2 remains a single
conjugacy class in K since K has index 2 in A(N) and therefore any conjugacy class which
splits in K must split into 2 conjugacy classes of equal order.

Hence for any x E C2, H = ZK(x) has order 4 and must be a 2-Sylow subgroup of
K. Moreover, the non-identity elements in H belong to C2. It follows that the number of



2-Sylow subgroups of K is 15/(4 - 1) = 5, which implies that the normalizer in K of H has
order 12. On the other hand, any 2-Sylow subgroup of A(N) has order 8 and it normalizes
some conjugate of H (since H has index 2 in this group of order 8). Hence the normalizer in
A(N) of H has order divisible by 24. But A(N) has no normal subgroup of order 4 and so
the normalizer in A(N) of H has order exactly 24. The permutation representation on the
cosets of this normalizer gives a faithful embedding of A(N) into S 5 since this normalizer
does not contain the non-trivial normal subgroup of A(N). Hence A(N) = S5 by order
considerations.

3.2 Classical Groups

In the classical groups we will need the description of ZG(m) from Section 2.3.3.

Type A,

Let [pj] be the partition in sin,+(C) corresponding to N. The analysis in Section 2.4,
translated into the language of partitions, says that 7r (ON) is cyclic of order equal to the
greatest common divisor d of the pj's. Let x generate the center of s, 1(C) and let = w1 (x)
be a primitive (n + 1)-st root of unity.

Let Ak = W•(n+l) for k = 0,1,..., d- 1. Each Vk is a one-dimensional representation
d

of the parabolic subgroup P associated to N and is trivial on ZG(m). Now the image of x
also generates rl(ON). Finally, Ak(X) = ( , which gives all d-th roots of unity as k runs
through 0, 1, . . ., d - 1. Hence the Vk yield all the irreducible representations of rl (ON).

Other classical groups

Let [pj] be the partition corresponding to N. As in Section 2.3.2 let p(i) be the number
of times i appears in the partition. Recall that p(i) is even whenever i - E.

Let e be the largest even part of the partition and o the largest odd part. Let

E = {e,e-2,...,4,2} and

O= {o,o-2,...,5,3}.

For i E E U O define the number o(i) to be

o-(i) = Z-()(L 2  J + 1).
j>i

The weighted Dynkin diagram of N will have non-zero values on the nodes corresponding
to a,(i) for i E U O. In fact, from the description of ZG(m), all the one-dimensional
representations V,,,() descend to give representations of 7r1 (ON).

Let G = S p2n. As i runs through the even parts of the partition [pj], the one-dimensional
representations VW(i), together with the tensor products among them, exhaust the irreducible
representations of the elementary abelian 2-group -7r (ON). We omit the details.

Let G1 be a special orthogonal group. As i runs through the odd parts less than o
of the partition [pj], the one-dimensional representations V, •(, together with the tensor



products among them, exhaust the irreducible representations of the elementary abelian
2-group ZG, (N)/ZG, (N). We omit the details.

From the enumeration of the conjugacy classes of Irl (ON) given in [L1] or in Section 2.4,
when all odd parts in the partition appear only once, we are still missing one irreducible
representation of ir1 (ON) in type Bn and two irreducible representations in type Dn-

Type Bn

Let [pj] be a partition for the nilpotent N with each odd part appearing once. Let k
be the number of odd parts (k is necessarily odd) and let 1 = L 1 . The Levi subgroup L1

corresponding to N has a simple component of type B1. Then V,. is a representation of L1

of dimension 21 (an incarnation of the spin representation of BI).
Since the odd parts in [pi] appear once, ZG(m) has trivial intersection with the simple

component of L1 of type B1. Therefore, V. is trivial on ZG(m) and descends to a represen-
tation of w1 (ON).

What is its character? Let x generate the center of G. Since wn does not lie in the root
lattice, x acts as -1 on Vn and therefore tr(x, V%) = -21. It follows that for any element
y E 71 (ON), we have tr(y, V4) = -tr(xy, V.) since x is central. But for y : 1,x, we have
seen that y and yx are in the same conjugacy class in rl (ON). Thus tr(y, V%) = 0 for all

y # 1,x.
The order of rl (ON) is 2 k = 221+ 1 and so the inner product of the character of V with

itself is 1. Hence V4 is the missing irreducible representation of w1 (ON).

Type Dn, n odd

Keep the same notation as above for [pj], k, L1 . Now let 1 = k/2 (k is necessarily even).
Then L1 has a simple component of type Dr. Consider the representations Vn- 1 = VnI and
Vn = V. of L 1. These both have dimension 21-1 and come from the half-spin representations
of the component of L1 of type Dr.

As above, Vn- 1 and V1, descend to give representations of rl (ON).
Let x be the generator of the center of G such that wn-1 (x) = (, a primitive fourth root

of unity. Then we have

tr(x, V• 1 ) = tr(x3, Vn) = 2t-1

tr(x, Vn) = tr(x3, V1 -l) = -2t-1ý.

Also we have seen that if y # 1, x, x 2, x3, then y and x2y are in the same conjugacy class in
rl (ON). Thus tr(y, V,- 1) = tr(y, V,) = 0 for all y 5 1,x, x2 X3 , since x2 acts as -1 on V• 1

and Vn.
The order of 7r (ON) is 2k = 221 and so the inner product of the character of Vn- 1 (and

of Vn) with itself is 1. Hence Vn- 1, V~, are the missing irreducible representations of rl (ON).

Type Dn, n even

The situation here is the same as for n odd except that the center is not cyclic. Let X2 , x 1

be the non-identity elements of the center of G with

Wn-1(X2) = wn(x2) = -1 and

wn-(xi) = -1 and wn(xl) = 1



and let x 3 = x 2x1 be the other non-trivial element of the center of G.
Then we have

tr(x2, V.- 1) = tr(x2, ,) = -2

tr(x, V,- 1) = tr(x3, Vn) = -2 '-1

tr(x3, V-1) = tr(xl, V.) = 211.

For y E 71r (ON) not in the center of 7r (ON), y and X2y are in the same conjugacy class.
Thus tr(y, V•~ 1 ) = tr(y, V)- = 0 for all such y, since x 2 acts as -1 on V1 and V2 .

As above, we find that V•,_1 and V, are the missing irreducible representations of X1 (ON).

3.3 Applications to rings of functions

In later work we would like to use the results of Theorem 27 to study the (graded) G-module
structure of the regular functions on any cover of ON. We will not say anything here except
that in order to carry out this project, we must be more careful about which representation
of P we choose in the theorem. On the one hand, we want A to be a combination of simple
roots with non-negative coefficients. On the other hand, Vogan has suggested that A should
be chosen to have minimal length in order that the higher cohomology of certain sheaves
vanishes. This requirement seems natural and moreover, we checked that when we choose A
to have minimal length, A turns out always to be W-conjugate to a fundamental weight.



Chapter 4

A family of representations of Wa

4.1 Notation

For the rest of the thesis, G is simply-connected, connected, and simple. We retain the
notation from the previous chapters and make some more definitions. Let V = X, (T) ®z R
be the real span of the cocharacters of T and let V* = X*(T) ®z R be the real span of the
characters of T. We extend (,) to a pairing of V* and V and extend the action of W to V,
V*. Then the pairing is W-invariant.

For a subset M of V or V*, let L(M) be the lattice generated by M. In Section 1.1, we
defined L, L C V*. Similarly, let Lv = L((Q~v) be the lattice in V generated by OI and let

L = {v E VI (a, v) E Z for all a E D}.

Recall A = L/L. We also have A _ LV/Lv. Let f = IAI. By Proposition 5, f equals the
number of ai E Hf with ci = 1.

Let Lv act on V by translation and form the affine Weyl group W. = W x Lv. Let
Ha,k = {v E V I (a, v) = k} where a 4 and k E Z. Then it is known [Hul] that W. is
generated by the reflections S0 ,k in the hyperplanes HQ,k. Let s(w) be the least number of
reflections needed to write w E W. as a product of reflections. If w is of finite order, then w
has a fixed point on V. In this case define d(w) to be the dimension of the fixed point set of
w. Then d(w) = n - s(w), where recall that n is the rank of G [Cal].

We study the natural action of W, on the set St = LV/tLv where t E N. Thus we get a
representation Ut of W, of dimension t' on the space of complex functions on St. Similarly,
we can consider the action of W. on the set St = Lv/tLv and get a representation Ut of
dimension ft'.

4.2 Fixed points of Wa on St and St

We want to know the number of fixed points of w E W. of finite order on St and St. When t
is not divisible by certain primes associated to (D, the answer is readily computed. But first
we need some preliminaries.

Recall that a root subsystem of 4 is a subset of (I which is itself a root system. Let
M C . The root subsystem spanned by M is the collection of roots in 4 which are integral



combinations of elements in M. The rational closure of a root subsystem V' denoted by (V
is the collection of roots in 4 which are rational combinations of elements in (V. Note that
(V is a root system of the same rank as (V. We will always assume our root subsystems are
integrally closed.

Definition 31. A bad prime of 4D is a prime which divides the order of the torsion subgroup
of L/L(1') for some root subsystem (' C 4).

The following two results are found in [St].

Theorem 32. The bad primes of 4 are precisely those primes which divide a coefficient of
0.

Lemma 33. Let (' be a root subsystem. Any set of simple roots for 4V can be extended to
a set of simple roots for 4.

Corollary 34. Let V' be a root subsystem. Then L(4')/L((•') is isomorphic to the torsion
subgroup of L/L(V').

Proof. Lemma 33 implies that L/L((') is torsion free. Now the corollary follows from the
fact that L(4') and L((') have the same rank. O

Definition 35. We say t is good (for 4)) if it is prime to every bad prime. We say t is very
good if it is also prime to f.

Remark 36. By inspection, when t is prime to the Coxeter number h of W, it is very good.

Lemma 37. Let i, . .. -, fon be a set of linearly independent roots and let (' be the subsystem
they span. Let k, ... , kn E Z. If t is good, there exists u e L' with (0i, u) - ki (mod t) for
all i. If t is very good, there exists u E L' with (0, u) - k, (mod t) for all i.

Proof. (,) induces a pairing of L((') and k' which has determinant equal to [L : L(I')].
The pairing of L((') and L' has determinant equal to f[L: L((')]. The lemma follows since
these determinants are invertible modulo t under the respective hypotheses. O

Definition 38. Let (' C 4D be a root subsystem. Define

P((') = {u e St (a, u) = 0 (mod t) for all a E I'}

and similarly

P(V') = {u e Lv/tLvI (a, u) - 0 (mod t) for all a E (VI}.

We can now prove the main result on the number of fixed points of w E Wa of finite
order.

Proposition 39. If t is good, then the number of fixed points of w on St is ftd(w). If t is
very good, then the number of fixed points of w on St is td(w).



Proof. We give the proof for St, the case of St being similar.
Let 1 = s(w) and let w = 8sl,ki S1 2 ,k2 ... 1,k, be a minimal expression for w as a product of

reflections. The roots fi are necessarily linearly independent. Let V' be the root subsystem
of rank 1 that they span. For any u e L, continue to denote by u its image in St. By an easy
induction on s(w), we have

w(u) = u if and only if (#j, u) = kj (mod t) for j = 1, 2, ..., 1.

Applying the previous lemma, we conclude that the number of fixed points of w is just
IP(#') .

Because f = [Lv' : Lv] and t is prime to f, the inclusion of Lv into Lv induces an
isomorphism of Lv/tLv and Lv/tLv. This isomorphism maps P(') onto P(V').

Now t is not divisible by any bad prime, so Corollary 34 implies t is prime to [L('): L('(V)].
It is easy to see that in this case P(4Ž') = P(0').

We are reduced to computing the cardinality of P(4'). Extend a set of simple roots
{A1,... , Al} of 4' to a set of simple roots {A1,... , A} U {)A+l, ... , A,} of 4( as in Lemma 33.
Let w0,ww,... ,w, E Lv be a corresponding set of fundamental coweights. That is, (Ai, w) =
5ij. Then we have

P(4') = { xwv E Lv/tLvI x - 0 (mod t) for j= 1,2,...,}.

Clearly, the cardinality of P(&') is just t"-1 = td(w) .

Remark 40. The results in this section can be extended to root systems which are not
irreducible. We will need this in the next section.

4.3 Stabilizers of elements in St

Let si e W. be the reflection in the hyperplane HQ,o for i = 1,..., n and let so e W. be the
reflection in the hyperplane H0,1. Let I = {so, Sl, ... , sn}. For any proper subset J of I, the
subgroup of W. generated by the elements in J is a finite Weyl group W J corresponding to
a (not necessarily irreducible) root system (Ij. Recall that a parabolic subgroup of W J is
a subgroup of W J that is conjugate under W J to WJ' for some J' C J. Note that W J is
isomorphic to Wj from the previous chapters, but whereas Wj C W, we have W g C Wa (if
we identify I with II).

In this section we will prove

Proposition 41. If t is good, the stabilizer in W J of an element in St (or St) is a parabolic
subgroup of W J.

First, we need some lemmas. Let Q1 = W J, Q21,..., Qk be representatives of the W J -
conjugacy classes of subgroups of W J which are Weyl groups of root subsystems of 4(Ij.

Lemma 42. Let U be a representation of W g.Suppose U has two expressions as a sum of
induced representations

U = e 1 ftIndj W(1) = ei=1fiIndQ, (1)



where fi and fi' are non-negative integers and fi = 0 whenever Qi is not a parabolic subgroup
ofW'. Then fi = ff for i = 1,2,...,k.

Proof. Let wj be a Coxeter element of Qj. In general it is possible for wj to be conjugate to
wy when j # fj'. This occurs in B 4 , for example. Nevertheless the elements wj distinguish
the subgroups Qj of W' enough to arrive at the conclusion of the lemma.

In fact, the following statements are true about wj :

1. tr(w, IndwJ (1)) > 0 and tr(wj, Ind< ( 1)) > 0.
Qi QJ

2. tr(wj, Ind W J (1)) = 0 if rank Qi < rank Q3.

3. If Qj is actually a parabolic subgroup of W J , then tr(wj, Ind W J (1)) = 0 if rank Qi •<
rank Qj and j $ i.

Only the last statement is not obvious. It is equivalent to the statement that no conjugate
of wj belongs to any Qi of the same rank as Q3. This statement was checked by comparing
the characteristic polynomial for wj with the characteristic polynomials of elements in Qi
using the analysis of conjugacy classes in a Weyl group given in [Cal].

The lemma follows from these statements by reverse induction on the rank of the sub-
groups Qi by taking the trace of wj on both expressions for U. O

Let M C fl and let V' be the root subsystem of D spanned by M. Recall from Section
1.1 that M is a set of simple roots for V'. It follows from Lemma 33 that M can be extended
to a set of simple roots for 4 if and only if 4' = V.

We begin by proving the proposition for the case J = {si,..., sn}, so that W J = W.
First we need some more definitions.

Denote by Wt the subgroup of Wa of the form W K tLv. Note that Wt is isomorphic to
Wa = W1 for all t. Let

Dt = {u E VI (a, u) > 0 for a E II and (0, u) < t}.

Recall that D1 is a fundamental domain for the action of W, on V (see [Hul]). The same
proof also shows that Dt is a fundamental domain for the action Wt on V for any t. Let
Lv = Dt n Lv'. Then each W-orbit on St contains a unique element of L'.

Proof of proposition when W J = W. Choose u e St and let Wu be the stabilizer of
u in W. Without loss of generality, we can assume that u E Lv. Let

II = {a E Il (a, u) - 0 (mod t)}

and let V' be the root subsystem spanned by IIu. It is clear that Wu is just the Weyl group
of V'. To show that W. is a parabolic subgroup of W, we must show that a set of simple
roots for V' extends to a set of simple roots for (, or equivalently that ' = CV.

We may assume that u is non-zero and IIH, II, the result being clear otherwise. So
-0 E IIu. Since u E L• is non-zero and -0 E Hu, we must have (0, u) = t. Also (a, u) = 0
or t for each a E II\{-0}. But if (a',u) = t for some a' E IIu\{-0}, then (0, u) = t
forces (a, u) = 0 for all a E II\{a'}. In other words, IIH, = f• and Wu = W. Note that this



situation can only occur when the coefficient of 0 on a' is one (and this can only occur when
f > 1). We are thus reduced to the case where (a, u) = 0 for each a E IIu\{-0}.

Now take3 E V'. Then
f3=d(-9) + de a

cxIfl\{-0}

where do, d E Q. The fact that t is prime to the index of L(V') in L(4') implies that (3, u)
is a multiple of t. Taking the inner product with u on both sides of the expression for 3
reveals that d is actually an integer. Now it follows that all do are also integers. This means
that # belongs to V' which is what we wanted.

Remark 43. The above proof extends to root systems which are not irreducible, a fact we
will now use.

Proof of proposition for general W 1 . Let V be the representation we called Ut in
the case where (D is replaced by (ID. Continue to denote by V, Ut the restrictions of these
representations to W J . We note that if t is good for the root system (D, then t is also good
for the root system 4Dj [St]. Hence by the character formula of Proposition 39 (which only
depended on the function s(w) and the rank of WJ), we know that Ut is isomorphic to the
direct sum of t' - IJl copies of Vt.

Because both Ut and Vt were constructed as permutation representations (in different
ways), we can express them as a direct sum of induced representations. Each WJ-orbit on
the set used to define the permutation representation contributes a term IndWj (1) where H
is the stabilizer of a point in the orbit.

Thus on the one hand, knowing the proposition for the case W J = W allows us to
conclude that V = e•l fi Indwj (1) where fi = 0 when Qj is not a parabolic subgroup of

W J . On the other hand, it is clear that the stabilizer in W J of an element u E St is the Weyl
group of a root subsystem of 4I)j. Hence, we can write ^ = e_1k f, Indwj (1). By Lemma 42,
we can conclude that ff = 0 when Qi is not a parabolic subgroup of W1 . In other words,
the stabilizer in W J of u E St is actually a parabolic subgroup, which concludes the proof.

For the remainder of this section and the next section, we focus on the case W g = W.
Let P1 = W, P2 , . . , Pm, be representatives of the W-conjugacy classes of parabolic subgroups
of W, with 1P| > P Pj for i < j. By the previous proposition we have

Ut= - ilXi(t) IndV(1) and (4.1)

Ut= e~iDm=i(t) IndV(1). (4.2)

The functions xi (t) and Xi (t) are both well defined by Lemma 42. When t is very good,
we have Xi(t) = fx 2 (t) by comparison of the characters of Ut and Ut. We will see in the
next section that Xi (t) is a polynomial in t when t is good by relating it to the characteristic
polynomial of a hyperplane arrangement. For now let us observe that fi(t) has a nice
combinatorial description when t is good.

Let M be a proper subset of fl. Define p(M, t) to be the number of solutions y in strictly
positive integers to the equation

SCIYI I = t.

QiEII-M



Proposition 44. Assume t is good. Let IIj be a set of simple roots corresponding to P3 .
Then *j(t) is equal to

E p(M, t)

where the sum is over the subsets M of fI which are W-conjugate to 1I.

Proof. Recall the definitions of Wu and IIf, in the first part of the proof of the previous
proposition. We have

j(t) = #{u e L4I Wu conjugate to P,}

- #{u e L4' I IIu conjugate to IIH}

- #{u E i IIHu = M} (4.3)

where the sum is over the subsets M of fl which are W-conjugate to II.
But #{u E L•k IIf = M} is easily determined. Let wv, w, ... , w' be a set of fundamental

coweights for Lv corresponding to II. Express u E Lv as ylwv + y2w + ... + ynw. Let
Yo = t - .eI ciyi. Then u E L if and only if yi2 > 0 for i = 0, 1,... n. In order for fl, to
equal M we must have yi = 0 for ai EM and yi > 0 for ai V M. Hence #{u E L•1 II, = M}
is p(M, t). O

4.4 Hyperplane arrangements

Let A be a set of hyperplanes in V = R n such that nHEAH = 0. Let £ = £(A) be the set of
intersections of these hyperplanes. We consider V E £. Partially order £ by reverse inclusion
and define a M5bius function p of £ as follows: p(X, X) = 1 and Ex <z <v pi(Z, Y) = 0 if
X < Y and p(X, Y) = 0 otherwise. The characteristic polynomial of L is

X(£, t) = Z( V , X)tdimX"

XEL

Let M be the complex manifold obtained by removing from Cn the complexification of
the hyperplanes in A. Orlik and Solomon have shown that the Poincar6 polynomial

P(M, t)= dimHP(M, C) tp

p>O

is equal to (-t)nx(£, -t-). For these results see [OS1].
In our case A is the set of hyperplanes HQ,0 where a E P. For any X e £(A) let

Ax = {X n HI H E A and X g' H}. Let Lx = L(Ax) be the corresponding partially
ordered set and (£ xC, t) its characteristic polynomial. In [OS2] it is proved that

tdimX - E x(Y', t) (4.4)
YE4,Y>X

For each X e £(A) let Px be the elements of W which fix X pointwise. It is known that
Px is a parabolic subgroup of W. Clearly, if Px and Pv are conjugate, then 1x and L' are
isomorphic and have the same characteristic polynomial.



The next proposition relates the functions kj (t) to the characteristic polynomials of
hyperplane arrangements. Let Xi be the fixed point set of Pi .

Proposition 45. Assume t is good. Then

[N(Pj) : Pj]

where N(Pj) is the normalizer of Pj in W.
Proof. Let wj be a Coxeter element of Pp. Taking the trace of wj on both sides of (4.2)
yields

m

ftdimX Z i(t)tr(wj, Ind'(1)). (4.5)
i--1

Moreover,

tr(wj, Indw (1)) = #{gPI g-'wjg E P,}
= #{gPil g-,Pjg C P2}
= #{gPil Pj C gPig -'}
= #{Conjugates of Pi containing Pj}[N(Pi) Pi] (4.6)

On the other hand, we can write (4.4) in terms of parabolic subgroups which yields

m

tdimXj = Zx(£x',t)#{Y e £1 Y > Xj and Py conjugate to Pi}
i=-1

m

= Z x(£x, t)#{Conjugates of Pi containing P4} (4.7)
i=1

Now putting (4.5) and (4.6) together, comparing with (4.7), and arguing by induction
on j gives f

S[N(Pj) : Pj]x ' t)

In [OS2], Orlik and Solomon computed the roots of x(£x, t), which turn out to be positive
integers. When X = V, the roots are the exponents of W. Propositions 44 and 45 give a
different, more elementary way to compute x(£x, t). We illustrate this for the classical root
systems.

Recall that IIj is a set of simple roots corresponding to Pj and Xj is the fixed point set
of Pj. A useful tool for finding the roots of x(£xi, t) is the following observation. Let m
be good and assume m is less than Z-iEII-M ci for all subsets M C H conjugate to II. It

follows that p(M, m) = 0 for all M C Hf conjugate to IIj. Hence - 3 (m) = 0 and so m is a
root of the polynomial (£x(, x, t). Incidentally, this can be taken as a generalization of the
well-known fact that when m is prime to and less than h (which is just . EfI ci), then m is
an exponent for W.

Let n3 be the cardinality of HI.



Proposition 46. The roots of X(I2 x j, t) are {1, 2,... , n - nj} for An and {1, 3,... , 2(n -
nj)-1} for B,.

In Dn the roots are {1, 3,..., 2(n - nj) - 1} if HIj is not W-conjugate to a set of simple
roots in An- 2 C Dn and the roots are {1, 3,...,2(n - nj) - 3,n + r - nj - 1} if IIj is
W-conjugate to a set of simple roots in Ail + Ai2 + - -+ Air C An- 2 C Dn-

Proof. The results for An and Bn follow immediately from the observation. Similarly for Dn
when Ij is not conjugate to a set of simple roots in An- 2 C Dn. For the case in Dn when
IIHj is conjugate to a set of simple roots in Ail + Ai2 + -- -+ Air, the observation ensures that
{1, 3,..., 2(n - nj) - 3} are roots. The remaining root can be determined by noting that the
sum of all the roots must equal the number of hyperplanes in Xi. In this particular case,
the number of hyperplanes in Xj is seen to be (n - nj)(n - nj - 1) + r, whence the last root
must equal n + r - nj - 1. O



Chapter 5

Applications to the affine flag
manifold

The motivation for defining Ut came from studying certain fixed point varieties on an affine
flag manifold. We now describe this situation and compute the Euler characteristic of these
varieties.

5.1 Euler Characteristic Computation

Let bopp be the opposite Borel subalgebra to b. For each € E D choose a generator eo for
the corresponding root space. Let (k = {€ E 4I' ht(q) = k}.

Let F = C((c)) and A = C[[e]]. Let G = G(F), g = g®cF, and gA = g®cA.
Let p : OA -+ be evaluation at e = 0 and define b0 = p-'(bOPP). The C-Lie subalgebras
of g (other than 9 itself) which contain b0 are in bijection with proper subsets J of I =
{s 0 , 81,... , sn}. Let bJ denote the subalgebra corresponding to the subset J.

Let B1' denote the set of G-conjugates of bJ. This set can be given the topology of an
increasing union of complex projective varieties. We refer to it as the partial affine flag
manifold of type J. In the case J is the empty set, we write B for BJ and call it the affine
flag manifold. There is a natural projection from 1 to BJ for any J with fiber equal to a
finite dimensional partial flag manifold.

For any n E 9 let 1§J be the subset of 1•' consisting of subalgebras which contain n.
In [F], Fan gives the construction of Lusztig of a family of regular, semisimple, nil-elliptic

elements of Coxeter type (for definitions see [KL]) depending on a natural number t. We
give this construction (up to conjugation by the longest element in the Weyl group). Write
t = ah + b where 0 < b < h. Define

t= eo+ E
OE'Ph-b E'D-b

When t is relatively prime to the Coxeter number h, the fixed point space B1• is a complex
projective variety.

Let X denote the Euler characteristic. In [LS], x(BJ^) is computed in type An for two
partial affine flag manifolds and in [F], x(Bn) is computed in all types. We now give a



proposition which computes x(B(J) in all cases. D. S. Sage proved this proposition for the
classical groups, but the combinatorics in his proofs is different [Sa].

Proposition 47. Let j be the cardinality of J. When t is prime to h,

x(J) = (t + mi)(t +m 2)...(t + mj)t n - j

IWJI

where ml, . . . , m3 are the exponents of WJ.

Before giving the proof, we want to be able to access the results of the previous sections.
So we need to introduce some more ideas.

Our main tool is a C* action on b which gives a C* action on B. We recall the construction
given in [F]. Let T be the maximal torus in G with Lie algebra t. Let : C* -+ T be the
one parameter subgroup of T such that a(3(A)) = A-2 for all ao E 4+. Denote by S the
image of 3 in T. Let C* act on g through conjugation by S. Let A e C* act on F by the
rule A o f(e) = f(A 2he). Define the action of C* on g by extending C-linearly. Note that
A o Eke = )2(hk-ht(0)),ke¢e.

This C* action has a number of key properties. First, it defines an (algebraic) action on
any partial affine flag manifold BJ and preserves the fixed point space B. Second, the fixed
points of the C* action on B are of the form wbow - 1 where w E Wa (we do not distinguish
here between elements in Wa and their representatives in G when there is no confusion).

Let GJ = {g e Jgb~g1 = bJ}. The quotient of ^g by its prounipotent radical is Gy

which is a connected, reductive, algebraic group over C. Let g•' be the Lie algebra of Gg

and let p' : b -- gJ be the canonical map. The last property of the C* action that we will
need in the last section is that pJ (A o n) is GJ-conjugate to pg(n) for A E C* and n E b0J.

We now give another way to define the permutation representation Ut which is needed
in the proof. Let It = {w E WaI wD 1 C Dt}. Since Dt is a fundamental domain for
Wt = W K tLv, we see that It is a set of right coset representatives for Wt in Wa. On
the other hand, a set of coset representatives for tLv in Lv also gives a set of right coset
representatives for Wt in Wa. Hence there is a natural bijection between It and St = Lv/tLv
which sends w E It to the element in St which represents the same right coset of Wt.
Explicitly, the map sends w to -w- 1 (0). Furthermore, Wa acts on It by the inverse of right
multiplication on the set of right cosets. This action, expressed in terms of St, is just induced
from the action of W, on Lv. As such it is the action we have been discussing.

Proof of the proposition. The C* action preserves 1J. Let Y be the points of
Bn fixed under the C* action. A general principle implies that x(BnJ) = x(F). So our
calculation reduces to determining the cardinality of the finite set F.

In general F = {wbJw-11 w E Wa and nt E wbJw-1}. But this set is in bijection with
the set {w E Wa/WJI nt E wbow- 1}. This takes into account the fact that wbjw- 1 stays
the same if w is modified by an element of W J on the right.

Define Da to be

{u E V (a, u) > -a for a E 4b and (a,u) > -a- 1 for a E 4b-h-}.

A result in [F] implies the existence of wi E Wa such that ?i(Da) = Dr.



Now a calculation shows that nt E wbow - 1 if and only if wD 1 C D a . And this is the case
if and only if ?bw E It. So the cardinality of the set {w E Wa/WJI nt E wbow - 1} is just the
number of orbits of W g acting on It on the right. Under our bijection with St, this is the
number of WJ-orbits on St.

In general, the number of orbits of a finite group H acting on a set is given by

1H 1o a(h)
hEH

where a(h) is the number of fixed points of h on the set. By Proposition 39 we thus have

-J 1 E tn-s(w)

I  tj
wEW J

tn-jIW]

A theorem of Shepard and Todd [ShTo] states

Sqi-s(w) = (q + mi)(q+ m2 )...(q + mj),
wEW J

whence the result.

Remark 48. We can also view the set St as the set of elements of order t in a fixed maximal
torus of G. One maps u E V to u(-) E T where T is a primitive t-th root of unity. Then
the W-orbits of St are in bijection with the conjugacy classes of elements of order t in G.
This is the viewpoint of D. Peterson who earlier computed the cardinality of the conjugacy
classes of elements of order t when t is prime to the Coxeter number.

5.2 Action of W J on the homology of tn3

In [KL] and [L2], an action of the affine Weyl group is defined on the homology of ,n for any
n E such that Bn : 0. As before, we choose a finite Weyl subgroup W J of Wa. Here we
compute explicitly the virtual representation of W g on H,(Bnt) = -i>o(-1)iHi(Bn) when
t is prime to h.

Let B1 be the flag variety of GJ which we consider to be the set of Borel subalgebras
of g'. For any N E g, let BJ be the subvariety of BJ consisting of Borel subalgebras
containing N. There is a Springer representation of W J on H,(Bk).

Theorem 49. [AL] Let N E g be a nilpotent element, regular in a Levi subalgebra of a
parabolic subalgebra p C gg. Then the representation of W J on H,(BJ ) is isomorphic to
Ind W (1) where P is the parabolic subgroup of W J corresponding to p.



Let N E g' be a nilpotent element. Define YN C B"J to be the set of gbJg-1 E J
where g E ( such that pj(g-lntg) is GJ-conjugate to N (this is well-defined). The YN are
locally closed subvarieties of BJt and we have B/J = UYN where the union is over a set of
representatives of the nilpotent orbits in gJ (see [KL]).

Theorem 50. [L3] Let t be prime to h. The representation of W J on H.((B^•) is isomorphic
as a virtual WJ-module to

E X(YN)H* (Bk)

where the sum is over a set of representatives of the nilpotent orbits in g.

Putting together these two theorems with our previous work we can conclude

Theorem 51. Let t be prime to h. The virtual representation of W J on H.(Bn) is isomor-
phic to the restriction of Ut to W J .

Proof. The C* action onJ preserves the subvarieties YN. Hence x(YN) = X(YNC*). So to
compute x(YN) we only have to determine the cardinality of YNC .

Let N E g be a nilpotent element. Choose wibJwlJ e YNc *. We may assume that
nt E wlb 0w• -' by modifying w, by an element of W J on the right.

Consider the map from r : Bt _+ B-•J. The fiber above the point w1 bJwl 1 is isomorphic
to BJ . Since r is C*-equivariant, we get a C* action on BJ with fixed points that can be
identified with {w E WJIN e wbow- 1}. On the other hand, the analysis from the previous
section shows that this set is just a set of right coset representatives for the stabilizer in W J

of i7wl E It. This stabilizer is a parabolic subgroup P of W J by Proposition 41. Now an easy
argument shows that if the set {w E WJIN E wbow - 1} is a set of right coset representatives
of a parabolic subgroup P of W J , then N must be conjugate to a nilpotent which is regular
in a Levi factor of a parabolic subalgebra in 91 corresponding to P.

Thus when N is conjugate to a regular nilpotent in a Levi factor of a parabolic subalgebra
in gi corresponding to P, x(YN) equals the number of orbits in It (or St) with stabilizer
conjugate to P. Moreover, if N is not such a nilpotent, then x(YN) = 0.

Putting this argument together with the previous two theorems and our analysis of the
representation Ut yields the theorem. []

Remark 52. The virtual representation of W, on H,(B,,) is not isomorphic to Ut. This
can be seen in A1 with t = 3. Here the variety Bnt is two complex projective lines joined at a
point. The representation of W, on the homology of this variety is not completely reducible
(using results from [Ka]), whereas the representation Ut is always completely reducible under
Wa

Remark 53. In type A., Lusztig and Smelt have shown that B, has no odd homology [LS].



Chapter 6

Tables and Figures

In the following tables, we show explicitly the bijection of Section 2.3.1 for the exceptional
groups. We have listed only those N with non-trivial A(N). The notation for a distinguished
nilpotent in a semisimple Lie algebra follows Bala and Carter.

For those cases where A(N) = S2, we have shown all fundamental weights of T which
give rise to one-dimensional representations of P that restrict to the sign representation of
A(N). For A(N) = S3, S4, S5, we gather the results of Theorem 27 in the next set of tables.
In the tables, wi stands for Vi, the representation of P of highest weight wi which is trivial
on U.

Let w be any fundamental weight which gives rise to a one-dimensional representation
V of P not listed in the tables. Then V,, always descends to a representation of 7rl (ON). If
w is not in the root lattice, then it has kernel isomorphic to A(N); if w is in the root lattice,
then it has kernel isomorphic to rt (ON). This is the content of Section 3.1.

____ A(N) pseudo-Levi Class in A(N)

2 0 S3  G2(al) 1
A 2  (123)

A, + A, (12)



E6
- A(N) pseudo-Levi Class in A(N) Sign rep

0 0 0 0 0 S2  A 2  1 W6
2 4A 1  -1

0 0 2 00 S3  D4 (al1 ) 1
0 3A 2  (123)

A 3 + 2A 1  (12)
2 0 2 0 2 S2 E6 (a3) 1 30 A5 + A1 -1

>-. .. A(N) pseudo-Levi Class in A(N) Sign rep

0 0 0 1 S2 A1  1 W4
A, + A -1

2 0 00 S2  A 2  1W1
2A 1 + A1  -1

2 0 0 1 S2  B2 14
A 3  -1

1 0 1 0 S2  C3(al) 1 W3
A, + B2 -1

0 2 0 0 S4  F4 (a3) 1
A3 + A, (1234)
A2 + A2 (123)
B4 (a,) (12)(34)

A, + C3(a,) (12)

0 2 0 2 S2  F4 (a2) 1 W2
A, + C3 -1

2 2 0 2 S2  F4 (a,) 1 4

B4 -1



E7

SA(N) pseudo-Levi Class in A(N) Sign rep

2 0000 0 S2  A2  1 W 1

0 4A 1  -1

1 0 0 0 1 0 S2  A2+ A, 1 W1, i 5

0 5A 1  -1
020000 S3  D4(al) 1

0 3A 2  (123)
A3 + 2A1  (12)

0 1 0 0 0 1 S2  D4(a) + A 1 w2, W7-w6
1 A 3 + 3A 1  -1

0 0 1 0 1 0 S2 A3 + A 2  1 W, W5
0 D4(al) + 2A1 -1

2 0 0 020 S2 A 4  1 W1
0 2A 3  -1

1 0 1 0 1 0 S2  A4 +- A 1 I W3
0 A1 + 2A 3  -1

2 0 1 0 1 0 S2  Ds(al) 1 W3, (5
0 D4 + 2A 1  -1

020020 S2  E6 (a3) 1 w2
0 As + A1  -1

002002 S3  E7 (as) 1
0 As + A 2  (123)

A, + D6 (a2 ) (12)

2 0 2 0 0 2 S2  E7 (a4) 1 W3
0 A 1 + D6(al) -1

2 0 2 020 S2 E6 (al) 1 W1
0 A7  -1

2 0 2 0 22 S2  E7 (a3) 1 W3
0 A 1 + D6 -1



0000002
0

1000001
0

2000000
0

0000020
0

0000010
1

1000100
0

2000002
0

0000000
2

1000101
0

1000102
0

0010001
0

0000002
2

2000020
0

01000101

1001010
0

0 01
0

0100

A(N)

S2

S2

S2

S3

S3

S2

S2

S2

S2

S2

S2

S2

S2

S2

S2

E8

pseudo-Levi

A 2
4A 1

A2+ A,
5A 1

2A 2
A 2 + 4A 1

D4 (al)
3A 2

A 3 + 2A 1

D 4(al) + A1
3A 2 + A1
A3 + 3A 1

A 3 + A 2

D4(al) + 2A 1

A 4

2A 3

D4(al) + A 2
A 3 + A2 + 2A 1

A4+ A,
A 1 + 2A 3

D 5(al)
D4 + 2A 1

A 4 + 2A 1
D 4(al) + A3

D4+ A2
Ds(al) + 2A 1

E6 (a3 )
A5 + A

D6 (a2)
D4 + A3

E6 (a3) + A1
A 5 + 2A 1

E7 (as)
A5 + A 2

A, + D6(a2)

Class in A(N)
1
-1
1
-1

1
-1
1

(123)
(12)

1
(123)
(12)

1
-1
1
-1
1
-1
1
-1
1
-1
1
-1

1
-1
1
-1
1
-1
1
-1

1
(123)
(12)

Sign rep

W7

01 i5

W7

W8

W5 , W 7

W1, W5

W 3 , W 7

W4 ,~ Wfj

,
v m



E8

SI A(N) pseudo-Levi Class in A(N) Sign rep

0 0 0 2 0 0 0 S5  Es(a7) 1
0 A5 + A2 + A, (123)(45)

2A 4  (12345)
D5(al) + A3 (1234)

Ds(as) (12)(34)
E7(as) + A 1  (12)
E6(a3) + A2 (123)

0 1 0 0 0 1 2 S2  D 6(ai) 1 W2, W8

1 D 5 + 2A 1  -1

0 0 1 0 1 0 2 S2 E7 (a 4 ) 1 W3, W5
0 A, + D 6(a,) -1

2 0 0 0 2 0 2 S2 E6(al) 1 W7
0 A 7  -1

0 0 0 2 0 0 2 S2 D5 + A 2  1 W4

0 E 7(a 4 )+ A, -1
1 0 1 0 1 0 1 S2 D7(a2) 1 W1, W3

0 D5 + A3  -1

1 0 1 0 1 0 2 S2 E 6 (al) +A 1 W7
0 A7 + A -1

2 0 1 0 1 0 2 S2 E 7(a3) 1 W3, W5
0 A 1 + D6  -1

0020002 S3 Es(b6) 1
0 E6 (al) + A2  (123)

Ds(a 3) (12)

2 0 0 2 0 0 2 S2 D7 (a) 1 W4
0 E 7(a3) + A, -1

0 0 2 0 0 2 0 S3  Es(a6) 1
0 A 8  (123)

Ds(a2) (12)

0 0 2 0 0 22 S3 E8 (b5) 1
0 E6 + A 2  (123)

E7 (a2 ) + A1  (12)

2 0 2 0 0 2 0 S2  E8 (a5 ) 1 W3, W6
0 Ds(al) -1

2 0 2 0 0 2 2 S2 E 8 (b4 ) 1 W3
0 E 7(al) + A, -1

2 0 2 0 2 0 2 S2 Es(a4) 1 W3, W7
0 D8  -1

2 0 2 0 2 22 2 S2 E (a3 ) 1 W3
0 E 7 + A1 -1



Representations of A(N) for A(N) = S3 , S4 , S5

F 4

D4(al)
3A 2

A 3 + 2A 1

1 2
1 -1
-1 0

E 7

E 7(a5)
onjugacy class w3a W7 -

E7 (as) 1 2
A5 + A2 1 -1

A, + D 6(a2) -1 0

F4(a3)
Conjugacy class w1  w2  W3  W4

F4(a3) 2 1 3 3
A3 + A 0 -1 1 -1
A2 + A2 -1 1 0 0
B4(al) 2 1 -1 -1

A, + C3(al) 0 -1 -1 1

G2(ac ) l 1
Conjugacy class w, w2

G2 (a1 ) 1 2
A2  1 -1

A •+ A -1 0

E6

D4 (al)
Conjugacy class I3 W6

6

D4 (al)
Conjugacy class w2 wl

1 2
1 -1

-1 0

D4(al)
3A2

A3 + 2A,

I



E 8

D4 (al)
Conjugacy class we  w7

D4 (al) 1 2
3A 2  1 -1

A3 + 2A1  -1 0

D 4(al) + A1

Conjugacy class wU6 , w8 w7

D4 (al) + A1 1 2
3A 2 + A1  1 -1
A3 + 3A 1  -1 0

E7(a5s)
Conjugacy class w3, W5 w8

E7(a5) 1 2
A5 + A2 1 -1

D6(a2)+ A1 -1 0

E8(b6)
Conjugacy class w3 , w7  w8

E8 (b6) 1 2
E6(al) + A2 1 -1

D8 (a3) -1 0

E8 (a6)

Conjugacy class w3 , w6  w7 , w8

Es(a6) 1 2
As 1 -1

Ds(a 2 ) -1 0

E8 (b5 )
Conjugacy class wL3  w8

E8(b5) 1 2
E6+ A2 1 -1

E7(a2) +A1 -1 0

Es(a7 )
Conjugacy class w7  w5  w4  w6  w1  w08

E8 (a7) 4 4 1 6 5 5
As5 + A2 + A1  -1 1 -1 0 1 -1

2A4  -1 -1 1 1 0 0
D5 (al) + A3  0 0 -1 0 -1 1

D8 (as) 0 0 1 -2 1 1
E7(a)+ A, 2 -2 -1 0 1 -1
E6(a3) + A2 1 1 1 0 -1 -1



0 1 2

G2

0 1 2 3 4

F4

1 2 3 4 5

E6

0 1 2 3 4 5 6

7

E7

1 2 3 4 5 6 7 0

0
8-

E8

0

1 2 3 n-2 n-1 n
A

1

2 3 n-2 n-1 n

B
0

0 1 2 n-2 n-1 n

C
_ _ |................. 0 now*c

1 ---- nI n-. 2 3. n-3 n-2.• -................ _ -...
0 - V n-1

D for n even

The extended Dynkin diagrams and their automorphisms in W



1
1~ 1I

1 2 3 4 2

1

1 2 2 2 2 2

. . ..................p1 2 3 2 1

2

1 2 2
1234321

2462
2 T•'3 e e e

2 2 1

1 1l0 ................ - -
2 2 2 2

Coefficients of the highest root

62

1 2 3
0--Gm

0
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