PENNY : A Programming Language and Compiler for the
Context Interchange Project

by
Fortunato Pena

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfiliment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering
and
Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1997
© Fortunato Pena, MCMXCVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to grant
others the right to do so.

S
Author......... w T e
Department of Electrical Engineering and Computer Science
May 23, 1997
/ . / 7 //‘\\ /
Certified by e fiiiea S At

Mlchael D. Slegel
Principal Research Scientist, Sloan School of Management
Thesis Supervisor

Accepted by................. (et PO e
Arthur C. Smith

Chairman, Department Committee on Graduate Students

u_C* ¢

0CT 291997 Eng

LIBAANES

PENNY : A Programming Language and Compiler for the Context
Interchange Project
by
Fortunato Pena

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 1997, in partial fulfillment of the
requirements for the degrees of
Bachelor of Science in Computer Science and Engineering
and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this Thesis, I designed and implemented a programming language and compiler for
use under the COntest INterchange Architecture, MINT. The language, known as PENNY,
was born from COINL, a deductive object-oriented language originally used to program
under the MINT architecture. This new language boasts a new look and feel to provide a
greater abstraction and minimize the complexity for the user. Furthermore, a compiler has
been implemented which uses PENNY as its source language and DATALOG with negation
as its destination language. Two existing applications have been re-coded in PENNY to
demonstrate the language’s ease of use and the compiler’s capabilities.

Thesis Supervisor: Michael D. Siegel
Title: Principal Research Scientist, Sloan School of Management

Acknowledgments

As I say farewell to this phase of my life, I would like to acknowledge and thank the many
people who have made these past five years a more enjoyable, if not bearable, time for me.

First of all, I would like to thank Professor Stuart Madnick and Dr. Michael Siegel
for giving me the opportunity to work in the Context Interchange Project and for their
invaluable advice and support. T would also like to thank the other members of the Context
Interchange team who have provided me with a tremendous working environment over the
past year and a half. In particular, I am indebted to Dr. Stéphane Bressane for his role
as a mentor and his consistence pressure to keep me succeeding and Dr. Cheng Hian Goh
who beared with me in my first couple months as I grappled with the challenges of a new
learning environment. My gratitude also goes out to Tom Lee and Kofi Duodu Fynn for
their wonderful insights and support they have given me.

A number of other people have read various drafts of this Thesis and provided me with
valuable feedback. These include Professor Stuart Madnick, Dr. Stéphane Bressane, and
Dr. Raphael Yahalom. In particular, I would like to thank Raphael for taking time out of
his extremely busy schedule to read my Thesis and provide me with a number of wonderful
suggestions.

To my friends, both here and back home, thank you all for putting up with me and
encouraging me to stay focused. These past couple of years have been strenuous and I
could not have made it without any of your support, in particular, Henry, Danika, Kofi,
Maricruz, Francine, Doug, and Chuck. Thanks for the reading material, Chuck, I am sure
I will find it invaluable as I continue with the next phase of my life.

Finally, I would like to express my appreciation and love to my siblings, Lisette and
John and my parents Fortunato and Julia. Without your constant love and phone calls in
the morning to wake me up for class, none of this would have been possible. It is to you
that I dedicate this Thesis.

Contents

1 Introduction

1.1 Motivational Scenario
1.2 Organizationof Thesis
2 Penny Programming
2.1 Background e
2.1.1 CoINL Domain Model
2.1.2 CoINL Context Axioms o ottt
2.1.3 CoINL Conversion Functions
2.1.4 CoINL Elevation Axioms e
2.2 PENNY o e e e e e e e e
2.2.1 Motivations e e e e e e
2.2.2 SCenario e e e e e e e e e e e e e e e e

3 Penny Compiler

3.1 Related Works e e
3.2 Global Picture e e
3.3 Implementation e
3.3.1 Lexical AnalysisModule
3.32 Parser Module
3.3.3 Semantics Module
3.3.4 Code Generator Module
4 Conclusion and Future Work
4.1 Limitations e e e e e e
4.1.1 PENNY e e e e
41.2 PENNY Compiler
4.2 Conclusion e e

A Penny BNF
A.1 Notational Convention o v v i i e e e e

A2 Reserved PENNY Keywords
A3 BNF . . e

B TASC Penny Axioms
B.1 Domain Model
B.2 Context Axioms e e e e e e
B.2.1 DiscAF e

oo

11
11
12
14
14
15
17
17
17

22
22
23
23
25
25
27
28

29
29
29
29
30

B.2.2 WorldAF e 38

B.2.3 DStreamAF 39
B.2.4 Olsen @ @ e e e e, 39
B.3 Conversion Functions 39
B.4 Elevation AXioms o 0 it e e e e e e e e e e e e e 42
DLA Penny Axioms 46
C.1 Domain Model e 46
C.2 Context AXIOIMS o v o e e e e e e e e e e e e 47
C.2.1 Distributor e 47
C.2.2 Manufacturer e 47
C.2.3 Olsen o e 47
C.3 Conversion Functions 47
C.4 Elevation AXioms e e e e e e e 51

List of Figures

1-1
1-2
1-3
2-1

3-1

Tasc Datasources oo v i i it e e e e 8
Results of Query 10
Assumptions of Sources 10
Correct Results of Query L. 10
TASC Domain Model 13
PENNY Compiler in the COIN Architecture 24

Chapter 1

Introduction

In recent years, advances in networking and telecommunications have lead to an unprece-
dented growth in the number of information sources that are being physically connected
together. This increased connectivity has given way to a proliferation of data readily ac-
cessible to users.

Unfortunately, with this growing abundance of data, the problem of understanding and
interpreting it all is becoming a definite challenge [Mad96]. While the World Wide Web
and Internet have provided an excellent infrastructure for the physical connectivity (the
ability to exchange bits and bytes) amongst disparate data sources and receivers, they have
failed to provide a reasonable amount of logical connectivity (the ability to exchange data
meaningfully) among them. This logical connectivity can be essential when manipulating
information from disparate data sources because the meaning of this information can be
dependent on a particular context; a context which embodies a number of underlying as-
sumptions. One example which illustrates this problem clearly is the handling of dates.
The date “02-01-97” will mean February 1, 1997 if speaking to an American whereas it will
mean January 2, 1997 if speaking to a European. This problem is generally referred to
as the need for semantic interoperability among distributed data sources and as a result,
any data integration effort must be capable of reconciling possible semantic conflicts among
sources and receivers.

The COntext INterchange (COIN) project seeks to address the problem of semantic
interoperability by providing a novel mediator-based architecture ! [BFP*97a, Goh96] for
logical connectivity among disparate data sources. In essence, each information source in
the architecture is tagged with a context; a context being a set of axioms which describes
certain assumptions about the data. For instance, if A is a database containing information
on a company’s finances and the dates in which those finances were recorded, then the
context associated with database A would contain any underlying information needed to
properly interpret those financial figures and dates, such as the scale-factor, the currency,
and the format of the date. Using this context information the MINT architecture is able
to resolve semantic conflicts through the use of its Contest Mediator [BFP+97a, BLGea97].
The context axioms, along with general axioms (known as the COIN axioms) which will be
discussed in Chapter 2, are coded by the users of the system and compiled into a format
that the Context Mediator [BLGea97] can use. The Mediator 2, based on an abduction

!The Context Interchange architecture shall be referred to as MINT throughout this Thesis
2The word Mediator and Contert Mediator are synonymous in this Thesis

WorldAF

Company_Name Sales Income Date
Olsen
Daimler-Benz AG 56,268,168 346,577 12/31/93
FromCur DEM
ToCur USD
DiscAF Rate 0.58
Company_Name Sales Income Date Date 31/12/93

Daimler-Benz AG 97,000,000,000 | 615,000,000 | 12/31/93

Figure 1-1: TAsc Data sources

procedure described in [Goh96, BLGea97], automatically determines and resolves potential
semantic conflicts among the different sets of data using the knowledge axioms.

The goal of this Thesis is thus two-fold. First, to provide a new programming language
for the COIN axioms. Second, to construct a compiler for this new language as its source
language and Datalog [CGT89] with negation as its destination language to implement the
desired computational processes.

1.1 Motivational Scenario

The motivational scenario described herein shall be the foundation on which examples in
this Thesis shall build upon. This scenario is an application that is currently running as a
demonstration in our architecture. The code for the entire scenario is given in ppendix B.
This scenario shall be referred to as the TASC demo throughout this Thesis.

The TASC demo consists of integrating information from three disparate tables: DiscAF,
WorldAF, and DStreamAF (although for the sake of simplicity, our discussion shall focus
only on the first two). These relations provide financial information on companies such as
their profits, sales, number of employees, etc. In addition, there is an auxiliary table, Olsen,
which is a web based source providing exchange rates between different currencies.

The DiscAF relation contains information for both foreign and domestic companies.
WorldAF maintains information mainly on domestic companies, but it does have several
foreign company listings as well. Both of these tables have information on the company
Daimler Benz (although the names in both relations are not identical in reality, for didactical
purposes, they have been made the same). Suppose that a user submits the following query
over the relations shown in Figure 1-1 (no one would ever send a query like the following,
but this is done just for illustrative purposes).

select w.Sales, d.Sales from WorldAF w, DiscAF d
where w.Comp = “DAIMLER-BENZ AG” and d.Comp = w.Comp;

Viewing the results returned in Figure 1-2, there appears to be a discrepancy in the data
set. How is it possible that the sales figure for the same company differs?

The dilemma here is that the values returned are not represented using the same set of
concepts. Each relation has its own set of assumptions which changes the interpretation of
its data. DiscAF assumes that company financials are stored in the currency of the country
of incorporation for that company and scaled by 1. Also, the format of the date field is kept
in an American style using a '/’ to separate the day, month, and year. WorldAF on the other
hand, stores its company financial data in a US currency scaled by 1000. As DiscAF, it also
assumes an American style format for its date field. In addition to DiscAF and WorldAF,
Olsen and the user of the system also have their own set of assumptions. For example, Olsen
assumes that dates are given in a European style (this is probably because the site is located
in Ziirich) with the day, month, and year separated by ’/’ and that currencies are three letter
words denoting the currency type, so for US Dollars, it is 'USD’ and for Deutsch Marks it is
'DEM’. Figure 1-3 layouts the underlying assumptions for each of the data sources as well
as the user. Using this underlying information, the Contezt Mediator can automatically
detect and reconcile these context differences, returning the correct answer back to the user
as shown in Figure 1-4 (note, that because of arithmetic rounding errors, the figures are
not exactly identical). In Chapter 2, it shall be demonstrated how these assumptions and
relations are coded in MINT.

1.2 Organization of Thesis

This Thesis is organized into four chapters. In Chapter 2, we discuss the language PENNY
and focus on how and why PENNY was developed from its predecessor COINL. Chapter 3
gives the implementation of the PENNY compiler and the reasons for its design decisions.
Chapter 4 concludes this Thesis with a summary of contributions and a number of sug-
gestions on how the current work may be extended both with respect to PENNY and its
compiler.

w.Sales d.Sales

56,268,168 | 97,000,000,000

Figure 1-2: Results of Query

ScaleFactor Currency DateFormat
WorldAF 1000 USD American "/"
DiscAF 1 Local American "/"
Olsen NA NA European "/"
User 1000 USD American "/"

Figure 1-3: Assumptions of Sources

w.Sales d.Sales

56,268,168 56,687,460

Figure 1-4: Correct Results of Query

10

Chapter 2

Penny Programming

PENNY was born from COINL [Goh96], a deductive object-oriented language ! originally
used to program under MINT [BFP*97a). Various MINT programming examples will be
illustrated in this Chapter. These examples will first be written in COINL and then in
PENNY to give us a basis for discussion.

The syntax which is used to illustrate the examples in this chapter deviates from the
concrete syntax (the syntax used to actually type programs into the computer) in several
characters, not available on a standard keyboard. We give the standard equivalent of our
special characters. Thus > should be used instead of ~+, <= should be used instead of «+,
-> should be used instead of —, => should be used instead of =, ~ should be used instead of
~, and ~ should be used instead of A. Furthermore, bold facing is used to signify keywords
in the languages.

2.1 Background

There are six steps that need to be taken to properly program a new data source into MINT.
The steps are:

1. Create and define a domain model

2. Define the context axioms for the source

3. Define the necessary conversion functions

4. Elevate each source into a semantic (“virtual”) relation

5. Define the integrity constraints on the relations being incorporated
6. Populate the registry with the proper export schemas

Currently, there is no support in PENNY or COINL for integrity constraints or registry in-
formation. These are expressed outside the language ? and compiled along with the other
COIN axioms. Thus our efforts shall focus on items 1-4.

' At this point, the reader of this Thesis is assumed to have a working knowledge of Prolog and the way
Prolog systems work. Otherwise the reader is referred to two excellent books which cover the topic in more
detail than necessary, [SS94, O’K90].

?For a more detailed discussion on these two topics in MINT, the reader is referred to [Goh96, BFP97b]

11

2.1.1 Coinl Domain Model

A domain model specifies the semantics of the “types” of information units which constitutes
a common vocabulary used in capturing the semantics of data in disparate sources, i.e. it
defines the ontology which will be used. The various semantic types, the type hierarchy,
and the type signatures (for attributes and modifiers) are all defined in the domain model.
Types in the generalization hierarchy are rooted to system types, i.e. types native to the
underlying system such as integers, strings, reals, etc.

Figure 2-1 below is the domain model which is used in the TASC scenario. Examining
it closely, there are several things to notice.

First, there are five semantic types defined: companyFinancials, currencyType,
exchangeRate, date, companyName, and countryName. Two of them, companyFinancials
and exchangeRate, subclass the system type number, while the other three are derived from
the system type string.

Second, the signatures for various attributes are defined. In COIN [Goh96], objects have
two form of properties, those which are structural properties of the underlying data source
and those that encapsulate the underlying assumptions about a particular piece of data.
Attributes access structural properties of the semantic object in question. So for instance,
the semantic type companyFinancials has two attributes, company and fyEnding. Intu-
itively, these attributes define a relationship between objects of the corresponding semantic
types. Here, the relationship formed by the company attribute states that for any com-
pany financial in question, there must be a corresponding company to which it belongs (it
doesn’t make any sense to have financial data about a non-existent company). Similarly,
the fyEnding attribute states that every company financial object has a date when it was
recorded.

Finally, there are a set of signatures for the modifiers in the system. Modifiers also
define a relationship between semantic objects of the corresponding semantic types. The
difference, though, is that the values of the semantic objects defined by modifiers have
varying interpretations depending on the context. So as an example, the semantic type
companyFinancials defines two modifiers, scaleFactor and currency (you can distinguish
modifiers from attributes by the fact that modifiers take in a context argument given by the
ctx placeholder). The value of the object returned by the modifier scaleFactor depends
on a given context. So if one is asking for the scale-factor in the DiscAF context, it is shown
in Figure 1-3 to be 1, whereas if one asked for the scale-factor in the WorldAF context,
the value of the object returned would be 1000. Similarly, the same can be said about the
modifier currency. In the DiscAF context it returns an object whose value is the local
currency of the country of incorporation as opposed to a US currency in the WorldAF
context.

Figure 2-1 illustrates these concepts pictorially. Following the links on the graph, it is
trivial to see how modifiers and attributes work; they just return objects of the given types.

1. companyFinancials :: number.
companyFinancialscompany = companyName].
companyFinancials[fyEnding = date].
companyFinancials[scaleFactor(ctx) = number].
companyFinancials[currency(ctx) = currencyType].

2. currencyType :: string.
currency Type[curTypeSym(ctx) = string].

12

3. companyName :: string.
companyNamel[format(ctx) = string].
companyName[countryIncorp = string].

4. date :: string.
date[dateFmt(ctx) = string].

5. exchangeRate :: number.
exchangeRate[fromCur = currencyType].
exchangeRate[toCur = currencyType].
exchangeRate[txnDate = date)].

6. countryName :: string.
countryName[officialCurrency = currencyType].

scaleFactor

company

""""" > Inheritance
--- Attribute
e Modifier

Figure 2-1: TAsc Domain Model

Before moving on, there is one key concept left to explain. The term “semantic object” has
been used several times already, but yet no definition was given. Essentially, a semantic
object is a concept abstracting the data from the peculiarities of its representation in the
source and from the assumptions underlying its interpretation [BLGea97]. For example,
from Figure 1-3, the values 346,577 and 615,000,000 express the same money amount except
using a different currency and scale-factor. These assumptions can be characterized by a

13

number of concepts (scaleFactor, currency, format, etc). Thus it is these concepts which
define the basis for the modifiers.

2.1.2 Coinl Context Axioms

The next objective is to define the context axioms for the TASC demo. Rather than trying
to define the axioms for all of the contexts used, this discussion shall focus only on the
DiscAF context (c-ds).

Context axioms are a set of definitions for the modifiers of each semantic type given in
the domain model. Remember that the value of the objects returned by a modifier depend
on a given context. Thus the objects returned by the modifiers must be created and assigned
a value; a value which will be dependent on the context in which they are created.

1. : — begin_module(c.ds).

2. X : companyFinancials ~ scaleFactor(C, X)[value(C) — V] «+ V = 1.

3. X : companyName ~» format(C, X)[value(C) — V] + V = “ds_name”.
4. X : date ~ dateFmt(C, X)[value(C) — V] < V = “American Style /”.

5. X : companyFinancials ~» currency(C, X)[value(C) — V] +
X [company — Comp],
Comp[countryIncorp — Country],
Country|officialCurrency — CurrencyType),
CurrencyType[value(C) — V.

6. X : currencyType ~» curTypeSym(C, X)[value(C) — V] «+ V = “3char”.

From Figure 2-1, it is clear that the semantic type date has one modifier, dateFmt. This
modifier returns an object of type string whose value is “American Style /” [Line 4] (if you
are wondering where the value came from, refer back to Figure 1-3 and look at the format
of the date in the DiscAF context). Similarly, the modifier scaleFactor needs to return an
object of type number whose value is 1 [Line 2]. Modifiers can also be defined intensionally,
as given in Line 5. Line 5 defines the value of the object returned by the currency modifier
to be (reading the rule bottom up), the value for the curreny of the object X is obtained
by retrieving the official currency from the country of incorporation, which is obtained by
retrieving the country from the company, which is obtained by retrieving the company from
the object in question.

There are two last items to note. First, modifiers are tied, or bound, to a specific seman-
tic type. The modifier scaleFactor is defined with respect to the type companyFinancials.
Likewise, the modifier dateFmt is bound to the type date. This permits overriding of mod-
ifiers in a local context. Second, the encapsulation of these axioms is defined via the
:— begin_module(c_ds) directive. This directive dictates the start of a context which
extends to the end of the file.

2.1.3 Coinl Conversion Functions

The third item that needs to be discussed are conversion functions. Conversion functions
define how the value of a given semantic object can be derived in the current context, given
that its value is known with respect to a different context.

14

1. X : companyFinancials ~ X[cvt(Tgt)@scaleFactor, Src, Val — Res] «
scaleFactor(Src,X)[value(Tgt) — Fsv,
scaleFactor(T'gt,X)[value(T'gt) — F'sv],
Res = Val.

2. X : companyFinancials ~+ X [cvt(T'gt)@scaleFactor, Src, Val — Res] «
scaleFactor(Src,X)[value(Tgt) — Fsv),
scaleFactor(T'gt,X)[value(T'gt) — Ftv],

Fsv <> Ftv,
Ratio is Fsv / Ftv,
Res is Val * Ratio.

The conversion functions given above, define the conversion for scale-factors among different
company financials. The idea behind scale-factor conversions is to look for the scale-factor
in the two different contexts and then multiply the value of the companyFianancial object
by the ratio of the two scale-factors. This is defined via Rule 2. The first Rule just accounts
for the cases when the scale-factors in both contexts are the same, in which case, there is
no need to convert; the given value is passed back out (The first rule is an optimization
technique. Although Rule 2 works even when the scale-factors are identical, Rule 1 will
save us a database access).

2.1.4 Coinl Elevation Axioms

The mapping of data and data-relationships from the sources to the domain model is ac-
complished via the elevation axioms. There are three distinct operations which define the
elevation axioms [Goh96):

e Define a virtual semantic relation corresponding to each extensional relation
e Assign to each semantic object defined, its value in the context of the source

e Map the semantic objects in the semantic relation to semantic types defined in the do-
main model and make explicit any implicit links (attribute initialization) represented
by the semantic relation

Examining the elevation axioms for DiscAF below, it shall be shown how each of the three
criterion above is met.

1. :— dynamic 'DiscAF_p’/7.

2. 'DiscAF _p’(f_-ds_cname(N,D), f_dsfyEnding(N,D), f.ds_shares(N,D),
f_ds_income(N,D), f_ds_sales(N,D), f_ds_assets(N,D), f-ds_incorp(N,D))
+ 'DiscAF(N,D,_,_,,_,).

3. f_ds_cname(.,-) : companyName.
{_ds_cname(N,D)[countryIncorp — f_ds_incorp(N,D)].

f_ds_cname(N,D)[value(c_ds) & N] « 'DiscAF’(N,D,__,_,__).
4. f ds_fyEnding(_,-) : date.
f_ds_fyEnding(N,D)[value(c_ds) — D] + 'DiscAF’(N,D,_,_,_,_,).

5. f_ds_shares(,-) : number.
f_ds_shares(N,D)[value(c_ds) — S] « 'DiscAF’(N,D,S,_,_,_,.).

15

6. f_ds_income(.,-) : companyFinancials.
f_ds_income(N,D)[company — f.ds_cname(N,D)].
f_ds_income(N,D)[fyEnding — f_ds_fyEnding(N,D)].
f_ds_income(N,D)[value(c_ds) — I| «+ 'DiscAF’(N,D,_I,_,_,.).

7. f.ds_sales(_,-) : companyFinancials.
f_ds_sales(N,D)[company — f_ds_cname(N,D)].
f_ds_sales(N,D)[fyEnding — f_ds_fyEnding(N,D)].
f_ds_sales(N,D)[value(c-ds) — S] + 'DiscAF’(N,D,,.,S,_,-).

8. f_ds_assets(-,-) : companyFinancials.
f_ds_assets(N,D)[company — f_ds_cname(N,D)].

f_ds_assets(N,D)[fyEnding — f_ds_fyEnding(N,D)].

f_ds_assets(N,D)[value(c_ds) — A] « 'DiscAF’(N,D,.,-,,A,.).

k)

9. f.ds.incorp(-,-) : countryName.
f_ds_incorp(N,D)|officialCurrency — f-ds_curType(N,D)].
f_ds_incorp(N,D)[value(c-ds) — Y] « 'DiscAF’(N,D,_,_,_,_Y).

10. f_ds_curType(-,-) : currencyType.
f_ds_curType(N,D)[value(c_ds) — V] «
'DiscAF’(N,D,_,_,_,_,),
Incorp|official Currency — f-ds_curType(N,D)],
Incorp[value(c_ds) — Y],
'Currencytypes’(Y, V).

The first thing that needs to be done is to define a semantic relation for DiscAF. A semantic
relation is defined on the semantic objects in the corresponding cells. The data elements de-
rived from the extensional relation are mapped to semantic objects. These semantic objects
define a unique object-id for each data element. In the listing above, this is accomplished
in Line 2.

Next, for each semantic object defined, it is assigned a value in the context of the source.
These rules are shown in Lines 3-10. For example, the following rule,

f-ds_incorp(N,D)[value(c_ds) — Y] « 'DiscAF’(N,D,.,_,_,..Y).

states that the value of the semantic object f.ds_incorp(N,D) in the DiscAF context is
derived from teh external relation 'DiscAF’.

Finally, every semantic object is mapped to a semantic type defined in the domain model
and any links present in the semantic relation are explicitly established. This is given by
the rules:

f ds_incorp(_,-) : countryName.
f_ds_incorp(N, D)|officialCurrency — f_ds_curType(N,D)].

Here the semantic object f_ds_incorp(-,-) is defined to be of type countryName. Furthermore,
the link between the country name object and currency object, as given in the domain model
(Figure 2-1), is initialized.

There are several things to note in these elevation axioms. First, not all semantic objects
need be derived from a semantic relation. Take for instance, the object f_ds_curType(-,-).

It is not an elevated semantic object. Rather it is a user defined semantic object and has

16

no existence in the relation 'DiscAF’. These are called virtual semantic objects, virtual
because they have no grounding in a semantic relation. In this case, the semantic object
f_ds_curType(_,-) is created as part of the DiscAF source. As with any other semantic
objects, the proper links need to be initialized and its value must be defined in the context
of the source.

2.2 Penny

2.2.1 Motivations

After working in COINL for developing various applications in the group, it was quite obvious
that the COINL syntax was not meeting the needs of the users. Although syntax is concerned
only with the form of a program, it is inextricably tied to “semantics”, which is the meaning
of the program. Since the basic goal of a programming language design is to define the
means for describing computational processes, the syntax occurs principally to serve these
semantic ends. Thus semantic goals are the original motivation for syntax design [Tuc86].
Syntax was but one reason to move towards the development of a new language. The second
dealt with the complexity in programming in COINL such as dealing with all of the special
cases, exceptions, and complex notation. Thus the efforts in creating PENNY also focused
on removing this complexity from the language and pushing it into the compiler, an issue
which is discussed in more detail in Section 4.1.1.

2.2.2 Scenario

The ideas and theory behind the integration of data sources into MINT were described in
the previous section (Section 2.1). As a result, this section will only give details on how the
same elements are implemented in PENNY.

Penny Domain Model

Once again, creating the domain model for the TASC demo, here is how the axioms are
defined.

1. semanticType companyFinancials::number {
attribute companyName company;
attribute date fyEnding;
modifier number scaleFactor(ctx);
modifier currencyType currency(ctx);

h

2. semanticType companyName::number {
modifier string format(ctx);
attribute string countryIncorp;

h

3. semanticType exchangeRate::number {
attribute currencyType fromCur;
attribute currencyType toCur;
attribute date txnDate;

b

17

4. semanticType date::string {
modifier string dateFmt(ctx);
b

5. semanticType currencyType::string {
modifier string curTypeSym(ctx);
5

6. semanticType countryName::string {
attribute currencyType official Currency;
|5

As before, there are five semantic types defined, each given by the keyword semanticType.
As an example, companyFinancials is declared to contain two attributes and two modifiers.
Its attribute company returns an object of type companyName (notice that the syntax of
methods is similar to function declarations in C or C++). Its modifier scaleFactor returns
an object of type number. All modifiers are defined via the keyword modifier (attributes
are defined by attribute) and they take in a context given by the keyword placeholder,
ctx. The other types in the generlization hierarchy are likewise defined.

Penny Context Axioms

Modifiers in PENNY are initialized as follows:
1. use (’/home/tpena/work/coinlc/Penny/examples/tasc/penny/dm0.pny’);
2. context c.ds;
3. scaleFactor<companyFinancials> = ~(1);

4. currency<companyFinancials> = ~($) «
Comp = self.company,
Country = Comp.countrylncorp,
CurrencyType = Country.official Currency,
$ = CurrencyType.value;

5. format<companyName> = ~(“ds_name”);
6. dateFmt<date> = ~(“American Style /”);
7. curTypeSym<currencyType> = ~(“3char”);
8. end c.ds;
In Line 3,
scaleFactor<companyFinancials> = ~(1);

the modifier scaleFactor returns an object whose value is 1. The first thing to notice is
how the object is created. The ~ operator is used to create virtual semantic objects (these
were covered in Section 2.1.4. The declaration ~(1) creates a virtual object whose value
is initialized to 1. This object is then assigned to the scaleFactor modifier. The virtual
object created here as no name or explicit type. The compiler takes care of generating the

18

unique object-id for the virtual object and generating its correct type using the information
in the domain model. But because this virtual semantic object has no name attached to it,
it is impossible to reference it anywhere else in the rule.

In addition, it is possible to define modifiers intensionally, as shown in the definition for
the currency modifier below.

currency<companyFinancials> = ~($) «
Comp = self.company,
Country = Comp.countryIncorp,
CurrencyType = Country.official Currency,
$ = CurrencyType.value;

Methods (attributes and as one shall see later, modifiers), are referenced through the dot
"> operator, though only one level of dereferencing is currently allowed. The syntax is very
similar to other object oriented languages such as 0QL or C++. Second, the < operator
is the rule operator which seperates the head from the body of a rule 3. Third, you will
notice the reference to the self identifier. This identifier corresponds to the this pointer in
C++ or the self reference in SmallTalk, and is used to reference the object which was used
to invoke this method. Finally, the $ operator holds the value of the rule. Thus the value

for the aforementioned rule is given by the line,
$ = CurrencyType.value;

There are several other new things which should be pointed out. First, you can now cross-
reference files (with either a full or relative pathname), as shown in Line 1, through the use of
the use keyword. It is similar to the include in C. The difference is, though, if you include a
domain model, the statements are not compiled; they are only used as auxiliary information.
Second, context definitions are given by context c_ds; and terminted by end c_ds;. The
context name must be the same in both places. Thus several contexts can exist mutually
in the same file. Furthermore, the binding of the modifiers to a particular type is done
through the type binding mechanism, <type>. So in the above example, scaleFactor is
bound to the type companyFinancials.

Penny Conversion Functions

The conversion functions in PENNY are not very different than in COINL, with two exceptions.
First notice how attributes and modifiers are referenced. As mentioned in the previous
section, the dot (.) operator is used to dereference methods. Second, notice that the value
methods no longer take in a context argument. This is because the compiler actually has
enough information to automatically generate the missing context argument.

The type binding mechanism for conversion functions is identical to the type binding
found in the context axioms.

Below is an excerpt of the conversion functions needed to do scale-factor conversions.
Again there are two rules, the first takes into account the cases where the scale-factor is the
same. The second, retrieves the scale-factor from both contexts and multiplies the value of
the company financial by the ratio.

3Rules are similar to COINL or DATALOG rules

19

1. cvt(scaleFactor, Val)<companyFinancials> «
SrcMod = self.scaleFactor(source),
TgtMod = self.scaleFactor(target),
SrcMod.value = T'gt M od.value,
$ = Val;

2. cvt(scaleFactor, Val)<companyFinancials> «
FsvMod = self.scaleFactor(source),
FtuMod = self.scaleFactor(target),
FsvuMod.value <> FtvMod.value,

Ratio = FsvuMod.value /| FtvMod.value,
$ = Val * Ratio;

Like COINL conversion functions, PENNY conversion functions are allowed to take in argu-
ments. But unlike in COINL, the source and target contexts are not passed in. Rather they
are explicitly called through the keywords, source and target (Remember that the idea
of conversion functions is to take the value of an object in a known context (source) and
convert its value into a another context (target)). Because the value of objects returned by
modifiers depends on a particular context, when calling modifiers, it is necessary that the
desired context be passed in as an argument.

SrcMod = self.scaleFactor(source)

Penny Elevation Axioms

Finally, one must define and declare the elevation axioms for the sources. Here the the
elevation axioms for the DiscAF relation shall be used as an example.

1. elevate 'DiscAF’(cname, fyEnding, shares, income, sales, assets, incorp)
2. in c.ds

3. as 'DiscAF_p’(Acname : companyName, AfyEnding : date, Ashares : void,
Aincome : companyFinancials, Asales : companyFinancials,
Aassets: companyFinancials, Aincorp : countryName)

Acname.countrylncorp = Aincorp;

Aincome.company = Acname;
income.fyEnding = AfyEnding;

Asales.company = Acname;
Asales.fyEnding = AfyEnding;

Aassets.company = Acname;
Aassets.fyEnding = AfyEnding;

Aincorp.official Currency = ~curType;

~curType.value = § +

20

~curType = Incorp.official Currency,
Y = Incorp.value,
"Currencytypes’(Y, $);

b

Most of the three operations are accomplished in the first line. The first line gives the
external relation being elevated. The second signifies in which context the source values
are to be defined. Finally, the third line gives the elevated relation name and the elevated
semantic objects (these are the objects preceded by the A). You will notice some very
obvious differences between how these axioms are described in PENNY versus COINL.

First, no explicit value declarations need to be given. The compiler will automatically
generate these given the above information. Of course, it is possible to override the com-
piler’s default value method by simply supplying one of your own. So say you wanted the
value of the country of incorporation for DiscAF to be “Germany” for every entry in the
relation. Then you could override the compiler’s default value constructor by doing the
following,

Aincorp.value = “Germany”;

Second, no explicit semantic objects need to be given. The names given in the relation
are so that is it possible to reference them when defining the links. Semantic object names
are given by “name, where name can be an atom or a variable. Otherwise, the names are
scoped within the ’{’ ’}’ braces. The compiler takes care of generating unique semantic
objects-ids and the types that go along with them. Again, one can always override the type
definition by providing your own such as,

~curType : number;

Third, it is still possible to create virtual semantic objects using the ~ operator. The
difference between the virtual objects created here and the ones shown in the context
axioms is that these are named virtual object instances. In the context axioms, the virtual
objects created were unnamed. Creating unnamed virtual objects in the elevation axioms
is not allowed for the simple fact that it many cases you need to reference that same object
multiple times. Creating an unmaed object makes this impossible. As can be seen above,
after creating a virtual semantic object, one can initialize it through its value method.

Fourth, you will notice the type void. This is a new data type introduced by PENNY.
An object declared of type void, such as,

Ashare : void;

will not generate any code when being compiled. This can help to speed up the reasoning
process in the Mediator.

Finally, there is a restriction pertaining to the names of the elevated semantic objects.
The name of the elevated semantic object in the semantic relation (the name preceeded by
~) must match a name in the external relation. This is how the mapping is defined for data
elements from the external source to the elevated source.

21

Chapter 3

Penny Compiler

There are several issues in translating deductive object-oriented languages which are related
to the object-oriented aspects of non-monotonic inheritance and method resolution. Non-
monotonic inheritance means that the declaration or definition can be overridden in a
subtype. Method resolution is the process of determining which implementation of a method
to choose when non-monotonic inheritance is in effect. Another major hurdle is the issue
of multiple inheritance. Multiple inheritance introduces a substantial amount of ambiguity
because there needs to be a way to choose among multiple method definitions for overriding.

The PENNY compiler attempts to deal with some of these factors in a fashion suitable
for the Context Mediator [Goh96, BLGea97]. Furthermore, the PENNY compiler serves as
a prototype for the ideas and techniques presented in [ALUW93, DT94] 1.

3.1 Related Works

There have been some efforts in taking a deductive object-oriented language to a deductive
framework. Although it may appear as though this approach requires more effort, there
are several advantages to taking this path. First you can use a standard evaluator of
Datalog with negation. Second, the theoretical background of deductive databases is far
more consolidated than for object-oriented databases [ALUW93]. For instance, the various
semantics for negation can be used directly [ALUW93].

Although not explicitly discussed, the following are additional works and efforts [DT95,
DT94, Law93, Lef93] that had some influence over the design of the compiler.

The first is the Chimera project. This project focuses on only a subset of the Chimera
language [BBC97]. In this subset, a variety of object-oriented aspects are supported. They
support unique object identifiers and class hierarchies. They support both single and mul-
tiple inheritance and allow methods to be extensionally or intensionally defined. Methods
can be either single or multi-valued. Although the system supports non-monotonic single
inheritance, it imposes constraints on multiple inheritance. Namely, a class may not inherit
a method with the same name from multiple super-classes. When such a problem does
exist, the compiler chooses the method of the first superclass specified. Furthermore, the
compiler supports late binding of objects and classes. They perform late binding only on
the most specific class of the object. One thing that was not mentioned in [BBC97], but
seems reasonable to assume is that they had enforced strict typing in their compiler.

!As far as the author is aware, there do not exist any prototypes for these two research efforts

22

The second, [DG89], is a stand alone effort to show that with simple translations of
Prolog or Datalog, one can incorporate object-oriented capabilities. Their system, while it
does demonstrate solid, simple translations, it does have a problem has with respect to our
architecture. The translations are done into Prolog which has operational semantics. These
operational semantics along with the cuts place an extra constraint on the generated code,
one being the ordering of predicates.

The third work is [GMR96] where the goal of the research is to apply semantic query
optimizations to object databases. The basic modeling primitive is an object which is iden-
tified through a unique object identifier. The behavior of objects is defined via methods
that can be executed on the object type. Furthermore, there exist classes that can be or-
ganized into a hierarchy. Inheritance is supported in this model, although in the compiler,
only monotonic inheritance is supported. In the translation, classes and methods are repre-
sented as a relation whereas facts about the hierarchy, object identity, and inheritance are
expressed as integrity constraints.

The final work in [ALUWY3] is a stand alone effort to show how classical Datalog se-
mantics could be used very simply to provide semantics to an extension of Datalog with
classes, methods, inheritance, overriding, and late binding. The authors consider several
approaches, ranging from static resolution typical in C++ to dynamic resolution for late
binding [ALUW93]. This research effort uses an extended version of Datalog with nega-
tion that supports classes, methods, and inheritance. There are two types of inheritance
presented. One is static inheritance where the resolution is done at compile time and de-
pends only on the base class and the method name. The second is dynamic inheritance
which is method inheritance defined with respect to the applicability of methods and not
only class membership and method name. Both monotonic and non-monotonic inheritance
are supported. This approach as in [DG89] also offers the ability to use standard Datalog
optimizations (e.g. magic sets) to further enhance the quality of the output.

3.2 Global Picture

The PENNY compiler is used to compile the domain model, context, conversion functions,
and elevation information into a format that the Context Mediator can evaluate [BFP*97a,
BFP*97b]. Figure 3-1 illustrates where this compiler fits in the global scheme of things.
As described in Section 2.1, every source has a set of elevation axioms and context axioms,
defining what and how the information in that source should be understood. The system
itself has a domain model which describes the units of information the Context Mediator
will be evaluating and a library of conversion functions to map values from one context to
another. Furthermore, the user of the system has his own set of context axioms, defining
how he wishes the returned data to be represented. All of this information is compiled
by the PENNY compiler before going to the Context Mediator. Currently, the compilation
occurs only once. When the Mediator starts up, it loads the compiled axioms into main
memory.

3.3 Implementation

In this section our discussion focuses on the implementation and design decisions of the
compiler. The PENNY compiler stems from my previous work and implementation of the
GOINL compiler. Both of the compilers, with the exception of the grammar and some

23

Context
Mediator

Mediated

Query | :
Datalog Query .

Elevation

Axioms : s - el Elevation
Pl Tees . ——=T .
U 7 DA Non-traditional
Context RN _ ~ __ LA
Aililon)a‘s : \3 """ ,’, \\ o Context Data Sources

A
Local DBMS ~ i - S~~o_ 4 1 _ | Axioms (e.8., web-pages)

e e =

Figure 3-1: PENNY Compiler in the COIN Architecture

extensions to the intermediate language, are identical. As a matter of fact, the PENNY
compiler was built from my existing COINL compiler code. For this reason, I have opted to
only talk about the PENNY compiler.

The PENNY compiler is written completely in Prolog using the ECLiPSe? platform.
There were several reasons why Prolog was chosen as the language of design. First, the
ability to write static meta-programs to analyze, transform, and interpret other programs
is particularly easy in Prolog because of the equivalence of programs and data: both are
Prolog terms. Second because Prolog originated from attempts to use logic to express
grammar rules and to formalize the process of parsing, it supports a number of facilities
for parsing context-free grammars [SS94]. In particular, Prolog implements definite clause
grammars (DCG), which are a generalization of context-free grammars that are executable,
augmented by the language features of Prolog. They are equivalent to the Unix compiler-
compiler tools, Yacc and Bison. One advantage to using the DCG’s in Prolog, though, is that
they come integrated into the environment. This is very convenient because it saves us the
trouble of trying to talk across multiple, distinct platforms each having their own protocols.
Third, the garbage collection in the Prolog system makes it convenient to work with large
data structures and avoid the common programming errors in memory management that
usually tend to occur in other languages such as C or C++4-. At this point, it is valid to
evaluate both Scheme and Perl as both of these languages also employ garbage collection.
The reason neither of these languages were chosen is because the author was not aware of
any existing compiler-compiler tools available under those environments. Finally, because

?ECLiPSe: The ECRC Constraint Logic Parallel System. More information can be obtained at
http://www.ecrc.de/eclipse/.

24

PENNY is a first order logic language, it made sense to evaluate it under the logic paradigm,
thereby simplifying the tokenization and any symbolic manipulation needed in processing
the transformations.

The PENNY compiler follows the methodology of compiler construction given in [ASUS86].
It is composed of four modules: the lexer, the parser, the semantic checker, and the code
generator. Currently there exists no optimizer module (although this shall be discussed
more in depth in Section 4.1.2).

3.3.1 Lexical Analysis Module

The lexical analysis module is composed of 25 lines of ECLiPSe Prolog code. It uses the
ECLiPSe builtin predicate read_token/3 to extract tokens from the input stream. This
does have the disadvantage that this routine will most likely have to be re-written when
porting the compiler to a different Prolog environment. While on one hand this may be
deemed as a problem, the read_token predicate did prevent the writing of a new lexer from
scratch, a job which is both tedious and in my opinion, not very important with respect
to the goal of this Thesis. Another aspect of the lexer has to do with how it reads tokens.
The lexer will read the entire file in before passing the list of tokens back to the parser.
Theoretically, this shouldn’t cause a problem since we are in an environment with memory
management and garbage collection, so if the token list gets too long, it should be swapped
out to disk. The reason it reads the entire file is that the lexer is not flexible enough to
recognize a chunk of tokens together. This is easily solved by rewriting the lexer as a finite
state automaton where the different states would indicate what sort of information we were
reading in. Then at certain states, once we knew that we had read enough information in to
syntactically check it, we could return the chunk of tokens back to the parser. Once again,
for convenience and time, it was deemed wiser to go with the builtin predicate and take the
chances with the garbage collection.

There is an alternative to the approach taken here and that is to use the op/3 predicate
in Prolog to implement the lexer. We evaluate which tokens we want to treat as operators,
give them a mapping to Prolog, and then use the normal Prolog read/3 predicate to read
in the Prolog terms. The problem with this method is that we have now tied our source
language to our implementation language which is not only a serious design flaw, but can
also cause enormous confusion.

3.3.2 Parser Module

The parser was one of the more complicated components of the compiler, for reasons dealing
with file inclusion and error handling. The parser is implemented as a DCG grammar. It
uses a list structure, known as the dictionary, to maintain the symbol table information and
the intermediate code generated during the parsing phase. It was decided to combine both
of the data structures into one since they both needed to be passed into the code generation
module. The list used as the data structure has been abstracted away by a set manipulation
routines. The intermediate code is embedded in the DCG itself. In retrospect, this was a
poor design choice. A wiser implementation would have abstracted the generation of the
intermediate language into a set of routines. This would have allowed us to change the
representation of the intermediate language without touching the parser.

Rather than using a preprocessor to handle file inclusion, such as C or C++ compilers
do, this functionality was employed inside the parser. Unlike a C or C++ include statement,

25

an include statement in PENNY (include statements are given by the keyword use) has a
different meaning. When applied to regular axioms, such as elevation, context, or conversion
axioms, then the semantics hold true. But when a user includes a file containing the
domain model, the idea is for the domain model to be used as reference data, no actual
code generation is performed. The reason for this is that the domain model would most
likely have been compiled already so compiling it again would give duplicate code thus
making the Mediator [BLGea97] slower. So upon registering a use statement, the parser
will set a flag and call the tokenizer again with the new file to include and the current
dictionary. During the parsing, if a domain model element is ever parsed and the include
flag is set then no intermediate code is placed inside the dictionary. Even if a pre-processor
had been used, the same scenario would have been encountered. It is conceivable that a file
containing a domain model would included another file to augment its information. At this
point, it would still be necessary to check whether the included file contained any domain
model elements. This unfortunately implies that a domain model cannot include another
file containing domain model information. An easy to fix to this problem, though, would
be to introduce a new keyword into the language. Then whenever a user wants to include
and compile another file they could use one keyword versus to when he wants just to use
the file as auxiliary information.

The error handling in the parser is implemented via the phrase/3 predicate. The
phrase/3 predicate takes in the list of tokens to parse and gives back any remaining to-
kens in the list. The phrase/3 predicate will backtrack to obtain all possible solutions,
failing when it cannot parse any of the remaining tokens. The task here was to distinguish
failure in the parser between failure due to incorrect tokens and failure due to the control
nature of the DCG (remember that in logic programming, failure is an acceptable answer
and furthermore is used as a control mechanism). To accomplish this task, the DCG rules
needed to be re-written one level deeper. As an example, take the top level rule for parsing
the domain model given by the following DCG rule (DCG rules resemble productions given
in the PENNY BNF with the ::= replaced by —).

Rule 1: < Domain_-Model > — < Semantic_Decl > < Domain_-Model >
Rule 2: < Domain_Model > — ¢

Now lets suppose that we have a list of tokens to parse and this is the first rule we encounter.
There are three possibilities that result concerning the list of tokens:

A. The list contains valid tokens of domain model elements

B. The list contains some valid domain model tokens but somewhere in the token list lies an
error and without any loss of generality, we can assume that the error lies somewhere
in the middle of the token list

C. The list does not contain any tokens corresponding to any domain model element, rather
it is a list of valid tokens of another PENNY construct. Without any loss of generality,
we can assume that the list contains valid tokens for context axioms

Let us start with case A. The Prolog system will hit upon Rule 1 first and evaluate it. It
will recursively call Rule 1 (remember that in case A our entire list consists of valid domain
model tokens) until the token list has been exhausted. On the next recursive call, Rule 1
will fail (the token list is empty at this point) and the Prolog system will choose Rule 2 to

26

evaluate next. Upon evaluating Rule 2, the rule evaluates to true, and the entire parsing
comes to a halt, since we have already exhausted our token list and out predicate evaluated
to true. At this point, the token list has been successfully parsed and the remaining set of
tokens is the empty set.

Now consider case B. The Prolog system will once again encounter Rule 1 first and
evaluate it. Only this time, because there lies an error in the token list, at some point
during parsing the tokens, Rule 1 will fail. When this happens, the Prolog system will
again choose Rule 2 to evaluate, in which case will evaluate to true, and again the parsing
will halt. But remember that the error in the token list lay somewhere in the middle, and
as such, when Rule 1 failed, there was a set of tokens remaining that could not be parsed.
Thus when the parsing completes, what remains in the end is a set of tokens which could
not be parsed, i.e. the tokens with the error in it. In this case, things worked out well, since
the Prolog system parsed as much as possible and returned the remaining tokens (where
the error lay) back to the user.

Finally, let us consider case C. The first time the Prolog system evaluates Rule 1, it will
fail. The reason is that the tokens in the list correspond to context axioms, not the domain
model. But nonetheless, the Prolog system evaluates the first rule it encounters and thus
will fail. At this point, the Prolog system will evaluate Rule 2 and succeed, thus ending
the parsing. Unfortunately, since the parsing has halted, the Prolog system did not get a
chance to evaluate any other rules. As a result, what we are left with at the end is the
full list of tokens. Obviously, this is a problem. Although the parser will tell us that we
have remaining tokens, this is technically incorrect. We only have remaining tokens because
at the time of failure, the parser could not distinguish between failing because an error in
the domain model and failing because of control (here the control would be to fail at the
domain model rule and have the Prolog system backtrack and choose another rule). So to
get around this problem, the DCcG was changed as follows:

Rule 1: < Domain_Model > — < Semantic.Decl > < More_Domain_Model >
Rule 2: < More_Domain_Model > — < Domain-Model >
Rule 3: < More_Domain_Model > — ¢

This time, instead of the recursion happening at the top level rule, it has been pushed
down one level deeper. Now it should be clear that cases A and B work as before. This
time, though, when we are in case C, what happens is as follows. When the Prolog system
evaluates Rule 1, it will immediately fail, since once again the tokens in our list correspond
to context axioms. This time though, there are no other rules with the same head that the
Prolog system can evaluate, thus it will fail. At this point, the Prolog system will backtrack
and proceed onto its next choice-point. Eventually, the Prolog system should reach the
correct rules defining context axioms and successfully parse the entire token list, leaving us
with the empty set as the remaining token set.

3.3.3 Semantics Module

The semantics module does very little at the moment. It does a few semantic checks,
such as making sure value constructors take in valid context names. This is one module
that definitely needs to be worked on more in the future. Because of time constraints

both with respect to the language and compiler, this module has had to suffer in terms of
implementation.

27

3.3.4 Code Generator Module

The compiler module takes in the list structure that the parser produces and iterates over the
intermediate code. The main predicate is generate_code/5 where the intermediate language
is unified with the appropriate rule. The code generator takes care of doing the overriding
and producing the value constructors for the semantic objects defined in the elevation
axioms. This design was chosen for its simplicity both in the implementation and in its
understanding.

There does exist an alternative, though. Since it is known priori what the generated code
will look like, one can create a new DCG to parse this generated code. This DCG will take
the generated output and map it to a dictionary data structure, a data structure identical
to the one used in parsing PENNY. If the implementation of this new DCG is free of any side
effects, then what will result is a parser from the desired output code to a data structure.
The beauty in this is that using the logic capabilities inherent in Prolog, the new DCG
should be symmetric. That is feed in the language and derive the data structure, or feed
in the data structure and derive the language. Because of this duality, after parsing PENNY
it is conceivable to pass the data structure to this new DCG thereby deriving the desired
output language (remember that the idea was that both data structures were identical).

There are two issues which makes this alternative complicated, if not, infeasible. First,
getting the language totally free of side effects and coding it to ensure the symmetry is not
necessarily a straightforward task. Second, because the desired output has been augmented
with extra information, such as overriding and the generation of value constructors, it was
not clear how difficult this would have been to accomplish. Overall the extra work in making
the Prolog system behave as described didn’t seem to offer many advantages, except for the
fact that the compiler would be exploiting the full capabilities of Prolog.

28

Chapter 4

Conclusion and Future Work

4.1 Limitations

Here we focus our discussion on the limitations and problems found in PENNY and its
compiler and end this Thesis with a summary of contributions.

4.1.1 Penny

While it was hopefully clear from Section 2.2.1, that PENNY does indeed provide a better
abstraction mechanism and cleaner design than that offered by COINL, it should be noted
that the number of users who have programmed in PENNY is relatively small. Since the entire
goal of the new language was aimed at removing extra complexity and burden normally
placed on the user, it is difficulty to ascertain whether this task has been fulfilled. There
needs to be more rigorous use of the language to evaluate it’s constructs and design.

A ramification of the decrease in complexity in the language has been a decrease in the
flexibility of the language. This is because PENNY enforces stricter semantics than COINL,
thus there has been some expressiveness lost in the process. It is inconclusive at this point
whether this eliminated expressiveness will affect the way users program in MINT. There
remains a deal more of study to be done in this direction.

One feature that PENNY (as well as did COINL) does lack is support for registry popula-
tion. Although not explicitly mentioned in this Thesis, the registry plays an important role
in our system. It defines the export schemas of the relations used in the architecture. These
export schemas are then elevated into “virtual” relations through the elevation axioms. The
design of this part of the compilation system is crucial because this is where the connection
to the external sources is made in the MINT architecture; any mismatch can cause serious
problems in the run-time of the entire system. Now it seems perfectly reasonable that the
compiler, given a little more information, can generate this registry information from the
elevation axioms. This would be a definite advantage since it would eliminate the cross-
referencing that needs to be done between the elevation axioms and registry information,
therefore minimizing user errors.

4.1.2 Penny Compiler

As described in Section 3.3, there is a lot more work that can be done on the compiler.
First, better error handling routines can be coded into the compiler. Although currently,
the parser will return the invalid tokens, it is up to the user to explicitly find the error. It

29

would be much nicer if, say, line number information and the exact error was generated by
the parser. This would most likely lead to faster user debugging sessions. In addition to
a more robust error handling capability, the parser could also be modified to eliminate the
unnecessary backtracking it performs. Currently it works by reading a list of tokens and
trying to parse them. It could be modified so that instead of using a list, it would use an
input stream and extract tokens from the stream. Because the language is deterministic,
extracting tokens from an input stream would reduce the number of times the system would
try to backtrack. Furthermore this could in turn lead to a better error handling management
since at any one point when the system would fail, it would be easier to determine whether
it was due to an error in the input stream or it was part of the control mechanism. The
disadvantage is that the DCG in the parser would need to be modified carefully to take these
two cases into account. As for the rest of the system, no other module unit returns any
of type of error information which is also a problem. It would be ideal for the semantics
checker and the code generator to return useful information messages back to the user
while compiling. Furthermore, while speaking of the semantics checker, a more robust and
complete implementation awaits to be constructed.

Second, there is a lack of performance analysis and optimizations that can be performed
on the generated code. Ideally, this could be accomplished by first coding the desired code
by hand into the Mediator and then running performance analysis on the results. This will
give a good indication where and what optimizations should be placed in the compiler.

Last, support for both context inheritance and multiple inheritance needs to be investi-
gated. The research efforts in [D'T95] is but one work which focuses on multiple inheritance.
In terms of context inheritance, problems dealing with semantics need to be ironed out.

4.2 Conclusion

In closing, PENNY and the PENNY compiler are two invaluable tools for programming in
MINT. The PENNY compiler has built on previous work in the area of deductive object-
oriented translations whereas PENNY has its basis in COINL. Albeit needing more work, both
PENNY and the PENNY compiler provide a basis upon which further research and extensions
can be made to the COIN model.

30

Appendix A

Penny BNF

This section describes the full BNF for PENNY and the list of reserved keywords in the
language. But before that, the notational convention used here to represent the PENNY BNF
is given.
A.1 Notational Convention

1. Non-terminals are enclosed in angle brackets, e.g. < Ezample >

2. The following are terminals:

e Character strings regardless of case

e Punctuation symbols such as parentheses, commas, brackets, etc

Operator symbols such as +, —, , /,=, >, etc
The digits 0...9

3. The symbol € is used to denote the empty string

4. Productions are given by: & ::= o, where X is a non-terminal and « denotes grammar
symbols, either non-terminals or terminals

5. The left side of the first production is the start symbol

6. The vertical bar (|) is used to separate mutually exclusive options.
7. The percent symbol (%) symbol is used for commenting in the BNF
8. Variables names must begin with an uppercase letter

9. Boldfacing signifies PENNY keywords

A.2 Reserved Penny Keywords
® as
e attribute

e context

31

e ctx

e cvt

e elevate
e end

e in

e modifier
e not

e over

e self

e semanticType
e source
e target

® use

e value

e view

e void

A.3 BNF

Wi
%% This is the START production
Wh

< Penny_Rule > ::= < Top_Level_Rules >

Wh
%% These are the rules which can exist at the top level of a program
Wh

< Top_Level_Rules > ::= < Include_Directive > < Top_Level_Rules >
| < Domain_Model >
| < Context_-Module_Def >
| < Elevation_View_Azioms >

WIRIRIII TN BIAIR DI DD D ARIDI DD ARR DDA ADIDIIRA DRI I DD DA AL I DD DR AARL LD
wh

%% DOMAIN MODEL

Wh

32

< Domain_Model > ::= < Semantic_Decl > < Domain_Model > | €

< Semantic_Decl > ::= semanticType < Subtype_Decl > { < Att_Mod_Decls > };
< Subtype_Decl > ::= < ident > :: < ident >

< Att_Mod_Decls > ::= [< Att_Decl > | < Mod_Decl >] < Att_Mod_Decls > | €

< Att_Decl > := attribute < type > < ident > ;
< Mod_Decl > ::= modifier < type > < ident > (ctx) ;

Wh

%4 END DOMAIN MODEL

Wh
BRI IR IAAIAD DI DDDIIII TNl Tl hh s bbb e Te e

Yy A A YA Yy Yy Y A NS A Y Y Y Y Y Y Y Y Y Y Y AN AN
hh

%% MODULES

Wh

< Context_-Module_Def > ::= < Context_Begin >
< Context.-Conversion_Axioms_-Def >
< Context_-End >

< Context_Begin > ::= context < ident > ;
< Context_-End > ::= end < ident >

< Context_Conversion-Axioms-Def > ::= < Context_Arioms >
| < Conversion_Azioms >
| < Include_Directive >

Wh

%% END MODULES

Wh
WD DR DRADD IR AIAID DA ARADDDIDD DD DDRAALA DD NN
WRIRRIIIDDDDR I DIDD DD DDA DDA AIIAAAIIIDDIIADBDDADD DD DDRDDRDAAADAAA LA DN
Wh

%% CONTEXT AXIOMS

Wh

< Context_Azioms > ::= < Context_-Axrioms_Decl >
< Contezt_Conversion_Azioms_Def > | €

< Contexst_Azioms_Decl > := < ident > < Type_Binding > = < Virtual_Constructor > ;
| < ident > < Type-Binding > = < Virtual_Constructor >
< Rule_Definition > ;

< Virtual Constructor > == ~([< constant > | $])

33

Wh

%% END CONTEXT AXIOMS

Wh

BT IR A AT Il Tl R AT I AR AT I AT DDA DRIIDI DR DDAARII NI DD NIRRT DRI DDA AT

U ottt ettt ottt el T et el It IR I I R IT AR IA DA DDID DA DDRDDD RIS
Wh

%% CONVERSION AXIOMS

Wh

< Conversion_Azioms > := < Conversion_-Axioms_Decl >
< Context_Conversion_Azioms_-Def > | €

< Conversion_Azxioms_Decl > ::= < Cvt >< Type_Binding >
< Rule_Definition > ;

< Cvt > == cvt< Argument_Term >

ég END CONVERSION AXIOMS
’;:’2’/.'/.'/.'/.'/.'/.'/.'/.'/.'/.’/.'/.'/.’/.'/.'/.'/.'/.'/.’/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.’/.’/.’/.’/.’/.’/.’/.’/.'/.'/.'/.'/.'/.'/.'/.'/.'/.‘/.'/.'/.'/.'/.'/.'/.'/.7.7.7.’/.'/.%'/.'/.’/.’/.'/.%'/.
:/.:/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.’/.'/.'/.'/.7.'/.'/.'/.'/.7.’/.'/.’/.'/.'/.‘/.'/.'/.‘/.‘/.'/.'/.'/.'/.'/.'/.'/.’/.’/.'/.'/.'/.'/.'/.'/.'/.'/.’/.'/.'/.'/.'/.’/.'/.7.7.’/.’/.’/.'/.'/.'/.'/.'/.'/.'/.'/.'/.
éé ELEVATION AXIOMS

Wh

< Elevation_View_Axioms > := [< View_Azioms > | < Elevation_Azioms >|
< FElevation_View_Azioms >

< View_Azioms > := view < P_Term > over < View_-Over > ;

< ViewOver > == < P_Term > < View_-Over2 >
< View_Over2 > u=, < View_-Over > | €

< Elevation_Azxioms > ::= elevate < Source_Relation >
in < ident >
as < Elevated_Relation >
{ < Elevated_Attributes > } ;

< Source_Relation > = < P_Term >
< Elevated_Relation > ::= < ident > (< Elevated_Arguments >)

< Elevated-Arguments > ::= < Farg > < Elevated_Arguments2 >
< Elevated_Arguments2 > ::= , < Elevated_Arguments > | ¢

< Earg > == < elevated_ident > : < ident > | < elevated_-ident > : void

34

< Elevated_Attributes > = < Term > = < Rule_Def Value > ;
< Elevated_Attributes > | €

wh

%% END ELEVATION AXIOMS

wh

BB I BRI IR AADI IR ARIID DI DA DATAIIRRRDD DRI DRDDDT DD T AT A b KT

WIRI IR AAI D AAI DRI AIIADAIDRAADDDARIDT DDA DN AD DD DNDD DDA DA
Wh

%% PENNY EXPRESSIONS

Wh

< Rule_Def Value > ::= < Term > | $ < Rule_Definition >
< Rule_Definition > ::= < Rule_Definition-Op > < Rule_Ezpressions >

< Rule_Expressions > ::= < E_Term > < Rule_Ezpressions2 >
< Rule_Expressions2 > := , < Rule_Expressions > | ¢

< ETerm > = <Term > < EZTerml >
| < P-Term >
| not < E_Term >
| <ident > : <ident >

< E_Terml > == < booleanOp > < Term > | < booleanOp > < Math_Expression >

< Math_Ezxpression > = < Term > < binaryOp > < Term >

< Term > == < Virtual-Term >
| < Elevated_Term >
| < Attribute-Term >
| < Modifier Term >
| < Singleton_Term >

< Vartual Term > = < virtual_ident >.< Method >

< FElevatedTerm > ::= < elevated-ident >.< Method >

< Attribute_Term > ::= < Object >.< AttModCuvt >

< Modifier Term > ::= < Object >.< AttModCvt >(< Context >)

< Singleton Term > ::= < elevated_ident >
| < virtual_ident >
| < sourcerel_ident >
| < constant >
| < ident >

< Context > ::= source | target | < ident >
< Object > == self | < ident >

< Method > ::= value | < ident >

< AttModCvt > ::= < Method > | < Cvt >

35

x END PENNY EXPRESSIONS
';:';:'/.'/.'/.'/.'/.'/.'/.'/.’/.'/.'/.'/.’/.'/.'/.'/.’/.‘/.'/.’/.’/.’/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.'/.’/.'/.'/.'/.'/.’/.'/.'/.'/.’/.'/.'/.'/.'/.'/.'/.'/.'/.‘/.'/.'/.’/.'/.’/.‘/.‘/.'/.'/.'/.'/.'/.
VAN YA A N AN YN YA YA YAy YA Y YAy YAy YAy YN YAy YA A AN YA Y YAy Yy
éé AUXILLARY RULES

W

< Include_Directive > ::= use([< atom > | < string >|) ;

< Type_Binding > ::="<'< ident >’>’

< Rule_Definition.Op > ::= <—

< virtual_adent > 1= ~< ident >
< elevated_ident > := A < ident >
< sourcerel_ident > = Q< ident >

< Argument_Term > == (< Id_Term_List >)

< Id-Term_List > == [< Id-Term_List >]
| < Id-Term > < Id-Term_List2 >
| €

< Id-Term_List2 > ==, < Id_Term_List > | ¢
< PTerm > == < IdTerm >
< Id-Term > = < ident > < Argument_Term > | ¢

< booleanOp > == < |>|<>|>=]=<|=
< binaryOp > ::= < booleanOp > |+ | — | x|/

<ident > = < atom > | < string > | < variable >
< type > == < ident >

<atom > u=[a—2|T[-A - Za—20 —9]* | '[A — Za — 20 — 9"’
< string > u= “[LA — Za — 20 — 9|”
< variable > == [A — Z_]*[.A— Za — 20 — 9]*

< constant > ::= integer | real | < atom > | < string >

W

%% END AUXILLARY RULES

Wh

DRI TAR D DITIDT D DADDDIAIAD D DRI DD DI II IR DRI AR DDA DI AR DR DIIA DDA

36

Appendix B

TASC Penny Axioms

The following code is the implementation of the TASC application which is currently running
in our system. As described in Section 1.1, the TASC application focuses on integrating
various information sources containing financial figures for a variety of companies, foreign
and domestic. The DStreamAF context, has also been included although no reference
was made to it earlier. There are some additional relations which are used for auxiliary
information and name mappings.

The relation Name_map-Ds_-Ws contains name mappings between company names in
DiscAF and WorldAF. Name_map_-Dt_Ds holds name mappings between company names in
DStreamAF and DiscAF. Finally, to add closure to the name mapping routines, the table
Name_map-Dt_-Ws has the name mappings between company names in DStreamAF and
WorldAF.

The relation Currencytypes converts between a given country and its official currency
while Currency _map maps mnemonic currency values, e.g. “USD” to “US” and vice versa.

B.1 Domain Model

semanticType companyFinancials::number {
attribute companyName company;
attribute date fyEnding;

modifier number scaleFactor(ctx);
modifier currencyType currency(ctx);

};

semanticType companyName::number {
modifier string format(ctx);
attribute string countryIncorp;

};

semanticType exchangeRate: :number {
attribute currencyType fromCur;
attribute currencyType toCur;
attribute date txmnDate;

s

37

semanticType date::string {
modifier string dateFmt(ctx);
};

semanticType currencyType::string {
modifier string curTypeSym(ctx);

};

semanticType countryName::string {

attribute currencyType officialCurrency;
}

B.2 Context Axioms

B.2.1 DiscAF
use(’/home/tpena/work/coinlc/Penny/examples/tasc/penny/dm0.pny’) ;
context c_ds;
scaleFactor<companyFinancials> = ~“(1);
currency<companyFinancials> = ~($) <-
Comp = self.company,
Country = Comp.countrylIncorp,
CurrencyType = Country.officialCurrency,
$ = CurrencyType.value;
format<companyName> = ~("ds_name");
dateFmt<date> = ~("American Style /");
curTypeSym<currencyType> = “("3char");

end c_ds;

B.2.2 WorldAF

use(’ /home/tpena/work/coinlc/Penny/examples/tasc/penny/dm0.pny’) ;
context c_ws;
scaleFactor<companyFinancials> = ~(1000);

currency<companyFinancials> = “(°USD’);

38

format<companyName> = ~("ws_name");
dateFmt<date> = ~("American Style /");
curTypeSym<currencyType> = ~("3char");
end c_ws;

B.2.3 DStreamAF
use (’ /home/tpena/work/coinlc/Penny/examples/tasc/penny/dm0.pny’) ;
context c_dt;
scaleFactor<companyFinancials> = ~(1000);
currency<companyFinancials> = “(§) <-
Comp = self.company,
Country = Comp.countrylncorp,
CurrencyType = Country.officialCurrency,
$ = CurrencyType.value;
format<companyName> = ~("dt_name");
dateFmt<date> = “("European Style -");
curTypeSym<currencyType> = ~("2char");

end c_dt;

B.2.4 Olsen

use(’/home/tpena/work/coinlc/Penny/examples/tasc/penny/dm0.pny’) ;
context c_ol;
dateFmt<date> = ~("European Style /");

end c_ol;

B.3 Conversion Functions
use (’/home/tpena/work/coinlc/Penny/examples/tasc/penny/dm0.pny’);
context cO;

%% conversion functions for companyFinancials

39

cvt () <companyFinancials> <-
U = self.value,
W = self.cvt(scaleFactor, U),
$ = self.cvt(currency, W);

cvt (scaleFactor, Val)<companyFinancials> <-
SrcMod = self.scaleFactor(source),
TgtMod = self.scaleFactor(target),
SrcMod.value = TgtMod.value,
$ = Val;

cvt (scaleFactor, Val)<companyFinancials> <-
FsvMod = self.scaleFactor(source),
FtvMod = self.scaleFactor(target),
Fsv = FsvMod.value,
Ftv = FtvMod.value,
Fsv <> Ftv,
Ratio = Fsv / Ftv,
$ = Val * Ratio;

cvt (currency, Val)<companyFinancials> <-
SrcMod = self.currency(source),
TgtMod = self.currency(target),
SrcMod.value = TgtMod.value,
$= Val;

cvt(currency, Val)<companyFinancials> <-
SrcMod = self.currency(source),
TgtMod = self.currency(target),
SrcMod.value <> TgtMod.value,
FyDate = self.fyEnding,
olsen_p(FromCur, ToCur, Rate, TxnDate),
SrcMod.value = FromCur.value,
TgtMod.value = ToCur.value,
FyDate.value = TxnDate.value,
$ = Val * Rate.value;

cvt () <companyName> <-
SrcMod = self.format (source),
TgtMod = self.format(target),
SrcMod.value = TgtMod.value,

40

$ = self.value;

cvt () <companyName> <-
SrcMod = self.format (source),
TgtMod = self.format(target),
SrcMod.value = "ds_name",
TgtMod.value = "ws_name",
’Name_map_Ds_Ws_p’ (DsName, WsName),
self.value = DsName.value,
$ = WsName.value;

cvt () <companyName> <-
SrcMod = self.format(source),
TgtMod = self.format(target),
SrcMod.value = "ws_name",
TgtMod.value = "ds_name",
’Name_map_Ds_Ws_p’ (DsName, WsName),
self.value = WsName.value,
$ = DsName.value;

cvt()<date> <-
SrcMod = self.dateFmt (source),
TgtMod = self.dateFmt(target),
SrcMod.value = TgtMod.value,
$ = self.value;

cvt()<date> <-
SrcMod = self.dateFmt(source),
TgtMod = self.dateFmt(target),
SrcFormat = SrcMod.value,
TgtFormat = TgtMod.value,
SrcFormat <> TgtFormat,
SrcVal = self.value,
datexform($, SrcVal, SrcFormat, TgtFormat);

cvt()<currencyType> <-
SrcMod = self.curTypeSym(source),
TgtMod = self.curTypeSym(target),
SrcMod.value = TgtMod.value,
$ = self.value;

cvt ()<currencyType> <-

41

SrcMod = self.curTypeSym(source),
TgtMod = self.curTypeSym(target),
SrcMod.value = "3char",
TgtMod.value = "2char",
’Currency_map_p’ (Char3, Char2),
self.value = Char3.value,

$ = Char2.value;

cvt () <currencyType> <-
SrcMod = self.curTypeSym(source),
TgtMod = self.curTypeSym(target),
SrcMod.value = "2char",
TgtMod.value = "3char",
’Currency_map_p’ (Char3, Char2),
self.value = Char2.value,
$ = Char3.value;

%% conversion functions for number, a simple value
%% cvt function for number is overridden by the following:
Wh * companyFinancials

cvt () <number> <-
$ = self.value;

= === == =
%% conversion functions for strings, a simple value
%% cvt function for string is overridden by the following:

Wh * companyName
W * date
Sttt

cvt()<string> <-
$ = self.value;

end cO;

B.4 Elevation Axioms

elevate ’DiscAF’(cname, fyEnding, shares, income, sales, assets, incorp)

in c_ds

as ’DiscAF_p’(“cname : companyName, “fyEnding : date, “shares : void,
“income: companyFinancials, “sales : companyFinancials,
“assets: companyFinancials, “incorp: countryName)

42

“cname.countrylncorp = “incorp;

“income.company = “~cname;
“income.fyEnding = “fyEnding;

“sales.company = “cname;
“sales.fyEnding = “fyEnding;

“assets.company = “cname;
~assets.fyEnding = “fyEnding;

“incorp.officialCurrency = “curType;

“curType.value = § <-
“curType = Incorp.officialCurrency,
Y = Incorp.value,
’Currencytypes’ (Y, $);
};

= = = e

%% Worldscope:WorldAF (Keys: CompanyName and Date)

e

elevate ’WorldAF’(cname, fyEnding, shares, income, sales, assets, incorp)

in c_ws

as ’WorldAF_p’(“cname : companyName, “fyEnding : date, “shares : number,
“income: companyFinancials, “sales : companyFinancials,
“assets: companyFinancials, “incorp: countryName)

{
“cname.countryIncorp = “incorp;
“income.company = “cname;
“income.fyEnding = “fyEnding;
“sales.company = “cname;
“sales.fyEnding = “fyEnding;
“assets.company = “cname;
“assets.fyEnding = “fyEnding;
“incorp.officialCurrency = “curType;
“curType.value = § <-
“curType = Incorp.officialCurrency,
Y = Incorp.value,
’Currencytypes’ (Y, $);
};

43

elevate olsen(exchanged, expressed, rate, date)

in c_ol
as olsen_p(“exchanged : currencyType, “expressed : currencyType,
“rate : exchangeRate, “date : date)
{
“rate.fromCur = “expressed;
“rate.toCur = “exchanged;
“rate.txnDate = “date;

};

e

%% Datastream: DStreamAF (Keys: As_of_date and Name)

e

elevate ’DStreamAF’(date, name, total_sales, total_items_pre_tax,
earned_for_ordinary, currency)

in c_dt

as ’DStreamAF_p’ (“date : date,
“name : companyName,
“total_sales : companyFinancials,
“total_items_pre_tax : companyFinancials,
“earned_for_ordinary : companyFinancials,
“currency : currencyType)

{

“name.countryIncorp = “incorp;

“total_sales.fyEnding = “date;
“total_sales.company = “name,

“total_items_pre_tax.fyEnding = “date;
“total_items_pre_tax.company = “name;

“earned_for_ordinary.fyEnding = “date;
“earned_for_ordinary.company = “name;

“incorp.officialCurrency = “currency;
“incorp.value = § <-
Currency = “incorp.officialCurrency,
Two = Currency.value,
’Currencytypes_p’ (Country, Three),
Two = Three.value,
$ = Country.value;

%4 Auxillary Tables

elevate ’Currencytypes’(country, currency)
in c_ds
as ’Currencytypes_p’(“country : string, “currency : string) {};

elevate ’Currency_map’(cur3, cur2)
in c_ds
as ’Currency_map_p’ (“cur3 : string, “cur2 : string) {};

elevate ’Name_map_Ds_Ws’(dsNames, wsNames)
in c_ds
as ’Name_map_Ds_Ws_p’ ("dsNames : string, “wsNames : string) {};

elevate ’Name_map_Dt_Ds’(dtName, dsName)
in c_dt
as ’Name_map_Dt_Ds_p’ ("dtName : string, “dsName : string) {};

elevate ’Name_map_Dt_Ws’ (dtName, wsName)

in c_dt
as ’Name_map_Dt_Ws_p’("dtName : string, “wsName : string) {};

45

Appendix C

DLA Penny Axioms

The following PENNY code is the implementation of the DLA application which is also running
as a demonstration in our system. Although not mentioned in this Thesis, the code was
provided to illustrate another example of programming in PENNY. This application focuses
on integrating information on medical supplies from various manufacturers, distributors,
and the defense logistic agency, hence the name DLA. There are three distributors in the
system, Allied Health_Corp, King_Medical_Supplies, and BMI. There also exists a relation
containing information from the defense logistic agency (DLA). The information in the table
DLA also houses the information on the various manufacturers.

In addition to the main relations, there exist a variety of auxiliary tables to aid in
any needed conversions. The relations Dist-Man, Dist_Dla, and Man_Dla map between
the distributor part number and manufacturer part number, the distributor part number
and the national stock number, and the manufacturer part number and the national stock
number respectively.

Finally the last two relations, Man_Unit_Map and DistDla_Unit_Map convert between
the units of manufacture and the units of the DLA and the distributor units and the units
of the DLA, respectively.

C.1 Domain Model

semanticType part_id::string {
modifier string per_unit_type(ctx);

};

semanticType price::string {
attribute part_id part;
attribute string distributor;
modifier string preferred_id(ctx);

};

46

C.2 Context Axioms

C.2.1 Distributor
use (’ /home/tpena/work/coinlc/Penny/examples/darpa/penny/dm0.pny’) ;

context c_dist;

preferred_id<part_id> = ~("Distributor Part #");
per_unit_type<price> = ~("Sale Unit");

end c_dist;

C.2.2 Manufacturer
use (’/home/tpena/work/coinlc/Penny/examples/darpa/penny/dm0.pny’) ;

context c_man;

preferred_id<part_id> = ~("Manufacturer Part #");
per_unit_type<price> = ~("Manufacture Unit");
end c_man;

C.2.3 Olsen
use (’ /home/tpena/work/coinlc/Penny/examples/darpa/penny/dm0.pny’) ;

context c_dla;
preferred_id<part_id> = ~("NSN");
per_unit_type<price> = “("Basic Unit");

end c_dla;

C.3 Conversion Functions
use (’/home/tpena/work/coinlc/Penny/examples/darpa/penny/dm0.pny’) ;

context cO;

cvt(O<price> <-
SrcMod = self.per_unit_type(source),
TgtMod = self.per_unit_type(target),

47

SrcMod.value = TgtMod.value,
$ = self.value;

cvt()<price> <-
SrcMod = self.per_unit_type(source),

TgtMod = self.per_unit_type(target),
SrcMod.value = "Sale Unit",
TgtMod.value = "Manufacture Unit",

SrcPrice = self.value,

Part = self.part,

PartValue = Part.value(c_dist),

Namel = self.distributor,
’Dist_Unit_Map_p’ (Dist, Name2, Ratio),
Namel.value = Name2.value,

PartValue = Dict.value,

$ = SrcPrice / Ratio.value;

cvt()<price> <-
SrcMod = self.per_unit_type(source),
TgtMod = self.per_unit_type(target),
SrcMod.value = "Manufacture Unit",
TgtMod.value = "Sale Unit",
SrcPrice = self.value,
Part = self.part,
Namel = self.distributor,
PartValue = Part.value(c_man),
’Dist_Man_p’(Distl, Manl),
’Dist_Unit_Map_p’(Dist, Name2, Ratio),
Namel.value = Name2.value,
Distl.value = Dist.value,
PartValue = Manl.value,
$ = SrcPrice * Ratio.value;

cvt()<price> <-
SrcMod = self.per_unit_type(source),
TgtMod = self.per_unit_type(target),
SrcMod.value = "Manufacture Unit",
TgtMod.value = "Basic Unit",
SrcPrice = self.value,
Part = self.part,
PartValue = Part.value(c_man),
’Man_Unit_Map_p’ (Man, Count),
PartValue = Man.value,
$ = SrcPrice / Count.value;

cvt()<price> <-
SrcMod = self.per_unit_type(source),
TgtMod = self.per_unit_type(target),

48

SrcMod.value "Basic Unit",
TgtMod.value = "Manufacture Unit",
SrcPrice = self.value,

Part = self.part,

PartValue = Part.value(c_dla),
’Man_Dla_p’ (Man1, Dla),
’Man_Unit_Map_p’ (Man, Count),
PartValue = Dla.value,

Manl.value = Man.value,

$ = SrcPrice * Count.value;

cvt (O <price> <-
SrcMod = self.per_unit_type(source),
TgtMod = self.per_unit_type(target),
SrcMod.value = "Sale Unit",
TgtMod.value = "Basic Unit",
SrcPrice = self.value,
Part = self.part,
Namel = self.distributor,
PartValue = Part.value(c_dist),
’DistDla_Unit_Map_p’ (Dist, Name2, RBasic),
PartValue = Dist.value,
Namel.value = Name2.value,
$ = SrcPrice / RBasic.value;

cvt()<price> <-
SrcMod = self.per_unit_type(source),
TgtMod = self.per_unit_type(target),
SrcMod.value = "Basic Unit",
TgtMod.value = "Sale Unit",
SrcPrice = self.value,
Part = self.part,
Namel = self.distributor,
PartValue = Part.value(c_man),
’DistDla_Unit_Map_p’ (Dist, Name2, RBasic),
’Dist_Dla_p’ (Dist2, Dla),
Namel.value = Name2.value,
Dist.value = Dist2.value,
PartValue = Dla.value,
$ = SrcPrice * RBasic.value;

cvt () <part_id> <-
SrcMod = self.preferred_id(source),
TgtMod = self.preferred_id(target),
SrcMod.value = TgtMod.value,

49

$ = self.value;

cvt(O<part_id> <-
SrcMod = self.preferred_id(source),
TgtMod = self.preferred_id(target),
SrcMod.value = "Distributor Part #",
TgtMod.value = "Manufacturer Part #",
SrcVal = self.value,
’Dist_Man_p’ (Dist, Man),
SrcVal = Dist.value,
$ = Man.value;

cvt O <part_id> <-
SrcMod = self.preferred_id(source),
TgtMod = self.preferred_id(target),
SrcMod.value = "Manufacturer Part #",
TgtMod.value = "Distributor Part #",
SrcVal = self.value,
’Dist_Man_p’ (Dist, Man),
SrcVal = Man.value,
$ = Dist.value;

cvt(O<part_id> <-
SrcMod = self.preferred_id(source),
TgtMod = self.preferred_id(target),
SrcMod.value = "Manufacturer Part #",
TgtMod.value = "NSN",
SrcVal = self.value,
’Man_Dla_p’ (Man, Dla),
SrcVal = Man.value,
$ = Dla.value;

cvt () <part_id> <-
SrcMod = self.preferred_id(source),
TgtMod = self.preferred_id(target),
SrcMod.value = "NSN",
TgtMod.value = "Manufacturer Part #",
SrcVal = self.value,
’Man_Dla_p’ (Man, Dla),
SrcVal = Dla.value,
$ = Man.value;

cvt()<part_id> <-
SrcMod = self.preferred_id(source),
TgtMod = self.preferred_id(target),
SrcMod.value = "Distributor Part #",
TgtMod.value = "NSN",
SrcVal = self.value,

50

'Dist_Man_p’ (Dist, Mani),
’Man_Dla_p’ (Man2, Dla),
SrcVal = Dist.value,
Man2.value = Manl.value,
$ = Dla.value;

cvt ()<part_id> <-
SrcMod = self.preferred_id(source),
TgtMod = self.preferred_id(target),
SrcMod.value = "Distributor Part #",
TgtMod.value = "NSN",
SrcVal = self.value,
’Dist_Man_p’ (Dist, Manl),
’Man_Dla_p°’(Man2, Dla),
SrcVal = Dla.value,
Man2.value = Manl.value,
$ = Dist.value;

Y
%% conversion functions for strings, a simple value
%4 cvt function for string is overridden by the following:
W * part_id
hh * price
Attt
cvt(O<string> <-

$ = self.value;

end cO0;

C.4 Elevation Axioms

use(’/home/tpena/work/coinlc/Penny/examples/darpa/penny/dm0.pny’) ;

elevate ’Dla_Inventory_v’(nsn, stock, req, dist, distpno, usale, ratio,
price, man, manpno, des, uman, count, type, size,
style, other)

in c_dla

as ’Dla_Inventory_v_p’("nsn : part_id, “stock : string, “req : string,
“dist : string, “distpno: string, “usale: string,
“ratio : string, “price : price, “man : string,
“manpno: string, “des : string, “uman : string,
“count : string, “type : string, “size : string,
“style : string, “other : string)

{

51

“price.part = “nsn;
“price.distributor = “dist;

view ’King_Medical_p’(A,B,C,D,E,F,G,H,I,J,K,L,M,N)
over ’King_Medical_Supplies_v_p’(A,B,C,D,E,F,G,H,I,J,K,L,M,N);

elevate ’King_Medical_Supplies_v’(nsn, distpno, usale, ratio, price, man,
manpno, des, uman, count, type, size,
style, other)

in c_dist

as ’King_Medical_Supplies_v_p’("msn : string, “distpno: part_id,
“usale : strimg, “ratio : string,
“price : price, “man : string,
“manpno: string, “des : string,
“uman : string, “count : string,
“type : string, “size : string,
“style : string, “other : string)

{

“price.part = “distpno;
“price.distributor = “dist;

“dist.value = "KING MEDICAL SUPPLIES";
};

I e e
%% BMI

i = == = =
view ’BMI_v’(A, B, C, D, E, F, G, H, I, J, K, L, M, N)

over ’Part_Description’(H,K,L,M,N), ’BMI’(A,B,C,D,E,F,G,H,I,J);

elevate ’BMI_v’ (nsn, distpno, usale, ratio, price, man, manpno,
des, uman, count, type, size, style, other)

in c_dist

as ’BMI_v_p’(“nsn : string, “distpno: part_id, “usale: string,
“ratio : string, “price : price, “man : string,
“manpno: string, “des : string, “uman : string,
“count : string, “type : string, “size : string,
“style : string, “other : string)

{

“price.part = “distpno;
“price.distributor = “dist;

“dist.value = "BMI";

52

view ’Allied_Health_p’(A,B,C,D,E,F,G,H,I,J,K,L,M,N)
over ’Allied_Health_Corp_v_p’(A,B,C,D,E,F,G,H,I,J,K,L,M,N);

elevate ’Allied_Health_Corp_v’(nsn, distpno, usale, ratio, price, man,
manpno, des, uman, count, type, size,
style, other)

in c_dist

as ’Allied_Health_Corp_v_p’(“nsn : string, “distpno: part_id,
“usale : string, “ratio : string,
“price : price, “man : string,
“manpno: string, “des : string,
“uman : string, “count : string,
“type : string, “size : string,
“style : string, “other : string)

{

“price.part = “distpno;
“price.distributor = “dist;

~“dist.value = "ALLIED HEALTH CORP";
};

/e
%% Auxillary Tables
i
elevate ’Dla_Inventory_v’(_,_,_,_,dPO,_,_,_,_MPO, _,_;,_s_s_s_5_)

in c_dist

as ’Dist_Man_p’(“dpo : string, “mpo : string) {};

elevate ’Dla_InventOI‘y_V’ (nsn,_,_,_,dPO,-,-,_,_,_,_:_s_,_,_,_,-)
in c_dist
as ’Dist_Dla’(“dpo : string, “nsn : string) {};

elevate ’Dla_Inventory_v’ (nSn,_,_,_,_s_s—s—3s—sMPO, _s_s_s_s_s_3s_)
in c_dist
as ’Man_Dla_p’("mpo : string, “nsn : string) {};

elevate ’Dla_Inventory_v’(_,_,_,_s_s_s_s_,_,MpO,_,_,count,_,_,_,_)
in c_dist
as ’Man_Unit_Map_p’("man : string, “count : string) {};

elevate ’Dla_Inventory_v’(_,_,_,name,dist,_,ratio,_,_,_,_,_,count,_,_,_,_)
in c_dist

as ’DistDla_Unit_Map_p’("dist : string, “name : string, “count : string)

{

53

};

“count.value = $ <-
$ = Qratio * Qcount;

54

Bibliography

[ALUW93]

[ASUS6]

[BBCY7]

[BFP*97a]

[BFP*97D]

[BLGea97]

[BRU96]

[CGTS89]

[DG89)

[DT94]

[DT95)

S. Abiteboul, G. Lausen, H. Uphoff, and E. Walker. Methods and rules. In
Proceedings of the ACM SIGMOD Conference, pages 32-41, Washington DC,
May 1993.

A. Aho, R. Sethi, and J. Ullman. Compilers : Principles, Techniques, and
Tools. Addison-Wesley, 1986.

E. Bertino, S. Bressan, and B. Catania. Integrity constraint checking in chimera.
In Proceedings of Constraint Databases and Applications (ICDT97), 1997.

S. Bressan, K. Fynn, T. Pena, C. Goh, and et al. Demonstration of the con-
text interchange mediator prototype. In Proceedings of ACM SIGMOD/PODS
Conference on Management of Data, Tucson, AZ, May 1997.

S. Bressan, K. Fynn, T. Pena, C. Goh, and et al. Overview of a prolog im-
plementation of the context interchange mediator. In Proceedings of the Fifth
International Conference and Ezhibition on the Practical Applications of Pro-
log, pages 83-93, London, England, April 1997.

S. Bressan, T. Lee, C. Goh, and et al. A procedure for context mediation of
queries to disparate sources. 1997. Submitted.

P. Buneman, L. Raschi, and J. Ullman. Mediator languages — a proposal for a
standard, April 1996. Report of an I3/POB working group held at the Univer-
sity of Maryland.

S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about
datalog (and never dared to ask). IEEE Transactions on Knowledge and Data
Engineering, 1(1), March 1989.

M. Dalal and D. Gangopadhyay. OOLP : A translation approach to object-
oriented logic programming. In Proceedings of the First International Confer-
ence on Deductive and Object-Oriented Databases (DOOD-89), pages 555-568,
Kyoto, Japan, December 1989.

G. Dobbie and R. Topor. Representing inheritance and overriding in datalog.
Computers and Al 13(2-3):133-158, 1994.

G. Dobbie and R. Topor. Resolving ambiguities caused by multiple inheritance.
In Proceedings of the Sizth International Conference on Deductive and Object-
Oriented Databases, Singapore, December 1995.

55

[GMR96]

[Goh96]

[KLW95)

[Law93]

[Lef93]

[Mad96]

[0’K90]
[5594]

[Tuc86]

J. Grant, J. Minker, and L. Raschid. Semantic query optimization for object
databases. In Proceedings of the CP96 Workshop on Constraints and Databases,
Cambridge, MA, August 1996.

Cheng Hian Goh. Representing and Reasoning about Semantic Conflicts in
Hetergeneous Information Systems. PhD thesis, Sloan School of Management,
Massachusetts Institute of Technology, 1996.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. Journal of the ACM, (4):741-843, 1995.

M. Lawley. A prolog interpreter for f-logic. Technical report, Griffith University,
Australia, 1993.

A. Lefebvre. Implementing an object-oriented database system using a deduc-
tive database system. Technical report, Griffith University, Australia, 1993.

S. E. Madnick. Are we moving toward an information superhighway or a tower
of babel? the challenge of large-scale semantic heterogeneity. In Proceedings
of the IEEE International Conference on Data Engineering, pages 2-8, April
1996. Also reprinted in 21st (a Web ’Zine at http://www.bxm.com/).

R.A. O’Keefe. The Craft of Prolog. The MIT Press, 1990.

Leon Sterling and Ehud Shapiro. The Art of Prolog : Advanced Programming
Techniques. The MIT Press, 1994.

A. B. Tucker. Programming Languages. McGraw-Hill, 1986.

56

