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Abstract

This thesis continues research of ferrohydrodynamic pumping in spatially uniform
sinusoidally time-varying magnetic fields. Earlier analysis has show that when the
fluid spin velocity is small, the electromechanical coupling between magnetic field and
flow can lead to an effective dynamic fluid viscosity, %e ff, that can be made zero or
negative as a function of magnetic field strength and direction. When the effective
viscosity changes sign from positive to negative, the earlier approximate theory of
small spin velocity predicts flow reversal.

This thesis describes a method to numerically solve, without further approxima-
tion, the governing fluid and field equations in the viscous dominated limit. The
one-dimensional equations of fluid flow in a planar duct that were solved include the
case of an imposed uniform magnetic field along the duct axis and the case of an
imposed uniform magnetic field transverse to the duct axis. Spin and flow velocity
profiles were plotted for positive, zero, and negative values of effective viscosity as a
function of frequency.

Unlike most past work which considered fluid pumping due to applied rotating
or traveling magnetic fields, this thesis found that with alternating applied magnetic
fields either perpendicular or parallel to the duct axis, time average flow and spin
velocities result. The fluid spatial profiles have multi-valued regions where at one
spatial position there can be more than one allowed flow and spin velocity.
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Title: Professor





Acknowledgments

Special thanks to the Exxon Education Foundation's Research and Training Pro-
gram who, on the recommendation of Exxon Research and Engineering Company,
awarded a grant to Professor Zahn for fundamental studies of electrically and mag-
netically polarizable liquids. This grant provided me a research assistantship with
Professor Zahn, without which, I would have been unable to work on this thesis and
receive a masters degree. Additional research assistantship support was received from
the National Science Foundation under Award Number: ECS-9220638.

I would also like to thank Professor Zahn, my advisor, for all his tremendous help,
support, and understanding....even though I DID come from a "physics" background!
(Thanks, too, to Mrs. Linda Zahn for letting me drop by after hours for some
corrections!)

Anne Hunter deserves much thanks. She has helped me through MIT ever since
freshman year when she was my freshman advisor. Without all her help, I would
never have made it to this point. Part of this is hers!

I dedicate this thesis to my husband, Nick. He has been and will continue to be
my inspiration in all I do. If only I could do things as well as he does!

Finally, and personally, I give thanks to God, for without Him, I can do nothing.





Contents

1 Introduction

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Previous Analysis .............................

1.3 Scope of Thesis ..............................

2 Fundamentals of Ferrofluids

2.1 1-Dimensional Treatment . . . . . . . . . . . . . . . .

2.2 Magnetic Fields and Forces . . . . . . . . . . . . . .

2.2.1 Magnetization and Magnetic Fields . . . . . .

2.2.2 Magnetic Force and Torque Densities . . . . .

2.3 Ferrohydrodynamics ..................

2.3.1 Fluid Mechanics .................

2.3.2 Combining the Magnetics with the Mechanics

2.3.3 Normalization ..................

2.4 One Dimensional Governing Equations . . . . . . . .

2.4.1 Relevant Normalized Equations . . . . . . . .

2.4.2 Zero Spin-Viscosity . . . . . . . . . . . . . . .

2.4.3 Effective Viscosity . . . . . . . . . . . . . . .

3 Transverse Magnetic Field IB•. = 1; IHI = 0

3.1 Curves to the Right of i~ef = 0 ......................

3.1.1 Spin Velocity &y,(i) Profiles ...................

3.1.2 Flow Velocity , (.) Profiles . . . . . . . . . . . . . . . . . . .

19

19

20

21

23

. . . . 23

. . . . 24

. . . . 24

. . . . 28

... . 29

... . 29

. . . . 30

... . 31

. . . . 31

. . . . 31

. . . . 33

. . . . 35

39

42

42

49



3.2 Curves to the Left of ieff = 0 ......................

3.2.1 Spin Velocity vy(i) Profiles . . . . . . . . . . . . . . . . . . .

3.2.2 Flow Velocity 0z(i) Profiles ...................

55

56

63

4 Tangential Magnetic Field B,1 = 0; IH I, = 1 75

4.1 Curves to the Right of the ieff = 0 curve . ............... 78

4.1.1 Spin Velocity vy(i) Profiles . .................. 78

4.1.2 Flow Velocity vz,() Profiles . .................. 85

4.2 Curves to the Left of the ieff = 0 Curve . ............... 91

4.2.1 Spin Velocity Cy,() Profiles ................... 91

4.2.2 Flow Velocity 0z,(i) Profiles . .................. 98

5 Summary and Conclusions 107

5.1 Significant Results ............................ 107

5.2 Zero Spin-Viscosity in a Planar Duct . ................. 108

5.2.1 Spin Velocity 5Cy(J) Profiles . .................. 109

5.2.2 Flow Velocity v5z(x) Profiles ................... 110

5.3 Future Work ................... .......... . . . 111

5.3.1 Rotating Uniform Magnetic Field . ............... 111

5.3.2 Non-Zero Spin-Viscosity (i' = 0) Solutions . .......... 114

A Maple Files for Parametric Plots

A.1 Transverse Magnetic Field Only ................... .

A.2 Tangential Magnetic Field Only ................... .

B Mathematica Programs Calculating Boundary Spin Velocity &oo

B.1 Transverse Field Only, =BIX = 1, I/ I = 0 . ..............

B.2 Tangential Field Only, IBXI = 0, I!fzi = 1 . ............ . .

C Matlab Script for plot of Q versus (

C.1 Figure 3-1 where IB,( = 1, IH/I = 0. .................

C.2 Figure 4-1 where I~I = 0, Izl = 1. ...................

117

117

134

151

151

167

181

181

184



C.3 Figure 5-1 where IBjl = 1,7 I!HI = 1................... 186

D Matlab Script Calculating < given C and ~ff 189

D.1 Finding ifB, = 1, = IHIzl = 0 ...................... 189

D.2 Finding • if IB I = 0, IHIz = 1 ................... .... 191

D.3 Finding ? if IBjxI = 1, IHAI = 1 ...................... 192





List of Figures

2-1 Experimental setup of ferrofluid pumping in a planar duct. The fer-

rofluid flows in the z-direction due to the applied uniform fields Hz and

B, which both vary sinusoidally in time . ................ 23

2-2 Fluid viscosity causes the magnetic dipole moment m to lag a rotating

magnetic field H by an angle 0 ..................... 25

2-3 Fluid flow introduces hindered particle rotation near fixed boundaries. 25

3-1 Frequency f as a function of viscosity ( for nine values of ýeff. The

bold lines represent the positive roots of the quadratic, and the plain

lines represent the negative roots . .................. .. 41

3-2 Spin velocity spatial distributions for various values of f and eiff to

the right of the ieff = 0 curve. a) f = 1.05, b) f = 1.3, c) Q = 2.0412,

d) Q = 3.25, e) ! = 5.0, f) ~ = 10.0. ....... .......... .. 46

a fi = 1.05 ......................... ....... . 46

b = 1.3 . . . . . . . . . . . . . . . .. . . .. . . . . .. . . . . . .. . 46

c = 2.0412 ..................... .......... . 47

d C1 = 3.25 . . . . . . . .. .. . . .. .. . ... .. . . . ... ... . 47

e C = 5.0 . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. .. 48

f = 10.0 . . . . . . . . . . . . . . . .. . . ... . . . .. . . . . . .. 48

3-3 Linear flow velocity distributions for various values of f and ieff that

fall to the right of the jff = 0 demarcation curve. a) Q = 1.05, b)

= 1.3, c) f = 2.0412, d) Q = 3.25, e) Q = 5.0, f) Q = 10.0. ...... 51

a 2= 1.05 . . . . . . . . . . . . . . . . . . . . .. ... . . . . . . . . .. . 51



b • = 1.3 .. .... ... ..... .... ... .... ..

c ~ = 2.0412 .... .... .... .... ... ..... .

d ~ = 3.25 . . . . . . . . . . . . . . . . . . . . . . . . . .

e i1 = 5.0 . . . . . . . . . . . . . . . . . . . . . . . . . . .

f f = 10.0 . . . . . . . . . . . . . . . . . . . . . . . . . .

3-4 Increased scaling of flow velocity profiles for ! = 1.05

?eff = .01 is multi-valued as well as jiff = 0........

3-5 Spin velocity spatial distributions for various values of Q

the left of the jeff = 0 curve. a) 6 = 1.05, b) 0 = 1.3, c)

d) Q = 3.25, e) Q = 5.0, f) Q = 10.0. ............

a = 1.05 . . . . . . . . . . . . . . . . . . . . . . . . . .

b i = 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . .

c i• = 2.0412 .........................

d i = 3.25 . . . . . . . . . . . . . . . . . . . . . . . . . .

e = 5.0 . . . . . . . . . . . . . . . . . . . . . . . . . . .

f = 10.0 . . . . . . . . . . . . . . . . . . . . . . . . . .

shows that

and leff to

S= 2.0412,

,......

3-6 Linear flow velocity distributions for various values of Q and ýeiff that

fall to the left of the eff = 0 demarcation curve. a) Q = 1.05, b)

n = 1.3, c) Q = 2.0412, d) Q = 3.25, e) Q = 5.0, f) Q = 10.0 . . . . .

a C2 = 1.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b i0 = 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c C = 2.0412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d C = 3.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e = 5 .0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f f = 10.0 .................................

a 2 = 1.05 positive effective viscosities.. . . . . . . . . . . . . . . . . .

b f = 1.05 negative effective viscosities . . . . . . . . . . . . . . . . .

3-7 f = 1.05 curves of Figure 3-6 (a) separated and increased to see the

multi-valued behavior of the curves . . . . . . . . . . . . . . . . . . .

64

64

64

65

65

66

66

68

68

68



3-8 Q = 1.3 curves of Figure 3-6 (b) separated and increased to see the

behavior of the curves. Only the positive effective viscosities show any

multi-valued regions. ............................ 69

a ! = 2.0412 positive effective viscosities. ........... . . .. ... 70

b !C = 2.0412 negative effective viscosities. . ........... ...... 70

3-9 Q = 2.0412 curves of Figure 3-6 (c) separated and increased to see the

multi-valued behavior of the curves . ................... 70

a C = 3.25 positive effective viscosities. ... .. .. ....... . . . 71

b f = 3.25 negative effective viscosities. . . . . . . . . . . ... .. . . . . 71

3-10 f = 3.25 curves of Figure 3-6 (d) separated and increased to see the

multi-valued behavior of the curves . ................... 71

a 6 = 5.0 positive effective viscosities . . . . . . . . .. .. . . . . . . 73

b f = 5.0 negative effective viscosities. . . . . . . . . . . . . . . . . . . 73

3-11 Q = 5.0 curves of Figure 3-6 (e) separated and increased to see the

multi-valued behavior of the curves . ................... 73

a C2 = 10.0 positive effective viscosities . . . . . . . . . . . . . . . . . . 74

b C2 = 10 negative effective viscosities . . . . . . . . . .. . .. . . . . 74

3-12 f = 10 curves of Figure 3-6 (f) separated and increased to see the

behavior of the curves. .......................... 74

4-1 Frequency C as a function of viscosity ( for nine values of e7 ff. The

bold lines represent the positive roots of the quadratic, and the plain

lines represent the negative roots. ....... . . . . . . . . . . . . . . . 77

4-2 Spin velocity spatial distributions for various values of C and egff to

the right of the ,eff = 0 curve. a) Q = 2.05, b) Q = 2.5, c) Q = 3.2126,

d) = 4.5, e) !i = 6.0, f) f = 10.0. ................... 82

a = 2.05 ... .............. ... ............. .. 82

b = 2.5 . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . .. . 82

c 2 = 3.2126 ....... ........................... ... 83

d = 4.5 . . . . . . . . . . . . ... .. . ... . . . . . . . . . . . . . .. . 83



e = 6.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

f = 10.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4-3 Linear flow velocity distributions for various values of Q and ileff that

fall to the right of the eff = 0 demarcation curve. a) fý = 2.05, b)

-= 2.5, c) f = 3.2126, d) = = 4.5, e) Q = 6.0, f) Q = 10.0....... 86

a C1 = 2.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 86

b = 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 86

c 2= 3.2126 . .. ... . . .. . .. .... ..... .. . ... ... . 87

d = 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 87

e = 6.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 88

f = 10.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 88

4-4 Increased scaling of flow velocity profiles for C = 2.5 shows that both

,eff = 0 and eiff = .01 are still multi-valued in the outer regions. .. 89

4-5 Increased scaling of flow velocity profiles for 6 = 10 shows that -/ej =

.01 is multi-valued in the outer regions, while ieffi = 0 is multi-valued

in the outer and center regions. ..................... 90

4-6 Spin velocity spatial distributions for various values of Q and •eff to

the left of the ieff = 0 curve. a) 6 = 2.05, b) f = 2.5, c) 2 = 3.2126,

d) Q = 4.5, e) Q = 6.0, f) Q = 10.0. .... . . . . . ...... . . . . . 94

a ~ = 2.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 94

b • = 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . 94

c ~ = 3.2126 ... ... . . . . .. ..... ..... .. . .. .. ... 95

d 2 = 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 95

e = 6.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 96

f = 10.0 ................................. 96

4-7 Linear flow velocity distributions for various values of Q and i 1ff that

fall to the left of the •ef = 0 demarcation curve. a) 2 = 2.05, b)

f2 = 2.5, c) f = 3.2126, d) 2 = 4.5, e) Q = 6.0, f) Q = 10.0....... 99

a = 2.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 99

b = 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 99



= 3.2126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 = 4 .5 ..................................
C = 6 .0 ..................................
2 = 10.0 . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 = 2.05 positive effective viscosities.. . . . . . . . . . . .

2 = 2.05 negative effective viscosities . . . . . . . . . . .

! = 2.05 curves of Figure 4-7 (a) separated and increased

multi-valued behavior of the curves . . . . . . . . . . . . .

C = 2.5 positive effective viscosities . . . . . . . . . . . .

C = 2.5 negative effective viscosities . . . . . . . . . . . .

-= 2.5 curves of Figure 4-7 (b) separated and increased

multi-valued behavior of the curves . . . . . . . . . . . . .

-= 3.2126 positive effective viscosities . . . . . . . . . .

6f = 3.2126 negative effective viscosities . . . . . . . . . .

-= 3.2126 curves of Figure 4-7 (c) separated and increased

multi-valued behavior of the curves . . . . . . . . . . . . .

to see the

f

a

b

4-8

a

b

4-9

a

b

4-10 to see the

5-1 Frequency C as a function of viscosity ( for nine values of e ff. The

bold lines represent the positive roots of the quadratic, and the plain

lines represent the negative roots . . . . . . . . . . . . . . . . . . . .

100

100

101

101

103

103

103

104

104

104

106

106

106

113

to see the





List of Tables

3.1 Matlab results of calculating ý given some value of ! and tf for the

positive effective viscosity curves to the right of the ieff = 0 curve. 43

3.2 Mathematica results of calculating spin velocity Do at the i = 0 planar

duct wall for the positive effective viscosity curves to the right of the

eff = 0 curve . . . . . . ... . . . . . . . . . . . . . . . . . . . . . 45

3.3 Matlab results of calculating ý given some f and ~eff for the curves of

positive and negative effective viscosity to the left of the 7eff = 0 curve. 57

3.4 Mathematica results of calculating spin velocity Do at the i = 0 planar

duct wall for the positive and negative effective viscosity curves to the

left of the ieff = 0 curve .......................... 58

4.1 Matlab results of calculating ý given some value of f and yff for the

positive effective viscosity curves to the right of the if = 0 curve. 79

4.2 Mathematica results of calculating spin velocity Co at the i = 0 planar

duct wall for the positive effective viscosity curves to the right of the

Iff = 0 curve ............................... 80

4.3 Matlab results of calculating ý given some f and ?eff for the curves of

positive and negative effective viscosity to the left of the iff = 0 curve. 92

4.4 Mathematica results of calculating spin velocity Co at the , = 0 planar

duct wall for the positive and negative effective viscosity curves to the

left of the iff = 0 curve .......................... 93





Chapter 1

Introduction

Ferrohydrodynamics is a relatively new science dealing with the motion of fluids that

are influenced by forces due to magnetic polarization. Before the 1960's, the only

magnetizable liquids had magnetic susceptibilities less than 10- 3 . In the mid-1960's,

that situation changed with the production of colloidal magnetic fluids (ferrofluids)

[1].

These ferrohydrodynamic materials are produced by taking small particles of iron,

typically with 100 nm diameter, coating them with a surfactant, and suspending

them in a continuous medium (like water). The coating prevents the magnetized

particles from clumping together in magnetic fields, and thermal agitation keeps the

particles suspended against gravity. Particles of colloidal size may either be grown

(precipitation) or ground down from larger sizes (dispersion). Then the particles are

transformed to a carrier liquid through peptization where the liquid and surfactant

are added to the particles during the heating and agitation of the solution.

1.1 Background

Current primary applications of ferromagnetic fluids, such as rotating shaft seals and

bearings, use DC magnetic fields. The equations of motion for ferrofluids in a DC

field are straightforward, and the behavior of these fluids is predictable because the

fluid magnetization is collinear with the magnetic field.



The motion of ferrofluids in a traveling wave magnetic field is sometimes contrary

to intuition. The presence of a traveling magnetic field causes the fluid to flow, or

pump, because fluid friction causes the magnetization to lag the traveling magnetic

field. Because the magnetization is at an angle to the magnetic field, there is a body

torque on the fluid. The direction of the flow should be determined by the direction

of travel of the field. That is, the fluid is expected to pump in the same direction

the magnetic field is traveling. However, experimenters have found that below some

critical magnetic field, the fluid will flow opposite to the direction the magnetic field

travels. This motion is referred to as backward pumping. The critical field strength

depends on these physical parameters:

* the magnetic field's frequency, Q, and amplitude

* the concentration of magnetic particles in the carrier fluid

* the viscosity, qj, of the carrier fluid

1.2 Previous Analysis

Earlier analysis has shown that when the fluid spin velocity is small, the electrome-

chanical coupling between magnetic field and flow can lead to an effective dynamic

fluid viscosity, %eff, that can be made zero or negative as a function of the magnetic

field strength, direction, and frequency.

This previous work in the small spin-velocity limit has shown that both the flow

and spin velocities of the ferrofluid depend on the effective viscosity. When the

effective viscosity changes sign from a positive value to a negative value, the earlier

approximate theory predicts flow reversal. However, mathematically (in the small

spin-velocity approximation to be further discussed in Chapter 2), a singularity occurs

in both the flow and spin velocities with zero spin viscosity so that these velocities

become infinite, which violates the small spin-velocity approximation that was made.

A hypothesis explored in this thesis is whether the change in sign of the effective

viscosity of the ferrofluid in a magnetic field is the cause of the observed backward



pumping phenomena. Such a study will help to better understand ferrofluid pumping

in AC and traveling wave magnetic fields. Solutions of the flow and spin velocity

profiles for positive, zero, and negative effective viscosities provide a clearer under-

standing of how the effective viscosity of a ferrofluid can affect the dynamics of the

fluid.

1.3 Scope of Thesis

This thesis continues the research of Professor Markus Zahn, which explored "Ferro-

hydrodynamic pumping in spatially uniform sinusoidally time-varying magnetic fields

[3]." The purpose of this thesis is to numerically solve, without further approxima-

tion, the governing fluid and field equations in the viscous dominated limit. This

allows fluid inertia to be neglected in order to better understand ferrofluid behavior

under conditions of predicted infinite velocity in the small spin-velocity approxima-

tion. The equations of fluid flow in a planar duct that were solved include the case

of an imposed uniform magnetic field component along the duct axis and the case of

an imposed uniform magnetic field component transverse to the duct axis.





Chapter 2

Fundamentals of Ferrofluids

2.1 1-Dimensional Treatment

With the motion of ferrofluids being described by vector and tensor equations, it is

useful to better understand complex phenomena under simple geometrical magnetic

field conditions. To do this, the 1-dimensional case of a ferrofluid pumping in a planar

duct with a spatially uniform applied magnetic field which sinusoidally varies with

time is considered. Using a uniform magnetic field causes the motion of ferrofluids to

depend on magnetic torque with zero magnetic force.

The setup is seen in Figure 2-1 in which the ferrofluid layer is being pumped

between the two rigid walls of a planar duct.

Bx x

d

ferro H fluid

Figure 2-1: Experimental setup of ferrofluid pumping in a planar duct. The ferrofluid

flows in the z-direction due to the applied uniform fields H, and B, which both vary

sinusoidally in time.



The magnetic field Hz, along the duct axis, is uniformly z-directed, and the magnetic

flux density transverse to the duct axis, B. is uniformly x-directed. Each are exter-

nally imposed and independent of the ferrofluid magnetization. With this set up, all

relevant variables become dependent only on the x coordinate.

2.2 Magnetic Fields and Forces

To describe the motion of ferrofluids, the principles of elementary hydrodynamics are

used. By considering the ferrofluids a homogeneous liquid, equations of motion can be

written using conservation of mass, momentum, and energy, including magnetization

terms consistent with Maxwell's equations.

Ferrofluid particles have effectively constant magnetic moments, and the orienta-

tion of the particles in the absence of a magnetic field is random. The net effect is

a zero magnetization for the entire system. The viscosity of the ferrofluid is largely

determined by the viscosity of the carrier fluid. As an applied magnetic field attempts

to align the particles in the direction of the field, this viscosity keeps the particles from

moving freely. At the same time, the forces of hydrodynamics and thermal agitation

cause disorientation. These factors effectively increase the viscosity of ferrofluids.

2.2.1 Magnetization and Magnetic Fields

The viscosity of the ferromagnetic solution causes the magnetic dipole moment, m,

of a ferrofluid particle to not always be aligned with the spatially uniform magnetic

field H if it is time varying or rotating, as can be seen in Figure 2-2.



H

field
rotation

Figure 2-2: Fluid viscosity causes the magnetic dipole moment m to lag a rotating

magnetic field H by an angle 0.

The magnetization of the ferrofluid is M = Nm where N is the number of magnetic

dipoles per unit volume. As H changes direction, the retarding viscous force causes

the orientation of the magnetic particles to lag behind the magnetic field. Because

M is then not collinear with H, a body torque density T = po(M x H) acts on the

ferrofluid. In addition, the fluid cannot slip at boundaries, which introduces another

source of drag, causing a phase lag between M and H, as is illustrated in Figure 2-3.

-flow
direction

@ © ©

Figure 2-3: Fluid flow introduces hindered particle rotation near fixed boundaries.

Notice that the fluid flow velocity v in such a set up will be only z-directed, while

the spin velocity w will only be y-directed. Each will vary only as a function of x.

Thus,

and w = wy(x)iyv = Vz(X)iz (2.1)



A rotating or oscillating magnetic field and a fixed boundary cause particle rota-

tion, which introduces a body coupling. The state of stress at any point in the fluid

can be represented by a stress tensor, but that stress tensor is asymmetric due to this

coupling.

Magnetization

As described above, the viscosity of the fluid causes the magnetization M to lag the

field. The time it takes for M to reorient collinear to H is the magnetic relaxation

time constant T. The magnetization constitutive law for such fluids with velocity v

and particle spin with angular velocity w is [2]

DM 1
+ (v - V)M - w x M + -[M -xoH] = o (2.2)at 7

where Xo is the effective magnetic susceptibility. In general, Xo can be dependent on

the magnetic field, but for simplicity, the work in this thesis assumes it is a constant,

as varying the value would provide little insight to the fundamental motion of the

ferrofluid. For all numerical case studies, Xo = 1. In the 1-dimensional case, flow

velocity v is in the z-direction only, and the spin velocity w can only be y-directed.

Magnetic Field and Flux Density

Because the imposed B and H fields are uniform with respect to the y and z coor-

dinates, the fields can vary only with x. With no variations in y and z, Gauss's law

requires the magnetic flux density B. to be constant, and the current free Ampere's

law requires the magnetic field Hz to be constant.

dB,
V - B = O x =0 Bx = constant, (2.3)

dx
dH,

Vx H=O = =0 d= H=• = constant. (2.4)
dx



By applying Eq. (2.2) to the confined planar ferrofluid set up in Fig. 2-1 and

considering the restrictions of Maxwell's equations in addition to the spatially uniform

imposed magnetic field Hz and magnetic flux density Bx, fluid magnetization and

motion give rise to magnetic field components Bz and H,

B = R{[Bxii + Bz(x)iz]eint), (2.5)

H = R{[fIx(x)ix + fIziz]ei't), (2.6)

where

B = ,o(H + M) (2.7)

and 2 is the radian frequency of the sinusoidally varying magnetic fields. The "hat"

character (^) denotes a complex amplitude which can depend on x, and M is the

magnetization of the ferrofluid found in Eq. (2.2).

Because B has an x and z component, so does the magnetization M. The mag-

netization components MI and M, can be solved in terms of the known imposed

field amplitudes Hz and Bx by noting that the second term of Eq. 2.2 makes no

contribution since v is only z-directed, while M varies only as a function of x.

Thus,

X O[Iz (wyr) + (iQr + 1)bx /,o]
X = (2.8)

[(WYT)2 + (iQT + 1)(iQr + 1 + Xo)]'

= Xo [(iR + 1 + xo)Hz -BWT/] (2.9)
[(WT) 2 + (iQT + 1)(iQT + 1 + X)](2.9)

It can be seen from Eqs. (2.8) and (2.9) that the magnetization of the ferrofluid

depends on the unknown spin velocity wy which can vary as a function of x. If the

magnetization is not collinear with the field, a torque is produced, which causes fluid

motion and a non-zero Wy. The new wy produced by the torque then changes the



magnetization of the fluid. It is this coupling that makes solving for the spin velocity

complex, as both the magnetization equations and the mechanical equations must be

simultaneously satisfied.

2.2.2 Magnetic Force and Torque Densities

Early studies of ferromagnetic fluid pumping in a planar duct were conducted using

spatially non-uniform traveling wave magnetic fields. This introduces non-zero mag-

netic force densities and magnetic torque densities. By imposing a spatially uniform

traveling wave magnetic field, the magnetic force density becomes zero. Thus, the

effects of different magnetic field variations on the fluid flow can be studied more

simply.

Magnetic Force Density

Between the walls of the planar duct (0 < x < d), the magnetic force density acting

on the ferrofluid is

f = Lo(M - V)H. (2.10)

Because of the geometry, f has only x and z components which will either be constant

or vary only with x. Using the x component of (2.7) in (2.3) with (2.10)

dHM dMx d 1(2.11)fis =PoMs 2 = -Po0 -~f= -- PoOM2 (2.11)= dx x dx dX 2
dH,

fZ= MoMX d = 0. (2.12)dx
where the time average components are

(f)=- dx 4 2  (2.13)

(fe) = 0. (2.14)



Magnetic Torque Density

The torque density, T = po(M x H), is only y-directed because M and H have only

x and z components

T = ,io(-MxHz + MzHx)iy. (2.15)

Using Hx = • M. and taking the time average of Eq. (2.15) yields
/LO

(TY) = 2[MkzBx - ILotM*(H + Me)]. (2.16)

The superscript asterisks ( * ) denotes the complex conjugate of the complex field

amplitude.

2.3 Ferrohydrodynamics

In addition to the magnetic field equations, the motion of ferrofluids is described by

hydrodynamic linear and angular momentum equations driven by the magnetic force

and torque densities on the fluid.

2.3.1 Fluid Mechanics

By definition of incompressible fluids,

V -v = 0, V w = 0. (2.17)

Also, there is a coupling between the linear and angular velocities in the momentum

conservation equations. For a fluid in a gravity field, -gix,

P[ - + (v -V)v = -Vp + f + 2(V x w + (C+ q)V2v - pgix, (2.18)



= T + 2((V x v - 22) + 7r'V 2w

where

* p is the fluid mass density,

* p is the pressure,

* ( is the vortex viscosity,

* r is the dynamic viscosity,

* I is the moment of inertia density,

* r' is the shear coefficient of spin-viscosity.

2.3.2 Combining the Magnetics with the Mechanics

To bring together the magnetic equations with the fluid equations, Eqs. (2.18) and

(2.19) need to be applied to the planar duct setup. There are two assumptions made.

* The ferrofluid has viscous-dominated flow so the inertial terms are negligible.

* The ferrofluid is in the steady state so the fluid responds only to the time average

force and torque densities.

A modified pressure can be defined from the magnetization force in Eq. (2.13) and

the gravitational force density.

p' = p + -AO01Mx + pgx4 (2.20)

With these assumptions and Eq. (2.20), the coupled linear and angular momentum

conservation equations become:

dw
+ 2( dz

ap' -= 0,
az

(2.21)

(2.22)+ 2w) + (T) = 0.

a-t+ (v -V)W] (2.19)

' 2^

d2vz
(( + ,7)

dX2

-2( dv,dxd 2W7 ýX_2



2.3.3 Normalization

Before continuing with the equations, it is useful to define dimensionless parameters.

Space is normalized to the width of the planar duct, d. Time is normalized to the

relaxation time constant, T. The magnetic field and flux density are normalized to

an arbitrary field strength, Ho. The tilde symbol (~) is used to denote dimensionless

quantities.

-- I 0Z- VZ-V, f = Q-r W- y

Ho' poHoo' Ho' o TY

oHo, • o H'2

2.4 One Dimensional Governing Equations

There are four possible magnetic field variations that could be studied for imposed

uniform magnetic fields:

* an axial component only

* a transverse component only

* in-phase axial and transverse magnetic fields (field at an angle to the duct axis)

* 90 phase difference between axial and transverse magnetic fields (rotating mag-

netic field)

Case studies will focus on the first two cases in this thesis, while the last two cases

will be studied in the future.

2.4.1 Relevant Normalized Equations

By using normalized parameters, the flow and spin velocity equations (2.21) and

(2.22) become dimensionless



1 d2 Y d o )y 03'(C + ) + = (2.23)2 d&2 di oai

S- d + 2Y + (Ty) = 0 (2.24)

where

(T1) = [I~ B - Mr*(Hz + Mz)] (2.25)

and
M Xo[0~ yIz + (i + 1)] (2.26)=(2.26)

2 + (id + 1)(i+ + 1 + Xo)

0 o[(id + 1 + Xo)Hz - (2.27)

• + (id + 1)(i +1+ ] (2.2)

These equations describe the motion of a ferrofluid confined between the rigid

walls of a planar duct (seen in Figure 2-1) where the imposed magnetic fields are

spatially uniform and sinusoidally time-varying. The simultaneous solution of the

flow and spin velocity equations is complicated by the time average torque density

(Ty), as it depends on the spin velocity C, which in turn depends on 1 in a complex

way.

To see the complexity of this dependence, substitute Eqs. (2.26) and (2.27) into

Eq. (2.25), which gives

[r2 - f2+1+xo] 2 +(2+XO) 2 2
(2.28)

It should be noted that for the two cases of field settings, It = 1; iB = 0 and

Iz = 0; B~ = 1, the R (real part) term in the numerator is zero because of the

multiplication of [HzB,].



2.4.2 Zero Spin-Viscosity

This thesis will consider the simple limiting case of zero spin-viscosity, 0' = 0, which

simplifies Eq. (2.24) by reducing Eqs. (2.23) - (2.24) from a fourth order system to

a second order system. In the fourth order system both the flow and spin velocities

must be zero at the x = 0 and x = d duct walls. The second order system allows the

spin-velocity C, to be non-zero at the walls.

Resolving Eq. (2.24) in this limiting case (=' = 0) for df gives

=di - (Tn) - (2.29)

Integrating Eq. (2.23) and substituting (2.29) into that equation, and differentiating

with respect to i gives

d = -d (2.30)

2,J• dTy)

where we used the simplification that (TY) explicitly depends only on oy.

In addition, it is convenient to consider

dOz d•z did- = 6z (2.31)
dyJ djd.&y

so that Eq. (2.29) can be rewritten as

dýz _ - 2_ y
dd, (2.32)

These equation manipulations, with ,y considered the independent variable, allow

the flow and spin velocity profiles to be numerically integrated so that plots of 3, (x)

and &,y(x) can be made to describe the motion of the ferrofluid in a planar duct

varying in dimensionless i from 0 to 1.



Spin Velocity Profiles

Because of the complex dependence (Ty) has on Cy(x), Eq. (2.30) cannot be simply

solved for c&, in terms of J. However, it is possible to solve for i as a function of y,.

By doing this, a parametric plot can be used to plot the spin velocity profile.

Resolving Eq. (2.30) for di gives

dx= 2(i d&, d&yC. (2.33)

Both sides of this equation can be integrated, which introduces a constant of inte-

gration, C.

x I (1 - 2i d(T,))dCy + C (2.34)

This value of C is determined by noting that the torque density is zero when C&, = 0

when either f/ or B& are zero. Because C, is then an odd function around i = 0.5,

y(i = 0.5) = 0.
When considering the two cases of field settings, Hz = 1; Bx = 0 and t =

0; B• = 1, T1y(C, = 0) = 0 and the integral with respect to dG, on the right side

of Eq. (2.34) is zero when &, = 0. Eq. (2.28) shows that these facts allow us to

calculate

C = -. 5- -  (2.35)

The relevant plot is C~, as a function of i, although the equation is i as a function

of O,. It is possible to use a parametric plot to force the plotting of the relevant

relation. In general, instead of specifying the y coordinate of each point as a function

of x, parametric plots allow specifying both the x and the y coordinates of each point

as a function of a third parameter t. Specific to this work, parametric plots allow

specifying both the i and the Co, coordinates of each point while varying the value

of &,. This can be seen in the Maple programs, found in Appendix A, which plotted

the profiles.



Flow Velocity Profiles

The flow velocity bz is a function of i and is coupled to the spin velocity &,Y. Substi-

tuting Eq. (2.30) into Eq. (2.32) and integrating to solve for iz yields

z - 2, 1 - d + D. (2.36)

The value of the constant of integration D is determined by requiring the flow

velocity 0, to be zero at the boundaries. That is, iZ = 0 at i = 0 and i = 1. This

calculation cannot be done in closed form, thus requiring numerical integration. A

parametric plot is also necessary to plot 0. as a function of J by specifying both the

: and the 0z coordinates of each point while varying the value of y,. The constant of

integration depends on the value of ý&, at the boundary of each case. Thus, for every

changed parameter, a new calculation of y,(V = 0) = -y,(2 = 1) has to be made.

Then, to find the true value of 0, the first term on the right side of Eq. (2.36) must

be evaluated at this particular value of &0 and D is the negative of this value.

For clarity, Eq. (2.36) was redefined to be the function f such that

S= f[( - 2y) (1 - T- ] d (2.37)

so that

Oz = - = (2.38)

This, as well, can be seen in the Maple programs, found in Appendix A, which plotted

the profiles. The Mathematica programs used to calculate &o for each case study can

be found in Appendix B.

2.4.3 Effective Viscosity

It is useful to consider a small cy, limit for Eq. (2.28). By taking the limit that ,y
is much less than 1, this equation can be written as a linear approximation. To first

order in Y,,



lim (Ty) P To + aC)y,
( 1D«1

where

xo0 [[Xo02 +
(2.40)

[1 + x ++ 2] + 2

o [I (2 - 1) + I 2 2 - (1 + 2]]
[1+ + 2]2+ 22

For the two cases, IBl = 0; IH&I = 1 and BIl = 1; IfIz = 0, the value of To is zero.

By remanipulating Eqs. (2.23) and (2.24), the flow and spin velocities can be

written as

S( =) 1 p = ý
1z

1 r [ ,,CD" = 2 18-! (2i - 1)

1 I,. f -
i (TVd)

S (TY Jo +

_ "i' (§j;) +

(2.42)

(2.43)

-f (Ty) di ,

f1 (ty(Ty~di .
Substituting Eq. (2.38) into Eqs. (2.42) and (2.43), the approximate flow and spin

velocity profiles in the small spin-velocity limit become

(2.44)i (3;) - 1) '
reff 0z

(2.45)
7 -ef .'

where the effective viscosity is defined to be

eff = - (2.46)

With this definition, the effective viscosity can be positive, negative or zero. The

effective viscosity is zero when

(2.39)

(2.41)a =

- 1) +

CDY :0 Z- 1 ae() (24 - a) 2o

i!(f2 + 1 + Xo) ] !Z:]]



c = 2 (2.47)

However, this is inconsistent, as a zero effective viscosity makes the spin-velocity

of Eq. (2.45) infinite, violating the small spin-velocity approximation made in Eq.

(2.39).





Chapter 3

Transverse Magnetic Field

Bx = 1; IHz = 0

Both magnetic effects and hydrodynamic effects cause the effective viscosity of ferro-

magnetic fluids to be different than the viscosity of the carrier fluid. Therefore, not

only does the effective viscosity depend on the vortex and dynamic viscosities, ( and

i respectively, it also depends on the field frequency C. For simplicity, this thesis

assumes that , = (. Thus, Eq. (2.46) becomes

?eff = - (3.1)2ý -a
Solving this equation for the variable a gives

a •= ) (3.2)
2( - ieff

Specifically for the case of transverse magnetic field, I0I = 1; |II = 0, Eq.

(2.41) reduces to

Xo (p21)a o= - 0 l) (3.3)
2 (1 + Xo + S2)2 + X!2

By setting Eqs. (3.2) and (3.3) equal to each other, Q can be solved for in terms of

C and i~ef. This will allow plots of f(C) to be made for different values of effective



viscosity. The result is a 4th order biquadratic equation in Q.

4 f(2 )( i)]+ [(X+ 2 Xo + 2)(2 )( - eff)- 1(2 - ieff)]

+ [(X + 2Xo + 1)(2)( - ~eff) + 2ý(2 - efI)] = 0 (3.4)

To plot Q as a function of • for different values of •ef f, the quadratic formula was

used to find 62, and then the square root was taken.

2 -b b -4ac (3.5)
2a

such that

a = 2C(C- eff) (3.6)

b = (X + 2 Xo + 2)(2ý)( - ~eff) - (2ý - l•ef) (3.7)

c = (xo + 1)2(2)(• - oef ) + (2ý - eff) (3.8)

Once C 2 was calculated, only those values that were both positive and real were

plotted.

The values of j•ff for numerical case studies were chosen to be

e/ff = {-.1; -. 05; -. 025; -. 01; 0; .01; .025; .05; .1}. (3.9)

These values were chosen so the plotted curves would be well spaced and show the

trend of change as #eff goes from negative, through zero, and becomes positive. The

resulting plot can be seen in Figure 3-1.

For simplification, the value of the effective magnetic susceptibility Xo was taken to

be 1 for the calculations of this curve. Xo = 1 will be assumed for the remainder of

the discussion. This plot was made using a Matlab script file, which can be found in

Appendix C.

The interesting feature of this plot is that each positive value of effective viscosity



IBxlI = 1, IHzI = 0 for given rleff

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Figure 3-1: Frequency C as a function of viscosity ( for nine values of iýff. The bold
lines represent the positive roots of the quadratic, and the plain lines represent the
negative roots.

has four roots that are plotted, which look like two general curves. Each negative

value of effective viscosity has only two roots plotted which look like one general

curve. The other two roots resulted in '2 values that were negative or complex.

These curves will be discussed separately as two distinct categories: the curves that

fall to the right of the ýiff = 0 curve, and the curves that fall to the left of the

Tieff = 0 curve.



3.1 Curves to the Right of ~ieff = 0

All of the curves to the right of the eff = 0 demarcation curve are plots of posi-

tive values of effective viscosity. Although the eff = 0 curve follows a horizontal

asymptote to f = 1, the positive effective viscosity curves to its right range from

a frequency of zero to infinity. Larger values of effective viscosity would follow the

same curve characteristics, but would continue further and further to the right of the

e/,ff = 0 demarcation curve.

3.1.1 Spin Velocity &c(j) Profiles

As was explained in Section 2.4.2, the spin velocity profile can be plotted using

a parametric plot of J and C&, while varying &,y. Non-dimensional position i is a

function of six variables: &,,, Q , ix, (, and o_. For simplicity, the following has

been assumed:

* =

* Xo = 1

*-= 1tz

Therefore, the important variables of i in Eq. (2.34) become &C,, which is the ranging

variable of the parametric plot, R, and (. To be able to plot C,(v), values for C and

must be chosen.

Looking at the curves in Figure 3-1, six values of frequency were chosen. By choos-

ing values of frequency, Q, the corresponding values of viscosity, • can be calculated,

and both values can be used in the equations for plotting the spin velocity profiles.

Instead of solving for C in Eq. (3.4), ý is solved for.

2 [(1 o +l-X [2ý [(1 + [ o + ~2 + X•• X8o[2]2 ]]

+ X0ef f( i) = 0 (3.10)
+2-•IIf 2 -



To solve for ý, the quadratic equation is used, where

a = 2[(1 + o + )2 + X• • (3.11)

b = - 2f [(1 + Xo + 2) 2 + 2 ] + 2 - 1) (3.(3.12)

c - 7eo(,f - 1) (3.13)

The values of C were chosen so that the C would be noticably different. They are

Q = {1.05, 1.3, 2.0412, 3.25, 5.0, 10.0} (3.14)

The value of 1.05 was chosen to be just above the horizontal asymptote of the demar-

cation curve. The value of 2.0412 is the value of f2 where the positive and negative

roots of the quadratic meet. To calculate the corresponding ý, a Matlab script was

used, which can be found in Appendix D. The results are summarized by Table 3-1.

Table 3.1: Matlab results of calculating ý given some value of ! and eiff for the
positive effective viscosity curves to the right of the e ff = 0 curve.

S = 1.05 1i = 1.3 2 = 2.0412
2leff ll eff I _ _ _ f I

0 .0048 0 0 .0225 0 0 .0375 0

.01 .0129 .0018 .01 .0286 .0039 .01 .0432 .0043

.025 .0276 .0022 .025 .0406 .0069 .025 .0538 .0087

.05 .0525 .0023 .05 .0637 .0088 .05 .0750 .0125

.1 .1024 .0023 .1 .1125 .0100 .1 .1222 .0154

C = 3.25 C1 = 5.0 f0 = 10.0
keff _ Jeff Jeff

0 .0284 0 0 .0159 0 0 .0047 0

.01 .0343 .0041 .01 .0224 .0036 .01 .0129 .0018

.025 .0456 .0078 .025 .0353 .0056 .025 .0276 .0021

.05 .0679 .0104 .05 .0592 .0067 .05 .0525 .0022

.1 .1162 .0122 .1 .1086 .0073 .1 .1024 .0023



There are two values of ý for each effective viscosity because there are two roots to

the solution. The first column of ý represents the curves that fall to the right of the

•eff = 0 demarcation curve. The second column of ý represents those curves that fall

to the left of the demarcation curve and will be discussed in section (3.2).

To find the range of &, in the parametric plot, the values must be known at the

boundaries. Because C&, is an odd function of i around i = 0.5,

c0o = D ,J(x = 0) = -~, (r = 1) (3.15)

Thus, it was necessary to calculate &o, which is the value of rD, at the boundary of

-= 0. For this calculation, Mathematica was used, and the results are summarized

in Table 3-2. For the calculation, the general command is

SoIve[£[Co, X, 0o, , == 0, Co] (3.16)

which means "Solve for Co when E = 0." The appropriate values of ! and C were

plugged in, and the values Xo = 1 and L = 1 were used. The Mathematica file can

be found in Appendix B.



1 = 1.05 f = 1.3 1 = 2.0412

D Cjo Co _ _o

.0048 103.157 .0225 21.176 .0375 12.2371

.0129 37.7339 .0286 16.4234 .0432 10.4593

.0276 17.0611 .0406 11.2311 .0538 8.14266

.0525 8.42516 .0637 6.72355 .0750 5.45623

.1024 3.79722 .1125 3.39117 .1222 3.19134

_ = 3.25 _ = 5.0 _ = 10.0

oo C o C io
.0284 16.5104 .0159 30.3867 .0047 105.364

.0343 13.4498 .0224 21.2167 .0129 37.6553

.0456 9.75997 .0353 12.9145 .0276 16.4497

.0679 5.98232 .0592 6.77365 .0525 9.80991

.1162 3.7348 .1086 4.74664 .1024 5.18971

Table 3.2: Mathematica results of calculating spin velocity &o at the i = 0 planar
duct wall for the positive effective viscosity curves to the right of the eiff = 0 curve.

All of these values of •, 4, and Coo were used in Maple to plot the spin velocity

profiles which are seen in Figure 3-2.



Figure 3-2: Spin velocity spatial distributions for various values of f and eff to the
right of the •ýeff = 0 curve. a) C = 1.05, b) Q = 1.3, c) Q = 2.0412, d) Q = 3.25, e)
O = 5.0, f) ~ 10.0.
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The most interesting feature of these profiles is the fact that CD, can be double-

valued over a range of ; both at low frequencies and at high frequencies. There is

a range around C = 2.0412 where the function behaves as a single-valued function.

This frequency is where the positive and negative roots of all curves seen in Figure

3-1 meet. At low frequencies, the function can be double-valued in two regions while

at high frequencies, the function can be multi-valued in four regions with the middle

regions being triple-valued.

At high enough effective viscosity, the spin velocity profiles are single-valued.

For smaller values of effective viscosity, including zero, some profiles become double-

valued.

The region around i = 0.5, half-way between the planar duct boundaries, is the

most interesting. Here the spin velocity must be zero by symmetry where the small

spin velocity approximation is valid. In this region, it is only the larger frequencies

that are multi-valued.

3.1.2 Flow Velocity iVz(2) Profiles

Using Eqs. (2.36) - (2.38), the flow velocity equations can be plotted using a para-

metric plot of : and f while varying cy. The flow velocity f is effectively a function of

seven variables: (1, which is a function of i5, ,, Xo, i, ,and .1. Again, for simplicity,

we continue to use:

* o =1

* =1

Thus, the important variables for calculating 0z (i) in Eq. (2.36) are oy, which is the

variable that is ranged in the parametric plot, C, and (. These values have already

been calculated in Table 3-1. The boundary values of Co to use for the ranges have

also been calculated in Table 3-2.



There is an extra step required before the flow velocity profiles can be plotted.

The function f represents the flow velocity as a function of 1. However, the constant

of integration D in Eq. (2.36) has not been calculated since it could not be done

analytically. Each case must have its constant of integration calculated. The require-

ment is that the flow velocity, 5z must be zero at the boundaries of i = 0 and i = 1.

Therefore, the flow velocity of each case was calculated using the Maple equation

-- '- -01'
z(y) --= f(, , ), ( z ) - eval(subs(Co = value, f (o, i, (, -)) (3.17)

which means "iz equals the function f minus that same function evaluated at the

boundary by substituting Co0 for ,y." For each case, the appropriate values of C and

were used. Figure 3-3 shows the flow velocity profiles for the 6 values of frequency.



Figure 3-3: Linear flow velocity distributions for various values of ! and ýeff that
fall to the right of the ~ff = 0 demarcation curve. a) f = 1.05, b) Q = 1.3, c)
f = 2.0412, d) f = 3.25, e) Q = 5.0, f) Q = 10.0.
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With these profiles, we see that the flow velocity is large in the center of the duct

for very small frequencies. Then the flow velocity decreases as the frequency increases

to the value C2 = 2.0412 which is the value where the positive and negative roots meet

in Figure 3-1. Increasing the frequency further causes the flow velocity to become

larger again.

These figures show that the larger the effective viscosity, the more constant the

peak value of 0, at & = 0.5 with changes in !. For Ieff = .1, we see that the

nondimensional peak flow velocity is always about 2. This agrees with intuition

which requires that a larger viscosity would resist change in velocity. The smaller the

effective viscosity, the more the flow velocity changes with a change in frequency.

We also see that these flow velocity profiles can be multi-valued as well. The

scaling of the figures do not allow this fact to be easily seen. For the frequency

-= 1.05 we can see that for 4eff = 0, the flow velocity is triple-valued in two

places. Upon increasing the scale of the figures, we find that the eiff = .01 plot is

triple-valued in two places as well. This can be seen in Figure 3-4.

ý. 0.4 0.5 0.4 0

&ieff = .01 le!ff = .01

07

Figure 3-4: Increased scaling of flow velocity profiles for 6 = 1.05 shows that •ff =
.01 is multi-valued as well as 7if = 0.

-45ý

-46·

-47·

-48·

-50·

-51'

w' '
-1·.1

-15.2·

LI -15.1,P

-15.(

-"



Then, as the frequency increases, the profiles become single-valued for all values

of effective viscosity. Further increasing the frequency above f = 2.0412 causes the

profiles of small effective viscosity to be multi-valued again. At f = 5 we see that

ýeff = 0 has become triple-valued again, but this time it is a small region in the center

of the duct at i = .5. At ! = 10 we see that le!if = 0 becomes triple-valued in three

small regions. It is difficult to see whether the •,ff = .01 plot has become triple-

valued. Thus we look back to the spin velocity profile for ! = 10 and iff = .01 in

Figure 3-2 (f). From this figure, we see that the spin-velocity for eiff = .01 is indeed

multi-valued, possibly in 4 places. So we infer that the flow-velocity is multi-valued

as well, but it is multi-valued over such a small region that it is not visible on the

plot in Figure 3-3 (f).

Looking only in the region around i = .5, where the small spin-velocity approxi-

mation is valid, the flow velocity does not become multi-valued until larger frequencies

(greater than C = 2.0412). For the largest value of frequency considered, C = 10,

only the ieff = 0 curve is multi-valued at i = .5. If the frequency is increased

enough, will the other effective viscosity curves become multi-valued in this region?

This question is difficult to conclude by extrapolating the trend of the flow velocity

profiles. Looking back at the trends of spin velocity as the frequency is increased,

Figures 3-2 (a) through (f), it is possible to deduce that sufficiently large frequencies

will cause the spin velocities to be multi-valued for some effective viscosities that are

greater than zero. The smaller effective viscosities will become multi-valued in this

region before the larger effective viscosities.

3.2 Curves to the Left of e ff = 0

The curves to the left of the #eff = 0 demarcation curve in Figure 3-1 are plots of

both positive and negative values of effective viscosity. All of these curves follow a

horizontal asymptote at £2 = 1. The left-most curves are positive effective viscosity,

and as the value of effective viscosity is increased, the curves continue to the right with

smaller and smaller spacing until a limit curve of e ff = +oo is reached. In addition,



as the value of the negative viscosity curves continues to decrease, the curves continue

to the left with smaller and smaller spacing until they reach the same limit curve from

the other side with ,ff = -co.

3.2.1 Spin Velocity c•y(.) Profiles

The same method of plotting the spin velocity profiles in section 3.1 was used for the

profiles to the left of the ~eýff = 0 demarcation curve. This time, the second column

of viscosities in Table 3.1 represent the positive effective viscosity curves to the left

of the demarcation curve and are repeated in Table 3.3. In addition, the viscosities

of the negative effective viscosity curves were also calculated with the same program

found in Appendix D and are also listed in Table 3.3. There is only one real value of

( for each effective viscosity even though the equation is second-order. The second

root is complex.



1 = 1.05 = 1.3 C1 = 2.0412
7)eff 1Ieff I 1 1 eff f

0 .0048 0 .0225 0 .0375

.01 .0018 .01 .0039 .01 .0043

.025 .0022 .025 .0069 .025 .0087

.05 .0023 .05 .0088 .05 .0125

.1 .0023 .1 .0100 .1 .0154

-.1 .0024 -.1 .0125 -.1 .0222

-.05 .0025 -.05 .0137 -.05 .0250

-.025 .0026 -.025 .0156 -.025 .0288

-.01 .0029 -.01 .0186 -.01 .0332

f = 3.25 II = 5.0 = 10.0
eff eff f eff

0 .0284 0 .0159 0 .0047

.01 .0041 .01 .0036 .01 .0018

.025 .0078 .025 .0056 .025 .0021

.05 .0104 .05 .0067 .05 .0022

.1 .0122 .1 .0073 .1 .0023

-. 1 .0162 -.1 .0086 -.1 .0024

-.05 .0179 -.05 .0092 -.05 .0025

-.025 .0206 -.025 .0103 -.025 .0026

-.01 .0243 -.01 .0124 -.01 .0029

Table 3.3: Matlab results of calculating ý given some C2and efff for the curves of
positive and negative effective viscosity to the left of the efiff = 0 curve.

Because &o, is the variable ranged in the parametric plot, the values of Dy( =

0) = &o were calculated with the same Mathematica program that calculated the

values in Table 3.2 using Eq. (3.16). The appropriate values of Q and ( from Table

3.3 were used. The file can be found in Appendix D.



f =1.05 1 =1.3 11 = 2.0412
[ 4o J &o f 'o

.0048 103.157 .0225 21.176 .0375 12.2371

.0018 276.774 .0039 127.197 .0043 115.27

.0022 226.268 .0069 71.4498 .0087 56.4529

.0023 216.387 .0088 55.8004 .0125 38.9729

.0023 216.387 .0100 48.9797 .0154 31.4335

.0024 207.329 .0125 38.9746 .0222 21.4711

.0025 198.995 .0137 35.4685 .0250 18.941

.0026 191.302 .0156 31.0194 .0288 16.2913

.0029 171.408 .0186 25.8436 .0322 13.9774

l = 3.25 [ = 5.0 = 10.0

.0284 16.5104 .0159 30.3867 .0047 105.364

.0041 120.942 .0036 137.88 .0018 276.773

.0078 63.0845 .0056 88.2714 .0021 237.089

.0104 47.0517 .0067 73.6089 .0022 226.266

.0122 39.953 .0073 67.4731 .0023 216.385

.0162 29.8204 .0086 57.1147 .0024 207.326

.0179 26.8831 .0092 53.3206 .0025 198.992

.0206 23.2116 .0103 47.512 .0026 191.3

.0243 19.5003 .0124 39.2813 .0029 171.405

Table 3.4: Mathematica results of calculating spin velocity Cjo at the i = 0 planar
duct wall for the positive and negative effective viscosity curves to the left of the
?leff = 0 curve.

These values of C, 4, and &o in Tables 3.3 and 3.4 were used in Maple to plot the spin

velocity profiles which are seen in Figure 3-5.



Figure 3-5: Spin velocity spatial distributions for various values of Q and 7leff to the
left of the ?eiff = 0 curve. a) £ = 1.05, b) f2 = 1.3, c) Q = 2.0412, d) £ = 3.25, e)
Q = 5.0, f) £2 = 10.0.
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All of these profiles are multi-valued in Coy. The first profile, f = 1.05, is multi-

valued in two regions. But a slight increase in C causes most of the effective viscosity

curves to be multi-valued in four regions. Here it is ieff = 0 that is last to be-

come multi-valued in the middle regions. The positive effective viscosities are first

to become triple-valued in the middle regions, whereas ieff = 0 has ceased to be

multi-valued in any region. Among the frequencies examined, the profiles for f = 1.3

and greater have effective viscosity curves that are triple-valued in the middle regions

near i = 0.5, and double-valued in the outer regions. It is not until 6 = 5.0 that all

effective viscosity curves are triple-valued in the middle regions.

The region around i = 0.5 is most interesting since the small spin velocity ap-

proximation is valid. The curves of positive effective viscosity become triple-valued

at significantly lower frequencies than the positive effective viscosity curves that fall

to the right of the eff = 0 demarcation curve of Figure 3-1. The negative effective

viscosity curves follow the same trend as the positive effective viscosity curves that

fall to the left of the leff = 0 curve. These curves are spaced the same way the curves

in Figure 3-1 are spaced. That is, the positive effective viscosity curves approach a

limit curve at ieff = +oo, which is the same limit curve of the negative effective

viscosity curves at ieff = -oo.

The trend as the frequency increases is for the middle triple-valued regions to

spread out in i. Most of the outer regions become double-valued at larger frequencies.

With this trend, it is possible for frequencies greater than the examined f = 10 that

the curves become quadruple-valued as the middle region spreads to the outer region.

Also, looking at the ý,eff = 0 curve in Figure 3-5 (f) for 6 = 10, we see that the

zig-zag behavior in a very small region around i = 0.5 becomes more pronounced.

It is also possible for larger frequencies that the value of Cj, have 5 values in this

small region. If this trend does continue, for very large frequencies, the spin velocity

profiles will become vertical curves, zig-zagging in the central region between ' r 0.4

and ?_ 0.6 with multiple-values of I, for a given i, including large values of C;,.



3.2.2 Flow Velocity vz,(i) Profiles

Similar to section 3.1.2, Eqs. (2.36) - (2.38) were used to plot the flow velocity profiles,

seen in Figure 3-6, for the effective viscosity curves that fall to the left of the •,ff = 0

demarcation curve. The appropriate values of Q, (, and co from Tables 3.3 and 3.4

were used.

Similar to the flow velocity profiles for the effective viscosity curves to the right

of the iff = 0 demarcation curve, these profiles show that the flow velocity is large

in the center of the duct for very small frequencies. As the frequency increases to

the value C = 2.0412, which is the value where the positive and negative roots meet

in Figure 3-1, the peak value of the flow velocity decreases. Then, increasing the

frequency further causes the flow velocity to become larger in the center of the duct.

These figures show how a change in frequency affects the profiles of different

effective viscosities relative to each other. For a small frequency of Q = 1.05, the

curves of the positive and negative effective viscosities are grouped together without

much distinction between the two signs. However, they are significantly different

than the ~eff = 0 curve. Then, as the frequency is increased, the curves begin to

group closer to the fff = 0 curve, while the fff = 0.01 curve becomes more distinct

from the others. At a frequency of Q = 2.0412, the negative effective viscosity curves

are close to the /,ff = 0 curve, and a distinction between the positive and negative

effective viscosity curves can be seen. They follow the same trend as seen in Figure

3-1 where the ieff = +oo limit curve is the same as the ieff = -oo limit curve. As

the frequency is increased further, the trend reverses again and the large frequency

curve of Q = 10 looks similar in spacing to the f = 1.05 curve in that the positive and

negative effective viscosity curves are grouped together, separate from the jýff = 0

curve.



Figure 3-6: Linear flow velocity distributions
to the left of the neff = 0 demarcation curve.

d) Q = 3.25, e) Q = 5.0, f) Q = 10.0.

for various values of Q and ýfff that fall
a) Q = 1.05, b) Q = 1.3, c) Q = 2.0412,
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Again, the region around i = 0.5 is most interesting since the small spin velocity

limit is valid there. As the above described transition from small frequencies to large

frequencies happens, there is a change in shape of this central region. Because of

the scaling used in Figure 3-5, it is difficult to see the behavior of the curves in this

region. It was necessary to examine them more closely, which is done in Figures 3-7

through 3-12 .

All of the effective viscosity curves for f = 1.05 look essentially the same. They

are triple-valued in two places in the outer regions. Slightly increasing the frequency

to f = 1.3 changes this behavior noticably. The multi-valued regions can be seen

only in the positive effective viscosity curves. The larger the effective viscosity, the

smaller the region of i that is triple-valued. This is seen in Figure 3-8.
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a: Q = 1.05 positive effective viscosities.
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ý
7
eff = -.025
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-.05

eff = -.01

viscosities.

Figure 3-7: Q = 1.05 curves of Figure 3-6 (a) separated and increased to see the

multi-valued behavior of the curves.
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Figure 3-8: Q = 1.3 curves of Figure 3-6 (b) separated and increased to see the
behavior of the curves. Only the positive effective viscosities show any multi-valued
regions.

Further increasing the frequency to Q = 2.0412 causes both the positive and

negative effective viscosities to become triple-valued in a very small region around

i = 0.5. Also, the larger values of effective viscosity cease being triple-valued in

the outer regions. The smaller values of effective viscosity, e ff = .01 and .025 and

possibly .05 are still triple-valued in the outer regions. This can be seen in Figure

3-9.

Figure 3-10 shows the individual effective viscosity curves for Q = 3.25. The

behavior looks very much like the curves for Q = 2.0412. The negative effective

viscosity curves appear to be multi-valued in the middle regions only, while the smaller

values of positive effective viscosity are multi-valued both in the middle regions and

in the outer regions, over a small range in i.
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Figure 3-9: i2 = 2.0412 curves of Figure 3-6 (c) separated and increased to see the
multi-valued behavior of the curves.
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Further increasing the frequency to ! = 5, as seen in Figure 3-11, shows that the

middle region around i = 0.5 is triple-valued over a large range of i. At the same

time, the outer regions become triple-valued again for all of the positive effective

viscosities and for some of the negative effective viscosities.

Finally, Figure 3-12 shows the enlarged curves for C = 10. These curves are

triple-valued in all 4 regions. The center region around i = 0.5 continues to grow

larger with larger frequency. As well, it grows larger from Iýff = 0 to eff =

.01 in the order that the effective viscosity curves range in Figure 3-1: ~eff =

{0, -. 01, -. 025, -. 05, -. 1, .1, .05, .025, .01}. If the trend continues, it is possible

that these inner and outer regions will overlap given a frequency larger than 6 = 10

or a smaller effective viscosity than feff = .01 but larger than 0.
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Chapter 4

Tangential Magnetic Field

JBx- = 0; IHzl = 1

Both magnetic effects and hydrodynamic effects cause the effective viscosity of fer-

romagnetic fluids to be different than the viscosity of the carrier fluid. Therefore,

not only does the effective viscosity depend on the vortex viscosity ( and dynamic

viscosity ~ but it also depends on the field frequency Q. We continue to assume = i ,

and repeat Eq. (3.2) here:

2((( - ýe f)(a = - ) (4.1)
2(~- eff

Specifically for the tangential magnetic field, iJBI = 0; ifti, = 1, Eq. (2.41)

reduces to

S= (1+ X) 2 ] (4.2)
2 (1 + Xo + f2)2 + Xf2"

By setting Eqs. (4.1) and (4.2) equal to each other, ! can be solved for in terms of

C and •,ff. This will allow plots of Q(C) to be made for different values of effective

viscosity. The result is a 4th order equation in f.

+4 2 2+2Xo+X +(1+Xo)2 [1+ 2 = 0 (4.3)



where a, defined in Eq. (3.2), depends on ý and i~eff.

To plot C as a function of C for different values of ,fif, the quadratic formula was

used to find C2, and then the square root was taken.

-b v/b2 - 4ac
2a

a=1

b = 2+2Xo+ X2 Xo

c = (1+xo)2 [1 + •

(4.4)

(4.5)

(4.6)

(4.7)

Once f2 was calculated, only those values that were both positive and real were

plotted.

The values of •eff were chosen to be

leff = {-.1; -. 05; -. 025; -. 01; 0; .01; .025; .05; .1}. (4.8)

These values were chosen so the plotted curves would be well spaced and show the

trend of change as eff goes from negative values, through zero, and becomes positive.

The resulting plot can be seen in Figure 4-1. For simplification, the value of the

effective magnetic susceptibility Xo was taken to be 1 for the calculations of this curve.

This plot was made using a Matlab script file, which can be found in Appendix C.

such that



IBxI = O, IHzI = 1 for given leff

0 0.01 0.02 0.03 0.04 0.05 0.06

Figure 4-1: Frequency C as a function of viscosity ( for nine values of ýieff. The bold
lines represent the positive roots of the quadratic, and the plain lines represent the
negative roots.

Similar to the case studied in Chapter 3, each positive value of effective viscosity

has four roots that are plotted, which look like two general curves. Each negative

value of effective viscosity has only two roots plotted which look like one general curve.

These curves will be discussed separately as two distinct categories: the curves that

fall to the right of the rieff = 0 curve, and the curves that fall to the left of the

ief f = 0 curve.
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4.1 Curves to the Right of the ijff = 0 curve

All of the curves to the right of the leff = 0 demarcation curve are plots of posi-

tive values of effective viscosity. Although the 7~eff = 0 curve follows a horizontal

asymptote to f = 2, the positive effective viscosity curves to its right range from

a frequency of zero to infinity. Larger values of effective viscosity would follow the

same curve characteristics, but would continue further and further to the right of the

demarcation curve.

4.1.1 Spin Velocity &y,(i) Profiles

As was explained in Section 2.4.2, the spin velocity profile can be plotted using a

parametric plot of J and C, while varying ,y. Nondimensional position i is a function

of 6 variables, OY, f, Xo, 0, (, and - . We continue the assumptions from Chapter 3

which are:

* Xo =1

*-= 1

Therefore, the important variables of i become Oy, which is the ranging variable of

the parametric plot; Q; and (. To be able to plot y,(i), the values for Q and ( must

be chosen.

Looking at the curves in Figure 4-1, six values of frequency were chosen. By choos-

ing values of frequency, !, the corresponding values of viscosity, •, can be calculated.

Both values can be used in the equations for plotting the spin velocity profiles. Instead

of solving for f in Eq. (4.3), • is solved for.

2c [(1 + Xo + 2)2 + x2]•• - [2~e[(1 + Xo + C2)2 + •22] + XO  - (1 + xo)2)]

+ 0 ?ef(f - (12 + XO)2) (4.9)



To solve for (, the quadratic equation is used, where

a = 2[(1 + Xo + )2+ x 2••

b = - [2f [(1 + Xo + 2)2 ]+ x2 + X -(f 2  1+ x))]

c -ieff (12 + 0)2)

(4.10)

(4.11)

(4.12)

The values of f2 were chosen so the differences in C would be noticable. They are:

Q = {2.05, 2.5, 3.2126, 4.5, 6, 10} (4.13)

The value of 2.05 was chosen to be just above the horizontal asymptote of the demar-

cation curve. The value of 3.2126 is the value of f2 where the positive and negative

roots of the quadratic meet. To calculate the corresponding (, a Matlab script was

used, which can be found in Appendix D. The results are summarized by Table 4-1.

Table 4.1: Matlab results of calculating ý given some value of C and ieff for the
positive effective viscosity curves to the right of the ?]eff = 0 curve.

0 = 2.05 1 = 2.5 I = 3.2126
___f 1 11eiif k eff C
0 .0024 0 0 .0151 0 0 .0195 0

.01 .0113 .0010 .01 .0216 .0035 .01 .0259 .0038

.025 .0262 .0011 .025 .0347 .0055 .025 .0381 .0064

.05 .0512 .0012 .05 .0587 .0064 .05 .0616 .0079

.1 .1012 .0012 .1 .1081 .0070 .1 .1107 .0088

C1 = 4.5 J_ = 6 fl = 10

kefjf _ __ C heff I ___

0 .0158 0 0 .0108 0 0 .0046 0

.01 .0222 .0035 .01 .0178 .0030 .01 .0128 .0018

.025 .0352 .0056 .025 .0315 .0043 .025 .0275 .0021

.05 .0591 .0067 .05 .0560 .0048 .05 .0524 .0022

.1 .1085 .0073 .1 .1057 .0051 .1 .1023 .0022



There are two values of ( for each effective viscosity because there are two roots

to the solution. The first column of ý represents the curves that fall to the right of

the eff = 0 demarcation curve. The second column of 4 represents those curves that

fall to the left of the demarcation curve and will be discussed in section (4.2).

To range C&, in the parametric plot, the values must be known at the boundaries.

Because C&, is an odd function of t around i = 0.5,

0o = CZ(i = 0) = -,(i = 1). (4.14)

Mathematica was used to calculate CDo, which is the value of cD, at the boundary of

= 0. The same command in Eq. (3.16) was used. The results are listed in Table

4-2. The Mathematica file can be found in Appendix B.

Table 4.2: Mathematica results of calculating spin velocity Co0 at the i = 0 planar

duct wall for the positive effective viscosity curves to the right of the ieff = 0 curve.

S = 2.05 = 2.5 =3.2126
( Do o C Jo

.0024 207.328 .0151 32.0739 .0195 24.58

.0113 43.2218 .0216 22.0868 .0257 18.3633

.0262 18.0109 .0347 13.2873 .0381 11.9454

.0512 8.56627 .0587 7.20961 .0616 6.63099

.1012 3.42359 .1081 3.30883 .1107 3.58458

= 4.5 = 6 6 = 10

.0158 30.5884 .0108 45.2551 .0046 107.677

.0222 21.4238 .0178 26.996 .0128 37.9572

.0352 12.9697 .0315 14.5751 .0275 16.4881

.0591 6.61044 .0560 6.99514 .0524 9.71204

.1085 4.33254 .1057 5.10211 .1023 5.18128



It is interesting to note that for C = 10, the values of ý and &o are virtually the

same as those values in Table 3-2 for the same frequency. For large enough frequencies,

the behavior of ferrofluids in a transverse magnetic field (IB~I = 1, ji/l = 0) is the

same as in a tangential magnetic field (IBil = 0, IIz = 1).

All of these values of !, ý, and 0o were used in Maple to plot the spin velocity

profiles which are seen in Figure 3-2. The Maple program is found in Appendix A.

These profiles show that &,y can be double-valued over a range of i for any fre-

quency. Unlike the transverse-only magnetic field profiles in Chapter 3 (section 3.1.1),

there is no examined frequency where all of the functions behave as single-valued. At

low frequencies, the function can be double-valued in two regions while at high fre-

quencies, the function can be multi-valued in four regions with the middle regions

being triple-valued.

The spin velocity profiles for the larger values of effective viscosity behave as

single-valued functions. The effect of increasing frequency does not change the shape

of the function much. For smaller values of effective viscosity, including zero, some of

the profiles are double-valued for any frequency.

The region around i = 0.5, which is half way between the planar duct boundaries,

is the most interesting. It is here that the small spin velocity approximation is valid.

At low frequencies, this region behaves as single-valued, but as frequency increases,

this region becomes triple valued immediately to the left and right of i = 0.5.



Figure 4-2: Spin velocity spatial distributions for various values of ( and _jeff to the
right of the _•eff = 0 curve. a) Q = 2.05, b) Q = 2.5, c) Q = 3.2126, d) Qt = 4.5, e)
0 = 6.0, f) Q = 10.0.
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4.1.2 Flow Velocity vz(x) Profiles

Using Eqs. (2.36) - (2.38), the flow velocity equations can be plotted using a para-

metric plot of i and f while varying Co,. The flow velocity f is effectively a function of

seven variables: C, which is a function of i; f; Xo; ~; C; and 2'. Again, for simplicity,

we continue to use:

* X=1

Thus, the important variables for calculating Oz (2) are ;,y, which is the variable that is

ranged in the parametric plot, cD, and (. These values have already been calculated in

Table 4-1. The boundary values of Do to use for the ranges have also been calculated

in Table 4-2.

Because the constant of integration D in Eq. (2.36) cannot be solved analytically,

it has been calculated for each case using the Maple equation of Eq. (3.17). Figure 3-3

shows the flow velocity profiles numerically integrated by Maple. The Maple program

can be found in Appendix A.

With these profiles, we see that the flow velocity is large in the center of the duct

for very small frequencies. Then the flow velocity decreases as the frequency increases

to the value ! = 3.2126 which is the value where the positive and negative roots meet

in Figure 4-1. Increasing the frequency further causes the flow velocity to become

larger again.

These figures show that the larger the effective viscosity, the more constant the

peak value of 5z at j = 0.5 with changes in f. For eiff = .1, we see that the

nondimensional peak value of the flow velocity is always about 2. The smaller the

effective viscosity, the more the flow velocity changes with a change in frequency.

This behavior is similar to the cases studied in Chapter 3.



Figure 4-3: Linear flow velocity distributions for various values of Q and eIff that
fall to the right of the Ieff = 0 demarcation curve. a) Q = 2.05, b) Q = 2.5, c)

-= 3.2126, d) f = 4.5, e) Q = 6.0, f) f = 10.0.
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We also see that these flow velocity profiles can be multi-valued as well. The

scaling of the figures does not always allow this fact to be easily seen. For the

frequency f = 2.05 we can see that for Ieff = 0 and for jeff = .01, the profile

is triple-valued in two places. For the frequency Q = 2.5, the range of i which is

triple-valued for ieff = 0 has decreased. Upon increasing the scale of the figures, we

find that the iff = .01 plot is still triple-valued in the outer region as well, but very

slightly. The increased scale for C = 2.5 can be seen in Figure 4-4.

2: a.- 0 OA4 o 5 a .6 :Cq7 0 oax

Slf = .01 eff = .01

-a .7 -a .7

Figure 4-4: Increased scaling of flow velocity profiles for 6 = 2.5 shows that both
ie•,f = 0 and /eff = .01 are still multi-valued in the outer regions.

Then, as the frequency continues to increase, the profiles become single-valued for

all values of effective viscosity. Further increasing the frequency simply increases the

peak value of the flow velocity curve slightly. When the frequency reaches ! = 6, we

see that i~eff = 0 has become triple-valued again. This time, it is also triple-valued

in a small region around i = 0.5 which is in the center of the duct. At C = 10, the

range in & that is triple-valued has increased. It is difficult to see whether ~ýff = .01
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has become multi-valued. Looking at the spin velocity profile for this frequency and

effective viscosity in Figure 4-2 (f), it seems possible it is triple-valued in a very small

range of i. Increasing the scale allows this behavior to be seen. Figure 4-5 shows the

multi-valued behavior for #eff = 0 and ,efI = .01 for a frequency of f = 10.
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Figure 4-5: Increased scaling of flow velocity profiles for f = 10 shows that eiff = .01
is multi-valued in the outer regions, while ,ff = 0 is multi-valued in the outer and
center regions.

It is possible to extrapolate the trend of the flow velocity profiles as the frequency is

further increased. The range of i that is multi-valued around i = 0.5 will continue to

increase with larger frequency. As well, the non-zero effective viscosities will become

multi-valued again, first in the outer regions, then in the middle regions.
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4.2 Curves to the Left of the leff = 0 Curve

The curves to the left of the eff = 0 demarcation curve in Figure 4-1 are plots of

both positive and negative values of effective viscosity. All of these curves follow a

horizontal asymptote of f = 2. The left-most curves are positive effective viscosity,

and as the value of the effective viscosity is increased, the curves continue to the

right with smaller and smaller spacing until a limit curve of ijff = +oo is reached.

In addition, as the value of the negative viscosity curves continues to decrease, the

curves continue to the left with smaller and smaller spacing until they reach the same

limit curve from the other side with i~eff = -oo.

4.2.1 Spin Velocity &y(i) Profiles

The same method of plotting the spin velocity profiles in section 4.1 was used for the

profiles to the left of the i •,ff = 0 demarcation curve. This time, the second column

of viscosities in Table 4.1 represent the positive effective viscosity curves to the left of

the demarcation curve and are repeated in Table 4.3. In addition, the viscosities of

the negative effective viscosity curves were calculated with the same program found

in Appendix D and are also listed in Table 4.3. There is only one real value of ( for

each effective viscosity even though the equation is second-order. The second root is

complex.



t = 2.05 = 2.5 = 3.2126
ieff J eff C eff C
0 .0024 0 .0151 0 .0195

.01 .0010 .01 .0035 .01 .0038

.025 .0011 .025 .0055 .025 .0064

.05 .0012 .05 .0064 .05 .0079

.1 .0012 .1 .0070 .1 .0088

-.1 .0012 -.1 .0081 -.1 .0107

-.05 .0012 -.05 .0087 -.05 .0116

-.025 .0012 -.025 .0097 -.025 .0131

-.01 .0013 -.01 .0116 -.01 .0157

S= 4.5 = 6.0 C1 = 10.0

ieff C 07/elf ff
0 .0158 0 .0108 0 .0046

.01 .0035 .01 .0030 .01 .0018

.025 .0056 .025 .0043 .025 .0021

.05 .0067 .05 .0048 .05 .0022

.1 .0073 .1 .0051 .1 .0022

-. 1 .0085 -.1 .0057 -. 1 .0023

-.05 .0091 -.05 .0060 -.05 .0024

-.025 .0102 -.025 .0065 -.025 .0025

-.01 .0122 -.01 .0078 -.01 .0028

Table 4.3: Matlab results of calculating C given some ! and ieff for the curves of
positive and negative effective viscosity to the left of the ýeff = 0 curve.

Because CD, is the variable ranged in the parametric plot, the values of &,(2 -

0) = Co were calculated with the same Mathematica program that calculated the

values in Table 4.2 using Eq. (3.16). The appropriate values of f and C from Table

4.3 were used. The file is found in Appendix D.



S= 2.05 0 = 2.5 I = 3.2126

C co C Co Co
.0024 207.328 .0151 32.0739 .0195 24.58

.0010 498.998 .0035 141.85 .0038 130.571

.0011 453.543 .0055 89.8971 .0064 77.1101

.0012 415.664 .0064 77.1108 .0079 62.2721

.0012 415.664 .0070 70.4129 .0088 55.7965

.0012 415.664 .0081 60.7099 .0107 45.7014

.0012 415.664 .0087 56.4512 .0116 42.073

.0012 415.664 .0097 50.5237 .0131 37.1324

.0013 383.613 .0116 42.0754 .0157 30.8019

C = 4.5 = 6.0 = 10.0

.0158 30.5884 .0108 45.2551 .0046 107.677

.0035 141.849 .0030 165.659 .0018 276.773

.0056 88.2716 .0043 115.268 .0021 237.089

.0067 73.6092 .0048 103.153 .0022 226.266

.0073 67.4735 .0051 97.0249 .0022 226.266

.0085 57.7996 .0057 86.7027 .0023 216.385

.0091 53.9189 .0060 82.3156 .0024 207.326

.0102 49.9891 .0065 75.9033 .0025 198.992

.0122 39.9445 .0078 63.077 .0026 177.563

Table 4.4: Mathematica results of calculating spin velocity &o at the i = 0 planar
duct wall for the positive and negative effective viscosity curves to the left of the
jff = 0 curve.

These values of Q, 4, and &o in Tables 4.3 and 4.4 were used in Maple to plot the spin

velocity profiles which are seen in Figure 4-6.



Figure 4-6: Spin velocity spatial
left of the leff = 0 curve. a) 0
C = 6.0, f) !ý = 10.0.
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All of these profiles are multi-valued in y,. The first profile, f = 2.05, is multi-

valued in two regions. But a slight increase in f causes most of the effective viscosity

curves to be multi-valued in four regions. Here it is qeff = 0 that is last to become

multi-valued in the middle regions. The positive effective viscosities are first to be-

come triple-valued in the middle regions. Unlike the similar curves in Chapter 3 for

the transverse magnetic fields, the feif = 0 curve remains multi-valued in its outer

regions. Among the frequencies examined, the profiles for ! = 2.5 and greater have

effective viscosity curves that are triple-valued in the middle regions near i = 0.5, and

double-valued in the outer regions. It is not until f = 6.0 that all effective viscosity

curves are triple-valued in the middle regions.

The region around i = 0.5 is most interesting since the small spin velocity ap-

proximation is valid. The curves of positive effective viscosity become triple-valued

at significantly lower frequencies than the positive effective viscosity curves that fall

to the right of the •,ff = 0 demarcation curve of Figure 4-1. The negative effective

viscosity curves follow the same trend as the positive effective viscosity curves that

fall to the left of the ,ff = 0 curve. These curves are spaced the same way the curves

in Figure 4-1 are spaced. That is, the positive effective viscosity curves approach a

limit curve at ~ff = +oo, which is the same limit curve of the negative effective

viscosity curves at e~f = -oo.

The trend as the frequency increases is for the middle triple-valued regions to

spread out in 1. All of the outer regions remain double-valued for all values of

frequency, although the range in i decreases at first, then increases again. With this

trend, it is possible that the curves become quadruple-valued for frequencies greater

than the examined f, as the range of multi-values in the middle spreads to the outer

regions of multi-values. Also, looking at the ieff = 0 curve in Figure 4-6 (f) for

Q = 10, we see that the zig-zag behavior in a very small region around i = 0.5

becomes more pronounced. Similar to the curves in the transverse magnetic field

cases of Chapter 3, it is possible for larger frequencies that the value of (, have 5

values in this small region. If this trend does continue, for very large frequencies,

the spin velocity profiles will become vertical curves, zig-zagging in the central region



between i - 0.4 and i e 0.6 with multiple-values of ,oy for a given 5, including large

values of I,.

4.2.2 Flow Velocity vz(H) Profiles

Analogous to section 4.1.2, Eqs. (2.36) - (2.38) were used to plot the flow velocity

profiles, seen in Figure 4-7, for the effective viscosity curves that fall to the left of the

ieff = 0 demarcation curve. The appropriate values of C, C, and &o from Tables 4.3

and 4.4 were used.

Similar to the flow velocity profiles for the effective viscosity curves to the right

of the ~eff = 0 demarcation curve, these profiles show that the flow velocity is large

in the center of the duct for very small frequencies. As the frequency increases to the

value ! = 3.2126, which is the value where the positive and negative roots meet in

Figure 4-1, the peak value of the flow velocity decreases significantly. Then, increasing

the frequency further causes the flow velocity to become larger in the center of the

duct.



Figure 4-7: Linear flow velocity distributions for various values of Q and Ief that fall
to the left of the •,ff = 0 demarcation curve. a) ( = 2.05, b) 0 = 2.5, c) Q = 3.2126,
d) Q = 4.5, e) Q = 6.0, f) Q = 10.0.
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These figures show how a change in frequency affects the profiles of different

effective viscosities relative to each other. For a small frequency of f = 2.05, the

curves of the positive and negative effective viscosities are grouped together without

much distinction between the two signs. In fact, eff = {.05, .1, -. 1, -. 05, and-.025}

are the same curve since their values of C and 1c0 are the same, to the significant digits

produced by Matlab. The positive and negative effective viscosity curves are set apart

from the rieff = 0 curve. Then, as the frequency is increased, the curves begin to

group closer to the i~ff = 0 curve, while the ieff = .01 curve becomes more distinct

from the others. At a frequency of ! = 3.2126, the negative effective viscosity curves

are closer to the Tieff = 0 curve, and a distinction between the positive and negative

effective viscosity curves can be seen. They follow the same trend as seen in Figure

4-1 where the i~eff = +oo limit curve is the same as the ieff = -00 limit curve.

As the frequency is increased further, the trend reverses again, and the positive and

negative effective viscosity curves are grouped together again, this time separate from

both ýeff = 0 and /eff = .01.

Again, the region around E = 0.5 is most interesting since the small spin velocity

limit is valid there. As the above described transition from small frequencies to large

frequencies happens, there is a change in shape of this central region. Because of the

scaling used in Figure 4-7, it is difficult to see the behavior of the curves in this region.

It was necessary to examine them more closely, which is done in Figures 4-8 through

4-10. However, it is clear from Figure 4-7 (d), (e), and (f) that all the positive and

negative effective viscosities profiles for Q = 4.5, 6.0, and 10.0 are triple-valued in the

center of the duct.

All of the effective viscosity curves for 2 = 2.05 look essentially the same. Figure

4-8 shows that for 2 = 2.05, there are no multiple values around the region where

S= 0.5.
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to see the

Simply looking at Figure 4-7 (b), it seems as if there are no multiple-values in

this region as well. However, by separating the curves and increasing the scale, we

see that almost every effective viscosity curve is triple-valued over a very small range

in 2 around j = 0.5. Figure 4-9 shows the individual curves for C = 2.5. The

larger positive effective viscosities have a smaller region of ,ý that is triple-valued.

The region of t that is triple-valued for the negative effective viscosities is almost

indistinguishable.
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Further increasing the frequency to Q = 3.2126 shows convincingly that all positive

and negative effective viscosity curves are multi-valued in the region around i = 0.5.

The range over 1 that is triple-valued is now beginning to increase. This is seen in

Figure 4-10.

As the frequency increases to Q = 4.5, then to Q = 6.0, and finally to Q = 10.0,

as seen in Figure 4-7 (d), (e), and (f), the range over i that is triple-valued in

the middle region continues to increase. It increases from -eff = 0 to ief =

.01 in the order that the effective viscosity curves range in Figure 4-1: e~eff =

{0, -. 01, -. 025, -. 05, -. 1, .1, .05, .025, .01}. If the trend continues, it is possible

that the inner regions around i = 0.5 will overlap the outer multi-valued regions

given a frequency larger than Q = 10 or a smaller effective viscosity than jff = .01

but larger than 0.
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Chapter 5

Summary and Conclusions

5.1 Significant Results

The current primary applications of ferromagnetic fluids use DC magnetic fields. The

motion of ferromagnetic fluids in DC magnetic fields is simpler to solve because the

fluid magnetization is collinear with the magnetic field. The motion of ferrofluids in

alternating or traveling wave magnetic fields is complicated by a body torque on the

fluid. This torque results from the fluid friction causing the magnetization to lag the

alternating or traveling magnetic field. Contrary to intuition, earlier work has shown

that when the fluid spin velocity is small, the electromechanical coupling between

the magnetic field and flow can lead to an effective dynamic viscosity, ieff, that can

be made zero or negative as a function of the magnetic field strength, direction, and

frequency. When this effective viscosity is negative, the fluid pumps backwards which

means it flows opposite to the direction the magnetic field travels.

In the small spin velocity approximation (&y, < 1), both the flow and spin veloci-

ties of the ferrofluid depend on the effective viscosity. Mathematically, a singularity

occurs in both the flow and spin velocities with zero spin viscosity, which causes

these velocities to become infinite. This, however, violates the small spin velocity

approximation. This thesis explored positive, zero, and negative effective viscosities

to determine if the change in sign of the effective viscosity is the cause of the observed

backward pumping phenomena. To do so, the governing one dimensional fluid and
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field equations in the viscous dominated limit were numerically solved without further

approximation within a planar duct. This allows fluid inertia to be neglected in order

to closer study the behavior of the ferrofluid under conditions of predicted infinite

velocity.

Unlike most past work which considered fluid pumping due to applied rotating

or traveling magnetic fields, this thesis found that with alternating applied magnetic

fields either perpendicular or parallel to the duct axis, time average flow and spin

velocities result. The fluid spatial profiles have multi-valued regions where at one

spatial position there can be more than one allowed flow and spin velocity.

5.2 Zero Spin-Viscosity in a Planar Duct

To simplify the governing equations, one dimensional magnetic field conditions were

studied of a ferrofluid pumping in a planar duct. The equations of fluid flow in this

planar duct that were solved included two magnetic field orientations:

* an imposed uniform magnetic field component transverse to the duct axis,

I |I = 1, 7 1I = 0

* an imposed uniform magnetic field component along the duct axis, 1•,I =

0, Il = 1

For each of these cases, curves of non-dimensional frequency Q as a function of

non-dimensional viscosity ( were plotted for nine values of non-dimensional effective

viscosity eIff (Figures 3-1 and 3-2). Because i(() is a biquadratic 4th order equation,

there are four possible roots. For each case, the positive effective viscosities had four

positive real roots, which when plotted, look like two general curves. The negative

effective viscosities, however, had only two positive real roots which look like one

general curve when plotted. A demarcation curve of eff = 0 was chosen, and the

effective viscosity curves to the right of this demarcation curve were studied separately

from the curves to the left.
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The curves to the right of the demarcation curve were positive effective viscosity

curves. As the value of the effective viscosity increased, the curves continued to the

right with increasing viscosity ý. The curves to the left of the demarcation curve

were both positive and negative effective viscosity curves. The left-most curves are

positive effective viscosity, while the negative effective viscosity curves lay between

the positive effective viscosity curves and the demarcation curve of 1 eff = 0. Most

interestingly in this region, as the value of positive effective viscosity increases, a limit

curve of eff = +oo is reached. As the value of negative effective viscosity decreases

to leff = -oo, this same limit curve is reached from the other side.

At low frequency, the value of 5 is small as well. For each effective viscosity curve,

increasing the frequency causes the viscosity C to increase as well. The viscosity

continues to increase until the frequency at which the positive and negative roots

meet. (This value of frequency is !- = 2.0412 for the transverse magnetic field case and

-= 3.2126 for the tangential magnetic field case.) Further increasing the frequency

above this value decreases the value of the viscosity •.

5.2.1 Spin Velocity &cy(i) Profiles

The behavior of the spin velocity profiles is similar between the two cases of transverse

magnetic fields and tangential magnetic fields. There can be four regions that are

multi-valued in these profiles. There are two middle regions around i = 0.5 which is

the center of the duct. There are two outer regions as well. For both cases studied,

the outer regions are multi-valued for lower values of viscosity (. Since the regions

around i = 0.5 are where the small spin velocity approximations are valid, they are

more interesting. These middle regions become multi-valued when the frequency 0

is increased.

All multi-valued behavior in the spin velocity profiles is exaggerated when exam-

ining the effective viscosity curves that fall to the left of the ie7ff = 0 demarcation

curve. The smaller the value of viscosity ý, the larger the range in i in which the

profiles can be multi-valued in the outer regions. The larger the value of frequency

Q, the larger the range in i in which the profiles can be multi-valued in the middle
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regions near the center of the duct.

When examining the effective visocity curves to the left of the demarcation curve,

increasing the frequency !, which decreases (, causes the middle regions of the spin

velocity profiles to approach the outer regions. It is possible that these regions overlap

for larger frequencies. It is also possible that a new middle region of multiple values

with a very small range in i is formed for larger frequencies.

5.2.2 Flow Velocity iz(Z) Profiles

The behavior of the flow velocity profiles between the transverse magnetic field case

and the tangential magnetic field case is also similar. There can be four regions that

are multi-valued in these profiles. Two regions are in the center of the duct around

.= 0.5, and two regions are further out. Since the regions in the middle of the duct

are where the small spin velocity approximations are valid, they are more interesting.

These middle regions become multi-valued when the frequency 2 is increased.

All multi-valued behavior in the flow velocity profiles is exaggerated for the ef-

fective viscosity curves that fall to the left of the ieff = 0 demarcation curve. The

smaller the value of ý, the larger the range in i in which the profiles can be multi-

valued in the outer regions. The larger the value of frequency R, the larger the range

in i in which the profiles can be multi-valued in the middle regions near the center

of the duct.

When examining the effective visocity curves to the left of the demarcation curve,

increasing the frequency f, which decreases (, causes the middle regions of the flow

velocity profiles to approach the outer regions. It is possible that these regions overlap

for larger frequencies.

The trends of multiple values in the flow velocity profiles as frequency is increased

are the same as the trends of multiple values in the spin velocity profiles. Sometimes

the scaling of the figures makes the multiple-values over a very small range in i

difficult to view. The corresponding profile for the flow or spin velocity can be looked

at for the same values of C and ieff to determine whether there is multi-valued

behavior.
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5.3 Future Work

5.3.1 Rotating Uniform Magnetic Field

The work done in this thesis for ~' = 0 considers only two of four possible cases. The

other two cases that should be considered are magnetic fields at an angle to the duct

axis with !lz and Bi in phase and rotating uniform magnetic fields produced by both

a transverse and a tangential magnetic field component that are not in phase:

b., = 1, Htz = 1 Field at constant angle (5.1)

b. = 1, fz = i Rotating Field (5.2)

Some preliminary work has been done in parallel with the work presented in this

thesis. With the same assumptions in this thesis, that i = = and Xo = 1, we repeat

Eq. (3.2) here:

2( ((- <eff)a = - (5.3)
2( -ieff

Specifically for a rotating uniform magnetic field, only the magnitudes are needed

when plotting (5(). Thus, using Eq. (5.1) and (5.2) in Eq. (2.41) yields

Xo [(2 -1) + [2 (1 ±xo)2]]
2 (1 + Xo + 22) Q2 (5.4)

By setting Eqs. (5.3) and (5.4) equal to each other, !2 can be solved for in terms of

Sand .eff. This will allow plots of Q(() to be made for different values of effective

viscosity. The result is a 4th order equation in f.

4+ i 2(1 + xo)+ X - ] + [(1 + Xo)2 +(1+X)2 X o~ ] =0 (5.5)

where a, defined in Eq. (5.3), depends on C and eff.

To plot Q as a function of C for different values of ieff, the quadratic formula was
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used to find f2, and then the square root was taken

2 = -b b2- 4ac (56)
2a

where

a= 1 (5.7)

b = 2(1 +xo) + X0 X (5.8)

c = (1 + xo) + (1 + xo)2 X+o Xo. (5.9)
2a 2a

Once C2 was calculated, only those values that were both positive and real were

plotted.

So the case studies would be similar, the values of eff were chosen to be

jeff = {-.1; -. 05; -. 025; -. 01; 0; .01; .025; .05; .1}. (5.10)

These values allow the plotted curves to be well spaced and show the trend of change

as leff goes from negative values, through zero, and becomes positive. The resulting

plot can be seen in Figure 5-1. We see that this figure is similar to Figures 3-1 and

4-1. This plot was made using a Matlab script file, which can be found in Appendix

C.

To continue the work, six values of frequency would be chosen, including the

frequency C = 2.6955 which is where the positive and negative roots meet. By

choosing values of C, the corresponding values of ( can be calculated. Both values

will be necessary for plotting the flow and spin velocity profiles. The Matlab script

file in Appendix D can be used for this calculation. The script file was made by

solving for Eq. (5.5) for ý instead of C.

22 [(1 + Xo0 + •2)2 + x22f]

- [2ei[(1 + Xo + 2)2+ ] x•• 2 _ 1) + 2 2  (•• 1+ xo)2]]

+ [ýeiff X [(2 1) [2 -(1 Xo)2]] 0 (5.11)

112



IBxlI = 1, IHzl = 1 for given Tl,ff

Figure 5-1: Frequency Q as a function of viscosity ( for nine values of ýeff. The bold
lines represent the positive roots of the quadratic, and the plain lines represent the
negative roots.

To solve for ý, the quadratic equation is used.

Again, a parametric plot would be used to make the ,y () and z. (,) profiles. The

spin velocity c&, would be the variable ranged in this parametric plot, so the values

must be known at the boundaries. To do this, the Maple command from Eq. (3.16)

Solve[.[Co, Q, Xo, (, W == 0, CO] (5.12)

which means "Solve for Co when i = 0."

There is a difference here compared to the two cases studied in this thesis. The

non-dimensional position function, i, was defined by Eq. (2.34) and repeated here:

1 - +2 d(Ty )dC + C (5.13)

In the transverse-only and tangential-only magnetic field cases, the value of C could

be solved for analytically by recognizing that the torque density was zero when ,Y
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was zero and that C&, is an odd function around i = 0.5 which meant ,Jy(i = 0.5) = 0.

This is no longer the case. For a rotating uniform magnetic field, this constant of

integration C can no longer be solved for in closed form. It must be calculated for

each changed parameter 2, ( and eff. Once this is done, the process for plotting

the spin and flow velocity profiles used in this thesis can be used.

5.3.2 Non-Zero Spin-Viscosity (i' 0) Solutions

These profiles do not represent the true physical motion of ferrofluids in a planar duct

since it has been assumed that the spin viscosity is zero (M' = 0). This was done to

reduce a fourth order system to a second order system. Assuming the spin viscosity

is zero allows the spin velocities to be non-zero at the duct walls (. = 0, 1 = 1).

It is anticipated that the multi-valued nature of the flow and spin velocity profiles

will be smoothed out by removing the i' = 0 assumption so that single-valued solu-

tions exist. That is, at a given position there should be only one flow velocity and one

spin velocity solution. When i' # 0, Eqs. (2.23) - (2.24) remain a 4th order system,

and both the flow and spin velocities must be zero at the i = 0 and i = 1 boundaries.

These equations must be numerically integrated by the Runge-Kutta method. This

method, however, cannot directly solve two-point boundary-valued problems with

boundary conditions at both boundaries. It requires specifications of the functions

and their derivatives at one boundary. Therefore, one must specify not only that

i( = 0) = 0; 3,(i = 0) = 0 (5.14)

but guess the values of the derivatives at i = 0:

D1 = -v- 0 D2 = I=o (5.15)
di i==o' di

Then, Newton's method must be used to find the best values of D 1 and D 2 such that

numerically integrating the flow and spin velocity equations causes Oz ( = 1) = 0 and

oy(. = 1) = 0.
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The profiles of y (2) and z, (.) from this method would accurately describe the

motion of the ferrofluids.
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Appendix A

Maple Files for Parametric Plots

A.1 Transverse Magnetic Field Only

> denomin:=(wy, Om, chi) -> ((wy^2 - Om^2 + 1 + chi)^2 + (2 + chi)^2*0m^2);

2 2 2 2 2
denomin := (wy,Om,chi) -> (wy - Om + 1 + chi) + (2 + chi) Om

> tl:=(wy,Om,chi,Bx,Hz) -> -wy*(abs(Bx)^2*(wy^2 - Om^2 + 1) + abs(Hz)^2*(wy^2
- Om^2 + (1 + chi)^2));

tl := (wy,Om,chi,Bx,Hz) ->

2 2 2 2 2 2 2

- wy (abs(Bx) (wy - Om + 1) + abs(Hz) (wy - Om + (1 + chi) ))

> t2:=(wy,Om,chi,Bx,Hz) -> (chi*(wy^2 - Om^2) + I*Om*(wy^2 - Om^2 - 1 - chi))*
Hz*conjugate(Bx);

t2 := (wy,Om,chi,Bx,Hz) ->

2 2 2 2
(chi (wy - Om ) + I Om (wy - Om - 1 - chi)) Hz conjugate(Bx)

> t3:=(wy,Om,chi,Bx,Hz) -> (chi*(wy'2 - Om^2) - I*Om*(wy^2 - Om^2 - 1 - chi))*
conjugate(Hz) *Bx;

t3 := (wy,Om,chi,Bx,Hz) ->

2 2 2 2
(chi (wy - Om ) - I Om (wy - Om - 1 - chi)) conjugate(Hz) Bx

> t:=(wy,Om,chi,Bx,Hz)-> .5*chi*(tl(wy,Om,chi,Bx,Hz) + t2(wy,Om,chi,Bx,Hz) +
t3(wy,0m,chi,Bx,Hz))/denomin(wy,Om,chi);
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t := (wy,Om,chi,Bx,Hz) -> .5 chi

(tl(wy, Om, chi, Bx, Hz) + t2(wy, Om, chi, Bx, Hz) + t3(wy, Om, chi, Bx, Hz))

/denomin(wy, Om, chi)

> dt:=(wy,Oim,chi,Bx,Hz)->diff(t(wy,mchiBx,Hz) ,wy);

dt := (wy,Om,chi,Bx,Hz) -> diff(t(wy, Om, chi, Bx, Hz), wy)

> alphacrit:=(zeta,eta)->2*zeta*eta/(zeta+eta);

zeta eta
alphacrit := (zeta,eta) -> 2 ----------

zeta + eta

> x:=(wy,Om,chi,zeta,dpdz)->-(integrate(1-dt(wy,Om,chi,1,0)/alphacrit(zeta,
zeta),wy) - .5*dpdz/zeta)*(zeta/dpdz);

x := (wy,Om,chi,zeta,dpdz) ->

/ dt(wy, Om, chi, 1, 0) dpdz\
lintegrate(1 - ---------------------, wy) - .5 ---- I zeta
\ alphacrit(zeta, zeta) zeta/

dpdz

> dwydx:=(wy,0m,chi,Bx,Hz,zeta,eta,dpdz)-> (-dpdz/eta)/(i - dt(wy,Om,chi,Bx,Hz)
/alphacrit(zeta,eta));

dpdz
dwydx := (wy,Om,chi,Bx,Hz,zeta,eta,dpdz) -> - ---------------------------------

/ dt(wy, Om, chi, Bx, Hz)\
eta I1 - --------------------- I

\ alphacrit(zeta, eta) /

> dwydx(wy,Om,chi,Bx,Hz,zeta,eta,dpdz);

2 2 2
- dpdz/(eta (1 - 1/2 (.5 chi (- abs(Bx) (wy - Om + 1)

2 2 2 2 2 2
- abs(Hz) (wy - Om + (1 + chi) ) - wy (2 abs(Bx) wy + 2 abs(Hz) wy)

+ (2 chi wy + 2 I Om wy) Hz conjugate(Bx)

+ (2 chi wy - 2 I Om wy) conjugate(Hz) Bx)

/ 2 2 2 2 2
/ ((wy - Om + 1 + chi) + (2 + chi) Om ) - 2.0 chi (

2 2 2 2 2 2 2
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- wy (abs(Bx) (wy - Om + 1) + abs(Hz) (wy - Om + (1 + chi) ))

2 2 2 2
+ (chi (wy - Om ) + I Om (wy - Om - 1 - chi)) Hz conjugate(Bx)

2 2 2 2
+ (chi (wy - Om ) - I Om (wy - Om - 1 - chi)) conjugate(Hz) Bx)

2 2 2 2 2 2 22
(wy - Om + 1 + chi) wy / ((wy - Om + 1 + chi) + (2 + chi) Om ) )

(zeta + eta)/(zeta eta)))

> dvzdwy:=(wy,0m,zeta)-> (-2*wy + t(wy,m,1,1,0)/zeta)/zeta)/d x(wyy,m,1,1,O,zeta,
zeta, 1);

t(wy, Om, 1, 1, 0)
- 2 wy + -----------------

zeta
dvzdwy := (wy,Om,zeta) ->-----------------

dwydx(wy, Om, 1, 1, 0, zeta, zeta, 1)

> dvzdwy(wy,Om,zeta);

/ 2 2
I wy (wy - Om + 1)l

- I- 2 wy - .5 ------------------ I zeta
\ %1 zeta /

/ 2 2 2 2 2 2 2 2
I wy - Om + 1 wy wy (wy - Om + 1) (wy - Om + 2)1
I - .5 ------------- - 1.0 --- + 2.0 -----------------------------------
I %1 %1 2
I 11 l
1 - ---------------------------------------- ----------------------------

zeta

2 2 2 2
%1 := (wy - Om + 2) + 9 Om

> f:=(wy,0m,zeta,dpdz) -> -((integrate((t(wy,Om,1,1,0)/zeta - 2*wy) * (1 -
dt(wy,0m,1,1,0)/alphacrit(zeta,zeta)),wy))/(dpdz/zeta));

f := (wy,Om,zeta,dpdz) ->

/ t(wy, Om, 1, 1, 0)\ / dt(wy, Om, 1, 1, 0) \
integrate(l- 2 wy + -------------------- I I --------------------- I, wy) zeta

\ zeta / \ alphacrit(zeta, zeta)/

dpdz

> f(wy,Om,zeta,dpdz);
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1. .2500000000 wy Om
- (---------- + ----------- - .1250000000 -------- - 1.250000000 ---------

2 2 2 2 2 2
zeta X1 zeta %1 zeta 1i zeta %1

2 4 2
2 wy Om Om

- 1. wy + 3. ------- + ------- + 5.-------
zeta %1 zeta %1 zeta %1

2 2
2. wy - 2. Om + 4.

arctan(.1666666667 --------------------)
2 1/2

(Om ) 4.
-. 08333333333 ---------------------------------------- -------

2 1/2 zeta %1
zeta (Om )

2 2 2 2
Om wy In(%1) Om wy

+ 1.375000000 --------- + .1250000000 ------ - 1.-------
2 2 zeta zeta %1

zeta %i

4 2
Om WY

- .2500000000 --------- - .6250000000 ---------) zeta/dpdz
2 2 2 2

zeta %1 zeta %1

4 2 2 2 4 2
%1 := wy - 2. wy Om + 4. wy + Om + 5. Om + 4.

> #OMEGA == 2.0412;

> # Etaeff = 0 --> zeta = 0, .0375;
>vzo:=(wy)->f(wy,2.0412,.0375,1)-eval(subs(wO=12.2371,f(wO,2.0412,.0375,1)));

> # Etaeff = .01 --> zeta = .0434 and .0043;
>vzola:=(wy)->f(wy,2.0412,.0043,1)-eval(subs(wO=l15.27,f(wO,2.0412,.0043,1)));

vzOla :=

wy -> f(wy, 2.0412, .0043, 1)-eval(subs(wO = 115.27, f(wO, 2.0412, .0043, 1)))
>vz1lb:=(wy)->f(wy,2.0412,.0434,1)-eval(subs(wO=10.4053,f(wO,2.0412,.0434,1)));

vzOlb := wy ->

f(wy, 2.0412, .0434, 1)-eval(subs(wO = 10.4053, f(wO, 2.0412, .0434, 1)))
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> #Etaeff = .025 --> zeta = .0545 and .0086;
>vz025a:=(wy)->f(wy,2.0412,.0545,1)-eval(subs(wO=8.02088,f(wO,2.0412,.0545,1)));

vz025a := wy ->

f(wy, 2.0412, .0545, 1)-eval(subs(wO = 8.02088, f(wO, 2.0412, .0545, 1)))
>vz025b:=(wy)->f(wy,2.0412,.0086,1)-eval(subs(wO=57.1213,f(wO,2.0412,.0086,1)));

vz025b := wy ->

f(wy, 2.0412, .0086, 1)-eval(subs(wO = 57.1213, f(wO, 2.0412, .0086, 1)))

> #Eta-eff = .05 --> zeta = .0764 and .0123;
>vz05a:=(wy)->f(wy,2.0412,.0764,1)-eval(subs(wO=5.33242,f(wO,2.0412,.0764,1)));

vz05a := wy ->

f(wy, 2.0412, .0764, 1)-eval(subs(wO = 5.33242, f(wO, 2.0412, .0764, 1)))
>vz05b:=(wy)->f(wy,2.0412,.0123,1)-eval(subs(wO=39.6237,f(wO,2.0412,.0123,1)));

vz05b := wy ->

f(wy, 2.0412, .0123, 1)-eval(subs(wO = 39.6237, f(wO, 2.0412, .0123, 1)))

> #Eta.eff = .1 --> zeta = .1249 and .0150;
>vzla:=(wy)->f(wy,2.0412,.1249,1)-eval(subs(wO=3.13429,f(wO,2.0412,.1249,1)));

vzla := wy ->

f(wy, 2.0412, .1249, 1)-eval(subs(wO = 3.13429, f(wO, 2.0412, .1249, 1)))
>vzlb:=(wy)->f(wy,2.0412,.0150,1)-eval(subs(wO=32.3002,f(wO,2.0412,.0150,1)));

vzlb := wy ->

f(wy, 2.0412, .0150, 1)-eval(subs(wO = 32.3002, f(wO, 2.0412, .0150, 1)))
--------------------------------------------------------------------

> #Etaeff = -. 01 -- > zeta = .0330;
>vzOlm:=(wy)->f(wy,2.0412,.0330,1)-eval(subs(w0=14.0693,f(wO,2.0412,.0330,1)));

vzOlm := wy ->

f(wy, 2.0412, .0330, 1)-eval(subs(wO = 14.0693, f(wO, 2.0412, .0330, 1)))
---------------------------------------- --------------

> #Etaeff = -.025 --> zeta = .0284;
>vz025m:=(wy)->f(wy,2.0412,.0284,1)-eval(subs(wO=16.537,f(wO,2.0412,.0284,1)));

vz025m :=

wy -> f(wy, 2.0412, .0284, 1)-eval(subs(wO = 16.537, f(wO, 2.0412, .0284, 1)))
---------------------------------------- ----- ----------

> #Etaeff = -.05 --> zeta = .0246;
>vz05m:=(wy)->f(wy,2.0412,.0246,1)-eval(subs(wO=19.2673,f(wO,2.0412,.0246,1)));
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vzO5m := wy ->

f(wy, 2.0412, .0246, 1)-eval(subs(wO = 19.2673, f(wO, 2.0412, .0246, 1)))

> #Eta-eff = -.1 --> zeta = .0217;
>vzlm:=(wy)->f(wy,2.0412,.0217,1)-eval(subs(w=21.9914,f (wO,2.0412,.0217,1)));

vzlm := wy ->

f(wy, 2.0412, .0217, 1)-eval(subs(wO = 21.9914, f(wO, 2.0412, .0217, 1)))

> plot({[x(wy,2.0412,1,.1249,1),wy,wy=-3.13429..3.13429],[x(wy,2.0412,1,.0764,
1),wy,wy=-5.33242..5.33242],[x(wy,2.0412,1,.0545,1),wy,wy=-8.02088..8.02088],
[x(wy,2.0412,1,.0434,1),wy,wy=-10.4053..10.4053],[x(wy,2.0412,1,.0375,1),wy,
wy=-12.2371.. 12.2371]},0..1,-13..13,numpoints=600, resolution=600, color=black,
thickness=l);

> plot({[x(wy,2.0412,1,.0043,1),wy,wy=-115.27..115.27],[x(wy,2.0412,1,.0086,1),
wy,wy=-57.1213..57.1213],[x(wy,2.0412,1,.0123,1),wy,wy=-39.6237..39.6237],
[x(wy,2.0412,1,.0150,1),wy,wy=-32.3002..32.3002],[x(wy,2.0412,1,.0330,1),wy,
wy=-14.0693..14.0693],[x(wy,2.0412,1,.0284,1),wy,wy=-16.537..16.537],[x(wy,
2.0412,1,.0246,1),wy,wy=-19.2673..19.2673),[x(wy,2.0412,1,.0217,1),wy,
wy=-21.9914..21.9914],[x(wy,2.0412,1,.0375,1),wy,wy=-12.2371..12.2371]},0..1,
-30..30,numpoints=600,resolution=600,color=black,thickness=1);

> plot({[x(wy,2.0412,1,.1249,1),vzla(wy),wy=-3.13429..3.13429],[x(wy,2.0412,1,
.0764,1),vz05a(wy),wy=-5.33242..5.33242], x(wy,2.0412,1,.0545,1),vzO25a(wy),
wy=-8.02088..8.02088], x(wy,2.0412,1,.0434,1),vzOlb(wy),wy=-10.4053..10.4053],
Ex(wy,2.0412,1,.0375,1),vzO(wy),wy=-12.2371..12.2371)},0..1,numpoints=600,
resolution=600, color=black, thickness=l);
> plot({[x(wy,2.0412,1,.0043,1),vzOla(wy),wy=-115.27..115.27],[x(wy,2.0412,1,
.0086,1),vzO25b(wy),wy=-57.1213..57.1213], x(wy,2.0412,1,.0123,1),vzO5b(wy),
wy=-39.6237..39.6237],[x(wy,2.0412,1,.0150,1),vzlb(wy),wy=-32.3002..32.3002],
[x(wy,2.0412,1,.0330,1),vz0lm(wy),wy=-14.0693..14.0693],[x(wy,2.0412,1,.0284,
1),vz025m(wy),wy=-16.537..16.537],Ex(wy,2.0412,1,.0246,1),vzO5m(wy),
wy=-19.2673..19.2673],[x(wy,2.0412,1,.0217,1),vzlm(wy),wy=-21.9914..21.9914],
[x(wy,2.0412,1,.0375,1),vzO(wy),wy=-12.2371..12.2371},0.. 1,-60..-12.5,
numpoints=600, resolution=600, color=black, thickness=l);

> #OMEGA == 1.05

> #Eta-eff = 0 --> zeta = .0048;
>vzO:=(wy)->f(wy,1.05,.0048,1)-eval(subs(wO=103.157,f(wO,1.05,.0048,1)));

vzO :=

wy -> f(wy, 1.05, .0048, 1)-eval(subs(wO = 103.157, f(wO, 1.05, .0048, 1)))

> #Etaeff = .01 --> zeta = .0140; .0017;
>vzOla:=(wy) -> f(wy,1.05,.0140,1)-eval(subs(w0=34.6863,f(wO,1.05,.0140,1)));

vzOla :=
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wy -> f(wy, 1.05, .0140, 1)-eval(subs(wO = 34.6863, f(wO, 1.05, .0140, 1)))
>vzOlb:=(wy) -> f(wy,1.05,.0017,1)-eval(subs(w0=293.114,f(wO,1.05,.0017,1)));

vzOlb :=

wy -> f(wy, 1.05, .0017, 1)-eval(subs(wO = 293.114, f(wO, 1.05, .0017, 1)))

> #Etaeff = .025 --> zeta = .0301; .0020;
>vz025a:=(wy) -> f(wy,1.05,.0301,1)-eval(subs(wO=15.5517,f(wO,1.05,.0301,1)));

vz025a :=

wy -> f(wy, 1.05, .0301, 1)-eval(subs(wO = 15.5517, f(wO, 1.05, .0301, 1)))
>vz025b:=(wy) -> f(wy,1.05,.0020,1)-eval(subs(w0=248.996,f(wO,1.05,.0020,1)));

vz025b :=

wy -> f(wy, 1.05, .0020, 1)-eval(subs(wO = 248.996, f(wO, 1.05, .0020, 1)))

> #Etaeff = .05 -- > zeta = .0574, .0021;
>vz05a:=(wy) -> f(wy,1.05,.0574,1)-eval(subs(wO=7.60533,f(wO,1.05,.0574,1)));

vz05a :=

wy -> f(wy, 1.05, .0574, 1)-eval(subs(wO = 7.60533, f(wO, 1.05, .0574, 1)))
>vz05b:=(wy) -> f(wy,1.05,.0021,1)-eval(subs(w0=237.091,f(wO,1.05,.0021,1)));

vz05b :=

wy -> f(wy, 1.05, .0021, 1)-eval(subs(wO = 237.091, f(wO, 1.05, .0021, 1)))

> #Etaeff = .1 --> zeta = .1120; .0021;
>vzla:=(wy) -> f(wy,1.05,.1120,1)-eval(subs(wO=3.41289,f(wO,1.05,.1120,1)));

vzla :=

wy -> f(wy, 1.05, .1120, 1)-eval(subs(wO = 3.41289, f(wO, 1.05, .1120, 1)))
>vzlb:=(wy) -> f(wy,1.05,.0021,1)-eval(subs(w0=237.091,f(wO,1.05,.0021,1)));

vzlb :=

wy -> f(wy, 1.05, .0021, 1)-eval(subs(wO = 237.091, f(wO, 1.05, .0021, 1)))

> #Etaeff = -.01 --> zeta = .0027;
>vzmO1:=(wy) -> f(wy,1.05,.0027,1)-eval(subs(w0=184.18,f(wO,1.05,.0027,1)));

vzml :=

wy -> f(wy, 1.05, .0027, 1)-eval(subs(wO = 184.18, f(wO, 1.05, .0027, 1)))
> #Eta eff = -.025 --> zeta = .0024;
> #Eta-.eff = -. 025 -- > zeta = .0024;
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>vzm025:=(wy) -> f(wy,1.05,.0024,1)-eval(subs(w0=207.329,f(wO,1.05,.0024,1)));

vzm025 :=

wy -> f(wy, 1.05, .0024, 1)-eval(subs(wO = 207.329, f(wO, 1.05, .0024, 1)))

> #Etaeff = -.05 --> zeta = .0023;
>vzm05:=(wy) -> f(wy,1.05,.0023,1)-eval(subs(wO=216.387,f(wO,1.05,.0023,1)));

vzm05 :=

wy -> f(wy, 1.05, .0023, 1)-eval(subs(wO = 216.387, f(wO, 1.05, .0023, 1)))

> #Etaeff = -.1 --> zeta = .0022;
>vzml:=(wy) -> f(wy,1.05,.0022,1)-eval(subs(w0=226.268,f(w0,1.05,.0022,1)));

vzml :=

wy -> f(wy, 1.05, .0022, 1)-eval(subs(wO = 226.268, f(wO, 1.05, .0022, 1)))

> plot({[x(wy,1.05,1,.0048,1),wy,wy=-103.157..103.157],[x(wy,1.05,1,.0140,1),
wy,wy=-34.6863..34.6863],Ex(wy,1.05,1,.0301,1),wy,wy=-15.5517..15.5517],[x(wy,
1.05,1,.0574,1),wy,wy=-7.60533..7.60533],[x(wy,1.05,1,.1120,1),wy,
wy=-3.41289..3.41289]},0..1,-13..13,numpoints=600, resolution=600, color=
black, thickness=l);
> plot({[x(wy,1.05,1,.0048,1),wy,wy=-103.157..103.157],[x(wy,1.05,1,.0017,1),
wy,wy=-293.114..293.114],[x(wy,1.05,1,.0020,1),wy,wy=-248.996..248.996],[x(wy,
1.05,1,.0021,1),wy,wy=-237.091..237.091],[x(wy,1.05,1,.0027,1),wy,wy=-184.18..
184.18],[x(wy,1.05,1,.0024,1),wy,wy=-207.329..207.329],[x(wy,1.05,1,.0023,1),
wy,wy=-216.387..216.387],Cx(wy,1.05,1,.0022,1),wy,wy=-226.268..226.268]},.45..
0.55,-6..6,numpoints=600,resolution=600,color=black,thickness=1);

> plot({[x(wy,1.05,1,.1120,1),vzla( wy=),w-3.41289..3.41289],[x(wy,1.05,1,
.0574,1),vzO5a(wy),wy=-7.60533..7.60533],[x(wy,1.05,1,.0301,1),vzO25a(wy),
wy=-15.5517..15.5517],[x(wy,1.05,1,.0140,1),vzOla(wy),wy=-34.6863..34.6863],
[x(wy,1.05,1,.0048,1),vzO(wy),wy=-103.157..103.157]},0..1,numpoints=600,
resolution=600, color=black, thickness=l);
> plot([x(wy,1.05,1,.0140,1),vz0la(wy),wy=-34.6863..34.6863],.66..0.67,
-15.5..-15.1,numpoints=1000,resolution=1000,color=black,thickness=l);
> plot({[x(wy,1.05,1,.0017,1),vzOlb(wy),wy=-293.114..293.114],[x(wy,1.05,1,.
0020,1),vz025b(wy),wy=-248.996..248.9961,[x(wy,1.05,1,.0021,1),vz05b(wy),
wy=-237.091..237.091],[x(wy,1.05,1,.0027,1),vzm0l(wy),wy=-184.18..184.18],
Ex(wy,1.05,1,.0024,1),vzmO25(wy),wy=-207.329..207.329],[x(wy,1.05,1,.0023,1),
vzm05(wy),wy=-216.387..216.387],(x(wy,1.05,1,.0022,1),vzml(wy),wy=-226.268..
226.268J,Cx(wy,1.05,1,.0048,1),vzO(wy),wy=-103.157..103.157]},0..1,numpoints=
600,resolution=600,color=black,thickness=1);
> plot(Cx(wy,1.05,1,.0022,1),vzml(wy),wy=-226.268..226.268],.3..0.7, -113..
-105,numpoints=1000,resolution=1000,color=black,thickness=1);

> #OMEGA == 1.3;

> #Etaeff = 0 --> zeta = .0225;
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>vzO:=(wy)->f(wy,1.3,.0225,1)-eval(subs(wO=21.176,f(wO,1.3,.0225,1)));

vzO :=

wy -> f(wy, 1.3, .0225, 1)-eval(subs(wO = 21.176, f(wO, 1.3, .0225, 1)))

> #Etaeff = .01 --> zeta = .0294, .0038;
>vzOla:=(wy) -> f(wy,1.3,.0294,1)-eval(subs(wO=15.946,f(wO,1.3,.0294,1)));

vzOla :=

wy -> f(wy, 1.3, .0294, 1)-eval(subs(wO = 15.946, f(wO, 1.3, .0294, 1)))
>vzOlb:=(wy) -> f(wy,1.3,.0038,1)-eval(subs(w0=130.571,f (wO,1.3,.0038,1)));

vzOlb :=

wy -> f(wy, 1.3, .0038, 1)-eval(subs(wO = 130.571, f(wO, 1.3, .0038, 1)))

> #Etaeff = .025 --> zeta = .0426, .0066;
>vz025a:=(wy) -> f(wy,1.3,.0426,1)-eval(subs(wO=10.6488,f(wO,1.3,.0426,1)));

vz025a :=

wy -> f(wy, 1.3, .0426, 1)-eval(subs(wO = 10.6488, f(wO, 1.3, .0426, 1)))
>vz025b:=(wy) -> f(wy,1.3,.0066,1)-eval(subs(w0=74.7443,f(wO,1.3,.0066,1)));

vz025b :=

wy -> f(wy, 1.3, .0066, l)-eval(subs(wO = 74.7443, f(wO, 1.3, .0066, 1)))

> #Etaeff = .05 --> zeta = .0675, .0084;
>vz05a:=(wy) -> f(wy,1.3,.0675,1)-eval(subs(wO=6.27691,f(wO,1.3,.0675,1)));

vz05a :=

wy -> f(wy, 1.3, .0675, 1)-eval(subs(wO = 6.27691, f(wO, 1.3, .0675, 1)))
>vzO5b:=(wy) -> f(wy,1.3,.0084,1)-eval(subs(w0=58.5068,f(wO,1.3,.0084,1)));

vz05b :=

wy -> f(wy, 1.3, .0084, 1)-eval(subs(wO = 58.5068, f(wO, 1.3, .0084, 1)))

> #Etaeff = .1 --> zeta = .1197, .0094;
>vzla:=(wy) -> f(wy,1.3,.1197,1)-eval(subs(wO=3.16523,f(wO,1.3,.1197,1)));

vzla :=

wy -> f(wy, 1.3, .1197, 1)-eval(subs(wO = 3.16523, f(wO, 1.3, .1197, 1)))
>vzlb:=(wy) -> f(wy,1.3,.0094,1)-eval(subs(w0=52.1724,f(wO,1.3,.0094,1)));

vzlb :=

wy -> f(wy, 1.3, .0094, 1)-eval(subs(wO = 52.1724, f(wO, 1.3, .0094, 1)))
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> #Etaeff = -.01 -- > zeta = .0181;
>vzm01:=(wy) -> f(wy,1.3,.0181,1)-eval(subs(w0=26.5873,f(wO,1.3,.0181,1)));

vzm01 :=

wy -> f(wy, 1.3, .0181, 1)-eval(subs(wO = 26.5873, f(wO, 1.3, .0181, 1)))

> #Etaeff = -.025 --> zeta = .0149;
>vzm025:=(wy) -> f(wy,1.3,.0149,1)-eval(subs(w0=32.5267,f(wO,1.3,.0149,1)));

vzm025 :=

wy -> f(wy, 1.3, .0149, 1)-eval(subs(wO = 32.5267, f(wO, 1.3, .0149, 1)))

> #Etaeff = -.05 -- > zeta = .0129;
>vzm05:=(wy) -> f(wy,1.3,.0129,1)-eval(subs(w0=37.7334,f(wO,1.3,.0129,1)));

vzm05 :=

wy -> f(wy, 1.3, .0129, 1)-eval(subs(wO = 37.7334, f(wO, 1.3, .0129, 1)))

> #Etaeff = -.1 --> zeta = .0118;
>vzml:=(wy) -> f(wy,1.3,.0118,1)-eval(subs(w0=41.3489,f(wO,1.3,.0118,1)));

vzml :=

wy -> f(wy, 1.3, .0118, 1)-eval(subs(wO = 41.3489, f(wO, 1.3, .0118, 1)))

> plot({[x(wy,1.3,1,.0225,1),wy,wy=-21.176..21.176],Ex(wy,1.3,1,.0294,1),wy,
wy=-15.946..15.946,1[x(wy,1.3,1,.0426,1),wy,wy=-10.6488..10.6488],[x(wy,1.3,1,
.0675,1),wy,wy=-6.27691..6.27691],[x(wy,1.3,1,.1197,1),wy,wy=-3.16523..
3.165231 },0..1,-13..13,numpoints=600, resolution=600, color=black, thickness=
1);
> plot({[x(wy,1.3,1,.0225,1),wy,wy=-21.176..21.176],[x(wy,1.3,1,.0038,1),wy,
wy=-130.571..130.571],[x(wy,1.3,1,.0066,1),wy,wy=-74.7443..74.7443],[x(wy,1.3,
1,.0084,1),wy,wy=-58.5068..58.5068],Ex(wy,1.3,1,.0094,1),wy,wy=-52.1724..
52.1724),[x(wy,1.3,1,.0181,1),wy,wy=-26.5873..26.5873],[x(wy,1.3,1,.0149,1),
wy,wy=-32.5267..32.5267],[x(wy,1.3,1,.0129,1),wy,wy=-37.7334..37.7334],Ex(wy,
1.3,1,.0118,1),wy,wy=-41.3489..41.3489]},.3..0.7,-5..5,numpoints=600,
resolution=600,color=black,thickness=l);

> plot({[x(wy,1.3,1,.1197,1),vzla(wy),wy=-3.16523..3.16523J,[x(wy,1.3,1,.0 6 75 ,
1),vz05a(wy),wy=-6.27691..6.27691],[x(wy,1.3,1,.0426,1),vzO25a(wy),
wy=-10.6488..10.6488),[x(wy,1.3,1,.0294,1),vz0la(wy),wy=-15.946..15.946],
[x(wy,1.3,1,.0225,1),vzO(wy),wy=-21.176..21.176]},0..1,numpoints=600,
resolution=600, color=black, thickness=l);
> plot({[x(wy,1.3,1,.0038,1),vzOlb(wy),wy=-130.571..130.571],[x(wy,1.3,1,
.0066,1),vzO25b(wy),wy=-74.7443..74.7443],[x(wy,1.3,1,.0084,1),vz05b(wy),
wy=-58.5068..58.5068], [x(wy,1.3,1,.0094,1),vzlb(wy),wy=-52.1724..52.1724],
Cx(wy,1.3,1,.0181,1),vzm01(wy),wy=-26.5873..26.5873],[x(wy,1.3,1,.01 49 ,1),
vzm025(wy),wy=-32.5267..32.5267],[x(wy,1.3,1,.0129,1),vzm05(wy),wy=-37.7334..
37.7334],[x(wy,1.3,1,.0118,1),vzml(wy),wy=-41.3489..41.34891,Ex(wy,1.3,1,
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.0225,1),vzO(wy),wy=-21.176..21.176]},0..1,numpoints=600,resolution=600,color=
black,thickness=l);
> plot([x(wy,1.3,1,.0181,1),vzm0l(wy),wy=-26.5873..26.5873],.31..0.315,-11.4..
-11.3,numpoints=1000,resolution=1000,color=black,thickness=1);

> #OMEGA == 5;

> #Etaeff = 0 --> zeta = .0159;
>vz0:=(wy)->f(wy,5,.0159,1)-eval(subs(wO=30.3867,f(wO,5,.0159,1)));

vzO := wy -> f(wy, 5, .0159, 1)-eval(subs(wO = 30.3867, f(wO, 5, .0159, 1)))

> #Etaeff = .01 --> zeta = .0224, .0036;

>vzOla:=(wy) -> f(wy,5,.0224,1)-eval(subs(w0=21.2167,f(wO,5,.0224,1)));

vzOla := wy -> f(wy, 5, .0224, 1)-eval(subs(wO = 21.2167, f(wO, 5, .0224, 1)))
>vzOlb:=(wy) -> f(wy,5,.0036,1)-eval(subs(w0=137.88,f(wO,5,.0036,1)));

vzOlb := wy -> f(wy, 5, .0036, 1)-eval(subs(wO = 137.88, f(wO, 5, .0036, 1)))

> #Eta-eff = .025 --> zeta = .0353, .0056;
>vz025a:=(wy) -> f(wy,5,.0353,1)-eval(subs(wO=12.9145,f(wO,5,.0353,1)));

vz025a :=

wy -> f(wy, 5, .0353, 1)-eval(subs(wO = 12.9145, f(wO, 5, .0353, 1)))
>vz025b:=(wy) -> f(wy,5,.0056,1)-eval(subs(w0=88.2714,f(wO,5,.0056,1)));

vz025b :=

wy -> f(wy, 5, .0056, 1)-eval(subs(wO = 88.2714, f(wO, 5, .0056, 1)))

> #Etaeff = .05 --> zeta = .0593, .0067;
>vz05a:=(wy) -> f(wy,5,.0593,1)-eval(subs(w0=6.76095,f(wO,5,.0593,1)));

vz05a := wy -> f(wy, 5, .0593, 1)-eval(subs(wO = 6.76095, f(wO, 5, .0593, 1)))
>vz05b:=(wy) -> f(wy,5,.0067,1)-eval(subs(w0=73.6089,f(wO,5,.0067,1)));

vz05b := wy -> f(wy, 5, .0067, 1)-eval(subs(wO = 73.6089, f(wO, 5, .0067, 1)))

> #Etaeff = .1 --> zeta = .1087, .0073;
>vzla:=(wy) -> f(wy,5,.1087,1)-eval(subs(w0=4.74432,f(wO,5,.1087,1)));

vzla := wy -> f(wy, 5, .1087, 1)-eval(subs(wO = 4.74432, f(wO, 5, .1087, 1)))
>vzlb:=(wy) -> f(wy,5,.0073,1)-eval(subs(w0=67.4731,f(wO,5,.0073,1)));

vzlb := wy -> f(wy, 5, .0073, 1)-eval(subs(wO = 67.4731, f(wO, 5, .0073, 1)))

> #Eta-eff = -.01 --> zeta = .0123;
>vzm01:=(wy) -> f(wy,5,.0123,1)-eval(subs(w0=39.6096,f(wO,5,.0123,1)));
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vzm01 := wy -> f(wy, 5, .0123, 1)-eval(subs(w0 = 39.6096, f(wO, 5, .0123, 1)))

> #Eta-eff = -.025 --> zeta = .0103;
>vzm025:=(wy) -> f(wy,5,.0103,1)-eval(subs(w0=47.512,f(wO,5,.0103,1)));

vzm025 := wy -> f(wy, 5, .0103, 1)-eval(subs(wO = 47.512, f(wO, 5, .0103, 1)))

> #Eta-eff = -.05 --> zeta = .0092;
>vzm05:=(wy) -> f(wy,5,.0092,1)-eval(subs(w0=53.3206,f(wO,5,.0092,1)));

vzm05 := wy -> f(wy, 5, .0092, 1)-eval(subs(wO = 53.3206, f(wO, 5, .0092, 1)))

> #Eta-eff = -.1 --> zeta = .0086;
>vzml:=(wy) -> f(wy,5,.0086,1)-eval(subs(w0=57.1147,f(wO,5,.0086,1)));

vzml := wy -> f(wy, 5, .0086, 1)-eval(subs(w0 = 57.1147, f(wO, 5, .0086, 1)))

> plot({[x(wy,5,1,.0159,1),wy,wy=-30.3867..30.3867],Ex(wy,5,1,.0224,1),wy,
wy=-21.2167..21.2167],[x(wy,5,1,.0353,1),wy,wy=-12.9145..12.9145],[x(wy,5,1,
.0593,1),wy,wy=-6.76095..6.76095],Cx(wy,5,1,.1087,1),wy,wy=-4.74432..4.74432]},
0..1,-13..13,numpoints=600, resolution=600, color=black, thickness=l);
> plot({[x(wy,5,1,.0159,1),wy,wy=-30.3867..30.3867],[x(wy,5,1,.0036,1),wy,
wy=-137.88..137.88],[x(wy,5,1,.0056,1),wy,wy=-88.2714..88.2714J,[x(wy,5,1,
.0067,1),wy,wy=-73.6089..73.6089J,[x(wy,5,1,.0073,1),wy,wy=-67.4731..67. 473 1],
Ex(wy,5,1,.0123,1),wy,wy=-39.6096..39.6096],[x(wy,5,1,.0103,1),wy,wy=-47.51 2 ..
47.512],[x(wy,5,1,.0092,1),wy,wy=-53.3206..53.3206],[x(wy,5,1,.0086,1),wy,
wy=-57.1147..57.1147]},.3..0.7,-8..8,numpoints=600,resolution=600,color=black,
thickness=l);

> plot({[x(wy,5,1,.1087,1),vzla(wy),wy=-4.74432..4.74432],[x(wy,5,1,.05 93 ,1),
vz05a(wy),wy=-6.76095..6.76095],[x(wy,5,1,.0353,1),vzO25a(wy),wy=-12.9145..
12.9145],[x(wy,5,1,.0224,1),vz01a(wy),wy=-21.2167..21.2167],[x(wy,5,1,.015 9 ,1),
vz0(wy),wy=-30.3867..30.3867] },0..1,numpoints=600, resolution=600, color=black,
thickness=1);
> plot([x(wy,5,1,.0224,1),vz01a(wy),wy=-21.2167..21. 2 167],. 3 .. O.7 ,-11..-10,
numpoints=1000, resolution=1000, color=black,thickness=l);
> plot({[x(wy,5,1,.0036,1),vz01b(wy),wy=-137.88..137.88,E[x(wy,5,1,.0056,1),
vz025b(wy),wy=-88.2714..88.2714, [x(wy,5,1,.0067,1),vzO5b(wy),wy=-73.6089..
73.6089],[x(wy,5,1,.0073,1),vzlb(wy),wy=-67.4731..67.4731],[x(wy,5,1,.0123,I),
vzm01(wy),wy=-39.6096..39.6096],[x(wy,5,1,.0103,1),vzmO25(wy),wy=-47.512..
47.512],[x(wy,5,1,.0092,1),vzm05(wy),wy=-53.3206..53.3206],[x(wy,5,1,.0086,1),
vzml(wy),wy=-57.1147..57.1147],[x(wy,5,1,.0159,1),vz0(wy),wy=-30.3867..
30.3867 },.25..0.75,-70..-62,numpoints=600,resolution=600,color=black,
thickness=l);
> plot([x(wy,5,1,.0086,1),vzml(wy),wy=-57.1147..57.1147],.3..0.7,-28.5..-25,
numpoints=1000 ,resolution=1000, color=black ,thickness=l);

> #OMEGA == 3.25;

> #Eta-eff = 0 --> zeta = .0284;
>vz0:=(wy)->f(wy,3.25,.0284,1)-eval(subs(w0=16.5104,f(wO,3.25,.0284,1)));
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vzO :=

wy -> f(wy, 3.25, .0284, l)-eval(subs(wO = 16.5104, f(wO, 3.25, .0284, 1)))

> #Etaeff = .01 --> zeta = .0343, .0041;
>vzOla:=(wy) -> f(wy,3.25,.0343,1)-eval(subs(w0=13.4498,f(w0,3.25,.0343,1)));

vzOla :=

wy -> f(wy, 3.25, .0343, 1)-eval(subs(w0 = 13.4498, f(wO, 3.25, .0343, 1)))
>vzOlb:=(wy) -> f(wy,3.25,.0041,1)-eval(subs(wO=120.942,f(wO,3.25,.0041,1)));

vzOlb :=

wy -> f(wy, 3.25, .0041, 1)-eval(subs(wO = 120.942, f(wO, 3.25, .0041, 1)))

> #Etaeff = .025 --> zeta = .0458, .0078;
>vz025a:=(wy) -> f(wy,3.25,.0458,1)-eval(subs(wO=9.71053,f(wO,3.25,.0458,1)));

vz025a :=

wy -> f(wy, 3.25, .0458, 1)-eval(subs(wO = 9.71053, f(wO, 3.25, .0458, 1)))
>vz025b:=(wy) -> f(wy,3.25,.0078,1)-eval(subs(wO=63.0845,f(wO,3.25,.0078,1)));

vz025b :=

wy -> f(wy, 3.25, .0078, 1)-eval(subs(wO = 63.0845, f(wO, 3.25, .0078, 1)))

> #Eta eff = .05 --> zeta = .0683, .0104;
>vz05a:=(wy) -> f(wy,3.25,.0683,1)-eval(subs(wO=5.93777,f(wO,3.25,.0683,1)));

vz05a :=

wy -> f(wy, 3.25, .0683, 1)-eval(subs(wO = 5.93777, f(wO, 3.25, .0683, 1)))
>vz05b:=(wy) -> f(wy,3.25,.0104,1)-eval(subs(wO=47.0517,f(wO,3.25,.0104,1)));

vz05b :=

wy -> f(wy, 3.25, .0104, 1)-eval(subs(wO = 47.0517, f(wO, 3.25, .0104, 1)))

> #Etaeff = .1 --> zeta = .1168, .0122;
>vzla:=(wy) -> f(wy,3.25,.1168,1)-eval(subs(wO=3.72385,f(wO,3.25,.1168,1)));

vzla :=

wy -> f(wy, 3.25, .1168, 1)-eval(subs(wO = 3.72385, f(wO, 3.25, .1168, 1)))
>vzlb:=(wy) -> f(wy,3.25,.0122,1)-eval(subs(wO=39.953,f(wO,3.25,.0122,1)));

vzlb :=

wy -> f(wy, 3.25, .0122, 1)-eval(subs(wO = 39.953, f(wO, 3.25, .0122, 1)))
---------------------------------------------------------------------
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> #Etaeff = -.01 --> zeta = .0242;

>vzmOl:=(wy) -> f(wy,3.25,.0242,1)-eval(subs(w0=19.5858,f(wO,3.25,.0242,1)));

vzml :=

wy -> f(wy, 3.25, .0242, l)-eval(subs(wO = 19.5858, f(wO, 3.25, .0242, 1)))

> #Eta.eff = -.025 --> zeta = .0205;

>vzm025:=(wy) -> f(wy,3.25,.0205,1)-eval(subs(w0=23.3304,f(wO,3.25,.0205,1)));

vzm025 :=

wy -> f(wy, 3.25, .0205, 1)-eval(subs(wO = 23.3304, f(wO, 3.25, .0205, 1)))

> #Eta-eff = -.05 --> zeta = .0179;

>vzm05:=(wy) -> f(wy,3.25,.0179,1)-eval(subs(w0=26.8831,f(wO,3.25,.0179,1)));

vzm05 :=

wy -> f(wy, 3.25, .0179, l)-eval(subs(wO = 26.8831, f(wO, 3.25, .0179, 1)))

> #Eta-eff = -.1 -- > zeta = .0161;
>vzml:=(wy) -> f(wy,3.25,.0161,1)-eval(subs(wO=30.0125,f(wO,3.25,.0161,1)));

vzml :=

wy -> f(wy, 3.25, .0161, 1)-eval(subs(wO = 30.0125, f(wO, 3.25, .0161, 1)))

> plot({[x(wy,3.25,1,.0284,1),wy,wy=-16.5104..16.5104],[x(wy,3.25,1,.03 4 3 ,i),
wy,wy=-13.4498..13.4498],[x(wy,3.25,1,.0458,1),wy,wy=-9.71053..9.71053],[x(wy,
3.25,1,.0683,1),wy,wy=-5.93777..5.93777],[x(wy,3.25,1,.1168,1),wy,wy=-3.72385..
3.72385] },0..1,-13..13,numpoints=600, resolution=600, color=black, thickness=
1);
> plot({[x(wy,3.25,1,.0284,1),wy,wy=-16.5104..16.5104],[x(wy,3.25,1,.00 4 1,1),
wy,wy=-120.942..120.9423,Ex(wy,3.25,1,.0078,1),wy,wy=-63.0845..63.0845],
[x(wy,3.25,1,.0104,1),wy,wy=-47.0517..47.0517],[x(wy,3.25,1,.0122,1),wy,
wy=-39.953..39.953],[x(wy,3.25,1,.0242,1),wy,wy=-19.5858..19.5858],
[x(wy,3.25,1,.0205,1),wy,wy=-23.3304..23.3304],[x(wy,3.25,1,.0179,1),wy,
wy=-26.8831..26.8831],[x(wy,3.25,1,.0161,1),wy,wy=-30.0125..30.0125]},. 3 .. 0. 7 ,
-5..5,numpoints=600,resolution=600,color=black,thickness=l);
-------------------------------------------------------------------

> plot({[x(wy,3.25,1,.1168,1),vzla(wy),wy=-3.72385..3.72385],[x(wy, 3 .25,1,

.0683,1),vzO5a(wy),wy=-5.93777..5.93777],[x(wy,3.25,1,.0458,1),vzO25a(wy),
wy=-9.71053..9.71053,Cx (wy,3.25,1,.0343,1),vzOla(wy),wy=-13.4498..13.4498],
[x(wy,3.25,1,.0284,1),vzO(wy),wy=-16.5104..16.5104]},0..i,numpoints=600,
resolution=600, color=black, thickness=l);

> plot([x(wy,3.25,1,.0343,1),vzOla(wy),wy=-1 3 . 4 4 9 8 .. 13.4498],.3..0.7,-7..-6,

numpoints=1000 t10,resolut 00, color=black,thickness=l);
> plot({[x(wy,3.25,1,.0041,1),vzOlb(wy),wy=-120.942..120.942],[x(wy,3 . 2 5,1,

.0078,1),vzO25b(wy),wy=-63.0845..63.0845],[x(wy,3.25,1,.0104,1),vzO5b(wy),
wy=-47.0517..47.0517], x(wy,3.25,1,.0122,1),vzlb(wy),wy=-39.953..39.953],
[x(wy,3.25,1,.0242,1),vzm0l(wy),wy=-19.5858..19.5858],[x(wy,3.25,1,.0205,1),
vzm025(wy),wy=-23.3304..23304], y,3.wy,3.25,1,.0179,1),vzm05(wy),wy=-26.8831..
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26.8831],[x(wy,3.25,1,.0161,1),vzml(wy),wy=-30.0125..30.0125],[x(wy,3.25,1,
.0284,1),vzO(wy),wy=-16.5104..16.5104]},0..1,numpoints=600,resolution=600,
color=black,thickness=l);
> plot([x(wy,3.25,1,.0161,1),vzml(wy),wy=-30.0125..30.0125],.3..0.7,-14.8..
-13,numpoints=1000,resolution=1000,color=black,thickness=1);

> #OMEGA == 10;

> #Etaeff = 0 --> zeta = .0047;
>vzO:=(wy)->f(wy,10,.0047,1)-eval(subs(wO=105.364,f(wO,10,.0047,1)));

vzO := wy -> f(wy, 10, .0047, 1)-eval(subs(wO = 105.364, f(wO, 10, .0047, 1)))
>vzOtemp:=(wy)->f(wy,30,.00055187,1)-eval(subs(wO=905.008,f(wO,30,.00055187,1)));

vzOtemp := wy ->

f(wy, 30, .00055187, 1)-eval(subs(wO = 905.008, f(wO, 30, .00055187, 1)))
> plot(Cx(wy,30,1,.00055187,1),wy,wy=-905.008..905.0081,0..1,-100..100);
> plot(Ex(wy,30,1,.00055187,1),vzOtemp(wy),wy=-905.008..905.008],.25..0.75,
-470..-420);

> #Eta_eff = .01 --> zeta = .0129, .0018;

>vzOla:=(wy) -> f(wy,10,.0129,1)-eval(subs(wO=37.6553,f(wO,10,.0129,1)));

vzOla :=

wy -> f(wy, 10, .0129, 1)-eval(subs(wO = 37.6553, f(wO, 10, .0129, 1)))
>vzOlb:=(wy) -> f(wy,10,.0018,1)-eval(subs(wO=276.773,f(wO,10,.0018,1)));

vzOlb :=

wy -> f(wy, 10, .0018, 1)-eval(subs(wO = 276.773, f(wO, 10, .0018, 1)))

> #Eta-eff = .025 --> zeta = .0276, .0021;
>vz025a:=(wy) -> f(wy,10,.0276,1)-eval(subs(wO=16.4497,f(wO,10,.0276,1)));

vz025a :=

wy -> f(wy, 10, .0276, 1)-eval(subs(wO = 16.4497, f(wO, 10, .0276, 1)))
>vz025b:=(wy) -> f(wy,10,.0021,1)-eval(subs(wO=237.089,f(wO,10,.0021,1)));

vz025b :=

wy -> f(wy, 10, .0021, 1)-eval(subs(wO = 237.089, f(wO, 10, .0021, 1)))

> #Eta-eff = .05 --> zeta = .0525, .0022;
>vz05a:=(wy) -> f(wy,10,.0525,1)-eval(subs(wO=9.80991,f(wO,10,.0525,1)));

vz05a :=

wy -> f(wy, 10, .0525, 1)-eval(subs(wO = 9.80991, f(wO, 10, .0525, 1)))
>vz05b:=(wy) -> f(wy,10,.0022,1)-eval(subs(wO=226.266,f(wO,10,.0022,1)));
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vz05b :=

wy -> f(wy, 10, .0022, 1)-eval(subs(wO = 226.266, f(wO, 10, .0022, 1)))

> #Eta.eff = .1 --> zeta = .1024, .0023;
>vzla:=(wy) -> f(wy,10,.1024,1)-eval(subs(w0=5.18971,f(wO,10,.1024,1)));

vzla :

wy -> f(wy, 10, .1024, 1)-eval(subs(wO = 5.18971, f(wO, 10, .1024, 1)))
>vzlb:=(wy) -> f(wy,10,.0023,1)-eval(subs(w0=216.385,f(wO,10,.0023,1)));

vzlb :

wy -> f(wy, 10, .0023, 1)-eval(subs(wO = 216.385, f(wO, 10, .0023, 1)))

> #Eta-eff = -.01 --> zeta = .0029;
>vzmOl:=(wy) -> f(wy,10,.0029,1)-eval(subs(w0=171.405,f(wO,10,.0029,1)));

vzmOl :=

wy -> f(wy, 10, .0029, 1)-eval(subs(wO = 171.405, f(wO, 10, .0029, 1)))

> #Eta-eff = -.025 --> zeta = .0026;
>vzm025:=(wy) -> f(wy,10,.0026,1)-eval(subs(wO=191.3,f(wO,10,.0026,1)));

vzm025 :=

wy -> f(wy, 10, .0026, 1)-eval(subs(wO = 191.3, f(wO, 10, .0026, 1)))
-------------------------------------------------------------------

> #Eta-eff = -.05 --> zeta = .0025;
>vzm05:=(wy) -> f(wy,10,.0025,1)-eval(subs(w0=198.992,f(wO,10,.0025,1)));

vzm05 :=

wy -> f(vwy, 10, .0025, 1)-eval(subs(w0 = 198.992, f(wO, 10, .0025, 1)))
-------------------------------------------------------------------

> #Eta.eff = -.1 --> zeta = .0024;
>vzml:=(wy) -> f(wy,10,.0024,1)-eval(subs(w0=207.326,f(wO,10,.0024 ,1)));

vzml :=

wy -> f(wy, 10, .0024, 1)-eval(subs(wO = 207.326, f(wO, 10, .0024, 1)))
--------------------------------------------------------------------

> plot({Ex(wy,10,1,.0047,1),wy,wy=-105.364..105.364],1x(wy,10,1,.0129,1),wy,
wy=-37.6553..37.6553],[x(wy,10,1,.0276,1),wy,wy=-16.4497..16.4497],[x(wy,10,1,
.0525,1),wy,wy=-9.80991..9.80991],[x(wy,10,1,.1024,1),wy,wy=-5.18971..
5.18971]},0..1,-30..30,numpoints=600, resolution=600, color=black, thickness=
1);
> plot({[x(wy,10,1,.0047,1),wy,wy=-105.364..105.364],[x(wy,10,1,.0018,1),wy,
wy=-276.773..276.773],[x(wy,10,1,.0021,1),wy,wy=-237.089..237.089],
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[x(wy,10,1,.0022,1),wy,wy=-226.266..226.266],[x(wy,10,1,.0023,1),wy,
wy=-216.385..216.385],[x(wy,10,1,.0029,1),wy,wy=-171.405..171.405],
[x(wy,10,1,.0026,1),wy,wy=-191.3..191.3],Ex(wy,10,1,.0025,1),wy,wy=-19 8 .992..
198.992],[x(wy,10,1,.0024,1),wy,wy=-207.326..207.326]},.3..O.7,-12..12,
numpoints=600,resolution=600,color=black,thickness=1);

> plot({[x(wy,10,1,.1024,1),vzla(wy),wy=-5.18971..5.18971],[x(wy,10,1,.0525,1),
vz05a(wy),wy=-9.80991..9.80991],[x(wy,10,1,.0276,1),vzO25a(wy),wy=-16.4497..
16.44971,Ix(wy,10,1,.0129,1),vzOla(wy),wy=-37.6553..37.6553],[x(wy,10,1,.0047,
1),vzO(wy),wy=-105.364..105.364]},0..1,numpoints=600, resolution=600, color=
black, thickness=l);
> plot(Cx(wy,10,1,.0129,1),vzOla(wy),wy=-37.6553..37.6553],0..1,numpoints=
1000,resolution=1000,color=black,thickness=1);
> plot({[x(wy,10,1,.0018,1),vzOlb(wy),wy=-276.773..276.773],[x(wy,10,1,.0021,
1),vz025b(wy),wy=-237.089..237.089],[x(wy,10,1,.0022,1),vzO5b(wy),
wy=-226.266..226.266],[x(wy,10,1,.0023,1),vzlb(wy),wy=-216.385..216.385],
Ex(wy,10,1,.0029,1),vzm01(wy),wy=-171.405..171.405],[x(wy,10,1,.0026,1),
vzm025(wy),wy=-191.3..191.3],[x(wy,10,1,.0025,1),vzm05(wy),wy=-198.992..
198.992],[x(wy,10,1,.0024,1),vzml(wy),wy=-207.326..207.326],[x(wy,10,1,.0047,
1),vzO(wy),wy=-105.364..105.364]},0..1,numpoints=600,resolution=600,color=
black,thickness=l);
> plot(Ex(wy,10,1,.0024,1),vzml(wy),wy=-207.326..207.326],.3..O.7,-104..-96,
numpoints=1000,resolution=1000,color=black,thickness=1);

133



A.2 Tangential Magnetic Field Only
> denomin:=(wy, Om, chi) -> ((wy^2 - Om^2 + 1 + chi)^2 + (2 + chi)^2*0m^2);

2 2 2 2 2
denomin := (wy,Om,chi) -> (wy - Om + 1 + chi) + (2 + chi) Om

> tl:=(wy,0m,chi,Bx,Hz) -> -wy*(abs(Bx)^2*(wy^2 - Om^2 + 1) + abs(Hz)^2*(wy^2

- Om^2 + (1 + chi)^2));

ti := (wy,Om,chi,Bx,Hz) ->

2 2 2 2 2 2 2
- wy (abs(Bx) (wy - Om + 1) + abs(Hz) (wy - Om + (I + chi) ))

> t2:=(wy,Om,chi,Bx,Hz) -> (chi*(wy^2 - Om^2) + I*Om*(wy^2 - Om^2 - 1 - chi))*

Hz*conjugate(Bx);

t2 := (wy,Om,chi,Bx,Hz) ->

2 2 2 2
(chi (wy - Om ) + I Om (wy - Om - 1 - chi)) Hz conjugate(Bx)

> t3:=(wy,Om,chi,Bx,Hz) -> (chi*(wy'2 - Om'2) - I*Om*(wy^2 - Om^2 - 1 - chi))*

conjugate(Hz) *Bx;

t3 := (wy,Om,chi,Bx,Hz) ->

2 2 2 2
(chi (wy - Om ) - I Om (wy - Om - i - chi)) conjugate(Hz) Bx

> t:=(wy,Om,chi,Bx,Hz)-> .5*chi*(tl(wy,Om,chi,Bx,Hz) + t2(wy,Om,chi,Bx,Hz) +
t3(wy,0m,chi,Bx,Hz))/denomin(wy,Om,chi);

t := (wy,Om,chi,Bx,Hz) -> .5 chi

(tl(wy, Om, chi, Bx, Hz) + t2(wy, Om, chi, Bx, Hz) + t3(wy, Om, chi, Bx, Hz))

/denomin(wy, Om, chi)

> dt:=(wy,Om,chi,Bx,Hz)->diff(t(wy,Om,chi,Bx,Hz),wy);

dt := (wy,Om,chi,Bx,Hz) -> diff(t(wy, Om, chi, Bx, Hz), wy)
-------------------------------------------------------------------

> alphacrit:=(zeta,eta)->2*zeta*eta/(zeta+eta);

zeta eta

alphacrit := (zeta,eta) -> 2 -------

zeta + eta
------------------------------------------------------

> x:=(wy,0m,chi,zeta,dpdz)->-(integrate(1-dt(wy,m,chi,O, 1)/alphacrit(zeta,
zeta),wy) - .5*dpdz/zeta)*(zeta/dpdz);

x := (wy,Om,chi,zeta,dpdz) ->

134



/ dt(wy, Om, chi, 0, 1) dpdz\
lintegrate(l - ---------------------, wy) - .5 ---- 1 zeta
\ alphacrit(zeta, zeta) zeta/

dpdz

> dwydx:=(wy,0m,chi,Bx,Hz,zeta,eta,dpdz)-> (-dpdz/eta)/(1 - dt(wy,0m,chi,Bx,Hz)
/alphacrit(zeta,eta));

dpdz
dwydx := (wy,Om,chi,Bx,Hz,zeta,eta,dpdz) -> - ---------------------------------

/ dt(wy, Om, chi, Bx, Hz)\
eta Ii - --------------------- I

\ alphacrit(zeta, eta)

> dwydx(wy,0m,chi,Bx,Hz,zeta,eta,dpdz);

2 2 2
- dpdz/(eta (1 - 1/2 (.5 chi (- abs(Bx) (wy - Om + 1)

2 2 2 2 2 2
- abs(Hz) (wy - Om + (1 + chi) ) - wy (2 abs(Bx) wy + 2 abs(Hz) wy)

+ (2 chi wy + 2 I Om wy) Hz conjugate(Bx)

+ (2 chi wy - 2 I Om wy) conjugate(Hz) Bx)

/ 2 2 2 2 2
/ ((wy - Om + I + chi) + (2 + chi) Om ) - 2.0 chi (

2 2 2 2 2 2 2
- wy (abs(Bx) (wy - Om + 1) + abs(Hz) (wy - Om + (1 + chi) ))

2 2 2 2
+ (chi (wy - Om ) + I Om (wy - Om - 1 - chi)) Hz conjugate(Bx)

2 2 2 2
+ (chi (wy - Om ) - I Om (wy - Om - i - chi)) conjugate(Hz) Bx)

2 2 2 2 2 2 22
(wy - Om + I + chi) wy / ((wy - Om + 1 + chi) + (2 + chi) Om ) )

(zeta + eta)/(zeta eta)))

> dvzdwy:=(wy,0m,zeta)-> (-2*wy + t(wy,0m,1,0,1)/zeta)/zeta)/ddx(wy(y,m,1,0,1,zeta,
zeta, );

t(wy, Om, 1, 0, 1)
- 2 wy +---------------------

zeta
dvzdwy := (wy,Om,zeta) -> -------------------------------------
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dwydx(wy, Om, 1, 0, 1, zeta, zeta, 1)

> dvzdwy(wy,Om,zeta);

/ 2 2
I wy (wy - Om + 4)1

- I- 2 wy - .5 ------------------ I zeta
\ %1 zeta /

/ 2 2 2 2 2 2 2 2
wy - Om + 4 wy wy (wy - Om + 4) (wy - Om + 2)1

I - .5 ------------- - 1.0 --- + 2.0 ----------------------------------- I
I ,1 ,1 2 II %,1 I

%I
II- ---------------- ----------------------------------------

zeta

2 2 2 2
%1 := (wy - Om + 2) + 9 Om

> f:=(wy,0m,zeta,dpdz) -> -((integrate((t(wy,Om,1,0,1)/zeta - 2*wy) * (1 -
dt(wy,0m,1,0,1)/alphacrit(zeta,zeta)),wy))/(dpdz/zeta));

f := (wy,Om,zeta,dpdz) ->

/ t(wy, Om, 1, 0, 1)\ / dt(wy, Om, 1, 0, 1) \
integrate(l- 2 wy + ------------------ I1 - -------------------- I, wy) zeta

\ zeta / \ alphacrit(zeta, zeta)/

dpdz

> f(wy,Om,zeta,dpdz);

2 2
2. wy - 2. Om + 4.

arctan(.1666666667 --------------------)
2 1/2

(Om ) 2.
- (.1666666667 ---------------------------------------- +

2 1/2 2 2
zeta (Om ) zeta %1

2 2
.5000000000 wy Om

- ----------- + .5000000000 --------- + 2.500000000 ---------
2 2 2 2 2

zeta %1 zeta %1 zeta 71

4 2 4 2
Om wy Om Om

+ .5000000000 --------- - .1250000000 -------- + ------- + 5. -------
2 2 2 zeta 71 zeta %1

zeta %1 zeta 71
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2 2 2 2
Om wy Om wy 4. 2

+ .6250000000 --------- - 1. ------- + ------- - 1. wy

2 2 zeta %1 zeta %1
zeta %1

in(11)
+ .1250000000 ------ ) zeta/dpdz

zeta

4 2 2 2 4 2
X1 := wy - 2. wy Om + 4. wy + Om + 5. Om + 4.

> #OMEGA == 3.2126

> #Etaeff = 0 --> zeta = .0195;
> vzO:=(wy)->f(wy,3.2126, .0195,1)-eval(subs(wO=24.58,f(wO,3.2126,.0195,1)));

vzO :=

wy -> f(wy, 3.2126, .0195, 1) - eval(subs(wO = 24.58, f(wO, 3.2126, .0195, 1)))
> plot([x(wy,3.2126,1,.0195,1),wy,wy=-24.58..24.58]);
> plot([x(wy,3.2126,1,.0195,1),vzO(wy),wy=-24.58..24.58]);

> #Etaeff = .01 --> zeta = .0257, .0038;
>vz0la:=(wy)->f(wy,3.2126,.0257,1)-eval(subs(wO=18.3633,f(wO,3.2126,.0257,1)));

vzOla := wy ->

f(wy, 3.2126, .0257, 1) - eval(subs(wO = 18.3633, f(wO, 3.2126, .0257, 1)))
>vzO1b:=(wy)->f(wy,3.2126,.0038,1)-eval(subs(wO=130.571,f(wO,3.2126,.0038,1)));

vzOlb := wy ->

f(wy, 3.2126, .0038, 1) - eval(subs(wO = 130.571, f(wO, 3.2126, .0038, 1)))

> #Eta_eff=.025 --> zeta = .0381, .0064;
>vz025a:=(wy)->f(wy,3.2126,.0381,1)-eval(subs(wO=11.9454,f(wO,3.2126,.0381,1)));

vz025a := wy ->

f(wy, 3.2126, .0381, 1) - eval(subs(wO = 11.9454, f(wO, 3.2126, .0381, 1)))
> plot([x(wy,3.2126,1,.0381,1),vzO25a(wy),wy=-11.9454..11.9454]);
>vz025b:=(wy)->f(wy,3.2126,.0064,1)-eval(subs(wO=77.1101,f(wO,3.2126,.0064,1)));

vz025b := wy ->

f(wy, 3.2126, .0064, 1) - eval(subs(wO = 77.1101, f(wO, 3.2126, .0064, 1)))

> #Etaeff=.05 --> zeta = .0616, .0079;
>vz05a:=(wy)->f(wy,3.2126,.0616,1)-eval(subs(wO=6.63099,f(wO,3.2126,.0616,1)));
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vz05a := wy ->

f(wy, 3.2126, .0616, 1) - eval(subs(wO = 6.63099, f(wO, 3.2126, .0616, 1)))
>vz05b:=(wy)->f(wy,3.2126,.0079,1)-eval(subs(wO=62.2721,f(wO,3.2126,.0079,1)));

vz05b := wy ->

f(wy, 3.2126, .0079, 1) - eval(subs(wO = 62.2721, f(wO, 3.2126, .0079, 1)))

> #Eta-eff=.1 --> zeta = .1107, .0088;
>vzla:=(wy)->f(wy,3.2126,.1107,1)-eval(subs(wO=3.58458,f(wO,3.2126,.1107,1)));

vzla := wy ->

f(wy, 3.2126, .1107, 1) - eval(subs(wO = 3.58458, f(wO, 3.2126, .1107, 1)))
>vzlb:=(wy)->f(wy,3.2126,.0088,1)-eval(subs(w0=55.7965,f(wO,3.2126,.0088,1)));

vzlb := wy ->

f(wy, 3.2126, .0088, 1) - eval(subs(wO = 55.7965, f(wO, 3.2126, .0088, 1)))

> #Eta-eff=-.01 --> zeta = .0157;
>vzm0O:=(wy)->f(wy,3.2126,.0157,1)-eval(subs(wO=30.8019,f(wO,3.2126,.0157,1)));

vzm01 := wy ->

f(wy, 3.2126, .0157, 1) - eval(subs(wO = 30.8019, f(wO, 3.2126, .0157, 1)))

> #Eta-eff=-.025 --> zeta = .0131;
>vzm025:=(wy)->f(wy,3.2126,.0131,1)-eval(subs(w0=37.1324,f(wO,3.2126,.0131,1)));

vzm025 := wy ->

f(wy, 3.2126, .0131, 1) - eval(subs(wO = 37.1324, f(wO, 3.2126, .0131, 1)))

> #Eta-eff=-.05 --> zeta = .0116;
>vzm05:=(wy)->f(wy,3.2126,.0116,1)-eval(subs(wO=42.073,f(wO,3.2126,.0116,1)));

vzm05 :=

wy -> f(wy, 3.2126, .0116, 1) - eval(subs(w0=42.073, f(wO, 3.2126, .0116, 1)))

> #Eta-eff=-.1 --> zeta = .0107;
>vzml:=(wy)->f(wy,3.2126,.0107,1)-eval(subs(wO=45.7014,f(wO,3.2126,.010 7 ,1)));

vzml := wy ->

f(wy, 3.2126, .0107, 1) - eval(subs(wO = 45.7014, f(wO, 3.2126, .0107, 1)))
-------------------------------------------------------------------
-------------------------------------------------------------------

> plot({Ex(wy,3.2126,1,.0195,1),wy,wy=-24.58..24.58],[x(wy,3.2126,1,.025 7 ,1),
wy,wy=-18.3633..18.3633],[x(wy,3.2126,1,.0381,1),wy,wy=-11.9454..11.9454],
Ex(wy,3.2126,1,.0616,1),wy,wy=-6.63099..6.63099],[x(wy,3.21 26,1,.1107 ,1),wy,
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wy=-3.58458. .3.58458]},0..1,numpoints=600,resolution=600,color=black,thickness
=1);

> plot({[x(wy,3.2126,1,.0195,1),wy,wy=-24.58..24.58],[x(wy,3.2126,1,.0038,1),
wy,wy=-130.571..130.571],[x(wy,3.2126,1,.0064,1),wy,wy=-77.1101..77.1101],
[x(wy,3.2126,1,.0079,1),wy,wy=-62.2721..62.2721],[x(wy,3.2126,1,.0088,1),wy,
wy=-55.7965..55.7965],[x(wy,3.2126,1,.0157,1),wy,wy=-30.8019..30.8019],[x(wy,
3.21261,,.0131,1),wy,wy=-37.1324..37.1324],[x(wy,3.2126,1,.0116,1),wy,
wy=-42.073..42.073],[x(wy,3.2126,1,.0107,1),wy,wy=-45.7014..45.7014]},0..1,
-40..40,numpoints=600,resolution=600,color=black,thickness=1);

> plot({[x(wy,3.2126,1,.0195,1),vz0(wy),wy=-24.58..24.58],[x(wy,3.2126,1,
.0257,1),vzOla(wy),wy=-18.3633..18.3633],[x(wy,3.2126,1,.0381,1),vz025a(wy),
wy=-11.9454..11.9454],Ex(wy,3.2126,1,.0616,1),vz05a(wy),wy=-6.63099..6.63099],
Ex(wy,3.2126,1,.1107,1),vzla(wy),wy=-3.58458..3.58458]},0..1,numpoints=600,
resolution=600,color=black,thickness=1);

> plot({[x(wy,3.2126,1,.0195,1),vz0(wy),wy=-24.58..24.58],[x(wy,3.2126,1,.0038,
1),vz0lb(wy),wy=-130.571..130.571],[x(wy,3.2126,1,.0064,1),vzO25b(wy),
wy=-77.1101..77.1101],[x(wy,3.2126,1,.0079,1),vzO5b(wy),wy=-62.2721..62.2721],
Ex(wy,3.2126,1,.0088,1),vzlb(wy),wy=-55.7965..55.7965],[x(wy,3.2126,1,.0157,1),
vzm01(wy),wy=-30.8019..30.8019], [x(wy,3.2126,1,.0131,1),vzm25(wy),
wy=- 37 .132 4 .. 37.1324],[x(wy,3.2126,1,.0116,1),vzm05(wy),wy=-42.073..42.073],
Ex(wy,3 .2126,1,.0107,1),vzml(wy),wy=-45.7014..45.7014]},0..1,numpoints=600,
resolution=600,color=black,thickness=l);

> plot(Ex(wy,3.2126,1,.0107,1),vzml(wy),wy=-45.7014..45.7014],.25..0.75,
-22.2..-19.5,numpoints=600,resolution=600,color=black,thickness=1);

> #OMEGA == 2.05;
---------------------------------------------------------------------
---------------------------------------------------------------------

> #Etaeff = 0 --> zeta = .0024;
>vzO:=(wy)->f(wy,2.05, .0024,1)-eval(subs(w0=207.328,f(wO,2.05,.0024,1)));

vzO :=

wy -> f(wy, 2.05, .0024, 1) - eval(subs(wO=207.328, f(wO, 2.05, .0024, 1)))
------------------------------------------- -- ----------

> #Etaeff = .01 --> zeta = .0113, .0010;
>vzOla:=(wy) -> f(wy,2.05,.0113,1) - eval(subs(wO=43.2218,f(wO,2.05,.0113,1)));

vzOla :=

wy -> f(wy, 2.05, .0113, 1) - eval(subs(w0=43.2218, f(wO, 2.05, .0113, 1)))
>vzOlb:=(wy) -> f(wy,2.05,.0010,1)-eval(subs(w0=498.998,f(wO,2.05,.0010,1)));

vzOlb :=

wy -> f(wy, 2.05, .0010, 1)-eval(subs(wO=498.998, f(wO, 2.05, .0010, 1)))
---------------- #Eta f = .025 ------------------------> zeta = 0262, 0011;
> #Eta-eff = .025 -- > zeta = .0262, .0011;
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>vz025a:=(wy) -> f(wy,2.05,.0262,1)-eval(subs(wO=18.0109,f(wO,2.05,.0262,1)));

vz025a :=

wy -> f(wy, 2.05, .0262, 1)-eval(subs(wO=18.0109, f(wO, 2.05, .0262, 1)))
>vz025b:=(wy) -> f(wy,2.05,.0011,1)-eval(subs(wO=453.543,f(wO,2.05,.0011,1)));

vz025b :=

wy -> f(wy, 2.05, .0011, 1)-eval(subs(wO=453.543, f(wO, 2.05, .0011, 1)))

> #Eta-eff = .05 --> zeta = .0512, .0012;

>vz05a:=(wy) -> f(wy,2.05,.0512,1)-eval(subs(wO=8.56627,f(wO,2.05,.0512,1)));

vz05a :=

wy -> f(wy, 2.05, .0512, 1)-eval(subs(w0=8.56627, f(wO, 2.05, .0512, 1)))
>vz05b:=(wy) -> f(wy,2.05,.0012,1)-eval(subs(wO=415.664,f(wO,2.05,.0012,1)));

vz05b :=

wy -> f(wy, 2.05, .0012, 1)-eval(subs(w0=415.664, f(wO, 2.05, .0012, 1)))

> #Eta.eff = .1 --> zeta = .1012, .0012;
>vzla:=(wy) -> f(wy,2.05,.1012,1)-eval(subs(wO=3.42359,f(wO,2.05,.1012,1)));

vzla :=

wy -> f(wy, 2.05, .1012, 1)-eval(subs(w0=3.42359, f(wO, 2.05, .1012, 1)))
>vzlb:=(wy) -> f(wy,2.05,.0012,1)-eval(subs(wO=415.664,f(wO,2.05,.O012,1)));

vzlb :=

wy -> f(wy, 2.05, .0012, 1)-eval(subs(w0=415.664, f(wO, 2.05, .0012, 1)))
-----------------------------------------------------------------------
-------------------------------------------------------------------

> #Eta.eff = -.01 --> zeta = .0013;
>vzm0l:=(wy) -> f(wy,2.05,.0013,1)-eval(subs(wO=383.613,f(wO,2.05,.0013,1)));

vzm01 :=

wy -> f(wy, 2.05, .0013, 1)-eval(subs(w0=383.613, f(wO, 2.05, .0013, 1)))
---------- -----------------------------

> #Etaeff = -.025, -.05, -.1 --> zeta = .0012;
>vzm025:=(wy) -> f(wy,2.05,.0012,1)-eval(subs(wO=415.664,f(wO,2.05,.0012,1)));

vzm025 :=

wy -> f(wy, 2.05, .0012, 1)-eval(subs(wO=415.664, f(wO, 2.05, .0012, 1)))
---------------------------------- --------------

------------------------------------ -- ----------

------------------------------------- -- ----------

> plot({[x(wy,2.05,1,.0024,1),wy,wy=-207.328..207.328],Ex(wy,2.05,1,.0113 ,1),
wy,wy=-43.2218..43.2218,[Cx(wy,2.05,1,.0262,1),wy,wy=-18.0109..18.0109),
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[x(wy,2.05,1,.0512,1),wy,wy=-8.56627..8.56627],[x(wy,2.05,1,.1012,1),wy,wy=
-3.42359..3.42359] },0..1,-30..30,numpoints=600,resolution=600,color=black,
thickness=l);
> plot({[x(wy,2.05,1,.0024,1),wywy=-207.328..207.328],[x(wy,2.05,1,.0010,1),
wy,wy=-498.998..498.998],[x(wy,2.05,1,.0011,1),wy,wy=-453.543..453.543],
[x(wy,2.05,1,.0012,1),wy,wy=-415.664..415.664],[x(wy,2.05,1,.0013,1),wy,
wy=-383.613..383.613]},.3..0.7,-7..7,numpoints=1000,resolution=1000,color=
black,thickness=l);

> plot({[x(wy,2.05,1,.0024,1),vzO(wy),wy=-207.328..207.328],[x(wy,2.05,1,.0113,
1),vz0la(wy),wy=-43.2218..43.2218],[x(wy,2.05,1,.0262,1),vzO25a(wy),
wy=-18.0109..18.0109],[x(wy,2.05,1,.0512,1),vzO5a(wy),wy=-8.56627..9.56627],
Ex(wy,2.05,1,.1012,1),vzla(wy),wy=-3.42359..3.42359]},0..1,numpoints=600,
resolution=600,color=black,thickness=l);
> plot(Ex(wy,2.05,1,.0262,1),vzO25a(wy),wy=-18.0109..18.0109],.2..0.8,
-8.5..-6.5,numpoints=1000,resolution=1000,color=black,thickness=1);
> plot({[x(wy,2.05,1,.0024,1),vzO(wy),wy=-207.328..207.328],[x(wy,2.05,1,
.0010,1),vzOlb(wy),wy=-498.994..498.994],[x(wy,2.05,1,.0011,1),vzO25b(wy),
wy=-453.543..453.543],[x(wy,2.05,1,.0012,1),vzO5b(wy),wy=-415.664..415.664],
[x(wy,2.05,1,.0013,1),vzm01(wy),wy=-383.613..383.613]},0..1,numpoints=600,
resolution=600,color=black,thickness=l);
> plot([x(wy,2.05,1,.0013,1),vzm0l(wy),wy=-383.613..383.613],.3..0.7,-191..
-177,numpoints=1000, resolution=1000, color=black ,thickness=l);

> #OMEGA == 2.5;

> #Eta_eff = 0 --> zeta = .0151;
>vzO:=(wy)->f(wy,2.5, .0151,1)-eval(subs(w0=32.0739,f(wO,2.5,.0151,1)));

vzO :=

wy -> f(wy, 2.5, .0151, 1)-eval(subs(wO=32.0739, f(wO, 2.5, .0151, 1)))

> #Eta_eff = .01 --> zeta = .0216, .0035;
>vzOla:=(wy) -> f(wy,2.5,.0216,1)-eval(subs(w0=22.0868,f(wO,2.5,.0216,1)));

vzOla :=

wy -> f(wy, 2.5, .0216, 1)-eval(subs(wO=22.0868, f(wO, 2.5, .0216, 1)))
>vzOlb:=(wy) -> f(wy,2.5,.0035,1)-eval(subs(w0=141.85,f(wO,2.5,.0035,1)));

vzOlb :=

wy -> f(wy, 2.5, .0035, 1)-eval(subs(wO=141.85, f(wO, 2.5, .0035, 1)))

> #Eta-eff = .025 --> zeta = .0347, .0055;
>vz025a:=(wy) -> f(wy,2.5,.0347,1)-eval(subs(w0=13.2873,f(wO,2.5,.0347,1)));

vz025a :=

wy -> f(wy, 2.5, .0347, 1)-eval(subs(wO=13.2873, f(wO, 2.5, .0347, 1)))
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>vz025b:=(wy) -> f(wy,2.5,.0055,1)-eval(subs(w0=89.8971,f(wO,2.5,.0055,1)));

vz025b :=

wy -> f(wy, 2.5, .0055, l)-eval(subs(wO=89.8971, f(wO, 2.5, .0055, 1)))

> #Eta.eff = .05 --> zeta = .0587, .0064;
>vz05a:=(wy) -> f(wy,2.5,.0587,1)-eval(subs(wO=7.20961,f(wO,2.5,.0587,1)));

vz05a :=

wy -> f(wy, 2.5, .0587, l)-eval(subs(wO=7.20961, f(wO, 2.5, .0587, 1)))
>vz05b:=(wy) -> f(wy,2.5,.0064,1)-eval(subs(w0=77.1108,f(wO,2.5,.0064,1)));

vz05b :=

wy -> f(wy, 2.5, .0064, l)-eval(subs(wO=77.1108, f(wO, 2.5, .0064, 1)))

> #Eta.eff = .1 --> zeta = .1081, .0070;
>vzla:=(wy) -> f(wy,2.5,.1081,1)-eval(subs(w0=3.30883,f(wO,2.5,.1081,1)));

vzla :=

wy -> f(wy, 2.5, .1081, 1)-eval(subs(wO=3.30883, f(wO, 2.5, .1081, 1)))
>vzlb:=(wy) -> f(wy,2.5,.0070,1)-eval(subs(wO=70.4129,f(wO,2.5,.0070,1)));

vzlb :=

wy -> f(wy, 2.5, .0070, 1)-eval(subs(w0=70.4129, f(wO, 2.5, .0070, 1)))

> #Eta-eff = -.01 --> zeta = .0116;
>vzm1l:=(wy) -> f(wy,2.5,.0116,1)-eval(subs(w0=42.0754,f(wO,2.5,.0116,1)));

vzm01 :=

wy -> f(vwy, 2.5, .0116, 1)-eval(subs(w0=42.0754, f(wO, 2.5, .0116, 1)))

> #Eta-eff = -.025 --> zeta = .0097;
>vzm025:=(wy) -> f(wy,2.5,.0097,1)-eval(subs(wO=50.5237,f(wO,2.5,.0097,1)));

vzm025 :=

wy -> f(wy, 2.5, .0097, 1)-eval(subs(w0=50.5237, f(wO, 2.5, .0097, 1)))
-------------------------------------------------------------------

> #Eta.eff = -.05 --> zeta = .0087;
>vzm05:=(wy) -> f(wy,2.5,.0087,1)-eval(subs(w0=56.4512,f(wO,2.5,.0087,1)));

vzm05 :

wy -> f(wy, 2.5, .0087, 1)-eval(subs(w0=56.4512, f(wO, 2.5, .0087, 1)))
------------------------------------------------------

> #Eta-eff = -.1 --> zeta = .0081;
>vzml:=(wy) -> f(wy,2.5,.0081,1)-eval(subs(wO=60.7099,f(wO,2.5,.0081,1)));
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vzml :=

wy -> f(wy, 2.5, .0081, 1)-eval(subs(wO=60.7099, f(wO, 2.5, .0081, 1)))

> plot({[x(wy,2.5,1,.0151,1),wy,wy=-32.0739..32.0739],[x(wy,2.5,1,.0216,1),wy,
wy=-22.0868..22.0868],[x(wy,2.5,1,.0347,1),wy,wy=-13.2873..13.2873],[x(wy,2.5,
1,.0587,1),wy,wy=-7.20961..7.20961],Ex(wy,2.5,1,.1081,1),wy,wy=-3.30883..
3.30883] },0..1,numpoints=600,resolution=600,color=black,thickness=1);

> plot({[x(wy,2.5,1,.0151,1),wy,wy=-32.0739..32.0739],[x(wy,2.5,1,.0035,1),wy,
wy=-141.85..141.85),[x(wy,2.5,1,.0055,1),wy,wy=-89.8971..89.8971],[x(wy,2.5,
1,.0064,1),wy,wy=-77.1108..77.1108],[x(wy,2.5,1,.0070,1),wy,wy=-70.4129..
70.4129],[x(wy,2.5,1,.0116,1),wy,wy=-42.0754..42.0754],[x(wy,2.5,1,.0097,1),
wy,wy=-50.5237..50.52371,[x(wy,2.5,1,.0087,1),wy,wy=-56.4512..56.4512),
Ex(wy,2.5,1,.0081,1),wy,wy=-60.7099..60.7099]},.26..0.74,-4..4,numpoints=600,
resolution=600,color=black,thickness=1);

> plot({[x(wy,2.5,1,.0151,1),vz0(wy),wy=-32.0739..32.0739],(x(wy,2.5,1,.0216,
1),vzOla(wy),wy=-22.0868..22.0868],x (wy,2.5,1,.0347,1),vzO25a(wy),
wy=-13.2873..13.2873],[x(wy,2.5,1,.0587,1),vzO5a(wy),wy=-7.20961..7.20961],
Ex(wy,2.5,1,.1081,1),vzla(wy),wy=-3.30883..3.30883]},0..1,numpoints=600,
resolution=600,color=black,thickness=l);
> plot(Cx(wy,2.5,1,.1081,1),vzla(wy),wy=-3.30883..3.30883],0..1,numpoints=
1000,resolution=1000,color=black,thickness=1);

> plot({[x(wy,2.5,1,.0151,1),vz0(wy),wy=-32.0739..32.0739,E[x(wy,2.5,1,.0035,
1),vzOlb(wy),wy=-141.85..141.85],[x(wy,2.5,1,.0055,1),vzO25b(wy),wy=-89.8971..
89.8971],[x(wy,2.5,1,.0064,1),vzO5b(wy),wy=-77.1108..77.1108],Ex(wy,2.5,1,.
0070,1),vzlb(y),wy=-70.4129..70.4129..70[x(wy,2.5,1,.0116,1),vzm0l(wy),
wy=- 42 .075 4 .. 42.0754],[x(wy,2.5,1,.0097,1),vzm025(wy),wy=-50.5237..50.5237],
[x(wy,2.5,1,.0087,1),vzm05(wy),wy=-56.4512..56.4512J,Ex(wy,2.5,1,.0081,1),
vzml(wy),wy=-60.7099..60.7099]},0..1,numpoints=600,resolution=600,color=black,
thickness=l);
> plot([x(wy,2.5,1,.0081,1),vzml(wy),wy=-60.7099..60.70991,.25..0.75,-30..-26,
numpoints=1000,resolution=1000,color=black,thickness=1);

> #OMEGA == 4.5;

> #Eta_eff = 0 -- > zeta = .0158;
>vzO:=(wy)->f(wy,4.5, .0158,1)-eval(subs(wO=30.5884,f(wO,4.5,.0158,1)));

vzO :=

wy -> f(wy, 4.5, .0158, 1)-eval(subs(wO=30.5884, f(wO, 4.5, .0158, 1)))
---------------------------------------------------------------------

> #Etaeff = .01 --> zeta = .0222, .0035;
>vzOla:=(wy) -> f(wy,4.5,.0222,1)-eval(subs(w0=21.4238,f(wO,4.5,.0222,1)));
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vzOla :=

wy -> f(wy, 4.5, .0222, 1)-eval(subs(w0=21.4238, f(wO, 4.5, .0222, 1)))
>vzOlb:=(wy) -> f(wy,4.5,.0035,1)-eval(subs(w0=141.849,f(wO,4.5,.0035,1)));

vzOlb :=

wy -> f(wy, 4.5, .0035, 1)-eval(subs(wO=141.849, f(wO, 4.5, .0035, 1)))

> #Eta.eff = .025 --> zeta = .0352, .0056;
>vz025a:=(wy) -> f(wy,4.5,.0352,1)-eval(subs(wO=12.9697,f(wO,4.5,.0352,1)));

vz025a :=

wy -> f(wy, 4.5, .0352, 1)-eval(subs(wO=12.9697, f(wO, 4.5, .0352, 1)))
>vz025b:=(wy) -> f(wy,4.5,.0056,1)-eval(subs(wO=88.2716,f(wO,4.5,.0056,1)));

vz025b :=

wy -> f(wy, 4.5, .0056, 1)-eval(subs(w0=88.2716, f(wO, 4.5, .0056, 1)))

> #Eta-eff = .05 --> zeta = .0591, .0067;
>vz05a:=(wy) -> f(wy,4.5,.0591,1)-eval(subs(wO=6.61044,f(wO,4.5,.0591,1)));

vz05a :=

wy -> f(wy, 4.5, .0591, 1)-eval(subs(wO=6.61044, f(wO, 4.5, .0591, 1)))
>vzO5b:=(wy) -> f(wy,4.5,.0067,1)-eval(subs(wO=73.6092,f(wO,4.5,.0067,1)));

vz05b :=

wy -> f(wy, 4.5, .0067, 1)-eval(subs(w0=73.6092, f(wO, 4.5, .0067, 1)))
-------------------------------------------------------------------

> #Etaeff = .1 --> zeta = .1085, .0073;
>vzla:=(wy) -> f(wy,4.5,.1085,1)-eval(subs(w0=4.33254,f(wO,4.5,.1085,1)));

vzla :=

wy -> f(wy, 4.5, .1085, l)-eval(subs(w0=4.33254, f(wO, 4.5, .1085, 1)))
>vzlb:=(wy) -> f(wy,4.5,.0073,1)-eval(subs(wO=67.4735,f(wO,4.5,.0073,1)));

vzlb :=

wy -> f(wy, 4.5, .0073, 1)-eval(subs(w0=67.4735, f(wO, 4.5, .0073, 1)))
-------------------------------------------------------------------
-------------------------------------------------------------------

> #Etaeff = -.01 --> zeta = .0122;
>vzmOl:=(wy) -> f(wy,4.5,.0122,1)-eval(subs(wO=39.9445,f(wO,4.5,.0122,1)));

vzm01 :=

wy -> f(wy, 4.5, .0122, l)-eval(subs(w0=39.9445, f(wO, 4.5, .0122, 1)))
> #Etaeff = -. 025 --> zeta = .0102;----------------

> #Eta-eff = -.025 --> zeta = .0102;
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>vzm025:=(wy) ->f(wy,4.5,.0102,1)-eval(subs(w0=47.9891,f(wO,4.5,.0102,1)));

vzm025 :=

wy -> f(wy, 4.5, .0102, l)-eval(subs(wO=47.9891, f(wO, 4.5, .0102, 1)))

> #Etaeff = -.05 -- > zeta = .0091;
>vzm05:=(wy) -> f(wy,4.5,.0091,1)-eval(subs(w0=53.9189,f(wO,4.5,.0091,1)));

vzm05 :=

wy -> f(wy, 4.5, .0091, 1)-eval(subs(wO=53.9189, f(wO, 4.5, .0091, 1)))

> #Eta-eff = -.1 -- > zeta = .0085;
>vzml:=(wy) -> f(wy,4.5,.0085,1)-eval(subs(w0=57.7996,f(wO,4.5,.0085,1)));

vzml :=

wy -> f(wy, 4.5, .0085, 1)-eval(subs(wO=57.7996, f(wO, 4.5, .0085, 1)))

> plot({[x(wy,4.5,1,.0158,1),wy,wy=-30.5884..30.5884],[x(wy,4.5,1,.0222,1),wy,
wy=-21.4238..21.4238J,[x(wy,4.5,1,.0352,1),wy,wy=-12.9697..12.9697],[x(wy,4.5,
1,.0591,1),wy,wy=-6.61044..6.61044],[x(wy,4.5,1,.1085,1),wy,wy=-4.33254..
4.33254 },0..1,numpoints=600,resolution=600,color=black,thickness=1);

> plot({[x(wy,4.5,1,.0158,1),wy,wy=-30.5884..30.5884J,[x(wy,4.5,1,.0035,1),wy,
wy=-141.849..141.849],[x(wy,4.5,1,.0056,1),wy,wy=-88.2716..88.2716],[x(wy,4.5,
1,.0067,1),wy,wy=-73.6092..73.6092],[x(wy,4.5,1,.0073,1),wy,wy=-67.4735..
67.4735J,[x(wy,4.5,1,.0122,1),wy,wy=-39.9445..39.9445],[x(wy,4.5,1,.0102,1),
wy,wy=- 4 9 . 9 891.. 4 9.98911,[x(wy,4.5,1,.0091,1),wy,wy=-53.9189..53.9189],[x(wy,
4 .5,1,.0085,1),wy,wy=-57.7996..57.7996]},.26..0.74,-10..10,numpoints=600,
resolution=600,color=black,thickness=l);

> plot({[x(wy,4.5,1,.0158,1),vzO(wy),wy=-30.5884..30.5884],[x(wy,4.5,1,.0222,
1),vzOla(wy),wy=-21.4238..21.4238, [x(wy,4.5,1,.0352,) ,vzO25a(wy),
wy=-12.9697..12.9697], [x(wy,4.5,1,.0591,1) ,vz5a(wy),wy=-6.61044..6.61044],
[x(wy,4.5,1,.1085,1),vzla(wy),wy=-4.33254..4.33254]},0..1,numpoints=600,
resolution=600,color=black,thickness=l);
> plot(Ex(wy,4.5,1,.0222,1),vz0la(wy),wy=-21.4238..21.4238],.45..0.55,-12..
-10,numpoints=1000,resolution=1000,color=black,thickness=1);
---------------------------------------------------------------------

> plot({[x(wy,4.5,1,.0158,1)vzy), (wy),wy=-30.5884..30.5884,[x(wy,4.5,1,.0035,
1),vzOlb(wy),wy=-141.849..141.849, x(wy,4.5,1,. 0056,1),vzO25b(wy),
wy=-88. 27 16..88.2716],[x(wy,4.5,1,.0067,1),vz05b(wy),wy=-73.6092..73.6092],
Ex(wy,4.5,1,.0073,1),vzlb(wy),wy=-67.4735..67.4735],[x(wy,4.5,1,.0122,1),
vzm01(wy),wy=-39.9445..39.9445], x(wy,4.5,1,.0102,1),vzmO25(wy),wy=-47.9891..
47 . 98 9 1],[x(wy,4.5,1,.0091,1),vzm05(wy),wy=-53.9189..53.9189],[x(wy,4.5,1,
.0085,1),vzml(wy),wy=-57.7996..57.7996]},0..1,numpoints=600,resolution=600,
color=black,thickness=1);
> plot(Cx(wy,4.5,1,.0085,1),vzml(wy),wy=-57.7996..57.7996],.25..O.75,-29..-24,
numpoints=1000,resolution=1000, color=black,thickness=1);
-------------------------------------------------------
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> #OMEGA == 6.0;

> #Eta-eff = 0 --> zeta = .0108;
>vzO:=(wy)->f(wy,6, .0108,1)-eval(subs(w0=45.2551,f(wO,6,.0108,1)));

vzO := wy -> f(wy, 6, .0108, 1)-eval(subs(wO=45.2551, f(wO, 6, .0108, 1)))

> #Eta_eff = .01 --> zeta = .0178, .0030;
>vzOla:=(wy) -> f(wy,6,.0178,1)-eval(subs(w0=26.996,f(wO,6,.0178,1)));

vzOla := wy -> f(wy, 6, .0178, 1)-eval(subs(wO=26.996, f(wO, 6, .0178, 1)))
>vzOlb:=(wy) -> f(wy,6,.0030,1)-eval(subs(w0=165.659,f(wO,6,.0030,1)));

vzOlb := wy -> f(wy, 6, .0030, 1)-eval(subs(w0=165.659, f(wO, 6, .0030, 1)))

> #Etaeff = .025 --> zeta = .0315, .0043;
>vz025a:=(wy) -> f(wy,6,.0315,1)-eval(subs(w0=14.5751,f(wO,6,.0315,1)));

vz025a :=

wy -> f(wy, 6, .0315, 1)-eval(subs(w0=14.5751, f(wO, 6, .0315, 1)))
>vz025b:=(wy) -> f(wy,6,.0043,1)-eval(subs(w0=115.268,f(wO,6,.0043,1)));

vz025b :=

wy -> f(wy, 6, .0043, 1)-eval(subs(wO=115.268, f(wO, 6, .0043, 1)))

> #Etaeff = .05 --> zeta = .0560, .0048;
>vz05a:=(wy) -> f(wy,6,.0560,1)-eval(subs(wO=6.99514,f(wO,6,.0560,1)));

vz05a := wy -> f(wy, 6, .0560, 1)-eval(subs(w0=6.99514, f(wO, 6, .0560, 1)))
>vz05b:=(wy) -> f(wy,6,.0048,1)-eval(subs(w0=103.153,f(wO,6,.0048,1)));

vz05b := wy -> f(wy, 6, .0048, 1)-eval(subs(wO=103.153, f(wO, 6, .0048, 1)))

> #Etaeff = .1 --> zeta = .1057, .0051;
>vzla:=(wy) -> f(wy,6,.1057,1)-eval(subs(wO=5.10211,f(wO,6,.1057,1)));

vzla := wy -> f(wy, 6, .1057, 1)-eval(subs(wO=5.10211, f(wO, 6, .1057, 1)))
>vzlb:=(wy) -> f(wy,6,.0051,1)-eval(subs(w0=97.0249,f(wO,6,.0051,1)));

vzlb := wy -> f(wy, 6, .0051, 1)-eval(subs(w0=97.0249, f(wO, 6, .0051, 1)))

> #Etaeff = -.01 --> zeta = .0078;
>vzmOl:=(wy) -> f(wy,6,.0078,1)-eval(subs(w0=63.077,f(wO,6,.0078,1)));

vzm01l := wy -> f(wy, 6, .0078, 1)-eval(subs(w0=63.077, f(wO, 6, .0078, 1)))

> #Eta_eff = -.025 -- > zeta = .0065;
>vzm025:=(wy) -> f(wy,6,.0065,1)-eval(subs(w0=75.9033,f(wO,6,.0065,1)));
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vzm025 :=

wy -> f(wy, 6, .0065, 1)-eval(subs(wO=75.9033, f(wO, 6, .0065, 1)))

> #Etaeff = -.05 --> zeta = .0060;
>vzm05:=(wy) -> f(wy,6,.0060,1)-eval(subs(w0=82.3156,f(wO,6,.0060,1)));

vzm05 := wy -> f(wy, 6, .0060, 1)-eval(subs(wO=82.3156, f(wO, 6, .0060, 1)))

> #Etaeff = -.1 --> zeta = .0057;
>vzml:=(wy) -> f(wy,6,.0057,1)-eval(subs(w0=86.7027,f(wO,6,.0057,1)));

vzml := wy -> f(wy, 6, .0057, 1)-eval(subs(wO=86.7027, f(wO, 6, .0057, 1)))

> plot({[x(wy,6,1,.0108,1),wy,wy=-45.2551..45.2551J,[x(wy,6,1,.0178,1),wy,
wy=- 26 .996..26.9961,[x(wy,6,1,.0315,1),wy,wy=-14.5751..14.5751],[x(wy,6,1,
.0560,1),wy,wy=-6.99514..6.99514],[x(wy,6,1,.1057,1),wy,wy=-5.10211..5.10211]},
O..1,numpoints=600,resolution=600,color=black,thickness=1);

> plot({[x(wy,6,1,.0108,1),wy,wy=-45.2551..45.2551],[x(wy,6,1,.0030,1),wy,
wy=-1 65 . 659..165.659),[x(wy,6,1,.0043,1),wy,wy=-115.268..115.268],[x(wy,6,1,
.00 48 ,1),wy,wy=-103.153..103.153],[x(wy,6,1,.0051,1),wy,wy=-97.0249..97.0249],
Ex(wy,6,1,.0078,1),wy,wy=-63.077..63.077],Ix(wy,6,1,.0065,1),wy,wy=-75.9033..
75.9033],[x(wy,6,1,.0060,1),wy,wy=-82.3156..82.3156],[x(wy,6,1,.0057,1),wy,
wy=-86.7027..86.7027 },.26..0.74, -14..14,numpoints=600,resolution=600,color=
black,thickness=l);

> plot({[x(wy,6,1,.0108,1),vzO(wy),wy=-45.2551..45.2551],Ex(wy,6,1,.0178,1),
vzOla(wy),wy=-26.996..26.996],[x(wy,6,1,.0315,1),vzO25a(wy),wy=-14.5751..
14.5751),[x(wy,6,1,.0560,1),vz05a(wy),wy=-6.99514..6.99514],[x(wy,6,1,.1057,1),
vzla(wy),wy=-5.10211..5.10211]},0..1,numpoints=600,resolution=600,color=black,
thickness=l);
> plot([x(wy,6,1,.0108,1),vzO(wy),wy=-45.2551..45.2551],0..1,numpoints=1000,
resolution=1000,color=black,thickness=l);
----------------------------------------------------------------------

> plot({[x(wy,6,1,.0108,1),vzO(wy),wy=-45.2551..45.2551],[x(wy,6,1,.0030,1),
vzOlb(wy),wy=-165.659..165.659],[x(wy,6,1,.0043,1),vzO25b(wy),wy=-115.268..
115.2681,[x(wy,6,1,.0048,1),vzO5b(wy),wy=-103.153..103.153],[x(wy,6,1,.0051,1),
vzlb(wy),wy=-97.0249..97.0249],[x(wy,6,1,.0078,1),vzm0l(wy),wy=-63.077..
6 3 .0 77],Ex(wy,6,1,.0065,1),vzm025(wy),wy=-75.9033..75.9033],[x(wy,6,1,.0060,1),
vzm05(wy),wy=-82.3156..82.3156],[x(wy,6,1,.0057,1),vzml(wy),wy=-86.7027..
86.7027 },0..1,numpoints=600,resolution=600,color=black,thickness=1);
> plot(Cx(wy,6,1,.0057,1),vzml(wyw),y=-86.7027..86.7027,.25..0.75,-43..-39,
numpoints=1000,resolution=1000,color=black,thickness=l);
-------------------------------------- -------------

----------------------- --------- ------------

------------------------- ----------- -----------

> #OMEGA == 10;

-------> #Etae--f = 0 -- --> zet --a = .0046;---------------------------------------------

> #Eta-.eff = 0 -- > zeta = .0046;
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>vzO:=(wy)->f(wy,10, .0046,1)-eval(subs(w0=107.677,f(wO,10,.0046,1)));

vz0 := wy -> f(wy, 10, .0046, 1)-eval(subs(w0=107.677, f(wO, 10, .0046, 1)))

> #Etaeff = .01 --> zeta = .0128, .0018;
>vz01a:=(wy) -> f(wy,10, .0128,1)-eval(subs(w0=37.9572,f(w0,10,.0128,1)));

vz01a :=

wy -> f(wy, 10, .0128, 1)-eval(subs(w0=37.9572, f(wO, 10, .0128, 1)))
>vzl0b:=(wy) -> f(wy,10,.0018,1)-eval(subs(w0=276.773,f(wO,10,.0018,1)));

vzOlb :=

wy -> f(wy, 10, .0018, 1)-eval(subs(w0=276.773, f(wO, 10, .0018, 1)))

> #Eta.eff = .025 --> zeta = .0275, .0021;

>vz025a:=(wy) -> f(wy,10,.0275,1)-eval(subs(w0=16.4881,f(wO,10,.0275,1)));

vz025a :=

wy -> f(vy, 10, .0275, 1)-eval(subs(w0=16.4881, f(wO, 10, .0275, 1)))
>vz025b:=(wy) -> f(wy,10,.0021,1)-eval(subs(w0=237.089,f(wO,10,.0021,1)));

vz025b :=

wy -> f(wy, 10, .0021, 1)-eval(subs(w0=237.089, f(wO, 10, .0021, 1)))

> #Eta.eff = .05 --> zeta = .0524, .0022;
>vz05a:=(wy) -> f(wy,10,.0524,1)-eval(subs(w0=9.71204,f(wO,10,.0524,1)));

vz05a :=

wy -> f(vy, 10, .0524, 1)-eval(subs(w0=9.71204, f(w0O, 10, .0524, 1)))
>vz05b:=(wy) -> f(wy,10,.0022,1)-eval(subs(w0=226.266,f(wO,10,.0022,1)));

vz05b :=

wy -> f(wy, 10, .0022, l)-eval(subs(w0=226.266, f(wO, 10, .0022, 1)))
------------- ------------------------------------------------------

> #Etaeff = .1 --> zeta = .1023, .0022;
>vzla:=(wy) -> f(wy,10,.1023,1)-eval(subs(w0=5.18128,f(wO,10,.1023,1)));

vzla :=

wy -> f(wy, 10, .1023, 1)-eval(subs(w0=5.18128, f(wO, 10, .1023, 1)))
>vzlb:=(wy) -> f(wy,10,.0022,1)-eval(subs(w0=226.266,f(w0,10,.0022,1)));

vzlb :=

wy -> f(wy, 10, .0022, 1)-eval(subs(w0=226.266, f(wO, 10, .0022, 1)))
> #Eta-------f = -.01 ------------> zeta = .0028;---

-------------------------------------------

> #Eta-eff = -. 01 -- > zeta = .0028;
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>vzm01:=(wy) -> f(wy,10,.0028,1)-eval(subs(w0=177.563,f(wO,10,.0028,1)));

vzm01 :=

wy -> f(wy, 10, .0028, 1)-eval(subs(wO=177.563, f(wO, 10, .0028, 1)))

> #Eta-eff = -.025 --> zeta = .0025;
>vzm025:=(wy) -> f(wy,10,.0025,1)-eval(subs(w0=198.992,f(wO,10,.0025,1)));

vzm025 :=

wy -> f(wy, 10, .0025, 1)-eval(subs(wO=198.992, f(wO, 10, .0025, 1)))

> #Etaeff = -.05 --> zeta = .0024;
>vzm05:=(wy) -> f(wy,10,.0024,1)-eval(subs(w0=207.326,f(wO,10,.0024,1)));

vzm05 :=

wy -> f(wy, 10, .0024, 1)-eval(subs(wO=207.326, f(wO, 10, .0024, 1)))

> #Eta.eff = -.1 --> zeta = .0023;
>vzml:=(wy) -> f(wy,10,.0023,1)-eval(subs(w0=216.385,f(wO,10,.0023,1)));

vzml :=

wy -> f(wy, 10, .0023, 1)-eval(subs(wO=216.385, f(wO, 10, .0023, 1)))

> plot({[x(wy,10,1,.0046,1),wy,wy=-107.677..107.677],[x(wy,10,1,.0128,1),wy,
wy=-37.9572..37.9572, [x(wy,10,1,.0275,1),wy,wy=-16.4881..16.4881),Ex(wy,10,
l,.0524,1),wy,wy=-9.71204..9.71204],[x(wy,10,1,.1023,1),wy,wy=-5.18128..
5.18128},0.. 1,-50..50,numpoints=600,resolution=600,color=black,thickness=1);

> plot({[x(wy,10,1,.0046,1),wy,wy=-107.677..107.677J,[x(wy,10,1,.0018,1),wy,
wy=- 2 76.7 7 3.. 276. 773J,[x(wy,10,1,.0021,1),wy,wy=-237.089..237.089],[x(wy,10,1,
.0022,1),wy,wy=-226.266..226.266,xwy,1],
Ex(wy,10,1,.0028,1),wy,wy=-177.563..177.563],[x(wy,10,1,.0025,1),wy,
wy=-198.992..198.9921,[x(wy,10,1,.0024,1),wy,wy=-207.326..207.326],[x(wy,10,1,
.0023,1),wy,wy=-216.385..216.385]},.3..0.7,-20..20,numpoints=600,resolution=
600,color=black,thickness=l);
---------------------------------------------------------------------

> plot({[x(wy,10,1,.0046,1),vzO(wy),wy=-107.677..107.677],[x(wy,10,1,.0128,1),
vz01a(wy),wy=-37.9572..37.9572, Ex(wy,10,1,.0275,1),vzO25a(wy),wy=-16.4881..
16 .488 1),[x(wy,10,1,.0524,1),vzO5a(wy),wy=-9.71204..9.71204],[x(wy,10,1,.1023,
1),vzla(wy),wy=-5.18128..5.18128]},0..1,numpoints=600,resolution=600,color=
black,thickness=l);
> plot([x(wy,10,1,.0128,1),vz0la(wy),wy=-37.9572..37.9572],.2..0.8,-20..-13,
numpoints=1000,resolution=1000,color=black,thickness=l);
------------- ------------- ----------------

> plot({[x(wy,10,1,.0046,1),vzO(wy),wy=-107.677..107.677],[x(wy,10,1,.0018,1),
vzOlb(wy),wy=-276.773..276.773],[x(wy,10,1,.0021,1),vzO25b(wy),
wy=-237.089..237.089, [x(wy,10,1,.0022,1),vzO5b(wy),wy=-226.266..226.266],
Cx(wy,10,1,.0022,1),vzlb(wy),wy=-226.266..226.266],[x(wy,10,1,.0028,1),
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vzmO1(wy),wy=-177.563..177.563], [x(wy,10,1,.0025,1),vzm025(wy),wy=-198.992..
198.992], [x(wy,10,1,.0024,1),vzm05(vy),wy=-207.326..207.326, Ex(wy,10,1,
.0023,1),vzml(wy),wy=-216.385..216.385 },0..1,numpoints=600,resolution=600,
color=black, thickness=l);
> plot ( [x(wy,10,1,.0023,1),vzml (wy),wy=-216.385..216.385,.3..0.7,-108..-100,
numpoints=1000 ,resolution=1000, color=black ,thickness=l);
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Appendix B

Mathematica Programs

Calculating Boundary Spin

Velocity wO

B.1 Transverse Field Only, IB-,1= 1, IHz = 0

denom[wy_,0m_,chi_] := ((wy^2 - Om'2 + 1 + chi)^2 +
(2 + chi)^2*0m^2)

tl[wy_,Om_,chi_,Bx_,Hz_] := -wy*(Abs[Bx]^2*(wy^2 - Om^2 + 1) +
Abs[Hz]^2*(wy^2 - Om^2 + (1 + chi)^2))

t2[wy_,0m_,chi_,Bx_,Hz_] := (chi*(wy^2 - Om^2) + I*Om*
(wy^2 - Om^2 - 1 - chi))*Hz*Conjugate[Bx]

t3[wy_,0m_,chi_,Bx_,Hz_] := (chi*(wy^2 - Om^2) - I*Om*
(wy^2 - Omr2 - 1 - chi))*Conjugate[Hz]*Bx

t[wy_,Om_,chi_,Bx_,Hz_] := .5*chi*(tl[wy,Om,chi,Bx,Hz] +
t2[wy,Om,chi,Bx,Hz] + t3[wy,Om,chi,Bx,Hz]) /
denom[wy,Om,chi]

dt[wy_,0m_,chi_,Bx_,Hz_] := D[t[wyp,Om,chi,Bx,Hz],wyp]/.wyp->wy

alphacrit[zeta_,eta_] := 2*zeta*eta/(zeta + eta)

x[wy_,Om_,chi_,zeta_,dpdz_] = -(Integrate[1-dt[wyp,Om,chi,1,O]/
alphacrit[zeta,zeta],wyp] -
.5*dpdz/zeta)*(zeta/dpdz) /.wyp->wy

151



0.5 dpdz 2
-(((wy - -------- + (2. chi wy - 2. chi Om wy +

zeta

3
2. chi wy ) /

2 2 2
(4 (1 + 2 chi + chi + 2 Om + 2 chi Om +

2 2 4 2 2
chi Om + Om + 2 wy + 2 chi wy -

2 2 4
2 Om wy + wy ) zeta)) zeta) / dpdz)

Solve[x[wO,2.0412,1,.0375,1]==O,wO]

{{wO -> -1.87816 - 1.43639 I}, {wO -> -1.87816 + 1.43639 I},

{wO -> 2.42626 - 1.52846 I}, {wO -> 2.42626 + 1.52846 I},

{wO -> 12.2371}}

Solve[x[wO,2.0412,1,.0434,1]==0,wO]

{{wO -> -1.88133 - 1.43979 I}, {wO -> -1.88133 + 1.43979 I},

{wO -> 2.43906 - 1.54095 I}, {wO -> 2.43906 + 1.54095 I},

{wO -> 10.4053}}

Solve[x[wO,2.0412,1,.0043,1] == 0, wO]

{{wO -> -1.86046 - 1.41316 I}, {wO -> -1.86046 + 1.41316 I},

{wO -> 2.36488 - 1.48488 I}, {wO -> 2.36488 + 1.48488 I},

{wO -> 115.27}}

Solve[x[wO,2.0412,1,.0545,1] == 0, wO]

{{wO -> -1.88727 - 1.44568 I}, {wO -> -1.88727 + 1.44568 I},

{wO -> 2.46399 - 1.57086 I}, {wO -> 2.46399 + 1.57086 I},

{wO -> 8.02088}}

Solve[x[wO,2.0412,1,.0086,1] == 0 ,wO]

{{wO -> -1.8627 - 1.41659 I}, {wO -> -1.8627 + 1.41659 I},

{wO -> 2.37179 - 1.48875 I}, {wO -> 2.37179 + 1.48875 I},
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{wO -> 57.1213}}

Solve[x[wO,2.0412,1,.0764,1] == 0, wO]

{{wO -> -1.89868 - 1.4555 I}, {wO -> -1.89868 + 1.4555 I},

{wO -> 2.50472 - 1.66546 I}, {wO -> 2.50472 + 1.66546 I},

{wO -> 5.33242}}

Solve[x[wO,2.0412,1,.0123,1] == 0, wv]

{{wO -> -1.86464 - 1.41943 I}, {wO -> -1.86464 + 1.41943 I},

{wO -> 2.37797 - 1.4924 I}, {wO -> 2.37797 + 1.4924 I},

{wO -> 39.6237}}

Solve[x[wO,2.0412,1,.1249,1] == 0, wOl

{{wO -> -1.92173 - 1.47061 I}, {wO -> -1.92173 + 1.47061 I},

{wO -> 2.35618 - 1.91081 I}, {wO -> 2.35618 + 1.91081 I},

{wO -> 3.13429}}

Solve[x[wO,2.0412,1,.0150,11 == 0, w3O

{{wO -> -1.86607 - 1.42145 I}, {wO -> -1.86607 + 1.42145 I},

{wO -> 2.38262 - 1.49527 I}, {wO -> 2.38262 + 1.49527 I},

{wO -> 32.3002}}

Solve[x[wO,2.0412,1,.0330,1] == 0, wOl

{{wO -> -1.87573 - 1.43365 I}, {wO -> -1.87573 + 1.43365 I},

{wO -> 2.41684 - 1.5202 I}, {wO -> 2.41684 + 1.5202 I},

{wO -> 14.0693}}

Solve[x[wO,2.0412,1,.0284,1] == 0, wO]

{{wO -> -1.87325 - 1.43073 I}, {wO -> -1.87325 + 1.43073 I},

{wO -> 2.40756 - 1.51271 I}, {wO -> 2.40756 + 1.51271 I},

{wO -> 16.537}}

Solve[x[wO,2.0412,1,.0246,1] == 0, wOl

{{wO -> -1.8712 - 1.42822 I}, {wO -> -1.8712 + 1.42822 I},
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{wO -> 2.40017 - 1.50716 I}, {wO -> 2.40017 + 1.50716 I},

{wO -> 19.2673}}

Solve[x[wO,2.0412,1,.0217,11 == 0, wO]

{{wO -> -1.86965 - 1.42624 I}, {wO -> -1.86965 + 1.42624 I},

{wO -> 2.3947 - 1.50326 I}, {wO -> 2.3947 + 1.50326 I},

{wO -> 21.9914}}

Solve[x[wO,1.05,1,.0048,1] == 0, wO]

{{wO -> -0.888014 - 1.34937 I},

{wO -> -0.888014 + 1.34937 I},

{wO -> 1.39282 - 1.48715 I}, {wO -> 1.39282 + 1.48715 I},

{wO -> 103.157}}

Solve[x[wO,1.05,1,.0140,1] == 0, w01

{{wO -> -0.888185 - 1.35496 I},

{wO -> -0.888185 + 1.35496 I}, {wO -> 1.40219 - 1.4974 I},

{wO -> 1.40219 + 1.4974 I}, {wO -> 34.6863}}

Solve[x[wO,1.05,1,.0017,1] == 0, wO]

{{wO -> -0.888008 - 1.34747 I},

{wO -> -0.888008 + 1.34747 I}, {wO -> 1.38971 - 1.484 I},

{wO -> 1.38971 + 1.484 I}, {wO -> 293.114}}

Solve[x[wO,1.05,1,.0301,1] == 0, w03

{{wO -> -0.889015 - 1.36447 I},

{wO -> -0.889015 + 1.36447 I},

{wO -> 1.41883 - 1.51908 I}, {wO -> 1.41883 + 1.51908 I},

{wO -> 15.5517}}

Solve[x[wO,1.05,1,.0020,1] == 0, wOl
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{{wO -> -0.888007 - 1.34766 I},

{wO -> -0.888007 + 1.34766 I}, {wO -> 1.39001 - 1.4843 I},

{wO -> 1.39001 + 1.4843 I}, {wO -> 248.996}}

Solve[x[wO,1.05,1,.0574,1] == 0, wO]

{{wO -> -0.891832 - 1.37972 I},

{wO -> -0.891832 + 1.37972 I},

{wO -> 1.44457 - 1.57028 I}, {wO -> 1.44457 + 1.57028 I},

{wO -> 7.60533}}

Solve[x[wO,1.05,1,.0021,1] == 0, wO]

{{wO -> -0.888007 - 1.34772 I},

{wO -> -0.888007 + 1.34772 I}, {wO -> 1.39011 - 1.4844 I},

{wO -> 1.39011 + 1.4844 I}, {wO -> 237.091}}

Solve[x[wO,1.05,1,.1120,1] == 0, wO]

{{wO -> -0.901696 - 1.40623 I},

{wO -> -0.901696 + 1.40623 I},

{wO -> 1.42739 - 1.72954 I}, {wO -> 1.42739 + 1.72954 I},

{wO -> 3.41289}}

Solve[x[wO,1.05,1,.0021,1] == 0, wO]

{{wO -> -0.888007 - 1.34772 I},

{wO -> -0.888007 + 1.34772 I}, {wO -> 1.39011 - 1.4844 I},

{wO -> 1.39011 + 1.4844 I}, {wO -> 237.091}}

Solve[x[wO,1.05,1,.0027,1] == 0,wO]

{{wO -> -0.888007 - 1.34809 I},

{wO -> -0.888007 + 1.34809 I}, {wO -> 1.39071 - 1.485 I},

{wO -> 1.39071 + 1.485 I}, {wO -> 184.18}}

Solve[x[wO,1.05,1,.0024,1] == 0, wO]

{{wO -> -0.888007 - 1.3479 I}, {wO -> -0.888007 + 1.3479 I},
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{wO -> 1.39041 - 1.4847 I}, {wO -> 1.39041 + 1.4847 I},

{wO -> 207.329}}

Solve[ExwO,1.05,1,.0023,1] == 0, wO]

{{wO -> -0.888007 - 1.34784 I},

{wO -> -0.888007 + 1.34784 I}, {wO -> 1.39031 - 1.4846 I},

{wO -> 1.39031 + 1.4846 I}, {wO -> 216.387}}

SolveEx[wO,1.05,1,.0022,11 == 0, wO]

{{wO -> -0.888007 - 1.34778 I},

{wO -> -0.888007 + 1.34778 I}, {wO -> 1.39021 - 1.4845 I},

{wO -> 1.39021 + 1.4845 I}, {wO -> 226.268}}

Solve[x[wO0.5,1,.0308,1] == 0, wO]

{{wO -> -1.33573 - 1.40384 I}, {wO -> -1.33573 + 1.40384 I},

{wO -> 1.86893 - 1.51558 I}, {wO -> 1.86893 + 1.51558 I},

{wO -> 15.1674}}

Solve[x[wO,1.5,1,.0371,1] == O,wO]

{{wO -> -1.33769 - 1.40771 I}, {wO -> -1.33769 + 1.40771 I},

{wO -> 1.87816 - 1.52597 I}, {wO -> 1.87816 + 1.52597 I},

{wO -> 12.3961}}

Solve[x[wO,1.5,1,.0041,1] == 0, wO]

{{wO -> -1.32837 - 1.38576 I}, {wO -> -1.32837 + 1.38576 I},

{wO -> 1.83251 - 1.48332 I}, {wO -> 1.83251 + 1.48332 I},

{wO -> 120.943}}

Solve[x[wO,1.5,1,.0492,1] == 0, wO]

{{wO -> -1.34164 - 1.41475 I}, {wO -> -1.34164 + 1.41475 I},

{wO -> 1.89601 - 1.55008 I}, {wO -> 1.89601 + 1.55008 I},

{wO -> 9.05384}}
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Solve[x[w0,1.5,1,.0078,1] == 0, wO]

{{wO -> -1.32928 - 1.38842 I}, {wO -> -1.32928 + 1.38842 I},

{wO -> 1.83724 - 1.48688 I}, {wO -> 1.83724 + 1.48688 I},

{wO -> 63.0867}}

Solve[x[wO,1.5,1,.0726,1] == O,wO]

{{wO -> -1.34976 - 1.42687 I}, {wO -> -1.34976 + 1.42687 I},

{wO -> 1.92522 - 1.61717 I}, {wO -> 1.92522 + 1.61717 I},

{wO -> 5.73612}}

Solve[x[wO,1.5,1,.0106,1] == 0, wO]

{{wO -> -1.33 - 1.39041 I}, {wO -> -1.33 + 1.39041 I},

{wO -> 1.84089 - 1.48975 I}, {wO -> 1.84089 + 1.48975 I},

{wO -> 46.148}}

Solve[x[w0,1.5,1,.1232,1] == 0, wO]

{{wO -> -1.36819 - 1.44701 I}, {wO -> -1.36819 + 1.44701 I},

{wO -> 1.85583 - 1.81606 I}, {wO -> 1.85583 + 1.81606 I},

{wO -> 3.08315}}

Solve[x[w0,1.5,1,.0125,1] == 0, wO]

{{wO -> -1.3305 - 1.39173 I}, {wO -> -1.3305 + 1.39173 I},

{wO -> 1.8434 - 1.49177 I}, {wO -> 1.8434 + 1.49177 I},

{wO -> 38.9742}}

Solve[x[w0,1.5,1,.0262,1] == 0, wO]

{{wO -> -1.33435 - 1.40091 I}, {wO -> -1.33435 + 1.40091 I},

{wO -> 1.86231 - 1.50878 I}, {wO -> 1.86231 + 1.50878 I},

{wO -> 18.028}}

Solve[x[wO,1.5,1,.0220,1] == 0, wO]

{{wO -> -1.33312 - 1.39817 I}, {wO -> -1.33312 + 1.39817 I},
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{wO -> 1.85637 - 1.50308 I}, {wO -> 1.85637 + 1.50308 I},

{wO -> 21.6808}}

Solve[x[w0,1.5,1,.0189,11 == 0, wOl

{{wO -> -1.33224 - 1.39611 I}, {wO -> -1.33224 + 1.39611 I},

{wO -> 1.85206 - 1.49916 I}, {wO -> 1.85206 + 1.49916 I},

{wO -> 25.4154}}

Solve[x[wO,1.5,1,.0169,1] == 0, wOl

{{wO -> -1.33169 - 1.39476 I}, {wO -> -1.33169 + 1.39476 I},

{wO -> 1.84932 - 1.49676 I}, {wO -> 1.84932 + 1.49676 I},

{wO -> 28.5505}}

Solve[x[wO,1.3,1,.0225,1] == O,wO]

{{wO -> -1.13528 - 1.38367 I}, {wO -> -1.13528 + 1.38367 I},

{wO -> 1.65841 - 1.5046 I}, {wO -> 1.65841 + 1.5046 I},

{wO -> 21.176}}

Solve[xwO,1.3,1,.0294,1]== O,wO0

{{wO -> -1.13663 - 1.38799 I}, {wO -> -1.13663 + 1.38799 I},

{wO -> 1.66703 - 1.51431 I, {wO -> 1.66703 + 1.51431 I},

{wO -> 15.946}}

Solve[x[wO,1.3,1,.0038,1]== 0,wO]

{{wO -> -1.13224 - 1.37133 I}, {wO -> -1.13224 + 1.37133 I},

{wO -> 1.63606 - 1.48342 I}, {wO -> 1.63606 + 1.48342 I},

{wO -> 130.571}}

SolveEx[wO,1.3,1,.0426,1]== O,wO]

{{wO -> -1.13951 - 1.3959 I}, {wO -> -1.13951 + 1.3959 I},

{wO -> 1.68363 - 1.53656 I}, {wO -> 1.68363 + 1.53656 I},
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{wO -> 10.6488}}

Solve[x[wO,1.3,1,.0066,1]== O,wO]

{{wO -> -1.13263 - 1.37324 I}, {wO -> -1.13263 + 1.37324 I},

{wO -> 1.63929 - 1.48618 I}, {wO -> 1.63929 + 1.48618 I},

{wO -> 74.7443}}

Solve[x[wO,1.3,1,.0675,11== O,wO]

{{wO -> -1.14584 - 1.40949 I}, {wO -> -1.14584 + 1.40949 I},

{wO -> 1.71109 - 1.59576 I}, {wO -> 1.71109 + 1.59576 I},

{wO -> 6.27691}}

Solve[x[wO,1.3,1,.0084,1]== O,wO]

{{wO -> -1.13289 - 1.37445 I}, {wO -> -1.13289 + 1.37445 I},

{wO -> 1.64139 - 1.48803 I}, {wO -> 1.64139 + 1.48803 I},

{wO -> 58.5068}}

Solve[x[wO,1.3,1,.1197,1]== O,wO]

{{wO -> -1.16143 - 1.43242 I}, {wO -> -1.16143 + 1.43242 I},

{wO -> 1.66737 - 1.77751 I}, {wO -> 1.66737 + 1.77751 I},

{wO -> 3.16523}}

Solve[x[wO,1.3,1,.0094,1J== O,wO]

{{wO -> -1.13305 - 1.37512 I}, {wO -> -1.13305 + 1.37512 I},

{wO -> 1.64257 - 1.48908 I}, {wO -> 1.64257 + 1.48908 I},

{wO -> 52.1724}}

Solve[x[w0,1.3,1,.0181,1]== O,wO]

{{wO -> -1.13448 - 1.38085 I}, {wO -> -1.13448 + 1.38085 I},

{wO -> 1.653 - 1.49899 I}, {wO -> 1.653 + 1.49899 I},

{wO -> 26.5873}}

Solve[x[wO,1.31,.0149,1,.149,1== O,wO]

{{wO -> -1.13393 - 1.37876 I}, {wO -> -1.13393 + 1.37876 I},
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{wO -> 1.64912 - 1.49517 I}, {wO -> 1.64912 + 1.49517 I},

{wO -> 32.5267}}

Solve[x[wO,1.3,1,.0129,1]== O,wO]

{{wO -> -1.1336 - 1.37745 I}, {wO -> -1.1336 + 1.37745 I},

{wO -> 1.64672 - 1.49289 I}, {wO -> 1.64672 + 1.49289 I},

{wO -> 37.7334}}

Solve[CxwO,1.3,1,.0118,1]== O,wO]

{{wO -> -1.13342 - 1.37672 I}, {wO -> -1.13342 + 1.37672 I},

{wO -> 1.64541 - 1.49167 I}, {wO -> 1.64541 + 1.49167 I},

{wO -> 41.3489}}

Solve[x[wO,5.0,1,.0159,11 == 0, w]0

{{wO -> -4.81375 - 1.47147 I}, {wO -> -4.81375 + 1.47147 I},

{wO -> 5.34367 - 1.49718 I}, {wO -> 5.34367 + 1.49718 I},

{wO -> 30.3867}}

Solve[x[wO,5.0,1,.0224,1] == 0, wO]

{{wO -> -4.82388 - 1.47599 I}, {wO -> -4.82388 + 1.47599 I},

{wO -> 5.37626 - 1.50573 I}, {wO -> 5.37626 + 1.50573 I},

{wO -> 21.2167}}

Solve[x[wO,5.0,1,.0036,1] == 0, w0]

{{wO -> -4.79207 - 1.46032 I}, {wO -> -4.79207 + 1.46032 I},

{wO -> 5.29631 - 1.4876 I}, {wO -> 5.29631 + 1.4876 I},

{wO -> 137.88}}

Solve[x[wO,5.0,1,.0353,1] == 0, wO]
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{{wO -> -4.84166 - 1.48295 I}, {wO -> -4.84166 + 1.48295 I},

{wO -> 5.46654 - 1.5391 I}, {wO -> 5.46654 + 1.5391 I},

{wO -> 12.9145}}

Solve[x[w0,5.0,1,.0056,1] == 0, wO]

{{wO -> -4.79583 - 1.4624 I}, {wO -> -4.79583 + 1.4624 I},

{wO -> 5.30301 - 1.48876 I}, {wO -> 5.30301 + 1.48876 I},

{wO -> 88.271411}}

Solve[x[w0,5.0,1,.0593,1] == 0, wO)

{{wO -> -4.86812 - 1.49113 I}, {wO -> -4.86812 + 1.49113 I},

{wO -> 5.7035 - 1.93525 I}, {wO -> 5.7035 + 1.93525 I},

{wO -> 6.76095}}

Solve[x[wO,5.0,1,.0067,1] == 0, wO]

{{wO -> -4.79786 - 1.4635 I}, {wO -> -4.79786 + 1.4635 I},

{wO -> 5.30684 - 1.48945 I}, {wO -> 5.30684 + 1.48945 I},

{wO -> 73.608911

Solve[x[wO,5.0,1,.1087,1] == 0, wO0

{{wO -> -4.90479 - 1.49845 I}, {wO -> -4.90479 + 1.49845 I},

{wO -> 4.74432}, {wO -> 4.83254 - 2.10714 I},

{wO -> 4.83254 + 2.10714 I}}

Solve[x[wO,5.0,1,.0073,1] == 0, wO0

{{wO -> -4.79896 - 1.46409 I}, {wO -> -4.79896 + 1.46409 I},

{wO -> 5.30898 - 1.48984 I}, {wO -> 5.30898 + 1.48984 I},

{wO -> 67.4731}}

Solve[x[wO,5.0,1,.0123,1] == 0, wO]

{{wO -> -4.80776 - 1.46859 I}, {wO -> -4.80776 + 1.46859 I},

{wO -> 5.32814 - 1.49368 I}, {wO -> 5.32814 + 1.49368 I},

{wO -> 39.609611}}
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Solve[x[wO,5.0,1,.0103,11 == 0, w0]

{{wO -> -4.80431 - 1.46686 I}, {wO -> -4.80431 + 1.46686 I},

{wO -> 5.32017 - 1.49202 I}, {wO -> 5.32017 + 1.49202 I},

{wO -> 47.512}}

Solve[x[wO,5.0,1,.0092,1] == 0, wO]

{{wO -> -4.80237 - 1.46587 I}, {wO -> -4.80237 + 1.46587 I},

{wO -> 5.31596 - 1.49118 I}, {wO -> 5.31596 + 1.49118 I},

{wO -> 53.3206}}

Solve[x[wO,5.0,1,.0086,1] == 0, wO0

{{wO -> -4.8013 - 1.46532 I}, {wO -> -4.8013 + 1.46532 I},

{wO -> 5.31372 - 1.49074 I}, {wO -> 5.31372 + 1.49074 I},

{wO -> 57.1147}}

Solve[x[wO,3.25,1,.0284,1] == 0, wO]

{{wO -> -3.07932 - 1.46206 I}, {wO -> -3.07932 + 1.46206 I},

{wO -> 3.62695 - 1.51563 I}, {wO -> 3.62695 + 1.51563 I},

{wO -> 16.5104}}

Solve[x[w0,3.25,1,.0343,1] == 0, wO]

{{wO -> -3.08487 - 1.46553 I}, {wO -> -3.08487 + 1.46553 I},

{wO -> 3.6486 - 1.52753 I}, {wO -> 3.6486 + 1.52753 I},

{wO -> 13.4498}}

Solve[x[wO,3.25,1,.0041,1] == 0, wO]

{{wO -> -3.05429 - 1.44343 I}, {wO -> -3.05429 + 1.44343 I},

{wO -> 3.55873 - 1.48756 I}, {wO -> 3.55873 + 1.48756 I},

{wO -> 120.942}}

Solvex[wO0,3.25,1,.0458,1] == 0, wO]
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{{wO -> -3.09508 - 1.47137 I}, {wO -> -3.09508 + 1.47137 I},

{wO -> 3.69833 - 1.56225 I}, {wO -> 3.69833 + 1.56225 I},

{wO -> 9.71053}}

Solve[x[wO,3.25,1,.0078,11 == 0, wO]

{{wO -> -3.05833 - 1.44679 I}, {wO -> -3.05833 + 1.44679 I},

{wO -> 3.56736 - 1.49041 I}, {wO -> 3.56736 + 1.49041 I},

{wO -> 63.0845}}

Solve[x[wO,3.25,1,.0683,1] == 0, wO]

{{wO -> -3.11288 - 1.47997 I}, {wO -> -3.11288 + 1.47997 I},

{wO -> 3.80432 - 1.73229 I}, {wO -> 3.80432 + 1.73229 I},

{wO -> 5.93777}}

Solve[x[wO,3.25,1,.0104,1] == 0, wO]

{{wO -> -3.06111 - 1.44903 I}, {wO -> -3.06111 + 1.44903 I},

{wO -> 3.57375 - 1.49264 I}, {wO -> 3.57375 + 1.49264 I},

{wO -> 47.0517}}

Solve[x[wO,3.25,1,.1168,1] == 0, wO0

{{wO -> -3.14301 - 1.49049 I}, {wO -> -3.14301 + 1.49049 I},

{wO -> 3.4215 - 2.07128 I}, {wO -> 3.4215 + 2.07128 I},

{wO -> 3.72385}}

Solve[x[wO,3.25,1,.0122,1] == 0, wO]

{{wO -> -3.06302 - 1.45052 I}, {wO -> -3.06302 + 1.45052 I},

{wO -> 3.57834 - 1.49431 I}, {wO -> 3.57834 + 1.49431 I},

{wO -> 39.953}}

Solve[x[wO,3.25,1,.0242,1] == 0, wO]

{{wO -> -3.07525 - 1.45937 I}, {wO -> -3.07525 + 1.45937 I},

{wO -> 3.61294 - 1.50876 I}, {wO -> 3.61294 + 1.50876 I},

{wO -> 19.5858}}
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Solve[x[wO,3.25,1,.0205,11 == 0, wO]

{{wO -> -3.07157 - 1.45684 I}, {wO -> -3.07157 + 1.45684 I},

{wO -> 3.60147 - 1.50359 I}, {wO -> 3.60147 + 1.50359 I},

{wO -> 23.3304}}

Solve[x[wO,3.25,1,.0179,1] == 0, wO]

{{wO -> -3.06894 - 1.45495 I}, {wO -> -3.06894 + 1.45495 I},

{wO -> 3.59386 - 1.50037 I}, {wO -> 3.59386 + 1.50037 I},

{wO -> 26.8831}}

Solve[x[wO,3.25,1,.0161,1] == 0, wO]

{{wO -> -3.06709 - 1.4536 I}, {wO -> -3.06709 + 1.4536 I},

{wO -> 3.58879 - 1.49832 I}, {wO -> 3.58879 + 1.49832 I},

{wO -> 30.0125}}

Solve[x[wO,10,1,.0047,1] == 0, wO]

{{wO -> -9.78799 - 1.47621 I}, {wO -> -9.78799 + 1.47621 I},

{wO -> 10.2973 - 1.4845 I}, {wO -> 10.2973 + 1.4845 I},

{wO -> 105.364}}

Solve[x[wO,10,1,.0129,1] == 0, wO]

{{wO -> -9.81587 - 1.48437 I}, {wO -> -9.81587 + 1.48437 I},

{wO -> 10.368 - 1.48655 I}, {wO -> 10.368 + 1.48655 I},

{wO -> 37.6553}}

Solve[x[wO,10,1,.0018,1] == 0, wO]

{{wO -> -9.77628 - 1.47229 I}, {wO -> -9.77628 + 1.47229 I},

{wO -> 10.2787 - 1.48431 I}, {wO -> 10.2787 + 1.48431 I},

{wO -> 276.773}}
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Solve[x[wO,10,1,.0276,1] == 0,

{{wO -> -9.85213 - 1.49256 I},

{wO -> 10.6853 - 1.52634 I},

{wO -> 16.4497}}

Solve[x[w0,10,1,.0021,1] == 0,

{{wO -> -9.77754 - 1.47272 I},

{wO -> 10.2805 - 1.48432 I},

{wO -> 237.089}}

wO]

{wO

{wO

w0]

{wO

{wO

-9.85213 + 1.49256 I},

10.6853 + 1.52634 I},

-9.77754 + 1.47272 I},

10.2805 + 1.48432 I},

Solve[x[wO,10,1,.0525,1] == 0, wO]

{{wO -> -9.89071 - 1.49839 I}, {wO -> -9.89071 + 1.49839 I},

{wO -> 9.74765 - 2.62435 I}, {wO -> 9.74765 + 2.62435 I},

{wO -> 9.80991}}

Solve[x[wO,10,1,.0022,1] == 0, wO]

{{wO -> -9.77796 - 1.47287 I}, {wO -> -9.77796 + 1.47287 I},

{wO -> 10.2811 - 1.48433 I}, {wO -> 10.2811 + 1.48433 I},

{wO -> 226.266}}

Solve[x[wO,10,1,.1024,1] == 0, wO]

{{wO -> -9.93058 - 1.50139 I}, {wO -> -9.93058 + 1.50139 I},

{wO -> 5.18971}, {wO -> 9.77713 - 1.54371 I},

{wO -> 9.77713 + 1.54371 I}}

Solve[x[wO,10,1,.0023,1] == 0, wO]

{{wO -> -9.77838 - 1.47301 I}, {wO -> -9.77838 + 1.47301 I},

{wO -> 10.2817 - 1.48433 I}, {wO -> 10.2817 + 1.48433 I},

{wO -> 216.385}}

Solve[x[wO,10,1,.0029,1] == 0,

{{wO -> -9.78085 - 1.47385 I},

{wO -> 10.2855 - 1.48436 I},

wO]

{wO -> -9.78085 + 1.47385 I},

{wO -> 10.2855 + 1.48436 I},
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{wO -> 171.405}}

Solve[x[w0,10,1,.0026,1] == 0, wO]

{{wO -> -9.77962 - 1.47344 I}, {wO -> -9.77962 + 1.47344 I

{wO -> 10.2836 - 1.48434 I}, {wO -> 10.2836 + 1.48434 I}

{wO -> 191.3}}

Solve[x[wO,10,1,.0025,1] == 0, wO]

{{wO -> -9.77921 - 1.4733 I}, {wO -> -9.77921 + 1.4733 I},

{wO -> 10.283 - 1.48434 I}, {wO -> 10.283 + 1.48434 I},

{wO -> 198.992}}

Solve[x[wO,10,1,.0024,1] == 0, wO]

{{wO -> -9.77879 - 1.47315 I}, {wO -> -9.77879 + 1.47315 I

{wO -> 10.2824 - 1.48433 I}, {wO -> 10.2824 + 1.48433 I}

{wO -> 207.326}}

Solve[x[wO,30,1,.00055187,1] == 0, wO]

{{wO -> -29.764 - 1.47807 I}, {wO -> -29.764 + 1.47807 I},

{wO -> 30.2651 - 1.48026 I}, {wO -> 30.2651 + 1.48026 I},

{wO -> 905.008}}
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B.2 Tangential Field Only, IBI - 0, IHIz = 1
denom[wy_,0m_,chi_] := ((wy^2 - Om^2 + 1 + chi)^2 +
(2 + chi)^2*0m^2)

tl[wy_,Om_,chi_,Bx_,Hz_] := -wy*(Abs[Bx]^2*(wy^2 - Om^2 + 1) +
Abs[Hz]^2*(wy^2 - Om^2 + (1 + chi)^2))

t2[wy_,Om_,chi_,Bx_,Hz_] := (chi*(wy^2 - Om^2) + I*Om*
(wy^2 - Om^2 - 1 - chi))*Hz*Conjugate[Bxl

t3[wy_,Om_,chi-,Bx_,Hz_] := (chi*(wy^2 - Om^2) - I*Om*
(wy^2 - Om^2 - 1 - chi))*Conjugate[Hz]*Bx

t[wy_,Om_,chi ,Bx_,Hz_] := .5*chi*(tl[wy,Om,chi,Bx,Hz] +
t2[wy,Om,chi,Bx,Hz] + t3[wy,Om,chi,Bx,Hz]) /
denom[wy,Om,chi]

dt[wy_,0m_,chi_,Bx_,Hzi] := D[t[wyp,Om,chi,Bx,Hz],wyp]/.wyp->wy

alphacrit[zeta_,eta_] := 2*zeta*eta/(zeta + eta)

x[wy_,Om_,chi_,zeta_,dpdz_] = -(Integrate[1-dt[wyp,Om,chi,0,1]/
alphacrit[zeta,zeta],wyp] -
.5*dpdz/zeta)*(zeta/dpdz) /.wyp->wy

0.5 dpdz 2 3
-(((wy - -------- + (2. chi wy + 4. chi wy + 2. chi wy -

zeta

2 3
2. chi Om wy + 2. chi wy ) /

2 2 2
(4 (1 + 2 chi + chi + 2 Om + 2 chi Om +

2 2 4 2 2
chi Om + Om + 2 wy + 2 chi wy -

2 2 4
2 Om wy + wy ) zeta)) zeta) / dpdz)

Solve[x[w0,3.2126,1,.0195,1]==0,wO]

{{wO -> -3.03477 - 1.52174 I}, {wO -> -3.03477 + 1.52174 I},

{wO -> 3.56528 - 1.40085 I}, {wO -> 3.56528 + 1.40085 I},

{wO -> 24.58}}

Solve[x[wO,3.2126,1,.0257,1]==0,wO]

{{wO -> -3.04176 - 1.52396 I}, {wO -> -3.04176 + 1.52396 I},
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{wO -> 3.58773 - 1.40272 I}, {wO -> 3.58773 + 1.40272 I},

{wO -> 18.3633}}

Solve[x[w0,3.2126,1,.0038,1]==0,wO]

{{wO -> -3.01556 - 1.51426 I}, {wO -> -3.01556 + 1.51426 I},

{wO -> 3.51973 - 1.39983 I}, {wO -> 3.51973 + 1.39983 I},

{wO -> 130.571}}

Solve[x[wO,3.2126,1,.0381,1]==0,wO]

{{wO -> -3.05477 - 1.52742 I}, {wO -> -3.05477 + 1.52742 I},

{wO -> 3.64374 - 1.41153 I}, {wO -> 3.64374 + 1.41153 I},

{wO -> 11.9454}}

Solve[x[w0,3.2126,1,.0064,1]==0,w0O

{{wO -> -3.0189 - 1.51571 I}, {wO -> -3.0189 + 1.51571 I},

{wO -> 3.52636 - 1.39975 I}, {wO -> 3.52636 + 1.39975 I},

{wO -> 77.1101}}

Solve[x[w0,3.2126,1,.0616,1]==0,wO]

{{wO -> -3.07615 - 1.53127 I}, {wO -> -3.07615 + 1.53127 I},

{wO -> 3.8191 - 1.49058 I}, {wO -> 3.8191 + 1.49058 I},

{wO -> 6.63099}}

Solve[x[wO,3.2126,1,.0079,1]==0,wO]

{{wO -> -3.02079 - 1.5165 I}, {wO -> -3.02079 + 1.5165 I},

{wO -> 3.53033 - 1.39974 I}, {wO -> 3.53033 + 1.39974 I},

{wO -> 62.2721}}

Solve[x[wO,3.2126,1,.1107,1]==0,wO]

{{wO -> -3.1098 - 1.53296 I}, {wO -> -3.1098 + 1.53296 I},

{wO -> 3.57587 - 2.05112 I}, {wO -> 3.57587 + 2.05112 I},

{wO -> 3.58458}}

Solve[x[wO,3.2126,1,.0088,1]==0,wO]
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{{wO -> -3.02192 - 1.51697 I}, {wO -> -3.02192 + 1.51697 I},

{wO -> 3.53276 - 1.39974 I}, {wO -> 3.53276 + 1.39974 I},

{wO -> 55.7965}}

Solve[x[wO,3.2126,1,.0157,1]==0,wO]

{{wO -> -3.03032 - 1.52019 I}, {wO -> -3.03032 + 1.52019 I},

{wO -> 3.55292 - 1.40021 I, {wO -> 3.55292 + 1.40021 I},

{wO -> 30.8019}}

Solve[x[w0,3.2126,1,.0131,1)==O,wO]

{{wO -> -3.02721 - 1.51904 I}, {wO -> -3.02721 + 1.51904 I},

{wO -> 3.545 - 1.39994 I}, {wO -> 3.545 + 1.39994 I},

{wO -> 37.1324}}

Solve[xEwO,3.2126,1,.0116,1]==O,wO]

{{wO -> -3.02538 - 1.51834 I}, {wO -> -3.02538 + 1.51834 I},

{wO -> 3.54061 - 1.39984 I}, {wO -> 3.54061 + 1.39984 I},

{wO -> 42.073}}

Solve[x[wO,3.2126,1,.0107,1]==0,wO]

{{wO -> -3.02428 - 1.51791 I, {wO -> -3.02428 + 1.51791 I},

{wO -> 3.53804 - 1.39979 I}, {wO -> 3.53804 + 1.39979 I},

{wO -> 45.7014}}

Solve[xEwO,2.05,1,.0024,1] == 0, wO]

{{wO -> -1.86264 - 1.52323 I}, {wO -> -1.86264 + 1.52323 I},

{wO -> 2.36511 - 1.34634 I}, {wO -> 2.36511 + 1.34634 I},

{wO -> 207.328}}

Solvelx[wO,2.05,1,.0113,1] == 0, wO]
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{{wO -> -1.87014 - 1.52759 I}, {wO ->

{wO -> 2.38316 - 1.34638 I}, {wO ->

{wO -> 43.2218}}

Solve[x[wO,2.05,1,.0010,1] == 0, wO]

{{wO -> -1.86145 - 1.52249 I}, {wO ->

{wO -> 2.36246 - 1.34639 I}, {wO ->

{wO -> 498.998}}

Solve[x[wO,2.05,1,.0262,1] == 0, wO]

{{wO -> -1.88236 - 1.53359 I}, {wO ->

{wO -> 2.41889 - 1.34869 I}, {wO ->

{wO -> 18.0109}}

Solve[CxwO,2.05,1,.0011,1J == 0, w03

{{wO -> -1.86153 - 1.52254 I}, {wO ->

{wO -> 2.36265 - 1.34639 I}, {wO ->

{wO -> 453.543}}

Solve[x[wO,2.05,1,.0512,11 == 0, wO]

{{wO -> -1.90157 - 1.54061 I}, {wO ->

{wO -> 2.50124 - 1.36606 I}, {wO ->

{wO -> 8.56627}}

Solve[x[wO,2.05,1,.0012,1] == 0, w03

{{wO -> -1.86162 - 1.52259 I}, {wO ->

{wO -> 2.36284 - 1.34639 I}, {wO ->

{wO -> 415.664}}

Solve[x[wO,2.05,1,.1012,1] == 0, wO]

{{wO -> -1.93417 - 1.54657 I}, {wO ->

{wO -> 2.69273 - 1.67056 I}, {wO ->

{wO -> 3.42359}}

-1.87014 + 1.52759 I},

2.38316 + 1.34638 I},

-1.86145 + 1.52249 I},

2.36246 + 1.34639 I},

-1.88236 + 1.53359 I},

2.41889 + 1.34869 I},

-1.86153 + 1.52254 I},

2.36265 + 1.34639 I},

-1.90157 + 1.54061 I},

2.50124 + 1.36606 I},

-1.86162 + 1.52259 I},

2.36284 + 1.34639 1},

-1.93417 + 1.54657 I},

2.69273 + 1.67056 I},
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Solve[x[wO,2.05,1,.0013,1] == 0, wO]

{{wO -> -1.8617 - 1.52265 I}, {wO -> -1.8617 + 1.52265 I},

{wO -> 2.36302 - 1.34638 I}, {wO -> 2.36302 + 1.34638 I},

{wO -> 383.613}}

Solve[x[wO,2.5,1,.0151,1) == 0, wOl

{{wO -> -2.3206 - 1.52454 I}, {wO -> -2.3206 + 1.52454 I},

{wO -> 2.83992 - 1.37339 I}, {wO -> 2.83992 + 1.37339 I},

{wO -> 32.0739}}

Solve[x[wO,2.5,1,.0216,1] == 0, wOl

{{wO -> -2.32679 - 1.52717 I}, {wO -> -2.32679 + 1.52717 I},

{wO -> 2.85748 - 1.37449 I}, {wO -> 2.85748 + 1.37449 I},

{wO -> 22.0868}}

Solve[x[wO,2.5,1,.0035,1] == 0, wOl

{{wO -> -2.30911 - 1.51892 I}, {wO -> -2.30911 + 1.51892 I},

{wO -> 2.81282 - 1.37296 I}, {wO -> 2.81282 + 1.37296 I},

{wO -> 141.85}}

Solve[x[wO,2.5,1,.0347,1] == 0, wO]

{{wO -> -2.33868 - 1.53149 I}, {wO -> -2.33868 + 1.53149 I},

{wO -> 2.89966 - 1.37987 I}, {wO -> 2.89966 + 1.37987 I},

{wO -> 13.2873}}

Solve[x[wO0,2.5,1,.0055,1] == 0, wOl

{{wO -> -2.31113 - 1.51998 I}, {wO -> -2.31113 + 1.51998 I},

{wO -> 2.81715 - 1.37293 I}, {wO -> 2.81715 + 1.37293 I},

{wO -> 89.8971}}
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Solve[x[wO,2.5,1,.0587,1] == 0, wO]

{{wO -> -2.35837 - 1.53665 I}, {wO -> -2.35837 + 1.53665 I}

{wO -> 3.01251 - 1.41626 I}, {wO -> 3.01251 + 1.41626 I},

{wO -> 7.20961}}

Solve[x[w0,2.5,1,.0064,1] == 0, wO]

{{wO -> -2.31203 - 1.52045 I}, {wO -> -2.31203 + 1.52045 I}

{wO -> 2.81914 - 1.37292 I}, {wO -> 2.81914 + 1.37292 I},

{wO -> 77.1108}}

Solve[x[wO,2.5,1,.1081,1] == 0, wO]

{{wO -> -2.39095 - 1.54021 I}, {wO -> -2.39095 + 1.54021 I}

{wO -> 3.04921 - 1.88272 I}, {wO -> 3.04921 + 1.88272 I},

{wO -> 3.30883}}

Solve[x[wO,2.5,1,.0070,1] == 0, wO]

{{wO -> -2.31263 - 1.52075 I}, {wO -> -2.31263 + 1.52075 I}

{wO -> 2.82049 - 1.37293 I}, {wO -> 2.82049 + 1.37293 I},

{wO -> 70.4129}}

Solve[x[wO,2.5,1,.0116,1] == 0, wO]

{{wO -> -2.31719 - 1.52298 I}, {wO -> -2.31719 + 1.52298 I}

{wO -> 2.83121 - 1.37309 I}, {wO -> 2.83121 + 1.37309 I},

{wO -> 42.0754}}

Solve[x[wO,2.5,1,.0097,1] == 0, wO]

{{wO -> -2.31532 - 1.52208 I}, {wO -> -2.31532 + 1.52208 I}

{wO -> 2.82669 - 1.37299 I}, {wO -> 2.82669 + 1.37299 I},

{wO -> 50.5237}}

Solve[x[wO,2.5,1,.0087,1] == 0, wO]

{{wO -> -2.31433 - 1.5216 I}, {wO -> -2.31433 + 1.5216 I},

{wO -> 2.82436 - 1.37296 I}, {wO -> 2.82436 + 1.37296 I},
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{wO -> 56.4512}}

Solve[x[wO,2.5,1,.0081,1] == 0, wO]

{{wO -> -2.31373 - 1.5213 I}, {wO -> -2.31373 + 1.5213 I},

{wO -> 2.82298 - 1.37294 I}, {wO -> 2.82298 + 1.37294 I},

{wO -> 60.7099}}

Solve[x[wO,4.5,1,.0158,1] == 0, wO]

{{wO -> -4.31493 - 1.51498 I}, {wO -> -4.31493 + 1.51498 I},

{wO -> 4.84354 - 1.42533 I}, {wO -> 4.84354 + 1.42533 I},

{wO -> 30.5884}}

Solve[x[wO,4.5,1,.0222,1] == 0, wO]

{{wO -> -4.32463 - 1.51742 I}, {wO -> -4.32463 + 1.51742 I},

{wO -> 4.87401 - 1.42659 I}, {wO -> 4.87401 + 1.42659 I},

{wO -> 21.4238}}

Solve[x[wO,4.5,1,.0035,1] == 0, wO]

{{wO -> -4.29402 - 1.50847 I}, {wO -> -4.29402 + 1.50847 I},

{wO -> 4.79808 - 1.42572 I}, {wO -> 4.79808 + 1.42572 I},

{wO -> 141.849}}

Solve[x[wO,4.5,1,.0352,1] == 0, wO]

{{wO -> -4.34216 - 1.52092 I}, {wO -> -4.34216 + 1.52092 I},

{wO -> 4.95959 - 1.43696 I}, {wO -> 4.95959 + 1.43696 I},

{wO -> 12.9697}}

Solve[x[wO,4.5,1,.0056,1] == 0, wO]

{{wO -> -4.29782 - 1.50978 I}, {wO -> -4.29782 + 1.50978 I},

{wO -> 4.80488 - 1.42549 I}, {wO -> 4.80488 + 1.42549 I},
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{wO -> 88.2716}}

Solve[x[wO,4.5,1,.0591,1] == 0, w01

{{wO -> -4.36818 - 1.52403 I}, {wO -> -4.36818 + 1.52403 I},

{wO -> 5.29308 - 1.67223 I}, {wO -> 5.29308 + 1.67223 I},

{wO -> 6.61044}}

Solve[x[wO,4.5,1,.0067,11 == 0, wO]

{{wO -> -4.29977 - 1.51043 I}, {wO -> -4.29977 + 1.51043 I},

{wO -> 4.80858 - 1.42539 I}, {wO -> 4.80858 + 1.42539 I},

{wO -> 73.6092}}

Solve[xEwO,4.5,1,.1085,1] == 0, w3O

{{wO -> -4.40487 - 1.52435 I}, {wO -> -4.40487 + 1.52435 I},

{wO -> 4.33254}, {wO -> 4.54274 - 2.14273 I},

{wO -> 4.54274 + 2.14273 I}}

Solve[x[wO,4.5,1,.0073,1] == 0, wOl

{{wO -> -4.30082 - 1.51078 I}, {wO -> -4.30082 + 1.51078 I},

{wO -> 4.81064 - 1.42534 I}, {wO -> 4.81064 + 1.42534 I},

{vO -> 67.4735}}

Solve[x[wO,4.5,1,.0122,11 == 0, wOl

{{wO -> -4.30913 - 1.51335 I}, {wO -> -4.30913 + 1.51335 I},

{wO -> 4.8287 - 1.42516 I}, {wO -> 4.8287 + 1.42516 I},

{wO -> 39.9445}}

Solve[x[wO,4.5,1,.0102,1] == 0, wOl

{{wO -> -4.3058 - 1.51235 I}, {wO -> -4.3058 + 1.51235 I},

{wO -> 4.82105 - 1.42519 I}, {wO -> 4.82105 + 1.42519 I},

{wO -> 47.9891}}

Solve[x[w0,4.5,1,.0091,1] == 0, wO]

{{wO -> -4.30393 - 1.51178 I}, {wO -> -4.30393 + 1.51178 I},
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{wO -> 4.81701 - 1.42523 I}, {wO -> 4.81701 + 1.42523 I},

{wO -> 53.9189}}

Solve[x[w0,4.5,1,.0085,1] == 0, wO]

{{wO -> -4.3029 - 1.51145 I}, {wO -> -4.3029 + 1.51145 I},

{wO -> 4.81485 - 1.42526 I}, {wO -> 4.81485 + 1.42526 I},

{wO -> 57.7996}}

Solve[x[wO,6,1,.0108,1] == 0, wO0

{{wO -> -5.8051 - 1.50864 I}, {wO -> -5.8051 + 1.50864 I},

{wO -> 6.32572 - 1.43919 I}, {wO -> 6.32572 + 1.43919 I},

{wO -> 45.2551}}

Solve[x[wO,6,1,.0178,1] == 0, wO0

{{wO -> -5.81932 - 1.5118 I}, {wO -> -5.81932 + 1.5118 I},

{wO -> 6.36625 - 1.43883 I}, {wO -> 6.36625 + 1.43883 I},

{wO -> 26.996}}

Solve[x[w0,6,1,.0030,1] == 0, wOl

{{wO -> -5.78704 - 1.50374 I}, {wO -> -5.78704 + 1.50374 I}

{wO -> 6.29074 - 1.44073 I}, {wO -> 6.29074 + 1.44073 I},

{wO -> 165.659}}

Solve[x[wO,6,1,.0315,1] == 0, wO]

{{wO -> -5.84273 - 1.51569 I}, {wO -> -5.84273 + 1.51569 I}

{wO -> 6.49167 - 1.44771 I, {wO -> 6.49167 + 1.44771 I},

{wO -> 14.5751}}

Solve[x[w0,6,1,.0043,1] == 0, w3O

{{wO -> -5.79023 - 1.50468 I}, {wO -> -5.79023 + 1.50468 I}
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{wO -> 6.29599 - 1.44043 I}, {wO -> 6.29599 + 1.44043 I},

{wO -> 115.268}}

Solve[x[wO,6,1,.0560,1] == 0, wO]

{{wO -> -5.87393 - 1.51844 I}, {wO -> -5.87393 + 1.51844 I},

{wO -> 6.84064 - 2.12761 I, {wO -> 6.84064 + 2.12761 I},

{wO -> 6.99514}}

Solve[x[wO,6,1,.0048,1] == 0, wO]

{{wO -> -5.79144 - 1.50503 I}, {wO -> -5.79144 + 1.50503 I},

{wO -> 6.29806 - 1.44032 I}, {wO -> 6.29806 + 1.44032 I},

{wO -> 103.153}}

Solve[xEwO,6,1,.1057,1] == 0, wO]

{{wO -> -5.91304 - 1.51802 I}, {wO -> -5.91304 + 1.51802 I},

{wO -> 5.10211}, {wO -> 5.72717 - 2.0045 I},

{wO -> 5.72717 + 2.0045 I}}

Solve[x[w0,6,1,.0051,1] == 0, wO]

{{wO -> -5.79215 - 1.50523 I}, {wO -> -5.79215 + 1.50523 I},

{wO -> 6.29932 - 1.44025 I}, {wO -> 6.29932 + 1.44025 I},

{wO -> 97.0249}}

Solve[x[wO,6,1,.0078,1] == 0, wO]

{{wO -> -5.79845 - 1.50696 I}, {wO -> -5.79845 + 1.50696 I},

{wO -> 6.31121 - 1.4397 I}, {wO -> 6.31121 + 1.4397 I},

{wO -> 63.077}}

Solve[ExwO,6,1,.0065,1] == 0, wO0

{{wO -> -5.79546 - 1.50615 I}, {wO -> -5.79546 + 1.50615 I},

{wO -> 6.30536 - 1.43995 I}, {wO -> 6.30536 + 1.43995 I},

{wO -> 75.9033}}

Solve[xCwO,6,1,.0060,1] == 0, w0V
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{{wO -> -5.79429 - 1.50583 I},

{wO -> 6.30317 - 1.44006 I},

{wO -> 82.3156}}

Solve[x[wO,6,1,.0057,1] == 0,

{{wO -> -5.79358 - 1.50563 I},

{wO -> 6.30187 - 1.44012 I},

{wO -> 86.7027}}

Solve[x[wO,10,1,.0046,1] == 0,

{{wO -> -9.78781 - 1.49874 I},

{wO -> 10.2969 - 1.45544 I},

{wO -> 107.677}}

Solve[x[wO,10,1,.0128,11 == 0,

{{wO -> -9.81611 - 1.50406 I},

{wO -> 10.3688 - 1.44981 I},

{wO -> 37.9572}}

Solve[x[wO,10,1,.0018,1] == 0,

{{wO -> -9.77631 - 1.49611 I},

{wO -> 10.2788 - 1.45716 I},

{wO -> 276.773}}

{wO -> -5.79429 + 1.50583 I},

{wO -> 6.30317 + 1.44006 I},

wO]

{wO -> -5.79358 + 1.50563 I},

{wO -> 6.30187 + 1.44012 I},

wo]

{wO

{wO

wo]

{wO

{wO

w3O

{wO

{wO

Solve[x[wO,10,1,.0275,1] == 0, wO]

{{wO -> -9.85274 - 1.50859 I}, {wO

{wO -> 10.6996 - 1.45037 I}, {wO

{wO -> 16.4881}}

Solve[x[w0,10,1,.0021,1] == 0, vw0

-> -9.78781 + 1.49874 I},

-> 10.2969 + 1.45544 I},

-> -9.81611 + 1.50406 I},

-> 10.3688 + 1.44981 I},

-> -9.77631 + 1.49611 I},

-> 10.2788 + 1.45716 I},

-> -9.85274 + 1.50859 I},

-> 10.6996 + 1.45037 I},
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{{wO -> -9.7776 - 1.49642 I}, {wO -> -9.7776 + 1.49642 I},

{wO -> 10.2806 - 1.45698 I}, {wO -> 10.2806 + 1.45698 I},

{wO -> 237.089}}

Solve[x[w0,10,1,.0524,1] == 0, wO]

{{wO -> -9.89151 - 1.51053 I}, {wO -> -9.89151 + 1.51053 I},

{wO -> 9.71204}, {wO -> 9.80648 - 2.62799 I},

{wO -> 9.80648 + 2.62799 I}}

Solve[x[w0,10,1,.0022,1] == 0, wO]

{{wO -> -9.77802 - 1.49652 I}, {wO -> -9.77802 + 1.49652 I},

{wO -> 10.2812 - 1.45692 I}, {wO -> 10.2812 + 1.45692 I},

{wO -> 226.266}}

Solve[x[w0,10,1,.1023,1] == 0, wO]

{{wO -> -9.93135 - 1.50953 I}, {wO -> -9.93135 + 1.50953 I},

{wO -> 5.18128}, {wO -> 9.7845 - 1.56704 I},

{wO -> 9.7845 + 1.56704 I}}

Solve[x[wO,10,1,.0022,1] == 0, wO]

{{wO -> -9.77802 - 1.49652 I}, {wO -> -9.77802 + 1.49652 I},

{wO -> 10.2812 - 1.45692 I}, {wO -> 10.2812 + 1.45692 I},

{wO -> 226.266}}

Solve[x[wO,10,1,.0028,1] == 0, wO]

{{wO -> -9.78054 - 1.49711 I}, {wO -> -9.78054 + 1.49711 I},

{wO -> 10.285 - 1.45656 I}, {wO -> 10.285 + 1.45656 I},

{wO -> 177.563}}

Solve[x[wO,10,1,.0025,1] == 0, wO]

{{wO -> -9.77929 - 1.49682 I}, {wO -> -9.77929 + 1.49682 I},

{wO -> 10.2831 - 1.45674 I}, {wO -> 10.2831 + 1.45674 I},

{wO -> 198.992}}
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Solve[x[wO,10,1,.0024,1] == 0, wO]

{{wO -> -9.77887 - 1.49672 I}, {wO -> -9.77887 + 1.49672 I},

{wO -> 10.2825 - 1.4568 I}, {wO -> 10.2825 + 1.4568 I},

{wO -> 207.326}}

Solve[x[wO,10,1,.0023,1 == 0, wO]

{{wO -> -9.77844 - 1.49662 I}, {wO -> -9.77844 + 1.49662 I},

{wO -> 10.2818 - 1.45686 I}, {wO -> 10.2818 + 1.45686 I},

{wO -> 216.385}}
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Appendix C

Matlab Script for plot of Q versus

C.1 Figure 3-1 where IBI = 1, IHz = 0.

function [x_p, x_m, Omp_p, Om_pm, Om_mp, Om_m_m ] = zeta_omegal0

% This is a plot of Omega versus zeta for the given case.
% It is for both the positive and negative root of the quadratic.

% CASE: IBxJ == 1; IHzj == 0

global chi
chi = 1;

clf
hold on
axis([0 .081 0 5]);

M = moviein(9);

for i = 1:9
a = 0;

b =0;
c = 0;

Om_sq_p =
Om_sqm =
x_p = 0;
x_m = 0;
Om_p_p =
Om_p_m =
Om m_p =
Om_mm =

v = [-.1 -.05 -.025 -.01 0 .01 .025 .05 .1];
eta_eff = v(i);
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% eta_eff = input('What value for eta_eff? ');
, chi = input('What value for chi? ');
counter = 0;

for zeta = 0.001:0.00001:.13
counter = counter + 1;

a = 2*zeta*(zeta - eta_eff);
b = (chi^2 + 2*chi + 2)*(2*zeta)*(zeta - eta_eff) - (chi/2)*(2*zeta - eta_eff);
c = (chi^2 + 2*chi + 1)*2*zeta*(zeta - eta_eff) + (chi/2)*(2*zeta - eta_eff);

Om_sq_p = (-b + sqrt(b^2 - 4*a*c))/(2*a);
Om_sq_m = (-b - sqrt(b^2 - 4*a*c))/(2*a);

if ((Omsq_p > 0) & (imag(Om_sqp) == 0) & (Om_sqp -= 0))
x_p(counter) = zeta;
Om_pp(counter) = sqrt(Omsqp);

else
x_p(counter) = zeta;

Om_p_p(counter) = NaN;
end
if ((Om_sq_m > 0) & (imag(Omsq_m) == 0) & (Om_sq_m ~= 0))

xm(counter) = zeta;

Om_mp(counter) = sqrt(Om_sq_m);
else

x_m(counter) = zeta;
Om_mp(counter) = NaN;

end
end

h = plot(xp, Omp_p, 'y-');
get (h);
set (h, 'LineWidth', 1.2);

hold on
j = plot(x_m, Om_m_p, 'g-');
get (j);
set (j, 'LineWidth', .3);

M(:,i) = getframe;
end

movie(M)

hold on
count = 0;

for xgo = .065:.0001:.069
count = count + 1;
xtry(count) = xgo;
ytryl(count) = 4.5;
ytry2(count) = 4.0;

end
htryl = plot(xtry, ytryl, 'y-');
htry2 = plot(xtry, ytry2, 'g-');

get (htryl);
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set (htryl, 'LineWidth', 1.2);
hold on
get (htry2);
set (htry2, 'LineWidth', .3);
hold on

stitle('\18\times IB_xl = 1, IHzI = 0 \15\times for given \eta_{eff}');

sxlabel('\down{10} \15\times \zeta\Tilde')
sylabel('\up{1O} \15\times \Omega\Tilde')

stext(.07, 4.5, '\14\times + root');
stext(.07, 4.0, '\14\times - root');

stext(.076, 0.73,
stext(.0735, 2.0,
stext(.051, 2.0,
stext(.042, 2.0, '
stext(.0375, 2.0,
stext(.0323, 2.0,
stext(.0262, 2.0,
stext(.02215, 2.0,
stext(.01865, 2.0,
stext(.0154, 2.0,
stext(.0114, 2.0,
stext(.0064, 2.0,
stext(.0024, 2.0,

'\10\times .1');
'\10\times .05');
\10\times .025');
\10\times .01');
'\10\times 0');
'\10\times -.01');
'\10\times -.025');
'\10\times -.05');
'\10\times -.1');

'\10\time .1');
'\10\time .05');
'\10\time .025');
'\10\time .01');

grid on
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C.2 Figure 4-1 where IBx = 0o, IHz = 1.
function [x_p, x_m, Omp_p, Om_p_m, Om_m_p, Omm.m ] = zetaomega0l

% This is a plot of Omega versus zeta for the given case.
% It is for both the positive and negative root of the quadratic.

/7 CASE: IBxl == 0; IHzI == 1

global chi
chi = 1;

clf
hold on
axis(0[O .066 0 63);

M = moviein(8);

for i = 1:8
a = 0;
b = 0;
c = 0;
Omsq.p = 0;
Om_sqm = 0;
xp = 0;
xm = 0;
Ompp = 0;
Ompm = 0;
Ommp = 0;
Ommm = 0;

v = [-.1 -.025 -.01 0 .01 .025 .05 .1);
etaeff = v(i);

o eta_eff = input('What value for etaeff? ');
% chi = input('What value for chi? ');

counter = 0;

for zeta = 0.001:0.00005:.066
counter = counter + 1;

alpha = (2*zeta*(zeta - etaeff))/(2*zeta - etaeff);

a = 1;
b = 2 + 2*chi + chi^2 - chi/(2*alpha);
c = chi^2 + 2*chi + 1 + (chi/(2*alpha))*(l + chi)^2;

Omsq.p = (-b + sqrt(b^2 - 4*a*c))/(2*a);
Omsq-m = (-b - sqrt(b^2 - 4*a*c))/(2*a);

if ((Omsqp > 0) & (imag(Omsqp) == 0) & (Omsqp -= 0))
x_p(counter) = zeta;
Om_pp(counter) = sqrt(Omsqp);

else
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x_p(counter) = zeta;
Om-pp(counter) = NaN;

end
if ((Omsqm > 0) & (imag(Omsqm) == 0) & (Om-sqm ~= 0))

xm(counter) = zeta;
Om_mp(counter) = sqrt(Omsqm);

else
xm(counter) = zeta;
Om_mp(counter) = NaN;

end
end

h = plot(xp, Ompp, 'y-');
get (h);
set (h, 'LineWidth', 1.2);
hold on
j = plot(xm, Ommp, 'g-');
get (j);
set (j, 'LineWidth', .3);

M(:,i) = getframe;
end

movie(M)

stitle('\18\times IBxl = 0, IHzI = 1 \15\times for given \eta_{eff}');

sxlabel('\down{10} \15\times \zeta\Tilde')
sylabel('\up{10} \15\times \Omega\Tilde')

stext(.04, 5.0, '\14\times \bold{bold} \normal line pos. root');
stext(.04, 4.5, '\14\times \light{light} \normal line neg. root');

stext(.062, 1.1, '\10\times .1');
stext(.06, 3.18, '\10\times .05');
stext(.037, 3.18, '\10\times .025');
stext(.0232, 3.18, '\10\times .01');
stext(.019, 3.18, '\10\times 0');
stext(.014, 3.18, '\10\times -.01');
stext(.0107, 3.4, '\10\times -.025');
Xstext(.0095, 3.18, '\10\times -.05');
stext(.0093, 3.18, '\10\times -.1');
stext(.0085, 3.4, '\10\time .1');
stext(.0065, 3.09, '\10\time .05');
stext(.0047, 3.4, '\10\time .025');
stext(.0024, 3.18, '\10\time .01');

grid on;
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C.3 Figure 5-1 where IBx| = 1, IHJz = 1.

function [xp, x_m, Om_p_p, Om_p_m, Omm_p, Omm_m ] = zeta omegall

% This is a plot of Omega versus zeta for the given case.
% It is for both the positive and negative root of the quadratic.

% CASE: IBxl == 1; IHzI == 1

global chi

chi = 1;

clf

hold on

axis([0 .1 0 8]);

M = moviein(9);

for i = 1:9

a = 0;
b = 0;
c = 0;
Om_sqp = 0;
Om_sq_m = 0;
xp = 0;
x_m = 0;

Omp_p = 0;

Ompm = 0;
Ommp = 0;

Omm_m = 0;

v = [-.1 -.05 -.025 -.01 0 .01 .025 .05 .1];

eta_eff = v(i);
% etaeff = input('What value for eta_eff? ');

% chi = input('What value for chi? ');

counter = 0;

for zeta = 0.001:0.0001:.1
counter = counter + 1;

alpha = (2*zeta*(zeta - eta_eff))/(2*zeta - eta_eff);

a = 1;
b = 2*(1 + chi) + chi^2 - chi/(alpha);

c = chi'2 + 2*chi + 1 + chi/(2*alpha) + (chi/(2*alpha))*(l + chi)^2;

Om_sq_p = (-b + sqrt(b^2 - 4*a*c))/(2*a);

Om_sq_m = (-b - sqrt(b^2 - 4*a*c))/(2*a);

if ((Omsqp > 0) & (imag(0m_sq_p) == 0) & (Omsq_p -= 0))

x_p(counter) = zeta;

Omp_p(counter) = sqrt(0m sq_p);

else
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x_p(counter) = zeta;
Om_p_p(counter) = NaN;

end

if ((Omsqm > 0) & (imag(Om_sqm) == 0) & (Omsqm ~= 0))
xm(counter) = zeta;

Om_mp(counter) = sqrt(Omsqm);
else

x m(counter) = zeta;

Ommp(counter) = NaN;
end

end

h = plot(x.p, Ompp, 'y-');
get (h);

set (h, 'LineWidth', 1.2);
hold on

j = plot(x_m, Omm p, 'g-');
get (j);
set (j, 'LineWidth', .3);

M(:,i) = getframe;
end

movie(M)

hold on

count = 0;

for xgo = 0.07:.0001:.074
count = count + 1;
xtry(count) = xgo;
ytryl(count) = 6.5;
ytry2(count) = 6.0;

end

htryl = plot(xtry, ytryl, 'y-');

htry2 = plot(xtry, ytry2, 'g-');
get (htryl);

set (htryl, 'LineWidth', 1.2);
hold on

get (htry2);

set (htry2, 'LineWidth', .3);
hold on

stitle('\18\times IB_xl = 1, IHzl = 1 \15\times for given \eta_{eff}');

sxlabel('\down{10} \15\times \zeta\Tilde')
sylabel('\up{lO} \15\times \Omega\Tilde')

stext(.075, 6.5, '\14\times positive root');
stext(.075, 6.0, '\14\times negative root');

stext(.095, 1.8, '\10\times .1');
stext(.085, 2.7, '\10\times .05');
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stext(.065, 2.7,
stext(.055, 2.7,
stext(.05, 2.7, '
stext(.0445, 2.7,
stext(.038, 2.7,
stext(.033, 2.7,
stext(.0295, 2.7,
stext(.019, 2.7,
stext(.014, 2.7,
stext(.008, 2.7,

stext(.003, 2.7,

'\10O\times .025');
'\10\times .01');
\10\times 0');
'\10\times -.01');
'\10\times -.025');
'\10\times -.05');
'\10\times -.1');
'\10\time .1');
'\10\time .05');
'\10\time .025');
'\10\time .01');

grid on
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Appendix D

Matlab Script Calculating (

Q and T leff

NOTE...for all scripts, a value of Xo = 1 was used.

D.1 Finding ( if IB I = 1, IHz| = 0

function [] = calc

% Given a certain eta_effective and a certain Omega, what is zeta?
% (chose calculating zeta because Omega is more controlable?)

% For CASE IBxI = 1, IHzI = 0;

Om = input('What value for Omega? ');
etaeff = input('What value for eta_effective? ');
chi = input('What value for chi? ');

a = 2*((1 + chi + Om^2)^2

b = -(2*eta_eff*((1 + chi

c = (chi/2)*eta_eff*(0m^2

+ chi^2*0m^2);
+ Om^2)^2 + chi^2 + Om^2) + chi*(Om^2 - 1));
- 1);

zeta_p = (-b + sqrt(b^2 - 4*a*c))/(2*a);
zetam = (-b - sqrt(b^2 - 4*a*c))/(2*a);

if ((imag(zeta_p) == 0) &
zeta_p
else
'zeta (plus root) was not
end

(zeta_p >= 0))

positive, real'

if ((imag(zeta_m) == 0) & (zeta_m >= 0))
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zeta_m
else
'zeta (minus root) was not postive, real'
end
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D.2 Finding if IB = 0o, IHz = 1
function [] = calc

% Given a certain eta-effective and a certain Omega, what is zeta?
% (chose calculating zeta because Omega is more controlable?)

% For CASE IBxI = 0, IHzI = 1;

Om = input('What value for Omega? ');
etaeff = input('What value for etaeffective? ');
chi = input('What value for chi? ');

a = 2*((1 + chi + Om^2)^2
b = -(2*etaeff*((1 + chi
c = (chi/2)*etaeff*(0m^2

+ chi'2*0m^2);
+ Om'2)^2 + chi^2*0m^2) + chi*(0m^2 - (1 + chi)^2));
- (1 + chi)^2);

zetap = (-b + sqrt(b^2 - 4*a*c))/(2*a);
zetam = (-b - sqrt(b^2 - 4*a*c))/(2*a);

if ((imag(zeta_p)
zetap
else
'zeta (plus root)
end

if ((imag(zetam)
zeta-m
else
'zeta (minus root)
end

== 0) & (zeta_p >= 0))

was not positive, real'

== 0) & (zetam >= 0))

was not postive, real'
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D.3 Finding ý if B, = 1, IHz = 1
function [] = calc

% Given a certain etaeffective and a certain Omega, what is zeta?
% (chose calculating zeta because Omega is more controlable?)

% For CASE IBxI = 1, IHzI = 1;

Om = input('What value for Omega? ');
etaeff = input('What value for etaeffective? ');
chi = input('What value for chi? ');

a = 2*((1+chi+Om^2)^2 + chi^2*Om^2);
b = -2*etaeff*((l+chi+Om^2)^2 + chi^2*0m^2) - chi*((Om'2-1) + (Om^2 - (1+chi)^2));
c = (chi/2)*etaeff*((Om^2-1) + (Om^2 - (1+chi)^2));

zeta.p = (-b + sqrt(b^2 - 4*a*c))/(2*a);
zetam = (-b - sqrt(b^2 - 4*a*c))/(2*a);

if ((imag(zetap)
zetap
else
'zeta (plus root)
end

if ((imag(zeta-m)
zeta-m
else

== 0) & (zetap >= 0))

was not positive, real'

== 0) & (zetam >= 0))

'zeta (minus root) was not postive, real'
end
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