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Abstract

This report presents a methodology for learning the structure and the content of
Electronic Medical Record Systems (EMRS). The described method first learns the
structure of the data repository and then tries to identify five elements of medical
records - patient demographics, problems, allergies, medications, and visit notes. The
identification of the various elements is done by (a) a set of simple heuristics for dis-
tinguishing patient demographics and (b) a method of identifying medical terms using
UMLS Knowledge Source. It also describes an implementation of the methodology
and presents results for data from the EMRS of Children's Hospital in Boston.
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Chapter 1

Introduction

Medical records play an important role in providing health care in today's medical

practice. Since the introduction of medical records in 19th centrury, when a medical

record consisted of few notes about the patient, the medical record has grown up into

a detailed description of many aspects of the patient's life ranging from information

about patient's social background, through past medical history to a detailed record

of laboratory tests and measurements. Today's medical record is not only a detailed

record of patient's health, but also a financial record for billing as well as a legal

document.

Because of the sheer volume of information that is kept in medical records the use

of computers for storing medical records is attractive. Using electronic medical record

provides many advantages over traditional paper records such as high avaiability,

simultaneous access to the same data, fast retrieval of information, and the possibility

of conducting reviews and studies from multiple records.

Despite the attractiveness of storing medical records elecronically, the Electronic

Medical Record Systems (EMRS) have been catching up very slowly both with the

demand for comprehensive systems and the technology available for building state-

of-the-art systems.



1.1 Types of Medical Records

There exist different organizations of medical records. The traditional view of medical

record is the patient-oriented medical record in which all data concerning one patient

is put together. Using database systems terminology, the access key is the information

abouth the patient such as his name, birthday, social security number etc.

The patient-oriented medical record can have several formats. One possibility is

chronologically record all events, lab measurements, and other information and keep

them in that order within the patient's record. Another possible organization is so

called problem-oriented medical record which lists all active and resolved problems

of the patient at the front of the medical record. Each item on the problem list then

refers to the appropriate documents that are related to that problem.

A computerized medical record is primarily organized in such a way to reflect

the organization of the data adopted in the health institution. It has, however,

the advantage of creating alternative views of the medical record and accessing the

information stored in the record in different ways.

1.2 Existing EMRSs

The development of electronic medical records started in 1960's and the first such

system was COSTAR [2] developed at the Laboratory for Computer Science at the

Massachusetts General Hospital. The system was written in MUMPS [1] which was

specifically designed for COSTAR. The organization of the data in the data reposi-

tories is hierarchical. There have been several revisions of the COSTAR since 1969

and several EMRSs developed since then are based on COSTAR such as the EMRS

at the Beth Israel Hospital in Boston, MA.

There also exist EMRSs that were developed at different hospitals from the ground

up and, like COSTAR, they use a special database tools developed solely for the needs

of the EMRS. These are for example HELP system [23], STOR [32], or TMR [25].

Finally there are EMRSs that use commercial database systems on whose top they



are built. These systems include the Children's Hospital in Boston EMRS which uses

ORACLE RDBMS or the Deaconness hospital that uses Sybase.

1.2.1 Size of EMRSs

Current Electronic Medical Record Systems (EMRS) store considerable amount of

information about a patient. In addition to the information relevant to the medical

history and current health status of a patient, the systems store information about

insurance, billing records for each procedure done in the institution, and increasingly

more detailed information about the personnel of the hospital directly or indirectly

involved in providing care. As a result of this trend, the size of current EMRS data

repositories, in relational database terms, is on the order of hundreds of relational

tables each having tens of different fields with the number of records in range of a

thousand to a million [11]. Consequently, learning the semantics of each field of such

a large database without any a priori knowledge of the data in the database is very

difficult, if not impossible.

Despite the overwhelming size of the data repositories, certain fields in the data-

base can be, however, recognized as the key elements of the patient's medical record

(such as problems, allergies, and medications) and presented as a partial medical

record of a patient. Even though the few identified key elements are not sufficient for

creating a complete medical history of a patient, they are invaluable at emergency

rooms, where, for example, retrieving patient's allergies to certain medications can

prevent complications later and in some situations even death of the patient.

1.2.2 Information Model

The organization of a medical record such as the problem-oriented medical record is,

at least to a certain degree, reflected in the information model of the data repository.

If the underlying system is a relational database, the information model is called a

relational model and it captures the structure and relations among the tables that

constitute the database. However even systems that are not based on a relational



database system (e.g. [2, 25]) have a notion of structure or hierarchy that enables

access to the data in an organized fashion.

The information model is a roadmap to the data repository. Not only does it en-

able to determine how to access certain information but it also shows all the relations

and dependencies of the data stored in the repository. If the roadmap is complete

then any information that is available in the repository can be easily obtained no

matter how complex the path to the appropriate data is. Even though there are

formal methods for designing an optimal information model [6, 17], it is difficult to

use them in practice for building complex systems such as an EMRS.

There does not exist any evidence in publicly available literature that EMRSs

have formal information models. And even if formal information models exist they

are not disclosed as they are considered a proprietary information.

Another characteristics of current EMRSs is an incremental development and up-

grades that spread across many years. Instead of rebuilding the system from the

ground up when substantial improvements of the sysem are done, the existing sys-

tems are extended and new features added to it. As a result the data repository

information model is modified several times. However the modifications of the infor-

mation model are often inconsistent with the original design goals. Consequently, the

existing information model is either outdated, because it has not been updated as the

system was expanded, or is no longer valid because the organization of the data in

the data repository has been completely changed.

For these reasons the information model is not precisely defined and instead only

a set of programs that retrieve a specific information from the data repository exists.

These programs however only satisfy one function of the information model: how

to retrieve information from the repository. They do not provide an overall picture

about the complete structure of the data repository. Some EMRSs, for example,

consist of hundreds of different programs [2] where each program can access and

retrieve particular information, however any attempt to circumvent these programs to

obtain data arranged in a different way is an onerous task that requires a programmer

who not only can program in the query language of the system, but is also closely



acquainted with the hierarchy of the data repository.

The possibility of automatically retrieving an information model from the existing

data repository is therefore attractive to the data repository administrators who can

learn about the redundancies or inefficiencies in the structure of the data repository

and correct it. Finally, the retrieved information model allows access to the data in

the data repository without any a priori knowledge of the database structure, which

is beneficial to users and programmers of the data repository who have not been

involved with the system from it conception and who can then navigate through the

data repository in order to retrieve the necessary data.

1.3 Aims of the Research

The primary goal of this thesis is to come up with a method for learning the structure

of an EMRS in order to retrieve some data that is available in the data repository

whose organization is not known. Current EMRSs are complex and store enormous

amount of information. Designing a method to learn the complete structure of an

arbitrarily complex system is very hard and is a subject to active research [21]. The

proposed method therefore only learns enough information about the structure of the

EMRS to be able to locate and retrieve a subset of the information available in the

data repository. The subset consists of the five elements of medical records defined by

the Boston Collaborative Group for creating a comprehensive medical record based

on information retrieved from several health institutions. The elements are:

Patient Demographics - information about a patient such as name, social security

number, address etc.

Problems - a collection of medical problems with which the patient was diagnozed.

Allergies - a list of current allergies, reactions to medications etc.

Notes - free-form text that is a written summary of patient's condition upon admis-

sion, transfer or discharge.



Medications - a list of drugs a patient is currently using.

The purpose of this work is not to come up with a general methodology for learn-

ing concepts from data using unsupervised learning, but rather to identify specific

information in the data repository and to enable retrieval of such information from

the data repository without knowing the structure of the data repository.

1.4 Guide to This Report

This document is divided into several chapters. Chaper 2 gives an overview of the

methodology used for identifying the different elements of medical records. Chapter 3

describes a program that implements the ideas presented in chapter 2. Chapter 4

presents the results obtained by the program running against a subset of data from

one EMRS. Finally, chapters 5 and 7 discuss the results and their implications for

future research.



Chapter 2

Approach and Methods

2.1 Scope

The underlying data repository systems of various EMRSs used different formats for

storing the data. Some of them use commercial database systems [11], while othera

use repository systems built from the ground up solely for the purposes of the EMRS.

Regardless of the type of the data repository in which the electronic record is stored,

the data can be accessed in a systematic way. To provide such access to various data

repositories, the Structured Query Language (SQL) was designed [5].

SQL is best suited for accessing relational databases where data is stored in tables.

The tables are linked, or related, by common data called keys. However, it is not

necessary for the data repository to be a relational database. The SQL language

is used merely for convenience and power. Wecan thus operate on the following

assumptions:

1. The data repository can accept queries in Structured Query Language (SQL).

2. The program will have read access to all the data in the data repository without

any restrictions.

Furtermore, some EMRSs that use a nonrelational database system as its data repos-

itory [2, 13] provide an interface that allows to issue queries in SQL [12] and therefore

enable to view the data repository as a relational database.



Table T1 Table T2

(b)

Figure 2-1: Example of two tables related via a common field pat_id.

2.2 Learning the Information Model

A relational data repository, or a non-relational data repository that accepts queries

in SQL, is organized in one or more tables, where each table contains several fields

with different data. The tables are linked together via common columns/fields, called

keys which are contained in both tables. To retrieve data from both tables, the tables

are "joined" together through the key and the appropriate information is retrieved

from both tables simultaneously.

The starting point for learning the information model identification of all relevant

tables that constitute the EMRS and the retrieval of the column identifiers/names.

The next step is the identification of the fields that give the relations among the

tables. The fields are simply intersections of the field sets of each table, where a field

Table T1
patid name phone
111 J. Smith 9996541234
123 A. Johnson 1231231234

Table T2

pat_id docid problem_name
123 1231231234 Malaria
999 0034234032 Diabetes



set contains all field names for a given table.

If we consider table T1 with fields pat_id, name, and phone and table T2 with fields

pat_id,doc_id, and problemname in figure 2-1, then the intersection T1 n T2 = patid

which means that the table T1 is related to T2 via the field pat_id.

Once all the relations among the tables are determined by identifying the keys of

all the tables of the database, we can construct an information model consisting of

all tables and relations among them.

The information model of the database can be represented by a Venn's diagram

as depicted in figure 2-1 (b). Each set represents a table and the elements of the set

are the fields of the table. The intersections of the sets are the fields which provide

the relation between the two tables represented by the sets. Using our example, the

intersection of T1 and T2 is the field pat_id.

Identifying Keys by Similar Data

To identify the keys of the database we can systematically go through all tables and

its fields and compare the data in the field with every other field of the remaining

tables of the database. A field whose data are subset of some other field in any of the

remaining tables is theoretically a key for one of the tables.

Using this approach, however, some fields can be incorrectly identified as keys,

even though in reality they are not. Suppose there are two numerical fields in two

different tables where one field contains unique identifiers of visit notes, represented as

10-digit numbers, and the other field contains telephone numbers of patients written

for compactness as 10-digit numbers with no delimiters. If some of the telephone

numbers were identical to the visit note identifiers, they would be incorrectly marked

as a relation between the two tables even though these two fields contain very different

information as illustrated in figure 2-1 by the fields phone of table T1 and docid of

table T2. We should not therefore solely rely on this technique to identify the keys.



foreach table T in database do
foreach field F in T do

data = retrieve_records(T[F])
if isdemographics(data) then

adddemographics(demogr,T[F],type ,score)
if is_visit(data) then

add_visit(visits,T[F] ,score)
if isproblem(data) then

add_problem(problems,T[F] ,score)
if is_medication(data) then

addmedication(medicat ions,T[F],score)
if is_allergy(data) then

add_allergy(allergies,T[F] ,score)
choosedemographics(demogr)
choose_visits(visits)
chooseallergies(allergies)
choose_medications(medi cat ions)
choose_problems(problems)

Figure 2-2: Basic algorithm for identifying data elements of the EMRS.

Identifying Keys by Field Names

To avoid incorrectly identifying some of the fields as keys, we can choose another

method for locating the fields that make up the relations between two tables such

as a comparison of the field name, type, and length. If the name and the field

type (i.e. string or number) match then the fields may constitute a relation. This is

demonstrated by the field pat_id in figure 2-1.

This method however does not identify all cases. Suppose the field pat_id in T2 were

labeled as pid. This field then would not be identified as a key of T 2. Nevertheless, it

is a useful technique for identifying some of the keys of the tables of EMRS. Since the

relations between them are designed by humans who tend to use the same mnemonic

identifiers for the same data.



Combination of Both Techniques

Neither of the two techniques described above works well by itself. Combining both

of them will, however, identify all true relations since both the field type and the data

contained in those fields will match. Combination of those two techniques may still

not identify all keys in the database, but the identified fields are guaranteed to be the

keys of the appropriate tables.

2.3 Identifying Elements of Medical Records

The second main objective of this research is to identify the elements of the medical

record which include the patient demographics, allergies, problems, medications, and

visit notes as stated in section 1.3. We can systematically go through all fields in

each table constituting the EMRS and by analyzing the data in that field we can

identify it as the appropriate element of the medical record. The basic algorithm for

identifying the elements is given in figure 2-2.

The algorithm goes through all fields of all tables and attempts to identify the

data as one of the data elements of the medical record. This identification results

in a confidence score for each medical record element. If the score for the particular

element of the medical record is above a certain threshold, the field and its confidence

score is added to the list of potential candidates for the respective data element.

Once all potential fields are identified, the procedure choose goes through the list

of candidates and select one field that best resembles the respective element. The

heuristics for each data element differs depending on the element being identified as

described bellow in more detail.

2.3.1 Demographics

Patient demographics contains information about a patient such as first and last

name, address, phone number etc. The information can be either stored in one field

that contains all names, such as first name, middle name, and last name, or can be



broken in separate field. Likewise a home address can be in one field or broken into

fields such as street, city, state, and zip code.

To identify patient's name we can extract from the database certain number of

distinct records and compare those against a set of common American first and last

names. We can count the number of matches relative to the number of the records

and report the confidence score.

Similarly, we can identify the address field. Addresses contain well-identifiable

parts such as the words street and avenue or their acronyms. Identifying the town

field, if it is a separate one from the address field, can be done by partial matches

to some most common names of towns. These common names include the strings

-ville (Greenville), -field (Springfield), -town (Yorktown) etc. Again, we can compute

the confidence score as the number of matches divided by the number of records

examined.

Finally, to identify numerical elements such as zip code or social security number

(SSN) we can match the records against a pattern. In case of zip codes, the records

are most likely five-digit numbers or nine-digit numbers optionally separated by a

dash. For SSN we can look for a 9-digit number. In order to increase sensitivity of

the zip code match, we can exploit some additional characteristics. For example most

of the patients live in one region and thereofre their zip codes have several digits that

are the same.

2.3.2 Visit Notes

Visit notes are usually one-page-long free text documents that are a part of the

medical record. Even though the information contained in the notes is not very

structured and therefore hard to analyze, the notes provide an important insight

to patient's medical history. Some early electronic medical records were centered

around notes and the data repository just provided a convenient storage and retrieval

of these notes without much additional information such as laboratory measurements

or medications [7].

There are several possibilities how visit notes can be stored. The text can be



contained in the database itself, in which case we can just look for fields that contain

free text, or the database can contain just a reference to the individual notes that

are stored somewhere else. This reference can be in a form of directory path and a

filename for example.

Even though visit notes are just a free text, they have fairly rigid format. They

contain, in addition to the note body, date, salutation, the name of the patient, and

signature of a doctor as described in [27]. Recognizing these parts helps distinguish

them from other possible elements of medical record that are also kept as free text

such as medical history or history of present illness [24].

2.3.3 Allergies, Medications, and Problems

One of the aims of a computerized medical record is to store the medical history of

the patient in a highly structured way, so that the data can be used for research

or analysis later [7]. Keeping allergies, medications or problems in separate fields,

as oppose to free text form, enables to structure the medical record to provide the

desired functionality. If the fields that contain these elements of the medical record

are present in the EMRS they can be recognized using the Unified Medical Language

System (UMLS) [14] from the National Library of Medicine. Section 2.3.4 describes

the system in more detail.

We can extract the records of the field we want to identify from the database

and look up each record individually in the UMLS to identify it as a medication,

allergy or a problem. To compute the confidence score we can relate the number of

successfully identified terms to the total number of records used. For example, the

record "James", which could be patient's name would not be found in UMLS since it

is not a medical term, whereas "hypertension" would be identified in UMLS as high

blood pressure which is a disease.



Associated Attributes

Structured electronic medical records with medications, problems, and allergies stored

in separate fields usually contain in addition to those elements associate information

or attributes. The attributes of one EMRS element, however, differ across several

EMRS. One hospital might include a pharmacy information as a part of the EMRS,

in which case many attributes are associated with medications in the EMRS, whereas

some other hospitals have a separate pharmacy information system that may or may

not be linked with the EMRS.

Because of the difference in quantity and quality of the attributes across different

EMRSs, it is difficult to come up with a general procedure that would identify all the

attributes in different EMRSs. Instead we can only look for some attributes that are

perhaps common to some EMRSs. The common attributes are listed bellow.

Medications

Drugs with which a patient is or has been treated, constitute patient's medication

list. In addition to the name of the medication an EMRS may store several associated

attributes with the field such as the date of administration of the drug, duration of

the treatment, dosage, price etc. The level of detail, however, varies greatly among

various EMRSs and it is therefore difficult to identify all the attribute fields that

are associated with the medications. For example [11] contains a table which stores

medications with 20 separate attribute fields.

Despite the varying level of detail in associated attributes, we can attempt to

identify some of the attributes such as the date of administration and dosage. Dosage

information captures the unit size of the drug (e.g. milligrams, milliliters), type of

administration (infusion, tablets etc.), or combination of both. We can thus look for

these patters in the fields.



Allergies

Allergies usually denote medications to which a patient is allergic Although some

allergies are temporary, most of them are persistent. Therefore some medical records

do not store any other information besides the name of the medication to which the

patient is allergic. Identifying this associate attribute, or more precisely the failure

to identify any, thus helps distinguish allergies from medications.

Problems

Problems in medical records are often organized into patient's problem list which

systematically presents all past and present problems of the patient. The ordering can

be either chronological or the list can be divided into current and resolved problems.

Because of the different ways in which the problem list can be presented, there are

stored one or several associated attributes along with the name of the problem such

as status (resolved, current), date of discovery of the problem or date of resolution

of the problem. As with medications, the amount of associated information greatly

varies among different EMRSs and it is therefore hard to identify other attributes

beyond the ones mentioned above.

2.3.4 UMLS

As the Unified Medical Language System plays an important role in identifying the

elements EMRS the following paragraphs give a brief description of the system with

the emphasis on the parts relevant to identifying problems and medications.

The UMLS Knowledge Source was created originally to unify medical terminol-

ogy and to provide translations between recognized standardized medical vocabularies

such a SNOMED, MeSH, and ICD-9 [14]. Since then it was extended from the orig-

inal metathesaurus, which includes 30 different standard medical vocabularies (1996

edition), by a semantic network tool and the SPECIALIST lexicon. The semantic

network tool identifies semantic relations between medical terms and SPECIALIST

provides the lexical information needed for the SPECIALIST natural language pro-



cessing system intended a s a general English lexicon that includes many biomedical

terms [18].

Metathesaurus is a dictionary that combines the functions of a thesaurus as well

as of a translation dictionary. It provides definitions of the terms included in the

standardized vocabularies, translations among the terms in various dictionaries, syn-

onyms, and additional information which is used by the other parts of the UMLS

such as preferred terms, related concepts etc.

The 1996 edition of the semantic network recognizes 135 semantic types and 51

different relationships. The semantic types are organized into several groups and

each group is structured into a multiple-level hierarchy. For example the drug Aspirin

has the following hierarchy: Entity-Physical Object-Substance-Chemical-Chemical

Viewed Structurally- Organic Chemical.

Using the information provided by the metathesaurus and the semantic network

we can identify problems and medications fields of the EMRS. The records of the

field under examination can be looked up in metathesaurus to obtain the semantic

types. For example Aspirin and Influenza which is a medication and a problem re-

spectively, the UMLS semantic network would return two distinct semantic categories

each with its own hierarchy. Aspirin is a Substance whereas Influenza is a Phenomenon

or Process with a complete hierarchy of Phenomenon or Process-Natural Phenomenon

or Process-Pathologic Function-Disease or Syndrome. Because the two terms have

different semantic types each having a different root we can determine the type of the

field.

2.4 Difficulties and Alternative Approaches

The method for identifying various elements of the EMRS as described in section 2.3

assumes that the elements in the data repository are stored in a recognizable for-

mat, so that if the the field containing the appropriate element such as problems or

medications is present in the data repository, it will be correctly identified as such.

However, because there are many different EMRSs, it may be difficult to recognize the



basic elements of the medical record as they may be stored in some cryptic or coded

way. Furtermore the format doe storing the information may be diametrically differ-

ent from the assumed organization of the database into related tables with different

fields.

Another difficulty is the use of specialized vocabularies for storing medical infor-

mation. For example [11] and [23] use specialized vocabularies for recording problems,

while [25] uses codes for describing problems, laboratory measurements, and other at-

tributes. However, despite these difficulties, it is possible to locate the elements of

the medical record. If there exists a table that provides expansions of the codes

into UMLS recognizable format, the method will identify the appropriate field in the

database and, thorough the knowledge of the data repository information model, the

information is related to the codes.

It is important to realize that the method outlined in section 2.3 does not guar-

antee to correct identification of the elements in the data repository even though the

elements may be present. It only makes best effort in identifying the field(s) that

correspond to the appropriate element, but it may identify the wrong field or not find

one at all.

2.4.1 Alternatives to Data Repository Organization

While many data repositories of EMRSs are either directly organized into tables

or can be viewed as such (for example [11, 2, 23]), there exist EMRSs whose data

repositories are organized differently.

The STOR information system [32], for example, uses text files for storing the

information while the Regenstrief Medical Records system [16] is essentially one table

with three columns being the primary key, an attribute, and value. The attribute

column contains some predefined values such as Problem, Laboratory Value, or Med-

ication and the value column is the appropriate value of that attribute.

While it is difficult to view the text file-based data repository as a relational

database, the former type of the EMRS based on the three-column table can be

transposed into a structure suitable for the approach outlined in section 2.3. We can



obtain a subset of the data by using only one attribute with all appropriate values.

The data can be then accessed such that the rows become fields and the data, and

the records of that field are the values stored in the third column of the original

table. By performing this transformation, we can examine the data by the methods

described in section 2.3 and identify the elements common to other EMRS. In the SQL

terminology, we will be performing SELECTs on the rows of the original database as

oppose to the columns which are used in conventional tables.



Chapter 3

Implementation

To test the ideas presented in chapter 2, a prototype program for learning the struc-

ture and content of an electronic medical record was implemented in OraPERL run-

ning under UNIX operating system. In its present form, the program can access an

ORACLE database, learn the structure of the database, identify the five elements

of medical record together with some additional attributes, and generate a file with

SQL commands in a canonical form that allow to retrieve the five elements with its

associated attributes from the data repository.

3.1 Choice of Programming Language

After considering several possible programming languages in which the program could

be written, PERL version 5 was chosen as the best candidate for its ease of use,

flexible build-in data structures, and powerful text manipulating capabilities. Among

the programming languages that were considered was C, Java, and Objective C.

Of all languages mentioned above, C offers the best runtime performance. There

also exists ProC library which provides connectivity to an ORACLE database. The

disadvantage of C is that many higher level data structures such as hash table, lists

etc. would have to be written from scratch. Also C does not offer much flexibility in

text manipulating.

Java is attractive for its portability, availability of built-in classes for string ma-



nipulations, networking, and connectivity interface to several databases using JDBC

[20].

Finally Objective C was considered because it combines both the speed of C

and the connectivity to several databases similar to Java's JDBC. The connectivity

to databases is provided via Enterprise Object Framework (EOF) which allows an

object-oriented view of the database as well as a powerful and easy-to-use API to

different RDBMSs. Unfortunately EOF was not available to the author in time to

implement the program.

PERL

The Practical Extraction and Report Language (PERL) [31] is a programming lan-

guage that offers a rich set of functions for easy text manipulation and advanced

UNIX programming such as process control and networking. PERL programs run

as shell programs, however they are first compiled into an intermediate form which

is then interpreted as each statement is run. PERL is also attractive because of

automatic garbage collection and availability of some powerful data structures.

Apart from scalar variables, which are either numbers or strings, PERL has lists

and associative arrays. Arrays are completely interchangeable with lists and in fact

arrays are implemented as lists. Associative arrays are hash tables with keys being a

scalar variable and values any other PERL data structure including another associa-

tive array. Because associative arrays are hash tables, the lookup time for any value

is constant. They are therefore a suitable data structure for storing intermediate

values that are retrieved from the EMRS data repository. Associative arrays are used

frequently in the program and some of the more important data structures built on

top of them are described in the appropriate sections bellow.

There exist several extensions in PERL, called packages, that provide additional

functionality. One of the packages is OraPERL which allows access to ORACLE

databases. The OraPERL package is built on top of PERL's DB module using OR-

ACLE SQLNet for accessing ORACLE server.



Figure 3-1: Modules of the program for learning the structure and content of EMRS.

3.2 Program Overview

The implemented program is divided into several functional and logical modules as

depicted in figure 3-1. The two main logical modules are DRstructure, which learns

the structure of the EMRS data repository, and ElemIdent which takes the infor-

mation about the structure acquired by the DRstructure module and identifies the

different data elements of the medical record.

Both logical modules use the file_io, dbconnect, and umlsconn modules that

abstract the details of file management and the connectivity to the data reposi-

tory and the UMLS Knowledge Source server. Specifically, even though the module

dbconnect currently only communicates with ORACLE databases, this fact is ir-

relevant to the DRstructure and ElemIdent modules as the dbconnect module



provides this abstraction for them.

The file_io module contains functions that are used for reading and writing all files

that are generated or used by the program. The dbconnect module provides con-

nectivity to the data repostory, and the umls_conn module implements the interface

to the UMLS Knowledge Source server.

The communication between the logical modules and the functional modules is

done through global data structures. The two logical modules communicate through

files that are created by the DRstructure and read by the ElemIdent module. The

files include information about the attributes of the fields, such as names, data types,

and lengths, table relations, and keys that constitute the relation.

The modules depicted in figure 3-1 correspond to the source files of the program.

There are also two additional files that do not correspond to any modules - config.pl

and utils.pl. The former file contains general variables that are used as parameters

to the program such as how many records are retrieved from the data repository for

identification. The latter file contains additional functions such as breath-first search

and various conversion functions. A complete listing of the source code appears in

appendix A.

3.3 Learning the Data Repository Structure

The learning of the data repository structure is implemented in the DRstructure

module and currently only supports connectivity to an ORACLE database as de-

scribed in section 3.1. Even though the implementation of db_connect uses some

features specific to ORACLE, the DRstructure module itself does not require any

additional features that are not supported by standard SQL.

The functionality of the module DRstructure can be summarized into the fol-

lowing steps:

* All table names that constitute the data repository are retrieved via the proce-

dure GetTableNames of the db_connect module and stored in a global array

table_names.



* For each field of every table in the table_names list the name, datatype, and

length of the field is identified. The acquired information is stored in the asso-

ciative array alltables.

* Using the information stored in tablenames and alltables, the procedure

FindRelations identifies the fields that make the relations among tables. The

procedure identifies relations based both on the same field names as well as data

content and stores the information in the associative array relations.

3.3.1 Table Names

The procedure GetTableNames retrieves the names of tables via the select statement

SELECT tablename FROM alltables WHERE owner=DRowner

which returns from the table alltables all the names of the tables that make up the

the data repository of the EMRS. The table alltables is an administrative table which

contains the names of all tables that are stored in the RDBMS. The selector WHERE

is necessary to limit the tables to the ones belonging to the data repository only as

the RDBMS can contain databases other than the EMRS. The table names are stored

in the array table_names and written into a file table_names.txt for later use.

3.3.2 Field Descriptions

Once all the names of the tables constituting the EMRS are retrieved, the pro-

gram identifies all the fields for every table. This is accomplished in the procedure

GetDescriptions of the db_connect module by issuing the SQL command

SELECT columnname,datatype,datalength FROM alltab_columns

WHERE tablename=tname

for every table in the tablenames array. The SELECT command retrieves from the

table alltab_columns all records containing the appropriate attributes of the fields.

The table alltab_columns is another administrative table of the ORACLE that con-

tains the field names, together with other attributes, of all tables in the RDBMS.



The retrieved information is stored in the associative array alltables which is a

hash of a hash of an array, where the array stores the retrieved attributes. The first

hashing is done on the table name and the second hashing is done on the field name.

This double hashing allows easy retrieval of all fields for a given table as well as fast,

constant time, lookup of the attributes for a given table and field. In addition to the

data type and field length attributes, the position of the field in the table is stored

in the array. The first field of a given table has position one, the second one two etc.

The information stored in all_tables is also copied into the file all_tables.txt for

later use in the ElemIdent module.

Even though the procedure GetDescriptions uses features specific to the ORA-

CLE RDBMS to obtain the field attributes such as the type and length, this informa-

tion could be obtained by another method that is universal to any database accessible

vial SQL. For example one could retrieve several records for each field and identify

the datatype by regular expression matching. With regular expressions we can eas-

ily recognize numerical, string and date fields which correspond to the NUMBER,

CHARACTER, and DATE field types obtained from the ORACLE administrative

table alLtab_columns. Moreover the length and nullable attributes that are obtained

from alltab_columns are not used in the program anyway. Using the alltab_columns

instead of the more general principle only gives more convenience and takes less time

that having to identify the type of each field of every table by matching the retrieved

records.

3.3.3 Finding Relations

The relations between tables are identified by the procedure FindRelations which

implements the method described in section 2.2. The procedure goes through each

field of every table and compares the fields names and types of all the fields of the

remaining tables in the data repository. If they are identical then a match is recorded

in the dblkeys and relations data structures.

The comparison based on the data is done by the compare_records_by_data pro-

cedure. The procedure performs a select statement that returns all distinct values



occurring in both fields under examination. If the count of the obtained records is

higher than a threshold, currently set to the 40% of the records in the field with fewer

records, the fields are identified as keys and the relation is recorded in the relations

data structure.

The relations data structure is a hash of a hash of an array. The first hash table

uses as a key the name of the first table under examination, the second hash table

the name of the second table, and the array stores the following information:

* the name of the field in the first table

* the name of the field in the second table

* flag if the relation has been identified by the field name matching

* flag if the relation has been identified by the comparing the data

* confidence score of identification by data comparison (0-100)

If the relation has been identified by matching the field names of the two tables

then both field names will have identical values, and the name relation flag will be

set to one. All other values of the array will be zero.

The data structure dbkeys is also a doubly hashed table where the first hashing

is done on the field name and the second on the table name. Thus when a relation is

identified, two entries are added to the dbkeys array.

The dbkeys data structure only reflects the relations based on identical field

names and is used primarily for convenience to provide easy lookup of all table names

for a given field name. It also allows to easily count the number of tables for which

a specific field is a key.

Because both data structures are necessary for the ElemIdent module, the con-

tent of the data structures is written into the table_relations .txt file, which records

all the relations from the relations, and into the namekeys.txt file, which stores

the values from the dblkeys array.



3.4 Identifying Elements of Medical Records

The fields that store the elements of the medical record described in section 1.3

are identified in the ElemIdent module. This module implements the algorithm

described in figure 2-2. Even though the algorithm runs sequentially, it is possible

to run some parts of it in parallel. Specifically, once the appropriate records for a

given field are retrieved from the data repository, the identification of the field by the

procedures from the algorithm in figure 2-2 is_visit, is_demographics etc. can be run

in parallel.

The initial version of the program exploited this parallelism and implemented

it using the only available mechanism for parallelization in PERL - forking [26].

The implementation of the program using fork was eventually dropped because of

poor performance and the original serial algorithm was used. Spawning several new

processes for each field of every table created a big overhead since upon issuing the

fork system call all the global data structures are copied into the new process.

3.4.1 Overview

The module ElemIdent first loads all the information from the text files that were

created by the module DRstructure into the appropriate data structures. The

data structures in the module ElemIdent have identical names to the ones used in

DRstructure. Once all the necessary text files are read and the information put into

the data structures, the program tries to identify the fields that contain the elements

of the medical record.

The program calls the procedure TagFields which goes through each field of every

table and tries to identify the appropriate fields. The possible candidates for the de-

mographics, problems, medications/allergies, and notes are stored in the dem_relev,

med_scores, problem_f ield, and notes_f ield arrays respectively.

The procedure TagFields augments the array of the all_tables data structure

with the following tags. The fifth array element denotes the type of demographics,

the sixth array element is the confidence score for the given demographics type,



the seventh array element is the confidence score for the problems, the eighth array

element the score for medications and finally the ninth array element is the score

for notes. Since the data retrieved from each field of every table is inspected as a

possible candidate for all the five elements described in section 1.3, it is possible that

multiple scores will be nonzero. The score can have values anywhere between 0 and

100 where 0 means that the field was not identified as the respective element of the

medical record and 100 means that all records retrieved from the field have been

positively identified. Any other value denotes the percentage of records that have

been positively identified.

The most probable candidate for each element is then selected in the procedure

SelectCandidates which goes thorough all the elements of the all_tables associa-

tive array and selects the candidates based on the scores.

Finally when the most probable candidates are selected, if any were identified at

all, the results are written in a form of five SELECT statements that allow to retrieve

the appropriate element from the database.

3.4.2 Demographics

The procedure IdentifyDemograph, called from TagFields, currently recognizes six

different types of demographics information - first name, last name, address, city, and

zip code. The zip code is identified by matching it to a pattern of five or nine digits,

where the first five and last four digits can be separated by a dash.

The other five demographics types are recognized using patterns or template files

which contain most common instances of the appropriate demographics type. For

example there are two files that contain each approximately 1200 male and female

first names and a file that contains 730 most common surnames. The template file

for the states contains the names, abbreviations, and two-letter codes for the 50 US

states. The template file for the city names contains 11 endings appearing in the

names of many American towns such as -ville or -ton. The addresses are identified

by a template where address contains the number, name, and an abbreviation or a

full word denoting street, avenue etc.



Using the template files and the regular expressions for pattern matching the

procedure IdentifyDemograph does the following for each field of every table:

1. Take successively each retrieved record from the given field and match it against
every template file and regular expression to identify the zip, address, first name,
and last name. If a match is found, increase the respective score by one.

2. After all records have been used, normalize each score. This is done by divid-
ing the number of matched records, the score, by the total number of records
inspected and then multiplying by 100 to obtain the percentage.

3. Select the highest score among the scores for zip, address, name etc. and tag
the appropriate element in the all_tables with the type of the demographics
and the confidence score.

Selecting the Best Candidate

When all the fields in all_tables have been tagged, the procedure SelectCandidates

goes through each field of every table and chooses the table which has the most fields

tagged. This is done by the procedure dem_accn which simply counts the number of

identified demographics fields and stores the result in the associative array dem_relev.

Even though the table with the highest number of demographics has been selected

and recorded in dem_relev, the table can contain multiple fields of each demographics

type. For example there can be multiple addresses in one table. The addresses can

be for instance an address of the patient, next of kin, or patient's previous address.

This situtation can occur when the data repository is "flat", i.e. when there is only

one table in the data repository and that table contains all the information of the

EMRS.

To identify the address of the patient the procedure resolve_addr performs the

following steps to distinguish the address of the patient from the other addresses:

1. Find the primary key of the database if such a key exists. The primary key is
located by the procedure resolve_primkey which looks through the db_keys
array to locate the field that is the key to the most tables. In a patient-oriented
medical record, the primary key is likely to be some patient identifier.

2. Go through all the fields of the table identified in dem_relev that are tagged
as demographics types and select a field for each demographics type that is the



least number of columns away from the key identified by the resolve_primkey
procedure.

3. Store the results in the array demproximity.

The method outlined above does not guarantee that the right fields will be identi-

fied. Therefore it is possible to identify the wrong fields as the patient demographics.

3.4.3 Visit Notes

As currently implemented, the visit notes are identified only based on the length of

the data stored in the data repository. The method therefore positively identifies the

visit notes EMRS element only if the content of the notes is stored in the database.

The alternative methods described in section 2.3.2 such as looking for pointers to files

or recognition of the content of the text have not been implemented.

3.4.4 UMLS Knowledge Source Server

As described in chapter 2 the medications and problems are identified via the UMLS

Knowledge Source server. Because the methodology for both elements is almost

identical, the lookup of the terms in the UMLS server is implemented as one procedure

that identifies both the medications and problems.

The lookup of the records for each field, implemented by the procedure Identi-

fyPM, happens in two steps. The first step takes the retrieved record and runs it

against the UMLS metathesaurus. The second step takes the semantic type of the

term obtained from the UMLS metathesaurus and retrieves the ancestor list for it

using the semantic network. If the record is not a valid term that is defined in the

metathesaurus, the second step is not performed.

Lookup in Metathesaurus

To lookup a term in the metathesaurus, the procedure IdentifyPM first gets rid of

some extraneous information from the term so that it can be identified by the UMLS

metathesaurus. Specifically, units and dosage information that may occur together



with the name of the drug are removed. The query to the UMLS server is then issued

and all the possible semantic types of the term being examined are retrieved. For

example, if the term is Aspirin, the UMLS server returns two possible semantic types

Pharmacologic Substance and Organic Chemical which are stored in the list semtypes.

Lookup in Semantic Network

Once a term has been found in the metathesaurus and the semantic type retrieved,

the procedure IdentifyPM goes through each element of the semtypes array and

looks up the ancestor tree. The ancestor tree is then evaluated to determine whether

the term is a medication or a problem.

3.4.5 Medications and Allergies

The current implementation of the program assumes that allergies are just a list of

medications and therefore the fields with the name of the drug that denote either a

medication ar an allergy are identical. The two cases are distinguished later on when

all the fields have been tagged.

To identify a term as a medication, the ancestor tree of any medication must

have Substance as a root. However each term can have multiple semantic types as

illustrated above by the Aspirin example. Therefore we want to select the semantic

type that is closest to the medication in order to distinguish a medication from an

ordinary chemical that could be a laboratory measurement.

To better differentiate between medications and other EMRS elements, the biggest

weight is assigned to the semantic type closest to a medication. This assignment is

reflected in the procedure med_iden. It assigns weight 5 if the ancestor tree of the

term being examined contains the semantic type Pharmacologic Substance, which can

be only a medication, whereas it assigns only weight 2 if the semantic type is Chemical

Viewed Structurally.

After all the terms have been looked up in UMLS, the highest weight for each term

is chosen and all weights are added together. The sum is divided by the maximal



possible weight for the terms, multiplied by 100, and reported as a confidence score

for the given field.

Selecting the Best Candidate

When all fields of all tables have been examined and the confidence scores deter-

mined, the procedure resolve_medication, called from SelectCandidates, selects

three fields with the highest confidence score to determine which field corresponds to

medications and which one to allergies. The names of the three fields are stored in

medscores list together with the confidence socres.

The procedure resolvemedication works as follows: It takes each element of

the med_scores list in turn and tries to identify additional attributes of the medica-

tion field as described in section 2.3.3. Specifically, resolvemedication looks for

a date field that denotes the day on which the drug was administered, and dosage

information. Each identified attribute field is given a confidence score.

When all the attributes for all fields in the med_scores list are found, the field with

most attributes and the highest confidence scores is chosen as a medication EMRS

element. The field with the second highest confidence score is chosen as an allergy

EMRS element.

3.4.6 Problems

The identification of the problems is almost identical to the identification of medica-

tions. The main difference is that problems span several groups of semantic types.

A problem can be, for example, an Anatomical Abnormality, whose ancestor tree has

the root Entity, a Phenomenon or Process, or an Injury or Poisoning with a common

root Event. Thus the prob_iden procedure which identifies the semantic type based

on the ancestor tree assigns the following weights: a Disease or Syndrome semantic

type, which is a descendant of Phenomenon or Process has weight 5 because it is the

closest semantic type for a disease, whereas Anatomical Abnormality as well as Patho-

logic Function has only weight 4. The assignment of the confidence score is done in



the same way as for the medications.

Selecting the Best Candidate

The lookup of additional attributes for problems (see section 2.3.3) is currently not

implemented. Therefore the filed with the highest confidence score is selected as the

problemelement of the EMRS.

3.5 Reporting the Results

The results of the implemented program are recorded into text files that are human-

readable, but provide enough structure so that they can be easily parsed for further

processing by other applications.

Both the DRstructure and ElemIdent create several files which store the re-

sults of the intermediate steps. For example the table relations identified by the

FindRelations procedure are stored in the tablerelations.txt file and the results

of the TagFields procedure are stored in the allfield_tags.txt file. The results

of some other procedures are also stored in text files as described in section 3.3. A

complete listing of all intermediate results files appears in appendix B.

There are two files that summarize the results of the program. The file tag_

results. txt shows for each identified EMRS element the name of the table and the

fields in which the information is stored. In addition to the names, the file also lists

the relevancy scores for the identified fields and some additional statistics such as how

many fields in the data repository were identified as a candidate for the given EMRS

element and the names of the fields that are the runner ups for each EMRS element

if such a field exist.

The second file that summarizes the results of the program is the file select_

statements .txt. This file gives for each identified EMRS element a SELECT state-

ment that, given some information about a patient such as patient's name, will retrieve

the appropriate fields from the database together with all identified attributes of that

EMRS element.



The SELECT statements in the select_statements. txt file assume that the data

repository is organized as a patient-oriented medical record. Thus the SELECT starts

at the table with patient demographics and retrieves the appropriate EMRS element

by finding the fewest number of relations necessary to reach the table with the EMRS

element The shortest path is determined by breath-first algorithm and implemented

in the bfs_search procedure which is called from the createselectstmt procedure.



Chapter 4

Results

In order to establish the validity of the program described in chapter 3 and to evaluate

its performance, the program was tested on a subset of data available from The

Children's Hospital (TCH) in Boston, MA. The TCH data contains records of 300

patients whose personal information was changed prior to copying the data from the

EMRS to maintain confidentiality and privacy of the patients.

Since only one EMRS was availble these results should not be considered as a

thorough test of the program. The dataset from the TCH also served as a "train-

ing set" and therefore inevitably some of the program design was influenced by the

structure of this training set data.

4.1 The TCH Data

Electronic medical records contain patient's medical history which is considered to

be confidential and thus the data is not publicly available. Even if the data can

be disclosed with patient's consent, they are considered proprietary and therefore

the institutions are not likely to release them. Furthermore, the structure of the

electronic records is also proprietary and is therefore hard to obtain. Because of the

reasons given above the author could only obtain data from one existing EMRS - The

Children's Hospital in Boston, MA, and test the program on those data.



4.1.1 Structure of the TCH EMRS

The Children's Hospital EMRS uses an ORACLE RDBMS (relational database man-

agement system) as its data repository. The complete database consists of approxi-

mately 1000 tables which contain anywhere from a few to a hundred of fields each.

The TCH EMRS stores detailed patient demographics information, financial re-

cords, and information about the personnel of the hospital. It has tables with

problems, medications, patient's medical history, laboratory measurements, and visit

notes. TCH uses a specialized vocabulary for coding the problems in patient's problem

list. This vocabulary contains over 8000 terms and is stored in the EMRS. The terms

in the vocabulary are more specific than the once used by standardized vocabularies

such as ICD-9 or SNOMED.

4.1.2 Available Data

The data used for testing and evaluation of the program were stored in another

ORACLE Server away from the actual TCH EMRS. The copied database consists

of only 12 tables. The names of the tables and the number of fields and records in

each database is given in table 4.1. A complete listing of all tables with their field

names, types, and lengths is given in appendix B. This listing has been obtained by

the program and is stored in the all_tables.txt file.

The records about patient's name, address, date of birth, and SSN were modified

to maintain petient's confidentiality. Also the patient provider information has been

altered in the PARSNL_PUBLIC table which stores the names of the personnel in-

volved in providing care. Furthermore, the values of many fields in the database have

been blanked out. For example most of the fields in PAT_FIN_ACCT are empty as

well as the data about next of kin which is stored in the PAT_DEMOGRAPH table.

Despite the fact that the available database is relatively sparse, that is that many

of the records are blank, the records storing the five EMRS elements used by the

program are available and therefore the database is usable for testing and evaluation

of the program.



Table name Fields Records

CHILD_DOCS 3 1619
CLINICALDATA 7 7013
DOC_ATTRIBUTES 3 3394
DOC_DESCRIPTION 11 1128
DOC_STORE 2 1128
PATDEMOGRAPH 60 300
PATFIN_ACCT 133 7617
PAT TEST_HISTV 40 73421
PERSNL_PUBLIC 20 615
PHARMACYTABLE 24 3668
PPR 10 1417
PROBLEMS 7 375

Table 4.1: The description of TCH EMRS tables used for the program evaluation.

4.2 Results for the TCH Data

The program correctly identified all five elements of the medical record and the re-

sults are summarized in tag_results.txt file. The complete results of the program

running against the TCH data are listed in appendix B. which gives the content of

all files that are generated when the program is run.

all_field_tags .txt - lists for each field of every table the confidence score for each

element of the medical record. The score 0 means that the field has not been

recognized.

all_tables.txt - written as a result of DRstructure module. It contains the field

name, type, length, and order in the table for each field of the database. This

file is read by ElemIdent module.

name_keys.txt - lists for each field that has been recognized as a key all tables

in which this field occurs. This file reflects the content of the dbkeys data

structure.

select_statements .txt - contains the select statements that allow a retrieval of

the appropriate EMRS element for a given <clause>. Usually, a <clause> is a



condition written in SQL that specifies the name, address or other information

about a patient. This file is the main result of the program.

tablerelations. txt - lists all relations for each table. A relation is marked by the

name of the other table, the name of the field in the first table constituting the

relation, the name of the field in the second table, flags whether the relation

has been identified based on name (NAME) or data content (DATA), and the

score for the data relation.

tagresults.txt - lists the names of the fields and the tables that contain the ele-

ments of the electronic medical record as recognized by the program. The listing

also contains some statistics such as confidence scores and the runner-ups for

the respective elements.

4.2.1 Demographics

The patient demographics were located in the PATDEMOGRAPH table in which

the first name, last name, address, city, and zip code were identified correctly. Even

though the state field of the patient's address appears in the TCH database, it has

not been identified by the program because the data in the STATECD field have

been changed to abbreviations that do not correspond to the names of the 50 U.S.

states.

The relevancy score for the PAT_DEMOGRAPH is 83 since the state demograph-

ics type was not recognized. The relevancy score is the percentage of identified de-

mographics elements in the table. For example if for a given table only one field is

recognized, then the score is 20. The relevancy score does not take into account zip

codes, since there are potentially many numerical fields that can be identified as zip

codes even though they are not.

The runner up for the patient demographics is the table PERSNPUBLIC which

stores information about the care providing personnel. The first name and last name

were identified in this table. In total there were 33 fields identified as demographics

types. The number of fields indentified as a given demographics type and the highest



Demographics Type Count Score
First Name 0 0
Last Name 0 0
Address 2 11
City 0 0
State 0 0
Zip Code 20 100

Table 4.2: The identified false positive demographics types.

confidence scores for all but the PAT_DEMOGRAPH and PERSN_PUBLIC tables

are given in table 4.2. This table therefore lists all false positives.

4.2.2 Problems and Visit Notes

The problems were correctly identified as the field PROBLEM_NAME in the ta-

ble PROBLEMS with the confidence score of 42. The only other field identified as

problems is the ADMT_DIAG_CENTER field in the PAT_FIN_ACCT table. The

confidence score for this field is 16.

The visit notes were identified as CONTENT field which is in the table DOC_

STORE with score 1. This score is just a flag where 1 means that the field is free

text. There were no other fields containing free text in the TCH database.

4.2.3 Medications and Allergies

There were 16 fields identified as potential candidates for medications and allergies.

The field MEDICATIONNAME in the table PHARMACY_TABLE was identified as

the medication element, while the field ALLERGY_TXT in the PATDEMOGRAPH

table was identified as the allergy element. The confidence score for the MEDICA-

TIONNAME is 60 and the confidence score for the ALLERGYTXT field is 28.

Both fields were selected by the procedure resolve_medication as the only can-

didates for the medications and allergies, thus there were no false positives. Further-

more, some additional attributes for the medication element were identified. The date



field type was correctly found to be the DATE_OF_SERVICE field, while the dosage

attribute was incorrectly identified as the PATIENT_RECORD_NUMBER field.

4.2.4 SELECT Statements

The SELECT statements that retrieve the appropriate medical record element are

put into the select_statements .txt file. The SELECT statements, as listed in

the file, are not complete. The <clause> has to be replaced with a suitable SQL

clause in order to create a valid SELECT statement that will retrieve the appropri-

ate data. The <clause> must be a logical expression containing a field from the

PATDEMOGRAPH table.

There is one noteworthy point about the SELECT statements. The statement

for medications is not complete as no tables are given in the from clause. This

is because the program did not find any fields that would relate this table to the

PAT_DEMOGRAPH table which is assumed to be the starting point for any SE-

LECTs.

4.3 Performance

The total running time for the DRstructure module was 28 seconds. This time

includes connecting to the ORACLE database and running all parts of the program

except for the procedure comparerecordsbydata which finds relations based on

similar data. During preliminary testing it took almost 3 days to find all relations

based on the data. This poor performance is mainly due to two factors. The running

time of the algorithm in DRstructure is 0(2") since it has to compare each field of

every table with every other field. Furthermore, a single comparison took anywhere

between 1 to 40 seconds as it performs a SELECT statement that joins two fields.

The running time for the ElemIdent was 23 minutes and 7 seconds and the upper

bound estimate of this module is O(n) where n is the number of fields of the database.

The running time of 23:07 includes network connections to the UMLS server as well

as connections to and retrieval from the ORACLE database.



Chapter 5

Discussion

The results presented in chapter 4 suggest that the implemented program performed

well on the database from the Children's Hospital. It correctly identified all five

elements of the medical record and discovered a flaw in the information model - there

is no path from the patient PAT_DEMOGRAPH table to the PROBLEMS table.

However before making any conclusions about the program performance, we should

take a more detailed look to understand why the program performed the way it did.

5.1 Available Data

As mentioned in section 4.1, many records in the database are empty. It is therefore

possible that if all records had meaningful data, the program would perform worse

than it did. However, even though the used database was sparse, the program was able

to clearly distinguish between the various elements of the medical record and identify

them as such. Therefore we can infer that the program would perform reasonably

well, even if the data were more complete.

The program might have difficulty choosing the right fields among the possible

candidates for the given element of the medical record, but it would most likely

identify correctly the possible candidates. This is demonstrated from the results by

the fact that there is very little overlap, i.e. only five fields in the entire database

were identified as two different medical record elements. However in each case the



confidence scores were never higher than 16. For example in the case of the MEDI-

CATIONNAME field in the PHARMACYTABLE, the field was correctly identified

as medications with the score of 60 and also as an address with the score 5.

Another case of identifying one field as two different elements is the field RE-

LIGCD in the PATDEMOGRAPH table, which was identified both as problems

and medications. However each type had confidence score of only 5. The fourth case

is the field PREV_SERV_CD in PAT_DEMOGRAPH table which was identified both

as problems, with the score 2, and as medications, with the score of 5. Finally, the

last case is the field ADMT_DIAG_DESCR, also in the PATDEMOGRAPH table,

which was identified as zip code with the confidence score 5 and problems with confi-

dence score 16. We can therefore say that the methods by which each element of the

EMRS is identified provide enough distinction between the different elements.

5.2 Demographics

The program detected all demographics fields in the database which had nonempty

records. However the STATE_CD and CITY_NAME fields in the PAT_DEMOGRAPH

were tagged as address and last name respectively instead of as the state and the city

demographics types. The reason for this inccorect identification of the demographics

type is the fact that when the data were copied from the TCH EMRS, the city names

were altered to the names of American presidents and the STATE_CD were replaced

with meaningless data. Therefore the CITY_NAME field was identified as the last

name demographics field. The program, however, chose the correct demographics

type based on the content of the records.

Another interesting point about the demographics types is that large number of

fields were identified as ZIP codes. The reason is that many unrelated numerical

records are matched to the format of a zip code (five- or nine-digit number). This is

not really significant, because the zip code demographics type is used only when the

patient's address and city are selected from the possible candidates. Perhaps using

more sophisticated techniques for determining zip codes such as the ones described



in section 2.3.1 would give fewer false positives.

Even though the program selected the right fields in the correct table as patient's

demographics, it would be interesting to evaluate if the method by which the fields

are currently selected is valid for other EMRSs as well. The implementation of the

program looks for the primary key of the table in which most demographics types

were identified and then selects the identified demographics fields that are closest to

the primary key field.

5.3 Problems

The problems in the PROBLEMNAME field of the PROBLEMS table were identified

with the confidence score of 42 which means that 21 out of 50 randomly selected

records were positively identified as problems in the UMLS metathesaurus. Even

though this score might seem to be low, it is high enough to distinguish the true

positive from the false positives.

Many EMRSs use specialized vocabularies for recording the problems into the

problem list. For example the TCH EMRS uses a specialized vocabulary therefore

only 21 terms were identified as problems. As currently implemented in the program

a problem is identified only if

1. the term is found in the UMLS metathesaurus and

2. the semantic type of the term falls into Disease or Syndrome, Anatomical Abnor-
mality or Pathologic Function semantic category.

Because of these fairly strict rules, it is not surprising the score is only 42.

5.4 Medications

The medications element was identified with the confidence score of 60 and the allergy

field received confidence score 28. The reason for the second score being so low is that

the data in the available database were incomplete. There were only eight distinct

records and out of those only three were meaningful names of drugs. The other



five records contained either misspelled names of drugs, three-letter acronyms not

recognized by UMLS, or the word "NONE", meaning that a particular particular

does not have any allergies.

The program chose the field PATIENT_RECORDNUMBER in PHARMACY_

TABLE as the dosage field. The reason why the wrong field was selected is because

the dosage information is already included in the MEDICATION_NAME field (for

example THIAMINE TAB 100MG UD) and therefore there is no real dosage field in the

PHARMACY_TABLE.

5.5 Performance

The total running time of the program is relatively short - 23 minutes and 35 seconds.

The reason why the running time is so short compared to SCOUT [28] program, which

ran for nine days on the same data set, is because SCOUT does not assume anything

about the data in the database and learns concepts solely by analyzing the data.

The implemented program, on the other hand, assumes that specific data types are

present in the database and it only goes to the database to locate these data.

The reported running time of 23:35 does not include the running time of the

procedure compare_records_by_data. As described in chapter 4, the running time

of this method was alomost 3 days. The reason for this performance is inadequate

design of the methodology. Currently, data from both fields are retireved and joined

togoether which results in a SELECT operation that is very costly. To improve the

running time we could instead sample certain number of records from one field and

project those against the data in the second field rather than doing select and join

on fields that can have each over 70000 records.

5.6 SELECT Statements Results

The main result of the program is the select_statements.txt file which contains

SELECT statements that will locate the appropriate data in the database given some



information about a patient for which the data should be located. This structure of

the SELECT statement assumes that the electronic medical record is patient-oriented

or at least that all information in the database is related to a patient and can be thus

retrieved.

The SELECT file format for the results was chosen mainly to provide easy interface

to a program that would use the information about the structure and content of the

medical database. One of such programs is a program for unifying patient data

from remote databases [30]. This program creates a complete medical record that is

composed of data obtained from several EMRSs. In order to create a complete medical

record, the program requires a site server that translates queries in HL7 protocol [9]

into the queries understandable by the local data repository of the EMRS from which

the data are obtained. Therefore the SELECT statements that are created by the

implemented program are useful for creating the site servers.



Chapter 6

Related Work

6.1 Learning Concepts from Databases

The idea of learning concepts from a data repository appeared in a system called

SCOUT [28] which used data from two medical databases. This system is concerned

about learning concepts from a collection of data and does not require a specific query

language. It only requires five basic operations on the data repository, but does not

assume anything about the content.

The system described in this thesis, on the other hand, assumes that the data

repository contains the specific information (see section 1.3) and looks for the oc-

currences of this information. Because the domain of the data is narrower than in

the case of SCOUT, it uses more specialized methods to learn the structure such as

semantic network of the UMLS and can learn more about the concepts in the data

repository.

There exist literature describing various approaches to unsupervised learning of

data from databases [8, 22]. The described techniques are applied to specific domains

such as CAD databases or chemical databases. However there are no known methods

that would extract information from medical databases.

The idea of obtaining a road map from databases appears, for example, in OR-

ACLE's Database Designer product. The Reverse Engineer Wizard [19] connects to

the database and "reverse engineers" a diagram showing the layout of the selected



database. This product, however, works only on ORACLE RDBMS servers.

6.2 Structure of EMRSs

Even though comprehensive descriptions of the functionality of current EMRSs exist

[13, 23, 16, 2, 11], the information about the structure or the information model

of the data repository is not readily available and is only briefly mentioned in these

publications. There are several reasons for the status quo: a formal information model

was never developed for these systems, the existing model is outdated and therefore

unusable, or the information is proprietary.

Levy and Beauchamp presented a poster [12] that describes the methods and

working prototype of a system that maps the hierarchical MUMPS database to rela-

tional database tables. The approach they used, however, requires manual mapping

between the two representations of the data repository.



Chapter 7

Conclusions

7.1 Lessons Learned

Working on the research, design, and implementation of this thesis has provided

several valuable lessons. Some of the more important observations are summarized

in the following paragraphs.

7.1.1 Usability of the Method

The methodologies presented in this thesis do not constitute any new or significant

discovery in the area of computer science. The methods described in this thesis are

specific to the EMRSs that contain certain information that is distinguishable from

other data in the data repository. Furthermore, only a very small subset of data

that is available from an EMRS data repository is recognized and accessed. However,

based on the results obtained using the TCH database, the method works relatively

well within its limited scope.

7.1.2 UMLS Knowledge Server

The UMLS Knowledge Server plays a central role in identifying some of the medical

record elements. Even though the original purpose of the Knowledge Server was

to provide dictionary services such as translations and semantic analysis, this thesis



opens up a new area of knowledge discovery in which the UMLS Knowledge Server

can be utilized. In author's opinion, the design and implementation of the UMLS

extends well beyond its original goals and thus there will be more applications using

the system outside of the area of medical vocabularies and translations in the future.

7.1.3 Programming in PERL

Implementation of the program proved that PERL is a suitable language for quick

development of applications that use lot of text formatting and advanced UNIX pro-

gramming. The power of the language, both in terms of the available data struc-

tures and the succinctness of the code, allowed to concentrate on the concepts of the

program rather than spending time implementing higher-level data structures and

elaborate text formatting routines.

The power of PERL, however, comes with a penalty. The circumvention of variable

declarations before their use was a source of numerous frustrations which resulted

simply from mistyping the variable names. Overall, however, the power and flexibility

of PERL allowed rapid coding.

7.2 Future Work

The only results available at the time of writing this thesis were the ones obtained

from the Children's hospital sample database. The next logical step is therefore to

test the program against some other EMRSs. While it is impossible to test it against

"live" EMRSs, it would be interesting to obtain some subset of data from other

hospitals and run the program on it.

A natural extension is to use the results of the program for building a site server

that takes queries in one format and translates them into the queries in the native

format of the data repository as suggested in section 5.6. Using this approach an

interesting application would be an automatic creation of a site server for a hospital.

The integral part of this automatic generation of the site server would be the program

presented in this thesis.



Finally, it would be worthwhile to implement the program again and "get it right

this time". Specifically, rewriting the code in Objective C with EOF as stated in

section 3.1 would result in faster execution of the program as well as usability of

different data repositories. However this idea perhaps fits better the "wish" category.

7.3 Summary

The preceding chapters have demonstrated that the proposed approach to learning a

small subset of information in a specialized database such as an EMRS data repository

is possible. The presented results suggest that it is indeed possible to retrieve some

information from a database without any prior knowledge of the structure and the

format of the data.

The method relies on the fact that a small subset of specialized data is easily

distinguishable from the other data in the database. However, readily available tools,

namely the UMLS Knowledge Server, and a set of straightforward algorithms for

distinguishing other elements of the medical record provided enough leverage to suc-

cessfully identify the five basic elements of the medical records. The method may

not be , however, applicable to domains other than databases with highly specific

information such as EMRS.

Lastly, the conclusion of the work presented in this thesis is only valid for the

data used in the experiment. Further testing against other EMRS data repositories is

necessary before this conclusion can be generalized to other Electronic Medical Record

Systems whose format and structure is different from the used TCH database.



Appendix A

Source Code Files

A.1 config.pl
#!/usr/local/bin/perl -w
# -*- Perl -*-

# $Id: $

use Oraperl;

------------------------------------------------------------------
* General settings
------------------------------------------------------------------

#logs

* switch for generating output
$GENERATELOGS = 1;

* switch for writing logs to a file rather than to STDOUT
$GENERATE_TOFILES = 1;

------------------------------------------------------------------
# Log files/directories
------------------------------------------------------------------

*subdirectory for logs
$LOGS_DIR = "logs/";

$activitylog = $LOGS_DIR."activity.log";

$table_relations_file = $LOGSDIR."table-relations.txt";
$table_names_file = $LOGS_DIR. "tablenames.txt";
$alltables_file = $LOGSDIR."alltables.txt";
$tags.file = $LOGSDIR. "allfieldtags.txt";
$tag_resultfile = $LOGS_DIR."tagresults.txt";
$dbkeysfile = $LOGS_DIR."name-keys.txt";

$select_file = $LOGS_DIR."select_statements.txt";

#directory with templeate (master) files such as address templates, names etc.
$MASTERSDIR = "masters/";



-------------------------------------------------------
* For column identifications
*-----------------------------------------------------------------

#number of unique records to select from the database
$NUMBER_OFRECORDS = 50;

#list of tags for database columns, given
CDEMOGRAPHTYPES = ("ZIP","FNAME", "LNAME", "ADDR", "CITY", "STATE","",);

*how many identified fields for medications to report minus one
$MEDS = 1;

# Hack, to ignore "bad free" messages. See DBD README.
$SIG{__WARN__} = sub { warn $_[10] unless $_[0] =~ /^Duplicate free/ };

------------------------------------------------------------------
* UMLS Semantic Network indentifiers
*-----------------------------------------------------------------

$DISEASE = "Disease or Syndrome";
$PATHOLOGIC = "Pathologic Function";
$ABNORMALITY = "Anatomical Abnormality";

$PHARMACOLOGIC ="Pharmacologic Substance";
$CHEMSTRUC = "Chemical Viewed Structurally";

$MAXPROBL = 5;
$MAXMEDIC = 5;

$MAXPROX = 9999;

1;



A.2 db_connect.pl
#!/usr/local/bin/perl
# -*- Perl -*-

use Oraperl;

$connectstring = "*********";
$OWNER="******";

sub DBLogin {

# returns $lda - file handle for DB session

local($lda) = &ora_login("" ,_, "")

II die $oraerrstr;
return ($lda);

}

sub GetTableNames {

# returns *tablenames
$sqlstr="select table_name from all_tables where owner='$OWNER'";
$doccsr = &oraopen($lda, $sqlstr)

II die $ora_errstr;
while (($tnam) = &ora-fetch($doccsr)) {

Otnames = (Qtnames,$tnam);
}
&oraclose($doccsr);
return Utnames;

}

sub count-records {
local($sqlstr) = 0_;
local($n);
local($doccsr) = &ora-open($lda, $sqlstr)

II die $oraerrstr;
while (($foo) = &orafetch($doccsr)) { $n=$foo; }
&oraclose($doccsr);
return $n;

sub GetDescriptions {

foreach $tname (C-) {
$position = 1;

$sqlstr="select columnname ,data-type ,datalength,nullable from "
"allhtabscolumns where owner='$OWNER' and table_name='$tname'";

$doccsr = &oraopen($lda, $sqlstr) II die $oraerrstr;

local($first) = 1;
while (($cname,$dtype,$dlength,$nul) = &orafetch($doccsr)) {

# if the first field of the table, check the # of records
if ($first) {

local($count_sqlstr) =
"select count($tname.$cname) from $tname";

$tablejlengths{$tname} = &countrecords($count-sqlstr);
$first = 0;

}
$alltables{$tname}{$cname}=[($dtype,$dlength,$nul,$position++)];

sub DBLogout



&ora_logoff($lda);
}

1;

63



A.3 drstruc.pl

# !/usr/local/bin/perl
# -*- Perl -*-

# $Id: $

use Oraperl;

require "config.pl";
require "db-connect.pl";
require "file_io.pl";

* threshold for deciding the joined set should be taken as a key,l..100)
$KEYTHRESHOLD = 40;

------------------------------------------------------------------

# create the log file
logactivity("Selecting elemets started");

* login to the database
$lda = &DBLogin($connectstring);

# get all table names
$start = (times)[0];
logactivity("Getting table names started");
Ctablenames = &GetTableNames();
$end = (times) [01;
&log_entry("Table names",$end-$start) if ($GENERATETO_FILES);
&printtablenames() if ($GENERATE_LOGS);
logactivity("Getting table names finished");

undef (%tablelengths);
undef (Zall_tables);

# get descriptions of all tables - names of fields and field types+lengths
$start = (times) [0];
&GetDescriptions (Ctablenames);
&print-tables() if ($GENERATE_LOGS);
$end = (times) [0];

&logentry("Table descriptions",$end-$start) if ($GENERATETOFILES);

undef(%,relations); * declare associative array for relations
undef (Cdbkeys); # declare associative array for db keys

log_activity("Finding relations started");
$start = (times) [0];
&FindRelations ();
$end = (times) [0];

# close connection to the database
&DBLogout;

&printtable_relations() if ($GENERATELOGS);
&printdb_keys() if ($GENERATE_LOGS);
&logentry("All relations",$end-$start) if ($GENERATE_TO_FILES);
log_activity("Finding relations finished");

S-----------------------------------------------------------------

------------------------------------------------------------------



sub FindRelations {

* used for speeding search to avoid 2N comparisons
Crest_tables = Otable_names;

open(FHMATCH,">".$LOGSDIR."allmatches.txt");
print FHMATCH "#All SELECTs and JOINs performed to determine relations\n\n";
foreach $mytab (Qtablenames) {

shift (rest_tables);
print FHMATCH "Table: $mytab ($tablelengths{$mytab} records)\n";
foreach $myfld (keys(%{$all_tables{$mytab}})) {

$myftype = $all-tables{$mytab}{$myfld}[O];
foreach $othertab (Qresttables) {

foreach $otherfld (keys(%{$all.tables{$othertab}})) {
$otherftype = $alltables{$othertab}{$otherfld}[O];
* compare sets of data between two fields of the same type
if ($myftype eq $otherftype) {

$byname = 0;

* first locate keys based on the same field names only
if ($myfld eq $otherfld) { * a match of field names

$byname = 1;

$db_keys{$myfld}{$mytab} = 1;
$dbkeys{$myfld}{$othertab) = 1;

}
# now do comparison based on data itself
$bydata = 0; $score = 0;

&comparerecordsby_data();

if ($by_name II $by_data) {
$relations{$mytab}{$othertab} =

[($myfld,$otherfld,$by_name,$by_data,$score)];
$relations{$othertab}{$mytab} =

[($otherfld,$myfld,$byname,$by_data,$score)];
}

}
}

}
}

close FHMATCH;

I----------------------------------------------------I

*-----------------------------------------------------------------
sub comparerecordsby_data {

* get count for $mytab
# $sqlstr="select count($mytab.$myfld) from $mytab";
# &countrecords($sqlstr);
$mytabcount = $tablelengths{$mytab};

# get count for $othertab
* $sqlstr="select $othertab.$otherfld from $othertab";
* $othertab-count = &count_records($sqlstr);

#perform SQL select and join
$sqlstr="select count(distinct $mytab.$myfld) from $mytab,$othertab "

"where $mytab.$myfld=$othertab.$otherfld";

if ($n=countrecords($sqlstr)) {
$perc = $n/$mytabcount;
$perc =-s/(\d.\d\d).*/\i/;
$perc =$perc*i00;
* for now, it is possible to get score higher than 100 ???
if ($perc > 99) { $perc = 100 };

print FHMATCH "\t$sqlstr\n";
"\t\tMatches(n):$n\tRecords(mytab):$mytabcount\t$perc%\n\n";



#if subset found they can be keys
if ($perc >= $KEYTHRESHOLD) {

# we have a candidate, set flag to 1
$by-data = 1;
$score = $perc;

}

}



A.4 elemident.pl
#!/usr/local/bin/perl
# -*- Perl -*-

# $Id: $

use Oraperl;

require "config.pl";
require "db_connect.pl";
require "file_io.pl";
require "umls_conn.pl";
# require "utils.pl";

undef(%all_tables);
undef(%relations);

# print '/bin/date'." -start\n";

# login to the database
$lda = &DBLogin($connect_string);

# print '/bin/date'." -end\n";

&read_master_files();
&read_tables();
&read_db_keys();

&read_table_relations();

# for debugging only
# &read_tags();

log_activity("Tagging fields started");
&TagFields();
&print_field_tags() if ($GENERATE_LOGS);
log_activity("Tagging fields finished");

undef(@m_addrs,7.m_fnames,*.m_nnames ,@mcities);

log_activity("Selecting elements started");
&SelectCandidates();
&printtag_results() if ($GENERATE_LOGS);
log_activity("Selecting elements finished");

&DBLogout();

*-------------------------------------------------------------------------

*-------------------------------------------------------------------------

sub SelectCandidates {
local($temp);
undef(%dem_scores); undef(%dem_relev);
local(Qftypes) = ODEMOGRAPH_TYPES;
pop(Oftypes); #get rid of the "" field type at the end of the array

foreach $temp (Oftypes) { $dem_scores{$temp} [("","",0)]; }
foreach $temp (O..$MEDS) { $med_scores[$temp] = [("","",0)]; }
($n_prob,$n_med,$n_dem,$n_note,$total_fields) = (0,0,0,0,0);
Oproblem_field = ("","",0); Onote_field = ("","",0);

foreach $table (keys(%all_tables)) {
$dem_relev{$table}[O] = 0; $dem_relev{$table}[1] = 0;
foreach $field (keys(%{$alltables{$table}})) {



$total_fields++;

#account demographics

&dem_accn();

#account medications

&med_accn();

#account problems field

if ($all_tables{$table}{$field}[6] > 0) {
$n_prob++;

if ($all_tables{$table}{$field}[6] > $problem_field[2]) {
Oproblem_field =

($table,$field, $all_tables{$table}{$field}[6]);

}
}
#account for notes

if ($all_tables{$table}{$field}[8] > 0) {
$n_note++;

if ($all_tables{$table}{$field}[8] > $note_field[2]) {
@notefield =

($table,$field,$alltables{$table}{$field}[8]);

}
}

}
}

# choose address

($dem_table,$my_fld) = &resolve_primkey();

&resolve_addr($dem_table,$my_fld);

#distinguish between medications and alleriges

&resolve_medications();

*find attribs for problems

# &find_attr_problems();
}

-------------------------------------------------------------------------

--------------------------------------------------------------------------

sub resolve_medications {
local($tab,$fld,$prox,$fld_idx,$tab_idx,$el);
local(@dosage) = (0,"",$MAXPROX);

local(@date_score) = ($MAXPROX,"");

* the keys are table,field,dosage,dos_score,date,dat_score
undef(%med_resolved);

foreach $el (0..$MEDS) {
$tab = $med_scores[$el] [0];
if ($tab ne "") {

$tab_idx = $$all_tables{$tab}{$med_scores[$el] []}[3];
foreach $fld (keys(%{$all_tables{$tab}})) {

$fld_idx = $all_tables{$tab}{$fld}[3];
$score = 0;
$prox = abs($tab_idx-$fld_idx);
#look for dosage

if (($all_tables{$med_scores[$el][O]}{$fld}[0] eq "NUMBER") II
($all_tables{$med_scores[$el] [O]}{$fld}[O] eq "VARCHAR2")){

$sqlstr = "select distinct $tab.$fld from $tab";

$unique = &GetUniqueRecords($NUMBER_OF_RECORDS,$sqlstr);

if ($unique>O) {
foreach $iter (keys(%/uniquerecs)) {

$iter =- s/[a-z]/[A-Z]/;
if ( $iter =- /-(\d{2,4})(\s*(MGRITABL))?/) {

$score ++;

};

$score = &normalize_score($score/$unique);
if (($score>$dosage[O]) II



(($score>O)&&($prox<$dosage [2]))) {
@dosage = ($score,$fld,$prox);

}
}

}
if (($all_tables{$tab}{$fld}[O] eq "DATE") &&

($prox<$date_score [0])) {
Odate_score = ($prox,$fld);

}
}
local($med_fld)=$med_scores[$el] [1];
#evaluate and choose only one
# the keys are table,field,dosage,dos_score,date,dat_score
if (($date_score[O]<$MAXPROX) II ($dosage[0]>0)) {

$change_vals = 0;
if (($date_score[O]<$MAXPROX) && ($dosage[0]>O)) {

if (defined($med_resolved{"date"}) &&
defined($medresolved{"dosage"})) {
if (($date_score[0]<$med_resolved{"dat_score"}) &&

($dosage[0]>$medresolved{"dosscore"})) {
$change_vals = 1;

}
}
else { #both identified, but only one defined

$change_vals = 1;
}
if ($change_vals) {

$med_resolved{"table"} = $tab;
$med_resolved{"field"} = $medfld;
$med_resolved{"date"} = $date_score[l];
$med_resolved{"dat_score"} = $date_score[O];
$medresolved{"dosage"} = $dosage[l];
$med_resolved{"dos_score"} = $dosage[O];

}
I # endif of both identified
$change_date =0;
if ($date_score[O]<$MAXPROX) {

if (defined($med_resolved{"dat_score"})) {
if ($date_score[O]>$med_resolved{"dat_score"}) {

$change_date = 1;
}

}
else {

$change_date = 1;
}

}
if ($change_date) {

$med_resolved{"date"} = $date_score [1];
$med_resolved{"dat_score"I = $date_score[0];
$medresolved{"table"} = $tab;
$med_resolved{"field"I = $med_fld;
undef($med_resolved{"dosage"});
undef($med_resolved{"dos_score"});

}
$change_dosage = 0;
if ($dosage[0]>0) {

if (defined($med_resolved{"dosage"})) {
if ($dosage[0]>$med_resolved{"dos_score"}) {

$change_dosage = 1;
}

}
else {

$change_dosage = 1;
}

if ($changedos) {
undef ($med_resolved{"date"});
undef ($med_resolved{"datscore"});



$med_resolved{"dosage"} = $dosage[l];
$medresolved{"dos_score"} = $dosage[0] ;
$med_resolved{"table"} = $tab;
$medresolved{"field"} = $med_fld;

}
}

I
}

}

#------------------------------------------------------

*----------------------------------------------------------------------

sub resolve_addr {

local($the_tab,$fld) = Q_;
local(Qproxy) = QDEMOGRAPH_TYPES;
pop(@proxy); # get rid of the blank at the end

# shift(@proxy); #ignore ZIP codes
undef(%dem_proximity);
foreach $el (Oproxy) {

$dem_proximity{$el} = [ ($MAXPROX,"") ];
}
local($index) = $all_tables{$the_tab}{$fld}[3];
local($prox_idx);
foreach $field (keys(%{$all_tables{$the_tab}})) {

$prox_idx = $all_tables{$the_tab}{$field}[4];
if (defined($dem_proximity{$prox_idx})) {

$distance = abs($index-$all_tables{$the_tab}{$field}[3]);
if ($distance<$dem_proximity{$prox_idx} []0) {

$dem_proximity{$prox_idx}[O] = $distance;
$dem_proximity{$prox_idx}[1] = $field;

}
}

}

*----------------------------------------------------------------------

*----------------------------------------------------------------------

sub resolve_primkey {
local ($fld,$temp,$max) = (0,0,0);
local ($the_tab) = "";

foreach $table (keys(%dem_relev)) {
* determine the "primary key" in that table
if ($dem_relev{$table}[l]>$max) {

$the_tab = $table;
$max = $dem_relev{$table}[1];

}
}

$max = 0;
foreach $field (keys(Z{$all_tables{$table}})) {

if ($db_keys{$field}{$table}) {
local(@temp_tables) = (keys(%{$db_keys{$field}}));
# decide on the most number of references
if ($#temp_tables > $max) {

$max = $#temp_tables;
$fld = $field;

# $the_tab = $table;
}

}
}
return($thetab,$fld);

}



#-------------------------------------------------------
sub med_accn {

local($j,$modified);
$modify = 1;
if ($all_tables{$table}{$field}[7] > 0) {

$n_med++;
foreach $j (O..$MEDS) {

if (($alltables{$table}{$field}[7] > $med_scores[$j] [2) &&
($modify)) {
splice(Omed_scores,$j,O,

[ ($table,$field,$all_tables{$table}{$field}[7])]);
$modify = 0;

# $med_scores[O] =
# [ ($table,$field,$all_tables{$table}{$field}[7])]
# Omed_scores = sort( {$med_scores[$a][2] <=>
# $medscores[$b] [2]} Omedscores);

}
}

}
}

#-------------------------------------------------------------------------

--------------------------------------------------------------------------

sub dem_accn {
if ($all_tables{$table}{$field}[5] > 0) {

$n_dem++;
$demrelev{$table} [0]++;
if ($all_tables{$table}{$field}[4] ne "ZIP") {

$dem_relev{$table} [1]++;
}

# $dem_relev{$table}[l] = abs($dem_relev{$table}[1] -
# $all_tables{$table}{$field}[31);
# if ($all_tables{$table}{$field}[5] >
# $dem_scores{$all_tables{$table}{$field}[4]}[2]) {

# $dem_scores{$all_tables{$table}{$field}[4]} =
# [ $table,$field,$all_tables{$table}{$field}[5] ];

}
}

#-------------------------------------------------------------------------

--------------------------------------------------------------------------

sub TagFields {
foreach $table (keys(%all_tables)) {

# print "$table:\n";
foreach $field (keys(%{$all_tables{$table}})) {

# print "\t$field\t".'/bin/date'."\n";
($all_tables{$table}{$field} [4] ,$all_tables{$table}{$field} [5],
$all_tables{$table}{$field} [6] ,$all_tables{$table}{$field} [7],
$all_tables{$table}{$field}[8]) = ("",0, ,0,0);
if (($all_tables{$table}{$field}[O] ne "LONG") &&

($alltables{$table}{$field}[O] ne "DATE")) {
$sqlstr = "select distinct $table.$field from $table";
$unique = &GetUniqueRecords($NUMBER_OF_RECORDS,$sqlstr);
if ($unique>O) {

($dem_type,$dem_score) = &IdentifyDemograph($unique);
$all_tables{$table}{$field}[4] = $dem_type;
$all_tables{$table}{$field}[5] = $dem_score;

($all_tables{$table}{$field} [6],
$all_tables{$table}{$field} [7]) = &IdentifyPM();



elsif ($alltables{$table}{$field}[O] eq "LONG") {
* this is a LONG field - check as a note
$all_tables{$table}{$field} [8] = 1;

}

# print "\t=> $field [".join(",",C{$all-tables{$table}{$field}}).
# "] \n";

------------------------------------------------------------------

------------------------------------------------------------------
sub IdentifyPM {

local($dosageshorts) = "UDISOLIMGIINJILIQITABIMLICAPISUSP";
$retsprobl = $ret_smedic = 0;
if ($alltables{$ta bles{$table}{$field}[O] eq "VARCHAR2") {

&umlsconnect();
local($sprobl,$s-medic) = (0,0); local($temp);
foreach $term (keys('uniquerecs)) {

*get rid of numbers, parentheses, acronyms for units etc.
$term ="s/\(.*\)//g;

$term =-s/\b[\d\.]*\b//g;
$term =- s/\b([\w\.\/\d])*($dosage_shorts)[\w\.\/\d]*\b//g;
&umlsrequest("-metal-cstl$term");
&get_semtype();
$s_probl = $smedic = $s_aller = 0;
foreach $st (Qsemtypes) {

&umls_request("-net I-ancl$st");
&get_anctree();
#ensure that we get the highest possible score
if (($temp=&prob_iden()) > $s_probl) { $sprobl=$temp; }
$temp = 0;
if (($temp=&mediden()) > $smedic) { $smedic=$temp; }

}
$retsprobl += $s-probl;
$ret-smedic += $smedic;

}
&umlsdisconnect();
$retsprobl = $retsprobl / ($MAXPROBL*$unique);
$ret_sprobl =-s/(\d.\d\d).*/\i/; $ret_sprobl *= 100;
$ret-smedic = $ret_smedic / ($MAXMEDIC*$unique);
$ret.smedic =-s/(\d.\d\d).*/\l/; $ret_smedic *= 100;

}
return($ret_sprobl,$retsmedic);

}

------------------------------------------------------------------

------------------------------------------------------------------
sub med_iden {

if ($ancestors[5]=~ /$PHARMACOLOGIC/) {
return(5);

}
elsif ($ancestors[4] =~ /$CHEMSTRUC/) {

return(2);
}
else {

return(0);
}

-

#



sub prob_iden {
if ($ancestors[5] =~ /$DISEASE/) {

return(5);
}
elsif ($ancestors[4] =~ /$PATHOLOGIC/) {

return(4);
}
elsif ($ancestors[3] = /$ABNORMALITY/) {

return(4);
}
else {

return(0);
}

}

*-------------------------------------------------------------------------

*-------------------------------------------------------------------------

sub get_anctree {
local($cont) = 1; local($line);
undef(Cancestors);
while($cont && ($line = <SocHandle>)) {

chop($line);
if ($line =~ //) {

$cont = 0;
}
else {

$line =~ s/-\s+//;
@ancestors = (Oancestors,$line);

}
}

# print " ".join(" -> ",@ancestors)."\n" if ($field eq "ALLERGY_TXT");
}

*-------------------------------------------------------------------------

*-------------------------------------------------------------------------

sub get_semtype {
undef(@semtypes);
local($cont) = 1;
local($line);
while($cont && ($line = <SocHandle>)) {

if ($line =~ /Semantic Type:\s+(.*)/) {
# print "==>$term\t\t$l\n";

@semtypes = (@semtypes,$1);
}
$cont = 0 if ($line = /7./);

}

*-------------------------------------------------------------------------

*-------------------------------------------------------------------------

sub IdentifyDemograph {
# assumes the fields are stripped of first k common characters and are
# alligned left

# possible values ZIP,FNAME,LNAME,ADDR,CITY,ST

local($n) = @_;
local($iter,$max,$indexmax,$i);
local(@scores);
$i=0;
local(@ftypes) = @DEMOGRAPH_TYPES;
foreach $iter (@ftypes) {

$scores[$i++] = 0;
}



if (($alltables{$table}{$field}[O] eq "NUMBER") II
($alltables{$table}{$field}[O] eq "VARCHAR2")) {
foreach $iter (keys(%unique_recs)) {

# zipcode
$scores[O]++ if ( $iter =~ /^((\d{5,9})l(\d{5,5}-\d{4,4}))\b/);

if ($alltables{$table}{$field}[O] eq "VARCHAR2") {

# first name
$scores[1]++ if (defined($m_fnames{$iter}));

# last name
$scores[21++ if (defined($m_1names{$iter}));

# translate to upper case
$iter =- tr/a-z/A-Z/;
# address

if ($iter=~/\b($match_addr)(\bl\.)/) {
$scores [31++;

}
}

}
}
$n++; # there are n+1 unique records selected
foreach $i (O..$#scores) {

$scores[$il = $scores[$i]/$n;
$scores[$i] =~s/(\d.\d\d).*/\l/;
$scores[$il = $scores[$i]*100;

}
$indexmax = $i = $max = 0;
foreach $iter (@scores) {

if ($iter>$max) {
$max = $iter;
$index_max = $i;

}
$i++;

}
$iter = $ftypes[$index_max];
$iter = "" if ($max==O);

return ($iter,$max);
I

--------------------------------------------------------------------------

*-------------------------------------------------------------------------

sub GetUniqueRecords {
local($how_many,$sqlstr) = Q_;
local($n) = 0;
local($doccsr) = &ora_open($lda, $sqlstr)

II die $ora_errstr;
local($cont) = 1;
undef(%uniquerecs);
while (($foo) = &orafetch($doccsr)) {

if ($n <= $howmany) {
if (!defined($unique_recs{$foo})) {

$unique_recs{$foo} = 1;
$n++;

}
}

&ora_close($doccsr);
# decrement n by one because we have a hash key ''
return(--$n);

I



A.5 fileio.pl
#!/usr/local/bin/perl
# -*- Perl -*-

# $Id: $

require "config.pl";

require "utils .pl";

#-------------------------------------------------------------------------

--------------------------------------------------------------------------

sub log_entry {
local($str,$time) = -_;

open(FH_LOG,">>$activity_log");

printf FH_LOG "$str obtained in %2f CPU seconds\n",$time;

close FH_LOG;

}

sub log_activity {
local($text) = Q_;

if ($GENERATE_TOFILES) {
open(FH_LOG,">>$activity_log")

local($day,$month,$date,$time,$zone,$year) = split(/ +/,'/bin/date');
print FH_LOG $text." at $time on $month $date, $year";

close FH_LOG;

}
}

*------------------------------------------------------------------------

-------------------------------------------------------------------------

sub print_table_relations {
if ($GENERATE_TO_FILES==) {

open(FL, ">&STDOUT");

}
else {

open(FL,">$table_relations_file");

}

foreach $thetab (keys(%relations)) {
print FL "$thetab:\n";

foreach $otab (keys('{$relations{$thetab}})) {

($fldl,$fld2,$by_name,$by_data,$score) =
O{$relations{$thetab}{$otab}};

print FL "\t$otab [$fldl->$fld2] "

"(NAME [$byname] ,DATA [$by_data] ,$score) \n";

}
print FL "\n";

}
close FL;

}

#-------------------------------------------------------------------------

---------------------------------------------------------------------------

sub print_table_names {
if ($GENERATETO_FILES==O) {

open(FL, ">&STDOUT");

}
else {

open(FL,">$table_names_file");



foreach $tname (@tablenames) {
print FL "$tname\n";

}

close FL;
}

# ------------------------------------------------------

-------------------------------------------------------------------------

sub print_tables {
if ($GENERATE_TO_FILES==0) {

open(FL, ">&STDOUT");
}
else {

open(FL, ">$all_tables_f ile");
}
foreach $key (keys(%all_tables)) {

print FL "$key: $table_lengths{$key} records\n";
foreach $field (sort({ Q{$all_tables{$key}{$a}}[3] <=>

0{$all_tables{$key}{$b}} [3]
(keys(%{$all_tables{$key}})))) {

print FL "\t$field [".
join(",",0{$all_tables{$key}{$field}})."]\n";

}
print FL "\n";

}
close FL;

*-------------------------------------------------------------------------

*------------------------------------------------------------------------

sub print_field_tags {
if ($GENERATE_TO_FILES==0) {

open(FL,">&STDOUT");
}
else {

open(FL, ">$tags_file");
}

format FL =
0<<<<<<<<<<<<<<<<<<<<<<<<< Q<<<<<< Q>>> (0>> Q>>> Q>>>
$field,$all.tables{$keyl{$fieldl[4] ,$alltables{$keyl{$fieldl[5] ,$alltables{$keyl{$field}[6],
$all_tables{$key}{$fieldl[71,$all_tables{$key}{$field}[8].

foreach $key (keys(%all_tables)) {
$top_line = <<EOF

Field DemType DemScore Problems Medications Notes

$key: $table_lengths{$keyl records
EDOF

print FL $top_line;
foreach $field (sort({ 0{$all_tables{$key}{$a}}[3] <=>

Q{$all_tables{$key}{$b}} [3]
(keys(%{$all_tables{$key}})))) {

write(FL);
}
$-= 0;
print FL "\n";

}
close FL;

*-------------------------------------------------------------------------



# -------------------------------------------------------
sub print_db_keys {

if ($GENERATE_TO_FILES==O) {
open (FL, ">&STDOUT");

}
else {

open (FL, ">$db_keys_file");
}
local($el,$tab);
foreach $el (keys(%db_keys)) {

print FL "$el:\n ".join(",",(keys,(%{$dbkeys{$el}}))). "\n";
}
close FL;

}

------------------------------------------------------------------

------------------------------------------------------------------
sub print_tag_results {

if ($GENERATE_TOFILES==O) {
open (FL, ">&STDOUT");
open(SELFH, ">&STDOUT");

}
else {

open(FL, ">$tag_result_file");
open(SELFH, ">$select_f ile");

}
local($el,$fl);
print FL "DEMOGRAPHICS: $n_dem fields out of $total_fields identified.\n";
foreach $el (keys(Xdem_scores)) {

print FL "\t$el in $dem_scores{$el}[O].$dem_scores{$el}[1] "
"with the score of $dem_scores{$el}[2]\n"

if ($dem_scores{$el} [21>0);
}
foreach $el (keys(%demrelev)) {

if ($dem_relev{$el}[1] > 0) {
local($skore) = $dem_relev{$el}[11 / $dem_relev{$el}[O];
$skore=~s/(\d.\d\d).*/\l/;
$skore *= 100;

print FL " Table $el has $dem_relev{$el}[O] fields with the "
"relevancy factor of $skore.\n"; # $dem_relev{$el}[1].\n" ;

foreach $fl (keys(X{$alltables{$el}})) {
if ($all_tables{$el}{$fl} [5]>O) {

print FL " $fl"."[".$all_tables{$el}{$fl}[4]."]\n";
}

}
}

}
print SELFH "DEMOGRAPHICS: ";
local(Qflds);
print FL " After proximity to 'primary key' ($dem_table):\n";
foreach $el (keys(%dem_proximity)) {

if ($dem_proximity{$el}[O] < $MAXPROX) {
print FL "\t$el: $dem_proximity{$el}[0] ,$dem_proximity{$el}[l]\n";
push(Qflds,$dem_table.".".$dem_proximity{$el} [i);

print SELFH "$el ";
}

}
print SELFH "\n";
print SELFH "\t".&create_select_stmt($dem_table,$dem_table, flds).

" <clause>\n\n";

print SELFH "MEDICATIONS:";
print FL "MEDICATIONS & ALLERGIES: $n_med fields out of $total_fields identified.\n";
foreach $el (O..$MEDS) {

print FL "\t$el: located in $med_scores[$el][O].$medscores[$el][l] "



"with the score of $med_scores[$el] [2] .\n"
if ($med_scores[$el] [2]>0);

}
local(Otemp_keys) = keys( /.med_resolved);

if ($#temp_keys > 0) {
print FL " Medications identified as "

$med_resolved{"table"}.".". $med_resolved{"field"}. "\n";

foreach $el (keys(/.med_resolved)) {
print FL"\t$el: $med_resolved{$el}.\n" if (($el ne "table") &&

($el ne "field"));

}
}
print SELFH "\n";

print SELFH "\t".&create_select_stmt($dem_table,$med_resolved{"table"},

($med_resolved{"table"}. ".".

$med_resolved{"field"})).

" AND <clause>\n\n";

print SELFH "PROBLEMS:";

print FL "PROBLEMS: identified as $problem_field[0].$problem_field[I] "
"with the score of $problem_field[2]\n" if ($problem_field[2]>0);

print SELFH "\n";

print SELFH "\t".&create_select_stmt($dem_table,$problem_field[O],

($problem_field [O] ." . "
$problem_f ield [])).

" AND <clause>\n\n";

print SELFH "NOTES:";

print FL "NOTES: identified as $note_field[0].$note_field[l] "
"with the score of $note_field[2]\n" if ($note_field[2]>0);

print FL "\n";

print SELFH "\n";

print SELFH "\t".&createselectstmt($dem_table,$note_field [O],

($note_field[O] .".".$note_field[l])).
" AND <clause>\n\n";

close FL;

close SELFH;

}

# -------------------------------------------------------

*------------------------------------------------------------------------

sub read_tables {
open (FH, "$all_tables_file");
while (<FH>) {

if (/-(\w*): (\d*) records/) {
$tname = $1;
@table_names = (@tablenames,$l);
$table_lengths{$1} = $2;

}
if (/^\t(\w*) \[(\w*),(\d*),(\w),(\d*)\]/) {

$all_tables{$tname}{$}= [($2, $3, $4, $5) ]

}
}
close FH;

}

#-------------------------------------------------------

*-------------------------------------------------------------------------

sub read_db_keys {
open(FH,"$db_keys_file");



local(@tables);
while (<FH>) {

if (/^(\w*):/) {
$kname = $1;

}
if (/^\s+(.*)/) {

@tables = split(/,/,$l);
foreach $el (@tables) {

$db_keys{$kname}{$el} 1;
}

}
}
close FH;

i-------------------------------------------------------------------------

*-------------------------------------------------------------------------

sub read_table_relations {

open(FH, "$table_relations_file") II die "Could not open $table_relations_file\n";
local(@thetab);
while (<FH>) {

if (/-(\w*):/) {

$thetab = $1;

if (/^\t(\w*)\s+\[(\w*)->(\w*)\]\s+\(NAME\[(\d+)\],DATA\[(\d+)\],(\d+)\)/) {
$relations{$thetab}{$1} = [ ($2,$3,$4,$5,$6) ];

}

}
close FH;

}
i---------------------------------------------------------------------------

i-------------------------------------------------------------------------

sub read_tags{
open(FL,"$tags_file") II die "Could not open $tgs_file\n";
local(@thetab);
$asgn = 0;
while (<FL>) {

if (/^(\w*):/) { $thetab = $1; }
if (/(\w*)\s+([A-Z]*)\s*(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/) {

$alltables{$thetab}{$1}[4] = $2;
$all_tables{$thetab}{$1}[5] = $3;
$alltables{$thetab}{$1}[6] = $4;
$all_tables{$thetab}{$1}[7] = $5;
$all_tables{$thetab}{$1}[81 = $6;
$asgn = 0;

}
}
close FL;

I

i-------------------------------------------------------------------------

*-------------------------------------------------------------------------

sub read_master_files() {
local($foo);
#read states
local($fname) = $MASTERSDIR."states.txt";
open(FL,$fname) 11 die "Could not open file $fname\n";
while (<FL>) { chop; Qm_states = (@m_states,$_); }
close FL;
#read address
$fname = $MASTERS_DIR."addresses.txt";



open(FL,$fname) II die "Could not open file $fname\n";
while (<FL>) { chop;@m_addrs = (Om_addrs,$_); }
close FL;
$match_addr = join("I",nm_addrs);
#read cities
$fname = $MASTERS_DIR."cities.txt";
open(FL,$fname) II die "Could not open file $fname\n";
while (<FL>) { chop; nm_cities = (@m_cities,$_); }
#read names
local($names_fname);
foreach $names_fname ("female.txt","male.txt") {

$fname = $MASTERS_DIR.$names_fname;
open(FL,$fname) II die "Could not open file $fname\n";
while (<FL>) {

chop;
#remove ";" from the files

s/;//g;
*compress spaces
foreach $foo (split(' ',$_)) { $m_fnames{$foo} = 1; }

$fname = $MASTERS_DIR. "surname.txt";
open(FL,$fname) II die "Could not open file $fname\n";
while (<FL>) {

chop;
#remove ";" from the files

s/;//g;
#compress spaces
foreach $foo (split(' ',$_)) { $m_lnames{$foo} = 1;}



A.6 umls_conn.pl
#!/usr/local/bin/perl

# $Source:$

# Sample program that tests the fuctionality of the UMLS Metathesaurus

# (c) Jiri Schindler, 1996

# $Id:$

use Socket;

# port to use for TCP

$PORT = 8042;

connection to VSP

# name of the host to which we want to connect

$HOST = "isis.nlm.nih.gov";

# Connects to the UMLS server

---------------------------------------------------------------

sub umls_connect{

$iaddr = inet_aton($HOST);

$paddr = sockaddr_in($PORT,$iaddr);

$proto = getprotobyname('tcp');

socket(SocHandle,PF_INET,SOCK_STREAM,$proto) or die $!;

# Call up the server.

connect(SocHandle,$paddr)

# Set socket to be command buffered.

select(SocHandle);

$I = 1;
select (STDOUT);

}

sub umls_request{

local($command) = Q_;

print SocHandle "$command\n";

}

or die $!;

sub umls_read {

local($cont) = 1;
while($cont && ($line = <SocHandle>)) {

print STDOUT $line;
if ($line =~ /%%/) {

$cont = 0;

sub umls_disconnect {

shutdown(SocHandle,2);
}

1;



A.7 utils.pl
#!/usr/local/bin/perl
# -*- Perl -*-

# $Id: $

require "config.pl";

#-------------------------------------------------------
sub create_select_stmt {

local($begining,$ending,@fields) = Q_;
local(Cequalities,@tbls,$i);
if ($begining ne $ending) {

&bfs_search($begining,$ending);
for ($i=O;$i<$#table_seq;$i++) {

push(Qtbls,$table_seq[$i]);
$key = $relations{$tableseq[$i]}{$table_seq[$i+1]}[0];
push (@equalities, "$table_seq[$i] .$key=$table_seq [$i+1] .$key");

push(Qtbls,$table_seq[$i]);

else {

$tbls[0] = $begining;

return("select ".join(",",O@fields)." from ".join(",",@tbls).
" where ".join(" AND ",@equalities));

#------------------------------------------------------------------------

I------------------------------------------------------------------------

sub bfs_search {
local($startt,$endt) = Q_;
local($el,Yvertices,cqueue);
foreach $el (keys(%relations)) {

$vertices{$el} = [(2,$MAX_SEARCH_LEVEL,"")];

$vertices{$startt}[O] = [(1,0,"")];
push(§queue, $startt);
while ($#queue != -1) {

$el = shift(@queue);
foreach $adj (keys(%{$relations{$el}})) {

if ($vertices{$adj}[O] == 2) {
$vertices{$adj}[O] = 1;
$vertices{$adj}[1] += 1;
$vertices{$adj}[2] = $el;
if ($adj eq $endt) { * we have a match

undef(@table_seq);
while ($adj ne "" ) {

unshift(@table_seq,$adj);
$adj = $vertices{$adj}[2];

return(l);

push(@queue,$adj);

$vertices{$el}[O] = 0; # color black

return(0);



#-------------------------------------------------------

#-------------------------------------------------------
sub normalize_score {

local($scor) = Q_;
$scor =-s/(\d.\d\d).*/\l/;
$scor *= 100;

return ($scor);
}

83



Appendix B

Result Files

B.1 activity.log
Selecting elemets started at 19:52:11 on May 3, 1997
Getting table names started at 19:52:17 on May 3, 1997
Table names obtained in 0.040000 CPU seconds
Getting table names finished at 19:52:17 on May 3, 1997
Table descriptions obtained in 0.530000 CPU seconds
Finding relations started at 19:52:30 on May 3, 1997
All relations obtained in 3.820000 CPU seconds
Finding relations finished at 19:52:39 on May 3, 1997
Tagging fields started at 19:56:08 on May 3, 1997
Tagging fields finished at 20:19:05 on May 3, 1997
Selecting elements started at 20:19:05 on May 3, 1997
Selecting elements finished at 20:19:15 on May 3, 1997



B.2 all_field_tags.txt
Field DemType DemScore Problems Medications Notes

PATTESTHISTV: 73421 records
PATTESTID ZIP 72 0 0 0
PATNUM 0 0 0 0
EVENTSTARTDTTM 0 0 0 0
EVENT_DTTMKEY 0 0 0 0
TESTID 0 0 0 0
TEST_ABBR 0 0 2 0
EVENTSTOPDTTM 0 0 0 0
TESTPRTYCD ADDR 11 0 0 0
REMOTE_SYSTEM_CD 0 0 0 0
REMOTE_EVENT_NUM 0 0 0 0
SUPERGRPNUM ZIP 98 0 0 0
GRPNUM 0 0 0 0
DETAILNUM 0 0 0 0
SUPERGRPTESTID 0 0 0 0
GRPTESTID 0 0 0 0
PARENTID ZIP 96 0 0 0
CHILD_LEVEL_VAL 0 0 0 0
ROOTSTATUS 0 0 0 0
DATACLSCD 0 0 0 0
RSLTVAL 0 0 0 0
RSLTUNITTXT ZIP 5 0 0 0
RSLT_TYPE_CD 0 0 0 0
ABN_STATUS 0 0 0 0
ABN_TYPE_CD 0 0 0 0
REFLOW_VAL 0 0 0 0
REF_HIGHVAL 0 0 0 0
REF_TYPE_CD 0 0 0 0
DOCMNT_PNTR_ID 0 0 0 0
ORDID 0 0 0 0
ORD_PROV_NUM 0 0 0 0
ORD_LOCTN 0 0 0 0
RSLTSTATUS 0 0 0 0
CONFID_STATUS 0 0 0 0
CMNTSTATUS 0 0 0 0
ARCH_STATUS 0 0 0 0
DOBSTATUS 0 0 0 0
RSLTSCR 0 0 0 0
RSLTDTTM 0 0 0 0
REMOTERPT_DT_TM 0 0 0 0
UPDTDTTM 0 0 0 0

Field DemType DemScore Problems Medications Notes

DOC.STORE: 1128 records
DOC_ID 0 0 0 0
CONTENT 0 0 0 1

Field DemType DemScore Problems Medications Notes

PERSNL_PUBLIC: 615 records
PERSNLID ZIP 92 0 0 0
LAST_NAME LNAME 31 0 2 0
FIRST-NAME FNAME 41 0 0 0
MIDINITL 0 0 0 0
SURNAME 0 0 0 0
TITLE 0 0 0 0
PERSNLTYPEDESCR 0 9 0 0
DEPTCD 0 0 0 0
PRIMWORKTYPECD 0 0 0 0
CHPHONENUM 0 0 0 0
BEEPERNUM 0 0 0 0
CLSTRUSERNAME 0 0 0 0



CLSTR_ORACLE_USERNAME 0 0 0 0
EMAILADDR 0 0 0 0

PAPER MAILADDR 0 0 0 0

VMAILADDR 0 0 0 0

AUTHPERSNLID ZIP 94 0 0 0

AUTH_END_DT 0 0 0 0

REC_VALID_STATUS 0 0 0 0

LAST_NAME_SOUNDEX_CD 0 0 0 0

Field DemType DemScore Problems Medications Notes

PPR: 1417 records

ROLE 0 0 0 0

PROVIDERID ZIP 98 0 0 0

PATNUM 0 0 0 0

EXT_LAST 0 0 0 0

EXTFIRST 0 0 0 0

EXTPROVNUM 0 0 0 0

COMMENTS 0 0 0 0

STARTDATE 0 0 0 0

ENDDATE 0 0 0 0

COST_CENTER 0 0 0 0

Field DemType DemScore Problems Medications Notes

PROBLEMS: 375 records

PROBLEMNAME 0 42 0 0

STARTDATE 0 0 0 0

ENDDATE 0 0 0 0

PATNUM 0 0 0 0

REVOKEDATE 0 0 0 0

COSTCENTER 0 0 0 0

PRIMARY_DIAG_FLG 0 0 0 0

Field DemType DemScore Problems Medications Notes

CLINICAL_DATA: 7013 records

DATANAME 0 0 0 0

VALUE 0 0 0 0

DATE_OBTAINED 0 0 0 0

DATE-MODIFIED 0 0 0 0

PATNUM 0 0 0 0

TIMEOFDAY 0 0 0 0
DOCID 0 0 0 0

Field DemType DemScore Problems Medications Notes

DOCDESCRIPTION: 1128 records

CREATION 0 0 0 0

LAST MODIFIED 0 0 0 0

PRIMARYSIGNATORY ZIP 100 0 0 0

SECONDARYSIGNATORY ZIP 100 0 0 0

STATUS 0 0 0 0

COMPOUND 0 0 0 0

DOCUMENTTYPE 0 0 0 0

DOCID 0 0 0 0

PATNUM 0 0 0 0

COST_CENTER 0 0 0 0

ESIGDOCID ZIP 100 0 0 0

Field DemType DemScore Problems Medications Notes

PAT_FIN_ACCT: 7617 records

PATNUM 0 0 0 0

PAT_FIN_ENC_NUM 0 0 0 0

CARECLS_CD 0 0 13 0

STATUS 0 0 0 0

PREADMTREGSTRDTTM 0 0 0 0



BADDEBTDTTM 0 0 0 0
HISTDTTM 0 0 0 0
ACTIVPATNUM 0 0 0 0
ACTIVPATFIN_ENCNUM 0 0 0 0
ACTIVPATNAME 0 0 0 0
GUARNUM ZIP 98 0 0 0
GUARRELTNCD 0 0 0 0
MARITALSTATUS 0 0 0 0
GEOCD 0 0 0 0
RELIG_CD 0 5 5 0
COURTESYCD 0 0 0 0
SPECLPROGRM_CD 0 0 0 0
EMPLYMTSTATUS 0 0 0 0
EMPLYRNAME 0 0 0 0
EMPLYR_EMPNUM 0 0 5 0
EMPLYRADDR 0 0 0 0
EMPLYRCITY_NAME 0 0 0 0
EMPLYRSTATECD 0 0 0 0
EMPLYRZIPCD ZIP 80 0 0 0
EMPLYRPHONENUM 0 0 0 0
EMPLYRCNTCTNAME 0 0 0 0
NURS_STN_CD 0 0 0 0
RMNUM 0 0 0 0
BEDCD 0 0 0 0
CARE_SUBCLSCD 0 0 0 0
PRNCPLPAYORCD 0 3 0 0
ARSUBCLSCD 0 0 3 0
BAD_DEBT_CLS_CD 0 0 0 0
SERVCD 0 2 4 0
ADMT_PROV_NUM ZIP 98 0 0 0
ATNDPROVNUM ZIP 92 0 0 0
REFPROVNUM ZIP 98 0 0 0
REFPROVNAME 0 0 0 0
MAJDRGCD 0 0 0 0
OUTLRSTATUS 0 0 0 0
DRGAPPRVSTATUS 0 0 0 0
GRPRREVIEWCD 0 0 0 0
FINALBILLDRGCD 0 0 0 0
MAJDIAGCATGRYNUM 0 0 0 0
PRNCPLPROCDR_CD 0 0 0 0
PRNCPLPROCDRDT 0 0 0 0
PROCDRPROVNUM ZIP 96 0 0 0
PROCDRPROVNAME 0 0 0 0
PRNCPLDIAGCD ZIP 17 0 0 0
MAJCOST_DIAGCD 0 0 0 0
PREADMT_DT_TM 0 0 0 0
ADMT_DTTM 0 0 0 0
ADMTDIAGCD ZIP 19 0 0 0
ADMT_DIAGDESCR ZIP 5 16 0 0
ADMTCLSCD 0 0 5 0
ADMTSOURCECD 0 0 0 0
ADMTUSERINITL 0 0 0 0
DISCH_DT_TM 0 0 0 0
ANTCPTDISCH_DTTM 0 0 0 0
DISCHDISPCD 0 0 0 0
DISCHRELEASE_TXT 0 0 0 0
PREVNURSSTN_CD 0 0 0 0
PREV_RMNUM 0 0 0 0
PREVBEDCD 0 0 0 0
PREVCARESUBCLSCD 0 0 0 0
PREVSERVCD 0 2 5 0
PREV_ATND_PROVNUM ZIP 96 0 0 0
PREVLCONDCD 0 0 0 0
PREVTRNSFRDTTM 0 0 0 0
PENDTRNSFR_DT_TM 0 0 0 0
PENDTRNSFR_LOCTNTXT 0 0 0 0
TRNSFRREASONTXT 0 0 0 0
TRNSFREFFCTDT_TM 0 0 0 0



OUTPATCARECLSCD 0 0 13 0

ACCDNT_DT_TM 0 0 0 0

ACCDNTLOCTNCD 0 0 0 0

LAST_OUTPAT_VISIT_DT_TM 0 0 0 0

EMER DEPTARRIVMODECD 0 0 3 0

EMER_DEPT_DISCHDT_TM 0 0 0 0

EMERDEPTDISPCD 0 0 0 0

EMERDEPT_POLICE_NOTIFY_ST 0 0 0 0

HEALTH_BOARD_NOTIFY_STATUS 0 0 0 0

REGSTROTHER_TXT 0 0 0 0

USERFLD-TXT 0 0 0 0

MED_REC_CHART_NUM 0 0 0 0

MED_REC_CHART_LOCTN_CD 0 0 0 0

MEDRECCMNTTXT 0 0 0 0

BLOODPROGRMSTATUS 0 0 0 0

BLOODFURNCNT 0 0 0 0

BLOOD_REPLACECNT 0 0 0 0

BLOODORGNZTNNAME 0 0 0 0

UB82_LOCTR_02 0 0 0 0

UB82_LOCTR_09 0 0 0 0

UB82-LOCTR_27 0 0 0 0

UB82_LOCTR_45 0 0 0 0

OCCURSPAN-CD 0 0 0 0

OCCURBEGIN_DT 0 0 0 0

OCCUR END-DT 0 0 0 0

TOTLGROSSCHRGAMT 0 0 0 0

LATEACTIVAMT 0 0 0 0

LATEACTIV_ADJST_AMT 0 0 0 0

LASTPAT_CYCLE_BILLDTTM 0 0 0 0

LASTINSCYCLE_BILL_DT_TM 0 0 0 0
FINALBILLDTTM 0 0 0 0

LASTACTIVDTTM 0 0 0 0

REBILLSTATUS 0 0 0 0

LASTPRORATDTTM 0 0 0 0
LASTPOSTDTTM 0 0 0 0
BADDEBTWRITEOFFAMT 0 0 0 0
BADDEBT_WRITE_OFFRECOVER 0 0 0 0
ACCT REPRSNTCD 0 0 0 0

DIRECTARSTATUS 0 0 0 0

LAST_STMT_DT_TM 0 0 0 0
STMTSENTCNT 0 0 0 0

STMT_THREATCD 0 0 0 0

RECLSSUPPRESSSTATUS 0 0 0 0
FIRSTSTMTSTATUS 0 0 0 0

FIRSTSTMTDAYCNT 0 0 0 0

OTHERSTMTSTATUS 0 0 0 0
OTHER_STMT_DAY_CD 0 0 0 0

STMTSMALLBALSTATUS 0 0 0 0

STMTFORMCLS_CD 0 0 0 0

STMT MSG SUPPRESSSTATUS 0 0 0 0

GUAR_CNTRCT_CTRL_NUM 0 0 0 0

GUAR_CNTRCT_NUM 0 0 0 0

CONVRSTATUS 0 0 0 0

CYCLEUPDTDTTM 0 0 0 0

MEDREC_UPDT_STATUS 0 0 0 0

FACIL_TRNSFR_FROM_CD 0 0 0 0

FACIL_TRNSFR_TO_CD 0 0 0 0

UPDT_USER_INITL 0 0 0 0

UPDT_DEPT_CD 0 4 6 0

UPDT_DT_TM 0 0 0 0

Field DemType DemScore Problems Medications Notes

PATDEMOGRAPH: 300 records

PAT_NUM 0 0 0 0
LASTNAME LNAME 27 0 0 0
FIRSTNAME FNAME 88 0 0 0
MIDINITL 0 0 0 0



TITLE 0 0 4 0
SSN 0 0 0 0
PREVYNUM 0 0 0 0
PREVNAME 0 0 0 0
STREETADDR ADDR 43 0 0 0
OTHERADDR 0 0 0 0
CITY-NAME LNAME 88 0 0 0
STATE_CD ADDR 9 0 10 0
ZIPCD ZIP 100 0 0 0
PHONENUM 0 0 0 0
SEXCD 0 0 0 0
DOB 0 0 0 0
HGHTVAL 0 0 0 0
WGTVAL 0 0 0 0
BIRTHPLACE_NAME 0 0 0 0
CHEMP_STATUS 0 0 0 0
RACECD 0 0 5 0
ALLERGY_TXT 0 0 28 0
DEATH_DTTM 0 0 0 0
BADADDRSTATUS 0 0 0 0
SPOUSEFIRSTNAME 0 0 0 0
MAIDENNAME 0 0 0 0
FAMILY_PROVNAME 0 0 0 0
DIS_EXPOSRSTATUS 0 0 0 0
LASTOUTPATFINENCNUM 0 0 0 0
LASTINPATFINENCNUM 0 0 0 0
EMERNOTIFYNAME 0 0 0 0
EMER_NOTIFYPHONENUM_1 0 0 0 0
EMERNOTIFYPHONENUM_2 0 0 0 0
EMER_NOTIFYRELTNCD 0 0 0 0
NEXT_KIN_NAME 0 0 0 0
NEXT_KINADDR 0 0 0 0
NEXT_KINCITYNAME 0 0 0 0
NEXTKINSTATECD 0 0 0 0
NEXTKIN_ZIPCD 0 0 0 0
NEXTKINPHONENUM 0 0 0 0
NEXT_KINRELTNCD 0 0 0 0
NEXTKINEMPLYRNAME 0 0 0 0
NEXTKINEMPLYRCITYNAME 0 0 0 0
NEXT_KIN_EMPLYRSTATE_CD 0 0 0 0
NEXTKIN_EMPLYRZIPCD 0 0 0 0
NEXTKINEMPLYRPHONENUM 0 0 0 0
MEHCFAMILYNUM 0 0 0 0
MEHCMEMBRNUM 0 0 0 0
OTHERHEALTHCENTRNUM 0 0 0 0
OTHERHEALTHCENTRABBR 0 0 0 0
NATIVELANGCD 0 0 0 0
INTERP_NEED_STATUS 0 0 0 0
USERFLDTXT 0 0 0 0
PREV_0OUTPATFINENCNUM 0 0 0 0
PREVINPATFINENCNUM 0 0 0 0
LAST_ASSIGNFIN_ENC_NUM 0 0 0 0
LASTDISCHDT 0 0 0 0
UPDTUSERINITL 0 0 0 0
UPDTDEPT_CD 0 0 0 0
UPDT_DTTM 0 0 0 0

Field DemType DemScore Problems Medications Notes

CHILDDOCS: 1619 records
DOC_ID 0 0 0 0
CHILDID 0 0 0 0
CHILD_NAME 0 0 0 0

Field DemType DemScore Problems Medications Notes

DOC-ATTRIBUTES: 3394 records
ATTRIBUTE 0 0 0 0



VALUE
DOCID

Field

0 0
0 0

DemType DemScore Problems Medications Notes

PHARMACYTABLE: 3668 records
PATIENTRECORDNUMBER 0
PATIENTVISITNUMBER 0
PATIENT_NAME 0
FUNCTION-CODE 0
DATE_OF_SERVICE 0
FORMULARY_CODE_1 ZIP 100
FORMULARYCODE_2 ZIP 100
RXCODE 0
MEDICATIONNAME ADDR 3
SERVICEQUANTITY 0
UNIT-PRICE 0
DOSEFEE 0
LABORFEE 0
TOTALPRICE 0
MEDTYPE 0
DRGCODE 0
ORDERINGDOC 0
LABOREXPENSECODE 0
DRUGDOSE 0
FORMULARYCLASS_1 0
FORMULARY_CLASS_2 0
DRUG-ROLE 0
ETXGSEQUENCE ZIP 100
NURSLOC 0

0 0
0 0



B.3 all_matches .txt
#All SELECTs and JOINs performed to determine relations

Table: CHILDDOCS (1619 records)
Table: CLINICALDATA (7013 records)
Table: DOCATTRIBUTES (3394 records)
Table: DOCDESCRIPTION (1128 records)
Table: DOCSTORE (1128 records)
Table: PATDEMOGRAPH (300 records)
Table: PATFINACCT (7617 records)
Table: PAT_TEST_HISTV (73421 records)
Table: PERSNL_PUBLIC (615 records)
Table: PHARMACYTABLE (3668 records)
Table: PPR (1417 records)
Table: PROBLEMS (375 records)



B.4 all_tables .txt
CLINICAL-DATA: 7013 records

DATA-NAME [VARCHAR2,80,Y,1]
VALUE [NUMBER,22,Y,2]
DATE-OBTAINED [DATE,7,Y,3]
DATEMODIFIED [DATE,7,Y,4]
PAT_NUM [NUMBER,22,Y,5]
TIMEOF_DAY [VARCHAR2,5,Y,6]
DOC_ID [NUMBER,22,Y,7]

PATTESTHISTV: 73421 records
PATTESTID [NUMBER,22,N,1]
PAT_NUM [NUMBER,22,N,2]
EVENTSTARTDT_TM [DATE,7,N,3]
EVENT_DTTMKEY [NUMBER,22,N,4]
TESTID [NUMBER,22,N,51
TEST_ABBR [VARCHAR2,10,Y,6]
EVENTSTOPDTTM [DATE,7,Y,73
TESTPRTYCD [VARCHAR2,2,Y,8]
REMOTESYSTEM_CD [VARCHAR2,5,N,9]
REMOTEEVENTNUM [VARCHAR2,15,N,O10
SUPERGRP_NUM [NUMBER,22,Y,11]
GRPNUM [NUMBER,22,Y,12]
DETAILNUM [NUMBER,22,Y,13]
SUPERGRP_TEST_ID [NUMBER,22,Y,14]
GRPTESTID [NUMBER,22,Y,15]
PARENTID [NUMBER,22,Y,16]
CHILDLEVELVAL [NUMBER,22,Y,17]
ROOT-STATUS [VARCHAR2,1,Y,18]
DATA_CLS_CD [VARCHAR2,2,Y,19]
RSLTVAL [VARCHAR2,8,Y,20]
RSLT_UNITTXT [VARCHAR2,10,Y,21]
RSLTTYPECD [VARCHAR2,1,Y,22]
ABNSTATUS [VARCHAR2,2,Y,23]
ABN_TYPE_CD [VARCHAR2,2,Y,24]
REFLOWVAL [VARCHAR2,10,Y,25]
REFHIGHVAL EVARCHAR2,10,Y,26]
REFTYPECD [VARCHAR2,1,Y,27]
DOCMNT.PNTRID [NUMBER,22,Y,28]
ORDID [NUMBER,22,Y,29]
ORD_PROVNUM [NUMBER,22,Y,30]
ORD_LOCTN EVARCHAR2,4,Y,31]
RSLT_STATUS [VARCHAR2,2,Y,32]
CONFIDSTATUS [VARCHAR2,1,Y,331
CMNTSTATUS [VARCHAR2,1,Y,34]
ARCH_STATUS [VARCHAR2, 1,Y,35]
DOBSTATUS [VARCHAR2,1,Y,36]
RSLTSCR [NUMBER,22,Y,37]
RSLT_DTTM [DATE,7,Y,381
REMOTERPT_DTTM [DATE,7,Y,39]
UPDT_DTTM [DATE,7,N,401

DOCDESCRIPTION: 1128 records
CREATION [DATE,7,Y,1]
LASTMODIFIED [DATE,7,Y,2]
PRIMARYSIGNATORY [NUMBER,22,Y,3]
SECONDARYSIGNATORY [NUMBER,22,Y,4]
STATUS [VARCHAR2,20,Y,5]
COMPOUND [VARCHAR2,5,Y,6]
DOCUMENTTYPE [VARCHAR2,20,Y,7]
DOCID [NUMBER,22,Y,8]
PATNUM [NUMBER,22,Y,9]
COSTCENTER [NUMBER,22,Y,10]
ESIGDOCID [NUMBER,22,Y,11]

PPR: 1417 records



ROLE [VARCHAR2,20,Y,1]
PROVIDERID [NUMBER,22,Y,23
PATNUM [NUMBER,22,Y,3]
EXTLAST [VARCHAR2,50,Y,4]
EXT_FIRST [VARCHAR2,50,Y,5]
EXTPROVNUM [NUMBER,22,Y,6]
COMMENTS [VARCHAR2,80,Y,7]
STARTDATE [DATE,7,Y,81
ENDDATE [DATE,7,Y,9]
COSTCENTER [NUMBER,22,Y,101

PERSNLPUBLIC: 615 records
PERSNLID [NUMBER,22,N,1]
LASTNAME [VARCHAR2,20,N,2]
FIRST_NAME [VARCHAR2,20,Y,3]
MIDINITL [VARCHAR2,1,Y,4]
SUR-NAME [VARCHAR2,3,Y,51
TITLE [VARCHAR2,10,Y,6]
PERSNLTYPEDESCR [VARCHAR2,20,Y,7]
DEPTCD [VARCHAR2,6,Y,83
PRIMWORK_TYPECD [VARCHAR2,5,Y,9]
CHPHONENUM [VARCHAR2,7,Y,10]
BEEPERNUM [VARCHAR2,7,Y,11]
CLSTRUSER_NAME [VARCHAR2,20,Y,12]
CLSTRORACLE_USERNAME [VARCHAR2,30,Y,131
EMAILADDR [VARCHAR2,50,Y,14]
PAPERMAILADDR [VARCHAR2,50,Y,15]
VMAILADDR [VARCHAR2,15,Y,161
AUTH_PERSNLID [NUMBER,22,Y,17]
AUTHENDDT [DATE,7,Y,181
RECVALIDSTATUS [VARCHAR2,1,N,19]
LASTNAME_SOUNDEX_CD [VARCHAR2,4,N,20]

DOCSTORE: 1128 records
DOCID [NUMBER,22,Y,1]
CONTENT [LONG,O,Y,2]

PATFINACCT: 7617 records
PATNUM [NUMBER,22,N,1]
PATFINENCNUM [NUMBER,22,Y,2]
CARE_CLSCD [VARCHAR2,1,Y,3]
STATUS [VARCHAR2,1,Y,4]
PREADMTREGSTRDTTM [DATE,7,Y,51
BADDEBT_DTTM [DATE,7,Y,6]
HISTDTTM [DATE,7,Y,7]
ACTIVPATNUM [NUMBER,22,Y,8]
ACTIVPATFINENCNUM [NUMBER,22,Y,9]
ACTIV_PAT_NAME EVARCHAR2,31,Y,10]
GUAR_NUM [NUMBER,22,Y, 11]
GUARRELTNCD [VARCHAR2,2,Y,12]
MARITALSTATUS [VARCHAR2,1,Y,13]
GEOCD EVARCHAR2,6,Y,14]
RELIG_CD [VARCHAR2,3,Y,15]
COURTESY_CD [VARCHAR2,1,Y,16]
SPECLPROGRMCD [VARCHAR2,2,Y,17]
EMPLYMTSTATUS [VARCHAR2,1,Y,181
EMPLYR-NAME [VARCHAR2,25,Y,19]
EMPLYREMPNUM [VARCHAR2,11,Y,20]
EMPLYRADDR [VARCHAR2,30,Y,21]
EMPLYRCITYNAME [VARCHAR2,15,Y,22]
EMPLYR.STATE.CD [VARCHAR2,2,Y,23]
EMPLYRZIPCD [VARCHAR2,9,Y,24]
EMPLYR.PHONE.NUM [VARCHAR2,11,Y,25]
EMPLYRCNTCTNAME [VARCHAR2,25,Y,26]
NURSSTNCD [VARCHAR2,4,Y,27]
RMNUM [VARCHAR2,4,Y,28]
BEDCD [VARCHAR2,2,Y,29]
CARESUBCLSCD [VARCHAR2,1,Y,30]



PRNCPLPAYORCD [VARCHAR2,2,Y,31]
AR_SUBCLSCD [VARCHAR2,3,Y,32]
BADDEBTCLSCD [VARCHAR2,3,Y,33]
SERV_CD [VARCHAR2,3,Y,34]
ADMTPROV_NUM [NUMBER,22,Y,35]
ATNDPROVNUM [NUMBER,22,Y,361
REF-PROVNUM [NUMBER,22,Y,371
REF_PROVNAME EVARCHAR2,25,Y,38]
MAJ_DRGCD [NUMBER,22,Y,39]
OUTLRSTATUS [VARCHAR2,1,Y,40]
DRGAPPRVSTATUS [VARCHAR2,1,Y,41]
GRPRREVIEW_CD [NUMBER,22,Y,42]
FINALBILLDRG_CD [NUMBER,22,Y,43]
MAJDIAG_CATGRYNUM [NUMBER,22,Y,44]
PRNCPLPROCDRCD [VARCHAR2,5,Y,45]
PRNCPLPROCDRDT [DATE,7,Y,46]
PROCDRPROV_NUM [NUMBER,22,Y,47]
PROCDRPROVNAME [VARCHAR2,25,Y,48]
PRNCPLDIAGCD [VARCHAR2,6,Y,49]
MAJ_COST_DIAG_CD [VARCHAR2,6,Y,50]
PREADMT_DTTM [DATE,7,Y,51]
ADMTDTTM [DATE,7,Y,52]
ADMT_DIAG_CD [VARCHAR2,6,Y,53]
ADMTDIAGDESCR [VARCHAR2,70,Y,54]
ADMTCLS_CD [VARCHAR2,1,Y,55]
ADMTSOURCECD [VARCHAR2,1,Y,56]
ADMT_USER_INITL [VARCHAR2,3,Y,57]
DISCHDT_TM [DATE,7,Y,58]
ANTCPTDISCHDTTM [DATE,7,Y,591
DISCH_DISP_CD [VARCHAR2,2,Y,60]
DISCHRELEASETXT [VARCHAR2,50,Y,61]
PREVNURSSTNCD [VARCHAR2,4,Y,623
PREVRM_NUM [VARCHAR2,4,Y,63]
PREVBEDCD EVARCHAR2,2,Y,643
PREV_CARE_SUBCLSCD [VARCHAR2,1,Y,65]
PREVSERVCD [VARCHAR2,3,Y,66]
PREVATNDPROVNUM [NUMBER,22,Y,67]
PREV_CONDCD [VARCHAR2,1,Y,68]
PREVTRNSFRDTTM [DATE,7,Y,691
PEND_TRNSFRDTTM [DATE,7,Y,70]
PENDTRNSFRLOCTNTXT [VARCHAR2,10,Y,71]
TRNSFR.REASON_TXT [VARCHAR2,30,Y,72]
TRNSFR.EFFCTDT_TM [DATE,7,Y,73]
OUTPAT-CARE_CLSCD [VARCHAR2,1,Y,74]
ACCDNTDTTM [DATE,7,Y,75]
ACCDNT.LOCTN_CD [VARCHAR2,2,Y,76]
LAST_OUTPATVISITDTTM [DATE,7,Y,77]
EMER_DEPT_ARRIV_MODECD [VARCHAR2,1,Y,78]
EMERDEPTDISCHDT_TM [DATE,7,Y,79]
EMER_DEPT_DISPCD [VARCHAR2,2,Y,80]
EMER_DEPT_POLICE_NOTIFYSTATUS [VARCHAR2,1,Y,81]
HEALTH.BOARDNOTIFY_STATUS [VARCHAR2,1,Y,82]
REGSTR.OTHERTXT [VARCHAR2,60,Y,83]
USERFLDTXT [VARCHAR2,100,Y,84]
MEDRECCHARTNUM [VARCHAR2,6,Y,85]
MEDRECCHARTLOCTNCD [VARCHAR2,5,Y,86]
MEDRECCMNTTXT [VARCHAR2,30,Y,871
BLOODPROGRMSTATUS [VARCHAR2,1,Y,88]
BLOODFURNCNT [NUMBER,22,Y,891
BLOODREPLACECNT [NUMBER,22,Y,90]
BLOODORGNZTNNAME [VARCHAR2,8,Y,91]
UB82_LOCTR_02 [VARCHAR2,30,Y,92]
UB82_LOCTR_09 [VARCHAR2,7,Y,93]
UB82_LOCTR_27 [VARCHAR2,8,Y,94]
UB82_LOCTR_45 [VARCHAR2,17,Y,95]
OCCUR_SPAN_CD [VARCHAR2,2,Y,96]
OCCUR_BEGIN_DT [DATE,7,Y,971
OCCURENDDT [DATE,7,Y,981



TOTLGROSSCHRGAMT [NUMBER,22,Y,99]
LATEACTIVAMT ENUMBER,22,Y,100]
LATE_ACTIVADJSTAMT ENUMBER,22,Y,1011
LAST_PAT_CYCLEBILLDTTM [DATE,7,Y,102]
LASTINSCYCLEBILLDTTM [DATE,7,Y,103]
FINALBILL_DTTM [DATE,7,Y,104]
LASTACTIVDT_TM [DATE,7,Y,105]
REBILLSTATUS [VARCHAR2,1,Y,106]
LAST_PRORAT_DTTM [DATE,7,Y,1071
LASTPOSTDTTM [DATE,7,Y,108]
BAD_DEBTWRITE_OFFAMT [NUMBER,22,Y,1091
BAD_DEBTWRITEOFF_RECOVERAMT [NUMBER,22,Y,110]
ACCTREPRSNT_CD [VARCHAR2,3,Y,111]
DIRECT_ARSTATUS [VARCHAR2,1,Y,112]
LASTSTMT_DTTM [DATE,7,Y,113]
STMTSENT.CNT [NUMBER,22,Y,114]
STMTTHREATCD [NUMBER,22,Y,1151
RECLSSUPPRESSSTATUS [VARCHAR2,1,Y,116]
FIRSTSTMTSTATUS [VARCHAR2,1,Y, 117
FIRSTSTMTDAYCNT [NUMBER,22,Y,118]
OTHERSTMTSTATUS EVARCHAR2,1,Y,119]
OTHER_STMTDAYCD [NUMBER,22,Y,120]
STMTSMALLBALSTATUS EVARCHAR2,1,Y,121]
STMTFORMCLSCD [VARCHAR2,1,Y,122]
STMT_MSGSUPPRESSSTATUS [VARCHAR2,1,Y,123]
GUARCNTRCTCTRL_NUM [NUMBER,22,Y,124]
GUARCNTRCTNUM [NUMBER,22,Y,125]
CONVR_STATUS EVARCHAR2,1,Y,126]
CYCLEUPDTDTTM [DATE,7,Y,127]
MEDRECUPDT_STATUS [VARCHAR2,1,Y,128]
FACILTRNSFRFROM_CD [VARCHAR2,5,Y,129]
FACILTRNSFRTOCD [VARCHAR2,5,Y,130]
UPDTUSERINITL [VARCHAR2,3,Y,131]
UPDT_DEPTCD [VARCHAR2,3,Y,132]
UPDTDTTM [DATE,7,Y,1331

PATDEMOGRAPH: 300 records
PATNUM [NUMBER,22,N,1]
LASTNAME [VARCHAR2,16,Y,2]
FIRST_NAME [VARCHAR2,11,Y,3]
MIDINITL [VARCHAR2,1,Y,4]
TITLE [VARCHAR2,3,Y,5]
SSN [NUMBER,22,Y,6]
PREVNUM [NUMBER,22,Y,7]
PREV_NAME [VARCHAR2,31,Y,8]
STREET_ADDR [VARCHAR2,25,Y,9]
OTHERADDR [VARCHAR2,25,Y,101
CITY-NAME [VARCHAR2,15,Y,11]
STATECD [VARCHAR2,2,Y,12]
ZIPCD [VARCHAR2,9,Y,13]
PHONE_NUM [VARCHAR2,11,Y,141
SEXCD [VARCHAR2,1,Y,15]
DOB [DATE,7,Y,16]
HGHTVAL [NUMBER,22,Y,17]
WGT_VAL [NUMBER,22,Y,18]
BIRTHPLACENAME [VARCHAR2,15,Y,19]
CHEMPSTATUS [VARCHAR2,1,Y,20]
RACECD [VARCHAR2,1,Y,21]
ALLERGYTXT [VARCHAR2,25,Y,22]
DEATHDT_TM [DATE,7,Y,23]
BADADDRSTATUS [VARCHAR2,1,Y,24]
SPOUSEFIRSTNAME [VARCHAR2,11,Y,25]
MAIDEN-NAME [VARCHAR2,16,Y,26]
FAMILYPROVNAME [VARCHAR2,25,Y,27]
DISEXPOSRSTATUS [VARCHAR2,1,Y,28]
LAST.OUTPATFINENC_NUM [NUMBER,22,Y,29]
LASTINPATFINENCNUM [NUMBER,22,Y,30]
EMER_NOTIFY_NAME [VARCHAR2,25,Y,31]



EMER_NOTIFYPHONENUM_1 [VARCHAR2,11,Y,32]
EMERNOTIFYPHONENUM_2 [VARCHAR2,11,Y,33]
EMERNOTIFYRELTNCD [VARCHAR2,2,Y,34]
NEXTKINNAME EVARCHAR2,25,Y,35]
NEXTKIN_ADDR [VARCHAR2,25,Y,361
NEXTKINCITYNAME [VARCHAR2,15,Y,371
NEXTKIN_STATECD [VARCHAR2,2,Y,38]
NEXTKINZIPCD [VARCHAR2,9,Y,39]
NEXT_KINPHONE_NUM [VARCHAR2,11,Y,40]
NEXTKIN_RELTNCD [VARCHAR2,2,Y,41]
NEXTKINEMPLYRNAME [VARCHAR2,25,Y,42]
NEXT_KIN_EMPLYRCITYNAME [VARCHAR2,15,Y,43]
NEXT_KINEMPLYRSTATECD [VARCHAR2,2,Y,44]
NEXTKIN_EMPLYRZIPCD [VARCHAR2,9,Y,45]
NEXTKIN_EMPLYRPHONE_NUM [VARCHAR2,11,Y,46]
MEHCFAMILY_NUM [VARCHAR2,5,Y,47]
MEHC_MEMBR_NUM [VARCHAR2,2,Y,48]
OTHERHEALTHCENTRNUM [VARCHAR2,15,Y,49]
OTHERHEALTHCENTR_ABBR [VARCHAR2,4,Y,50]
NATIVE_LANGCD [VARCHAR2,2,Y,51]
INTERPNEED_STATUS [VARCHAR2,1,Y,52]
USERFLD_TXT [VARCHAR2,10,Y,53]
PREVOUTPATFIN_ENCNUM [NUMBER,22,Y,54]
PREV_INPATFIN_ENCNUM [NUMBER,22,Y,55]
LAST_ASSIGN_FINENC_NUM [NUMBER,22,Y,56]
LASTDISCHDT [DATE,7,Y,57]
UPDT_USERINITL [VARCHAR2,3,Y,58]
UPDT_DEPT_CD [VARCHAR2,3,Y,591
UPDTDTTM [DATE,7,Y,60]

PROBLEMS: 375 records
PROBLEM-NAME [VARCHAR2,80,Y,1]
START_DATE [DATE,7,Y,2]
END_DATE [DATE,7,Y,3]
PATNUM [NUMBER,22,Y,4]
REVOKEDATE [DATE,7,Y,5]
COSTCENTER [NUMBER,22,Y,6]
PRIMARY_DIAGFLG [NUMBER,22,Y,7]

PHARMACY-TABLE: 3668 records
PATIENTRECORDNUMBER [NUMBER,22,Y, 1]
PATIENTVISITNUMBER [NUMBER,22,Y,2]
PATIENT-NAME [VARCHAR2,30,Y,3]
FUNCTION_CODE [VARCHAR2,3,Y,4]
DATEOF_SERVICE [DATE,7,Y,51
FORMULARY_CODE_1 [VARCHAR2,5,Y,6]
FORMULARYCODE_2 [VARCHAR2,5,Y,7]
RXSCODE [VARCHAR2,9,Y,8]
MEDICATION-NAME [VARCHAR2,30,Y,9]
SERVICE_QUANTITY [NUMBER,22,Y,10]
UNITPRICE [NUMBER,22,Y,11]
DOSEFEE [NUMBER,22,Y, 12
LABORFEE [NUMBER,22,Y,13]
TOTAL_PRICE [NUMBER,22,Y,14]
MED_TYPE [VARCHAR2,1,Y,15]
DRGCODE [VARCHAR2,3,Y,16]
ORDERING_DOC [VARCHAR2,25,Y,17]
LABOREXPENSECODE [VARCHAR2,1,Y,181
DRUG_DOSE [NUMBER,22,Y,19]
FORMULARYCLASS_1 [VARCHAR2,3,Y,20]
FORMULARYCLASS_2 [VARCHAR2,3,Y,21]
DRUGROLE [VARCHAR2,1,Y,22]
ETXGSEQUENCE [NUMBER,22,Y,23]
NURSLOC [VARCHAR2,4,Y,24]

DOCATTRIBUTES: 3394 records
ATTRIBUTE [VARCHAR2,20,Y,1]
VALUE [VARCHAR2,230,Y,2]



DOC_ID [NUMBER,22,Y,3]

CHILD_DOCS: 1619 records

DOC_ID [NUMBER,22,Y,1]

CHILD_ID [NUMBER,22,Y,2]

CHILD_NAME [VARCHAR2,20,Y,3]



B.5 namekeys.txt
TITLE:

PERSNLJPUBLIC,PATDEMOGRAPH
DOC_ID:

CLINICALDATA,DOCDESCRIPTION,DOCSTORE,DOCATTRIBUTES,CHILDDOCS
USERFLDTXT:

PATFINACCT,PAT_DEMOGRAPH
END-DATE:

PPR,PROBLEMS
LASTNAME:

PERSNL_PUBLIC,PATDEMOGRAPH
UPDTDTTM:

PATTESTHISTV,PAT_FIN_ACCT,PATDEMOGRAPH
STATUS:

DOCDESCRIPTION,PATFINACCT
PAT NUM:

CLINICAL-DATA,PAT-TEST-HISTV,DOC-DESCRIPTION,PPR,PAT-FIN-ACCT,PAT-DEMOGRAPH,PROBLEMS
FIRSTNAME:

PERSNLPUBLIC,PAT_DEMOGRAPH
MIDINITL:

PERSNLPUBLIC,PATDEMOGRAPH
COST CENTER:

DOC_DESCRIPTION,PPR,PROBLEMS
UPDTUSERINITL:

PATFINACCT,PAT_DEMOGRAPH
START DATE:

PPR,PROBLEMS
UPDT_DEPTCD:

PATFINACCT,PATDEMOGRAPH



B.6 selectstatements .txt
DEMOGRAPHICS: ADDR ZIP LNAME FNAME

select PAT_DEMOGRAPH.STREETADDR,PATDEMOGRAPH.ZIPCD,PATDEMOGRAPH.
LASTNAME,PATDEMOGRAPH.FIRSTNAME from PATDEMOGRAPH where <clause>

MEDICATIONS:
select PHARMACYTABLE.MEDICATIONNAME from where AND <clause>

PROBLEMS:
select PROBLEMS.PROBLEMNAME from PAT_DEMOGRAPH,PROBLEMS where

PAT_DEMOGRAPH.PAT_NUM=PROBLEMS.PATNUM AND <clause>

NOTES:
select DOCSTORE.CONTENT from PAT_DEMOGRAPH,CLINICALDATA,DOC_STORE

where PATDEMOGRAPH.PATNUM=CLINICAL_DATA.PATNUM AND
CLINICALDATA.DOCID=DOCSTORE.DOCID AND <clause>



B.7 table-names.txt
CHILD DOCS

CLINICAL_DATA
DOCATTRIBUTES

DOCDESCRIPTION

DOC_STORE
PATDEMOGRAPH

PATFINACCT

PATTEST_HISTV

PERSNL_PUBLIC
PHARMACYTABLE

PPR

PROBLEMS

100



B.8 table_relations .txt
CLINICALDATA:

PATTESTHISTV [PATNUM->PATNUM] (NAME[1] ,DATAO] ,0)
DOC_DESCRIPTION [PATNUM->PAT_NUM] (NAMEI] ,DATA0] ,0)
PPR [PATNUM->PATNUM] (NAME[1],DATA[0],0)
DOCSTORE [DOCID->DOCID] (NAME[] ,DATA[O] ,0)
PATFINACCT [PATNUM->PATNUM] (NAME[] ,DATAEO],0)
PATDEMOGRAPH [PATNUM->PATNUM] (NAME1i],DATA[O],O)
PROBLEMS [PATNUM->PATNUM] (NAME 1],DATA[0],0)
DOC_ATTRIBUTES [DOCID->DOCID] (NAME[1],DATA[O],0)
CHILDDOCS [DOCID->DOCID] (NAME[1] ,DATAO] ,0)

PAT_TESTHISTV:
CLINICAL-DATA [PATNUM->PATNUM] (NAME[1],DATA[0],0)
DOC-DESCRIPTION [PATNUM->PAT_NUM] (NAME[1] ,DATA[O] ,0)
PPR [PATNUM->PATNUM] (NAME[1],DATA[O],0)
PATFINACCT [PATNUM->PATNUM] (NAME[1],DATA[O],0)
PATDEMOGRAPH [UPDTDTTM->UPDTDTTM] (NAME[1],DATA[0],0)
PROBLEMS [PATNUM->PATNUM] (NAME[1],DATA[0] ,0)

DOC DESCRIPTION:
CLINICAL_DATA [PATNUM->PATNUM] (NAMEi] ,DATA[] ,0)
PATTESTHISTV [PAT_NUM->PATNUM] (NAME[l] ,DATA[O] ,0)
PPR [COSTCENTER->COSTCENTER) (NAME [1] ,DATA[0] ,0)
DOCSTORE [DOC_ID->DOCID] (NAMEl] ,DATA[0] ,0)
PATFINACCT [STATUS->STATUS] (NAME[1],DATA[O],0)
PATDEMOGRAPH [PAT_NUM->PATNUM] (NAME[1],DATA[O],0)
PROBLEMS [COSTCENTER->COSTCENTER] (NAME[] ,DATA[0] ,0)
DOCATTRIBUTES [DOCID->DOCID] (NAME[1],DATA[O] ,0)
CHILDDOCS [DOC_ID->DOCID] (NAME[1] ,DATALO],0)

PERSNL_PUBLIC:
PATDEMOGRAPH [MIDINITL->MIDINITL] (NAME[1] ,DATA[O] ,0)

PPR:
CLINICALDATA [PATNUM->PATNUM] (NAME[] ,DATAtO],O)
PATTEST_HISTV [PAT_NUM->PATNUM] (NAME[] ,DATAEO],O)
DOCDESCRIPTION [COSTCENTER->COST_CENTER] (NAME[1],DATA[O],0)
PAT_FINACCT [PAT-NUM->PATNUM] (NAME[1],DATA[0] ,0)
PATDEMOGRAPH [PATNUM->PATNUM] (NAME[1],DATA [0],0)
PROBLEMS [STARTDATE->STARTDATE] (NAME 1],DATA[0],0)

DOCSTORE:
CLINICALDATA [DOC_ID->DOC_ID] (NAME[1] ,DATA[O],0)
DOCDESCRIPTION [DOCID->DOCID] (NAME[1] ,DATA [O],O)
DOCATTRIBUTES [DOCID->DOC_ID] (NAME[1] ,DATA[0] ,0)
CHILDDOCS [DOC_ID->DOCID] (NAME1] ,DATAO] ,0)

PATFINACCT:
CLINICALDATA [PAT_NUM->PATNUM] (NAME[] ,DATAO] ,0)
PATTEST_HISTV [PATNUM->PATNUM] (NAME[] ,DATAEO],0)
DOCDESCRIPTION [STATUS->STATUS] (NAME[1] ,DATA[O],0)
PPR [PATNUM->PAT_NUM] (NAME[1],DATA[0],0)
PATDEMOGRAPH [UPDTDT_TM->UPDTDTTM] (NAME[1] ,DATA[O],O)
PROBLEMS [PATNUM->PAT_NUM] (NAME[1] ,DATA [0],O)

PAT_DEMOGRAPH:
CLINICAL_DATA [PATNUM->PAT_NUM] (NAME[1],DATAO] ,0)
PATTEST_HISTV [UPDTDT_TM->UPDTDTTM] (NAME[] ,DATAtO],O)
DOCDESCRIPTION [PAT_NUM->PATNUM] (NAME[1],DATALO],0)
PERSNL_PUBLIC [MIDINITL->MID_INITL] (NAME[] ,DATA[0] ,0)
PPR [PATNUM->PATNUM] (NAME[1],DATA[O],O)
PATFINACCT [UPDTDTTM->UPDTDTTM] (NAME[1],DATA[O],0)
PROBLEMS [PATNUM->PAT_NUM] (NAME [1],DATA [01,0)

PROBLEMS:
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CLINICAL-DATA [PAT_NUM->PATNUM] (NAME[1] ,DATAEO [0] ,0)
PATTEST_HISTV [PATNUM->PATNUM] (NAME[] ,DATA[0] ,0)
DOCDESCRIPTION [COSTCENTER->COSTCENTER) (NAME Il,DATA [0],0)
PPR [STARTDATE->STARTDATE] (NAME[l],DATAEO],O)
PATFIN_ACCT [PATNUM->PATNUM] (NAME[C1,DATA[0] ,0)
PAT_DEMOGRAPH [PATNUM->PATNUM] (NAME[1],DATA[O],0)

DOCATTRIBUTES:
CLINICALDATA [DOCID->DOCID] (NAME[1] ,DATA[0] ,0)
DOCDESCRIPTION [DOCID->DOCID] (NAMEl] ,DATA0] ,0)
DOCSTORE [DOCID->DOCID] (NAME[1] ,DATA[0] ,0)
CHILDDOCS [DOCID->DOCID] (NAMEI] ,DATAEO],0)

CHILD_DOCS:
CLINICALDATA [DOCID->DOC_ID] (NAMEI] ,DATA[O],0)
DOCDESCRIPTION [DOCID->DOCID] (NAME[1] ,DATA[0],0)
DOC_STORE [DOCID->DOCID] (NAME[1],DATA[0] ,0)
DOCATTRIBUTES [DOC_ID->DOCID] (NAME[1] ,DATA[O],0)
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B.9 tagresults.txt
DEMOGRAPHICS: 33 fields out of 320 identified.

Table PATTESTHISTV has 5 fields with the relevancy factor of 20.
RSLTUNITTXTEZIP]
TESTPRTYCD[ADDR]
PARENT_ID[ZIP]
SUPERGRPNUM[ZIP]
PATTEST_ID[ZIP]

Table PERSNLPUBLIC has 4 fields with the relevancy factor of 50.
PERSNLID[ZIP]
FIRSTNAME[FNAME]
AUTHPERSNLID[ZIP]
LASTNAME[LNAME]

Table PATDEMOGRAPH has 6 fields with the relevancy factor of 83.
STREETADDR[ADDR]
CITYNAME[LNAME]
STATECD [ADDR]
FIRST_NAME[FNAME]
LAST_NAME[LNAME]
ZIP_CD[ZIP]

Table PHARMACYTABLE has 4 fields with the relevancy factor of 25.
FORMULARYCODEI [ZIP]
FORMULARYCODE_2[ZIP]
ETXG_SEQUENCE[ZIP]
MEDICATIONNAME[ADDR]

After proximity to 'primary key' (PATDEMOGRAPH):
ADDR: 9,STREETADDR
ZIP: 13,ZIP_CD
LNAME: 2,LASTNAME
FNAME: 3,FIRST_NAME

MEDICATIONS & ALLERGIES: 17 fields out of 320 identified.
0: located in PHARMACYTABLE.MEDICATION_NAME with the score of 60.
1: located in PATDEMOGRAPH.ALLERGYTXT with the score of 28.

Medications identified as PHARMACYTABLE.MEDICATION_NAME
dosscore: 100.
dosage: PATIENTRECORDNUMBER.
dat_score: 5.
date: DATEOFSERVICE.

PROBLEMS: identified as PROBLEMS.PROBLEMNAME with the score of 42
NOTES: identified as DOCSTORE.CONTENT with the score of 1
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