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Abstract
The fundamental problem of wireless video multicast is

to scalably serve multiple receivers which may have very
different channel characteristics. Ideally, one would like
to broadcast a single stream that allows each receiver to
benefit from all correctly received bits to improve its video
quality.

We introduce Digital Rain, a new approach to wireless
video multicast that adapts to channel characteristics with-
out any need for receiver feedback or variable codec rates.
Users that capture more packets or have fewer bit errors
naturally see higher video quality. Digital Rain departs
from current approaches in two ways: 1) It allows a re-
ceiver to exploit video packets that may contain bit er-
rors; 2) It builds on the theory of compressed sensing to
develop robust video encoding and decoding algorithms
that degrade smoothly with bit errors and packet loss. Im-
plementation results from an indoor wireless testbed show
that Digital Rain significantly improves the received video
quality and the number of supported receivers.

1 INTRODUCTION
Wireless video multicast is increasingly popular. Emerg-
ing applications are driven by users’ desires to watch
live TV and sporting events on laptops and handheld de-
vices [17, 44]. There is also interest in broadcasting pro-
motional clips, security videos, and entertainment clips, in
malls, airports, and train stations [23]; universities want to
broadcast their lectures live everywhere on campus; and,
rich multimedia homes create a market for multi-room au-
dio and video systems that stream the same movie to mul-
tiple screens around the house [1, 50].

Wireless video multicast, however, differs from its
wired counterpart in that it needs to deal with the challeng-
ing characteristics of the wireless medium. Specifically:

1. Wireless is prone to errors. Current video encod-
ing, based on MPEG, is highly vulnerable; a few
lost packets or flipped bits can dramatically reduce
the quality of a video stream and render the frames
unrecognizable [20]. The wireless medium however
suffers relatively high error rate. Typically, for uni-
cast, this problem is solved by having the source

pick a proper bit-rate (i.e., modulation and FEC) to
ensure that the encountered bit-errors are corrected.
But video multicast has multiple receivers that differ
in link quality, and hence one cannot pick a single
bit rate that fits all receivers.

2. Wireless channel quality is highly time-varying. The
quality of the wireless channel varies quickly with
time due to both fading and congestion. Existing
video codecs based on MPEG pick a preset video
rate and cannot adapt the video quality to quickly
changing channel conditions.

3. Wireless channel quality widely varies across re-
ceivers. The video stream should be delivered to
multiple receivers, each of which has a different
channel quality. Transmitting a separate stream to
each receiver is wasteful. However, broadcasting a
single stream to all receivers while ensuring that they
can all decode requires the source to transmit at a low
bit rate that satisfies the receiver with the worst chan-
nel quality, hence reducing everyone to the perfor-
mance of the worst receiver in the multicast group.

Current approaches to wireless video multicast are un-
able to deal with all of the above characteristics of the
wireless medium. They may use MPEG to encode the
video into a preset fixed quality stream. The stream is
protected with strong error-correcting codes (FEC) and
is then broadcast on the wireless medium to multiple re-
ceivers [44, 23, 20]. However, wireless receivers can span
a wide range of throughputs, packet loss and bit-error
rates [30, 2, 45]. Adjusting the error correcting code to
support all receivers reduces everyone to the quality of
the worst receiver in the group. Other schemes may trans-
mit layered video, where the base layer is encoded at a
low resolution and protected with heavy error correcting
codes, making it decodable by all or most receivers [47,
22]. The enhancement layer improves the quality of the
base layer video, and is encoded with less redundancy and
hence decodable only by receivers with good link quality.
While layered video is effective for wired multicast, where
a congested receiver joins only the base layer [19], it is
wasteful in a wireless network, where transmissions are
broadcast on a shared medium. Wireless receivers cannot
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pick which layer they receive, and hence receive equally
from all layers; all bytes they hear from a layer that they
cannot completely decode are wasted.

This paper introduces Digital Rain, a new approach for
streaming video to heterogeneous wireless receivers. Digi-
tal Rain is adaptive and simple; the source does not encode
the video into a preset fixed quality stream or apply FEC
to protect transmissions. Digital Rain develops a novel
rateless video codec, where the source simply broadcasts
coded packets belonging to a video stream. Receivers ex-
ploit all received video packets, even those with bit errors.
Receivers that collect more packets, or experience fewer
bit errors in each packet, see higher video quality, without
any retransmissions or changes to the codec rate. Digital
Rain addresses the challenges presented by the wireless
medium:

1. It adapts to varying link quality: Digital Rain lever-
ages recent advances in the theory of compressed
sensing to compress the video in a robust and rate-
less manner [15, 8, 7]. Specifically, video frames are
natural images, which do not change much from one
pixel to the next. As a result, the frequency repre-
sentation of a video frame is a sparse signal. The
theory of compressed sensing states that sparse sig-
nals can be efficiently compressed using random lin-
ear projections [15, 8, 7], and that the quality of the
recovery scales with the number of received linear
combinations [18]. Digital Rain encodes a frame by
taking random linear combinations of the values of
its pixels. A receiver will get a certain number of
linear combinations depending on the channel qual-
ity at that instant, and therefore will be able to de-
code a video stream with proportional quality. When
the channel is good, it will decode a higher quality
stream and a lower quality one when the channel is
bad. The source itself does not need to change its
encoding strategy to adapt to the channel quality.

2. It deals with diverse receivers: Digital Rain natu-
rally adapts to receivers with diverse channel quality.
The source broadcasts random linear combinations
of the pixels in a video stream. Receivers with bet-
ter links will get more linear combinations than ones
with lower quality links. Since decoded video stream
quality is proportional to the number of linear com-
binations received, receivers decode a video stream
whose quality is commensurate with the quality of
their links; they are not limited to the same quality
as the receiver with the worst link.

3. It stays efficient in the presence of bit errors. Cur-
rent wireless networks retransmit a packet because
of a few bit errors, ignoring that most of the bits
have been correctly received, and hence wasting
wireless bandwidth [26, 24, 49]. In contrast, Digi-
tal Rain equips compressed sensing with a novel de-
coding algorithm that identifies erroneous bits in a

corrupt packet, excludes them and uses the correctly
received bits in video decoding. Thus, the waste in-
curred in throwing away entire packets due to a few
bit errors is eliminated. Prior approaches that iden-
tify corrupt bits using on soft information [26, 49,
24] exist, but they require hardware modifications.
Digital Rain’s approach is entirely software based
and works on existing hardware.

Finally, Digital Rain’s encoding is fundamentally simi-
lar to finite field based network coding. However, Digital
Rain takes linear combinations over real numbers, while
traditional network coding [9, 31, 27, 4] takes linear com-
binations over finite fields. Finite field operations make
traditional network coding rigid; it has an all or nothing
behavior: when a batch of n packets is coded together,
the receiver needs to get n coded packets before it can de-
code [9]. But the simple yet fundamental shift from finite
fields to real fields, allows Digital Rain to build new net-
work codes that do not have the all or nothing behavior
while retaining the desirable properties of traditional net-
work coding. Specifically, a Digital Rain receiver that does
not receive enough coded packets, rather than giving up on
decoding the coded batch, can seek an approximate decod-
ing that produce a low resolution frame. Using these ideas
Digital Rain develops new network coding protocols for
media streaming that do not suffer from the all-or-nothing
behavior, and hence are suitable for video and audio appli-
cations.

We have built a prototype of Digital Rain and evaluated
it in a 18-node wireless testbed. We measure video qual-
ity using the Peak Signal-to-Noise Ratio (PSNR), a stan-
dard metric for video applications, where improvements in
PSNR of magnitude larger than 0.5 dB are visually notice-
able [40, 36]. Our results reveal the following findings:

• Digital Rain maintains good video quality and scales
to a large number of receivers. Specifically, it improves
the average video quality across receivers by 3 dB over
single-layer multicast with FEC, 7 dB over layered
video, and 22 dB over transmitting separately to each
receiver.
• While Digital Rain builds on the idea of compressed

sensing, its main strength comes from its novel decoder
which improves video quality by as much as 15 dB in
the presence of bit errors.
• Combined with network coding, Digital Rain produces

a video quality gain of 8 dB over tree-based multicast
routing, and 5 dB over opportunistic routing without
network coding.

2 RELATED WORK
This paper builds on a rich literature that spans diverse
areas in signal processing, networking, and video coding.

(a) Compressed Sensing. Compressed sensing is an
emerging area of signal processing. It started in 2004
with the pioneering work of Donoho [15] and Candes [8,
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7], who showed that sparse signals can be accurately re-
constructed from a small number of random projections.
Specifically, in order to capture a sparse signal, x, of very
high dimension n, it often suffices to compute a measure-
ment vector Ax, where the matrix A is a “random” lin-
ear mapping into a low m-dimensional space. This in-
sight has motivated many papers to explore the condi-
tions under which compressed sensing is effective, de-
velop tighter bounds, and explore potential applications.
Applications emerged in signal acquisition and modula-
tion [16], geophysics [32], biosensing [34], Radar [6], sen-
sor networks [5], and image processing and camera de-
sign [21].

Digital Rain employs compressed sensing for video en-
coding, but differs from prior work in that area in three
main ways: 1) Digital Rain has a new decoding algorithm
that identifies erroneous video measurements (elements
of Ax with bit errors) and prevents them from degrading
the reconstructed signal; 2) Digital Rain combines com-
pressed sensing with the idea of exploiting partially cor-
rect packets, and weaves them together in a system ar-
chitecture for wireless video multicast; 3) Finally, Digi-
tal Rain is implemented and evaluated in a actual wireless
testbed.

(b) Video Multicast & Video Encoding Early propos-
als for video multicast over the Internet have used dis-
tributions trees [37, 29]. The success of Bittorrent, how-
ever, has motivated a peer-to-peer approach for video
streaming, which has led to implementations like Joost
and P2PTV [51, 12, 42]. Recent papers have extended this
peer-to-peer design to the wireless environment [2]. Digi-
tal Rain differs from this work because it focuses on serv-
ing diverse receivers with a single video broadcast, em-
ploys novel video encoding and decoding schemes, and
integrates its design with network coding.

A rich literature addresses the problem of video encod-
ing [41, 23, 44]. Two approaches are particularly targeted
at networked applications. The first approach is scalable
video coding [41, 22], where a video is encoded into a base
layer providing basic video quality at low bit rate and one
or more enhancement layers. In contrast to Digital Rain
which adopts a “one size fits all” approach, scalable video
coding follows a “take what you need and ignore the rest”
strategy. This strategy works well for streaming video to
multiple receivers over a wired network, where each re-
ceiver can subscribe to the layers that match its bottle-
neck capacity, but is ineffective in wireless environment,
where a receiver cannot pick which packets it correctly re-
ceives [43]. The second approach is multi description cod-
ing [22], where a sender transmits different descriptions
of an image to different users. Each user uses her descrip-
tion to see a low resolution version of the image. Alterna-
tively, the users can combine their descriptions to obtain a
better quality. This form of MDC, however, is inefficient
over wireless because it ignores the broadcast nature of the
medium, and that a receiver cannot control which descrip-

Figure 1: Digital Rain’s System Architecture. The system has
three components: the video server, the access points, and the
video clients. The server multicasts the video to the APs over
the local Ethernet. Each AP broadcasts the stream on its wireless
interface. A client receives the stream from the AP with which it
associates.

tion it receives.

(c) Wireless Network Coding. This paper is closely re-
lated to prior work on intra-flow wireless network cod-
ing [25, 39, 48, 33] and particularly MORE [9]. Intra-flow
network coding however is “all-or-nothing”; a whole batch
of packets is either decoded correctly or completely lost.
Video and audio streaming applications however do not re-
quire full reliability, and would rather trade off high video
quality to limit delay and ensure proper streaming. Digital
Rain differs from prior work on network coding because
it integrates network coding with compressed sensing, ap-
plies it to wireless video multicast, and introduces a new
decoder that smoothly scales the video quality with errors
and losses in received packets.

(d) Partial Packet Recovery. Recent work has observed
that current wireless receivers drop an entire packet with
a few bit errors, though most of the bits are correctly re-
ceived. They proposed using soft values from the physical
layer to recover partially correct packets [24, 49]. Digital
Rain builds on this prior work, but differs from it signifi-
cantly. In Digital Rain, there is no need to recover incor-
rect bytes since the coding makes all bytes equally useful,
and allows them to replace each other. Thus, Digital Rain
extracts from a corrupt packet as many of its correct bytes
as possible and ignores the rest. Additionally, Digital Rain
does not need soft information or access to the physical
layer.

3 DIGITAL RAIN
Digital Rain is a new protocol for video multicast over a
wireless network. It broadcasts a single video stream but
each receiver observes a video quality that scales with the
quality of its channel. Digital Rain is designed for envi-
ronments with moderate to large number of receivers with
diverse channel quality, e.g., broadcasting live lectures on
a university campus.

3.1 Digital Rain Architecture
Figure 1 shows Digital Rain’s architecture, which includes
three components: the video server, the access points, the
video clients.
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(a) Video Server: The server encodes the video as de-
scribed in §3.2, and multicasts the encoded stream to the
local access points using an Ethernet multicast address.
The server design is highly scalable. It need not know
about individual clients, track packet losses, or adapt the
video codec to channel quality. The code ensures that more
received packets naturally translate to higher video qual-
ity.

(b) Access Points: The APs are configured to broadcast
the received video multicast stream on the wireless inter-
face. The APs remain unchanged for unicast traffic and
applications other than video multicast.

(c) Wireless Video Clients: The wireless card at the
client appears to the kernel as two virtual interfaces. The
first interface operates as a regular 802.11 station associ-
ated with an access point. The second interface operates
in the monitor mode and hence can receive any packets
including those with bit errors. This way the client can re-
ceive packets with bit errors for media applications, while
supporting other applications in the traditional way. The
card virtualization is already supported by popular drivers,
e.g., Madwifi [35].

Digital Rain inserts a shim layer on top of the monitor
interface to allow interested applications to receive
packets that contain bit errors, i.e., packets that do not
satisfy the 802.11 checksum. The shim layer opens a raw
socket to the monitor device to receive all packets on that
interface, and exports standard Unix sockets to interested
applications. The video application opens a socket to the
shim layer and receives the streamed packets and decodes
them according to the algorithm in §3.3.

In addition to the single hop mode shown in Fig-
ure 1, where the receivers obtain their video stream
directly from a nearby AP, Digital Rain also operates in
the multi hop mode. As described in §3.4, Digital Rain
exploits opportunistic reception in multi hop networks, by
having nearby receivers forward linear combinations of
their received video packets to distant receivers.

3.2 The Encoder
Digital Rain uses a new approach to video coding that
is customized for lossy and error prone wireless envi-
ronments. The main strength of this code is its ability to
smoothly scale the video quality with the wireless chan-
nel quality, in order to accommodate differences in link
quality across space (i.e., different receivers) or time (con-
gestion periods).

A video is a stream of frames, where each frame can be
represented as a matrix of pixels. A raw video file is ex-
tremely large and needs to be compressed for most prac-
tical purposes. Most video compression techniques are
based on two basic concepts. There is a lot of intra-frame
and inter-frame redundancy present in a video stream.
We do not discuss inter-frame redundancy and motion
compensation here, since Digital Rain uses standard tech-

niques [20] to handle them.
To remove intra-frame redundancy, MPEG for example,

first divides a frame into small blocks of say 8 × 8 pixels
and then takes a Discrete Cosine Transform (DCT) of the
luminance in each block. DCT is commonly used in im-
age compression because of its energy compacting prop-
erty [38]. Specifically, since images are relatively smooth,
most of their energy is in the low frequency components
and most of the high frequencies are close to zero. Sec-
ond, MPEG throws away ”less important” information by
quantizing these DCT components to achieve further com-
pression. These quantized values are then encoded using
Huffman encoding which is a variable length code that
exploits the non-uniform distribution of the DCT compo-
nents to expend few bits on the common values and more
bits on rare values.

While these techniques produce good compression ra-
tios, they also produce undesirable effects for wireless
multicast. The quantization already decides the video fi-
delity for all receivers, and hence it forces all multicast
receivers to the same quality. Huffman encoding, on the
other hand, is highly fragile to bit errors and packet loss.
Specifically, since it uses variable length encoding, a sin-
gle bit error can confuse the receiver about symbol bound-
aries rendering the whole frame irrecoverable [47].

As in MPEG, Digital Rain divides each frame into small
blocks on which it applies a DCT. However, in order to
tackle the undesirable effects for wireless multicast, Digi-
tal Rain does away with quantization and Huffman encod-
ing. Instead, Digital Rain exploits the sparsity of the DCT
representation to compress the video frame. In particular,
the theory of compressed sensing shows that one can accu-
rately reconstruct a sparse signal from a small number of
random projections [15, 8, 7]. Let x be an n-dimensional
vector that refers to the DCT coefficients from all blocks in
a frame. Digital Rain compresses the frame by taking lin-
ear random projections of the DCT vector, y = Ax, where
A is a m×n matrix with m < n, and y is an m-dimensional
vector that we call the measurement vector. Each element
of y is encoded in 8 bits using fixed-point representation.
As explained in §3.3, the larger m is, the higher the quality
of the reconstructed frame [18].

It is typical to choose the matrix A by picking m ran-
dom rows from the Fast Fourier Transform (FFT) after
randomly permuting its columns [13]. This approach al-
lows for fast encoding and decoding because the FFT of a
vector of size n can be done in O(n log n) steps, whereas
standard matrix multiplication is O(n2).

Each transmitted packet, pi, contains a subset of the
measurement vector y as follows:

y =




p1
...

pd


 =




A1
...

Ad


 x = Ax, (1)

where Ai refers to the rows of A that fit in packet pi. Packet
pi also contains, s, the seed used to permute the FFT ma-

4



trix, the video frame id fID, and the packet index i. This
meta data is protected from bit errors using a strong error
correcting code. The overhead of such code is negligible
given that the indices and the seed are only 2 bytes each.

The number of packets that the server transmits per
frame, d, should be bounded by the maximum bandwidth
the video is allowed to consume on the wireless channel.
For example, if the maximum video throughput should
be bounded by 6 Mb/s and the video server generates 30
frames per second, d should be 6000/(30∗1500∗8) ≈ 16
1500B packets.

Two points are worth noting about our video codes:

• Digital Rain provides in network compression of video
data in order to allow the video to match the quality
of a receiver’s channel. Specifically, consider a receiver
with a relatively poor channel. Say that instead of re-
ceiving all d packets of a particular frame, the receiver
gets p1 . . . pk where k < d. We can express the informa-
tion that the receiver obtains as:

y′ =




p1
...

pk


 =




A1
...

Ak


 x = A′x, for k ≤ d. (2)

Hence, the receiver obtains a fewer linear projections
y′ = A′x, where the matrix A′ has fewer rows than
A, and thus provides a lower quality representation of
the original image x [18] (see Section §3.3). Said differ-
ently, Digital Rain does not need to predict the quality of
the channel or adapt the codec rate to it, the adaptation
occurs naturally when the channel drops packets.
• The Huffman code used in MPEG is venerable to er-

rors and packet loss. To protect the transmission one
would need to encapsulate the packets with strong error
correcting codes. Such encapsulation, however, prevents
real time tradeoffs between the level of compression -
i.e., the quality of the image- and the redundancy in the
error correction code - i.e., the quality of the channel. In
contrast, Digital Rain uses one code. It allows a receiver
with a bad channel to use the extra information to cor-
rect byte errors, and a receiver with good channel to use
the same information to improve its video quality.

3.3 The Decoder
The basic operation of the decoder is to solve a few lin-
ear equations. Again, say that the receiver got the packets
p1 . . . pk of a particular frame, and that these packets can
be expressed according to Equation (2), the receiver then
needs to solve the linear system:

find x such that y′ = A′x (3)

Note that the receiver can regenerate the matrix A′ by first
generating the matrix A, then picking the rows that corre-
spond to its received packets. Given the seed s, the matrix
A is easy to generate by permuting the rows and columns
of the FFT matrix.

The system of equations in (3) has two important prop-
erties.

• First, it is underdetermined, i.e., it has more unknowns
(the elements of x) than equations. This is because the
matrix A′ has more columns than rows, which is the re-
sult of packet loss, as well as the original compression
in Equation (1).
• Second, it has corrupt measurements. Some elements in

y′ include bit errors and hence may dramatically deviate
from their original values.

(a) Solving an underdetermined system: Let us first as-
sume there are no bit-errors in y′ and focus on solving
Equations (3). Since the system has more unknowns than
equations, it allows a whole space of potential solutions.
We can, however, identify the best solution by exploiting
the sparsity of the signal x. As described in §3.2, this sig-
nal is a block-by-block DCT of a natural image, and hence
most of its components are of negligible magnitude or 0.
We can use this property to make the system (3) better de-
termined. In fact, one of the core results of compressed
sensing[8] is that if the n-dimensional vector, x, is sparse,
i.e., the number of non-zero elements is ¿ n, then it is
possible to recover x exactly by solving the following con-
vex optimization

min||x||1 subject to y′ = A′x (4)

where ||x||1 =
∑

i |xi|. Thus, we can recover the full
n-pixel image from much less than n values, which ef-
fectively provides compression, but also protection from
packet loss.

Many algorithms were proposed to solve the optimiza-
tion in (4) [13, 14, 10]. Digital Rain adapts a variant of
the greedy StOMP algorithm [13], which has a low com-
putational complexity. The intuition underlying StOMP is
fairly simple. Since x is sparse, it has few non-zero ele-
ments. The indices of these non-zero elements are referred
to as the support set I. If one can guess the support set,
the system of equations simplifies to solving for |I| un-
knowns, which are way fewer than all elements in x. Such
a system is likely to become overdetermined and hence
solvable using least square fitting. Alg. 1 presents the de-
tails of StOMP. In order to guess the support set, StOMP
uses a matched filter (A′T ). The purpose of the matched
filter is to emphasize the non-zero indices not included in
the current guess. The algorithm includes these indices in
its guess for the next iteration. StOMP stops when the fit
is sufficiently good (judged by the norm of the residual) or
when it cannot add any new indices to the support set.

(b) Dealing with bit errors: Current compressed sens-
ing does not deal with bit flips in the measurement vector
y′, which is the type of errors introduced by the wireless
channel. The channel can flip any bit or sequence of bits
causing a dramatic change in the corresponding element in
y′. These wrong measurements confuse StOMP and result
in a wrong solution for the image signal x (see Figure 7).
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1 Stagewise Orthogonal Matching Pursuit
x = 0, I = φ
repeat

(1) r = y′ − A′x
(2) c = A′Tr
(3) J = largest few components of c
(4) I = I ∪ J
(5) x = minx ||y′ − A′x||2 s.t. ∀i/∈I xi = 0

until should stop
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Figure 2: Identifying Corrupt Measurements. The residual dis-
tance of corrupt measurements is much more spread than that of
correct measurements.

Digital Rain uses a heuristic to identify the erroneous el-
ements in the measurement vector y′ and remove the cor-
responding equations from the linear system in (3) in order
to prevent them from biasing the solution. The heuristic
works as follows. Each element in the received measure-
ment vector, y′i , is either correct or corrupt by bit flips.
The correct elements are all linear projections of a sparse
vector x. Thus, they all live on a high-dimensional hyper-
plane. The corrupt elements do not belong to that hyper-
plane. At the beginning we do not know this hyper-plane.
However, after each iteration of StOMP, we have a low di-
mensional estimate of x which lives in the space spanned
by the current support set I. Thus, we can compute a pro-
jection of the measurement hyper-plane on a lower dimen-
sion space, i.e., the space spanned by the current support,
I. This projection is A′x′, where x′ is the current esti-
mate of x based on the current support set I. We guess
that correct measurements should be close to this hyper-
plane, whereas corrupt measurements are farther from this
hyper-plane. Said differently, for a measurement value yi,
the residual distance ri = yiA′ − x′ is likely to be large if
the measurement is corrupted.

Measurements from actual video data support our intu-
ition. In particular, Figure 2 shows the residual distance
after the first iteration of StOMP for both corrupt mea-
surements and correct measurements. Clearly, the corrupt
measurements are much more spread. Given this intu-
ition we can design a simple algorithm to identify corrupt
measurements and ignore them. After every iteration of
StOMP, compute the residual distance ri = yiA′−x′ for ev-

ery measurement i. Compute the standard deviation in the
residual distance and eliminate all measurements whose
residual distance is more than a few standard deviations.

Note that the above approach can cause us to lose some
correct measurements that happen to have large residual
distance. This is however fine since no measurement is
special and the loss will only cause a smooth degradation
in the quality of the video. Also, we might admit measure-
ments with errors. This is also not disastrous, since the
erroneous measurements that we may admit are close to
be fitted, and likely these are measurements with errors in
the least significant bit and. Hence, they do not cause the
solution of x to deviate by much.

(c) Dealing with high packet loss rates: Since an under-
determined system cannot be solved uniquely, the success
of step (5) depends on having sufficiently more elements
in y′ than in I (|I| is the number of free variables). Hence,
if a receiver experiences massive packet losses, the num-
ber of received measurements is severely limited, and one
should not attempt to recover more elements of x than al-
gebra allows. In such a case, one would, ideally, retrieve
only the most significant elements in x in order to mini-
mize the distortion caused to the image.

By design, StOMP retrieves the components of x
roughly in the order of decreasing magnitude. Thus, the re-
maining issue is to decide when to stop decoding. Recall,
that for the sake of compression, JPEG/MPEG remove
the least significant components of x by quantizing before
Huffman coding. In Digital Rain, we can apply a similar
technique a posteriori, on the decoded signal. After ev-
ery iteration, we apply a hard non-uniform1 threshold to
x and clear the components of insufficient magnitude. We
also treat them as false positives and remove them from I.
StOMP naturally stops iterating when it can no longer find
sufficient number of new components that would pass the
threshold.

This non-uniform threshold is scaled depending on the
expected quality of the image, which in turn is scaled to
the number of received measurements. Hence we achieve
natural rate-distortion at the decoder.

3.4 Integration with Network Coding
Prior work has shown that network coding can exploit
opportunistic receptions to improve wireless throughput
in multi-hop wireless networks [9, 26]. Network coding,
however, is all-or-nothing; If a batch of n packets are com-
bined using network coding, the receiver has to receive at
least n packets in order to decode; otherwise the batch is
lost [9]. This is in direct conflict with video streaming ap-
plications, where ensuring full reliability is unnecessary,
and can be problematic if it leads to increased delay.

Digital Rain harnesses the benefits of network coding
while avoiding its all-or-nothing behavior. To do so, Digi-

1The threshold depends on the DCT frequency encoded in the com-
ponent in a way matching the non-uniform quantization tables of
JPEG/MPEG.
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tal Rain exploits the following two features:
• Video and audio signals are described best in the Real

domain, and thus their network coding should be in the
Real field rather than a finite field as it is typically the
case [31, 27, 4, 9]. Specifically, Digital Rain pushes net-
work coding to the application layer where it is per-
formed on linear projections of a frame’s DCT compo-
nents, which are Real numbers. Operating over the Real
field allows Digital Rain to seek approximate solutions
and hence avoid all-or-nothing decoding. Say that the
luminance of a particular pixel is 2.41. Approximating
this real number with a close real number, like 2.50, is a
meaningful operation, with minor impact on the image
itself. In contrast, flipping a bit in codewords over a fi-
nite field, e.g., transforming “10101000” to “10101001”
may lead to completely irrelevant values.
• In contrast to MPEG and JPEG, which use non-linear

codes (e.g., Huffman coding), Digital Rain uses lin-
ear codes (see Equation eq1). As a result, Digital Rain
is amenable to integration with network coding, which
also relies on linear codes [31, 27, 4]. Say the source
code is y = Ax; the network between the sender and
a receiver in the multicast group, creates linear com-
binations of the source coded signal, i.e., the network
transforms y to z = By, where B is a matrix that refers
to the linear combinations applied using network cod-
ing. (In the above example, the matrix B refers to the
random linear coefficients, the bi’s, used by Alice to
produce coded packets.) The receiver needs to decode
z = (BA)x, which itself is a linear code, and hence can
be decoded using the same decoder in §3.3 after replac-
ing the matrix A with the matrix BA.

A Digital Rain exploits network coding to multicast
video over multi-hop networks. In particular, when some
of the receivers are too distant such that they cannot be sat-
isfied directly by the source, Digital Rain can use a multi-
hop network, where intermediate nodes forward the video
traffic to more distant receivers. In this case, the source
encodes the video stream using the encoder algorithm de-
scribed earlier and broadcasts the resulting packets. The
intermediate nodes in the network create linear combina-
tions of the packets they receive and broadcast them. Both
nearby and distant nodes use any independent coded pack-
ets they receive to increase their video quality.

Coding alone is not sufficient. We need to control how
much coded traffic the intermediate nodes forward, oth-
erwise they might consume the whole capacity of the
medium, and dramatically reduce the throughput of the
wireless source. Digital Rain limits the forwarding traf-
fic as follows. First, Digital Rain organizes the nodes in a
shortest path tree rooted at the source and computed us-
ing ETX as a distance metric [11]. Each parent in the tree
is responsible for satisfying the video requirements of its
children. When a child’s video requirements are satisfied,
it informs its parent. The parent stops forwarding pack-
ets from a particular frame once all of its children have

received enough packets from that frame to satisfy their
minimum quality requirements.

3.5 Complexity
Digital Rain has the same complexity as a typical MPEG
or JPEG codec. Similar to these standards, Digital Rain
takes a Discrete Cosine Transform (DCT) over the pix-
els in the image [20, 46]. Digital Rain, however, replaces
the Huffman encoder/decoder used in these standards with
novel encoder/decoder algorithms based on greedy com-
pressed sensing (the StOMP [13] algorithm) and net-
work coding. These algorithms have a low complexity of
O(n log n), where n is the number of pixels in a frame.
This does not increase the complexity in comparison with
MPEG or JPEG since these standards already use a DCT
transform, which is O(n log n).

4 EXPERIMENTAL RESULTS
This section uses results from a 18-node wireless testbed
to study the performance of our approach. Our testbed
is shown in Figure 3. Each node in the testbed is a PC
equipped with a NETGEAR WAG311 wireless card at-
tached to an omni-directional antenna. They operate in the
802.11b/g monitor mode, with RTS/CTS disabled. Nodes
in the testbed run Linux, the Click toolkit [28] and the
Roofnet software package [3].

4.1 Compared Schemes
We consider a video source that generates a frames once
every 33 ms (i.e., 30 frames/s). Thus, the source has 33 ms
of air-time for every frame which, as described below, can
be used in a number of ways to server the receivers. The
objective of the source is to maximize the average video
quality at all the receivers.

• Multiple Unicasts: The source uses the air-time allo-
cated to each frame to unicast it to the maximum num-
ber of receivers. Specifically, the source first picks the
receiver with the best channel and transmits the frame
at the rate supported by the receiver’s channel. Then the
source picks the receivers with the next best channel and
unicasts the frame. The source continues this process for
33 ms, at which time it moves on to the next frame and
repeats the same process.
• Single Layer Multicast: The source broadcasts a single

MPEG video stream on the wireless medium. However,
in order to ensure that most of the receivers can decode
the frames correctly, we use Reed-Solomon codes to
protect every MPEG frame from bit errors and packet
loss. The redundancy of the Reed-Solomon code is
picked to ensure that a video frame after Reed-Solomon
encoding fills up the 33 ms air time allocated to it.
• Two-Layer Multicast: This approach is a hybrid of the

above two approaches. Conceptually, the receivers are
divided into two categories: receivers with low channel
quality and receivers with high channel quality. In or-

7



Figure 3: Testbed Topology. The dots refer to the wireless nodes.

der to provide different video quality to these two cate-
gories, the source divides the video stream into two lay-
ers: a base layer and an enhancement layer. The base
layer MPEG-encodes a video sequence at a low reso-
lution. The residue between the original video and the
reconstructed base layer is then encoded as the enhance-
ment layer. The base layer can be decoded in the same
way as typical MPEG, but to decode the combined base
and enhancement layers, both layers must be received.
The base layer is protected with twice as much Reed
Solomon code as the enhancement layer. The amount of
redundancy is picked to ensure that the total frame size
(i.e., both layers with their corresponding error correct-
ing codes) fills up the 33 ms air time.
• Digital Rain: The source uses the encoding algorithm

described in §3.2, on every frame and transmits packets
for a period of 33 ms for every frame.

4.2 Performance Metric
The Peak Signal-to-Noise Ratio (PSNR) is a standard
measure of video/image quality [36]. It is a function of
the mean squared error (MSE) between the decoded video
frame and the original frame:

PSNR = 10 log10
2L − 1
MSE

,

where L represents the number of bits used to encode the
luminance signal, typically 8 bits, and the MSE between
an n× m decoded frame I and its original version K is:

MSE =
1

mn

m−1∑

i=0

n−1∑

j=0

||I(i, j)− K(i, j)||2.

The PSNR is expressed in decibels (dB). Typical PSNR
values range between 20 and 40. Improvements in PSNR
of magnitude larger than 0.5 dB would be visible [36].

4.3 Setup
We show results for the known Salesman video sequence,
where each frame is 178 × 144 pixels, and the video is
encoded at 30 frames/s (QCIF format). Our prototype im-
plementation produces only I-frames.2 The video clip is
2Adding P frames and motion compensation is straightforward and we
are in the process of doing it.
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Figure 4: Comparison of the average PSNR across all re-
ceivers.

looped to obtain 5-min multicast sessions. Video quality
is recorded at the different receivers, measured in terms of
average peak signal-to-noise ratio (PSNR).

Each experiment involves picking a random source from
the nodes in the testbed to multicast the video to all other
nodes. Receivers log all packets including those that do
not satisfy the CRC test. We distinguish between the first
compared scheme, which uses multiple unicasts, and the
others, which use 802.11 broadcast. For the multiple uni-
cast scheme, we pick the best rate for each receiver and
allow the sender to retransmit corrupted packets up to four
times. For the schemes that use 802.11 broadcast, we try
all broadcast rates and pick the one that works the best,
i.e., it maximizes the average PSNR at all receivers.

Furthermore, we ensure that all compared schemes ex-
perience exactly the same packet loss and bit error pat-
terns, and hence differences in performance are due to
the characteristics of the compared schemes, rather than
changes in interference or cross traffic. Specifically, in
each experiment, we multicast a long video file and col-
lect the traces of the received video packets at all receivers.
We compare the transmitted stream with the received trace
at every node. Since we know the exact packets that were
transmitted, we can easily identify which packets were lost
and which bits were incorrectly received, at each node.
Thus, we map each experiment into a set of per-receiver
bit and packet masks. When applied to a file, these masks
produce the same patterns of packet loss and bit errors that
were observed at all receivers in the corresponding experi-
ment. Thus, instead of repeating the transmission for each
compared scheme, incurring different interference and er-
ror patterns, in each experiment we multicast one file at
various 802.11 rates, and apply the corresponding masks
to all compared schemes.

4.4 Comparing the Performance of Various
Schemes

We evaluate Digital Rain and compare it to three alterna-
tives: multiple unicasts, single layer multicast, and two-
layer multicast. For the multiple unicasts scheme, we al-
low the source to unicast the video to each receiver at the
highest rate supported by the receiver as described in §4.1.
For the other schemes we try the following four bit rates:
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Figure 6: Comparison of the average PSNR across all re-
ceivers, allowing all four schemes to exploit packets with bit
errors.

5.5 Mb/s, 9Mb/s, 11 Mb/s, and 12 Mb/s.
Figure 4 plots the average PSNR across all receivers.3

The figure shows that the multiple unicasts scheme per-
forms badly because it can support only a very limited
number of receivers and delivers no video to the others. In-
terestingly the single layer multicast performs better than
the two-layer multicast. As we argued in §1, layered video,
while works for wired networks, is unsuitable for the wire-
less environments because a receiver cannot pick which
packets to receive, and hence receives equally from both
layers. However, receivers with bad channel quality do not
obtain enough packets to decode the enhancement layer
and waste any packet they received from that layer. As for
Digital Rain, it outperforms the other schemes at every bit
rate. It improves the average PSNR by 22 dB over multi-
ple unicasts, 9 dB over two-layer multicast, and 3 dB over
single layer multicast.

Figure 5 shows the PSNR of the individual receivers in
the testbed ordered according to their decreased PSNR.
The results are for a bit rate of 11Mb/s, except for the
multiple unicasts scheme, which uses different rates to dif-
ferent receivers. The figure shows that the multiple uni-
casts scheme has a very low performance because it sup-
ports only a couple of receivers. The single layer multi-
cast and two-layer multicast support more receivers but
do not degrade smoothly. Finally Digital Rain presents a
good PSNR to most receivers and degrades smoothly as
the channel quality worsens.
3The minimum PSNR is 10 since a fully grey picture produces around
10 dB PSNR.
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Figure 7: Efficacy of the Decoder in Dealing with Bit Errors
Digital Rain’s decoder can recover from bit errors while tradi-
tional compressed sensing (CS) cannot.
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Figure 8: Dealing with High Packet Loss Rates. Digital Rain’s
decision to scale the desirable reconstruction quality with the
fraction of lost packets allows for a slower degradation of PSNR
as a function of lost packets, and hence improves video quality.
Note that the data used here has only packet losses and no bit
errors.

Next, we would like to check whether Digital Rain
maintains its performance lead if we allow the other
schemes to exploit packets that do not pass the 802.11
checksum test. Figure 6 repeats the experiment in Fig-
ure 4 but while allowing all four schemes to exploit pack-
ets with bit errors. The figure shows that the multiple uni-
casts scheme degrades drastically because MPEG encod-
ing is highly vulnerable to bit errors and this scheme does
not use error correcting codes. The figure also shows that
the two-layer multicast and the single-layer multicast both
show improved PSNR. These schemes can benefit from
the correct bits in a corrupt packet because of their use
of Reed-Solomon codes, which can correct both bit er-
rors and packet erasures. However, Digital Rain still per-
forms significantly better than these schemes. Hence, Dig-
ital Rain’s good performance stems from both its ability to
exploit packets with bit errors and its encoding and decod-
ing algorithms.
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4.5 Decoder Benchmarks
Digital Rain is motivated by recent advances in com-
pressed sensing [15, 8, 7] but adopts its own decoder that
rejects erroneous video measurements and adapts the re-
construction quality to the number of received packets.
We examine the impact of these new features and whether
Digital Rain could have performed as good by simply
adopting compressed sensing. Our Digital Rain imple-
mentation is based on StOMP, a known algorithm for com-
pressed sensing. Thus, we compare the performance of
Digital Rain with the unmodified StOMP.

Figure 7 shows that Digital Rain’s approach to rejecting
erroneous measurements is necessary. The figure plots the
video quality as a function of the bit error rate (BER), for
StOMP and Digital Rain. Both algorithms are given the
same number of video packets that is sufficient to fully re-
cover the signal in the absence of bit errors. The figure
shows that traditional compressed sensing, i.e., StOMP,
cannot deal with bit errors. Flipping bits in the video can
lead to values significantly different from the original mea-
surements and hence confuses the StOMP decoder. In con-
trast, Digital Rain’s decoder identifies most of the erro-
neous bytes and ignores them, and hence is more resilient
to bit errors. Indeed, the difference in performance is as
high as 15 dB, which means dramatic improvement in
video quality.

Also, as described in §3.3(c), Digital Rain’s decoder dif-
fers from traditional compressed sensing in that it decides
the desirable reconstruction quality based on the percent-
age of lost packets. A receiver that receives only a few
packets from a particular frame should not try to shoot for
a high quality frame, but should rather focus on retriev-
ing the largest DCT components in the vector x, which
usually capture most of the structure in a frame. Here, we
would like to examine the value of Digital Rain’s decision
to scale the desirable reconstruction quality with the num-
ber of received video packets.

Since we want to focus just on packet losses, we turn
on the CRC check which drops all packets with bit errors
in them. Fig. 8 plots the PSNR as a function of the per-
centage of lost packets. The figure shows that when the
percentage of lost packets is small (< 10%), scaling the
desired reconstruction quality has little effect. However,
for receivers that lose a significant fraction of the transmit-
ted packets, Digital Rain’s decision to scale the desirable
reconstruction quality results in about 4-7 dB increase in
PSNR, which is a significant improvement in video qual-
ity.

4.6 Benefits of Network Coding
Last, we compare three options for routing Digital Rain’s
traffic in a multi-hop wireless network. The first option
is typical multicast routing, which delivers traffic along
a shortest-path tree that minimizes the ETX metric be-
tween the source and individual receivers [11]. The second
is opportunistic multicast, which uses the same distribu-

Figure 9: Topology used to evaluate Digital Rain in a multi-
hop scenario.
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Figure 10: Digital Rain’s performance in a multi-hop network.
Digital Rain leverages the benefits of network coding to achieve
high PSNR, but it does not require that all receivers obtain all
packets in a batch/frame.

tion tree as before, however it allows the nodes to exploit
any off-tree opportunistic receptions they may hear from
nodes other than their parent. The third is network coding
as described in §3.4, where intermediate nodes codes the
packets before forwarding them to distant nodes, and each
intermediate node has a set of children to satisfy. Note that
in all three schemes, a parent node does not unicast pack-
ets to each child separately; a parent broadcasts packets to
all of its children. We run our experiments over the topol-
ogy in Fig. 9, where we randomly pick 7 nodes from the
testbed and organize them in a tree according to the ETX
metric. We repeat the experiment 10 times, and compute
the average PSNR at each of the 6 receivers.

Fig. 10 plots the average PSNR at all receivers in Fig. 9,
for the three compared schemes. As expected, exploit-
ing opportunistic receptions improves the overall quality
compared to traditional multicast routing. Further, net-
work coding improves the quality over pure opportunis-
tic routing. This is because uncoded packets create du-
plicate receptions at many nodes who have already heard
that packet. In contrast, a randomly coded packet is less
likely to be a duplicate and hence benefits more receivers.
Receivers close to the source, however, experience good
video quality regardless of the routing scheme. In contrast,
the benefits of network coding are particularly high at dis-
tant receivers where there is a significant opportunity for
improvement. For those receivers, network coding brings
an average improvement of 5 dB over opportunistic rout-
ing and 8 dB over traditional multicast routing.
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Note that traditional network coding does not apply to
this scenario because the distant receivers which do not
receive all packets in a frame, would not be able to decode
any of the coded packets, and hence there is no point using
network coding.

5 CONCLUSION
Traditional video encoding and decoding algorithms are
oblivious of the quality of the communications channel.
Additional error correcting codes are independently ap-
plied over the encoded video to account for channel er-
rors and packet loss. This separation limits one’s ability
to dynamically tradeoff the video quality for the channel
quality.

In this paper, we question whether this separation is
always desirable. In particular, we present Digital Rain
a new approach to wireless video multicast, where the
sender broadcasts one video stream but each receiver per-
ceives the video at a quality that matches the quality of
her wireless channel. Digital Rain accomplishes this by
building on the theory of compressed sensing to develop
robust video encoding and decoding algorithms that de-
grade smoothly with bit errors and packet loss. In addi-
tion, Digital Rain naturally works with other technologies
like network coding, which can further improve the video
quality in a large network.
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