
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2008-064 October 29, 2008

Recursively invoking Linnaeus: A 
Taxonomy for Naming Systems
Karen R. Sollins



1 

Recursively invoking Linnaeus: A Taxonomy of Network 
Naming Systems 

 
Karen R. Sollins 

MIT Laboratory for Computer Science 
sollins@lcs.mit.edu 

 
March 1, 2002 

 

Abstract1 
Naming is a central element of a distributed 
or network system design.  Appropriate 
design choices are central.  This paper 
explores a taxonomy of naming systems, and 
engineering tradeoffs as an aid to the 
namespace designer.   The three orthogonal 
components of the taxonomy are the 
characteristics of the namespace itself, name 
assignment, and name resolution.  Within 
each of these, we explore a number of 
distinct characteristics.  The position of this 
paper is that engineering design of naming 
systems should be informed by the 
possibilities and tradeoffs that those 
possibilities represent.  The paper includes a 
review of a sampling of naming system 
designs that reflect different choices within 
the taxonomy and discussion about why those 
choices were made. 

1. Introduction 
 
Carl von Linné, also known as Linnaeus, the 
18th century scientist is widely recognized as 
the father of taxonomy, specifically a 
taxonomy of living beings.  A taxonomy is a 
scheme for classifying and naming entities.  
Linnaeus’ scheme was based on two 
principles, a hierarchical categorization and a 
binomial naming scheme based on genus and 
species epithet.  The hierarchy describes 

                                                        
1 This effort was sponsored by the Defense Advanced 
Research Projects Agency (DARPA) and Air Force 
Research Laboratory, Air Force Materiel Command, 
USAF, under agreement number F30602-00-2-0553. 
 

characteristics, while the binomial name 
provides a unique identifier among all living 
entities for all time.  Linnaeus’ scheme has 
been modified and updated, but remains the 
core of the naming scheme used in biology.  
In this paper, we will explore a taxonomy for 
naming used in networks, in contrast with 
Linnaeus’ subject of living beings. 
 
Defining a naming taxonomy for networking 
is not new.  Two of the early seminal works 
on this subject were by Shoch [Sho78] and 
Saltzer [Sal 78, Sal82].2  Suffice it say that 
we have been considering the design of 
naming systems for almost 25 years.  Thus, 
one must ask why do it again.  This work 
attempts to bring together much of the 
previous work and to bring order to it.  
Naming is central to any discourse, 
especially one as distributed and 
heterogeneous in requirements as networking 
has become.  Furthermore, because it is so 
central, understanding how to decide among 
alternatives in naming schemes and their 
related mechanisms has an enormous impact 
on the functioning of those systems.  Hence, 
the position of this paper is that engineering 
design of naming systems should be 
informed by the possibilities and tradeoffs 
that those possibilities represent. 
 
It is commonly held that we cannot conceive 
of concepts without naming them.  We 
certainly cannot identify, discuss, or share 
concepts or resources without being able to 

                                                        
2 Those early works focused on distinguishing the 
entities to be named and the resolution or translation 
from the names for one group to the names for another, 
but not on the actual names themselves. 



2 

give them names or identifiers.3  In other 
words, names or identifiers are critical to 
being able to use, share, and exchange 
objects and resources in cyberspace. 
 
There are three basic functions of names: 
equality, access or reference, and meaning or 
mnemonics.  If names are assigned in a 
unique (one-to-one and onto) relationship 
with the entities they name, they allow us to 
ascertain whether or not two entities are in 
fact one and the same, without having to 
access the entity itself.  Names can also be 
used as handles providing access or reference 
to named entities.  To do this, names may 
need some resolution mechanism.  Finally, in 
some cases, names or identifiers also have 
meaning relevant to the named entities.  They 
may describe characteristics such as the 
owner, the language in which a program is 
written, or function or purpose.  For example, 
a host might be named router1.cs.univ1.edu, 
identifying it as a router owned by the 
computer science department of University 1.  
In some cases, names intentionally have no 
meaning at all.  An example of such an 
identifier is one that is generated using a hash 
function run over the bit representation of the 
original version of a document, simply to 
generate a probabilistically unique identifier. 
 
In automated systems, there are a number of 
aspects of the system to be designed.  The 
design of the set of names or namespace 
from which names can be selected will have 
a significant impact on other aspects of the 
naming system.  Additionally, there are 
questions of who does the assignment of 
names for which entities and where and how 
names are resolved. 
 
This paper provides a taxonomy of naming: 
the objective is to clarify and simplify the 
process of designing namespaces and their 
related mechanisms appropriately.  Section 2 
describes characteristics of namespaces. 
Namespace resolution alternatives are 
explored in Section 3.  With these in mind, in 

                                                        
3 In this work, we use the terms name and identifier 
interchangeably to connote a handle for an entity. 

Section 4 we consider the tradeoffs in 
deciding how to design an appropriate 
namespace for particular situations.  Finally, 
in Section 5, we review some existing 
examples in light of the taxonomy and 
ensuing discussion.  The paper is 
summarized in Section 6.  

2. Characterizing naming 
systems 
 
There are a number of dimensions across 
which we can characterize names and 
naming.  We consider three major categories 
of characteristics: those of namespaces 
themselves, those of name assignment, and 
those of name resolution.  We identify here 
those that we believe are particularly 
important.  This is not intended to be a 
complete list as much as a list of key 
characteristics. 
 
The namespace 
 
Scope of namespace - Global vs. local: the 
question here is whether a namespace, the set 
of names from which an individual name can 
be drawn is large enough to handle all such 
requests globally.  We can contrast two 
distinct situations.  If a namespace is global, 
it provides a single, shared pool of names 
from which to select.  In contrast, if a 
namespace is local, it provides names that 
may also be provided by another local 
namespace.  If one designs a global 
namespace, but the space runs out (the names 
are all used), then either names will no longer 
be available from that namespace, or names 
will need to be reused.   Reuse can occur in 
the time domain, by reassigning names over 
time or in the space domain by creating local 
namespaces.  A related issue is that if the 
possible number of names is comparable to 
the number of entities to be named within 
that namespace, name assignment will be 
dense.  There may be implementation 
implications of a dense namespace. 
 
Syntax of namespace: there are several 
aspects to the syntax of a namespace. One is 



3 

the size of individual names.  In some cases, 
names will be of fixed size; in others, names 
will be unbounded.  There are advantages 
and disadvantages of each, one of which is 
the utility of the names to the client 
community.  Machines often deal more 
efficiently with fixed size names or 
identifiers, whereas humans often find 
variable and unbounded length names to be 
more useful. Another is whether or not the 
names have internal structure or not.  There 
are three well-known structures; at one 
extreme there is a flat namespace, in which 
names have no structure and are simply 
selected from a large space.  At the other 
extreme are very organized namespaces, in 
particular hierarchies, in which a name is 
composed of elements selected from 
successive subspaces; such namespaces may 
be singly or multiply rooted.4  In the middle 
there are composite names that are less 
organized.  Attribute based naming is such an 
example.5 A third characteristic is the 
character set available; this may have an 
impact on who can use or reproduce a name 
 
Finally, it is worth noting that some 
composite or hierarchical names include 
punctuation or special characters to 
distinguish components and others do not.  
This may be intended for ease of use for 
potential users of the names.  In some cases, 
there may be different representations for the 
name under different conditions.  An 
example is the IP address, which may be 
represented as dotted quads or bit strings. 
 
Name assignment 
 
Authority for assignment of names: distinct 
from the structure, but often reflected in it, is 
the authority for assigning names.  The DNS 
reflects the delegation of authority for 
naming in the hierarchical structure of the 
names themselves; authority for naming in 
subspaces of the DNS follow its hierarchical 
                                                        
4 The Domain Name System or DNS [Moc87a, 
Moc87b] is an example of a singly rooted hierarchy. 
5 We find an example in the Ingrid system [FKS+95], 
in which names are simply a set of attribute value pairs 
in any order. 

structure.  In the telephone numbering system 
within the US, authority for assigning 
telephone numbers is delegated to telephone 
companies, by giving them sets of 10,000 
numbers.  There is no reflection of that 
delegation in the numbers themselves.  IP 
addresses are delegated in different sized sets 
throughout the address space. 
  
Persistence: Some names may be assigned 
permanently, while others may be available 
for re-use over time.  This is distinct from 
how global or universal a name may be.  
Thus, for example, the DNS may be 
considered global, but an assignment is not 
persistent.  A DNS name may be reassigned 
to something completely different.  Some 
DNS names are leased for a stated period of 
time and, if not renewed, available to any 
other customer.  Social Security Numbers 
within the US are intended to persist 
significantly longer than a human lifetime, 
although even they may be re-used.  One can 
imagine a namespace based on an algorithm 
such as MD5 [Riv95] applied to a 
combination an entity, the owner’s name and 
a current timestamp to generate an id or name 
that is probabilistically unique for all time.  
The probability of uniqueness can be 
increased to any desirable degree by 
increasing the size of the result.  Such an 
identifier might continue to be used for the 
entity or resource regardless of modifications 
to the entity, because the only purpose was to 
generate an identifier. 
 
Uniqueness: in some cases, it is important 
that there be a one-to-one mapping between 
names and entities; thus, each entity named 
in the namespace would have exactly one 
name and no two entities could have the 
same name.  This provides an extremely 
simple set of equality tests using names.  If 
two names are the same, the identify the 
same entity; furthermore, if the names are 
different the entities are distinct from each 
other.  In other cases, a name will not be 
assigned to more than one entity, but an 
entity may have more than one name; this 
provides a less strict uniqueness.  One can 
imagine the other form of less strict 



4 

uniqueness, although it is not generally 
found. 
 
Resolution of names 
 
Resolution of namespace - Universal vs. 
relative:  orthogonal to the issue of the scope 
of the namespace from which a name has 
been chosen, there is a question of resolution 
of that name.  Within the scope of the 
namespace, it may be the case that from 
different places in the network, a name may 
be resolved differently.  For example, if a 
service is replicated in several places, distinct 
clients may find the name of the service 
resolved to different servers.  It may well be 
that for the average client, such distributed 
service may be invisible, except for enhanced 
response, but for more sophisticated users or 
more complex interactions, it may not be 
invisible.6 
 
Existence and persistence of resolution: the 
issue here is whether or not it is required that 
a name be resolvable at all times.  To the 
extent that a name may be viewed as a 
placeholder for an entity that does not yet 
exist, or may only exist at certain times, the 
name may not be resolvable at all times.  An 
example is a statically assigned address for a 
machine that is not always turned on.  
Another example is a “future” in 
Multilisp[Hal85], which will only be 
evaluated as needed in the future.  This 
concept exists in other programming 
languages as well.   
 
Timing of resolution: a second question 
related to resolution is when it might occur, 
early or late.  A source route can be 

                                                        
6 In an example from the phone system, Sears has a 
single nationwide 800 telephone number for customers 
to learn about a scheduled home delivery time.  The 
client types in the phone number of the delivery 
location to access the delivery time information.  But, 
the database is partitioned, so that an incoming call is 
routed to the appropriate regional database based on the 
area code of the originating phone.  Hence if a call to 
the 800 number is made from outside the delivery 
region, the entry is unavailable.  In this case, the 
resolution to a particular database is a locally defined 
function. 

considered an early resolution or binding of 
identifier to route.  Routing based on a 
globally consistent set of routing tables, that 
occurs one hop at a time might be considered 
late, or at least time delayed, and spread over 
a period.  Piecemeal resolution is another 
potential aspect of resolution.  A more 
sophisticated scheme is exemplified by 
Vadhat in his “Active Names” [VDA+99].  
In this work, a name is resolved one 
component at a time by sending the name to 
a named service, which may perform some 
sophisticated function on part of the name 
and send the remainder of the name on to 
another service.  We will discuss this work 
further below. 
 
To summarize, we have three major groups 
of characteristics of name systems: 
characteristics of the namespace itself, the 
name assignment process, and the name 
resolution mechanisms. 

3. Translation: aliasing or 
resolving names 
 
There is another issue worth addressing here, 
with respect to the translation of names.  To 
do this, let us return to the early work on 
naming in which Shoch [Sho78] proposed a 
three-way distinction among a name 
indicating “what we seek”, an address 
indicating “where it is”, and a route 
indicating “how to get there.” Thus, Shoch 
proposed two tiers of resolution, from name 
to address and from address to route.  Saltzer 
[Sal82] then proposed an expanded yet still 
constrained resolution model, but hinted at a 
generalization in which name resolution is 
viewed as repeated resolutions from one 
namespace to another.7 
 
In fact, with respect to translation, there are 
two classes of translation that may occur.  
We can call one aliasing and the other 
resolution.  Aliasing is translating a name 
into another name from the same namespace 

                                                        
7 Saltzer suggested a similar scheme specifically for 
operating systems in [Sal78]. 



5 

and abstraction space.  Thus, a nickname for 
a human might be considered an alias; DNS 
MX records are a second example.  In 
contrast, resolution is the operation of 
translating from one namespace to another, 
for example from human name to email 
address.  An email address can be considered 
to be a name for a service that will collect, 
store, and deliver email messages to a 
human.  In the same way, one can consider a 
DNS name the name of a host in the Internet, 
and an IP address as the name of a location in 
the topology of the network. 
 

4. Making choices in the net 
 
With all this in mind, we can now discuss the 
issues of making choices with respect to 
naming in a networked environment.  There 
are several key issues influenced by a 
combination of distribution and scalability.  
The tradeoffs arise from the different roles in 
naming: name assignment, resolvers, named  
entities, and locations. 
 
In name assignment, i.e. the selection of a 
particular name, there may be both technical 
and policy issues.  Technically, if names are 
needed in both administratively and 
physically disparate locations where there are 
performance constraints on the acquisition of 
names, the assignment of names may need to 
be distributed.  This may imply a need for 
coordination of name assignment, although 
there are solutions, which avoid that, such as 
hierarchically dividing the namespace into 
subspaces, or using a hash algorithm to 
generate names that are probabilistically 
unique to any degree necessary.  
Alternatively, if the delays of a centralizing 
are acceptable, neither of these schemes is 
necessary.   
 
In addition, there may be technical reasons to 
use disparate namespaces having to do with 
syntax.  For example in the original 
definition of 32-bit IP addresses, 8-bits were 
assigned to each of four components, which 
forced subspaces to be defined, where they 

otherwise may not have been important, but 
generally the 8-bit components were easier 
for programs to handle than many other 
alternatives.  The choices made to meet these 
requirements will need to be balanced against 
creating and managing such namespaces and 
the translation of them.  There may also be 
policy reasons, such as either paying for 
names for distributing name assignment as in 
the DNS today, or security, i.e. keeping the 
knowledge of names private.  
 
As suggested in the previous section, in order 
to support both increased numbers of 
requests for resolution and increases in the 
namespaces being resolved, resolution may 
be partitioned or staged.  One example of this 
is found in the DNS [Moc87a, Moc87b]8 in 
which the information a resolver contains can 
be cached where needed to distribute and 
speed up resolution.  Because the DNS forms 
a singly-rooted hierarchy, the root is the most 
likely candidate to become a hotspot and so 
is replicated most widely. 
 
A second resolution question is whether there 
is exactly one resolution service for each 
namespace or part of a namespace.  The  
IETF URN Working Group [DM97, SM94, 
Sol98] took the position that in order to have 
a namespace authorized it was recommended 
that at least one resolution service be 
specified, but others might provide resolution 
as well, either initially or over time.  In 
contrast, Vadhat et al. in their Active Names 
project [VDA+99] assume that each 
namespace has exactly one namespace 
program associated with it, which will 
translate its names.  In addition, another 
resolution tradeoff can be seen in network 
routing.  If there is a single initial routing 
computation, traffic may not flow until a 
valid route is known.  If discovery of whether 
or not a valid route exists is only done on a 
hop-by-hop basis by the traffic itself, the 
traffic may be carried far into the net before 
it is learned whether or not a valid route 
exists.  This can lead to a significant waste in 

                                                        
8 Each of the example naming systems in this section 
will be considered in more detail in Section 5. 



6 

network bandwidth if a route does not exist, 
but flexibility if it does.9 
 
A third issue in making choices has to do 
with the number of entities being named.  If 
the number of requests for names is likely to 
be high, then there is good reason to choose a 
distributed mechanism for assigning them, so 
that the mechanism scales well with the 
number of entities.  If resolution requests 
occur particularly frequently, then that 
scaling might lead to a more widely 
distributed resolution mechanism.  The 
tradeoffs in these cases may mean that 
information may be either more widely 
replicated or distributed and coordinated.  
Thus, space or numbers of network accesses 
may be traded off against congestion at more 
central locations.  One must consider where 
the scaling may occur and what the cost will 
be of addressing that scaling. 
 
Fourth, if names are not always resolvable, 
one should not waste many resources 
learning when that fact is true.  In both the 
DNS and URN work, a name may be 
assigned or reserved, but not resolvable at 
any specific time.  In the DNS, this may 
happen if a host is off-line or a name leased 
but not yet in use.  The URN group assumed 
that names might be selected as placeholders 
for entities not in existence at any particular 
time. 
 
The fifth issue relates to the locations of the 
users of names and the entities being named 
either topologically or in a more abstract 
sense (e.g. administratively).  For example, 
although it may cost more in replicated and 
distributed information management, it may 
be valuable to keep either name assignment 
or name resolution within a LAN or other 
reasonably local network.  There may also be 
policy reasons for such a choice.  Again, the 
cost may be in managing widely distributed 
services for name assignment and resolution.  

                                                        
9 We realize that there is a middle ground here in which 
it is known globally whether a route exists, although 
the exact route will only be discovered on a hop-by-hop 
basis. 

As the numbers increase, these mechanisms 
may also increase in complexity.10   
 
Orthogonally to the issues raised above, one 
could consider allowing for different 
solutions in different situations.  One reason 
for this is that a single solution may not best 
in all situations, or it may mean that even 
within what one might consider the same 
situation, different solutions may be more 
appropriate for different parts of the net. 
 
We return again to the URN resolution 
framework.  In the URN universe, there was 
an assumption that different URN 
namespaces might be used for widely 
differing purposes.    That leads to different 
choices being made in different parts of the 
URN space [DVI+99].  For example, US 
Library of Congress numbers might be one 
namespace, ISBNs another, and so on.11   
Each will have it’s own resolution 
mechanism, and, in fact, each library that 
uses Library of Congress numbers might 
choose to have a distinct resolution 
mechanism. Furthermore, it was assumed 
that the resolution service specification might 
change with time and more than one might 
be available at any given time. 
Tradeoffs can be made in a number of 
dimensions, time, space, network bandwidth, 
computing or human resources, and so on.  
Generally, these sorts of decisions are not 
simple, and need careful examination of the 
ramifications of a scheme.  Furthermore, 
different solutions may be appropriate for the 
same problem in different places or times .  
                                                        
10 A number of years ago, Demers et al. 
[DGH+87] reported on an interesting situation in 
the Grapevine distributed naming and email 
service developed at Xerox PARC, which had 
reconciliation problems each time it scaled up in 
size, until the authors took a long and close look 
at non-linearities in the mechanisms. 
 
11 It is interesting to note that these two namespaces 
both may refer to books, but they have different 
concepts of when two books are the same or different.  
When a book is a new version of a book, and when it is 
not, is different for each naming authority, and hence 
when and whether a new name will be assigned and 
how such names will be resolved will be different. 



7 

Relationships that are larger than O[N] or 
even in some cases, as bad as O[N] can make 
solutions untenable in practice.  Naming and 
name resolution are generally not an end in 
themselves, but rather one step in achieving 
some other objective and hence must be 
appropriate for that other situation. 
 

5. Some examples 
 
In this section we will consider a variety of 
naming systems, in order to illustrate the 
choices made to meet differing requirements.  
This list is not intended to be exhaustive, but 
rather is selected to provide examples of a 
variety of choices. 
 
The DNS [Moc87a, Moc87b] is an extremely 
large and long-lived naming system.  The 
namespace is organized, assigned and 
represented as a global, singly-rooted 
hierarchy.  Each domain or subnamespace 
below the root is delegated to an authority; 
thus for example each ISO-assigned two-
character country code is assigned to that 
country as a direct child of the root.  The 
syntax is that the hierarchy is represented in 
Roman letters and Arabic numerals, from 
right to left with periods (“.”) separating the 
components.  Name assignments are long-
lived but not intended to be persistent for all 
time.  Resolution is also hierarchical and is 
delegated along the same hierarchy as 
naming authority delegation.  In practice 
resolution may be distributed because the 
DNS supports local caching of resolution 
information.  The original design was that a 
name would be universal and resolve to a 
single IP address, but as mentioned above, in 
order to improve resolution or performance 
that is no longer always true.  Finally, in the 
DNS resolution may occur in stages, 
although generally it is all done prior to 
transmitting any payload. 
 
File systems present us with other, typically 
hierarchical naming systems.  The most 
common of these are local file systems, 
limited to one person’s or a community’s set 

of files.  If one tries to federate such file 
systems into larger systems, or perhaps a 
more global file system, one finds that the 
same names may have been used in many 
places.  One must then resort to a scheme 
such as that proposed by Lampson 
[Lam86]12, in which one prepends13 the name 
of each namespace in which independent and 
perhaps overlapping naming may have 
occurred.  This approach builds more of a 
hierarchy upwards on to represent the 
federation, meaning that file names now have 
been extended, which in turn may lead to a 
variety of technical problems.    
 
URI syntax[BFM98] as used in URL’s 
provides a combined approach.  In general, 
URL’s combine three components.  First, the 
left-most name identities the transport, 
because resolution and transport are more or 
less coupled.  Second from the left is 
generally a DNS name, in the normal DNS 
syntax, going hierarchically from right to 
left.  Finally, the rightmost component of the 
name is often some local specifier, such as a 
filename, defined hierarchically by the local 
file system.   Each subspace (DNS, 
filenames) has its own character set, size, and 
punctuation constraints.  In addition, URLs 
have their own punctuation and syntax.  
Thus, the URL namespace is global, 
hierarchical, and intended to be universal in 
the same sense as the DNS.  A URL has no 
more persistence than the shortest lifetime of 
any of its components.  If the local filesystem 
is reorganized, the URL may become invalid.  
If the company merges and changes its name, 
the URL may become invalid, and so on.  
Resolution of URLs is also a composite, 
based on resolving DNS names and the local 
component separately.  Again, resolution 
may also be modified in the presence of 
caches, proxies, and other such services. 
 

                                                        
12 Lampson is certainly not alone in this approach, we 
just use this as an example. 
13 In this kind of approach, these larger scope names 
need not be prepended literally, as long as the syntax is 
understood, in order to understand which names are 
scoped within which others. 



8 

In the IETF, the work on Uniform Resource 
Names falls into two key components, the 
namespaces [SM94, DVI+99] and the 
resolution work [DM97, Sol98].14  The 
namespace uses a syntax that falls within the 
bounds of the URI definition [BFM98] in 
terms of syntax (character sets and 
punctuation, combination) and is hierarchical 
in assignment.  Thus, name assignment 
delegation is rooted in IANA 15 and delegated 
from there.  The intention of that group was 
that resolution might also be hierarchical and 
delegated in order to distribute the work, but 
that the resolution hierarchy could and 
probably would be different in the long run.  
The issues were persistence and potential 
service differentiation.  The persistence issue 
was that the names and resolution might have 
different lifetimes and hence should not be 
tightly coupled.  The differentiation issue 
was that it ought to be possible to allow for 
service competition in the business of 
resolution.  Furthermore, the resolution 
model was that a resolver might completely 
transform its input into some alternative for 
further resolution.  In the DNS, the 
transformation that occurs is that hierarchical 
components of the name are stripped off, so 
each domain will be resolving a more and 
more local name.  In the URN framework, it 
is possible that the name may be transformed 
completely.  This leads to a potential for 
significant complexity and increased 
possibility for failure or corruption, with the 
tradeoff of significantly increased flexibility 
and independence.  It is worth noting that the 
first public implementation of URN’s used 
the DNS as its infrastructure [DM97] and 
hence had all the limitations of using only the 
DNS, although the design had grander 
intentions.   
 
Now, let us consider in turn two naming 
systems that try to do more; both provide 
naming, resolution, and transport of payload, 
with the intention of improving efficiency. 
                                                        
14 The relationship intended between URN’s and 
URL’s is that a URN was intended to provide 
identification of an entity and URL identifies the 
entity’s location. 
15 Internet Assigned Numbers Authority 

The first also supports mobility of end points.  
The two systems are the Intentional Naming 
System (INS) [ASB+99] and Active 
Names[VDA+99].   
 
The INS defines a hierarchical namespace, 
different from the others we have seen.  Each 
component of a name consists of an attribute 
name and value pair.  The actual syntax is not 
discussed, but the character set is ASCII 
characters and numbers.  The path from the 
root to any leaf node passes through nodes 
that alternate strictly between attribute names 
and values for those attributes.  A particular 
name is specified as a series of pairs or name 
specifiers.  Services advertise their names 
periodically to resolvers, which consider 
their resolution information as soft state.  
When an entity moves it advertises its new 
location, which is propagated among the 
resolvers.  The resolvers build routes among 
themselves for access to the end point 
entities.  A lookup at a resolver results in 
both an IP address and a next hop INS router.  
Hence, if there is extremely new location 
information because a destination has moved, 
as the payload moves through the INS route, 
that new information will be discovered.  
Hence resolution in this system is not 
hierarchical as in most of the preceding 
examples, although it is staged in order to 
support mobility. 
 
The authors of the Active Names system 
have made a different set of design choices.  
The primary focus in this work is on 
resolution and transport.  The work is not 
specific about the namespaces themselves, 
other than that each namespace has a 
program associated with it and that names are 
composites, which can be decomposed 
piecemeal by a series of namespace 
programs.  Resolution is hierarchical and 
rooted in the sender. Each active name is 
composed of a pair consisting of the name to 
be resolved and a namespace program name.  
The sender sends these to a local resolver.  A 
namespace program name is also an active 
name, consisting of the program name and a 
protocol for retrieving the program. The 
intention is that name resolution is staged and 



9 

each namespace program will operate on the 
next component in a name. The code is all 
mobile and capable of being executed 
anywhere, although for policy or other design 
reasons (access to necessary data, etc.) a 
namespace program may operate only at 
certain locations.  A namespace program may 
be as simple as a translator to a next hop 
namespace program, to which is handed the 
name with a component removed.  It may 
also be more sophisticated and transform the 
payload, for example by encoding or 
decoding, or performance of other activities 
such as authentication or authorization.   
 
There are two additional features of this 
“programming model”.  The first is that it 
operates in a “continuation” style, rather than 
procedural, with a return to the original 
requester.  So, each namespace program 
simply invokes the next and the payload is 
transported along that path.  Because each 
namespace program identifies and discovers 
its successor, resolution is hierarchical; 
resolution in one namespace program is 
dependent on its parent or predecessor.  
Invoking a program initially means moving 
the code to the local processor; if the 
program in fact will not execute locally, what 
is transferred is a stub that knows where the 
real program will run and transfers control 
and input to that location.   
 
The second feature is the after methods list.  
Each namespace program can add an element 
to this list.  The resulting list can then be 
used to expedite any return traffic, without 
having to go through the overhead of 
discovering new namespace programs.  We 
have yet to see the value of “pre-computing” 
such a return list proven, but it is worth 
exploring.  It isn’t clear that one can discover 
the best or most efficient or even a workable 
return path through the series of namespace 
programs in the outbound path.  Resolution 
on the outbound path is delegated piecemeal, 
from one namespace program to the next.  
On the return path, it is all delegated to the 
namespace programs of the outbound path.  
Names themselves need to be global, so that 
any sender can learn about the namespace 

program to be invoked initially for a name; 
as mentioned above, namespace program 
names also need to be global.  In this system, 
we see a very different set of design choices 
from our previous examples. 
 
As an interesting alternative to these, Clark 
[Cl02], in the context of the NewArch 
Project, has proposed the following naming 
scheme for transport.  The intention is that 
flows of information between a sender and a 
receiver be identified to those parties, as in a 
TCP connection, but with the realization that 
there is no need for such identifiers to be 
globally defined.  Only the sender and 
receiver need to distinguish a flow from any 
other flow.  Furthermore, as in the INS, 
mobility must be supported.  Thus, one needs 
to discover the current address, of each party 
but not be bound to only that address.  
Anonymous2 proposes that user or 
application friendly names may be resolved 
in any of a large number of user or 
application friendly ways, none of which 
need to support a global, universal, 
persistent, etc. namespace and resolution.  
Instead, the intent is that one find an address 
and some form of introduction by one of 
many possible means; this allows sender and 
receiver to agree to communicate and create 
an association identifier, which in turn only 
they need to understand or recognize.  This is 
a much more decentralized and localized 
approach that avoids much of the cost of 
deploying another global namespace system 
and resolution mechanism.  The tradeoffs 
here have to do with reducing naming 
infrastructure overhead, at the cost perhaps of  
needing to find some alternative for figuring 
out whether or not one is in fact 
communicating with whom one thinks one is, 
and making bootstrapping perhaps much 
more challenging. 
 
In our final example HIP [Mos01], 
Moskowitz is proposing to provide global, 
authenticatable identification to support a 
secure association between two parties that is 
resistant to denial of service attacks and 
provide anonymity, because identity cannot 
be found from the various identifiers in HIP.  



10 

The ultimate host identity is a public key 
pair.16  In a packet one includes a fixed 
length hash of the host identity, which also 
may then be looked up as needed in a global 
directory service, such as the DNS.  In a 
“four-way” (four packet) protocol the 
security association is built.  Thus, 
identification is not delegated in any way, 
although resolution using the DNS will be 
delegated.  The work does not explain how 
this will occur.  Clearly, there is a fixed 
syntax for these identifiers, designed to meet 
their functional needs, of providing a public 
key pair and being hashed into a smaller 
fixed size appropriate for a packet header.  It 
is important to note, that in this case, neither 
host identifiers nor their hashed versions are 
translated into addresses.  IP addressing is 
orthogonal to HIP and assumed to occur at a 
lower layer. 
 
As a last comment, outside the scope of 
networking, let us return to Linnaeus and his 
taxonomy.  He defined namespaces with 
specific functions in mind.  His hierarchical 
naming scheme is universal and describes 
characteristics of hierarchically nested groups 
of species.  This part of the taxonomy has 
been expanded to include other top level 
groupings as well as revising some of what 
he did.  This allows for descriptive naming of 
every species, assuming one knows the 
ordering of the hierarchically organized 
characteristics.  Orthogonal to the hierarchy, 
each species is given a two-part unique name.  
The first part is Latin-like and unique.  The 
second is a common name, by which non-
scientist might name the species.  The two 
parts are separated by a period (“.”).  This 
allows for global distinction within a flat 
namespace.  We see in this, the recognized 
need for different namespace decisions to 
meet differing needs.  
 

6. Conclusion 
 
                                                        
16 The document says that the identity is a public key 
pair, but it is possible that only one of the keys in the 
intended identity. 

In this paper, we have proposed a framework 
or taxonomy of naming systems chosen to 
clarify the variety design choices available to 
the naming system designer, in order to take 
best advantage of engineering tradeoffs.  The 
taxonomy reflects three aspects of naming 
systems and particular choices within them: 
(1) namespaces, (2) name assignment, and 
(3) name resolution. In many cases, the 
tradeoffs become particularly apparent in the 
face of distribution, scaling, and  delegation, 
as well as authority and policy control related 
issues.  As a demonstration of the 
framework, we examined a number of 
namespace designs with widely varying 
characteristics, reflecting widely differing 
choices.  In the final analysis it is especially 
important to make such choices wisely, 
because naming is only one component of 
actually completing a task, and therefore 
should be as efficient and effective as 
possible without getting in the way. 

References 
 
[ASB+99] W. Adjie-Winoto, E. Schwartz, H. 
Balakrishnan, J. Lilley, The design and 
implementation of an Intentional Naming 
System,  Proc. 17th ACM SOSP, Kiawah 
Island, SC, December 1999. 
 
 [BFM98] T. Berners-Lee, R. Fielding, L. 
Massinter, Uniform Resource Identifiers 
(URI): Generic Syntax, RFC 2396, August, 
1998. 
 
[Cl02] D. Clark, Forwarding Directives, 
Associations, Rendezvous, & Directory 
Service (FARADS), unpublished note in the 
NewArch Project, March 15, 2002. 
 
[DM97] R. Daniel, M. Mealling, Resolution 
of Uniform Resource Identifiers using the 
Domain Name System, RFC 2168, June, 
1997. 
 
[DGH+87] A. Demers, D. Greene, C. 
Hauser, W. Irish, J. Larson, S. Shenker, H. 
Sturgis, D. Swinehart, and D. Terry, 
Epidemic Algorithms for Replicated 



11 

Database Maintenance, Proc. Sixth 
Symposium on Principles of 
Distributed Computing, Vancouver, B.C., 
Canada, August 1987, pages 1-12. 
Reprinted in ACM Operating Systems 
Review 22(1): 8-32, January 1988. 
 
[DVI+99] L. Daigle, D. van Gulik, R. 
Iannela, P. Faltstrom, URN Namespace 
Definition Mechanisms, RFC 2611, June, 
1999. 
 
[FKS+95] P. Francis, T. Kambayashi, S.  
Sato, S. Shimizu, Ingrid: A Self-Configuring 
Information Navigation Infrastructure, Proc. 
5th World Wide Web Conference, 
December, 1995, pp. 519-537, Boston, MA 
 
[Hal85] R. Halstead, Multilisp : A Language 
for Concurrent Symbolic Computation, 
Trans. On Programming Languages and 
Systems, 7(4), pp. 501-538, October, 1985. 
 
[Lam86] B. Lampson, Designing a Global 
Name Service,  Proc. Fourth Symposium of 
Principles  of Distributed Computing,, pp. 
1-10, Minaki, Ontario, 1986, ACM. 
 
[Moc87a] P. V. Mockapetris, Domain 
names - concepts and facilities, RFC 1034, 
Nov. 1, 1987. 
 
[Moc87b] P. V. Mockapetris, Domain 
names - implementation and specification, 
RFC 1035, Nov. 1, 1987. 
 
[Mos01] R. Moskowitz, unpublished 
documents on the Host Identity Payload 
Architecture, 2001.  Currently the work only 
exists as Internet Drafts. 
 
[Riv95] R. Rivest, The MD5 Message-
Digest Algorithm, RFC 1321, April, 1992. 
 
[Sal78] J. Saltzer, Naming and Binding of 
Objects, in Rudolph Bayer, et al., Operating 
Systems--An Advanced Course, Springer-
Verlag, 1978, pages 99-208, Lecture Notes 
on Computer Science 60. 
 

[Sal82] J. Saltzer, On Naming and Binding of 
Network Destinations, published in Local 
Computer Networks, ed. P. Ravasio et al., 
North-Holland Publishing Company, 
Amsterdam, 1982, pp. 311-317.  Also 
available as RFC 1498, August, 1993. 
 
[Sho78] J. Shoch, Inter-Network Naming, 
Addressing, and Routing,  Proc. 
COMPCON 78 Fall,  IEEE, 1978, pp. 280-
287. 
 
[SM94] K. Sollins and L. Massinter, 
Functional Requirements for Uniform 
Resource Names, RFC 1737, December, 
1994. 
 
[Sol98] K. Sollins, Architectural Principles 
of Uniform Resource Name Resolution, 
RFC 2276, January, 1998. 
 
[VDA+99] A. Vahdat, M. Dahlin, T. 
Anderson, A. Aggarwal, Active Names: 
Flexible Location and Transport of Wide-Are 
Resources, Proc. 2nd Usenix Symposium on 
Internet Technologies and Systems, 
October, 1999. 
 




