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Abstract

Advanced microphotonic device designs in strongly confining silicon and silicon nitride
waveguides, novel photonic device concepts, and the first experimental demonstrations of
these structures are described. They show a progression of new optical signal processing
capabilities that enable chip-scale microphotonic routers for high bandwidth and fine granu-
larity optical wavelength routing networks. Rigorous theoretical models are developed that
enable the design of efficient high-index-contrast (HIC) microphotonic components and set
theoretical bounds for their capabilities. They take into account new, coupling induced
resonance-frequency shifting and parasitic loss effects.

Based on microring resonators and HIC silicon and silicon nitride waveguides, the first
telecom-grade microphotonic channel add-drop filters are demonstrated, including novel,
dispersion-free switchable and widely tunable designs. Several new classes of optical de-
vices are proposed. The first, universally balanced interferometers, enable filters capable
of “fully transparent” tuning and increased accessible wavelength range, facilitate a novel
proposed photonic-circuit “hot-swapping” functionality, and approximate an optical near-
inverse operator in a general way. The second, loop-coupled resonators, enable optimally
sharp filters and flat-top, dispersionless light-slowing structures that are not limited by the
Kramers-Kronig amplitude-dispersion tradeoff. A third class provides a general approach
to disabling both the amplitude and phase response of resonant systems to achieve a full-
transparency off state. They allow a robust integrated solution to hitless, errorless filter
tuning and wavelength-reach expansion in filters, topical problems of considerable techno-
logical importance.

Taken together these developments permit a complete tunable/reconfigurable optical
add-drop multiplexer (T/R-OADM) to be constructed on a silicon chip, with performance
well beyond that of current technology. Such a demonstration device was designed and
fabricated. This work also provides new general building blocks for microphotonic circuits,
and design guidelines for strong confinement photonics.
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Chapter 1

Introduction

Over the 50 years since the invention of the laser as a source of bright monochro-
matic light [1-3], optical technology has developed at a rapid rate in new direc-
tions, spawning numerous new fields of study and technologies. Bright, coherent
light made novel applications possible including globe-spanning optical commu-
nication networks, high-density data storage from compact discs to holographic
data storage and volume holograms, high-resolution and depth resolving imaging
(optical coherence tomography), and fine-resolution, large-area photolithography
which makes possible the fabrication of today’s microprocessors with billions of
transistors on a 1 cm? die. Hence, optical technology already occupies an impor-
tant place in recent technological progress.

Spectrally pure coherent light also opens the door to fundamentally new func-
tionality that can be obtained in chip-scale photonic circuits by the use of res-
onators. Resonant systems can tailor the amplitude and shape of optical transmis-
sion and route frequency components of light for wavelength-routing communi-
cation network applications; assemble them into optical phased arrays that can
generate arbitrary optical-antenna-type radiation patterns emanating from a chip;
slow down light resonantly for the purposes of nonlinear all-optical logic using
the high optical fields accumulated when light is slowed down, as well as for op-
tical buffers in all-optical telecom network routing switches (so-called slow-light
applications); and enable fundamentally new ways to harness substantial optical
forces at small optical powers due to large resonant enhancements of coherent
light [4-6].

To everyday experience, these coherent light effects are new and counter-
intuitive not only because they occur in structures on the micron scale (the scale
of the wavelength of visible light), where they are generally inaccessible to human
experience, but also because in nature everyday experience gives us access only to
incoherent light — scrambled in phase — that does not display the additional unique
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16 CHAPTER 1. INTRODUCTION

and useful interference properties of coherent light. Yet, these coherent properties
are exploited in all of the photonic circuits described in this thesis, and in much
of the growing field of microphotonic circuits. The opportunity to discover new
ways that these unique properties of light can be used, and building a new form
of intuition for light on the small scale that can be harnessed to develop novel
technologies and new micron-scale machines is what makes the field of photonics
both promising and exciting.

Photonic microchips

The coherent properties of light (and associated quantum properties of matter)
have been exploited in macro-scale systems, for example to demonstrate slowing
light to bicycle speed in atomic vapours [7]. However, just as bulk-component
electonic circuits do not lend themselves to the construction of a modern billion-
transistor, GHz-rate microprocessor using resistors, diodes and a soldering iron, so
bulk experiments in new optical effects cannot be easily scaled to technologically
relevant complexities. Microphotonic circuits, which confine light on the micron
scale on a chip, promise not only the opportunity to create complex, densely
integrated photonic circuits on a chip, but simultaneously make use of the size
scaling to operate on the wavelength scale of light, enabling the robust exploitation
of coherent effects.

For microphotonic circuits to develop into an everyday, pervasive technology,
means are needed to efficiently confine, guide and route light around a chip on the
micron scale. Much research has been invested into this goal over the last 10-15
years.

Coherent light and optical resonators

The resonator concept is at the heart of technology for manipulating coherent light.
An electromagnetic resonator in the most general sense is an energy storage el-
ement for the excitations of a wave system. Coherence means that interference
only allows energy to accumulate at certain frequencies that have wavelengths
compatible with the size of the cavity in order to constructively build up an en-
ergy amplitude inside. The correspondence of energy and frequency means that
resonators, by virtue of being energy storage elements, also select light based on
photon energy. Furthermore, since wavelength changes with frequency, larger res-
onant cavities can accommodate a larger number of resonant modes in a particular
frequency range. These observations lead to the consideration of the concept of
strong confinement and micron-scale photonic structures.
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Strong confinement

Wavelength-scale resonators were the central technology in microwave circuits
before being replaced in the 1970’s by monolithic microwave integrated circuits
(MMICs) that confine the electromagnetic waves on a sub-wavelength scale by
supporting terminating surface charges for the modal field in so-called transverse
electric-magnetic (TEM, or plane-wave), metallic structures. At optical frequen-
cies, size reduction below the wavelength scale for the majority of applications
is less promising. This is because good conductors are not available at optical
frequencies, and therefore low-loss TEM transmission lines cannot be constructed
[8].

Therefore, optics is likely to be confined to refractive index confinement and
wavelength-scale circuits for high-fidelity signal processing applications. Confine-
ment of light in resonant cavities by step index discontinuities with low radiation
loss is enabled by high index contrast between the core and cladding material.
On the other hand, the number of high-Q resonant modes in the cavity, i.e. their
number density per unit of frequency range in the resonant frequency spectrum,
is sparser in smaller cavities. In cavities with quasi-linear propagation, such as
Fabry-Perot or microring resonators, the cavity length (and group index) determine
the frequency spacing of longitudinal resonances — the free spectral range (FSR).

For efficient control and manipulation of light by resonant photonic circuits it
is typically desirable to use one resonant mode per cavity. When this is done,
manipulation of the dimensions and properties of each cavity directly maps to
design of the behaviour of one mode. When single-mode cavities are not possible,
the best approach is to maximize the FSR, so that a single resonance can access
the largest possible frequency spectrum of interest, that may be up to one FSR.
This strategy leads to small microcavities, which in turn require strong optical
confinement of the mode to simultaneously support low radiation losses (high
quality factor, Q). This is the impetus for strong confinement photonics.

Strong confinement is a term used in this thesis to indicate support for small,
wavelength-scale confined mode dimensions, high intrinsic cavity mode Q’s, and
large FSRs (multiple THz). Strong confinement implies a high index contrast, of the
order of 2:1 (e.g. that needed for a complete photonic bandgap), in all directions,
such that the optical mode can support tight bend radii in an optically single-mode
structure. The term “strong confinement” (SC) is used because high index contrast
(HIC) and high—A and ultra-high—A) have previously been used to refer to index
contrasts of the order of 1-2% in silica integrated optics [9], which support very
weak confinement by the standards of this work, and insufficiently small microring
bend radii for telecom applications, for example. Secondly, the term “high index
contrast” may be used to refer to silicon ridge waveguides, for example, which
may have very weak lateral confinement depending on etch depth, but which
indeed have a large index contrast between the silicon core and overhead air “top
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cladding”[10].

The beginnings of strong-confinement photonics can be found in the late 1980's
and early 1990’s in the work on photonic crystals [11, 12], and in early propos-
als for high index contrast conventional waveguides, microring resonators and
microwave-like classical wavelength-scale devices [13, 14]. While a number of
theoretical investigations have been carried out [15, 16], and early experimental
demonstrations validated the concept of strong confinement [17, 18], progress to
the acceptance of strong confinement photonic circuits has been slow and few if
any high fidelity photonic devices were demonstrated when the present work was
begun in 2002.

This slow acceptance of SC photonics is not without reason. Strongly confined,
high-index-contrast structures have extreme sensitivity to dimensional variations,
refractive index variations, surface roughness and polarization, and their behaviour
in coupling and scattering differs from silica integrated optics in that SC photonic
circuits have hybrid-polarized modes and highly dispersive waveguide propaga-
tion. Therefore a systematic and rigorous approach to addressing all of these issues
is necessary on the way to realization of high-fidelity signal processing devices in
SC photonics.

This thesis work, along with complementary work by my colleagues [19-21],
is concerned with addressing these fundamental challenges for strong confinement
photonic circuits, and demonstrating the first high fidelity optical signal processing
devices based on strong-confinement microphotonic circuits using the discovered
and proposed solutions.

1.1 Microphotonic circuits for wavelength-routing networks

In densely wavelength-division multiplexed (DWDM) optical networks, there is an
opportunity for microphotonic technology to enable reaching the limits of band-
width efficiency and total aggregate bandwidth by providing sophisticated filtering
capabilities (such as dispersion-free filters, proposed in this thesis) which escape
other approaches or whose bulk-optical analogues are difficult or impractical to re-
alize (such as is the case with truly hitless tunable filtering). A central component
for reconfigurable (agile) wavelength routing networks, in which microphotonic
technology based on strong confinement can play an important role, is the tun-
able/reconfigurable optical add-drop multiplexer (T-OADM/R-OADM).

An optical ring network is shown in Fig. 1.1(a), illustrating the role of OADMs.
Multiple wavelength channels traverse each optical fiber strand, passing nodes of
the ring network one at a time. At any one node, most channels will continue
on, while a small number will have reached their destination and will need to be
dropped from the spectrum and routed to an output port. With the spectral slot of
the dropped wavelength channel freed, an outgoing data stream at that node can
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WDM Ring/Mesh Network

WDM Spectrum

S-band C-band  L-band
(<1530) (1530- (1565-
-1565) -1625)

Fiber Loss

Y

50 1500 1550 1600 1650
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(b)

Figure 1.1: (a) Wavelength routing optical networks require tunable, reconfigurable opti-
cal add-drop multiplexer (OADM) nodes, ideally suited for chip-scale implementation in
strong-confinement microphotonic circuit technology (illustration based on drawing by T. E. Murphy
1221); (b) the S-, C- and L-band telecommunication windows cover 20 THz of bandwidth with
low optical propagation loss in optical fibers (“all wave” fibers with the water absorption
peak eliminated); see [23].

be modulated onto the same wavelength and inserted into the vacated channel to
access the network.

Fig. 1.1(b) illustrates the wavelength range of low optical loss in standard optical
fibers (in particular “all-wave” fibers with the water absoption peak removed). The
S-, C- and L-band cover about 20 THz of optical bandwidth, allowing an upper
limit aggregate data rate of the order of 20 Tbps per strand of fiber (for binary
signaling).

Selecting a set of wavelengths, dropping/adding the signal at these wavelengths
to and from local ports, and passing the through-passing (express) channels together
with the newly added channels onto an output port with minimal loss is the function
of an optical add-drop multiplexer (OADM). The OADM may comprise a set of
channel add-drop filters, as shown in Fig. 1.2(a), each of which drops and adds a
selected wavelength channel.

The operation of a channel add-drop filter (CADF) on a spectrum of densely
packed wavelength channels is illustrated in Fig. 1.2(b). A selected wavelength
channel (cyan colored) is dropped from the spectrum into a drop port. The vacated
spectral slot can be filled by a new data stream, added in from the add port (red
colored). Small signal levels underneath the added channel in the through port
and the dropped channel in the drop port show any residual signal remaining from
the input and add ports, respectively. Such residual signal must be suppressed to
low enough levels to avoid corrupting the main signal.
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Figure 1.2: (a) Tunable, reconfigurable optical add-drop multiplexer (OADM) with four
channel add-drop elements; (b) illustrating the function of a single channel add-drop filter.
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Figure 1.3: Typical spectral response specifications for WDM channel add-drop filters for
(a) the drop-port response and (b) the through-port response.

Telecom-grade channel add-drop filter requirements

In order to perform the channel add-drop filtering operation without introducing
significant distortion into the amplitude or phase spectrum of either the filtered
channel or the bypassing channels, a set of rigorous performance requirements is
imposed on telecom-grade channel add-drop filters. Some specifications of in-
terest in the amplitude response are illustrated in Fig. 1.3. To avoid amplitude
distortion, the channel dropping filter must have a flat-top response in the channel
window, but roll off quickly to reject the adjacent channel by >30dB. The speci-
fications required for a channel add-drop filter for a wavelength channel ITU* grid
of 100 GHz channel spacing are shown in Table 1.17

The specifications in the table are challenging to meet by any means. However,
in particular when narrow passbands are required (40 GHz, 20 GHz, 10 GHz), bulk
technologies such as thin-film filters (TFFs) become less economical. Furthermore,
the introduction of more complex and sophisticated functionality — including fully
hitless, errorless tuning and switching, wide tuning and multiple channel drops

*International Telecommunications Union.

TThese particular specifications were provided to the author by colleague Luciano Socci at Pirelli
Labs, S.p.A., Milan, Italy. The majority of the research in this thesis was done in support of an effort
to demonstrate technology for a tunable OADM based on strong confinement photonic structures,
supported by Pirelli Labs through an MIT-Pirelli collaboration, Nov. 2001-Sep. 2006.
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Table 1.1: Typical WDM channel add-drop filter specs for 100 GHz ITU grid

Parameter Requirement units
Operating wavelength range >30 nm
Channel spacing 100 GHz
Pass-through loss (non-dropped channels) <3 dB
Pass-through loss uniformity <1 dB
Pass-through rejection (dropped channels) >30 dB
Drop/add loss <3 dB
Drop/add rejection (adjacent channels) >30 dB
Drop/add rejection (non-adjacent channels) >40 dB
Passband width (-1 dB point) >40 GHz
Passband ripple <0.5 dB
Center wavelength accuracy < £25 GHz
Tunable wavelength range 30 nm
Tuning time <10 ms
Return loss (reflection) >45 dB
Directivity >45 dB
Polarization dependent loss <0.2 dB
Chromatic dispersion < £20 ps/nm

— makes realization in bulk technologies more and more challenging. Complex-
ity, interferometric structures and complex device topologies, and low power and
dense integration afforded by chip-scale miniaturization are all advantages avail-
able in microphotonic implementations.

Several architectures exist for OADMs, the most common being ones similar
to Fig. 1.4(a). This approach does not scale very well to high wavelength channel
count and granularity because all channels are split up and recombined at each
network node, leading to substantial signal distortion and loss with continued
cascading. Since few channels are typically dropped at any node, a more profitable
approach is the architecture in Fig. 1.4(b), which relies on the design of a tunable
wavelength selecting add-drop filter, that can be turned off while tuning from one
wavelength to another. This is referred to as hitless (errorless) tuning. s

Hitless tuning and reconfiguration of add-drop filters

Hitless tuning is an important and topical problem in channel routing and mul-
tiplexing devices for wavelength routing networks, and is also addressed in this
work for SC microphotonic structures.

Dynamic reconfigurability is increasingly important in wavelength-routing,
transparent optical networks [23]. As a result, hitless tuning has become a pre-
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Figure 1.4: Previous approaches to reconfigurable wavelength routing and R-OADMs:
(a) demultiplex all channels, route by a broadband switch on each channel, re-multiplex
express channels; (b) a wavelength-selective switch may extract a subset of wavelengths
without demultiplexing the entire channel spectrum. (illustration adapted from [24].)
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Figure 1.5: Basic approach required for hitless wavelength tuning of a tunable optical
add-drop multiplexer (T-OADM): disable all resonant modes associated with a channel-
dropping filter passband, tune the disabled resonant cavities to the new wavelength of
interest, and re-enable the filter.

requisite for prospective designs of tunable and reconfigurable optical add-drop
multiplexers (T/R-OADMEs). It requires that other wavelength channels be undis-
turbed (on the granularity of single bits) during the reconfiguration of an add-drop
filter to a target wavelength or an off-state [25, 26]. Yet efficient means of hitless
tuning for emerging microphotonic filter implementations are few [25-29], and
a general approach is lacking. This is evidenced by the relatively commonplace
adoption of the fundamentally lossy wavelength-blocker (WB) R-OADM designs
[30].

The expected channel changing operation of a hitless tunable filter is illustrated
in Fig. 1.5. The add-drop filter must be turned off so that it is transparent to all
channels, and the wavelength channel being dropped ceases to be dropped from
the spectrum. Then the filter passband position is tuned to a new wavelength chan-
nel, so that the operation of tuning does not introduce loss, substantial dispersion
or bit errors into intermediate channels. Finally, at the target channel, the filter can
be re-enabled.



1.2. CHALLENGES IN STRONG CONFINEMENT MICROPHOTONICS 23

Resonator-based microphotonic approaches proposed for hitless tuning have a
transparent amplitude transmission in the off state of the filter, but have a remain-
ing dispersive response in the through port. This dispersive response may both
introduce bit errors and add a sensitivity to waveguide loss into the spectrum. In
this thesis, several approaches are proposed and demonstrated that allow “fully
transparent” tuning in the off state, i.e. disable both the amplitude and phase
response of a resonant system during tuning.

1.2 Challenges in strong confinement microphotonics

There is a number of challenges to realizing high-fidelity signal processing de-
vices based on strongly confined microphotonic circuits. All are related to the
ultrasensitivity of high-index-contrast micron-scale waveguides and resonators to
dimensional errors, and the lithographic resolvability of the fine sub-micron fea-
tures (resonator coupling gaps) required in such devices.

Sub-micron silicon microresonators have a resonance frequency sensitivity
to waveguide width error in excess of 100 GHz/nm (see Chap. 5). This makes it
very challenging to realize multiple-resonator structures with tolerances acceptable
for industrial manufacture. They also have proportionately high propagation-loss
sensitivity to waveguide surface roughness.

Furthermore, the TE and TM polarization modes have very different resonance
sensitivities, which leads to the conclusion that polarization independent operation
cannot be obtained except by exerting sub-atomic absolute dimensional control
in fabrication (see Chap. 5). This has led to the demonstration, associated with
this work, of symmetry-based approaches to polarization transparent operation of
strongly confined photonic circuits [31-33].

Sub-micron SC microphotonic structures also have very small critical dimen-
sions that place demanding requirements on fabrication.

Other applications

Developing the photonic technology based on strong confinement waveguides and
resonators has important applications beyond telecommunication networks. First,
opportunities for the integration of microphotonic circuits and CMOS electronics
have recently given rise to new potential applications such as photonics-assisted
high-bandwidth and high-resolution sampling systems illustrated in Fig. 1.6. Sec-
ondly, the high-fidelity optical signal processing structures developed for telecom
applications give an impetus for research on SC microphotonic devices that will
enable reaching the ultimate limits in WDM network aggregate bandwidth and
spectral efficiency. Such work is motivated by recent investigations into the con-
struction of photonic networks on a microprocessor die to lower the power require-
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Figure 1.6: lllustration of strong-confinement photonic circuits integrated with CMOS
electronics for high-speed, high-resolution photonic sampling and analog-to-digital (A/D)
converters [34, 35].

Figure 1.7: lllustration of strong-confinement photonic circuits enabling entire micropho-
tonic communication networks on a microprocessor chip for power reduction and scaling
of multiple core processors for supercomputers.

ments and eliminate the memory bottleneck in multicore CPUs. Such an intrachip
photonic network is illustrated in Fig. 1.7.
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1.3 Outline of the thesis

In this thesis, several dominant problems in strong confinement microphotonics
are addressed, theoretical solutions proposed and in some cases experimental
demonstrations provided.

In Chapter 2, canonical representations are developed for optical 2-ports and
reflectionless 4-ports such as microring resonator circuits. Their general symmetry
properties are deduced, and general representations are found that provide a phys-
ical insight into the various degrees of freedom in lossless and lossy 4-ports, and
provide physically meaningful parameter templates for the extraction of models
from numerical simulations. For general passive 4-ports, a characteristic phase is
defined, and a new constraint on it is derived that restricts the degrees of freedom
of the device when it is closer to lossless.

In Chapter 3, the electromagnetic relationships are derived that are relevant for
strong confinement waveguides and resonators, including for wavelength tunabil-
ity, free-spectral range and perturbations in dispersive structures.

In Chapter 4, rigorous design of SC microresonator filters is addressed. Coupling-
induced resonance frequency shifts (CIFS) are reported. CIFS are electromagnetic
self-coupling perturbations in coupled resonators that require appropriate correc-
tions before standard filter responses with high extinction can be successfully
demonstrated. It is shown that CIFS can be of positive or negative sign, and the
physics of the shift is discussed.

In Chapter 5, a systematic study and optimization of silicon waveguide and
resonator designs for tunable filters is described. Novel waveguide and resonator
designs are proposed, in equivalent TE and TM variants, that provide substantially
higher tolerance to errors, lower loss, and favourable performance with respect to
a dozen other criteria relevant for tunable resonant filters, in comparison to silicon
waveguides of conventional cross-sections. Generic design maps are provided that
may be used to find optimum designs based on other criteria than chosen in this
study. Preliminary experimental results validate the designs.

In Chapter 6, the design of strong-confinement, widely tunable filters for
telecom applications, based on microring resonators, is described. Resonant-
frequency-independent passband shape design, and rigorous simulation of high-
index-contrast microring structures is described. The widest known full-FSR tuning
of 20 nm (exceeding a 16 nm FSR) is demonstrated in silicon resonators, and the
first higher-order telecom-grade tunable filters (fourth order) are demonstrated us-
ing microring resonators in silicon.

In Chapter 7, the first telecom-grade channel add-drop filters based on mi-
croring resonators are demonstrated. Silicon nitride waveguides and resonators
are used with a multiple-stage arrangement of low-order stages to demonstrate
40 GHz-wide add-drop filters for 100 GHz spaced channels, having 50 dB in-band
extinction ratio. This was the first demonstration of high through-port extinction in
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high-order microphotonic filters. These static filters demonstrated the feasibility of
tunable filters later demonstrated in Chap. 6.

In Chapter 8, a new family of optical interferometers — universally balanced
interferometers — is proposed, which act, to within a phase (spectrum), as the
cascade of an arbitrary optical operator and its inverse. These structures are shown
to be usable as bypass interferometers for dispersion-free FSR multiplication of
resonant passbands to extend the wavelength reach of resonant filters and permit
scaling to larger spectral utilization without scaling of index contrast; for hitless
tuning of resonator based add-drop filters without introducing dispersion; and for
“hot-swapping” of photonic circuits in live optical networks.

In Chapter 9, a general approach is proposed for switching resonant passbands
to a “fully transparent” off state — having no amplitude attenuation or phase dis-
tortion. A new family of microphotonic devices is proposed that is capable of
suppressing resonant passbands in a fully transparent way for hitless tuning and
FSR doubling for telecom applications. This approach and that in Chap. 8 are
complementary and are used in combination in more complex designs realizing
hitless, FSR doubled filters.

Furthermore, several important results of this work could not be included in
greater detail and are summarized in Appendices.

In Appendix A, a simple approach to accurately evaluate intracavity propaga-
tion losses is described, which relies on weakly coupled resonators. Sensitivity
requirements of the known Fabry-Perot loss measurement method are derived and
discussed.

In Appendix C, a new class of optical resonant structures is proposed based
on the loop coupling of cavities. A geometrical invariant quantity, called the
loop coupling phase, is defined and determines the physical properties of the
structures. Based on this topology, optimally sharp and linear-phase microring
and microcavity filters are proposed that are not subject to the usual Kramers-
Kronig amplitude-dispersion tradeoff. As a result, flat-top filters are possible with
linear phase over more than 80% of the filter bandwidth, with a smaller number of
resonators than required by a conventional filter followed by an allpass dispersion
compensator. In addition, high-order structures for optical delay line purposes are
described. These structures have analogues in microwave design, but are more
general in the microphotonic implementation because of their hybrid form in the
case of microring resonators — allowing more general responses. These structures
are likely to have important applications in both optical telecom and chip-scale
photonic network applications, and in microwave photonics.

In Appendix D, a complex-frequency/complex- mode solver in cylindrical and
Cartesian is described that makes use of complex-coordinate stretching to provide
efficient absorbing boundary conditions for leaky modes. It has been used to
numerically simulate in three dimensions all of the resonant structures presented
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in this thesis, and for the simulation study of optimal Si waveguide designs in
Chap. 5.

In Appendix E, the rigorous design and experimental demonstration of the
first channel add-drop filters is described, using the Si-rich SiN waveguide core
platform. The first low-loss and wide FSR, high-order microring resonator filters
were demonstrated in this work. In order to achieve high through-port extinction
levels, CIFS and lithographically induced frequency mismatch were compensated
in fabrication to demonstrate experimentally the first frequency matched filters —
the first higher-order filters in strongly confined waveguides to show a high through-
port extinction ratio (14 dB). Furthermore, rigorous simulations were used for the
first time for the complete design of the filter, addressing new loss mechanisms
due to mode reconfinement effects in strongly bent ring waveguides and small-
gap directional couplers. This work was followed by the multistage SiN filter
demonstration in Sec. 7.1, and by the tunable filter work in Chap. 6.

In Appendix F, a novel structure is proposed for compact, efficient waveguide
crossings that is inspired by periodically focused beam waveguides from the 1960's.
The silicon microphotonic structure matches its periodicity to a low-loss Bloch
wave that focuses across waveguide crossings to provide simulated losses lower
than 0.04 dB, a factor of 5 improvement over comparable previous work. The loss
is further lowered when multiple crossings are traversed at once. The concepts
used in these structures also have interesting potential applications to similar active
devices, such as carrier-injection modulators. In such devices, focusing may be
used to minimize optical absorption loss at periodic electrical contacts placed in
proximity to the optical field.
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Chapter 2

Abstract photonic circuits

In this chapter, abstractions and representations of photonic circuits are developed
that facilitate the simpler treatment of new electromagnetic coupling effects and
novel device designs in strongly confined (SC) photonic structures, in forthcoming
chapters, in a physically transparent manner. A new phase constraint valid for
arbitrary passive 4-ports is derived and numerically verified; besides being of
theoretical interest, it provides useful guidelines for the design of phase sensitive
devices in the presence of loss.

Analysis of photonic circuits by transfer and scattering matrices is straightfor-
ward and already well known. However, a careful development of the general
properties of optical multi-ports reveals a number of important observations re-
garding their capabilities and limitations, and facilitates the consideration of effects
previously unaccounted in strong-confinement photonic structures (e.g. CIFS in
Sec. 4.1). It also reveals new practical device geometries, as well as useful guide-
lines for the number of independent degrees of freedom in device models for the
purposes of extracting device parameters from rigorous numerical simulations that
are necessary for the design of SC photonic structures.

The first part of this chapter defines lossless and lossy 2-ports and reflectionless
4-ports (“hybrids”), and describes the constraints upon the pole-zero pattern of
the reflection- and transmission-mode response functions of each of these types of
devices imposed by energy conservation and by reciprocity, and their relationship.
The results are used, for example, in the section proposing loop-coupled resonant
structures (Appendix C).

The second part of the chapter develops general “abstract photonic circuit”
representations of lossless and lossy 2-ports and reflectionless 4-ports. The factors
of an eigendecomposition and singular value decomposition of the response matrix
of the device are interpreted in physical terms, and the number of degrees of

31
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freedom related to the physical symmetries of the device. This section provides
a general framework in which arbitrary photonic circuits can be described by
disassembling them into abstract elements — including “ideal” 4-port directional
couplers, phase-shifters and delay lines. These elements may be used as the
smallest scale (fundamental) building blocks on the one hand, or to envelope
entire subcircuits on the other (to make use of their known global properties in
terms of symmetry). The latter is used, for example, extensively in the chapter on
universally balanced interferometers (Chap. 8).

The abstract elements may be wavelength and/or time dependent*. Abstract
directional couplers, phase shifters and delay lines, which provide a photonic
“equivalent circuit”, should not be confused with the concrete photonic device they
each represent. For example, a (concrete) combination of a microring-resonator
all-pass filter in series with a directional coupler may be described by a single
abstract directional coupler, with wavelength-dependent phase factors. We adopt
the terminology “abstract” and “concrete” from their analogous use for electronic
circuits by Belevitch [36].

Representation by decomposition into abstract elements permits a structured
discussion of several contributions in this thesis including: coupling induced
resonance-frequency shifts in coupled resonators (CIFS, see Sec. 4.1); lossy cou-
plers in microring filters including the characteristic-phase constraint impact on
filter response, and low-loss design; UBIs and folded UBIs (Chap. 8), and loop-
coupled resonators and their transmission zeros (Appendix C). In circuit theory,
equivalent circuits, abstract elements and standard forms (e.g. Cauer canonical
form, Foster canonical form) are used to provide for systems abstract physical rep-
resentations that are well-matched to theoretical techniques, so that the design or
understanding of structures by using and combining such forms is straightforward.
In this chapter, such canonical representations are developed for photonic circuits,
including lossless and lossy 4-port hybrids, as a basis for analysis and design of
structures in further chapters.

2.1 Energy-conservation constraints on the pole-zero distri-
bution of transmission functions

2.1.1 Reflectionless multiports, biconjugate networks and optical hy-
brids; and reciprocity

In this section, we define the class of reflectionless 2N-port photonic devices
and describe their scattering-matrix properties and relationship to generic N-ports.

*Frequency- and time-dependence are not the same in this context: frequency-dependence
refers to the time dependence of the impulse response of a time-invariant system; time dependence
refers to a time-variant system (i.e. a time-dependent frequency response, when the two time scales
are different enough).
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These properties are important for later discussions of CIFS and coupler loss in
microring filters in Section 4.1 and Appendix E, of universally balanced interfer-
ometers (UBIs) in Chap. 8, and of loop-coupled resonators in Appendix C.

Reflectionless optical multiports (later abbreviated as “R multiports”) as dis-
cussed here are characterized by having an even number, 2N, of ports of interest,
that can be divided into two groups of N ports each in the following particular
way. A reflectionless 2N-port, when excited by a signal at a particular port, has
intrinsically little or no reflection to all NV ports in the same group as the excited
port, including the excited port. We may refer to the first group (I) of ports as
the input ports, and the second group (I1) as the output ports (the roles may be
reversed).

The scattering matrix of the 2/N-port may be represented as

T [ 1]
[L] -3 [ir 2.1)
bII aI]

where

If the 2N -port is reflectionless as defined, then RLI = RILIL = (. Furthermore, if
it is reciprocal, S =S so that TH.I = TLIT |
For any 2-port, one can find an equivalent reflectionless 4-port hybrid (and

vice versa), since each has four non-zero transfer functions between a chosen
two input and two output ports. That there is no constraint placed by reciprocity

on the symmetry of the transmission matrix TILI itself means that a reciprocal,
reflectionless 2N-port can mimic the properties of a general (reciprocal or non-
reciprocal) N-port. This property is used in Appendix C to argue that traveling-
wave optical filters can realize response functions of non-reciprocal electrical
circuit prototypes, with implications for group delay properties.

Dielectric-waveguide photonic circuits are naturally well-suited to construct
reflectionless 2N-ports. Examples include 4-port directional couplers based on
evanescent coupling [37], and channel add-drop filters based on microring, and
more generally traveling-wave, resonators [38] which lead to inherent impedance
matching (no reflection) at all ports, over a substantial frequency range. Such
reflectionless devices naturally lead to separation of ports between input and output
signals, which is useful in practice (e.g. for add-drop filters) and avoids the use of
circulators.

Inherently reflectionless designs are not the norm in electrical circuits and
microwave structures, where explicit attention must be paid to design to achieve
all-port impedance matching, usually over a limited frequency range [39]. In
those fields, N-ports that are impedance matched at every port are referred to as
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hybrids, and 4-ports that are lossless and that have the more specific port-group
reflectionless property as described with reference to Eq. (2.2) are referred to as
biconjugate networks [36, p. 202].

Hence, we may also refer to reflectionless photonic devices as optical hybrids,
by analogy with electronic circuits such as telephone hybrids' [39, p. 375].

Conversion of N-ports to equivalent 2N-port hybrids

In this section, we briefly describe several ways in which an optical N-port can
be converted into an equivalent 2N-port hybrid. They include well-known use of
circulators, balanced embedding interferometers and standing-to-traveling-wave
(or equivalent dual-mode) structure conversion.

Conceptually, the simplest way to convert a 2-port [Fig. 2.1(a)] into an equiva-
lent 4-port hybrid [Fig. 2.1(b)] is to attach an ideal 3-port circulator to each of the
two ports [Fig. 2.1(c)]. A bulk circulator is often added to fiber and integrated Bragg
grating filters [40-42]. Then, for a suitable choice of input ports, the transmission

matrix of the equivalent 4-port hybrid, T, is equal to the S-matrix of the 2-port
(to within a few trivial phase factors representing propagation). With interchanged

input and output ports, the other transmission matrix, TLI, is relevant and is equal
to the identity matrix, representing a trivial, perfect-reflector 2-port. For an equiv-
alent 4-port hybrid that corresponds to the 2-port “in both directions”, an identical
pair of the 2-ports may be placed between two 4-port ideal circulators [Fig. 2.1(e)]*

It is preferable, where possible, to avoid use of circulators, and in general
non-reciprocal elements that require use of magnetooptic materials and magnetic
bias fields, because the available magnetooptic materials are lossy and difficult to
integrate.

In general, the 4-port in Fig. 2.1(e) may represent a different 2-port in each of
the two directions (represented by the two embedded 2-ports). However, when it
is permissible that the embedded 2-ports be identical, as is usually the case, the
structure may be simplified to one without circulators, that makes use instead only
of (passive, reciprocal) 3 dB couplers, as shown in Fig. 2.1(f). Such schemes are
commonly in use for separating the input and through ports of fiber and integrated-
waveguide Bragg grating filters [22, 42],[8, Ch. 1, Fig. 12(b)]. They were also, less
frequently, used previously in microwave circuits [44, 45]. Because a lossless 3 dB
coupler has an inherent 90° relative phase shift between ports in each direction,
the reflected signals from the two 2-ports destructively interfere into the input port

TTelephone hybrid circuits have been used since the 1920s to transfer signals from a 2-wire
transmission line with a bidirectional signal to a pair of 2-wire transmission lines each with a
unidirectional signal propagation (serving a similar function as a circulator). The name comes from
hybrid coils, comprising both inductive and resistive impedance, which form part of the circuit [36].

*The topological representation of a 4-port circulator — see Fig. 2.1(d) — in this figure is that of a
directional coupler, which is common to known microphotonic circulator implementations [43].
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Figure 2.1: N-ports and equivalent reflectionless (ER) 2N-ports: (a) a 2-port, (b) a reflection-
less 4-port showing port groups, (c) ER 4-port using circulators in one direction; (d) abstract
4-port circulator and typical microphotonic 4-port circulator port arrangement [43]; (e)
reflectionless 4-port comprising pairs of 2-ports and 4-port circulators permits equivalence
to the same or a different 2-port for each of the two possible choices of port groups; (f)
for identical 2-ports for both port group choices, ER 4-port constructed using 3dB couplers
only and no non-reciprocal elements.

and constructively into a separate output port. This scheme works for arbitrary
2-ports.

More generally, we can conclude that both the circulator and 3 dB splitter
schemes may be applied to convert arbitrary N-ports to equivalent 2N -port hybrids,
by allocating one circulator or coupler, respectively, per port of the N-port. Each
3 dB coupler terminates in two ports of the 2N -port, of which one belongs to each
of the input and output port groups. Furthermore, introducing a w-radian phase
shift between the 3 dB coupler and one of the embedded N-ports exchanges the
two terminating ports associated with that coupler between the two port groups.
More generally, since the two ports at each coupler are separated and can be
made degenerate (in propagation constant), an arbitrary phase shift may be used to
project arbitrarily chosen, orthogonal superpositions of the ports into the input and
output port groups. Analogously, in the case where 4-port circulators are used,
reversing the sense (direction) of the circulator exchanges the two terminal ports
attached to it.

In the scheme employing 3 dB couplers, it is important to design broadband
and fabrication-error-tolerant couplers, to guarantee high transmission efficiency
and low crosstalk. While symmetry can be employed, the symmetry geometries
are different in reflection and in transmission [46, 47], posing a substantial de-
sign challenge. Design of broadband 3 dB couplers suitable for precisely such
geometries was discussed by Tormen and Cherchi [47].

A third scheme for converting an N-port to a 2N-port is available for resonators,
and may be illustrated by considering direct-coupled-cavity filters [38, 48, 49]. II-
lustrating this scheme, notably optical microring-resonator add-drop filters [38]
are, in usual (e.g. series-coupled) configurations, intrinsically 4-port hybrids
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Figure 2.2: N-port and equivalent reflectionless (ER) 2N-port resonators: (a) 2-port direct-
coupled-cavity filter topology suitable for microwave circuits [48] and photonic crystal
circuits, (b) loop-mirror based 2-port topology suitable for dielectric optical standing-wave
resonators. The third approach to form ER 4-ports is illustrated by (c) a 4-port series-coupled
microring-resonator filter [38], and (d) a 4-port circuit that simulates a ring filter by exciting
two degenerate sets of standing-wave resonators [14, 52-54].

[Fig. 2.2(c)l, while their electronic and microwave counterparts [48, 501, as well
as standing-wave optical-resonator filters (including photonic crystal cavities and
integrated Bragg resonators [42]) are regular 2-ports, with the through-port re-
sponse obtained in reflection at the input [Fig. 2.2(a)]. Since each port waveguide
needs to support ~100% reflection when the cavities are unexcited, the topology
in Fig. 2.2(a) is suitable for microwave metallic-cavity and photonic crystal cir-
cuits, but dielectric waveguides will radiate substantially when terminated. For
dielectric-waveguide standing-wave-resonator systems, the topology in Fig. 2.2(b)
is proposed utilizing waveguide loop mirrors to excite the standing wave cavities
evanescently.’

Returning to conversion to a 4-port hybrid, a more explicit approach illustrating
this scheme, which mimics the operation of a ring resonator and thereby illustrates
the basic physical principle at work in it, is the use of a pair of identical resonant
structures, suitably coupled [52, 53, 55] [Fig. 2.2(d)]. Each port of the N-port is
represented in this 2N-port realization by a 2-port waveguide, and each of the two
structures is coupled to each of the waveguides in a symmetric way. Furthermore,
the corresponding cavities in the two structures that are coupled to a waveguide are
also potentially coupled to each other to restore degeneracy broken by coupling
via the waveguide.

All schemes enabling N-port to equivalent-2N-port-hybrid conversion that are
reciprocal (do not involve circulators) require twice the number of resonant modes
in the hybrid. This is true also in the standard microring-resonator optical circuits
insofar as each microring (or traveling-wave) resonator has two degenerate resonant
modes at each resonant frequency corresponding to each one resonant mode in the

Such geometries are present (with microring resonators) in an early patent by Marcatili [51]
transplanting various microwave concepts to optics, but are in general absent in the optics literature
and have been neglected in favour of the more useful and intuitive hybrid forms.
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corresponding standing-wave structure, though the number of cavities is typically
the same.

The various 2N-port hybrid realizations form an equivalence class for a given
N-port. All of the reciprocal realizations [Figs. 2.1(f) and 2.2(d)] rely on symmetry.
These will be of use in the development of various new device geometries and
designs in other sections. From here on, the port superscripts I and II will be
dropped and are understood in the context of hybrids; and the S-matrix of a 2-port
and the (corresponding) off-diagonal transmission matrix of a reflectionless 4-port
will both be represented by S (or in some sections by T or U).

2.1.2 Para-unitarity: “energy conservation” at complex frequencies

In this section, we show the constraints imposed by energy conservation, and a
more stringent requirement called para-unitarity, on the spectral response prop-
erties of 2-ports and their reflectionless 4-port equivalents. In particular, the re-
flection zeros at the two ports of a 2-port are shown to be complex conjugates of
each other, and the transmission zeros of reciprocal 2-ports are shown to occur in
complex-conjugate pairs. Reciprocal 4-port optical hybrids are shown to support
fundamentally more general response functions in transmission than their 2-port
equivalents, thereby enabling new optical filter types that do not have practical
equivalents in the electronic and microwave circuit domains.

The CMT-in-time model of a multiport Mth-order resonator leads to a rep-
resentation of the S-matrix entries as M-pole and M-zero rational functions of
two polynomials in frequency (where some of the poles and zeros may be trivial,
i.e. at infinite detuning). Transmission nulls enable advanced spectral response
design including phase engineering (non-Kramers-Kronig-limited, non-minimum-
phase and in particular all-pass filters) and sharp amplitude responses (elliptic and
sharp linear-phase filters) [56]. We consider the general constraints placed on the
transmission-zero positions by energy conservation and para-unitarity.

Providing sharp 2-port passbands requires transmission (drop port) response
zeros at real frequencies, while dispersion flattening calls for complex zeros (like
in an all-pass filter). What responses are permitted?

Energy conservation and reciprocity place constraints on the allowed zeros of
the transmission (off-diagonal) and reflection (diagonal) S-matrix elements, s;;(w),

these being the response functions of a 2-port. If the 2-port is lossless, §T§ =

:T =

SS =1, so that ’811‘2 + ‘821‘2 =1, ‘311’ = ’822‘, |812‘ = ‘821’, and
S S 0.3)
522 512

Eq. (2.3) also holds if we replace all conjugated functions s;; with para-conjugates
defined as s.j(w) = [s45(w*)]* [36, p. 72], i.e. the frequency w is not conjugated.
In this case, Eq. (2.3) holds in the entire complex-w plane by analytic continuation,
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Figure 2.3: lllustration of constraints of para-unitarity on pole-zero pattern of S-matrix
transfer functions: (a) notional 2-port to illustrate pole-zero symmetries, constraints and
cancellation; (b) its four response functions showing that all four formally share all poles,
s11 and s22 always have mutually complex-conjugate zeros, si2 and s2; have conjugate
zeros (which are on the real-w axis or in conjugate pairs for a reciprocal 2-port), and
pole-zero cancellation results from an embedded all-pass filter.

except at the poles, since w is unconjugated in S;S = I (a property referred to as
para-unitarity in circuit theory [36, p. 161]).

As the modified expression holds in the entire complex-w plane, we may now
consider its consequences for the poles and zeros. Since all four response functions
have the same (system) poles?, w, ., the frequency-dependent phase due to poles
cancels in Eq. (2.3). The remaining frequency-dependent phase is due to zeros
W2 n(i,j) N the response functions, so there must be pairs of corresponding zeros to
balance Eq. (2.3). Furthermore, energy conservation requires that s;; cannot have
coincident zeros with sy since |s11|? +[s21]? = 1 (or with s19). Therefore, all zeros
of s11 must be complex conjugates of zeros of saa, while all zeros of s12 must be
complex conjugates of zeros of s91 (in the absence of pole-zero cancellation). If
the 2-port is reciprocal, s12 = s21, and transmission zeros are restricted to be on the
real frequency axis or to occur in complex conjugate pairs in s12. These constraints
have important implications constraining responses that can be realized in 2-port
and hybrid 4-port photonic circuits.

These constraints are best illustrated by an example, before we consider their
further implications. Fig. 2.3(a) shows a notional 2-port comprising a 3"-order
standing-wave-cavity bandpass filter (red), followed by a single-ring all-pass filter
(blue). The system formally has five poles since the standing-wave cavities have
one resonant mode each and the ring cavity has two degenerate modes near the
frequency of interest. All (four) response functions formally share the same poles
which are the loaded resonances of the system. On the other hand, zeros resulting
from feed-forward interference can be different in each response function, which
also means that some of the response functions may have a reduced number of
effective poles due to pole-zero cancellation. Let us first consider the three-cavity

TFormally we will assign M poles to an Mth order resonant system, though in some response
functions the effective number may be reduced by pole-zero cancellation.
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filter, disregarding the ring. If we also disregard the cavity 1-3 coupling for the
moment, then this is a well-known series-coupled-cavity (SCC) filter geometry [38].
It accounts for the three (red) poles and the three reflection zeros near the origin
in Fig. 2.3(b). If the input is port 1, then the drop port is port 2 while the through-
port response is at port 1 in reflection. The three coupled cavities give a set of
three system supermodes distributed around a center frequency by the frequency
splitting. A symmetric filter may have a high-extinction through port and zeros on
the real-w axis. Here, the input coupling to cavity 1 is made weaker (larger gap),
so the system is undercoupled from port 1 and has minimum-phase (i.e. upper
half-plane) zeros. From port 2, the reflection sees an over-coupled response (in
the limit of zero coupling at port 1 it becomes an all-pass filter), so the zeros are
in the lower half-plane, satisfying the complex-conjugate condition. That a 2-port
system which is minimum-phase in reflection from one port is maximum-phase
from the other port is generally well known for optical filters [57]. The SCC filter
considered thus far is all-pole meaning that it contributes no finite transmission
zeros to the off-diagonal response functions in Fig. 2.3(b). A (red) transmission
zero shown in the off-diagonal responses is brought about by introducing a further
cavity 1-3 coupling thus forming a coupling loop (see Appendix C) that provides
a sort of feed-forward interference. Only if the 3-cavity filter has non-reciprocal
elements can the zero be off the real axis, in conjugate locations in s12 and s2;
[Fig. 2.3(b)], while for a reciprocal filter it must be on the real-w axis as described.

A final variation on the pole-zero distribution is the possibility of pole-zero
cancellation. This is brought out by considering the ring all-pass filter in Fig. 2.3(a),
which itself is a 2-port hybrid, equivalent to a 1-port Gires-Tournois interferometer.
A single-cavity all-pass filter typically has a pole and a zero that are complex
conjugates. However, if we assume a single pole in the upper half-plane and
zero in the lower half-plane for s of the ring all-pass, then the conditions just
described require a complex-conjugate zero that cancels the pole in s2;1, removing
any all-pass response in the other direction, which is not the correct outcome. The
resolution of this problem lies in the fact that the ring resonator, and any traveling-
wave cavity, has two degenerate modes (clockwise and anti-clockwise), if it is
reciprocal, near the frequency of interest. Therefore, there is a double pole [as
shown in Fig. 2.3(b)], and a pair of complex-conjugate zeros in the off-diagonals,
s12 and s91.  In each direction of excitation, one zero cancels the unexcited
resonance and the other provides for the dispersive all-pass response (for example,
propagating from left to right the clockwise resonance is not excited). In reflection,
s11 has both zeros cancelling the ring resonances because the ring is never excited,
while sa3 has both zeros in the lower half-plane since the ring is excited in both
directions.

Since the energy flow between the three-cavity filter and the ring all-pass is in
one direction only, there is no coupling that normally leads to frequency splitting
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and the response (and pole-zero distribution) of the 2-port is the superposition of
the individual three-cavity filter and ring all-pass. Note that if the ring all-pass
frequency and linewidth is tuned appropriately, a second pole-zero cancellation
can be effected by in transmission (s12 and s21) by overlapping one of the minimum-
phase zeros with a system pole.

This example shows the most general constraints on the pole-zero distribution
of a 2-port. The possibility of realizing more general, non-reciprocal 2-port re-
sponse functions in reciprocal equivalent 4-port hybrids is suggested in this thesis
work, and is explored in proposed designs in Appendix C. While it can be shown
that energy-amplitude reference phases may be chosen for cavity modes to de-
fine all coupling coefficients as real in reciprocal standing-wave resonators, this is
not the case for traveling-wave modes in a non-reciprocal structure or a hybrid.
Therefore, a greater flexibility in synthesis is permitted.

2.2 Canonical representations of optical 2-ports and reflec-
tionless 4-ports

In this section, we describe the properties of lossless and lossy reflectionless 4-ports,
described as abstract directional couplers (and represented by physical analogues
of the eigen and singular value decompositions of their T-matrices), and the con-
straints on violation of the unitary phase condition (UPC) in systems with loss.

2.2.1 Representations of lossless optical 2-ports and 4-port hybrids

Having established in Section 2.1.1 the relationship between 2-ports and their
equivalent 4-port hybrids, we propose in this section general abstract representa-
tions of 4-port hybrids which are relevant to photonic circuits. In the lossless case,
the matrix representation is well known, but its physical significance has not been
adequately used in photonic circuits. Based on this work, CIFS and coupler loss
were accounted (Chap. 4) and the first telecom-grade filters were demonstrated in
SC photonics, using SiN waveguides (Appendix E, Sec. 7.1).

The purpose of this section is to propose and introduce standard abstract repre-
sentations for optical 4-port hybrids, and provide an “equivalent-circuit”-like form
for representation of arbitrary photonic circuits that makes it easier to manipulate
the design and visualize the effect of symmetries, reciprocity, perturbations, etc.
These device representations are equivalent circuits for optical elements, to serve
people with an intuition for wave propagation.

The transmission matrix of a linear, reflectionless 4-port [TILI in Eq. (2.2)], or

the S-matrix of a 2-port S in Eqg. (2.1)] can be represented by a 2x2 matrix U as,

L= [“” e ] L (2.4)

cll

b=
U21  U22
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where ty, = |umn| €™, and where @ = [a1, az]” are the input mode amplitudes
at ports 1 and 2 of the input port group, while b = [b1, bs] are the output mode
amplitudes at ports 1 and 2 of the output port group, normalized so that their

square magnitudes represent the power. U is complex, and thus is fully specified
by 8 real values which may be wavelength and time dependent.

Reflections, rotations and symmetries

The reflectionless property of a 4-port hybrid is preserved under three geometrical
operations on the structure as illustrated in Fig. 2.4:

e V transformation: exchange of port groups (reflection about an axis dividing
the input and output port groups),

e H transformation: exchange of ports in each group (reflection about an axis
dividing the ports in each group), and

e HYV transformation: the combination of both (rotation by 180" in the plane
of the photonic circuit).

The transmission matrix of the reflectionless 4-port after any of these transfor-
mations is applied can be expressed in terms of the transmission matrix U of the
original 4-port as shown in Fig. 2.4. The same result can be obtained in one of two
ways: either assuming a lossless (but not necessarily reciprocal) 4-port and using
time reversal; or assuming a reciprocal (but not necessarily lossless) 4-portll. In the
former case, V and HV operations include additionally applying a sign reversal to
any bias DC magnetic field in a non-reciprocal 4-port.

To simplify notation, we introduce a cross transpose operation on a matrix [59],

:T pr—
by analogy with the transpose**. Whereas the transpose U of a matrix U is the
= —=C
matrix obtained by reflecting U about its main diagonal, the cross transpose U is

the matrix obtained by reflecting U about its second or cross diagonal. For a 2x2

:C
matrix, the cross transpose U is defined by exchanging the diagonal elements u1;
and uay [59]:

p— p— :T p—
U =J-0U .lem “12] (2.5)
U21 U1l

where permutation matrix J= [0,1;1,0].

IThe occurrence of similar results for lossless, non-reciprocal and for lossy, reciprocal cases is
common. For example, consider unconjugated and conjugated overlap integrals for lossless and
lossy waveguide modes [58].

**In previous publications [60-62], we have also used the term diagonal transpose (suggested by
Bartolomeo Tirloni). In this thesis, the term “cross transpose” has been adopted to stay consistent
with a previous work that has made use of this operator [59].



42 CHAPTER 2. ABSTRACT PHOTONIC CIRCUITS

Operation Identity (reference) \Y HV H
4-port a b
hybrid == =HA= == ===
Trqnsmiésion U= Uy Uy [U*]’] —UT= Uy | Uy uc = Uy Up [UC]T - Uy, | Uy
Matrix Uy Uy Up Uy Uy Uy Up Uy

Figure 2.4: Left-to-right transmission matrix of reflectionless 4-port under geometrical
reflection transformations in the plane. The third, out-of-plane dimension is unchanged in

all cases.
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Figure 2.5: Form of transmission matrix of reflectionless 4-ports having H, V or HV geo-
metrical symmetry.

The transmission matrices of the 4-port hybrid (U) after H, V and HY geometri-

cal operations are ﬁCT, T and ﬁc, respectively (Fig. 2.4). A physical explanation
of how these relationships may be derived via time reversal or reciprocity is given
in Section 8.1.1 on universally balanced interferometers.

The form of the matrix U is simplified to a reduced number of degrees of
freedom if the geometrical structure (dielectric € and permeability 7z distribution)
of the 4-port has a symmetry, i.e. is invariant under one or more of these three
operations, as shown in Fig. 2.5. Invariance with respect to both V and 'H, or both
V and HV, gives the same form of U as ‘H-invariance, but bias field H = 0.

Losslessness, physical canonical form and unitary phase condition

. . . T =
In a reflectionless 4-port that is lossless, power is conserved b'b = @'U Ud = a'd,
. .= . == =z. . = .
so transmission matrix U is unitary, U U =1, i.e. its 2-norm || U||2 = 1. While the
2x2 T-matrix U is in general represented by 4 complex numbers or 8 real numbers
(degrees of freedom) at each frequency, with (2.4) expanded as
= |U11|6i¢11 |u12|ei¢12

= , . 2.6
|U21|€Z¢21 |u22|el¢22 (2.6)

unitarity constrains U to a form with 4 free parameters through power conservation
constraints for single-input excitation |u11|? + |ug1]? = 1 and |uia|? + |ugel? = 1,
and a constraint on transmission-response phases [63-66]

11 + P22 — P21 — P12 = F. 2.7)
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We shall refer to this constraint as the unitary phase condition (UPC) and name the
left-hand-side quantity as the characteristic phase

Q= d11 + P22 — P21 — P12 (2.8)

as this quantity will play an important role in later results. Based on these con-
straints, U has the most general form

V1 — keion Ve
- \/Eei(¢11+¢22—¢12:|:7r) 1 = geld22

One may also use /1 — k = cos(6x), /K = sin(f,), where 6,; is analogous to the
optical coupling length <L in coupled-mode theory in space [67, p. 220].
It is of interest to see how symmetries further restrict this form and how this

cll

(2.9)

abstract representation can be physically interpreted in the context of a physical
directional coupler. A recast form of (2.9) that better maps parameters to bear out
the physical symmetries of the structure is

w0, | VI — ket i\ /et

U= . , 2.10

‘ ivre 2 /T — ke 2.10)

with
6, = 11 + P22
2
o, = P11 ; $22
+ o & -

by = 1o Pt dnEm  ¢12—dn

2 2

In the various forms, there are four real-number free parameters: splitting ratio «
(or 0g), and phases {6,, 01,02} (or alternatively {¢11, P22, P12}).

The mapping of the theta parameters to physical symmetries is borne out by a
decomposition of (2.10) into a bare coupling matrix K with one degree of freedom,
and two diagonal phase matrices ©;, ©,,

U-96; K -0, 2.11)

_ g, |2 VIi—k ivE | [ei®=0272

This decomposition shows that an arbitrary lossless, reflectionless (LR) 4-port can
be represented at each frequency as a basic abstract LR 4-port “scatterer” with one
free parameter x (middle matrix in (2.11)), augmented with pre- and post-scattering
phase shifters. The phase shifts 6,, 6; and 62 exhibit uniform (common-mode),
antisymmetric and “quadrupole” phase shifter distributions — for the three possible
degrees of freedom — as illustrated in Fig. 2.6.
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Figure 2.6: Lossless reflectionless 4-port decomposition into symmetry orders at each
frequency: (a) common-mode phase 6,, (b) antisymmetric phase 6; that is common-mode
longitudinally across the scattering point, (c) antisymmetric-antisymmetric phase 62, and
(d) the complete representation showing the physical contribution of the 3 phases.

According to Fig. 2.6 (or Fig. 2.5), an LR 4-port that is longitudinally symmetric
(V-invariant) has 6, = 0; one that is invariant with respect to 180" rotation in the
plane (HV-invariant) has #; = 0; and one that is laterally symmetric (H-invariant)
has 91 = 02 = 0.

Therefore the number of degrees of freedom at each frequency of an arbitrary
LR 4-port is dictated by the degree of its physical symmetry. This is useful in
prediction of the most general responses supported by such devices, as well as in
knowing the number of independent degrees of freedom that must be determined
from numerical simulations of such devices, such as using FDTD[68].

We will use an abstract directional coupler as a representation for the matrix
(2.10), as illustrated in Fig. 2.7(b), where it is understood that the parameters
{K, 05,061,602} are in general frequency- (and possibly time-) dependent. This is
analogous to the implicit use of an abstract mirror representation for arbitrary
2-ports, with reflection and transmission coefficients from each side in general
frequency- and/or time-dependent.

Before continuing on to lossy multiports, it is worthwhile to consider the phys-
ical content of the characteristic phase 2. Being defined in (2.8) as the addition
of two angles and subtraction of another two angles, it can also be seen as the
overall phase of the transmission function wuqju22uj,us;, which describes a signal
traversing the 4-port in four ways, one after another. Furthermore, as conjugation
amounts to time reversal, the characteristic phase comprises traversing paths w11
and ugg forward in time, and u;2 and ug; backwards. One can picture “walking”
from input port 1 to output port 1 (u11), then stepping backwards from output port
1 to input port 2 (u},), then forward again to output port 2 (ug9), and finally back-
wards to the starting position at input port 1 (u},). Therefore, € is the excess phase
accumulated in a full-circle traversal of the ports of the 4-port without retracing
the path, always “facing forward while walking”.

Example: concrete directional couplers and coupling-induced phase shifts

In this section, the LR 4-port T-matrix representation of the previous section is
interpreted for a physical waveguide directional coupler. Directional couplers
form part of various structures including interferometers and microring-resonator
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Figure 2.7: Theoretical modeling of directional couplers: (a) a distributed 4-port coupler,
modeled as a reflectionless 4-port with T-matrix 7', may be represented as (b) an equivalent
point coupler with coincident input and output reference planes and T-matrix U, where
the propagation is factored out and all remaining phase is coupling-induced and will have
wavelength dependence only due to coupling. In a V-symmetric coupler, the equivalent
point coupler may be decomposed into a pair of coupling-induced phase sections and an
ideal abstract coupler (that has no phase degrees of freedom).

filters described in this thesis. It should be borne in mind that until this point, the
abstract directional coupler representation was used for arbitrary LR 4-ports.

A physical ring-bus waveguide directional coupler is shown in Fig. 2.7. In
Fig. 2.7(a) the coupler ports are four chosen reference planes forming a box such
as may be an FDTD computational window, where the gap (wall-to-wall spacing)
between ring and bus determines the power fraction coupled. Even with lossless
waveguides and a large gap, and with coupling approaching x — 0, the T-matrix
of the coupler T is not the identity matrix. It is strongly wavelength dependent,
even though the coupling is not, because the reference planes envelope a finite

length of waveguide propagation and account for the dynamical phase (P Ly. A
more convenient treatment, for resonator analysis, of a directional coupler results
when all reference planes are collocated at z = 0 [Fig. 2.7(b)], by factoring out the
propagation phase in the waveguides — in the uncoupled state (infinite coupling
gap). Then the T-matrix U will be substantially wavelength independent — any
phase and wavelength dependence of it is due to so-called coupling-induced phase
shifts described in Sec. 4.1.4. For a geometrically V-symmetic coupler as shown
in Fig. 2.7, there are only two independent phases, ¢1; and ¢22, the bus-side and
ring-side coupling-induced phase shifts. The coupler representation can further be
factored into a virtual waveguide section pair imposing {¢11/2, ¢22/2} phase shift,
an abstract directional coupler x with one degree of freedom, and the other half
of the phase shifts. This form of coupler makes clear that coupling-induced phase
shifts cannot alone be responsible for asymmetric spectral distortion, shown to be
present in lossy resonator-based filters.

Because a reciprocal reflectionless 4-port’s transfer matrix is equivalent to the
scattering matrix of a non-reciprocal 2-port in general, four free parameters are
needed. Several previous treatments of the T-matrix for a directional coupler
[67, 69-71] are not sufficiently general to describe arbitrary structures, and include
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3 rather than 4 free parameters. In some treatments, the leading phase factor [0,
in Eq. (8.1)] is dropped. However, this factor is not trivial, and in our general
treatment may be wavelength dependent — as is the case with an all-pass filter. The
response of a microring-resonator all-pass filter on one waveguide is all in 6,.

2.2.2 Representations of lossy 2-ports and 4-port hybrids

In general, 4-ports are not lossless. In this section, physically inspired canonical
representations are given for reflectionless 4-ports not restricted to be lossless (or
passive), hence having a total of 8 free parameters per 2 x 2 T-matrix. Similarly
to the lossless case, symmetry places constraints on the degrees of freedom, while
the degree of lossiness (expressed by a minimum and a maximum gain) determines
a new phase inequality that must be satisfied, which is analogous to the unitary
phase condition (2.7) for the lossless case.

This approach and results appear to be entirely new with respect to the present
literature. The decomposition is useful in several ways: 1) to constrain the number
of independent parameters (degrees of freedom) that need to be extracted from
numerical simulations, 2) provide limitations on the characteristic phase in the
low-loss case, 3) provide straightforward simplifications of these constraints in
the low-loss case, 4) to provide a tool for design of photonic devices taking into
account symmetry constraints.

2.2.3 A characteristic phase constraint in passive 4-ports

For lossy 4-ports, an inequality can be derived that their characteristic phase €2
must satisfy. For a low-loss 4-port, the inequality is more strongly constraining,
and in the limit of zero loss it produces the unitary phase condition (2.7). This
generalization of the UPC appears to be a new result.

The inequality is first derived, and then used to address two relevant design
problems — the first concerns allowable models of scattering loss in waveguide
directional couplers, and the second concerns phase tolerance of lossy UBIs.

Here, to derive the characteristic phase inequality (CPI), a general passive 4-
port is considered. In the passive case, total output power does not exceed total
input power so thatj*g < ata, or d’TﬁTﬁd’ < a'd. Stated differently, the 2-norm
is less than unity, [|[U|l2 < 1. The inequality is derived starting with the fact that

Hﬁllz = v Amax, Where Apay is the largest eigenvalue of A= ﬁTﬁ:

A= ﬁTﬁ _ luin]? + [uzi? wiouiy + ugoul, _ | e a1z
wipui + udqupr  |ugal?® 4 |uial? a1 a2
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Here,
0 < ajl < 1, ail real
0<a9 <1, a9o real
ay = a1, a19 complex.

The eigenvalues of A are all non-negative realft,

2
ajl +a ai] — a
A= “2 24 <“2 22) + |ara|%. (2.12)
——
— — +ve
tve +ve

Since each of the three terms in (2.12) is positive definite, the relevant (largest)
eigenvalue takes the + sign,

a1 + agg ajlp — a2 2
Amax = 9 + (2 > + ’a12’2.

Comparing this result with ||ﬁ||2 = VAmax < 1, i.e. Apax < 1, yields the condition

2
0 <|a2|* <1—aj —ax+ ajazs.

This condition on matrix Xlranslates to a condition in terms of parameters of the
4-port transmission matrix U of the 4-port:

0 < |ujjute + uluga|? < 6169

where §; 2 are the total fractional losses when launching power into only input 1
or 2, respectively,

1— 61 = |u1* + Juaa > = any (2.13)

1—969 = |ug2|2 + ’u12’2 = a922.

Expressing the middle term of the inequality in terms of amplitudes |uy,,| and
phases ¢, the new phase condition is derived:

Junug|® + |ugiugs|?
2|ut1ui2u21 U2l

< cos(P12 + P21 — P11 — P22) <

(1 — fun[*)(1 = Juz2l?) + (1 — Juz[*) (1 — |ui2]?) — 1
2|u11u12u21 U2 |

" For arbitrary, complex U, matrix U U is Hermitian and furthermore positive semidefinite (has
all non-negative eigenvalues). This is easily proven by considering the singular value decomposition

= T =t= ——tete——f = —=t==t =t=
U=YXV . ThenUU=VX Y YXV = V(X X)V is the eigendecomposition with ¥ 3 a

diagonal matrix of non-negative eigenvalues. In simple terms U U looks like the complex matrix
equivalent of absolute value, analogous to u*u = |u|? for complex numbers, which is always
non-negative.
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Figure 2.8: Graphical representation of the characteristic phase constraining inequality
(2.14) valid for all passive reflectionless 4-ports.

U112 U22U21

alternatively expressed as
) < cos(p12 + P21 — P11 — P22) < (2.14)

1
2
<L R -
2 2 [u11u12u21 U2 |
The leftmost term may be recognized as having the form —(z+1/z)/2 and therefore
never exceeds —1. On the other hand, all values below —1 are not accessible for

real phase angles ¢,,,, simplifying the phase condition, without loss of generality,
further to (replacing the phase sum with €, see (2.8))

)_,_15152 (2.15)

2 |ug1urgug tgg]”

U22U21 Ur1uU12

Up1U12 U22U21

U22U21 Ur1u12

Up1uU12 U22U21

1
—1 <cos(2) < ~5 <

U22U21 Ur1u12

For a V-symmetric 4-port where w2 = us;, the condition may also be expressed
in terms of the loss coefficients d; 2 as

1 Oy —O_ 040_
0 < sin(®/2 << + + a ) (2.16)
<SR < T8, funP a3 = 85— [uml)

where

O = Qtr=0¢11+Pn— 12— a1 7
0+ = max(d1,d2)
5_ = min((sl, 52)

The general passive reflectionless 4-port phase constraint (2.15) or (2.16) reduces
to the well-known unitary phase condition (2.7) in the lossless limit. In (2.15),
|uriur2/ugeuzi| — 1 and 6; = d2 — 0, so the upper limit is also —1, while in
(2.16), 64+ = 6— — 0 setting the upper limit to 0. In each case, the result is
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an equality. Furthermore, for lossy 4-ports having an H symmetry (see Fig. 2.5),
|u11] = |ugz| so 81 = d2 and the first term on the RHS of (2.16) cancels, leaving the
phase condition constrained by the “higher-order-in-§”, second term.

The general condition [using the variables in (2.14)] is illustrated on the complex-
plane ¢! unit circle in Fig. 2.8. It shows the lossless operation point with the
characteristic phase 2 = 7, and the range of deviation angles +® permitted by a
given degree of lossiness described by d; and ds.

The phase condition (2.15),(2.16) is relevant for addressing a phase-skew-
induced spectral shape distortion in microring filters with lossy couplers, as well as
in the analysis of lossy UBIs. The phase condition is demonstrated in Sec. (2.2.4)
using the singular value approach that follows.

2.2.4 Physical representation by singular value decomposition

While the characteristic phase constraint was derived using restrictions on the
norm, a more helpful approach to this inequality, and to analysis of R 4-ports,
is through canonical representations of passive and active 4-ports by a physical
analogue of singular value decomposition. This approach gives insight into the
physical meaning of each of the 8 free parameters associated with a general reflec-
tionless 4-port, and makes apparent the reduction in degrees of freedom brought
about by symmetries in the physical structure.

In this section, first the singular value decomposition (SVD) is introduced and
used as a basis for introducing a canonical representation of 4-ports. The properties
of this representation are described. Then, the passive 4-port characteristic phase
condition is examined in the context of this representation and verified by computer
experiments. The phase condition is shown to be more stringent for lower levels
of loss, and for splitting ratios of the 4-port closer to 50 : 50.

An arbitrary reflectionless 4-port with no restriction regarding losslessness, or
even passivity, is represented by a completely unconstrained 2 x 2 T-matrix, T,
and therefore 4 complex (8 real) numbers at each frequency. Every such arbi-
trary complex matrix may be represented by a singular value decomposition [72,
p. 281,173, p. 701,174, p. 50]

T=U.3.V

p— p— :T: Pl — p—
where U and V are unitary matrices (U U = VTV = 1), and X is a diagonal

matrix with non-negative real coefficients on the diagonal.
This mathematical decomposition can be mapped to the (abstract) physical

representation in Fig. 2.9. It employs a first lossless directional coupler VT, a pair
of zero-length propagation paths with gains 311 and Y22, and a second lossless
directional coupler U. This representation makes it apparent that ¥1; and 29
represent maximum and minimum gain coefficients for the optical field. Without
loss of generality we may define gmax = 11 and gmin = Y22. The maximum
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Figure 2.9: Abstract canonical representation of an arbitrary reflectionless 4-port, based on
singular value decomposition of its T-matrix in Section2.2.4. It comprises a pair of lossless
directional couplers and a zero-length propagation section pair, respectively having the
minimum and maximum gain attainable from the 4-port.

and minimum gain are obtained only for particular relative amplitude and phase
excitation of the input ports for which all power exits the first directional coupler

VT in only one of the two abstract waveguides. For other excitations, various
intermediate levels of effective gain are obtained. This can be justified by a simple
thought experiment: consider the excitation of a Y-junction splitter in reverse, from
the two output ports. Since there is only one input port, let us add a second input
port terminated in an absorber to arrive at a reflectionless 4-port. If the two output
ports are excited as inputs, and in phase, there is no loss and the maximum gain
gmax = 1 is seen. When excited out of phase, all power is radiated and none is
guided to the inputs if those are single-mode waveguides. In this case the minimum
8ain gmin = 0 is seen.

For a passive 4-port, 0 < gmin, gmax < 1. For a lossless 4-port, gmin = gmax = 1

and the T-matrix, T = WT, is reduced to a product of two Hermitian matrices,
so T is also a Hermitian matrix. Therefore, this SVD-based model reduces to
the lossless 4-port model in Section 2.2.1 when loss is constrained to be zero.
For cases with low but non-zero loss, which are technologically relevant, the
SVD representation could be used in conjunction with first-order Taylor-series
expansion to arrive at simplified representations and constraints.

Factorization of degrees of freedom as symmetry-orders expansion

A reduced canonical representation of reflectionless 4-ports may be found that
makes evident the physical significance of each of the 8 degrees of freedom and
their relation to physical symmetries. The SVD representation in Fig. 2.9 has 12
parameters and therefore overspecifies an arbitrary R 4-port which has 8 degrees
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Figure 2.10: (a) Canonical representation of an arbitrary reflectionless 4-port, showing 8
degrees of freedom. It comprises two coupling ratios, a maximum and a minimum gain, one
commonmode phase, and three orders of antisymmetric phases due to the two couplers.
The latter three phases are illustrated in (b).

of freedom in a 2 x 2 T-matrix#.

Recall that the lossless form in (2.10) has three phase parameters — one phase
parameter that is common-mode (symmetric) between the input ports, but two
that are antisymmetric. This is because the common-mode phase 6, “commutes”
with the coupling matrix K (see 2.11), while the antisymmetric phase does not.
Therefore, the latter case requires two degrees of freedom, 6; and 6.

Returning to the more general case considered here, this understanding enables
us to define the required degrees of freedom. Since the present model in Fig. 2.9 has
two couplers, while one common-mode phase is again sufficient, now three anti-
symmetric phase parameters are needed. The reduced canonical representation
of an arbitrary reflectionless 4-port (for one propagation direction) is given in
Fig. 2.10. The latter phase parameters are given as an expansion of symmetric
and antisymmetric terms in three regions — before the first coupler x;, between
couplers, and after the second coupler k.

The transmission matrix of the arbitrary reflectionless 4-port, described by the

HOf course, a non-reciprocal reflectionless 4-port may have a different 2 x 2 T-matrix in each
direction, and then two copies of the model in Fig. 2.9 are needed, one for each direction, connected
to the ports via ideal 3-port circulators.
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canonical form in Fig. 2.10, is given by the decomposition

T=U.3.V =0, K G K 6
o [ eior20v00) /4 VI—ky iy/Ra
= e—i(01+202+63)/4 | i/ 1— ko

gmaxei(el_gg)/2 .
. Gmine " 1O1=0)/2 | TG er I—r

ei(91—292+93)/4
. (2.17)

6—i(91—292+93)/4 ] :
Redefining \/k; = sin(6x;), V1 — k; = cos(b,;) for i = 1,2, the reduced form is

T11 Too
To1 Too

(2.18)

with

T = ewlgmax cos 0,1 cos o — ei93gmin sin 6,.1 sin 0.9
Tio = e U01—202+03)/2 (eiel GJmax Sin 0,1 €08 B0 + et Gmin €OS 01 sin 9&2)
To1 = e H01+202+05)/2 (ewlgmax cos 6,1 8in 00 + 6i93gmin sin A1 cos 0,{2)

Tos = eilglgmin cos 0,1 cosO,9 — 67193gmax sin 0,.1 sin 0,.2.

From the representation in Fig. 2.10 the physical meaning of each of the 8 pa-
rameters is apparent by inspection. They comprise coupling ratios k1 and ko,
maximum and minimum gains gmax and gmin, and the four discussed phases: one
common-mode, and three antisymmetric. The “analyzing” coupler x; projects the
input excitation into the maximum- and minimum-gain states of the system, while
the “synthesizing” coupler k2 provides a rotation into output states after the gain
or loss is applied.

The particular choice made by the author in the expansion of the longitudinal
phase into 3 degrees of freedom was made to provide terms that correspond to
physical symmetries, and to simplify the form of (2.18)%.

Physical symmetries of a 4-port reduce the number of degrees of freedom in
the canonical form, as may be determined by inspection of Fig. 2.5. In the case of
V, HV and H physical symmetries, the number of degrees of freedom is reduced
from 8 respectively to 6, 6 and 4.

$8The expansion turns out to look like the first three eigenstates of a uniform, finite 3-point lattice
potential well, or of the matrix [0, 1,0;1,0,1;0,1,0]. But it is not unique, and any other convenient
choice may be made.
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Simplification of the phase inequality using SVD canonical model

In this section, a simpler form of the characteristic phase inequality (2.15) is
derived, based on the parameters of the SVD canonical representation. It is
shown that a tight bound can be derived with only two parameters that di-
rectly control the bound: the SVD maximum power loss of the 4-port, dmax =
1 — ¢2.; and the maximum splitting ratio among the port combinations, 7y, =
max (|ug1/u11|?, |u12/u22|?) (and of their inverses). The maximum loss is expected
to control the bound, as the inequality was derived from the passivity property of
the 4-port, and for zero loss, the lossless equality condition (2.7) is obtained as a
limit. The reason why the maximum splitting ratio also plays a role is that a large
splitting ratio puts little power in one arm and then a phase shift is less noticeable
to the interferometer, so it is more difficult to violate the phase condition.

First, the lossy phase condition (2.15) is recast in terms of loss and splitting ratio
parameters only. By defining a splitting ratio from each input port,

2 2

r = t2n o = w2 (2.19)
U1 U22
we can express (2.13) as
1—51 = |U11|2(1—|-’I"1) = |u21|2(1—|—1/r1) (2.20)

1-— (52 = |U22|2(1 + TQ) = |U12|2(1 + 1/7’2)

and obtain all four transfer functions in terms of loss and splitting ratio parameters:

2 1 2 1
= = . 1
|U11| 1 - |U21| 1 1/7“1 (2 2 )
2 2 2 2
— e 222
’uw’ 1—|—7’2 |UI2‘ 1+1/T2 ( )

Inserting these parameters into the characteristic phase condition (2.15), a more
useful form is obtained,

cos(p12 + Pa1 — P11 — P22) < —% <\/E+ \/ﬁ> + (2.23)
1 T2

5152\/(1 +r)(1+ )1 +r)(1+55)
2(1—01)(1 — 62)

When the system is lossless, on the RHS the right-hand term goes to zero and the
left-hand term goes to —1, hence the lossless phase condition (2.7) is recovered. On
the other hand, with larger loss, the right-hand term is positive and the inequality is
generally less constraining for larger and larger loss values. The lossier the system,
the looser the bound.

It should be noted that a splitting ratio r; or a maximum splitting ratio rmax may
be specified either as, e.g. 100 : 1 (r = 100) or as its reciprocal 1 : 100 (r = 0.01)
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as it will be seen that the relevant expressions, such as (2.23), are invariant with
respect to an r — 1/r transformation.

Because it is the SVD-model maximum loss dax that dictates the looseness
of the bound rather than the losses from each port (as will be shown), the next
step is to replace d; and 2 with corresponding SVD-model parameters. Whereas
gmax and gmin Of @ 4-port (referring to Fig. 2.9) are the maximum and minimum
achievable field gain coefficients, respectively, for particular excitations at the
input ports, we define complementary power-loss parameters, analogous to é; and
92, named dmax and dmin, Which represent the maximum and minimum fractional
power loss possible in transmission through the 4-port, with appropriate excitation
of the inputs:

5max =1- gr2nin 5min =1- gr2nax (224)

A naive approach might assign 6; = d2 = Jdmax. In such a case, the condition
(2.23) remains true, but it becomes a much looser bound than necessary. This is
because, although there may be cases where both single-input losses are close to
dmax, those cases are forced to stay far from the worst-case bounds of (2.23), and
rather close to 2 = £7. This “naive bound” will be shown and compared with the
rigorous bound, next derived, in numerical experiments in Section 2.2.4.

Relating d; and d2 to dmax requires a brief departure now. What we are after is a
simple expression that tightly (rigorously) envelopes the region of admissable phase
values. Therefore, finding an expression that delineates the boundary between the
admissable region and the inadmissable region (for €2) leads to the desired result.
The boundary is described when the inequality (2.23) is made an equality, the case
when the larger eigenvalue A\yax = 02, = 92« = 1 (compare to inequality that
was used thus far, after (2.12)). Since gmax = 1 (dmin = 0) is fixed to set the system
to the boundary of the bound, it is gmin, i-€. Jdmax that controls the size of the
bounding region. It should be noted here, and can be easily verified by following
the same procedure as we did here with Apay, that Ay, (the second eigenvalue of
A) does not place any constraints on the phases.

The next step is to relate gmax and gmin to 41 and d2. By referring to the canonical
SVD-based representation in Fig. 2.9 this is straightforward to do. Consider that
(1 — 61) represents the sum of the output port powers when unity power is sent
into input port 1 of the 4-port. This value is only determined by the first abstract
lossless coupler k1, and the gain stages [gmax, gmin]. The output lossless coupler
k2 can be ignored since it only redistributes power between the two output ports
and we are summing the total output power in any case to get (1 — ;). Therefore,
tracing power from each input port in Fig. 2.9 we conclude that

(1 - H%)g?nax + H%g?nin =1-4

K%Q?nax + (1 - K%)Q?nin =1-—02.
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When considering the boundary of the bounding region for which gmax = 1 while
gmin = 1 — dmax is arbitrary, it follows from the previous equations that

Omax = 01 + 02. (2.25)

It should be stressed again that this result is only valid when gpax = 1.
We wish to use (2.25) to replace the ¢; and d2 terms in the inequality (2.23).
Since there is one equation, we may only eliminate one of them at first:
5152 51(1 - 5max)

A= 00)(0 =02 (= 01)(1 = e + 01) (2.26)

However, since we wish to describe the system bound only in terms of the worst-

case loss dmax, We may simply take the worst-case bound over all values of 4;. This
preserves a tight bound, because one may arbitrarily choose a system with any d;,
and the bound must hold true for it. Since 0 < §1,09 < 1, then also 0 < 61,09 <
dmax, Which means that the expression (2.26) has a maximum. Differentiation with
respect to ¢; and setting the outcome equal to zero yields a maximum at

51 _ Omax (2.27)

maxbound o 2

and using (2.25), 02 = d1. This solution provides the largest positive value for the
second right-hand-side term of (2.23) and hence a valid bound for all possible d;.
Substituting into (2.23), the characteristic phase inequality is further simplified to
depend only on splitting ratios and the worst-case 10ss, dmax:

- RV i
ot <-4 (/2 ﬁ)Jm RS RETRETN

max

A further simplification can be made because the left-hand term is never greater
than —1, and r; and r2 could be replaced by a single worst-case splitting ratio,
rmax, defined as

Tmax = max (r1, 1/r1,r2,1/r9).

Since (1 + r)(1+ 1/r) has a minimum at » = 1, setting the splitting ratio to the
maximum of the various splitting ratios in the device will not violate the bound.
Furthermore, since the largest gains gmax and the largest splitting ratios push the
phase closest to the boundary of the bound, this substitution does not loosen
the bound, as will be demonstrated. In final form, the lossy reflectionless 4-port
characteristic phase condition has been derived as

1 (1 + Fmax) (1 + 1
—1 < cos(dr2 + P21 — 11 — P22) < —1 + 2( Z 5 )(_ 1);'“‘”‘)- (2.29)

max

This straightforward expression only requires knowledge (or estimates) of two pa-
rameters of a 4-port — it's worst-case power loss, and largest splitting ratio from one
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input port to the two outputs. In the limit of no loss dyax — 0, the right-hand term
goes to zero, and (2.29) becomes the lossless phase condition equality (2.7). On
the other hand, in the limit of large splitting ratios, rmax — +o0 or 0, the RHS of the
inequality goes to +oo and the phase is completely unconstrained, as expected.
Therefore, to see a narrow constraint window on the phase, both the loss must
be small enough and the splitting ratio close enough to 1. However, as we show
next, “small enough” is in practice relatively generous, and the inequality provides
useful information even for losses of the order of 70% and splitting ratios greater
than 10 : 1.

Demonstration of phase condition bounds by computer experiments

In this section, computer experiments are used to verify the correctness of inequality
(2.29) and to demonstrate the tightness of the derived bound to generated sample
data as well as its range of applicability. It is compared to the naive bound
described in the previous section. In addition, a threshold loss-level d,ay is derived,
as a function of the splitting ratio bound, beyond which the characteristic phase §2
is completely unconstrained.

The approach taken is to generate a large, “uniformly distributed” set of ran-
dom T-matrices that correspond to passive, reflectionless 4-ports; compute their
characteristic phase Q@ = (11 + ¢22 — 12 — ¢21), maximum loss coefficient dpax
and maximum splitting ratio mmax; and plot the characteristic phase against the
maximum loss coefficient for subsets of the entire set of randomly generated 4-
ports which do not exceed various values of maximum splitting ratio. This data is
compared against the analytical bound (2.29).

To generate random transmission matrices, we construct them using their SVD

T — T2V from randomly generated matrices U, V and . This approach has
several advantages. First, it permits direct generation of T-matrices having a chosen
norm, or ones having a chosen possible range of minimum and maximum gain
— by choosing ¥ = diag([gmax, gmin]), Where the gains may be fixed, or may be
chosen randomly from a range gmax, gmin € [gmin,limit: Ymax,limit)- 1N the present
case, we sample the entire range of passive 4-ports, so the lower and upper gain
limits are, respectively, gminlimit = 0, gmax,limit = 1, and the gains are randomly
chosen from a uniform distribution over this range.

Next, two random unitary matrices, U and V, need to be generated. One
cannot choose arbitrarily random coefficients for the matrix because it must satisfy
the unitary condition. However, it is well known that complex versions of the
so-called QR matrix decomposition QR = A (see [73]) can factorize any arbitrary
complex matrix into a product of a unitary matrix Q and an upper-triangular
matrix R. This is useful because one does not need to worry about choosing the
coefficients under the constraint of unitarity — we simply create an arbitrary matrix
A by choosing 4 random real and 4 random imaginary coefficients in the ranges
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[0,1] and [0, ]. The QR decomposition produces a random unitary matrix Qasa
result.

Another advantage of using the QR decomposition is that it produces a set of
random unitary matrices that is uniformly distributed with respect to the so-called
Haar measure [75-77], if the matrix used as the input into the QR decomposition
has uniformly distributed entry values. For matrices, this is the analogue of gen-
erating a uniformly distributed random variable. This is advantageous because it
facilitates sampling the entire space of possible unitary matrices, so the distribu-
tion is truly random and we obtain a sufficient number of samples with all possible
parameter combinations. If one chooses to construct a unitary matrix by choos-
ing some entries randomly by hand and computing others to ensure unitarity, the
transformations involved may skew the distribution to have few samples in some
important part of the parameter space of interest.

For a set of 100,000 samples, the results are plotted in Fig. 2.11. The plots
show a dot for each generated sample 4-port at the plot coordinate determined
by its SVD maximum loss, dmax, and its characteristic phase, 2. Shown in the
four plots is only the subset of 4-ports from the distribution having a maximum
splitting ratio, mmax, that is less than 1.5, 4, 10 and 100, respectively, as indicated
in the figure titles. Accordingly, the characteristic phase bound (2.29) is different
for each maximum-splitting-ratio ceiling value. The number of samples from the
generated distribution of 100,000 4-ports that had an rp,.x lower than the ceiling
Tmax i indicated as N in the lower-left corner of each plot.

It can be observed clearly in each of the plots that all randomly generated pas-
sive 4-ports do obey the inequality (2.29), i.e. their 2 falls between the bound and
180° . Furthermore, the bound very tightly wraps the distribution of samples. This
is because no approximations were made in the derivation of (2.29), and therefore
it rigorously divides a parameter region where passive 4-ports are admissible, and
a region where they are not admissible. As such the bound is very useful as it gives
one the exact set of 4-ports that are excluded from existence, given a choice of
constraints on dmax and rmax. The tightness of the bound is more clearly illustrated
in the plots in Fig. 2.12, which show the same result as Fig. 2.11 but with ten times
as many randomly generated points (N = 1,000,000).

The bound is more restrictive on € for low maximum-loss levels and smaller
maximum splitting ratios. Regarding the former, in the limit of zero loss, dmax —
0 and © = £180°, reducing to the well-known lossless phase condition (2.7).
Regarding the latter, the plots illustrate that not only is the admissable region for €2
larger for larger permitted ryax values, but furthermore there exists a threshold dyax
beyond which the characteristic phase is completely unconstrained. The threshold
occurs when the RHS of (2.29) is equal to 2. Therefore the unconstrained-§
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A phase condition for passive reflectionless 4-ports
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Figure 2.11: Numerical experiments verifying the characteristic phase constraint (2.29)
(labeled ‘rigorous bound’) by generating 100,000 random passive 4-port T-matrices. Each
dot represents a randomly generated 4-port, and is placed at coordinates determined by its
dmax and characteristic phase 2. The dot colour indicates its SVD gain contrast, as shown
on the right axis. The experiments demonstrate that all of the random 4-ports fall within
the analytically derived bound. Each plot also shows the ... (continued on next page)
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A phase condition for passive reflectionless 4-ports (continued)
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Figure 2.11 (continued) ... unconstrained-$2 threshold (2.30). (a) Plot for 4-ports with
maximum splitting ratio less than 1.5. Also shown is the lossless point corresponding to
the well-known unitary phase condition (2.7), and the naive bound (see Sec. 2.2.4) which
has the same shape as the rigorous bound, but is “compressed” by a factor of 2 along the
horizontal axis; (b),(c),(d) plots for rmax < 4 (no more than 6dB splitting), 10 and 100,
respectively.
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A phase condition for passive reflectionless 4-ports
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Figure 2.12: Numerical experiments verifying the characteristic phase constraint (2.29)
(labeled ‘rigorous bound’) by generating 1,000,000 random passive 4-port T-matrices.
Each dot represents a randomly generated 4-port, and is placed at coordinates determined
by its dmax and characteristic phase Q. The dot colour indicates its SVD gain contrast, as
shown on the right axis. The experiments demonstrate that all of the random 4-ports fall
within the analytically derived bound. Each plot also shows . .. (continued on next page)
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A phase condition for passive reflectionless 4-ports (continued)
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Figure 2.12 (continued) . . . the unconstrained-Q2 threshold (2.30). (a) Plot for 4-ports with
maximum splitting ratio less than 1.5. Also shown is the lossless point corresponding to
the well-known unitary phase condition (2.7), and the naive bound (see Sec. 2.2.4) which
has the same shape as the rigorous bound, but is “compressed” by a factor of 2 along the
horizontal axis; (b),(c),(d) plots for rmax < 4 (no more than 6dB splitting), 10 and 100,
respectively.
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threshold is,

1 1
5max,threshold == ~ T 1 (230)
1 \/ (Ltrmax ) <1+1/rmax> 2 T 1V max
2 2

2

where the asymptotic expression on the right is valid for rpax > 1 (Or rmax < 1).
For example, for rmax = 100, Omax threshold ~ 0.33 which agrees with its position
shown in Fig. 2.11(d).

It should be noted that, when there is no upper limit specified on the maximum
splitting ratio, rmax, the characteristic phase is unconstrained at all maximum-loss
levels dmax. Namely, when .y increases indefinitely, the unconstrained-(2 thresh-
old Omax threshold — 0. This means that for completely arbitrary passive 4-ports,
the characteristic phase is completely unconstrained and the inadmissable region
shrinks to zero area. However, the bound still provides very useful information in
practice because even for extremely large finite splitting ratios of 100 : 1 it already
constrains the phase considerably for technologically relevant losses of the order
of 1dB.

In the plots, only half of the angular spectrum, [0, 180" ], is shown because the
behaviour is symmetric in the range [180,360°]. For example, in Fig. 2.11(a), at
dmax = 0.5 the admissible region for €2 is from about 140 to 220 degrees.

The dot colour, corresponding to the right-axis colour code, has been used to
indicate the level of gmax relative to gmin for each 4-port. We have used gmax = 1
to derive the bound. In the plot, gmin = 1 — dmax is fixed at each dmax, and gmax
can take on values between gnin and 1. The colour coding shows that generally
a higher gmax brings a 4-port away from the 180" line and closer to the edge of
the bound, consistent with intuition from the bound derivation. This trend is not
exclusive, and the plots show a sparse population of red dots close to the 180°
line, and a few blue dots closer to the bound. However, there will be no blue dots
found on the edge of the bound (see next paragraph). The colour code is labeled
as SVD gain contrast because it shows a normalized excursion of gmax above gmin,
these being the gains of the two “internal modes” of the 4-port. It could also be
referred to as internal loss-mode contrast, corresponding to the second form shown
in the axis.

A second simple case exists, besides the one that describes the boundary of
the inequality (that being gmax = 1). When gmax = gmin, then a passive 4-port
satisfies the lossless unitary phase condition (2.7) that holds for lossless 4-ports,
and 2 = £180", even if it is not lossless. This is because for gmax = gmin the gain
sections in Fig. 2.9 “commute” with the abstract couplers so that the gain section
and a coupler can be interchanged without affecting the device and the T-matrix
is T = UEVT = ZUVJr = gmaXWT. Now, WT is a unitary matrix, representing
a lossless 4-port for which (2.7) holds. Therefore, all blue dots are on the Q = +7
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line, except those where dpmax — 1, i.€. gmax = gmin — 0, where phase loses
meaning and any phase is “allowed”.

Finally, Fig. 2.11(a) also shows the naive bound obtained by setting the values
of §; and d3 in (2.23) to dmax. This bound holds true, but is very loose and does
not rigorously divide the admissible and inadmissible regions. The naive bound
has the same curve shape as the rigorous bound but is shrunk in the horizontal
direction by a factor of 2. This is because the rigorous bound requires (2.27).

Asymptotic forms of the characteristic phase inequality

For technologically relevant 4-ports with low maximum power 10ss dy,ax, simplified
forms of the characteristic phase inequality (2.29) may be found that are simple
enough for use as a rule of thumb and for back-of-envelope calculations. In the
low loss limit, a Taylor-series expansion about 0, = 0 yields

1 (1 + rmax) (1 4+ 1)

—1<cos(Q) < -1+ 3 1 Tmax 5fnax if Omax < 1

valid, in other words, for about dnax <~ 1/10. The boundary of the inequality is
described by turning the RHS of the previous expression into an equality, and may
be described as a linear deviation ® = 7 — €2 from the lossless case ® = 0 (2 = ).
Defining R = (1 + rmax)(1 + 1/rmax) and taking another Taylor expansion about
dmax = 0 yields

T—Q=&=cos! [1-— Ré?nax]
A
= V2R bimax <1 + ﬁ(sfnax + 0(5;;%))
A
~ V2R bmax if ﬁafnax <1 (2.31)

which, given that dmax < 1/10, corresponds to mmax < 1200 or so at least, which
means this estimate is valid at low-loss levels for virtually any maximum splitting
ratio of practical interest. Finally, in (2.31), R = 2 for near-equal splitting and
R ~ rmax for large or small splitting ratios.

Conclusions

In this section, canonical representations for reflectionless 4-ports were described,
based on abstract directional couplers, phase shifters and loss elements. These
representations are useful for analysis and design of photonic devices such as
UBIs (Chap. 8), microring filter directional couplers (e.g. Appendix E, Sec. 7.1
and Chap. 6). For passive and active 4-ports, an SVD-based representation offers
insight into the 8 degrees of freedom of the 2 x 2 T-matrix.

Furthermore, for low-loss passive 4-ports, a rigorous bound was derived for the
characteristic phase, which is a generalization of the well-known unitary phase
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condition. It seems worthwhile to draw the reader’s attention to this result, because
of its potential usefulness in the design of microphotonic circuits (e.g. with regard
to lossy UBIs in Chap. 8, and with regard to resonant filter spectrum distortion
due to lossy waveguide-resonator coupling — Appendix E, Sec. 7.1), and because
it appears to the author to be new despite there being considerable literature on
the rather well studied subject of 2 x 2 matrices. This result may be of utility in
other fields where near-unitary or non-unitary operators are of interest and used to
model coherent systems, such as in quantum computation.

It should be possible to use the presented approach to arrive at other similar
or further generalized bounds on the characteristic phase, such as ones for active
structures. Since the randomly generated 4-ports are in all cases much more
sparsely distributed near the bound than near the 2 = 180" line, it would also be
interesting to investigate the distribution of the 4-ports in this parameter space, and
to study the properties of the few 4-ports that do land near the bound to see what
unique properties characterize them, beyond those already described here.



Chapter 3

Modeling of concrete
electromagnetic structures

3.1 Continuum electromagnetic fields and modes

3.1.1 Mode index and group index

The refractive index and group index at a given frequency of a transparent material
determine the phase propagation constant and its first-order frequency depen-
dence, respectively, for plane waves in the medium. They define, respectively, the
phase and group velocities, v, = ¢/n and vy = ¢/ng. In a dispersive medium, they
are not equal, but they are related (see Sec. 3.2).

In a guided-wave system, a guided mode has by analogy an effective mode
index, (/k,, and an effective group index, 03/0k,, respectively. In strong-
confinement (high-index-contrast) waveguides, there is large structural (form) dis-
persion, and therefore these indices are not equal and both enter into fundamental
relationships relevant to design. Although in previous literature each of these has
been referred to as “effective index”, henceforth, the effective mode index is re-
ferred to as effective index, and the effective group index simply as group index.
Where it is not obvious from the context, the distinction is made between effective
group index and material group index.

3.1.2 Role of the group index in strong-confinement structures
Cavity resonant-frequency tuning

Optical cavity mode resonance frequencies can be tuned by applying perturbations
to the refractive index distribution that overlaps with the mode field — for example

65
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by thermooptic or carrier-induced index change, or using mechanically movable
dielectric membranes.

Resonant-frequency tuning of an optical traveling-wave-cavity mode due to a
perturbation is determined by the induced shift in effective mode index, normalized
by the mode group index, of the cross-section of the waveguide that constitutes

the resonator: 5 5 5
W 00 OMeft (3.1)
Wo Ao Ngroup

The reason for the unusual combination of the effective index differential in the
numerator, but the group index magnitude in the denominator, is due to a combi-
nation of effective index change and frequency change needed to effect and track
a shifting resonance frequency.

This simple formula can be justified by a thought experiment that explains
its derivation in a physical way. Resonance-frequency tuning due to an abstract
perturbation parameter, ¢, can be thought of as the combination of an index change
due to the perturbation, Ag, and the frequency change Aw needed to return to
resonance.

Consider a waveguide cross-section with a propagation constant 3 at the res-
onant frequency w, and in the state ¢ (in a concrete example, ¢ might be the
temperature, T, in the case of thermooptic tuning). Since the cavity is resonant at
wo, B has a value that gives an integer number of wavelengths over a round trip
length L, i.e. BL = 2w N with N integer. To determine the tuning, first, we change
the state g, by a small amount dg, which changes the propagation constant. Now,
B has changed by 63, and is no longer resonant at w,. The second step we take is
to change the frequency so that 3 goes back to its original value in the new state ¢
and is resonant again. Then, the new frequency is the tuned resonant frequency of
the cavity. In the two-step thought experiment the propagation constant changes

as
B—B+00; — B+B;+0,=p (3.2)
which expands to
5@1 + 5ﬁw =0
ﬂaneﬁC Aq + Ngroup Aw =0
c dq Go,Wo ¢ Go+Aq,wo
A 1 e
Yo et AL (33)
Wo Ngroup qo+Aq,wo 8(] Go,Wo

For thermal tuning where ¢ = T', and for infinitesimal AT and Aw (w, = w), this
gives the “local” tuning formula
% Aneg 1 Oneg

=— = — AT. (3.4)
w Ngroup Ngroup or
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Here, Ones/0T is the effective thermooptic coefficient of the waveguide mode
which depends on the overlap integral of the mode with the thermal index per-
turbation. Since the materials constituting the waveguide may have different ther-
mooptic coefficients, for simple geometries such as ones having a single core
material and a single cladding material, this coefficient may be broken down into
the two contributing parts:

Onesr _ Onet ONcore Onet ONclad
oT 671001»9 oT 8nc1ad oT

(3.5)

The first coefficient in each term is a weighting factor related to the fraction of
guided power in each material region, and the second is the thermooptic coefficient
of the core or cladding material, respectively.

For large tuning over T and w ranges over which ngyoup and Oneg /0T are not
substantially constant, Eq. 3.4 must be integrated to arrive at the predicted tuning
range due to the perturbation.

3.2 A theorem relating the phase and group velocities of
dielectric waveguide modes

In this section, an exact relationship is derived for the phase and group effective
index (i.e. velocity) of dielectric waveguide modes involving only the propagation
constant, the mode field and the index distribution. The formula is a generaliza-
tion of the vyv, = ¢? identity that holds for plane waves in plasmas and hollow
metallic waveguides. It permits the determination of group index from the known
propagation constant and mode profile at a single frequency, and reduces properly
to the plane-wave case. Scalar and vector forms are derived.

3.2.1 Scalar case

In plasmas and hollow metallic waveguides, vyv, = ¢®. In dielectric waveguides a
similar trend is apparent and it is of interest to see if the phase and group velocity,
i.e. phase and group effective indices, can be exactly related. Phase and group
effective index (n,,n4) of a mode at a given frequency are defined by the Taylor-
series expansion of the propagation constant in frequency (k, = w/¢):

0
B(w) = B(wo) + 85 Ako+ - = (npko)| +ng| Ako+--- (3.6)
To relate the indices similar to vyv, = ¢,
Nphg = B o5 _ ! 0 52 (3.7)

ko Ok, 2k, Ok,
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Now (2 is found in the defining eigenvalue equation for waveguide modes de-
scribed by the scalar wave equation (e.g. TE slab modes),

(V7 + (kon(z,y: ko))? — B(ko)?] ®(2, y; ko) =0 (3.8)

where index distribution n(z, y), propagation constant 3, and mode field ®(x, y) all
may depend on frequency k,. Multiplying by ®* and integrating (3.8), a stationary
formula for 32 is

B%(@|®) = (®|V} + (kon)?|®) (3.9)

This formula can be differentiated with respect to k, to seek the relationship in

3.7), 5
2 _
o (07 (@]9)) =

Ok,
The product rule gives
ok, 7 <8ko (I)>+ﬁ <(I)‘8ko>_
— 0 Vi@V @ ) + ( V@ 0 Vi@ ) | +
ok, t t t ok, t

(G )+ (el ) = (ol )

Rearranging terms,
d o 0 9 0P 0P o / OP

(@]0) 5= 5% = <<I>‘ako(kron) <1>> + <6I<:o <1>> + <8l<:o <1>> 8 <6k:o <I>> +

0P 0P 0P
2 2 _ 32

(o) - (o)~ (ol
Now, observe that terms 2-4 on the right hand side are the wave equation (3.8)
operating on the ket, and are thus identically zero. Likewise, terms 5-7 on RHS
are the wave equation operating leftward on the bra (or by integration by parts on

the ket), and are identically zero. Thus only the first RHS term survives (and with
some manipulation):

0 (@|(kon)?|@) .

0 2
(®|V7|®) + o

(®[®)

(kon)2

\Y (kon)?

Lo, (@l o) ®)  (ope2ie) o

A e T B3 — D) for non-dispersive media.

(3.10)
This formula is an exact relationship for group and phase effective index product,
and is the mode field overlap with the spatial distribution of the material group-
phase index product. The relationship gives the mode group index, n4, once the
mode field and n, are known. The formula reduces to the plane wave/hollow
metallic waveguide case for uniform cross-sections n(x,y). For non-dispersive
media, it also reduces to the low-index-contrast effective index approximation
formula if we let n, ~ ny = neg (paraxial).
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3.2.2 Vector case

A similar procedure yields a more general relationship using vector fields. From
the vector curl equations that govern general dielectric waveguide modes,

Vex B+ jwpuoH = jBz2 X E

Viex H—jwe-E=j62x H

a stationary formula for the propagation constant can be obtained as [78],

[(H*-Vyx E—E*-Vyx H+jE* -we-E+ jH*-wp- H)da

ih= [ExH +E*xH- 2da

By differentiating with respect to k, and following a similar approach to the above,
it is possible to arrive at an analogous expression using vector fields:

A JE*- <a%o(we)) -E—|—H*-<a%o(w,u)) -Hda
" Ok, [ExH +E*xH- 2da

(3.11)

The group index may be obtained from the mode. The propagation constant (/)
information is contained in the fields. This formula reduces to expression (3.10) in
the scalar (slab TE) case where p is frequency-independent. It is the vector-field
generalized form of vyu, = ¢2.

The previous formula may be found in previous waveguide work [58, 79, 80].

3.3 Conclusions

In this section, a rigorous relationship was established between the effective modal
and group indices of strongly-confined waveguide modes in HIC photonic struc-
tures, for the simplified 2D TE case (scalar), and for 3D, arbitrary-polarization
waveguides (full vector field). This result is used in Chap. 5 to obtain the group
index from modesolver-computed modal field distributions and corresponding
modal effective indices in a computationally efficient way (without requiring fur-
ther modesolver computations).

The group index plays an important role in many important characteristics of
SC waveguides and resonators. Its role was clarified in resonant-mode wavelength
tuning, and in defining the FSR in presence of dispersion.
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Chapter 4

High-index-contrast
resonator-based filters

4.1 Coupling-induced resonance frequency shifts*

Coupling-induced resonance frequency shifts (CIFS) are theoretically described,
and are found to be an important fundamental source of resonance frequency
mismatch between coupled optical cavities that would be degenerate in isolation.
Their deleterious effect on high-order resonant filter responses and complete cor-
rection by pre-distortion are described. Analysis of the physical effects contributing
to CIFS shows that a positive index perturbation may bring about a resonance shift
of either sign. Higher-order CIFS effects, the scaling of CIFS-caused impairment
with finesse, FSR and index contrast, and the tolerability of frequency mismatch in
telecom-grade filters are addressed. The results also suggest possible designs and
applications for CIFS-free coupled-resonator systems. The first full FDTD simula-
tion of a higher-order microring-resonator filter is reported, showing a near ideal
frequency response, corresponding to synthesis, only after appropriate correction
of the CIFS.

4.1.1 Introduction

High-Q dielectric resonators, like microrings and photonic crystal micro-cavities,
are enabling the use of microphotonic circuits for filtering, sensing, nonlinear
interaction and lasers [38, 81-84]. Complex, high-order resonant structures, of
importance for bandpass channel add-drop filters, dispersion elements or slow-
wave structures [8, 38, 49, 53, 54, 71, 85, 86], are formed by coupling multiple

*This section is reproduced nearly verbatim from my paper on the subject [46], with some
expansions and additions as allowed by the available space.
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optical cavities. The spectral response is engineered by the choice of resonance
frequencies of, and coupling strengths between, the constituent cavities. There-
fore, command of the resonance frequencies in design is important. For example,
in series-coupled-cavity filters [38, 49, 54, 86], flat-top bandpass responses call for
identical uncoupled cavity resonances, where the choice of coupling strengths (set
by appropriate coupling gaps) determines the particular response shape. Such ex-
amples suggest a geometry employing physically identical resonators, or in Vernier
schemes, different-sized cavities with coincident uncoupled resonances.

In this section, it is shown that coupling of cavities introduces self-coupling
perturbations that give rise to new effective uncoupled resonance frequencies,
leading to severe response impairments that must be corrected in design. In
[871, initial findings on coupling-induced resonance frequency shifts (CIFS) were
reported’. Here, the first more complete treatment and discussion is given, as
published in [46]. First, the effect of CIFS on filter response is demonstrated by
rigorous numerical eigenmode and finite-difference time-domain (FDTD) simula-
tions. The simulations show that accounting for CIFS is necessary and sufficient
for simplified transfer-matrix and coupled-mode models, supplemented by numer-
ically computed coefficients, to accurately match full FDTD simulation results for
a third-order microring-resonator filter. Next, coupled-mode theory is called upon
to qualitatively explain the effect, before addressing the physical basis and rigorous
evaluation of CIFS in traveling-wave and general resonators. Counter to what may
be expected for positive-index perturbations, it is shown that CIFS can be of nega-
tive or positive sign. By compensating for the predicted shift, it is verified that the
ideal filter response may be recovered. Next, the scaling of the effect with index
contrast, inter-cavity cross-coupling strength, bandwidth and free spectral range
(FSR) is analyzed. Finally, CIFS-free coupled resonator designs are discussed and
comments made regarding generic methods for the compensation of CIFS.

Resonant frequency mismatch is particularly deleterious to in-band extinction
in the through port of high-order add-drop filters [88, 89]. The results show that it
must be accounted for in the filter design in order to achieve the desired symmetric
high-extinction responses that will enable the use of resonator-based filters in
channel add-drop applications.

For the sake of clarity, it is reiterated here that CIFS is a coupling effect in linear
systems and refers to a perturbation of the resonance property of the electromag-
netic cavity and not to a shift in frequency of an input signal.

4.1.2 CIFS and its effect in multipole resonators

Before demonstrating its deleterious effect on a multipole resonator, CIFS is de-
fined through a simple example. An idealized two-cavity system in Fig. 4.1(a),

"The effect was first observed by C. Manolatou in 2002, as a spectral asymmetry in FDTD
simulations of the frequency response of microring structures.
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Figure 4.1: (a) Coupled-dielectric-resonator system in infinite perfect-conductor waveg-
uide, with analytic mode solutions [78]; (b) TM1o supermode frequency splitting and CIFS
vs. resonator spacing.

of identical dielectric blocks in an infinite conducting waveguide, has an ana-
lytic TM;0-mode solution (cf. [78]). Coupling results in a frequency splitting Aw
[Fig. 4.1(b)] of the supermodes [67, 78]. It also causes a shift dw in the mean
supermode frequency. The latter may be interpreted as a coupling-induced shift
in effective uncoupled resonance frequencies, that we refer to as CIFS.

In higher-order resonators based on multiple cavities, engineering supermode
poles directly is difficult. A more tractable design framework is based on individual
cavity modes and uncoupled cavity resonance frequencies, with separate coupling
and CIFS terms to describe the coupled configuration. Thus, the individual cavity
design and the coupling design are made, to a large extent, independent. The
dynamics of the system are described by coupling of modes in time (CMT) [67, 78],

d

=l

=jw-d—j

where the amplitudes @ are associated with the resonant modes and normalized
such that |@,|? is the energy of mode n; © is a diagonal matrix of uncoupled reso-
nance frequencies, and matrix & represents mode coupling. Off-diagonal elements
Li,j represent cavity-to-cavity coupling employed in engineering the supermodes.
Diagonal elements y; ; represent CIFS and modify @ into effective cavity resonance
frequencies. Solving (4.1) yields frequency splitting,

Ws,a =

w1 — p11 + wa — P22 - \/((Wl — p11) — (w2 — p22)
’ 2

2
5 > + pigpor.  (4.2)

CIFS (1 4) is a second-order, self-coupling effect, as compared to the direct cou-
pling 1, ; that is first-order, leads to frequency splitting [Fig. 4.1(b)] and sets the
bandwidth. On the other hand, in spectral response models, CIFS is contained
linearly, as modification of resonance frequency, while cross-coupling is squared
(compare [38]). In net result, the two effects are comparable.
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Figure 4.2: CIFS impairment of 3-cavity microring filter: (a) simulated structure using iden-
tical rings (dimensions shown); (b) ideal (synthesized) and simulated (complete-structure
FDTD and model) frequency response showing apparent cavity mismatch due to CIFS.

A two-dimensional (2D) simulation demonstrates that CIFS can seriously im-
pair a filter design. A channel add-drop filter, based on a series-coupled 3-ring
resonator, was synthesized to have a 50 GHz 3 dB passband and 30dB in-band
extinction in the through port [38, 49]. The microring resonators are identical and
hence degenerate in the absence of coupling, with 3200 GHz FSR near 1580 nm.
The required power coupling coefficients are {0.0825, 0.00155, 0.00155, 0.0825},
corresponding to coupling gaps of {280, 660, 660, 280} nm. FDTD simulation of
the complete filter was carried out to find the drop and through port spectral re-
sponses. For completeness, details of the simulations are given in Section 4.1.9.
A snapshot of the field in the simulated structure is shown in Fig. 4.2(a), and
the desired (synthesized) and obtained (simulated) filter responses are shown in
Fig. 4.2(b). The ideal synthesized response is obtained by a transfer-matrix-method
computation [71, 86] assuming matched resonators. The asymmetric simulated
response is a telltale sign of resonance frequency mismatch due to CIFS [87]. To
account for the observed response shape in theory, a mismatch of ~22 GHz (on
the order of the filter bandwidth) must be supposed. The response is so severely
distorted that, mid-band, the signal is split evenly between the drop and through
ports rather than being dropped. As shown below, this distortion is the net effect
only of varying CIFS contributions in the three cavities caused by their coupling
configurations. Experimentally determining CIFS is complicated by the additional
fabrication-related resonance frequency offsets between cavities that can be com-
parable to the CIFS, and that add to the response distortion [90].

CIFS distortion and compensation is illustrated in Fig. 4.3, starting with an
isolated resonant cavity, here a microring resonator [Fig. 4.3(a)]. Placing a cavity
near a waveguide or near a second resonant cavity, results in coupling through the
perturbation of the evanescent fields that extend outside the dielectric core region.
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In addition to the coupling, the changed proximate environment that perturbs the
evanescent field of a cavity causes a CIFS. For an arbitrary filter coupling coefficient
distribution, the perturbation seen by the mode of each resonator will, in general,
be different in accordance with the arrangement of perturbing nearby structures
“seen” by its evanescent field [Fig. 4.3(b)]. When assembled in a higher-order
filter, the effective resonance frequency of each cavity is shifted from its value
in isolation [Fig. 4.3(c)]. Since the shifts are in general not identical, the system
response is not only shifted in frequency, but also distorted. To recover the desired
response, the cavities may be pre-distorted in design so that in the complete filter,
the effective uncoupled resonance frequencies are again degenerate [Fig. 4.3(d)].

4.1.3 Physical sources and the sign of CIFS in general resonators

Next the rigorous evaluation and the physical origin of contributions to CIFS leading
to shifts of either sign are considered. Then, CIFS is demonstrated in traveling and
standing-wave resonators, including characteristic field patterns associated with
positive and negative shifts.

Resonant modes of an isolated dielectric electromagnetic cavity [Fig. 4.3(a)], or
those of the compound resonator [Fig. 4.3(c),(d)], may be computed numerically
using a complex-frequency mode solver (Appendix D, [91]). Since the supermode
pole distribution of a compound resonator is the result of two effects — frequency
splitting and (pair-wise) mean frequency shifting (CIFS) — it is more desirable to
set up the computation problem so as to separate these two effects. We partition
the complete multi-cavity filter geometry into sub-structures [Fig. 4.3(b)], each
selecting one resonance in the spectrum of interest associated with a cavity mode.
This approach enables a series of numerical mode simulations to yield isolated
CIFS and coupling parameters for each cavity.

A complex-frequency eigenmode solution [91] provides the resonance fre-
quencies and corresponding quality factors, Q’s, of the simulated (sub)structure’s
resonant modes. In each partitioned sub-structure, supermode splitting due to
buildup of energy in a second resonance is eliminated, since only one resonance
in the frequency range of interest is present. In this way the effect of CIFS on each
cavity may be evaluated. One may further separate CIFS contributions due to each
of the interacting objects by individual simulations. Each perturbation is small and
physically isolated so the total shift is, to a good approximation, the sum of the
individual isolated contributions. The Q’s, on the other hand, encompass not only
radiation and absorption losses, but also power coupled out of the resonator via
waveguides. By properly taking guided-mode overlap integrals at access waveg-
uide ports with the complex resonant-mode field, the total Q may be decomposed
into an external coupling Q and a loss Q.

In Fig. 4.4, the CIFS due to adjacent bus waveguides is evaluated by eigenmode
computation for a ring resonator identical to those in Fig. 4.2. Two symmetrically
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Figure 4.3: Diagram of CIFS resonance mismatch and its correction: isolated resonator (a)
attains CIFS when part of a coupled structure (b); the combination of nominally degenerate
resonators in a coupled-cavity filter (c) results in effectively mismatched resonators and a
distorted response (Fig. 4.2), which can be (d) corrected by pre-distorting the resonators by
the expected CIFS.

coupled bus waveguides are more efficiently simulated by exploiting the horizontal
and vertical axis symmetry. Each waveguide contributes half of the total CIFS,
found as the difference between the computed resonant frequency of the coupled,
and that of the uncoupled resonator. The CIFS is plotted (in free-space wavelength
units) against ring-waveguide gap spacing, and for two bus waveguide widths and
polarizations for a resonance nearest 1580 nm. As expected, the magnitude of the
frequency shift decreases for increasing gap width with an exponential envelope,
due to the exponential tails of the interacting evanescent fields.

The sign of the frequency shift requires more attention. A small positive refrac-
tive index perturbation is typically expected to cause a negative frequency shift.
The three simulated cases in Fig. 4.4 were chosen, however, to point out that the
CIFS may be negative or positive, depending on geometry (here the bus waveg-
uide width) and even on the polarization. The CIFS sign depends on contributions
from effects beyond first-order index perturbation, including non-orthogonal cross-
energy between the resonant mode and confined modes in nearby structures, and
resonant-mode shape modification by the adjacent structures. Next, these points
are briefly addressed.

The framework of coupling of modes in time (CMT), introduced phenomenolog-
ically in Eq. (4.1), is instructive for obtaining insight into the physical contributions
to the net CIFS of a cavity mode in the coupled configuration. CMT can provide
a rigorous treatment [78] of the interaction of a collection of modes in a coupled
dielectric resonator structure of arbitrary geometry. Evolution of the mode ampli-
tudes @(t), in a suitably formulated CMT (Section 4.1.10), may be described by a
variation of the coupled-mode equations of the form of Eq. (4.1):
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Figure 4.4: CIFS in a single-ring cavity due to side-coupled bus waveguides: (a) mode-
solver-simulated structure; (b) CIFS for TE,TM resonances and for two bus widths, vs. gap
spacing. Phasor-amplitude plots (c),(d) of the standing-wave-mode resonant field show
a partial standing wave in the coupling region and, respectively, a symmetric-like and
antisymmetric-like supermode formed with the waveguide continuum corresponding to
negative- and positive-frequency CIFS.

In addition to the uncoupled resonant-frequency diagonal matrix @, W is the
energy non-orthogonality (basis mode overlap) matrix, and M is a customary cou-
pling overlap matrix that describes the interaction. Matrices W and M depend on
the particular formulation of CMT as reduced from Maxwell’s equations (c.f. [78];
another is described in Section 4.1.10). Regardless of the particular formulation
of the CMT, the matrix & represents a total effective coupling matrix with respect
to mode amplitudes taking energy non-orthogonality into account. For exam-
ple, in the case of two coupled resonators as in Fig. 4.1, the CIFS for the resonator
associated with amplitude a; of two total modes is, according to Eq. (4.3) (Fig. 4.3):

My — VA2 My,
Wi — 72 Way

In the absence of coupling, such as when the resonators are spaced sufficiently far
apart, dw; = 0 and the resonators oscillate at their uncoupled natural frequencies
in @. With coupling present, the CIFS is generally non-zero. We briefly consider
the physical interpretation of (4.4). For a basis of orthogonal modes (e.g. a lone
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Figure 4.5: CIFS due to coupled bus waveguides in a square standing-wave cavity: (a) CIFS
vs. gap spacing and waveguide width, and mode-solver simulated structure. Mode phasor
magnitude plots show (b) symmetric and (c) anti-symmetric coupling, respectively, with a
partial standing wave established in the waveguide, for negative- and positive-frequency
CIFS. Case (b) shows significant mode shape modification caused by coupling.

resonator perturbed by a nearby dielectric object with no relevant modes of its
own) Wia = Wa = 0, and from (4.4) the frequency shift is negative since M;;/W;
is positive definite in the lossless case. This is an intuitive result if one considers
the wave equation, or its stationary integral for frequency (lossless case) [92]:

Z_fVET-Vxﬁ_l-VxEdv

SN (4.5)
J, ET-E- Edv

w

If a positive refractive index perturbation is introduced to the isolated cavity config-
uration in (4.5), the frequency must decrease. In the case of adjacent evanescently-
coupled resonators, the basis of uncoupled modes that are subjected to coupling
is normally not orthogonal. A second, positive CIFS contribution then arises due
to the cross-energy of the modes. Since cross-coupling Mas; (source of power
exchange) is a large term relative to self-coupling My, the net CIFS could be
found positive. This initially unintuitive result is more easily understood in the
spatial-propagation picture in Sec. 4.1.4, specific to traveling-wave resonators.
One final comment with respect to the CMT treatment is in order. In a rigor-
ously derived CMT, meaningful estimates of the first-order coupling (supermode
splitting) can be obtained from overlap integrals, with the error converging to zero
with weaker coupling as expected. However, the diagonal elements representing
CIFS are second-order coupling effects, and are not accurately predicted by CMT
formulations, including [78, 93]. An error in the uncoupled field basis representa-
tion of the supermode field solution also translates to a second-order contribution
to the CIFS, similar to the analogue in the spatial picture of directional couplers
[93]. Such an error will always be present in practice, when a finite basis of modes
is selected. Therefore, the relative error in the CIFS estimate by CMT does not con-
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verge to zero with weaker coupling and can in general be O(1). This is the case
because CMT is fundamentally a first-order theory. So, while valuable physical
insight may be gained, CMT does not generally provide an accurate estimate of
the CIFS. For design purposes, an accurate determination is obtained by using a
resonator mode solver (as done in this section for the structure in Fig. 4.2) or by
the FDTD method.

The general resonance treatment in time (by CMT or exact frequency eigen-
mode methods) is useful because it applies to all types of resonators, including
standing wave resonators such as dielectric box-type resonators [55] and side-
coupled, quarter-wave shifted waveguide grating resonators [42], photonic crystal
cavities [53, 84], annular Bragg resonators [94], etc. For example, CIFS vs. gap
width for a square resonator is shown in Fig. 4.5(a), computed by the frequency
mode solver. A 2D model structure with 4:1 index contrast and 1.8 um edge di-
mension supports a high-Q mode with diagonal field nulls [55] at 1559.6 nm, with
a radiation Q of 203,000. Choices of bus waveguide width produce a positive or
negative CIFS.

Finally, an interesting observation may be made with respect to the symmetry
of characteristic field patterns for resonator interaction with the bus waveguide. It
is generally appreciated that coupling of two degenerate resonators splits modes
such that the symmetric supermode is of lower resonant frequency and the anti-
symmetric is higher. In the case of resonator-waveguide coupling only one reso-
nant mode is present, but it may be observed that the symmetry of the interaction
of the resonator mode with a partial standing wave established over a portion of the
waveguide still determines the character of the resonance frequency modification
and thus the sign of the CIFS. In Figs. 4.5(b) and 4.5(c) the field phasor amplitude is
plotted over a quarter of the simulated structure for two different waveguide widths.
A traveling-wave (uniform-intensity) pattern is seen in the waveguide away from
the interaction region, signifying leaking power associated with Q-broadening, but
a more standing-wave-like pattern is seen in the immediate coupling region. In
Fig. 4.5(b), the anti-symmetric standing wave pattern in the coupling region cor-
responds to a positive-frequency (negative-wavelength) CIFS, while in Fig. 4.5(c)
the symmetric interaction pattern corresponds to a negative-frequency CIFS. This
behavior is present also in the ring resonator [Fig. 4.4(c),(d)].

4.1.4 CIFS in traveling-wave-resonator structures

In this section, CIFS is treated in traveling-wave resonators, such as microring
resonators; the frequency shift is related to phase perturbations in couplers; a
coupler model and the constraints imposed by power conservation are investigated;
and a coupling-of-modes in space look at CIFS is taken.

Traveling-wave resonators are particularly useful because they support high Q’s
and permit unidirectional coupling to waveguide modes. They couple to access
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waveguides or other resonators via directional coupler regions. The coupling may
be evaluated by considering each coupling region as a multi-port within particular
reference planes [1-4 in Fig. 4.6(a)]. Reflection in these interaction regions can be
neglected, so that the responses of filters using ring resonators can be obtained by
a transfer matrix analysis considering only unidirectional forward wave scattering
[71, 86].

CIFS may be attributed to a phase shift in propagation [from port 4 to port 3 in
Fig. 4.6(a)] due to interaction in the directional coupler regions. A round-trip net
phase shift of 27 (a full wavelength) would shift the resonance by one full FSR, so
the CIFS is related to the phase as,

Afcrrs _ AfcrsngL A¢

A frsn ~ : =~ o (4.6)

where L is the round-trip cavity length and n, is the group index of the traveling-
wave mode. The phase perturbation A¢ is explicitly manifest in the transmission of
T-matrix, U, of a lumped, point-interaction description of the coupler in Fig. 4.6(a)
(note that U is an off-diagonal 2 x 2 submatrix of the total 4-port scattering ma-
trix, since reflection and backward transmission are neglected). In general, the
interaction is distributed over an extended length of propagation where the fields
in the traveling wave cavity and nearby coupled structure are “within reach” of
each other’s evanescent tails. The net effect on relevant modes may be evaluated
with respect to reference planes [1-4 in Fig. 4.6(a)] that sufficiently enclose the
interaction region. However, it is instructive to lump the distributed interaction
into a point interaction with respect to a single reference plane, represented by
a point T-matrix, U. Then, propagation along the remainder of the structure in
the interaction region is treated as that in the uncoupled structures. This parti-
tioning, without loss of generality, simplifies analysis to that of isolated resonators,
plus lumped point interactions. The lumped interaction matrix displays only the
frequency dependence of the coupling interaction itself (and not of the propaga-
tion/dynamical phase), as seen in Fig. 4.6(b). In addition, loss due to propagation
(e.g. in bent waveguides constituting the rings) and any excess loss caused by
the interaction are separated. In the present simulations, the point T-matrix U is
obtained by evaluating the T-matrix with respect to reference planes 1-4 of the
coupled structure in Fig. 4.6(a), as well as that of the uncoupled ring and bus
waveguides. The latter permit normalizing the uncoupled propagation phase and
loss out of the former to obtain a point scattering S-matrix U [referenced to the red
plane in Fig. 4.6(a)] which represents the perturbation due to interaction (refer to
the model in Fig. 2.7).

Power conservation constraints on the point T-matrix of a lossless directional
coupler permit sufficient latitude in degrees of freedom to support two independent
coupling-induced phase offsets that correspond to the CIFS. A lossless coupler with
two inputs, two outputs and no reflection to input ports may be represented by an
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Figure 4.6: (a) Lumped point-interaction model of coupling of traveling-wave resonator
and access waveguide. FDTD simulation of the coupled structure with respect to ports
1-4, and of the two waveguides individually, leads to lumped point-interaction matrix U,
describing the effect of the coupling on port-to-port scattering matrix element (b) phase,
and (c) power coupling.

arbitrary unitary 2 x 2 transfer matrix U with four degrees of freedom - a power
coupling ratio , and three phases 6,, 01, 62 (as described in Sec. 2.1.1):

ﬁ_ [ U116i¢“ U126i¢12 ] _ it [ \/mewl i\/Eei%‘ (4.7)
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where b =U-d, b = [b2,b3]T, @ = [a1,a4]" (Fig. 4.6(a)) and U is referenced to

. . . o =t= =
a single input-output reference plane. The unitary condition, U U = I, alone
requires that the phases obey

D11+ P22 = P21 + P12 T (4.8)

which is explicitly satisfied by the second form in (4.7). In the absence of coupling,
k — 0 and phases 6,12 — 0, such that U — I (identity matrix) and uncoupled
behavior is recovered. In the presence of coupling,  represents power coupling
and 6, + 6, are two independent coupling-induced phase shifts (CIPhS) on either
side due to interaction, which translate to resonance-frequency shifts in resonant
elements. For a coupler that is symmetric about a (horizontal) axis separating
the input and output ports [Fig. 4.6(a)], reciprocity combined with the geometric
symmetry requires equal off-diagonal elements, i.e. 6, — 0, reducing the num-
ber of free parameters to three. But, the two diagonal coupling-induced phase
shifts remain independently determined, permitting two different CIFS values for
resonators on each side of the coupler.

Figs. 4.6(b),(c) show the FDTD computation of the elements of matrix for the
ring and bus waveguide structures used in the filter example of Fig. 4.2. A narrower
coupling gap of 100 nm is used in order to amplify and make clearly visible the
phase shifts due to interaction. Fig. 4.6(c) shows power coupling (cross state ~60%)
and its wavelength dependence due to change in mode confinement. The total
output power sums to >99.9% for even smaller coupling gaps and supports this
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discussion using the unitary matrix model. Fig. 4.2(b) shows the phase shifts, which
by inspection can be seen to, and were verified to, obey condition (4.8). The cross-
state phase shifts are equal and near 90° as expected. However, it is interesting
to note that the bar-state phase shifts on the bus and ring sides are large and of
opposite sign (“anomalous” and normal, respectively). This is a manifestation of
the multiple contributions to the CIFS, discussed in the temporal resonance picture
previously and briefly further discussed below. It implies that, for example, when
coupling two resonators of different radii such as in a Vernier scheme (c.f. [38]),
it is possible for the two to experience CIFS of opposite signs.

For the filter example of Fig. 4.2, using computed phase shifts for the appropriate
coupling gaps, Eq. (4.6) and the cavity FSR, a CIFS of +21.75 GHz results due to
each bus waveguide and a CIFS of +0.26 GHz due to each adjacent ring (note, CIFS
here has the “anomalous” sign). A net mismatch results of +21.49 GHz in outer
rings relative to the middle ring. These CIFS values were used in the filter model
plotted in Fig. 4.2, and give a response that matches exactly the FDTD-simulated
response of the complete filter, also plotted and overlapping. The “wiggles” in
the wings of the FDTD-simulated drop spectrum below -30 dB are due to a slightly
premature termination of the simulation. A step-function turn-off of the field leaving
the drop-port while some energy remains in the computational domain causes
small oscillations in the shown spectrum obtained by discrete Fourier transform
(DFT) of the output field. Rigorous accounting for CIFS is thus necessary and
sufficient to explain the anomalous spectrum obtained in Fig. 4.2.

Transfer-matrix-type analyses of lossless ring-resonator filter couplers (c.f. [69,
71, 86]) have generally employed the unitary scattering matrix of a two-port mirror
(c.f. [67]), which is consistent also with first-order coupling-of-modes in space anal-
ysis of a directional coupler [67, p. 220]. These have one less degree of freedom
than the model in eqn. (4.7) because the reference planes for input (incident) and
output (reflected) waves of each port are generally coincident, unlike the 4-port
reflectionless couplers considered here, where the planes may be arbitrarily cho-
sen. Secondly, while the T-matrix phase variables may be removed by a particular
choice of reference planes, in general such choices hold at a single frequency only
[671, and do not provide the intuitive physical picture of the interaction obtained
by collocating all four reference planes. By placing the interaction at a point and
treating the remainder of the propagation as that in an uncoupled resonator, the
perturbative nature of the interaction on the resonator is explicitly manifest in the
forward scattering matrix U of the directional coupler, including CIFS. This is a
practical approach for resonant filter design.

Coupling of modes in space picture

In view of the opposite sign of coupling-induced phase shifts on the ring and bus
side of the coupler in Fig. 4.6, the physical sources of CIFS are briefly revisited in a
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spatial picture. For traveling wave resonators, the CIFS may be simply understood
by using a coupling of modes in space [67, 78] approach to consider the self-
phase-shift accumulated in directional couplers. First, the propagation constant (3;
of waveguide i is modified to 8; = 3; + 63; by the diagonal term §3; of a coupling
matrix analogous to & in the temporal system of Eqns. (4.1) or (4.3), e.g.:

Ky — H2 Ky
56, — Kn = makn 49)
Py — 2Py

where ¢/ is given for mode 1 of two modes and may in general vary in value
along the propagation direction, K is the coupling overlap matrix and P is the non-
orthogonality matrix as in [78]. For perfectly synchronous couplers, this is the only
coupling-induced phase contribution and the accumulated phase is the integral of
d0i(z) along the propagation direction over the interaction region, with CIFS given
by (4.6). In general, at least parts of a coupling region may be non-synchronous,
and then additional phase is accumulated in each waveguide due to beating in the
mismatched coupler. The total accumulated phase is obtained by considering the
phase of the total integrated CMT solution [67] for bar-state propagation through a
coupler. For a uniform coupler along the propagation direction, the total phase is

A0y = (1z 4+ 601z + |0z — arg{cos(foz) + jg sin(f,2)} (4.10)
where § = (B — 31)/2, Bo = V0% + K2 and &? = Fa1F12. Non-orthogonal cou-
plings ®21, K12 are off-diagonal elements of P -K In gradual couplers where
synchronism, propagation constant and coupling vary with length along the prop-
agation direction, the terms in (4.10) contain integrals with respect to distance.
The three phase terms on the right-hand side of (4.10) are due to the uncoupled
B, the coupling-induced g shift, and the non-synchronous slip phase. The latter
two terms result from coupling and contribute a CIFS according to (4.6). The third
term may be significant when asynchronous (asymmetric or bent) and interfero-
metric couplers are employed. For synchronous (6 = 0), strongly asynchronous
(|6] > |&]), or optically short (|7|z < 1) couplers, no significant amount of power
is coupled over and back with phase slip, and the second term in (4.10) is the
dominant contribution.

Even without phase slip due to asynchronous coupling, this picture confirms
that the CIFS can be of either sign. K1, is the usual positive effective index (negative
CIFS) contribution due to the presence of the high index adjacent bus waveguide or
resonator. The second term in (4.9) that gives a positive CIFS contribution can be
understood by considering two weakly guided TE coupled slabs of half the width
necessary to cut off the second guided mode. At zero wall-to-wall spacing (strong
coupling regime), the two guides merge and the antisymmetric mode becomes
cut off, while the symmetric mode morphs into the fundamental guided mode. In
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Figure 4.7: FDTD simulation of 3-cavity microring filter, with cavity resonance frequencies
precompensated by design for CIFS: (a) simulated structure with lower-core-index middle
ring; (b) FDTD simulation and model of the filter showing recovered ideal frequency
responses.

approaching this situation, clearly the antisymmetric mode’s effective index drops
much faster than that of the symmetric mode rises. This example clarifies the
negative contribution to the average effective index of the two supermodes, seen
in Figs. 4.4 and 4.6, which for synchronous coupled waveguides corresponds to a
068 < 0in (4.9), ora CIFS > 0.

4.1.5 Compensation of CIFS in design

The frequency mismatch due to CIFS, observed in the filter in Fig. 4.2, can be
compensated by pre-distorting the resonance frequencies of the isolated cavities
in design, in anticipation of CIFS shifts. This may constitute slight cavity geometry
or index modifications. In general, the pre-distorted cavity design will, in the
coupled configuration, have a slightly different CIFS than the original, so that
iteration would be needed to arrive at a self-consistent design. In practice, a
single step is adequate. The cavity resonance frequency is sufficiently sensitive to
dimensional or index changes that a small modification can produce a resonance
shift equal to the CIFS without substantially affecting the mode shape, and thus the
coupling and CIFS. In addition, the cavity may be modified only away from the
interaction region.

Fig. 4.7 shows the simulation of a compensated filter. Recalling the exam-
ple of Fig. 4.2, the outside rings had a CIFS of +21.75 GHz, and the middle ring
+0.26 GHz. For the compensated filter, the core index of the middle ring was
changed by -0.0003 to compensate for the net CIFS of -21.49 GHz in the mid-
dle ring by causing a frequency shift equal in magnitude, and opposite in sign
(resonance shifts -7.11 GHz/0.0001 core index change). Index, rather than dimen-
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sional, perturbation is used on account of the coarse discretization, but the results
can be trusted as explained in Sec. 4.1.9. The simulated filter responses show
the flat-top Chebyshev passband that was desired, with 30 dB in-band extinction
(slight asymmetry shows ~0.2 GHz residual mismatch). A transfer-matrix-method
model, incorporating the individually modeled couplers and no net CIFS is over-
laid confirming agreement. Coupler computations using FDTD and the modesolver
(external Q) yield virtually identical results. The simulation confirms that CIFS was
the only unaccounted impairment in the example filter of Fig. 4.2, and that its
proper compensation enables the realization of the ideal filter response. In this
example, only the net CIFS was compensated by modifying the middle ring, so
the compensated filter center frequency remains slightly blue-shifted (Fig. 4.7(b)).
This is sufficient because filters are generally desired to be tunable as a unit. Fur-
thermore, in practice the center frequency is sensitive to variations and difficult
to control. But in general, we may compensate all resonators to rigorously re-
cover the exact desired response. Fabrication techniques allowing compensation
of frequency shifts by pre-distortion are addressed in [90].

4.1.6 Higher-order CIFS effects

A second, higher-order CIFS-related effect in traveling-wave resonators deserves
mention and may, at least in principle, impact performance. Traveling-wave
resonators operate on the principle of two frequency-degenerate standing-wave
resonances that are excited 90" out of phase to give unidirectional propagation.
It has been shown that, based on this interpretation, traveling-wave-cavity-like
filters can be mimicked by properly engineered pairs of standing-wave cavities
[53, 54]. However, when a traveling-wave cavity is placed near a bus waveguide
or a second cavity, the symmetry is broken and the two standing wave modes of the
ring resonator may no longer be degenerate [91, 95]. CIFS for the even and odd
standing-wave mode with respect to the coupling symmetry axis are in general
different and will cause the splitting. A simple picture is given by the CMT-in-
time treatment: the index perturbation of a bus waveguide has large overlap with
the single field lump of the even mode, but smaller overlap with the odd mode
which has a field null at the point of closest proximity of the coupled structures.
Because the standing-wave modes are non-degenerate, the traveling-waves are no
longer resonant eigenmodes of the system. From the traveling wave viewpoint, the
directional coupler is a periodically phase-matched scatterer into the backward
propagation direction, thus building up the reverse resonance and splitting the
supermodes. In practice, this splitting is small as it is a difference of the CIFS
for the two similar standing-wave modes. However, sidewall-roughness-induced
contra-directional coupling has been predicted to lead to deleterious resonance
splitting [96]. CIFS splitting due to couplers is much smaller than the CIFS itself
and the filter bandwidth, but it may impact one’s ability to reach high extinction



88 CHAPTER 4. HIGH-INDEX-CONTRAST RESONATOR-BASED FILTERS

levels in higher-order filters. CIFS splitting will be greatest in high-index-contrast
cavities with tight bend radii (e.g. in silicon waveguides), where the difference of
overlap integrals can be more pronounced. A solution here is to make a longer,
weaker directional coupler that covers several propagation wavelengths of the ring
mode, thus making the overlaps more similar and the difference smaller; or, to
distort the resonator shape, e.g. a ring into a slightly ellipse-shaped resonator, to
compensate for the splitting of the standing-wave modes.

4.1.7 CIFS scaling laws and CIFS-free resonator configurations

Detuning of a cavity resonance impairs the response of a multi-cavity filter if the
detuning is of the order of the filter bandwidth. Thus, a CIFS-to-bandwidth ratio
(CBR) best expresses scaling of the CIFS impairment with bandwidth and FSR,
coupling geometry, index contrast, filter order. Through-port notch responses
are particularly sensitive to variations [Fig. 4.2(b)], because they rely on precise
suppression of the poles by zeros over the stopband. Using simple filter models
[38], we find that a CBR must be well under 1/10 to avoid impairing high-extinction
through-ports, independent of filter order N > 1.

For a fixed coupling geometry (gaps adjustable to vary bandwidth, but cav-
ity/waveguide shapes fixed within coupling region), the CBR due to cavity-bus
coupling is independent of bandwidth and FSR (globally scaled for all cavities).
For cavity-cavity coupling it scales as

BW 1

TSR (4.11)

CBRczwity—cavity ~

fixedcouplinggeometry f’LnGSSe

We infer this using overlap integrals (4.14),(4.15) (or E-field overlaps in [78]) and the
CMT model (4.3), and assuming evanescently coupled generic cavities. We retain
only the basic index perturbation term M;; /W1y in p11 from Eq. (4.4), disregarding
the other terms as they are of same order. These contributions may cancel to make
w11 smaller or zero in magnitude (Fig. 4.4(b)), but the first term gives a reasonable
scaling for extremal values.

To relate the coupling coefficients to bandwidth scaling, we note that the
bandwidth of a high-order filter is determined by resonance splitting ~ y; ; from
Eq. (4.2), and by line broadening u? = w,/Q;. Both are of the order of the
bandwidth, so in flat-top bandpass filters the desired cavity-cavity coupling is
second-order in cavity-bus coupling, u;; ~ p?. For traveling-wave cavities, the
FSRs are related as yf = k7 FSRy, i ; = r7 ;F'SR; S R; for cavity-bus and cavity-
cavity couplings [38]*.

*Note that in the translation of temporal coupling coefficients to spatial power coupling
fractions, the “FSR” used in the conversion is its local approximation at the center frequency,
FSR = ¢/(ngroupLrounatrip), not the true FSR, if they are don’t coincide. This is because the
conversion actually entails the local group velocity [38].
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Referring to an example cavity pair in Fig. 4.1, the self-coupling overlap integral
that determines CIFS, M1, depends on the overlap of the evanescent tail of cavity
1 field squared over the second cavity’s core. Cavity-cavity coupling Ms;, on the
other hand, is first-order in the evanescent tail of the first cavity. Thus My ~ M2,
as gap is varied. This leads to the dependence (4.11). A similar consideration,
and the different scaling of bandwidth with ; leads to the different conclusion for
cavity-bus coupling. More generally, the CIFS for a cavity scales inversely with the
FSR of adjacent cavities, but does not scale with FSR changes of the cavity itself
(for constant bandwidth and coupling geometry).

The coupling geometry may also be varied for a fixed bandwidth and FSR. We
assume synchronous couplers. For a fixed total coupling, the CIFS (and CBR) for
a cavity scales as 1/Lcg, the effective coupling length to either a cavity or bus
waveguide,

¢11 1 a

CBR~ — = ~

(4.12)
R Leg Reg

fixedBW,FSR

This also results from (4.15), where M1y ~ M2, as gap is varied, while both M,
Mo, are linear in interaction length (area). For straight parallel directional couplers,
Leg is the length. For curved couplers (such as ring-bus waveguide couplers),
the diverging coupler’s curvature may be represented as a single effective radius
1/Regr = 1/R1 + 1/R2 [38]. Then, the effective length goes as \/ Res/cr, where «
is the evanescent decay rate. Hence, a short, strong coupling region gives a larger
CIFS than a long, weak one providing the same coupling. This compares a ring and
a racetrack resonator. Curved coupling regions will generally be nonsynchronous,
so a more accurate comparison requires consideration of non-synchronous phase
slip in Eq. (4.10).

Higher index contrast cavity designs generally employ shorter, stronger cou-
plers. Thus, CIFS will generally be larger in HIC designs of an equivalent bandwidth
and FSR. For example, a higher group index ny in HIC means that a smaller mi-
croring radius is required for a given FSR (F'SR = ¢/2mRn), leading to a shorter
stronger coupler, and greater CBR.

In some filters, including series-coupled resonators, not all cavities may need to
be compensated. From the coupling coefficient relationship p; ; ~ p? for flat-top
filters, we may conclude that the cavities that are coupled to access waveguides
contribute a greater CIFS than “interior” cavities coupled only to other adjacent
cavities. From (4.11), this will be particularly true in high-finesse filters. To first
order, compensating only the outermost rings may thus be sufficient. In the given
example (Fig. 4.7), only the central ring was compensated instead.

Simple cavity design pre-distortion may not be sufficient in device designs
where the resonant frequencies must remain unchanged over a range of dynami-
cally variable coupling gap configurations, such as with MEMS-actuated switching
of ring filters [97]. In these cases, a CIFS-free resonator design is desirable. Ob-
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serving Fig. 4.4(b) or Fig. 4.5(a), it is evident that there exists a bus waveguide
width where the CIFS is flattened to first order to near zero for all coupling gaps.
Such designs may be of value where the cavity is not tunable.

4.1.8 Conclusions

Coupling-induced resonance frequency shifts were shown to arise in dielectric
cavities, and to lead to severe impairment of multi-cavity filter responses in the
absence of proper compensation in design. While series-coupled microring filters
were used as an example, CIFS is present in other cavity types and multipole-filter
geometries. CIFS is second order in coupling as gap spacing is varied, and is
greater in short, strong coupling regions. The CIFS-to-bandwidth ratio is indepen-
dent of bandwidth and FSR due to cavity-bus waveguide coupling, and scales as
1/ finesse due to cavity-cavity coupling. Theory and rigorous simulations show
that CIFS can be positive or negative depending on the dominant of a number
of contributing factors including index perturbation, mode non-orthogonality and
mode field distortion. Standing- and traveling-wave pictures of the CIFS were
considered. A perturbative lossless directional coupler model contains all nec-
essary, and just enough, degrees of freedom to describe CIFS in traveling-wave
cavities. A typical microring-resonator filter without CIFS compensation had a
severely distorted simulated response. With CIFS compensation, the ideal synthe-
sized response was recovered and verified by simulation. Therefore, CIFS must
be rigorously taken into account in filter design, in cases where the resonator fre-
quencies cannot be individually tuned post-fabrication. CIFS-free resonators may
be engineered to enable applications such as MEMS-actuated coupling strength
control via gap change, without shifting the resonance.

4.1.9 Simulation methods and case study details

Details of the simulated examples are given here to enable one to reproduce the
results, and to justify the prediction of small frequency shifts by coarsely-discretized
simulations.

The ring resonator was designed to have a high-Q TE resonance in the C-
band with an odd round-trip number of wavelengths. The former was desired
to unambiguously ensure that any spectral distortion in all examples is due to
CIFS only, because far-field interference due to radiation loss may also cause a
skew in the response spectrum. The latter is important because the ring is not
perfectly circular in the discretized computational domain. An odd resonance still
has degenerate standing wave modes, thus supporting traveling wave operation as
in an ideal ring; while an even resonance has slightly split standing-wave modes
so that the grid discretization causes some backward wave coupling. The circular
ring resonator has a 6 um outer radius, and a waveguide width of 400 nm with a
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core index of 2.5 and a cladding index of 1.5. The simple indices were chosen to
permit the 2D model to approximately correspond to typical radii and FSRs (3.2
THZz) seen in high-index-contrast SiN or Si filters [38, 88, 89].

Ring resonant modes and Q’s, relevant to the discretized computational do-
main, were computed by the complex-frequency mode solver in Appendix D
[91], solving the scalar wave equation (in the case of TE modes) on the 2D do-
main. Perfectly-matched-layer (PML) boundary conditions were used in the form
of complex coordinate stretching, to absorb outgoing radiation and permit the
computation of leaky (finite Q) resonances. The Q is ~260k in the discretized do-
main (due to “grid roughness”), while the ideal ring structure has @ ~ 10° (found
by numerical root-finding of a rigorous, Bessel-function 1D analytic model).

The directional coupler interaction regions (Fig. 4.6), and the complete filters
(Figs. 4.2, 4.7) were simulated by 2D resonant mode solver and FDTD. Bus waveg-
uides were also 400 nm wide, and the ring-bus and ring-ring coupling gaps were
280 nm and 660 nm, respectively.

The FDTD simulation of directional couplers involved three simulations: a
simulation of the coupler, a simulation of the ring section alone, and a simulation of
the bus section alone. The lumped point-coupler scattering parameters referenced
to the single (red) reference plane are obtained from the scattering parameters
referenced to planes on the walls of a box, of the three simulations above. Couplers
were virtually lossless for all gaps, including contact (zero gap).

All simulations used discretization of Az = Ay = 20nm. The FDTD timestep
was shorter than the CFL stability timestep by 1.1. The filter simulation was run
for 1.5M timesteps for Fig. 4.2 (3M timesteps for Fig. 4.7). Wiggles in the response
below -30dB in Fig. 4.2 are due to premature termination in time of the simulation.
Such large discretization cannot determine the absolute resonance frequencies with
an error smaller than the CIFS. However, the relative frequencies, such as shifts
caused by coupling (relevant to CIFS), are accurately defined. The resonators in
the example of Figs. 4.2, 4.7 are made identical to remove discretization effects.

4.1.10 Vector-field coupled mode theory in time derivation

A number of derivations of the coupled-mode theory in time are possible, start-
ing from Maxwell’s equations, depending on the starting equation and choice of
uncoupled basis modes. The approach in [78] gives the form (4.3) for degenerate
cavities. In the general case, it does not explicitly show the perturbation and has a
slightly more complicated form than Eqns. (4.3),(4.4). While the details are beyond
the scope of this chapter, here outlined briefly is one general-case vector-field for-
mulation consistent with (4.3),(4.4) for completeness. At the same time, a basis of
H-fields of the uncoupled resonator modes is chosen. The E-fields may be de-
rived from the curl equation of the total system. A choice of H-field basis set then
ensures that Gauss’ law is preserved in the supermode trial fields of the coupled
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configuration. Starting from the vector-wave equation for the total H field,
Vxs  VxH=uwi H 4.13)

the orthogonality condition is found from the adjoint operator. The total dielectric
distribution (inverse) for each basis function n is written as the distribution ?T_Ll
for which the function is an eigenmode plus a perturbation: l=g"+ E_l
in (4.13). The coupling matrix is projected out subsequently by applying the
orthogonality condition to the equation. To make the matrices consistent with
(4.3), the orthogonality matrix is pre- and post-multiplied by a diagonal frequency

matrix:

Wmnz%fﬂﬁg-ﬁ-ﬁn dv (4.14)
14

where both fields are unconjugated to allow for leaky modes. Accordingly the
tilde indicates an integration domain extending into the complex physical-space
plane. The coupling matrix is similarly,

My = % e Do, Dy dv (4.15)
v

This formulation was shown to give results for ring-to-ring resonator coupling that
are consistent with FDTD simulations, as published in [8].



Chapter 5

Global design rules for
strong-confinement silicon
waveguides and tunable
resonators™

In this chapter, a systematic design study and global parameter optimization of
silicon-core waveguides and resonators is presented. Novel designs of strongly
confined silicon (Si) waveguides are described that are optimized for the realiza-
tion of tolerant tunable microring-resonator filters and switchable interferometers
in the strong-confinement regime. These designs differ considerably from the con-
ventional 2:1-aspect-ratio cross-sections (e.g. 450x200 nm) typically used, with
TE excitation, in sub-micron Si waveguides [99, Table 1 and 2].

Optimal designs of silicon-core waveguides with silica cladding are investi-
gated, in terms of waveguide cross-section and the guided-mode polarization,
with respect to an extensive set of practically relevant design criteria: sufficiently
large lithographic feature sizes (e.g. coupling gaps); low sensitivity of resonance
frequencies and waveguide-resonator couplings to dimensional variations; high Q
and large FSR; small sensitivity to waveguide roughness that translates to prop-
agation loss; efficient thermo-optic tuning and low optical absorption loss from
proximate metallic microheaters; and low substrate leakage with typical under-
cladding thicknesses. With design criteria chosen to enable thermally tunable
high-order microring resonator filters for telecom applications, the results indicate
that dimensional sensitivity of the resonance frequency, and proximity of metallic
heaters (causing optical absorption) ultimately determine the choice of design. The

*Work done in collaboration with T. Barwicz; aspects of this work are published in [98].
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results give two very different optimal designs for the choice of TE or TM device
operation (about 600x110nm and 455x265 nm, respectively), for the particular
design criteria selected here. In comparison, the Si waveguides typically em-
ployed for TE excitation (~450x200 nm) are much more sensitive to lithographic
dimensional error — with resonance frequency shifting by over 100 GHz with 1 nm
waveguide width error — rendering high-order filters difficult to realize. More
generally, the design plots provided are intended to map critical performance pa-
rameters in as compact and general a way as possible, and may be used for arriving
at optimal designs for other choices of constraints.

The basic approach taken is to parametrize the design space by waveguide
cross-section aspect ratio (Ar = w/h, for width w and height k), and at each
aspect ratio to consider the most strongly confined (largest cross-sectional area)
waveguide having only one TE mode, and also that having only one TM (but
allowing more than one TE) mode. The former is to be used with a TE excitation,
the latter with a TM excitation. This limits the optimization to be over a manageable
design space of two one-dimensional domains indexed by the aspect ratio. Such
a rigorous study does not appear to have been previously reported for any type of
optical waveguide.

In addition to the optimized waveguide designs, the study yields some inter-
esting insights and general conclusions about strongly confined waveguides. First,
it was found that there exist corresponding or equivalent TE and TM designs, in
much of the range of aspect ratios of interest, that have virtually the same prop-
erties — FSR for a given minimum Q, sensitivity to width, height and sidewall and
top/bottom-wall roughness, etc. These equivalent TE and TM designs are shown
to exist when the TE waveguide is a maximally confined, single-TE mode guide
while the TM waveguide is a maximally confined, single-TM mode guide (but has
2 TE modes). The equivalent TE and TM designs do not have the same aspect
ratios. Discovery of this empirical equivalence is counter to conventional intuition
that TM waveguide modes (in wide, flat guides) are less well confined and less
suitable for strong confinement microphotonics applications. Secondly, it is noted
that higher-order TE and TM modes are not degenerate in a square cross-section.
This lack of mode crossing yields an interesting instance of a device capable of
adiabatic apparent polarization rotation without symmetry breaking in the struc-
ture geometry. Third, ultra-sensitive waveguide designs are found that may be of
use for sensing. Fourth, the Si microring-resonator cross-section with single-mode
excitation is found that maximizes the FSR for a given Q (tall, narrow, TM). Fifth,
an interesting symmetry is noted in the TE and TM bending losses even at small
radii where no underlying physical symmetry enforces such equivalence.

In Section 5.3, the first experimental results of fabricated samples of the pro-
posed TE silicon waveguide and resonator design are presented.

Before the systematic design study is presented, a brief summary of the choice
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of silicon as the core material and of previous work with silicon and other strong-
confinement waveguides is given.

Choosing silicon for tunable microphotonic filters

A number of mechanisms may be used for resonant wavelength tuning, includ-
ing thermally induced index change [100-103], carrier-injection-induced index
change (carrier plasma effect), quantum-confined Stark effect (QCSE) [104], the
electrooptic effect [100, 103, 105] and microelectromechanical system (MEMS)
based dielectric perturbations [31, 51, 106, 107].

The electrooptic effect and QCSE are fast, and are thus well suited to modulator
applications, but provide relatively small index changes for practical applied volt-
ages. For telecom tunable filter applications, considered here, wide tuning range
is required (10’s of nm, to cover the C band), while speed is non-essential with
microsecond timescales more than sufficient to perform required operations. For
such applications, requiring large index changes, thermooptic, carrier injection, or
MEMS-actuated dielectric perturbation are best suited. Carrier injection (as well as
QCSE) has an absorption that accompanies the index perturbation, while MEMS
requires complex multilayer fabrication. Hence, we have chosen for the demon-
stration of tunable telecom grade filters to use thermooptic tuning, commonly used
in industry in silica integrated optics [9].

The thermooptic coefficient of silica (dn/dT = 1.5 - 1079 /K) and even that of
Si-rich SiN (2—4-107°/K) is too small to permit thermooptic tuning of several THz
(10’s of nm) with practical on-chip temperatures up to the order of 500-1000° C,
limited by the current and power handling capabilities of on-chip microheaters.
Therefore, the SiN strong-confinement platform, used to demonstrate HIC add-
drop filters in Appendix E and Sec. 7.1, is not well suited to photonic devices that
rely on large thermooptic index (resonant-wavelength) tuning.

Materials with a high thermooptic coefficient (on the order of 1074/K) include
semiconductors such as silicon and InP, and polymers. Silicon was chosen in this
work because of well-developed fabrication technology, and because it readily
forms strongly-confined waveguides when using silicon-on-insulator (SOI) wafers
that can provide a high index contrast on all sides of the Si waveguide core, by virtue
of having a silica undercladding layer. In contrast, polymers [108, 109] generally
have a low refractive index, so that a large index contrast is difficult to form, except
with an air cladding which cannot be placed on all sides of the core. Undercutting
the core has been demonstrated [110], but this approach leads to otherwise poor
dimensional control not suitable for telecom-grade filters. On the other hand, most
[1I-V group semiconductors (InP, GaAs) do not have readily available low-index
undercladding materials of substantial thickness (2—-3 pm) needed for low-loss and
strong confinement.
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Therefore, to add wide tuning and switching capability to strong-confinement
microphotonic filters, we move from Si-rich SiN to Si. The primary reason for this
change is only the thermooptic tunability. The index contrast with a silica cladding
is large enough in both SiN and Si to support telecom-grade photonic circuits such
as filters with FSRs of 10’s of nm. Moreover, the much larger index contrast
of Si introduces additional apparent challenges in terms of extreme sensitivity
to dimensional errors and waveguide wall roughness, and considerably larger
nonlinear effects which are to be avoided in linear filtering applications for optical
networks.

Previous work on Si and other strongly confined waveguides

High-index-contrast microring resonators, based on silicon- and SiN-core waveg-
uides have typically employed a single polarization and relied on square [111] or
wide-and-flat guides [17, 99, 112—114] of up to about 2:1 aspect ratio, likely in
part due to available thicknesses of core layers in SOl and SiN of ~200-300 nm'.
In particular, silicon waveguide work has almost invariably relied on waveguide
cross-sections of approximate dimensions 450x200 nm as reviewed in [99, Tables
1 and 2]. A few exceptions include square [111] and thinner waveguides [116]
in Si microring resonators, as well as very wide multimode waveguides for low
propagation loss [117, 118]. However, a systematic consideration of the optimal
Si waveguide design, taking into account sensitivity, loss, etc., has been lacking.
Silicon-rich SiN has also been used, due to its high refractive index, to demon-
strate wide-FSR, high-order microring filters in Appendix E and Sec. 7.1 [88, 89,
119] and can be obtained in layers as thick as 800 nm or more. In this case, thick-
ness is not a limitation and air-clad, Si-rich nitride (index 2.2:1) guides of ~2:1
aspect ratio were introduced in high-order microring-resonator filters in order to
prevent polarization crosstalk and to reduce resonance frequency sensitivity to
guide width [88, 89, 119]. Those designs took some initial steps toward the global
optimization study presented here in the context of silicon waveguides.

5.1 General approach

The study consists of two steps: first, establishing a set of all possible silicon
waveguide cross-sections to be considered; and second, evaluating the merit of
these cross-sections in the context of a number of application-related criteria, in-
cluding support for small bend radii and a wide cavity FSR with high radiation
Q, low resonance frequency and coupling sensitivity to dimensional errors, low
sensitivity to waveguide wall roughness, compatibility with lithographic resolu-
tion limitations, efficient thermooptic tuning, low metallic-microheater-induced

tStoichiometric SiN (Si3Ny) is limited to layer thicknesses of about 300 nm due to internal stress
that causes cracking when thicker films are deposited [115].
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optical loss and low substrate leakage radiation loss with practical undercladding
thicknesses. The optimum designs are chosen from the reduced set of waveguide
designs remaining after all constraints are applied.

The analysis is carried out using the three-dimensional, cylindrical and Carte-
sian coordinate, vector-field mode solver developed in Appendix D. For the present
study, the complex coordinate stretching used at the domain edges to absorb out-
going radiation was extended to the interior of the structure (with a real stretching
coefficient) to permit a simple approach to nonuniform grids. A nonuniform grid is
necessary for zero-finding and optimization routines executed on the mode solver
to find waveguide dimensions at certain mode cutoffs, and approximate directional
coupler gap sizes for given coupling ratios.

Based on the rigorous mode computations, a very large number of further
results can be obtained directly from the computed mode field distribution by
various overlap integrals, including the modal effective and group index (Sec. 3.2),
sensitivities to dimensional perturbations, index perturbations (tunability) and loss
sensitivity. This makes the design computations relatively inexpensive — only one
mode instance for each cross-section is needed.

To make the analysis manageable, a few assumptions and simplifications are
made. First, a planar geometry is assumed, with all waveguides and resonators cou-
pling laterally in the same waveguide layer. Secondly, a rectangular, silicon-core,
silica-cladded waveguide is considered, nominally with no other material layers.
Refractive indices of 3.48 and 1.45, respectively, are used, which are representa-
tive of these materials at the 1550 nm wavelength. Except where necessary (such
as for computing bending loss), straight rather than bent waveguides are used, in
order to obtain results independent of microring bend radius. This approximation
is accurate for most bend radii where the mode shape is not substantially altered
by the bending.

For directional coupler analysis, simple coupled-mode theory approximations
are made*. Some error can be expected when using CMT with high index contrast
waveguides, but these results give a good guideline for noting trends and tradeoffs.
The final silicon device designs, described in later chapters, that are based on
the waveguides described here make use of rigorous mode solver and 3D FDTD
simulations to evaluate and optimize the design near the chosen design point.

The results of this search for an optimal Si waveguide cross-section across the
global parameter space are summarized in Tables 5.2 and 5.3. In the following
sections, the various parts of the study are explained. In plots showing the results
of the design study, typically black plot lines are used for TE modes and gray lines

*Rigorous 3D FDTD simulations are not used at this step because they are too computationally
intensive to be done for all possible designs in reasonable time. And, they step away from the
general philosophy taken of computing modes of the waveguide cross-sections and extracting as
much relevant data as possible from this information using computationally cheap overlap integrals
and approximations.
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for TM modes. In addition, solid dots mark plot lines belonging to maximally-
confined, single-TE-mode (MC-STE) waveguide designs and hollow dots are used
for maximally confined, single-TM-mode (MC-STM) designs.

5.2 Global waveguide geometry design and optimization

Strong confinement, based on high index contrast, is the distinguishing property
of all waveguide devices addressed in this thesis. Strong confinement is impor-
tant because it permits small bending radii with negligible radiation loss, in turn
enabling resonators with small cavity length and large FSR. As a result a resonant
system can address a large wavelength spectrum. Up to an order of magnitude or
so, the FSR can be multiplied up by various Vernier schemes [120, 121] and more
complex geometries when the through-port response is of interest (see Chaps. 8
and 9), as is the case in large-bandwidth optical network applications. Since
A frsr = ¢/ (Ngroup Lroundtrip), @ round-trip cavity length of about 100 pm leads to
technologically relevant FSRs of the order of a terahertz or more (group indices
typically being between 1.5 and 4). For a microring resonator, this means a radius
of 15 um or smaller.

Fig. 5.1 shows the minimum bending radius vs. index contrast for a 2D single-
boundary bend (whispering gallery mode in a cylinder) which gives the lower
bound on bending radiation loss. Contours for several values of loss are shown —
only a factor of 2 in radius changes loss 1000-fold. The plot shows that microring
resonators with radii of the order of 15 um require an index contrast of the order
of én/n ~ 0.5, which leads to use of high-index-contrast waveguides such as SiN
and Si.

Polarization

Throughout this chapter, results are presented on optimization of a waveguide to
be used with a single designed polarization state and a single mode. Polarization-
independent structures, necessary for most devices that communicate via standard
optical fibers, may be obtained by making use of dual, preferably identical, struc-
tures within a polarization diversity scheme [31, 33].

Fields polarized in the plane of the chip are referred to here as TE polarized, and
fields polarized normally to the plane of the chip are referred to as TM polarized.
High-index-contrast dielectric waveguides in general support modes with hybrid
polarization (which may have a major and minor transverse polarization field) and
not necessarily pure TE and TM modes. However, the waveguides considered
here usually support modes of interest that are TE-like or TM-like. In this chapter,
the nomenclature is simplified to TE and TM to refer to these modes. The analysis
is carried out on silicon waveguides with a rectangular core cross-section and a
uniform dielectric silica cladding, but the general conclusions hold for a range
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Single-boundary bend constant-loss curves showing bend radius vs. index contrast
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Figure 5.1: Normalized plot of bending-radiation-loss limited waveguide bend radius vs.
index contrast, for the simplest model — a single interface bend in two dimensions, i.e.
a slab cylinder (from [122, 123]). It shows that the critical bend radius is fairly strongly
pinned to a particular value, and a factor of 2 change in radius changes the bending loss
by three orders of magnitude.

of core and cladding indices of high index contrast, and other similar waveguide
cross-sections.

More rigorously, the modes are classified as follows. In the examples presented,
the waveguides have a symmetry about a horizontal reflection axis. In these cases,
TE modes are defined as all modes having a PMC (perfect magnetic conductor)
symmetry about a horizontal axis, i.e., having symmetric transverse electric and
antisymmetric transverse magnetic fields; and TM modes as all modes having a PEC
(perfect electric conductor) symmetry, i.e., having symmetric transverse magnetic
and antisymmetric transverse electric fields®. This definition is not rigorously
consistent with the naming convention “TE” and “TM”, but it provides a physically
consistent basis for labeling the fundamental and second-order mode of each
polarization. The naming is consistent in wide-and-flat waveguides that turn out to
be of primary interest. The labeling is also consistent with coupling being forbidden
by symmetry between TE and TM modes of structures that are side-coupled in the
plane of the chip (where the entire structure retains symmetry about a reflection
plane that is horizontal - parallel to the chip surface). Throughout, reference is
made to two waveguide designs, one design where the TE polarization is to be
used, henceforth called the TE design; and one design where the TM polarization
is to be used, henceforth called the TM design.

SHere, transverse means transverse to this symmetry plane, and the symmetric/antisymmetric
property is relative to the direction normal to the symmetry plane.
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5.2.1 Single-TE-mode and single-TM-mode silicon waveguides

The design space is chosen to be the set of all silicon-core, silica-cladded waveg-
uides with rectangular cross-sections, of various width-to-height aspect ratios A,
in two variants. The cross-section is symmetric about both a horizontal and ver-
tical symmetry plane. The first variant are waveguides intended to operate in the
fundamental TE mode. These waveguides have the largest possible area at each
Ap that keeps the waveguide single-TE-mode (STE). They will be referred to as
maximally confined, single-TE-mode (MC-STE) designs. The second variant are
waveguides intended to operate in the fundamental TM mode, and must cut off
the second TM mode. However, they may be allowed to support more than one
TE mode, because we consider vertically symmetric waveguide structures, and
lateral coupling between resonators and waveguides is nominally zero, as the TE
and TM modes do not nominally interact (parasitic TE-TM coupling is investigated
in Sec. 5.2.6). These designs are referred to as single-TM-mode (STM), and when
the largest STM design is chosen for a given Ag they are referred to as maximally
confined, single-TM-mode (MC-STM).

Map of Si waveguide cross-sections

Fig. 5.2 shows contours representing all Si waveguide MC-STE and MC-STM cross-
sections, for aspect ratios Ar = 1/30 to Ag = 30, computed by a vector-field mod-
esolver with an autogenerated non-uniform grid (see Appendix D), bootstrapped
by a zero-finding algorithm. For example, all MC-STE designs have a rectangular
cross-section with the lower left corner at the origin and the upper right corner
on the MC-STE contour. All STE waveguides fit “under” this contour. Fig. 5.2(a)
shows aspect ratio contours and also illustrates the two optimized TE and TM de-
signs obtained for tunable 40 GHz-wide filters at the end of the analysis. The plot
shows that wide TE waveguides become quite thin (sub-100 nm) to maintain STE
operation, while wide TM waveguides remain STM even at ~150 nm thickness.

Fig. 5.2(b) shows, at various points on the waveguide cross-section contours,
the higher-order mode that is placed at cutoff for waveguide dimensions at the
corresponding point on the contour. For wide, thin waveguides (Ar > 1), the
second-order TE mode, TE,, is at cutoff in the MC-STE design and the second-order
TM mode, TMy;, is at cutoff in the MC-STM design. For tall, narrow waveguides
(Ar < 1) the modes at cutoff are the 90° -rotated versions of those in the Ap > 1
case. Note that here our nomenclature is not strictly valid because the TE;1 mode,
for example, is primarily vertically (TM) polarized, but this mode is still the mode
with PMC symmetry about a horizontal axis¥.

TFor simplicity we continue to refer to them as TE and TM, rather than something more cryptic
and more accurate like PMC-horizontal and PEC-horizontal.
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Single mode sizes for Si:SiO, rectangular waveguide
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Figure 5.2: Map of maximally-confined single-TE and single-TM mode silicon waveguide
cross-sections at each cross-sectional aspect ratio, Ar. (a) The contours show the top right
corner of the waveguide cross-section when the bottom left corner is at the origin. In the
TE designs, the contour indicates the cutoff condition for the second TE mode, T'E»;. In
the TM designs, the contour indicates the T'Ma; cutoff. The latter waveguide has 1 TM
mode and 2 TE modes. (b) The dominant field distribution is illustrated in each waveguide
to indicate what is referred to here as the T'E2; mode and T'M2; mode (published in [98]).
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The reason why the nomenclature is kept is that at Az = 1, where both the
TE and TM designs are square, the fundamental modes are degenerate (I'E1; for
MC-STE design and T'M;; for MC-STM design, as shown in the plot of effective
indices in Fig. 5.5) but the second-order TEy; and TMg; modes, respectively in
the TE and TM design, are not degenerate. Therefore, there is continuity of a single
higher-order mode at cutoff along each of the two waveguide dimension contours,
so the mode label must remain the same over all Ar values.

This lack of degeneracy occurs because, as illustrated in Fig. 5.2(b), the TEq;
mode becomes a radially polarized mode (corresponding to the pure TMy; mode
in a fiber), while the TM2; mode becomes azimuthally polarized (corresponding
to the TEg; mode in a fiber). A simple numerical experiment of T'Ey; and T My,
effective index vs. waveguide width for A = 1 (square cross-sections), shown
in Fig. 5.3, shows that the two modes reach a degeneracy well above the cutoff
effective index, with different slopes, and therefore are cut off at different core sizes.
An interesting aspect of this non-degeneracy is a conceptual possibility of adiabatic
mode evolution from the wide second-order mode to the tall second-order mode
by slowly varying the cross-section from Ar < 1to Ar > 1 along the length of the
waveguide, in a symmetric way so that the waveguide center is fixed. In particular,
the evolution can be the set of MC-STM cross-sections along its dimension contour
— which has a guided TE;; mode but a cut-off TMy; mode. Adiabatic mode
evolution can occur because there are no mode crossings with modes that have
non-zero coupling by symmetry with the second-order mode of interest (neg of
TEy; crosses TMq1 at Agr ~ 3 and TEy; at A ~ 1/3, see Fig. 5.5, but the modes
are orthogonal with respect to the symmetric adiabatic perturbation so coupling is
zero). In this case what occurs is a transformation of polarization from horizontal to
vertical. However, in contrast with polarization rotation approaches such as [32],
which require breaking of cross-sectional symmetry in both the horizontal and
vertical direction, the present mechanism converts polarization slightly differently,
by exchanging the roles of the major and minor field components in a horizontally
and vertically symmetric structure. It is analogous to four conjoined polarization
rotations, two clockwise and two anticlockwise, at the same time. However,
because the light must be coupled into and out of the structure, into a single-mode
(the fundamental mode) waveguide, the symmetry must eventually be broken at the
input and output coupling from the structure. This particular conceptual structure
has too complex a geometry for practical use. In addition, the small effective index
detuning of the two second-order modes means that a large device length would
be needed to meet the adiabatic condition. Nevertheless, this higher-order mode
evolution mechanism seems interesting and may find an application.



5.2. GLOBAL WAVEGUIDE GEOMETRY DESIGN AND OPTIMIZATION 103

Size of square core at cutoff of TEy; and TMo modes
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Figure 5.3: Verification that T'E1 and T'M2; modes have different cutoff sizes, with the
TE> cut off first. Effective index of both modes is plotted against the lateral dimension
while keeping the cross-section square at all times.

Core area vs. aspect ratio for maximum-areq, single-mode Si designs
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Figure 5.4: Map of maximally-confined silicon waveguide cross-sections shown as cross-
sectional area vs. aspect ratio, Ar. A remarkably good fit of the function giving the
single-mode TE and TM size for all Ag’s is possible in this representation, shown as an
inset with parameters.

Maximally-confined cross-sectional area vs. aspect ratio fit

The waveguide dimension contours are plotted in Fig. 5.4 in an alternative way,
as cross-sectional area vs. aspect ratio Ag, for the MC-STE and MC-STM designs.
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This representation lends itself to remarkably good empirical fits of the numerically
computed results (indistinguishable in the plots from the data) using the functional
form

area(AR) = w x h = a + b[sech(cAg — f)].

The fit parameters {a,b,c,d, f} are given in the inset table for the nominal MC-
STE and MC-STM designs, and allow the dimensions to be easily obtained (w =
Varea - Ag, h = y/area/AR). Another set of dimension contours is shown (dashed
lines), along with fits, which represent waveguide widths corrected to cut off a
parasitic mode that occurs in directional couplers (labelled c-STE and c-STM in the
figure). These contours are for ring-bus coupling for a 40 GHz-wide flat-top filter,
and are described in more detail in Sec. 5.2.3.

Mode effective and group indices

Fig. 5.5 shows the effective and group indices of the modes of the MC-STE and
MC-STM designs vs. aspect ratio Ar. Both the TE and TM fundamental modes are
shown for each design — this is done in all plots. However, for most discussions
here, only the TE mode of the MC-STE design and the TM mode of the MC-STM
design will be of interest.

Effective and group index are defined in Sec. 3.1.1. The effective index, when
compared with the core and cladding indices is indicative of level of mode con-
finement - the higher the effective index, the stronger the optical confinement (and
the lower the bending loss in a curved waveguide of given radius, for example).
The group index, on the other hand, enters into several important parameters,
including the FSR, the loss Q as described in Eq. (5.1), as well as the wavelength
tunability of a resonator, described by Eq. (3.1). A larger group index ngroup, all
other parameters staying equal, leads to a smaller FSR, higher cavity Q (for the
same distributed losses per unit length), and smaller wavelength tunability.

Several conclusions may be drawn from Fig. 5.5(a), where the mode of primary
interest is TE;7. First, the plot is symmetric about the Ar = 1 point on the
horizontal axis because the TE;; mode in a 2:1 aspect-ratio, straight rectangular
waveguide with uniform cladding is the same as the TM{; mode in a 1:2 aspect
ratio waveguide, for example (the cross-section being only rotated 90", which has
no effect on the ng). Secondly, the dashed line confirms that the TE;; mode is
at cutoff for all aspect ratios, having an effective index near the cladding index,
as intended for the MC-STE designs. Third, the highest effective index and thus
strongest confinement for the used TE;; mode in the MC-STE design is found to
be for Ap ~ 1.76, i.e., for a waveguide cross-section of about width x height
= 415x235nm. This is near the typical dimensions used for silicon waveguides
in literature, of about 400-500 nm wide by 200 nm tall. Fourth, the neg of the
primary mode, TE;4, is fairly near the value for the cladding index when Ar < 0.2,
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Modes of TE21-cufoff-sized Si:SiO2 rectangular waveguide (3.48:1.45)
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Figure 5.5: Maximally-confined Si waveguides: effective and group index vs. aspect
ratio. (a) Maximally-confined single-TE-mode designs — MC-STE has strongest TE mode
confinement at Ar &~ 1.76; (b) maximally-confined single-TM-mode designs have 1 TM
and 2 TE guided modes. The propagation constant (effective index) crossing of T'M;; and
TE5, i.e. Ar = 3, needs to be avoided (published in [98]).

indicating weak confinement, so that region of the design space (Ar < 0.2) may
be excluded for the MC-STE design. For the TM;; mode, maximum confinement
isnear Ap ~ 1/1.76 ~ 0.57, i.e. for a 235x415 nm cross-section.

Fig. 5.5(b) shows the modal effective and group indices for the MC-STM designs
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in Fig. 5.2. The intended excitation here is the TM; mode. The TM,; mode is
seen to be cut off, but there are two TE modes, TE{; and TE,4, in addition. Here,
the TM;1; mode has a low neg, near the cladding index, for Ar > 10, so that
region of the design space may be excluded. The highest effective index and thus
strongest confinement for the TMy; mode in the MC-STM design is for Ar ~ 0.3,
i.e., a tall and narrow waveguide cross-section of about width x height = 215 x
700 nm. One important point is that the TE;; mode is degenerate with the TM1;4
mode, i.e., they have the same effective index, near Ap = 3. Although TE and TM
modes are ideally orthogonal in this symmetric waveguide geometry, and nearly
so more generally, when the modes are degenerate, the slightest perturbation can
cause a large coupling between them (when extended over sufficient length). For
example, unevenly slanted sidewalls in fabrication may couple TE and TM modes,
or slanted sidewalls in coupling regions. This leads to crosstalk that may further
be enhanced in resonators. Therefore, the Ar = 3 point is preferably avoided in
the MC-STM design. Either sufficiently larger or smaller Ap is preferable. This
constraint is reflected in Table 5.2.

Bending loss and FSR

After the mapping of effective and group indices, the resulting lateral optical con-
finement strength is investigated, as characterized in terms of minimum bending
radii, and on the other hand the achievable FSR, for a given minimum bending-
loss-associated microring radiation Q, for various Ag’s for both design variants,
MC-STE and MC-STM.

Fig. 5.6 shows the minimum waveguide bending radius allowed to achieve a
bending loss low enough to support a bending loss associated radiation Q greater
than 250,000. For a target Q that is 10 times larger or smaller, this plot is not
significantly changed (compare Fig. 5.1). The Q is related to bending loss as (see
Appendix B)

N 4072 R Ngroup

R~ 5.1
)\o In10 Lngg ( )

Q
where R is the bend radius and Lgpg the bending loss in dB/90°. These plots
show that TE;; modes in MC-STE designs support small bend radii with low bend
loss, and large FSRs (order of 1 THz or more), for approximately 0.5 < Ar < 30.
TM11 modes in MC-STM designs do so for Ar < 7 or so, and on the lower end
support Ar = 0.1 and lower aspect ratios. This is because the vertically polarized
field is generally well confined in a tall waveguide even at very small aspect ratios
and well suited to maintaining low radiation loss in bending in the plane.

Fig. 5.7 shows corresponding FSRs. It shows that high-Q (i.e., loss Q >250,000)
rings can be made with large FSRs (around 1 THz or more) in MC-STE designs
with 0.5 < Ar < 30 and in MC-STM designs for Ap < 7. A 2THz FSR is
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High-Q radius in TEZI/TMQ]—cutoff—sized Si:Sio, rectangular waveguide (3.48:1.45)
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Figure 5.6: Minimum bend radius vs. aspect ratio for bend loss @ > 250,000 in a ring
resonator. It is interesting that this plot is symmetric about the Ag = 1 axis (on the log
scale), since the waveguides are strongly bent and there is therefore no symmetry that
should produce similar bending losses for the wide-waveguide T'E11 and corresponding
tall-waveguide T'M1: excitation, for example.

considered here, because the silicon-core thermooptic coefficient (~ 2 - 107%/K
near 1550 nm) allows about that much wavelength tuning in a cavity with about
200°C temperature change. Larger effective tunable FSRs may be created using
Vernier techniques in various embodiments (see Chaps. 8,9). Therefore for a 2
THz FSR, the MC-STE design is constrained to 0.5 < Ar < 15, while the MC-STM
design is constrained to about 0.05 < Ar < 3.2 (even values below 0.05, not
shown in the plot, may be permissible). For any other given minimum FSR, the
range of admissible designs may be found from Fig. 5.7.

Correspondence of FSR and effective index

By comparing Fig. 5.5 and Fig. 5.7, it may be observed that the FSR is correlated
with the mode effective index, by noting the aspect ratio for a given FSR, chosen
mode (TEy; or TMq1) and design (MC-STE or MC-STM), and then finding the
corresponding effective index at that aspect ratio, in Fig. 5.5(a) or Fig. 5.5(b). It
may be noted that the radii and group indices are not necessarily the same for these
corresponding TE and TM designs. This correlation of FSR and effective index holds
primarily for wide flat designs, i.e., waveguides with Az > 1, as shown in Fig. 5.8.
These designs are also the designs of primary interest here, due to their favourable
dimensional sensitivities, evaluated in the next section. This correspondence is
evidence of equivalent TE and TM designs, and is further revisited later.
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FSR at Q=250k in TE,, /TM2]-cu’roff—sized SisSio, rectangular waveguide (3.48:1.45)
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Figure 5.7: Maximum FSR with @ > 250,000 vs. aspect ratio of maximally confined
Si waveguide. Both MC-STE (T'Ey;) and MC-STM (T'"M11) designs show a considerably
wide range of Ag’s over which they support at least 2 THz (16 nm) of FSR that is relevant
for telecom applications. This leaves a large design space for optimizing based on other
critical parameters. This plot also shows that the largest achievable FSR in a silica-clad
Si microring resonator, with single-mode excitation, is a tall and narrow MC-STM design,
giving about 9 THz at Ar ~ 0.25.

Maximum FSR in silicon

In Fig. 5.7 it may be observed that the maximum achievable FSR for bend loss
Q > 250,000, for the TE;; mode excitation intended in the MC-STE design, is
about 5.5 THz, or 44 nm, and occurs for Arp ~ 1.9 or a cross-section of w x h =
430 x 225nm. This cross-section is similar to typically used Si cross-sections in
literature today of 450 x 200 nm or so [99].

However this is not the highest achievable FSR in a uniformly clad silicon-
core waveguide. If the TMy; mode is used, and the MC-STM design employed,
which may be used when coupling is in the plane, then FSRs up to 9 THz, or
72 nm, may be achieved for Ar =~ 0.25 in principle, or a cross-section of w x h =
200 x 790 nm. This design corresponds to a bend radius as small as about 1.45 pm.
This is the most strongly confined rectangular-core silicon waveguide design with
uniform cladding, that does not support higher-order spurious modes that can
couple substantially to the main TMy; mode when coupling laterally to structures
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FSR at Q=250k in TE21/TM21—cufoff—sized Si:Sio, waveguide (3.48:1.45)
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Figure 5.8: Contour plot illustrating discovered apparent correspondence of FSR and ef-
fective index, for equivalent TE and TM designs, in the region of interest Az > 1. This
correspondence contributes to establishing the existence of approximately equivalent TE
and TM designs (of respectively different Ar’s).

in the same lithographic layer. Achieving a maximum FSR for a given Q is desirable
in some applications where either a large FSR is desired, or a large finesse is
desired. For example, in nonlinear applications, large finesse means a large field
enhancement in the cavity.

On the other hand, such tall, narrow waveguide designs have high sensitivity
to lithographic dimensional errors as described in the following section, as well
as to sidewall roughness, in addition to lithographic challenges due to the aspect
ratio, and therefore are not ideal for high-fidelity filter applications.

5.2.2 Resonance frequency sensitivity and tunability

The most important comparison for all waveguide designs considered in this study
is the sensitivity of the waveguide’s optical properties to dimensional errors in
fabrication (errors in width and height). This sensitivity may be measured in
terms of the change in propagation constant, or alternatively in terms of shift in
resonance frequency of a resonator formed of such a waveguide. In general,
if a waveguide is turned into a closed loop traveling-wave cavity, or is made
into a linear standing-wave cavity with 2-way propagation (such as a Fabry-Perot
cavity), then the sensitivity of the resonance frequency to change in the propagation
constant does not depend on the cavity length or the longitudinal resonance order,
but only on the fractional error in propagation constant,
dwo 0o Net 050

o 5.2
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consistent with Eq. (3.1). Therefore, a resonance frequency error dw, is a scaled
version of a propagation constant error 03,, and their sensitivities to a perturbation
are related in the same way.

The propagation constant sensitivity of a mode in a dielectric-core waveguide
to width or height error depends on the electric field intensity on the sidewall
interfaces or top and bottom wall interfaces, respectively, relative to the guided
power. More field on the sidewalls means larger sensitivity. This sensitivity can
be directly evaluated from the rigorously computed mode field distributions by
line integrals along the perturbed waveguide walls. The sensitivity to width, for
example, may be given by the overlap integral of the field along the perturbed
sidewall edges of the waveguide (analogous to the w integrals in [80]):

‘ 2
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where the overlap integral in the numerator is taken as a line integral along the
height of each sidewall in the waveguide cross-section, while the normalization in
the denominator is the guided power computed as an area integral over the waveg-
uide cross-section (core and cladding). The waveguide width is w, y indicates the
vertical (out of the chip plane) direction coordinate along sidewalls, and z is the lat-
ejal coordinate. In the numerator, A€ = €core — €cladding, A(€71) = eg%e — e;;ddmg,
D, is the electric displacement normal to the sidewall surface, and E) is the elec-
tric field parallel to the sidewall surface. The use of normal and parallel fields
in different form in the overlap integral is a special form suitable for step-index

discontinuities in high-index-contrast waveguides [80].

Fig. 5.9 shows the resonance frequency sensitivity to waveguide width error,
vs. the aspect ratio A, of a ring resonator using the TE11 and TM1; modes of each
of the MC-STE and MC-STM waveguide designs. The sensitivity is based on straight
waveguide modes so that it is independent of bend radius of the waveguide, and
is given in GHz frequency shift per nm error in waveguide width. The width error
is assumed to be symmetric (see Fig. 5.9, inset). One may also read the sensitivity
to error in height from the same plot, by interchanging the TE and TM mode labels
within each design, and by letting A — 1/Ag (which amounts to reflecting the
log-scale plot horizontally about the Ar = 1 point). Therefore the black solid line
with solid dots gives the sensitivity of mode TE;; of the MC-STE design to width
for aspect ratios Ag, as well as the sensitivity of mode TM1; of the MC-STE design
to height for aspect ratios 1/Apg.

Fig. 5.9 is one of the central figures in this design study, and several important

conclusions may be drawn from it, specifically for the Si-core, uniformly clad
waveguide under consideration, but also more generally.
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Resonance-frequency dimensional sensitivity in MC-STE and MC-STM Si:SiO, resonators
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Figure 5.9: MC Si waveguides: resonance frequency sensitivity to waveguide width error.
Sensitivity to height error is obtained by exchanging the TE «— T'M labels, and letting
ARr — 1/ARr. The plot shows that conventional Si waveguide designs (450x200 nm) have
high sensitivity, while high-aspect-ratio TE designs and corresponding TM designs have
much lower sensitivity. The MC-STM design T'M11 mode is half an order of magnitude less
sensitive to width error than the MC-STE design T'E'11 mode of equal Ag, but the equivalent
designs have about the same sensitivity (see text). The figure also shows that use of square
(or carefully tuned to degeneracy) cross-section waveguides for polarization-independent
operation is impractical, as the sensitivities may require sub-atomic absolute dimensional
control (published in [98]).

Extreme polarization sensitivity of SC waveguides

First, from Fig. 5.9 it can be concluded that polarization-insensitive resonators
may require sub-atomic absolute lithographic dimensional control, due to the
width sensitivity. Polarization-insensitive operation is a required property for many
microphotonic systems that communicate via standard optical fibers, along which
polarization is scrambled in time and wavelength. This happens due to the near
degeneracy of the two polarization modes in the fiber, and the small natural shape
deformations, strain variations, and temperature fluctuations that are sufficient to
couple them.

Nominally, a square-cross-section, buried silicon waveguide with uniform
cladding has degenerate fundamental TE and TM propagation constants and there-
fore aligned TE and TM resonances in a microring resonator formed of such a
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waveguidell. However, the TE and TM modes in such a resonator have highly
different sensitivities of the resonant frequency to width.

For example, a maximally confined square silicon waveguide (with one TE and
one TM guided mode) has a cross-section of ~330x330 nm (see Fig. 5.2). In such
a waveguide, the TE and TM propagation constant sensitivities to waveguide width
are about 210 GHz/nm and 85 GHz/nm, respectively. The difference is about
125 GHz/nm, which means that even if TE and TM resonances in a ring resonator
are frequency aligned for a given design, a 1A error in ring waveguide width will
misalign them by 12 GHz. For filters with 12 GHz bandwidth, this would clearly
be intolerable Since 25 GHz is a standard ITU telecom spectrum channel spacing,
this is not an unrealistic scenario.

Such atomic-scale dimensional control, required to align TE and TM resonances
inasingle device, is impractical and has led to a search for alternative solutions, and
the demonstration of an integrated polarization diversity approach to polarization
transparency in strong confinement waveguides [31, 33]. This approach relies on
geometrical symmetry and replication of identical structures, a strong advantage
of lithography. This justifies the approach taken in all of the work in this thesis
— to pursue single-polarization designs to be used within a diversity scheme for
polarization independent operation.

Sensitivity of conventional Si cross-sections, of improved cross-sections, and of
TE vs. TM designs

Next, consider the typical 450200 nm waveguide used with TE polarization only
(aspect ratio of ~2:1). The TE;; mode on the MC-STE design curve shows a
width sensitivity of about 100 GHz/nm. Even if operating the device in a single
polarization, this may still be a considerable challenge. This sensitivity makes
very strict requirements on relative dimensional control between multiple ring
resonators in the same device. Rings must be made with the same average width
to a tolerance that provides much less frequency mismatch than the filter bandwidth
(see also Sec. 4.1 on CIFS). In our demonstration of high extinction telecom-grade
filters in SiN, the width sensitivity was on the order of 40 GHz/nm and posed an
important challenge for fabrication [90].

In practice, the waveguide width is controlled by lithography and etching while
the waveguide height is controlled by either material deposition or polishing. Asthe
thickness of thin films may generally be measured before lithography, and adjusted
more accurately than lateral dimensions introduced via lithography, waveguide
height dimensions are considered much better controlled than lateral (e.g., width)
dimensions in this work. Therefore, in illustrating optimum designs, the assumption

IRigorously, at small bend radii the symmetry is broken and the TE and TM modes deform
and acquire slightly different propagation constants, but this may be corrected by adjusting the
cross-section to be slightly rectangular, without changing our conclusions.
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is made herein that the height may be well controlled, or accurately mapped prior
to fabrication, and thus the sensitivity to width is to be reduced at the expense of
sensitivity to height. Variations of height across a wafer may still need to be kept in
bounds, or the sensitivity to height may need to be constrained for this uncertainty
not to adversely impact device yield. This trade-off is easily accessed in Fig. 5.9.

Fig. 5.9 reveals that this width sensitivity of the standard 450x200 nm waveg-
uide can be reduced in three ways. First, if the aspect ratio is increased, then the
sensitivity is reduced. The log-log plot shows that width sensitivity is reduced by
about an order of magnitude for an order of magnitude increase in aspect ratio Ag,
in the region of interest Ap > 1.

Secondly, by moving to the TM polarization in a wide and flat waveguide
design (i.e., Ap > 1), the sensitivity is reduced. The solid-dot TE;; and TMy;
curves (MC-STE design) show that the TM;; mode has half the width sensitivity of
the TE;; mode. Thirdly, using TM polarization in an in-plane circuit permits the
use of a larger waveguide core while maintaining a single TM mode, because TE
modes are orthogonal and will not excite a TM resonance in this configuration. This
allows consideration of the MC-STM design (hollow dots in Fig. 5.9). The TMy;
mode sensitivity is further reduced, while allowing a much higher achievable FSR
at each aspect ratio and prescribed FSR, due to stronger confinement and less field
on the sidewalls. These three steps may be combined, and in general for reduced
width sensitivity, the highest usable aspect ratio is desired.

FSR-equivalent TE;; MC-STE and TM; MC-STM designs

It may be noted that, for Agr > 1, for the same width sensitivity the TE;; mode
of the MC-STE design and the TM{; mode of the MC-STM design have the same
FSR and the same effective index. This correspondence is shown explicitly in
Fig. 5.10, where the contours are parametrized by aspect ratio Ar. Note that the
correspondence does not hold for the unused modes TM1 in the MC-STE design
and TE;1 in MC-STM design.

Although similar properties may be expected for similar conditions (cutoff of
next like-polarized mode), it is interesting that there are thus far MC-STE designs
and MC-STM designs with approximately equivalent performance in the aspect-
ratio region Ag > 1. Their performance is equivalent in the sense that there is
an Ap for the MC-STE design using the TE;; mode, and an Ap for the MC-STM
design using the TM;; mode, where the maximum FSR and the sensitivity are both
identical and correlate with the effective index (compare Figs. 5.9, 5.10, 5.7 and
5.8). The Ag’s and the microring bend radii are not the same for the corresponding
equivalent MC-STE and MC-STM designs, but for each frequency sensitivity value,
there is such a pair of Ag’s in the region Ar > 1. Which of the MC-STE and MC-
STM designs is optimal will then need to be decided based upon other additional
criteria.
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Figure 5.10: Contour plot illustrating the discovered apparent correspondence of sensitivity
and effective index in the region of interest Ag > 1. This correspondence contributes to
establishing the existence of approximately equivalent TE and TM designs (of respectively
different Agr's).

Thermooptic tunability

Another important aspect of resonator design is wavelength tunability. Tuning may
be effected by thermooptic means if the waveguide materials (core or cladding)
have a high thermooptic coefficient. The effective index of the employed mode is
changed by the tuning mechanism, thus changing the optical length of the resonator
and shifting the resonant frequency as a result. Thermooptic tuning is one of the
most common methods of tuning, where typically a heating element, such as
a metallic or semiconducting strip, is resistively heated when current is passed
through it and increases the temperature in the proximate optical waveguide.

The thermooptic tunability of the family of waveguide designs of Fig. 5.2 is
examined. Fig. 5.11(b) shows a normalized tunability of the fundamental TE and
TM guided mode due to a normalized change in the core index,

1 Oneg

53
Ngroup ONcore 5-3)

while Fig. 5.11(c) shows a normalized tunability of a guided mode due to change
in the cladding index,

1 ONett

. (5.4)
Ngroup ONclad

To arrive at the total tuning due to a particular tuning mechanism, using Eq. (3.1),
factors (5.3) and (5.4) are multiplied by the core and cladding index changes
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caused by the tuning mechanisms, respectively, and summed. For temperature
tuning, this amounts to multiplying each by the thermooptic coefficient, and by
the temperature change as in Eq. (3.5):

0o 1 Onesr ) Oncore 1 Onegr  Oncore

Qo _ AT .
Ao Ngroup Ocore 0T * Ngroup Oclad 0T

-AT. (5.5)

Note more generally that for large tuning the thermooptic coefficient is temperature
dependent and in device design a quadratic model is used here (see Fig. 6.2,
Chap. 6).

Fig. 5.11(b) shows factor (5.3) for TE;; and TM1; modes of MC-STE and MC-
STM designs of Fig. 5.2, for a range of Ar values. The temperature tunability for
the primary modes (TE;; in MC-STE designs, and TM1; in MC-STM designs) is
roughly similar over the range of Ar values that support a high FSR in each case
(0.5 < Ap < 15 and 0.05 < Ag < 3.2, for TE and TM respectively). The variation
of the factor (5.3) is only up to about 50% within these ranges. Strongly confined
designs will primarily have tuning due to this contribution, from the core index.

Fig. 5.11(c) shows factor (5.4), which is the sensitivity to the cladding index
perturbation. Because a small amount of field is in the cladding in the strongly con-
fined designs, this factor spans a larger range of values. Generally the more weakly
confined designs at the edges of the plot, with a large fraction of guided power
immersed in the cladding material, and with smaller FSRs, are strongly influenced
by cladding index perturbation. However there are regions within the large-FSR
range of Ar values that have significant sensitivity to cladding perturbation, such
as the MC-STM design’s TM1; mode at high Ar values (about Ar = 2 and above).
This may be desirable where it is of interest to use a cladding material with a large
thermooptic coefficient for tuning, such as a polymer which has a low refractive
index (order of 1.3 to 1.7) but may have thermooptic coefficients as large as silicon
and larger.

Since the thermooptic coefficient of polymers is typically negative, while that
of semiconductors such as silicon is positive, designs may also be chosen to make
athermal resonators that are insensitive to temperature, by balancing the thermoop-
tic tuning effect of a silicon core and a polymer cladding. Such athermal design
is common, for example, in silica arrayed waveguide grating (AWG) multiplexers
[9]. Here, for example, Figs. 5.11(b,c) show that larger aspect ratios have a higher
sensitivity to cladding index and lower sensitivity to core index, while maintain-
ing maximally-mode-confining (MC-STE or MC-STM) cross-sectional dimensions.
This means that for a given positive core material thermooptic coefficient, and a
given negative cladding thermooptic coefficient, an aspect ratio can be found that
provides an athermal waveguide design that is maximally confining (MC-STE or
MC-STM). This may be useful for resonant filters operating in environments with
large temperature fluctuations such as outdoor field environments, or densely in-
tegrated electronic environments such as microprocessors or graphics chips that
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Figure 5.11: Thermooptic tunability of resonators based on maximally confined Si waveg-
uides, vs. aspect ratio. (a) Real-frequency tuning per 100K temperature rise shows weak
variation of the tuning efficiency with aspect ratio. Normalized plots of the (b) core tuning
sensitivity and (c) cladding tuning sensitivity may be useful in considering other materials
(such as polymer claddings that have a high, negative thermooptic coefficient). These plots
use straight-waveguide data, hence are independent of ring radius.

generate a lot of heat, and where optical components may be incorporated to
increase speed and memory bandwidth and reduce power consumption of com-
munication links.

For the particular choice of the example in Fig. 5.2, with a silicon core and
silica cladding, the results of Egs. (5.3) and (5.4), i.e., Figs. 5.11(b) and (c), are
combined with the thermooptic coefficients of silicon (core) and silica (cladding)
—about +2-107%/7C and +1 - 107°/° C, respectively. The result, equivalent to
Eq. (5.5), is shown in Fig. 5.11(a), showing the total thermal resonance-frequency
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tunability of a resonator in GHz per +100° C change in temperature. The plot
shows that the MC-STE design with the TE{; mode excited has about 1 THz/100" C
tunability or nearly so for a fairly large range of Ar values, about 0.8 < Ap < 7.
The MC-STM design with TM1; mode excited has about 2/3 as much tunability at
the highest usable Ar of about 3.2 — about 700 GHz/100° C, and larger tunability
for smaller Ar values. Therefore, the tunability is reasonably similar and the
tunability consideration does not narrow the usable range of Ag’s considerably
from the ranges constrained by the FSR requirement of 2 THz and the dimensional
sensitivity.

5.2.3 Loss and coupling sensitivities and limitations

Several other important factors in the Si waveguide and resonator design depend
on the level of optical confinement, including optical absorption by a heating
element that may serve as a resistive heater for thermooptic tuning, and optical
mode leakage into a wafer substrate material.

In the first case, a metallic or a semiconductor heating element is preferably
placed close enough to an optical resonator to efficiently heat the dielectric mate-
rials where optical intensity is substantial, but far enough away in order to avoid
significant overlap of the optical field with the heating element that may lead to
significant optical absorption losses in the resonator. The heating element may
consist of a metal, such as chromium, or a semiconductor such as silicon. The
same issues apply to sections of waveguide used for interferometer arms.

In the second case, low index undercladdings have a limited thickness sep-
arating the high index core region from a typically high index substrate such as
bulk Si. For example, an SOl wafer may have 2-3 microns of silica undercladding
separating the silicon device layer and the silicon substrate. If the optical mode
in the waveguide has a lower effective index than the core index of the substrate
(for Si, n = 3.48 at 1550nm), then the mode becomes leaky and some optical
power is lost by tunneling leakage into the substrate (e.g. see modesolver analysis
in [122, 124]). Since the leakage loss is through an optical tunneling process via
the evanescent mode field which has an exponential decay with distance from
the core region, increasing the undercladding thickness decreases leakage loss
exponentially.

In the substrate loss, heating element absorption and coupling gap analysis,
only the range Ar > 1 is considered where the width sensitivities are small.

Metallic membrane optical absorption

In this section, absorption due to a metallic membrane is considered. Metals tend
to be absorptive at optical frequencies (wavelengths) of excitation. The complex
optical refractive index characterizes this optical loss, and is given in Table 5.1 for
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Table 5.1: Optical constants of metals [125]

Metal Complex refractive index at 1550 nm (0.8 eV)
n+ik
Chromium 3.8+113.7
Gold 0.5+140.9
Nickel 3.3+147
Titanium 3.9+1¢3.7
Molybdenum 1.6+1¢7
Palladium 294148
Vanadium 25+1i5.5
Tungsten 2.4+414.5

a few metals suitable for fabricating microheaters for microphotonics applications.
Although the level of absorption varies in general among different metals, the be-
haviour is similar and generally within the same order of magnitude in absorption.
Here, chromium (Cr) is used as an example for illustrative purposes, but the con-
clusions apply more generally to gold, titanium, nickel, molybdenum, palladium,
vanadium, tungsten, and other metals that may be used.

Fig. 5.12(a) shows the cross-section of an exemplary microring resonator con-
figuration considered in this analysis, showing a 100 nm thick chromium heating
element, displaced vertically by a distance d from the ring waveguide. Fig. 5.12(b)
shows the total loss Q due to absorption vs. aspect ratio for the MC-STE designs.
For computational efficiency, a symmetric structure with a metal slab both above
and below the ring, symmetrically placed is considered. The loss also includes the
bending loss at the radius required for a bend loss Q of 250,000.

The case of the bent waveguide is used because the waveguide mode in a
bent waveguide is pushed radially outward and becomes less well confined in the
vertical (out of the chip-plane) direction in comparison to its straight counterpart
waveguide. Therefore, the bent-waveguide case gives a worst case scenario for
coupling to a substrate or conductive absorber (heating element) above or below
the waveguide. The total Q is given in dotted line (which does not exceed 250,000,
limited by the bending loss Q set by the design), while the solid line gives the
disembedded loss Q due only to absorption in a single heating element, e.g., a
metallic or semiconducting slab. The latter is the loss Q of interest.

It is of interest to place the heating element as close to a resonator as possible
without spoiling the resonator Q by the heating element optical absorption, in
order to minimize temperature drop from the heater to the resonator waveguide.
Hence, the displacement of the heating element is an important consideration in
the design, and is directly related to the chosen aspect ratio, Ag. This design
consideration favors choosing as small an aspect ratio as possible, in the region



5.2. GLOBAL WAVEGUIDE GEOMETRY DESIGN AND OPTIMIZATION 119

Metal slab (Cr)¢

100:m

(a)

Ring loss Q vs. metal slab distance

TE,j-cutoff-sized guide, TE;; mode TMy-cutoff-sized guide, TM;; mode

107 - - 107 "
Bend loss Q
9 10¢} (250 1106} 3 pm
i L ________ . . «—— Bend loss
£ 105t o h . ‘ 4 10%¢ Q = 250k
5 e, -
- | 7 . 2 um
%’ o4 N 0%
2 Chromium, 100nm slab"‘u,_‘ 15 um
2 10%(n ~ 3.8 +i37 @1550nm) "7 0751 10°
S 1um
§ 102l ¢+ Qyoyq: bend IO?S + 2 metal slabs T 05 ] 102k Qg bend loss + 0.75 um ]
—e— Extrapolated single metal slab Q B 2 metal slabs 0.5 um Metal slab
10’ . .Me'ral distance (um) 10 Extrapolated single metal slab Q distance
10° 10! 102 10° 10’ 10?
Aspect ratio, Ag Aspect ratio, Ag

(b) (C) created from: s_plofs_siliconguide.m

Figure 5.12: Overhead metal slab (microheater) absorption losses in maximally confined
Si waveguides. (a) The geometry under study assumes a 100 nm-thick Chromium (n =
3.84143.7 at A = 1550 nm) forming a material layer that is raised a distance d above the top
surface of the silicon ring, for optical decoupling; (b) MC-STE design, T'E11 mode loss vs.
AR, (c) MC-STM design, T'M11 mode loss vs. Ar. The plots show that Agr = 6 TE design
and Ar = 1.8 TM design, which are equivalent in that they have equal sensitivities for
example (Fig. 5.9), also both require about a d = 1 um microheater displacement to keep
optical loss low enough for a @ > 250, 000 (published in [98]).

of Agr values plotted, so that the heating element may be placed closer to the
resonator waveguide without inducing absorption losses sufficient to spoil the Q.
This means seeking as high an optical confinement as possible.

On the other hand, Fig. 5.2 showed that high aspect ratios are favored for low
sensitivity to dimensional error, and as discussed further later (see Fig. 5.18) also
for low propagation loss due to sidewall roughness. Therefore, for thermally tuned
resonators heated by a resistive heating element, the optimum design will need to
trade off these two requirements according to their importance in the particular
case.

Fig. 5.12(c) shows that the same constraint on the undercladding thickness for
the MC-STM designs using the TM1; mode. For example, in the MC-STE, TEqq case
with Ar ~ 6, undercladdings of about 0.9 pm thickness and up are sufficient; while
in the MC-STM, TMy case the same undercladding thickness is sufficient for up to
about Ap = 2. Since MC-STE (TEq1) with Ag ~ 6 and MC-STM (TM14) with Ar ~ 2
are “equivalent designs” as already described, in terms of sensitivity, achievable
high-Q FSR and effective index, the metal absorption overlap requirement does
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not point strongly in favor of one design or the other, but is rather in keeping with
their equivalence in this respect also. This is despite the intuition one may have
that TM modes are more extended in the vertical direction and thus may have
higher substrate losses — this weaker confinement is compensated by the lower
width sensitivity of TM at lower aspect ratios and larger allowable cross-sectional
area.

Substrate leakage loss

The second loss mechanism considered is substrate leakage loss. Fig. 5.13(c)
shows computed substrate leakage loss (in dotted curves) for a symmetric, bent
waveguide, having two high index “substrate” regions, symmetrically placed above
and below the waveguide core at a distance from the core indicated next to each
plot curve (again a dual symmetric structure is used for computational efficiency).
The bend radius used is the radius that gives a bend loss Q of 250,000, consistent
with the example case used thus far.

The propagation loss is plotted in Fig. 5.13(c) in dotted line for various dis-
placements of two semi-infinite half-spaces of index 3.48 (modeling a bulk silicon
substrate). This curve includes bending loss as well as substrate leakage loss to
each of the two halfspaces. By removing the effect of bending loss, and dividing by
two, the substrate loss due to a single substrate is disembedded. This is shown in
the solid line. It may be seen that the total propagation loss (dotted line) is limited
to stay above about 3 dB/cm, which corresponds to a bend loss Q of 250,000. The
extrapolated single-substrate loss (solid line) is the figure of interest. In integrated
optical circuits it is preferable that waveguide propagation losses be kept well
below 10dB/cm, and ideally below 1 dB/cm. Therefore the loss due to substrate
leakage in general waveguiding circuits (straight waveguides, bends, etc.) needs
to be well below 1 dB/cm, preferably below 0.1 dB/cm. From Fig. 5.13(c), for all
MC-STE design (TE;; mode) aspect ratios with usable FSRs, 0.5 < Ar < 15, an
undercladding thickness of about 2 um or larger ensures below 0.1 dB/cm leakage
loss.

Fig. 5.13(d) shows the same calculation for the MC-STM design employing the
TM11 mode. Here, also, a silica undercladding of thickness 1.8 um or larger is
sufficient to guarantee less than 0.1 dB/cm substrate leakage in the relevant MC-
STM design range of aspect ratios, 0.05 < Ar < 3.2.

Because the cavity Q is not directly related to propagation loss, but scales with
the group index (refer to Fig. 5.5), for resonator design the results of Figs. 5.13(c),(d)
are shown again in Figs. 5.13(a),(b), with loss expressed in terms of resonator loss
Q due to substrate leakage. Dotted lines show the total cavity loss Q due to
bending loss and two symmetrically placed substrates (above and below) at various
displacements from the core, and solid lines show the disembedded loss Q due
to a single substrate half-space, which is the value of interest. Since Q’s due to
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Figure 5.13: Substrate leakage loss in maximally confined Si waveguides vs. aspect ratio
and undercladding thickness: (a) substrate-loss Q vs. aspect ratio for TE11 mode of MC-
STE design, and (b) for TM11 mode of MC-STM design; (c,d) same data in waveguide
propagation loss units (dB/cm).

various loss mechanisms combine to yield a lower total Q, it is desirable to select
substrate displacements large enough that the total Q is not significantly reduced
from the bending loss Q of 250,000. For MC-STE designs (TE4), for aspect ratios
0.5 < Ar < 15, an undercladding thickness of 1.2 um or larger is sufficient to
ensure that the substrate loss has negligible effect on the cavity Q, i.e., does not
reduce it substantially below 250,000. Fig. 5.13(b) shows that for MC-STM (TM14)
designs, the same undercladding thickness requirement (about 1.2 pm) ensures that
the Q is unaffected in the relevant range of aspect ratios 0.05 < Ar < 3.2.

In this situation too, we encounter similar characteristics in the “equivalent”
MC-STE and MC-STM designs. In the context of design of isolated resonators,
it has been discovered that a set of equivalent MC-STE and MC-STM designs
exists, with different aspect ratios, but largely matching performance in terms
of achievable high-Q FSR, sensitivity, tunability, substrate leakage and heating
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Figure 5.14: Coupling gap vs. aspect ratio of MC-STE and MC-STM designs, for a circular
ring coupling to a straight bus waveguide of same cross-sections: (a) geometry, (b) the
coupling gap is chosen to provide a 12.8% cross-state power coupling at a radius that
provides a 2 THz FSR and therefore supports an exemplary telecom-compatible third-order
SCC filter design with a 40 GHz bandwidth. All designs require no less than a 100 nm gap,
and TM designs have gaps that are twice as wide, but also waveguides that are taller.

element absorption losses.

5.2.4 Directional coupler design and parasitic mode suppression

In general, in the construction of resonator-based devices, excitation of a resonant
cavity entails direct or evanescent coupling to other resonators or waveguides.
Next, minimum coupling gaps for in-plane evanescent coupling and coupling
coefficient sensitivity to error in waveguide width and height are examined.

Minimum coupling gap size (for a 40 GHz microring filter)

Continuing with designs in Fig. 5.2, ring-to-straight-bus waveguide coupling gaps
are considered, for various aspect ratios, that provide 12.8% ring-bus power cou-
pling coefficient. This ring-bus power coupling coefficient is necessary to realize a
40 GHz-wide, 3'-order (3-microring) bandpass filter with a 2 THz FSR. Fig. 5.14(a)
shows the ring-bus waveguide coupling geometry considered. For each aspect ra-
tio, as usual, the TE;; mode of the MC-STE design and the TM;; mode of the
MC-STM design are considered. For each case, the bend radius is chosen to be
that provides a 2, THz FSR (not the minimum radius for a bend loss Q of 250,000).
Then, the coupling gap is found that gives 12.8% single pass power coupling.
Here, for the computation of each data point an optimization problem must
be solved to find that coupling gap which provides the desired power coupling
coefficient. Therefore, the computation has been done using a semi-analytical
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approximation, using accurate, numerically solved mode distributions, and ac-
counting for the bent coupling region in an analytical way, using coupled mode
theory, to allow the estimate to be computed in reasonable time for a large number
of coupling gap values. This means that the values may be inaccurate even on the
order of 50%, but the dependence, relative comparison and scaling are trustworthy,
and therefore useful information may be extracted from these computations.

Fig. 5.14(b) (solid lines) shows the estimated coupling gap vs. aspect ratio that
is needed. This plot shows the first significant difference found between otherwise
equivalent MC-STE and MC-STM designs. For Ar > 1, the coupling gap does
not change very strongly with aspect ratio for either design, but the MC-STM gaps
(on the order of 200 nm) are twice as wide as the MC-STE gaps (on the order of
100 nm).

Minimum coupling gap sizes are an important consideration for several reasons
associated with fabrication technology. First, in lithography, at this scale wider
coupling gaps are easier to realize, and therefore MC-STM designs may be bet-
ter suited to lower-resolution lithography, such as conventional photolithography
and deep-UV lithography. Both designs are suitable for scanning electron beam
lithography (SEBL). Secondly, in the context of etching, the aspect ratio of the gaps,
measured as the waveguide height to gap width ratio, is more relevant. This is a
measure relevant for the ability to create such gaps by etching, as well as for the
ability to fill these gaps with an overcladding material, such as a spin-on glass, in
cases where an overcladding is to be used. In this second category, the MC-STE
and MC-STM designs are again approximately on par, since the gap in the MC-STM
cases is about twice as large, but at the same time equivalent MC-STM designs are
generally about twice as tall as the corresponding MC-STE designs (as shown also
by specific example below).

Elimination of reconfined parasitic supermode in couplers

For efficient, low-loss filter designs, a correction must be made in the waveguide
cross-sections that is specific to high-index-contrast directional coupler regions,
to eliminate a parasitic high order supermode. If one designs an HIC waveguide
cross-section to support only one TE and one TM mode, as in the MC-STE designs
of Fig. 5.2, this ensures no spurious higher-order modes are present to couple
to and cause crosstalk and loss. When two such waveguide are placed in close
proximity side-by-side, in addition to two supermodes that emerge from coupling (a
symmetric and an antisymmetric mode, if the coupler is symmetrical), a third mode
may become guided. This is shown by an example in Fig. 5.15(a), showing the
dominant electric field of an A ~ 6 MC-STE design TE;; symmetric coupler mode,
and a parasitic third-order TE3; mode also confined at a gap of about 100 nm.
This confinement of a higher-order mode to provide a larger number of guided
modes in the collective system than the sum of guided modes of the two individual
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TE;; symmetric mode Guided higher-order mode

Figure 5.15: Mode field profiles of the fundamental symmetric TE mode (T'E11) and the
parasitic, third TE mode (T'E31) that forms in a directional coupler formed of two (single-
mode) MC-STE design waveguides. A coupling gap is chosen that gives TE1; mode
coupling of 12.8% (for a 40 GHz passband filter with 2 THz FSR) with one straight guide
and one at the minimum bend radius in Fig. 5.6. (a) T'E11 and T'E31 supermodes in coupler
formed of nominal waveguide designs from Fig. 5.2, (b) TE11 and T E3; supermodes in
coupler with waveguide width narrowed (adjusting the gap to maintain prescribed coupling)
by numerical modesolver to drive supermode T'E31 at minimum gap to cutoff.

waveguides occurs in the strong coupling regime. For example, if the waveguides
are placed immediately next to each other to form a single waveguide that is twice
as wide (a zero gap), the lateral dimension may be more strongly confined at
the expense of slightly weaker confinement in the vertical dimension, such that a
third mode, that is near cutoff, may become guided. This is counter to intuition
one might take from the behaviour of slab waveguides, which have an analytical
solution, and do not show this effect. Namely, the number of modes in a slab
waveguide is given by the V-number divided by 7 /2, where the slab V-number is

defined as V' = ko,w/24/n2,.. — 2,4 w is the slab width, and k, is the free-space
wavenumber. Thus the number of guided modes in a slab waveguide is

where | -] indicates rounding down to the nearest integer. Now if one takes a slab
waveguide with one guided mode, such that its second mode is at cutoff, it's V
number equals 7/2. If two such waveguides are placed adjacent each other with
small gaps, they will have strong coupling and at least two modes (one for each
waveguide) with propagation constant splitting of these supermodes representing
the coupling. If the gap is zero, the two slab waveguides touch, and one obtains a
single waveguide of twice the width. This wider waveguide, according to the above
expression, has twice the V number. Since the V number of the original waveguide
is 7/2 (having only one mode), the V number of the new waveguide is 7 and it
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has exactly and no more than 2 modes. This is independent of polarization. Thus,
appearance of the additional modes seen in 3D HIC waveguide couplers requires
the additional physics allowed by the vertical degree of freedom for confinement
available in 3D waveguides.

A way to justify the existence of the confined supermode is to account for the
fact that coupling of degenerate modes causes splitting in effective index — larger
with stronger coupling. The fundamental modes split and form the symmetric and
antisymmetric coupler supermodes. If each waveguide is at cutoff of the second-
order mode, the latter have an effective index equal to the cladding index. When
the waveguides are coupled, these modes at cutoff are degenerate and may be
thought to split due to coupling. In doing so, one of them goes up in effective
index and becomes guided, while the other dives further down into the radiation
spectrum and is further from cutoff. Of course, this analogy gives only plausibility
as there is a common-mode effective index shift which may shift both modes up or
down in effective index due to coupling, as occurs with the slab case described.

This existence of the higher-order, spurious modes is undesirable, and the ring,
the bus waveguide or both may be made narrower to cut off such modes even in the
coupled configuration (at the design coupling gap). In the present discussion, the
ring and bus waveguide are symmetrically narrowed (i.e. both equally narrowed)
to ensure the absence of the higher order mode. Fig. 5.15(b) shows the corrected
MC-STE coupler design at an Ar ~ 6 — the TE;; symmetric coupler mode, and the
cutoff parasitic third-order TE3; mode field extending indefinitely in lateral extent.

The dotted lines in Fig. 5.14(b) show the modified coupling gap curves. Since
the waveguides are narrower, the field is slightly more expelled from the core
and the coupling is stronger for a given coupling gap, hence the gaps increase for
the given required coupling. The sensitivities also slightly change, since these do
not represent the maximally confined (MC) waveguide designs. These designs are
below and to the left of the corresponding (MC-STE or MC-STM) curve in Fig. 5.2,
and they are shown in Fig. 5.16 for the particular coupling strength chosen in
Fig. 5.14(b). Fig. 5.16 shows a directional coupler designed using each waveguide
aspect ratio, with width adjusted to ensure the absence of a third (parasitic) mode,
the first and second modes being the usual symmetric and antisymmetric modes
of interest in the coupler. The increase in coupling gap as a result of modifying the
waveguide cross-section is limited, but the TM designs still have about twice the
coupling gap for most aspect ratios in the range Ar > 1.

In the case of the corrected designs shown in Fig. 5.16, the width is narrowed
by between 0 and 10% (in both the MC-STE and MC-STM designs) in order to
cut off the relevant coupler mode, in the case of aspect ratios A > 1 (aspect
ratios Ar < 1 are not strongly susceptible to gaining extra parasitic modes under
lateral coupling, so no substantial correction is needed). For example, the MC-
STE design with a ~6:1 aspect ratio Si-SiO; rectangular waveguide (Fig. 5.2) has
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Uncoupled and coupler-corrected single-mode waveguide sizes for Si-SiO, example
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Figure 5.16: Map of maximally-confined single-TE and single-TM mode silicon waveguide
cross-sections at each cross-sectional aspect ratio, with a second set of contours showing
dimensions with waveguide width corrected at each aspect ratio to eliminate the third
(parasitic) coupler mode at the corresponding minimum bend radius for each Ar and the
coupling gap that gives a 12.8% coupling (see also Fig. 5.2). Data also shown in different
form in Fig. 5.4.

about 675 nm width and 110 nm height. In order to produce a 12.8% coupler
used in the example of a 40 GHz-bandwidth filter with 2 THz FSR, the width is
narrowed to about 605 nm, consistent with Fig. 5.16. Similarly, in the case of an
MC-STM design of aspect ratio 1.8:1 the nominal cross-section is 480x265 nm,
but is narrowed to about 455x265nm in the 12.8% coupler. These examples
illustrate the correction applied to width for couplers, as shown in Fig. 5.16.

Since all TE waveguide designs have similar coupling gaps and all TM designs
have similar coupling gaps, all being realizable using scanning-electron-beam
lithography (SEBL) and the TM design also being suitable for photolithography in
this example, the coupling gap does not select among the remaining admissable
aspect ratios or mark a set of designs in the parameter space to be excluded, for
the 40 GHz telecom filter design case considered here. Narrower filters will have
wider coupling gaps, so the minimum coupling gap is unlikely to play a strong
constraint in most applications.

Ring-waveguide coupling dimensional sensitivity

Next, the coupling coefficient sensitivity to waveguide width and height error
is considered, for the coupling gaps in Fig. 5.14(b). Fig. 5.17(a) shows the width
sensitivity of the power coupling coefficient corresponding to the four coupling gap
cases shown in Fig. 5.14(b). Plotted is the fractional error in the power coupling
coefficient (nominally 12.8%) per nm width error.
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Ring-straight bus fractional coupling error vs. guide width error
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Figure 5.17: Ring-bus coupling sensitivity to waveguide (a) width and (b) thickness, vs.
aspect ratio.

The zero point of sensitivity is attractive because the coupling coefficient there
is insensitive to first order to errors in waveguide width. This occurs only for
the MC-STE design for the plotted aspect ratios, around Ar =~ 2.5 for the higher-
order-cutoff-corrected MC-STE case. In both corrected designs (i.e., dotted lines),
for a typical width uncertainty of about 10 nm, which is achievable in SEBL, the
coupling coefficient may be in error by about 4% of its value, which is generally an
acceptable variation. Therefore, the waveguide-width sensitivity of the coupling
coefficient does not select strongly over the field of remaining MC-STE or MC-STM
designs.

The height sensitivity is more of a concern, as shown in Fig. 5.17(b). There,
the fractional error in the coupling coefficient per nm error in waveguide height
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is plotted corresponding to the four cases shown in Fig. 5.14(b). The MC-STE and
MC-STM designs are corrected for the higher-order-mode cutoff in couplers (i.e.,
dotted lines). The TM design has larger sensitivity at a given Ag, but if equivalent
MC-STE and MC-STM designs are selected, then the sensitivity of the TM and TE
design is about the same for Ar up to about 3 in the TM case, and the corresponding
Ap, for TE up to about 6-7. Above Agr ~ 3, the TM design is less sensitive than TE,
but the TM design at high aspect ratios also has very small FSRs, as described in
Sec. 5.2.1.

The height sensitivity of the coupling coefficient is considerable for both the
TE and TM designs, reaching on the order of 50% change in the power coupling
coefficient per 10 nm error in thickness. However, thickness is very well controlled
in fabrication, and may in addition be measured to high precision prior to the
lithography step. For this reason, in the presented designs sensitivities to height
are sacrificed in favour of optimizing sensitivities to width. Any designs will only
need to be tolerant enough to height (i.e., core layer thickness) error to work
properly within tolerances set by stochastic errors in measurement and on the
wafer surface, and to tolerate slow variations of the height across the wafer, if the
latter cannot be mapped. Typical values for thickness variation across a usable
part of an SOI wafer may reach on the order of 1-2 nm (and 5 nm is guaranteed by
SOI wafer manufacturers [126]). Hence reasonably large sensitivity to height may
be tolerable, in comparison to width sensitivities.

5.2.5 Summary of optimized Si waveguide designs

Based on the analysis in the previous sections, Table 5.2 summarizes the con-
straints imposed by each consideration, for the MC-STE and MC-STM design, with
reference to the relevant figures that are the source for each constraint. The con-
straining criteria in the example studied — a 40 GHz-wide add-drop filter with
2 THz FSR for telecom applications — are the resonance frequency sensitivity to
lithographically defined, lateral dimensions on the low-Apg side (Ar > 6 for MC-
STE and Ar > 1.8 for MC-STM); and the metallic heater optical absorption on the
high-Ag side (Ar < 7 for MC-STE and Ar < 2.5 for MC-STM). They are indicated
in bold in the table.

Concrete proposed Si waveguide designs

These computed bounds impose a fairly tight range on the usable aspect ratios
that meet the chosen design constraints. Within this range, for the silicon devices
demonstrated in this thesis, we chose the lowest possible Ar’s to minimize heater
loss (due to greater uncertainty in the realization of the microheaters). Hence, a
MC-STE design with A = 6 and a MC-STM design with Ar = 1.8 is selected
based on these criteria. The waveguide dimensions are summarized in Table 5.3.
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The resultant A ranges represent an example of equivalent TE and TM designs
as described in previous sections. Remarkably, these equivalent TE and TM designs
have very similar performance on all criteria, except the gap sizes and other
physical dimensions. The fabrication of silicon devices related to this work was
done by electron-beam lithography, so both designs are acceptable with respect
to constraints on minimum feature size.

Two further considerations are taken into account to decide between the TE and
TM design: sensitivity to propagation loss due to waveguide surface roughness, and
sensitivity of TE-TM mode parasitic coupling in the overmoded MC-STM design
which may cause unwanted TE parasitic resonant peaks, since the overmoded TM
design has two guided TE modes. This latter concern may prevent use of the TM
design, at least without restricting further the overmoded approach taken here, if
the polarization crosstalk is too large or resonantly enhanced.

Propagation loss sensitivity to roughness

The sensitivity to roughness for the chosen MC-STE (A = 6) and MC-STM (Ar =
1.8) waveguides is evaluated, and compared to the conventional 2:1 aspect ratio
TE designs used in literature.

To evaluate sensitivity to roughness, results from a theoretical three-dimensional
propagation loss model [127], which provides normalized loss maps for silicon
waveguides, are used. The waveguide propagation loss sensitivity to waveg-
uide roughness is estimated from normalized maps of roughness-induced loss
vs. waveguide dimensions, shown in Fig. 5.18, reproduced from [127]. The
waveguide designs presented here, the standard Si waveguide and the square,
“polarization-independent” waveguide (see Fig. 5.9) are overlaid in the figure.

A loss estimate computation is shown in Table 5.4 for the MC-STE and MC-
STM designs and for a standard cross-section Si waveguide. Estimates for expected
sidewall roughness and top/bottom wall roughness in fabrication processes avail-
able to the projects associated with this work are included in the table**. While
several approximations and empirical guesses were made, an attempt was made
to provide reasonable estimations of the relative merits of the waveguide designs,
as well as some plausible projections of the achievable propagation losses.

The results show that both optimized waveguide designs, MC-STE and MC-
STM, should allow waveguide losses of the order of 1 dB/cm to be obtained, with
the estimated roughness parameters (where worst case bolded values were used,
see Table 5.4). This is over 3 times lower loss than the standard Si waveguide de-
sign, estimated at about 3.5 dB/cm with the assumed loss parameters. The latter is
consistent with published propagation losses in Si waveguides of standard dimen-
sions [99, Table 1],[117]. Although more recent results have shown lower losses
of about 1.7 dB/cm [128] in similar 2:1 aspect ratio TE waveguides, this should

“*Estimated by T. Barwicz.
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Figure 5.18: Propagation loss sensitivity to waveguide sidewall and top/bottom surface
roughness vs. aspect ratio: (a) TE polarized modes, (b) TM polarized modes. The map of
roughness-induced loss vs. waveguide dimensions is based on a rigorous 3D model and is
reproduced directly from [127] (provided by T. Barwicz). The proposed waveguide designs
are indicated on the map.

be accountable to better roughness numbers than assumed in the estimates done
here, and accordingly the proposed waveguide designs will improve accordingly
with such better fabrication.

Corresponding to the estimated losses, loss-limited Q’s of 500,000 should be
achievable even with the somewhat pessimistic roughness characteristics assumed.
It is worth noting that glass reflow techniques on free-standing silica resonators
have yielded Q’s that are orders of magnitude larger — 100 million [129] — but
such reflow approaches lead to poor dimensional control that is not suitable for
high-fidelity filtering components that require 10 nm-scale absolute dimensional
control and small coupling gaps on the order of 100-200 nm.

Competition of unused guided modes under perturbation

Another important consideration is the competition of unwanted modes in res-
onators based on the proposed waveguide designs. Table 5.4 also shows the Q’s
of the other guided modes in each design. In the microring resonators based on
the MC-STE design, with a radius of 7 pm for a 2 THz FSR, the unused fundamental
TM mode has a Q of only 10, limited by the bending loss. This Q is low enough
that the resonance can be considered quenched and should not pose as a substan-
tial loss mechanism to TE resonant structures. Furthermore, the excitation of TM
resonances by perturbations will be weak due to the nominal orthogonality of the
TE excitation and the TM resonant mode, which further suppresses its excitation.
In the MC-STM design, there are two unused TE modes — the fundamental TE;;
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Figure 5.19: Waveguide wall-slant geometry for evaluation of parasitic polarization
crosstalk in directional couplers of proposed MC-STM waveguide designs.

mode, and the higher-order, guided TE2; mode. Table 5.4 shows that the higher-
order mode bending-loss limited Q is ~20, due to its weak confinement. On the
other hand, the fundamental TE mode is not limited by bending loss, and with
the assumed roughness parameters can have a loss-limited Q in the hundreds of
thousands (300,000 in Table 5.4). This means that the TE mode will be present, but
in principle unexcited due to the orthogonality with the TM excitation. However,
any perturbations that break the symmetry, such as sidewall slant in the directional
coupler, will couple the polarizations and cause crosstalk. The magnitude of this
crosstalk is evaluated in the next section in order to find whether the TM variant is
usable under practical conditions.

5.2.6 Polarization crosstalk sensitivity of overmoded TM design

In this section, an example third-order channel add-drop filter using the MC-STM
waveguide design is used to investigate the effect of wall slant on polarization
crosstalk and cross-polarized resonant effects, and estimate their practical detri-
mental significance for the MC-STM Si waveguide designs. Figure 5.19 shows the
cross-section of a directional coupler in such a filter. The wall slant angle is 8, with
vertical sidewalls for # = 0, and a non-zero 6 giving a symmetric camber.

The same filter considered thus far is investigated, having a 40 GHz-wide pass-
band with 2 THz FSR. The coupling gaps are chosen to provide a flat, Chebyshev-
shaped passband with 0.05 dB ripple over 33 GHz (~20 dB through-port extinction)
in the ideal case.

Computing TE-TM crosstalk due to wall slant

The TE and TM crosstalk coupling is computed using numerically computed modes
of the ideal (vertical-walled) directional coupler, where the effect of wall slant is
computed perturbatively using coupled mode theory, formulated in a suitable way
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for high-index-contrast waveguides. This is necessary because the relevant wall
slants in practice are very small (typically <57, e.g., 1-5"), and the Cartesian
discretization of the computational domain would lead to excessive errors when
trying to compare waveguides with small differences in wall slant. For small angles
6 < 20", the derivative of the coupling coefficient between two (super)modes in
the waveguide or coupler, i and j, due to perturbative wall slant can be computed,
Ok;;/00. The wall-slant-induced coupling introduces a linear term in the vertical
coordinate into the overlap integral, and can be shown to evaluate as

8/~cm . % sidewall dy(y - yO) (AGE:HEJ” - A(E_I)D;FJ-DjL>

‘U\crossfsection

Here, y, is the position at the mid-point of the vertically symmetric structure, so
that a wall-slant does not introduce an average width change to first order (treated
separately). Then, coupling coefficient ; j is approximately found for small angles
as
Omm
Kl’] = ’
a0 |,

For § = 0°, the uncoupled case is recovered whose modes are the basis modes,
and coupling is zero. This model is later rigorously justified in Fig. 5.21(b).

Regular TM filter operation

For illustration, it is assumed that the filter of interest operates in TM mode ide-
ally, as intended in the MC-STM design. It is also assumed that the microring
cavities have TE resonances, as they are likely to have, at a different but nearby fre-
quency. First, operation is considered when TM input excites the TM resonances
[Fig. 5.20(a)] and when TE input excites the TE resonances [Fig. 5.20(b)], before
considering crosstalk (TM input exciting TE resonances) illustrated in Fig. 5.20(c).

Fig. 5.20(a) illustrates TM input at a wavelength near the resonant TM passband
of the filter, showing excitation of the TM microring resonances, and TM through
and drop port outputs. An exemplary drop and through port response of this filter
is computed by coupled mode theory in time, with crosstalk coupling coefficients
supplied by the perturbative computation described in the previous section. The
response for various TM input wavelengths near the passband, using TM input
and measuring the TM polarized light in the through and drop port outputs shows
the normal intended operation of such a filter, based on the MC-STM waveguide
design.

Fig. 5.20(b) illustrates TE input at a wavelength near the TE resonances of the
microring cavities comprising the filter, showing the excited TE resonances of the
microring resonators. These resonances are formed of the unwanted secondary
TE11 waveguide modes of the MC-STM design. It is assumed for the moment that
both the TE and TM resonances are lossless — the worst case scenario for crosstalk.
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TM designs: parasitic resonant TE-TM crosstalk response
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Figure 5.20: Parasitic TE response in MC-STM filter due to wall-slant-induced polarization
coupling: (a) exciting TM resonances by a TM input produces the primary desired response;
(b) exciting TE resonances by a TE input produces a narrow TE response (this way of
exciting the structure is not a normal mode of operation as this is a TM device); (c) exciting
TE resonances by the primary TM input signal, due to wall-slant-induced polarization
crosstalk in the directional coupler, leads to spurious TE resonant responses which mix
with the main TM signal. The TE parasitic response is below -20 dB for wall slant < 5°.



5.2. GLOBAL WAVEGUIDE GEOMETRY DESIGN AND OPTIMIZATION 137

The filter response is as shown is narrower in bandwidth and has high ripple,
unusable as a filter. This is because the coupling gaps were designed to provide
a flat-top passband for the TM polarization. Since the TE polarization is more
strongly confined, the coupling is weaker and therefore the bandwidth is narrower.
However, the transmission to the drop port, when on resonance with each of the
supermodes, is still nearly 100%, because zero loss was assumed and the critical
coupling condition is satisfied. This response is not of particular concern, because
the filter is intended to have only TM input. However, it illustrates that if excited
by TE light, the filter drops 100% of it at certain wavelengths.

Filter operation with polarization crosstalk

With this in mind, the polarization crosstalk situation can be considered. Fig. 5.20(c)
illustrates monochromatic TM input at a wavelength near the TE resonances of the
microring cavities comprising the filter, showing excited TE resonances due to the
crosstalk from TM to TE in the input directional coupler. A 5° wall slant is as-
sumed. A wall slant of 2-3° can be easily achieved with present-day fabrication
techniques. Polarization crosstalk in the other couplers may be ignored as it con-
tributes second order effects (once TM excites TE in the resonator, most of the light
stays TE rather than converting back to TM).

The amount of TE and TM light transferred to the through port and to the
drop port should be considered. If there is significant TM light dropped into the
drop port, unwanted crosstalk at the TE resonant frequency results. If there is
significantly less than 100% of TM light passing to the through port, it also means
that a significant amount of conversion to TE is acting as a loss mechanism and
extracting TM power - thus potentially attenuating and distorting a through-port
channel. TE light leaving the through and drop ports is undesired but is of less
concern because it may easily be cleaned up by passing the through-port output
through a polarizer (bulk or waveguide integrated). Since the used polarization
is TM, TE will be filtered by the polarizer. Integrated waveguide polarizers are
well known and designs are readily available in literature for HIC waveguides
[130]. Furthermore, such polarizers are already an intrinsic part of a polarization
divesity scheme [20, 33] as polarization splitters serve this function too; hence, no
additional components are needed to reject the cross-polarized light (to the degree
of extinction of the polarization splitter).

Fig. 5.20(c) shows the drop and through port responses when TE and TM po-
larized output light is observed, near the TE resonant frequency of the resonant
cavities comprising the filter. In this case, the transmission of the TE light excited
by the TM input is of a similar passband shape to the TE resonance, but is consider-
ably attenuated. The reason follows. The TE-TM coupling is much smaller than the
also small TE-TE coupling, because in the former near polarization orthogonality
weakens the coupling. However, the TE light resonating in the rings due to cross-
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polarization excitation from the TM input is primarily leaving the rings through the
much stronger TE-TE ring-waveguide coupling, to the drop and through waveg-
uide TE modes. Therefore the Q (bandwidth) of the filter is determined by TE-TE
couplings, and thus the filter drop-port response shape is similar to the TE-excited
response in Fig. 5.20(b). The amplitude of the response is proportional to the input
coupling, i.e., the fraction of light coupled in from the input port. Since the TM-TE
crosstalk coupling is much weaker than TE-TE coupling, the response is attenuated
by 20 dB. Since the input side ring-bus coupling and the output side ring-bus cou-
pling are equal, the intensity and shape of resonant response dropped into the TE
polarization in each port is about the same (i.e., at about -20 dB).

Since 1% of power is converted to each of a TE signal in the through port and
a TE signal in the drop port on resonance, it is of interest to evaluate the loss to
the TM input. The through port shows a flat TM transmission, indicating that little
power is lost. A closer look shows about 0.1 dB loss at TE resonant wavelengths,
which amounts to about 98% transmission, accounting for all input power. There
is no significant power dropped into the TM polarization in the TM port, which
would constitute crosstalk. This is because the TE-TM coupling of the output is
much weaker than TE-TE coupling, thus the TM response is at least 20 dB below
the TE response, i.e., around -40 dB.

Scaling of polarization crosstalk with wall-slant angle

The above analysis considered 5° wall slant. It is of interest to consider how the
amplitude of the transfer function representing the polarization crosstalk scales with
wall slant. The spurious crosstalk, i.e., TE output due to TM input, approximately

scales as )
kTE,TM _ QTE,TE(]OSS)

’I—Ispurious‘2 ~ 73 =
ktgre  QTETM(external)

where ki 1y and kfy g are respectively the polarization crosstalk and the TE-
TE power coupling fractions in one pass of the input directional coupler, and
QTE TM(external) aNd QTR TE(l0ss) are the respective associated ring external Q’s
(the latter acting as a loss Q). Therefore if the ratio of TE-TM polarization crosstalk
coupling to TE-TE coupling is increased by a factor of 2, the total crosstalk simply
increases by a factor of 2, i.e., by 3 dB.

Therefore, next it is investigated how TE-TM crosstalk depends on the wall-slant
angle. A second way that in practice an asymmetry may be introduced is due to
an unequal refractive index in top and bottom cladding. The polarization crosstalk
coupling depends on them as follows:

k’%E,TM x 927 AEglad(top—bottom) (5.6)

where 0 is the wall-slant angle, or where AGzlad(top—bottom) is the difference be-
tween the relative dielectric constants (i.e., square indices) of the overcladding (top)
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and undercladding (bottom). If the wall-slant angle is reduced by half, crosstalk
drops by a factor of 4, and the spurious crosstalk response is reduced by a factor
of 4, or 6dB. With respect to top and bottom cladding index matching, it can
be calculated that the square-indices have to differ by about 4.5 to contribute the
same level of crosstalk coupling asa 5° wall slant. This is a very large square index
difference (between the top and bottom cladding) and it may be concluded that
asymmetry between the overcladding and undercladding refractive indices is un-
likely to play a significant role in polarization crosstalk, unless the index difference
is purposefully made very substantial.

Coupled-mode computations of polarization crosstalk

TM-TE polarization crosstalk is much smaller than the TE-TE coupling in this anal-
ysis. Fig. 5.21 illustrates this by a coupled mode theory analysis. Fig. 5.21(b)
shows the TE-TE and TM-TM power coupling coefficients in a directional coupler
with symmetric waveguide cross-sections, one being a curved ring and the other
a straight bus waveguide. Power coupling is plotted vs. wall-to-wall coupling
gap, arrived at as follows. First, the coupling coefficient at the narrowest point is
computed in two ways: exactly, by computing the supermodes of the coupler, and
second, approximately by coupled mode theory. This result is then extrapolated to
a total coupling through a curved coupling region by an analytical approximation
[38, Appendix] in both cases. For each of the TM-TM and TE-TE couplings, the
both results are plotted, showing very good agreement between coupled mode
theory and exact modesolver results.

Fig. 5.21(a) shows the TM-TE crosstalk computed using coupled mode theory,
and the analytical extrapolation, in two different ways. An exact modesolver result
cannot be obtained for this geometry. However, the agreement between coupled
mode theory and the modesolver result in Fig. 5.21(a) gives one confidence that
this computation may be trusted for the purposes of crosstalk, where high accuracy
is not required. The polarization-crosstalk power coupling, per 1 radian wall slant,
is plotted vs. coupling gap as obtained from the two different coupled mode theory
computations. Agreement is reasonable. The coupling for any wall slant angle
may be obtained by scaling according to Eq. 5.6.

The 40 GHz filter design used as an example throughout (Fig. 5.20) requires
a 215 nm ring-bus coupling gap in the MC-STM design. At that coupling gap,
Fig. 5.21 shows that the TE-TM power coupling per 1 rad of wall slant is about
0.006 to 0.01, whereas TE-TE coupling is 0.006, about the same value. However,
1 rad (577) is a very large wall slant. For a realistic 5° wall slant used so far, the
TE-TM coupling is seen to be about 100-150 times smaller than the TE-TE coupling.
Thus, the crosstalk TM resonant response at the TE resonance is about 20-25 dB
lower than the TE crosstalk response (in the drop port).

This analysis shows that polarization crosstalk is large enough to be a concern
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Figure 5.21: Polarization coupling due to wall slant by coupled-mode theory: (a) TE-TM
coupling using an uncoupled mode basis, and using a supermode basis; and (b) TE-TE
coupling and TM-TM coupling by coupled mode theory compared with numerical mode
solver solutions for verification.

in the MC-STM design, but small enough that it can be tolerated with proper en-
gineering, depending on the particular design. Therefore, on the one hand the
MC-STM (TM polarized, overmoded) design has the advantage of larger coupling



5.3. EXPERIMENTAL RESULTS 141

gaps with all other performance metrics similar (high-Q FSR, sensitivities, tunabil-
ity, etc.) to the MC-STE design, but the MC-STM design also has the drawback that
the unwanted, well-confined fundamental TE mode must be carefully sidestepped
in engineering to avoid excessive crosstalk and parasitic resonant losses.

Two other issues may be addressed in this context. First, if the TE and TM res-
onances of the resonators are co-resonant (i.e., at the same wavelength), crosstalk
may be significantly enhanced, and may prevent a successful TM design. There-
fore, care must be taken in misaligning the TE and TM resonances adequately in
the TM design, where resonance placement sensitivity, i.e., resonance frequency
sensitivity to perturbations will be important.

Second, the polarization crosstalk study in Fig. 5.20 used lossless resonances.
However, introducing losses to reduce the polarization-crosstalk-induced loss in
the TM through port, seen in Fig. 5.20(c), does not pay off greatly. The loss Q of
the resonators must be reduced to about 15,000 in order to cut the through-port
loss in half, i.e., to about 0.05 dB maximum and about 0.025 dB average across the
passband. This would be a very large reduction in Q, and would cause significant
losses and primary-mode (TM) filter shape distortion in the 40 GHz filter. Therefore,
introduction of loss does not greatly help to quench the polarization crosstalk. The
reason for this is that the TE-TE coupling, which is the loss mechanism determining
the bandwidth of the spurious TE resonance, is already reasonably strong, and very
large intracavity loss must be introduced to make an impact on the filter shape
further by dominating over the TE-TE coupling as the primary loss mechanism.

5.3 Experimental results

In this section, the first and preliminary experimental results of fabricated Si waveg-
uides and resonators based on the designs in this chapter are presented. Designs
based on the MC-STE design, with a slightly modified 600x 106 nm cross-section,
are used, with and without overhead microheaters. Propagation losses of 2—
2.5dB/cm and loss Qs exceeding 250,000 are demonstrated in Si microring cavi-
ties with a central radius of ~6.7 pm and an FSR of 2 THz. With microheaters at a
1 um overhead displacement, the loss Q is reduced to ~115,000, still well within
the necessary bounds for the realization of low-loss high-order microring-resonator
add-drop filters for telecom applications.

The structures used for experimental demonstration were waveguides and mi-
croring resonators in the undercoupled regime for accurate loss evaluation (see
Appendix A). The heaters were formed of titanium metal rather than chromium as
used in simulations, but their complex refractive indices at optical wavelengths are
the same (Table 5.1) so a direct comparison can be made. Another difference from
design is the overcladding — for practical reasons, rather than silica (n = 1.445)
the overcladding used was hydrogen sesquisiloxane (HSQ) [131], with an index
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n ~ 1.38. The loss ring method for cavity loss evaluation uses very weak ring-bus
waveguide couplings and therefore large coupling gaps, which minimizes coupling
region geometrical distortion in fabrication and associated optical losses, so that
the intrinsic cavity losses dominate. First, the fabrication is summarized; then the
optical characterization results described, together with the coupled-mode theory
fitting model used to disembed the intrinsic losses and the results.

5.3.1 Fabrication of Si waveguides and resonators

The devices were fabricated'" on a Unibond silicon-on-insulator (SOI) wafer with
3 nm buried oxide undercladding and a 220 nm silicon layer, thinned to 106 nm
by calibrated steam oxidation and HF stripping. The thickness was measured after
thinning, and all device designs adjusted for the 106 nm thickness.

The waveguides were defined by e-beam lithography using 60-nm-thick hy-
drogen silsesquioxane (HSQ) as e-beam resist and mask for reactive-ion etching
(RIE) in pure HBr. HSQ was used as a hardmask because a detailed study showed
that many metal hardmasks react with the Si waveguide core material to form thin
metal silicides which introduce prohibitively high optical absorption losses [132].

After defining the waveguides by RIE, the e-beam exposed HSQ was removed
and the structure was spin coated with a 1 pm layer of HSQ used as overcladding
[131]. Next, 100-nm-thick titanium (Ti) heaters were formed on top of the HSQ
by aligned contact photolithography, e-beam evaporation and liftoff. A second
photolithography and liftoff step defined 100-nm-thick gold contact pads. The
prepared chips were mounted on a designed copper thermal mass mount, and
wire-bonded to specially designed circuit boards. A 100 nm layer of silicon oxide
was sputtered as a crude passivation layer to slow down the oxidation of the Ti
heaters at high operating temperature.

A scanning electron micrograph of an example 500 nm-wide (106 nm thick) Si
bus waveguide is shown in Fig. 5.22(a).

5.3.2 Q measurement by the loss-cavity method

The waveguide loss and resonator loss Q were characterized by the loss ring
method, where weakly coupled single-ring add-drop filters are designed whose
linewidth is dominated by their intrinsic loss rather than external coupling. A
measurement of the linewidth then gives a direct measurement of the internal
cavity Q, and thus internal losses, with little uncertainty. A coupled-mode theory
in time model is used to fit the experimentally obtained spectra.

Fig. 5.22(b) shows a typical drop-port response of a high-Q (weakly coupled)
microring resonator. The drop port response is intentionally about 15-20 dB below

TTAIl process design and development for the silicon device fabrication, and the device fabrica-
tion, was done by T. Barwicz. A brief summary of the fabrication is given here.
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Figure 5.22: (a) Scanning electron micrograph (SEM) of fabricated Si waveguide, and (b)
fitting of Si “loss microring” experimental response for experimental determination of loss

Q.

the through-port response in these devices because the external coupling is weak
and loss dominates. The linewidth, here on the order of GHz is directly indicative
of loss. However, the lineshape is not Lorentzian, as typically found in single-mode
resonators, but rather has a dual peak.

The double-peak is a signature of contradirectional coupling in the ring res-
onator directly, or indirectly via the waveguide coupled to the resonator. This is
possible because microring resonators have two degenerate counter-propagating
resonances at each longitudinal order. Roughness, surface scattering defects and
shape non-idealities can couple the two counter-propagating modes.

Note that this contradirectional coupling happens in such narrow resonant
cavities as these — used for loss testing. However, in a 40 GHz-wide filter, for
which these cavities are designed, the small splitting due to contradirectional
coupling will largely be suppressed by the line broadening due to strong coupling
to external waveguides.

Taking this as all the essential physics in these spectra, a simple model fit is
used to disembed the internal loss and contradirectional coupling.

CMT fitting model of microring cavity with contradirectional coupling

A simple single-cavity, two-mode coupling of modes in time model is used for
fitting the experimental data, shown in Fig. 5.23(a), having two degenerate counter-
propagating resonant modes, a1 and az, coupled by an abstract coupling parameter
pi2. An input and output waveguide have coupling rates r; and r,, respectively,
with each of the two modes.

The contradirectional coupling model can also be represented by an equivalent
photonic circuit in Fig. 5.23(b), using only reflectionless (unidirectional) propaga-
tion. This makes more apparent the CMT equations for the model (reduced to only
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Figure 5.23: (a) Coupled-mode theory in time model of contradirectional coupling in
a microring resonator filter, used for fitting high-Q microring cavity response spectra to
disembed losses. (b) Equivalent photonic circuit in hybrid (reflectionless 4-port) form of the
structure in (a), using unidirectional reflectionless propagation in all structures.
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where r; is the cavity loss rate associated with each traveling wave mode, i.e.
related to round-trip propagation loss. As usual in CMT, the decay rates are related
to the couplings as u? = 2r;, u2 = 2r,, and the intercavity coupling can be set
as symmetric (12 = po1 by assuming an appropriate reference plane. Then the
measured response s_3/s41 of the system is
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where dw = w — w,, and the total cavity mode decay rate is ry,t = r; + r, + r; due
to the two ports and internal loss. This model has only 4 independent parameters,
in addition to frequency: an arbitrary amplitude r;r, (scaled by other transmission
losses in the chip); a total decay rate that determines the Q, 7ot (Q = w/(27t0t)); and
a complex-valued coupling po1 12 that splits the modes, comprising a frequency
splitting |p21pt12| and a “Q-splitting phase” ¢g = Zuzipi2. The phase of the
coupling is important. It determines the relative amplitudes of the two peaks in
Fig. 5.22(b) and the overall shape. By fitting this phase over a wavelength range,
an associated group delay can be disembedded that gives information about the
physical position of the effective contradirectional-coupling scatterer. This will be
addressed further elsewhere. Here, ¢¢ is referred to as a Q-splitting phase because
it can be shown that the supermodes of the system have complex resonance
fregencies and Q’s

w, . .
Wi, = 70 + /| p21p12] cos(ég/2) + j (T’l + /|21 12 Sln(¢Q/2)>

Wo 1
2 1y £ /|21 o] sin(pg/2)
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Figure 5.24: Preliminary experimentally measured loss Q of Si microring resonators based
on the MC-STE design (Table 5.3). The actual design dimensions used here for the ring
cross-section are 600x 106 nm. The loss Q data is obtained by the “loss ring” method (see
Appendix A), and extracted by fitting to a CMT model with backward coupling.

Returning to fitting the double-peak Lorentzian, the four parameter model can
be used in amplitude form only, since the amplitude response is most easily mea-
sured in experiment, and fitted to extract the four parametersti. If the ring is
weakly coupled enough, the round trip loss will be much larger than the coupling
to waveguides (r; > r;,1,), and the total Q also gives the intrinsic loss Q.

Experimental measurements of Q

Results obtained in this way from two microring resonators, one with no overhead
microheater and one with a titanium microheater at 1 pm displacement above it,
are shown in Fig. 5.24. The microrings have an FSR of 2 THz (16 nm), so the Q
and intrinsic loss is evaluated at six wavelengths from 1520 to 1605 nm. Lines
show the fit disembedded results for the intrinsic loss Q, and the gray regions are
the 95% confidence interval of the fit.

HSince the used system drop-port response is minimum-phase, the amplitude and phase responses
are uniquely related by the Kramers-Kronig relationship. Hence there is no extra information (fit
improvement) to be gained by including the phase response in the model fit.
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The results show that a metal-free Si ring cavity has a loss Q of 250,000 across
the C-band telecommunications window (1530-1570 nm). This translates, through
the group index to an effective propagation loss of 2-2.5 dB/cm (see Appendix B).
With a microheater present, the Q is reduced to about 120,000 in this wavelength
range. This would imply a Q associated with the metallic heater absorption of
about 250,000, as designed, since it reduces the heater-free ring Q by a factor
of two. These results agree remarkably well with the design estimates for loss
(Table 5.4), in fact much more so than justified by the error bars in our estimations,
and the changes and substitutions introduced between design and experiment.
Nevertheless, the first attempt at demonstration gave agreeable results, consistent
with the design, and it is hoped that process optimization will demonstrate further
merits in these waveguide designs.

Furthermore the demonstrated waveguide loss and resonator loss Q’s are suffi-
ciently high to enable the demonstration of high-fidelity, telecom-grade resonant
filtering devices, and they are therefore used in the design of Si filters in following
chapters.

5.4 Conclusions

In this chapter, a systematic and rigorous design study of silicon-core, strongly
confined microphotonic waveguides was presented and novel waveguide designs
optimized for tunable microphotonic filters were proposed. Against a set of relevant
criteria, wide and flat (6:1-aspect-ratio) TE and overmoded, 1.8:1-aspect-ratio TM
designs were found to provide optimal properties, including sensitivity comparable
to previously demonstrated, lower index contrast SiN resonators, and losses about
3 times smaller than conventional Si waveguide designs.

It was discovered that there exist corresponding sets of MC-STE (TE) and MC-
STM (TM, overmoded) waveguide designs that have equivalent performance for
TE and TM polarizations, respectively, in terms of frequency sensitivity, FSR, prop-
agation loss sensitivity to surface roughness, metallic microheater optical overlap
absorption, substrate leakage loss, sensitivity of ring-waveguide coupling to dimen-
sional errors, etc. The equivalent designs generally have correspondingly equal
effective indices. It is interesting, however, that their dimensions are different —
waveguide width and height, resonator radius, coupling gap widths.

The TM design was found to support sufficient rejection of parasitic TE modes
under perturbations to make it a relevant alternative design.

Finally, initial experimental demonstrations of fabricated TE waveguides and
resonators showed microring cavity loss Q’s of 250,000, corresponding to propa-
gation losses of 2-2.5 dB/cm, and Q’s ~120,000 with a proximate metallic heater.
These preliminary results validate the proposed designs and agree closely with the
expected performance. They are well suited to enable high-fidelity microphotonic
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tunable and reconfigurable filters in silicon, for chip-scale optical signal processing
in rigorous telecom applications.






Chapter 6

Widely tunable strong-confinement
channel add-drop filters

In this chapter, the rigorous design and first demonstration of widely tunable,
wide-FSR channel add-drop filters, based on strongly confined silicon microring
resonators, are described. Based on novel, optimized waveguide designs pro-
posed in Chap. 5, low loss and sensitivities suitable to high-fidelity microphotonic
devices for telecom-grade applications are demonstrated. Efficient, wide ther-
mooptic tuning and amplitude response shapes independent of the tuned wave-
length are demonstrated. The first telecom-grade, higher-order tunable channel
add-drop filters are experimentally demonstrated with performance characteristics
suitable for up to about 25 Gb/s channels in densely wavelength division multi-
plexed (DWDM), high-bandwidth optical networks.

First, the basic considerations of tuning silicon resonators are addressed, in-
cluding the enhancement available due to the increase of the silicon thermoop-
tic coefficient with temperature. The realization of microheaters integrated with
waveguide designs from Chap. 5, and the experimental demonstration of wide
(20 nm) thermooptic tuning of silicon microring cavities are described. Second,
the strategy and architecture for creating C-band, widely tunable resonant channel
add-drop filters is described. Methods to design tunable filter passbands that do not
change spectral shape with tuned wavelength are addressed, including “resonant-
frequency-independent coupling”. Rigorous design of a fourth-order test filter is de-
scribed based on 3D complex-frequency mode solver [91] and 3D finite-difference,
time-domain (FDTD) [68] simulations, including coupling strength, minimization
of coupler scattering loss and accounting for CIFS (Sec. 4.1). Simulated sensitivi-
ties of the coupling coefficients to temperature and dimensional error are discussed
and exploited in the design, and prototype filter designs presented. Finally, the
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experimental demonstration of these fourth-order tunable filters is presented. The
experimentally demonstrated filters meet rigorous telecom-grade specifications,
including over 20 dB through-port extinction ratio per stage (projecting 40dB in a
2-stage design like those demonstrated in Sec. 7.1 [119]) and about 1 dB drop loss.

6.1 Maximizing the thermooptic tuning range of silicon res-
onators

In this section, maximization of the thermooptic tuning range of Si microring
cavities is addressed and the demonstration of 20 nm-wide, full-FSR tuning of mi-
croring resonators with a 16 nm FSR is described, with a tuning efficiency of about
20 uW/GHz. This is a prerequisite for the construction of high-order, telecom-
grade widely tunable and switchable channel add-drop filters, described thereafter.
In addition, the switching speeds are evaluated, for applications using switchable
filters proposed in Chaps. 8 and 9. Switching times of the order of 10 ys, typical of
thermooptic actuation, are sufficient for tunable/reconfigurable-filter applications.

6.1.1 Basic design considerations

Thermooptic resonant-wavelength tuning in highly dispersive propagation media
must take into account two effects: change of effective index with wavelength,
and change of effective index with temperature. These two effects add or compete
(depending primarily on the sign of the thermooptic coefficient), and must be ac-
counted in order to find the new resonant-wavelength condition resulting from an
applied temperature change. For this reason, the thermooptic tuning formula (3.1),
derived for strongly confining (dispersive) structures, involves the perturbation in
effective index and normalization in the group index. Finally, practical considera-
tions are briefly discussed that limit the maximum on-chip temperature, which in
turn limits the tuning range.

Fig. 6.1 shows the dependence of crystalline silicon index with wavelength.
A quadratic fit, shown in the figure, is used for device designs from here on, in
the range of 1500 to 1600 nm. In strongly confined guided structures considered
here, however, the waveguide dispersion dominates the wavelength dependence,
and this dependence is contained to first-order in the guided group index. A larger
group index reduces the tuning range and the FSR for a fixed thermooptic index
change and microring radius.

For wide tuning (here, by wide tuning we mean 10’s of nm, or several THz),
substantial on-chip temperature changes are required. From the thermooptic coef-
ficientof 2:107%/° C, one may project about 100° C temperature change to provide
about 1 THz (8 nm) of tuning, i.e. 10 GHz/* C. However, when large temperature
changes are used, the temperature dependence of the thermooptic coefficient of
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Figure 6.1: Silicon refractive index vs. wavelength (data from [133]). A quadratic fit about
A = 1550 nm is used for the present device designs.
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Figure 6.2: Silicon thermooptic coefficient quadratic enhancement with temperature (data
from [134]). The quadratic fit shown is used in the present tunable resonator designs.

silicon needs to be accounted [134], and provides a substantial enhancement of
tunability. The normalized thermooptic index change in bulk silicon is plotted
vs. temperature in Fig. 6.2. It shows for example that at about AT = +400° C,
the nonlinear thermooptic coefficient provides about 20% larger index tuning than
extrapolation from the room-temperature linear thermooptic coefficient would sug-
gest. Therefore, in the device designs in this work, a quadratic fit of the thermooptic
index change, shown in the figure, is used.

The maximum temperature of on-chip microheaters will be limited by oxida-
tion, which rapidly increases at high temperatures, and electromigration damage in
the microheater metal (or doped semiconductor), which increases at high current
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densities and high temperatures. For this reason, the waveguide designs used here
were optimized (in Chap. 5) for proximity of the microheater and optical structure
with low optical loss, to maximize tuning with on the order of 200" C temperature
change. This low temperature tuning was assumed because the microring temper-
ature may be considerably reduced (on the order of a factor of 2) in relation to the
microheater temperature, due to their 1 pm relative displacement. This partially
depends on the thermal design, briefly summarized in the experiment section.

6.1.2 Experimental demonstration

This section describes the experimental demonstration of wide, full-FSR thermoop-
tic tuning of silicon resonators in three subsections. First, the thermal analysis and
design of the Ti microheater is briefly described*. Second, the fabrication is sum-
marized. Third, the experimental demonstration results of wavelength tuning range
and electrical power, and switching speed are shown.

The waveguide cross-section and material stackup used for all of the silicon
devices described in this section (single tunable rings and fourth-order filters), as
well as those in sections that follow (Sec. 9.3), is shown in Fig. 6.3. The replacement
of SiO, overcladding (used in design) with HSQ modifies the experiment in two
ways. First, the overcladding index is slightly lowered. Second, the thermal
conductivity of HSQ is a factor of 2-3 lower than that of silica. Therefore, the
temperature drop from the heater to the silicon microring is considerably larger. If
one-dimensional heat flow is assumed from the heater downward through the ring
and cladding to the Si substrate, then temperature at the ring can be expected to
increase by as much as a factor of 2 with the use of a SiO, overcladding.

Thermal and microheater design

The filters are tuned thermally. Titanium microheaters were designed using finite-
element heat flow simulations to raise the microring core temperature to about
250", permitting tuning a full FSR using on the order of 40 mW per ring. The
microheaters are shown in Figs. 6.3 and 6.4(a).

The heater temperature is the tuning limiting parameter. Metal heaters cannot
be made arbitrarily thick because of fabrication constraints that limit metal layers
here to thicknesses of the order of 100 nm [135]. Hence, the current density cannot
be decreased arbitrarily and then electromigration sets a limit on the operating
temperature and current density of the heater.

As a result, a maximum ring temperature for a fixed maximum heater temper-
ature, and therefore the widest tuning range, is achieved by designing the heaters
to approximate a 1D heat flow in the vertical direction through the ring. Avoiding

*This work was primarily done by colleague Fuwan Gan, in collaboration with T. Barwicz and
the author.
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Figure 6.3: Design cross-section of material, waveguide and microheater stackup used
for experimental demonstration of silicon tunable filters. The MC-STE Si ring waveguide
design from Chap. 5 is used. The bus waveguide is adjusted for reduced coupler scattering
loss.

“diffraction”-like spreading from a narrow heater wire avoids excessive temper-
ature drop from the heater to the Si ring resonator core. In the 1D case, the
temperature drop is linear in a region of constant thermal resistance. This is ac-
complished by making the heater strip considerably wider than its distance (1 pm)
to the Si waveguide beneath it. This means that maximizing the tuning range
comes at the expense of some inefficiency in use of the heat flux and lower power
efficiency.

The heater is formed of multiple concentric wires for practical reasons, in order
to provide around 2 k€2 resistance, which leads driving voltages and currents under
10V and 10mA, respectively. The wire width is 0.8—-1um and the gap between
wires is 0.8 pm for compatibility with contact photolithography.

Fabrication

The fabrication of the silicon rings is described in Sec. 5.3.1 and [135, 136]. The
100-nm-thick Ti heaters were formed on top of the HSQ overcladding by aligned
contact photolithography, e-beam evaporation and liftoff. A second photolithog-
raphy and liftoff step defined 100-nm-thick gold contact pads. The prepared chips
were mounted on a designed copper thermal mass mount, and wire-bonded to
specially designed circuit boards. A 100 nm layer of silicon oxide was sputtered
as a crude passivation layer to slow down the oxidation of the Ti heaters at high
operating temperature.

Fig. 6.4(a) shows an optical micrograph of a single Si microring cavity symmet-
rically coupled to an input and a drop waveguide on a first layer and the titanium
microheater on a second lithographic layer, 1um above. The particular device
shown has a central radius of 6.735 pm (outer radius of ~7 um shown in figure),
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both the ring and the bus have nominal widths of 605 nm, and a coupling gap of
about 855 nm. The heater leads are widened on the left side of the micrograph to
reach a very low resistivity usable for contact leads to the heater (which are not to
dissipate any power).

Device tuning demonstration

The drop-port response spectrum of the microring resonator was measured for sev-
eral drive voltages across the heater. Resulting spectra are shown in Fig. 6.4(b),
along with the estimated tuning power. The microring cavity was successfully
tuned across its full FSR with about 40 mW of power applied to the microheater,
reaching a maximum tuning of 20 nm at 44 mW. The low-temperature (low-power)
tuning efficiency is about 30 mW/THz, while the overall (full-range) tuning effi-
ciency is about 20mW/THz. This allows the tuning of about 20-30 independent
elements across a full FSR with TW of power — sufficient to construct a fully re-
configurable optical add-drop multiplexer based on ring-resonator filters. This
experiment confirmed that the cavity-microheater design and tuning capability are
sufficient to permit their use for demonstration of complex higher-order filters with
switching and multiple-FSR selection and tuning capability.

A second experiment of importance is the switching speed. For this exper-
iment, an unbalanced Mach-Zehnder interferometer was constructed using two
3 dB couplers of adiabatic (broadband) design, unequal arm lengths and a linear
microheater design, as shown in the optical micrograph in Fig. 6.5(a). Fig. 6.5(b)
shows the time response, measured by applying a square-wave voltage to the
heater. The heater changes the temperature in one arm and induces a phase differ-
ence between the two arms of the MZI to shift the nulls of its sinusoidal frequency
response. This MZI heater has the same cross-section as the microring heater dis-
cussed above. The square shape of the current response means that the driving
circuits don’t contribute notable capacitance or inductance that can be a limitation
to the switching speed at this scale. Therefore, the measured time response, with
decay rates visible in the optical response, is mainly from the heat flow process
in the devices. The rise and fall times are 8 us and 15 us, respectively. This re-
sponse time is short enough to permit the application of these structures in telecom
chip-scale reconfigurable and tunable OADMs.

THigher tuning efficiencies can be expected by some simple improvements to the thermal con-
figuration. First, using silica overcladding (such as TEOS) will increase the overcladding thermal
conductivity in comparison to the presently used HSQ, and potentially increase tuning by the order
of a factor of 2. Furthermore, it is of interest to investigate low index, high thermal conductivity over-
claddings, that may make thermal contact between the resonator and the heater, while confining the
optical mode away from the heater metal. Patterning such a structure may be needed to avoid lateral
thermal crosstalk between various optical components on the chip, such as multiple resonators.
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Figure 6.4: Demonstration of widely tunable silicon microring resonator: (a) optical micro-
graph of fabricated thermally tunable silicon microring resonator, based on the proposed
Si waveguide design; (b) drop-port response spectra demonstrating 20 nm of resonant-
wavelength tuning with under 50 mW.

6.2 Widely tunable, high-order silicon add-drop filters

In this section, the general approach, rigorous electromagnetic design and demon-
stration of fourth-order tunable microring resonator filters is described. They are
designed to meet rigorous telecom spectral requirements at all wavelengths in their
tuning range across the 30 nm C-band.

6.2.1 Two-band tuning approach

In order to make use of a single resonant band of a tunable wavelength filter across a
larger tuning range than its FSR, typically a Vernier scheme is employed [120, 121].
Such schemes select only one of every several resonant passbands and create a
larger effective FSR. However, these schemes are dispersive in the through-port
response, and therefore are not well suited for channel add-drop filters, where all
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Figure 6.5: Thermooptic switching speed of silicon microphotonics: (a) optical micrograph
of fabricated thermally switchable silicon Mach-Zehnder-interferometer (switching speed
test structure); (b) applied heater voltage, heater current response showing that the electrical
circuit is not band-limited at this switching speed, and the optical transmission response,
showing a 8 us rise time and 15 us fall time due to thermal constants in the structure
(published in [135]).

through-port channels (not being dropped) must remain unaffected by the filter. For
this purpose, device designs and architectures are proposed and demonstrated, in
Chaps. 8 and 9 in this thesis, that permit dispersion free FSR multiplication. Here,
the silicon tunable filters are designed having such an architecture in mind to
select among the passbands. Hence, here a filter with a passband that does not
vary substantially over the tuning range is demonstrated.

The microring-resonator waveguide was designed to meet a number of design
constraints in Chap. 5. To permit sufficient freedom for such designs (and to keep
finesse and intracavity field enhancement low, to avoid nonlinear impairments),
the maximum possible FSR was not used; instead a 16 nm (2 THz) FSR was deemed
sufficient. Therefore FSR doubling is sufficient to provide a reach of 32 nm to cover
the C-band. The heaters were designed to maximize the tuning range and cover
one full FSR of the resonator. Therefore, the objective is to select two longitudinal
resonances of the filter, as illustrated in Fig. 6.6. The lower-wavelength resonance
is tuned a full FSR first, then is brought back to the starting point and the second
resonance is tuned across its FSR to cover the second part of the spectrum. At
these wavelengths the spectral shape is to be maintained.
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l\ ——AT=0

55 S - | —mo—- AT =223K |
£ TSl
"g) s \ Tune #54 ~
8 S
[} Seo
3 Changé~~__
z_ resonance \\Q\ 1
% band
s 53 Tune #53 =
(=4

52 \[

1530 1540 1550 1560 1570

157

Wavelength (nm) created |

rom: s_plot _ringguide_FSRx2_tuning_reson

Figure 6.6: Two-band tuning approach to covering the C band with a 16-nm FSR resonator-
based filter. The filter is designed to simultaneously meet the filtering criteria with multiple
longitudinal resonance orders (in this case two adjacent resonances). The first resonance is
tuned a full FSR to cover half the total tuning range, and the second resonance is tuned a full
FSR to cover the rest of the tuning range. A resonance selection mechanism is required that
allows suppression of all resonances to a “fully transparent” state, except the one currently
active. Such designs are presented in Chap. 8 and 9.

6.2.2 Resonance-frequency-independent coupling and spectral response
shape

Maintaining a fixed spectral shape means maintaining the CMT-in-time “energy
coupling coefficients” that determine the spectral response shape. Since the various
ring-bus and ring-ring power coupling ratios of directional couplers (e.g. &, and
k) scale with the FSR as [38]

2
Mgy
Krp = ———>—
P 2A frsr
2
Ko — Hop
T 2
A fsr

and the FSR, A frsr, depends on the group index, then the power coupling to group
index ratio is the quantity that must be unchanging near the resonant frequency as
the resonant frequency is tuned.

Note that this requirement does not mean that the directional coupler power
ratios must be wavelength-independent, but rather may be wavelength dependent
also, so long as the value of coupling at and near the passband wavelength, at all
tuning positions, remains the same. This property is referred to here as resonant-
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frequency-independent coupling, and calls for the requirement:

Rrb
—_— = const.
Ngroup wo(q)

Rrr

3 = const.
n

group lwy(q)

for all ¢, where g parametrizes the tuning states.

In strongly confined waveguides, both the power coupling ratios x(w, ¢) and
group indices ngroup(w, q) change both with wavelength and with temperature.
However, an interesting observation is that in silicon, whose thermooptic coeffi-
cient is positive, the temperature and wavelength contributions cancel so that the
overall wavelength dependence is reduced. Higher temperature shifts the reso-
nant mode to longer wavelengths, where the guided mode is less well confined, so
the effective index is reduced, and the couplings increase. On the other hand, the
temperature increases the core index, so the mode is better confined and couplings
decrease. In principle, a waveguide cross-section may be chosen that cancels the
two.

6.2.3 Rigorous design simulations

Rigorous 3D FDTD simulations were carried out to find the models for the ring-
bus and ring-ring couplers. For a set of coupling gaps, the simulations yield
cross-coupling power ratio, CIFS, and coupler loss. In the case of non-symmetric
couplers, such as ring-bus couplers with a straight bus and a bent ring, the coupler
loss for a bus-side input excitation and for a ring-side input excitation may be
different. Here, only the more critical ring-side loss is computed.

Fig. 6.7 shows a schematic of the ring-bus coupler, and time snapshots of
the out-of-plane magnetic field during a FDTD simulation for the 105 nm gap.
Fig. 6.8 shows a schematic of the ring-ring coupler, and time snapshots of the
out-of-plane magnetic field during a simulation for the 100 nm gap. The results of
these simulations are shown in Fig. 6.9(a) and (b), respectively. Each parameter is
plotted at three wavelengths — the leftmost end of the target spectrum (1534 nm),
the middle (1550 nm) and the rightmost end (1566 nm).

The bus waveguide was chosen to be narrower, at 495 nm, in order to suppress
the formation of any spurious higher-order coupler modes that are associated with
coupler scattering loss [89, 119]. The ring-bus coupling plots show that the loss is
25 dB below the coupling fraction — essentially negligible in the context of the filter.
A narrower bus also means larger coupling gaps (compare this data — about 200 nm
gap for 12.8% coupling — to the CMT estimates for identical 600 nm waveguides
in Fig. 5.14(b) which give about 120 nm). The ring-ring coupling shows a higher
coupler loss, but still 15 dB below the coupling ratio, which is also very low.
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Figure 6.7: Rigorous 3D FDTD simulation of a ring-bus coupling region for the design of
silicon tunable filters: (a) configuration and dimensions, (b-f) H. field snapshots at several
points in time showing the test pulse traversing the structure. The simulation yields cross-
and bar-state coupled power ratio and phase shifts. A set of simulations with varying
coupling gaps yields coupling ratio, coupler loss and CIFS vs. gap. A narrower bus is used
to achieve low coupler loss [89, 119].

The coupling, loss and CIFS plots may be used to design resonant filters and
structures based on the chosen waveguide design and ring radius. The simplest
way to use this data is to perform linear or low-order polynomial fitting of the
simulated data on the semilog scale as plotted. Such simple fits can then be used
to enter the coupling, loss and phase shift parameters into the directional coupler
models for various choices of coupling gap.

The fourth-order filter geometry is illustrated in Fig. 6.12(a). The filter is de-
signed based on these criteria, and was chosen to have a 3 dB bandwidth of
75 GHz. This was done to reduce loss and to ensure that the 40 GHz channel
window falls within the low-dispersion region of the filter response. A fourth-
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Figure 6.8: Rigorous 3D FDTD simulation of a ring-ring coupling region for the design of
silicon tunable filters: (a) configuration and dimensions, (b-d) H. field snapshots at several
points in time showing the test pulse traversing the structure. The simulation yields cross-
and bar-state coupled power ratio and phase shifts. A set of simulations with varying
coupling gaps yields coupling ratio, coupler loss and CIFS vs. gap.

order filter can accommodate such a wide passband and still roll off to -30dB at
+80 GHz detuning from center, at the edge of the adjacent channel. The designed
electromagnetic and physical parameters (coupling coefficients and dimensions)
for the filter are given in Tables 6.1 and 6.2. Because the wavelength dependence
of the couplings and group index varies the response between the first and second
resonant passband under consideration, the designed filter shape is not standard
Chebyshev. Rather, it is a slight modification, where the 1550 nm cold passband
has the middle of the three through-port extinction lobes suppressed by 28 dB,
and the two side lobes suppressed by about 24 dB. This is discussed further in the
wavelength and tuning dependence.

The coupling simulations just described were all done assuming room-temperature
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Figure 6.9: 3D FDTD-computed design plots showing cross-state power coupling, ring-side
coupler loss and CIFS for a range of wall-to-wall coupling gaps and for (a) ring-bus and (b)
ring-ring coupling. The computations were done for 600x 106 nm ring waveguides with
6.735 um central radius, and 495 x 106 nm bus waveguides.

refractive indices. The simulations were also repeated in two other scenarios:
when the temperature is 223" C above room temperature, which is the projected
full-FSR-tuning temperature actuation for the chosen MC-STE design; and at room
temperature but with a width error on all waveguides of +30 nm. This data gives
the wavelength-dependent temperature and dimensional error perturbations to the
coupling. The coupling ratios, only for the gaps in Table 6.2, are plotted against
wavelength for two different temperatures in Fig. 6.10(a-c). The shaded regions
indicate the range of coupling coefficient for £30 nm error in the waveguide width.
The dimensional errors are assumed to be symmetric about the center of the waveg-
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Table 6.1: Electromagnetic parameters of fourth-order, wide-tunable micror-

ing add-drop filter

FSR

Input/output coupler cross-state coupling
Input/output coupler ring-side loss

Ring 1-ring 2 coupling
Ring 1-ring 2 loss
Ring 2-ring 3 coupling
Ring 2-ring 3 loss
Ring 3-ring 4 coupling
Ring 3-ring 4 loss
Ring 4-ring 1 coupling

Resonant order (at A, =1550 nm)
Assumed propagation loss

(dy/df)~' 2125GHz

K(i,0) 0.186

lioysr — 3.7-107%
Kerl 0.0065
Lir1 9.6-107°
K2 0.0036
Lo 5.8-107°
Krr3 0.0065
L3 9.6-107°
Forrd (0)
Yo 53 and 52

8dB/cm (0.0338 dB/r.t.)

Table 6.2: Physical dimensions of fourth-order, wide-tunable microring add-

drop filter

Height of all waveguides
Ring center radius

Ring waveguide width
Bus waveguide width
Input coupler gap

Ring 1-ring 2 gap

Ring 2-ring 3 gap

Ring 3-ring 4 gap
Output coupler gap
Ring 4-ring 1 gap

R
Wy
Wy
gi
g1
92
g3
gO
94

106 nm
6.732m
600 nm
498 nm
175 nm
404 nm
463 nm
404 nm
175 nm
1637 nm

uide — therefore, for example, 30 nm narrower waveguides mean a 30 nm wider
coupling gap. This is the most relevant type of error in lithography and etching.

Fig. 6.10(a) also shows a dotted line that shows the approximate coupling co-
efficient at the center wavelength of the filter, when the filter is tuned to that

wavelength.

One longitudinal resonance is used from 1534nm to 1550 nm,

then the next passband from 1550 nm to 1566 nm. As described, the thermoop-
tic index change offsets the wavelength dependence of the coupling coefficient
to recover a flatter overall dependence represented by the dotted “resonance-
frequency-dependence” of the on-resonance coupling. Therefore the coupling
zigzags between two bounds over a fairly limited range.
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Tunable 4th-order silicon microring filter:
Wavelength, temperature and width-error dependence of ring-bus coupling
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Figure 6.10: Resonant-frequency-independent coupling: 3D FDTD-computed (a) ring-bus
and (b,c) first and second ring-ring couplings vs. wavelength, temperature and symmet-
ric waveguide width error, dw. The nominal design at 1550 nm has power couplings
{Krb, Krr1, k2 } = {18.6,0.648,0.364}% (the structure is symmetrical and SCC, not loop-
coupled as devices in Chap. C, so kx4 = 0). Note that the coupling coefficient on resonance
at different temperatures, as the filter is tuned, is shown by the dotted line. This dependence
is about 3x weaker than the plain frequency dependence as the thermooptic effect and
wavelength dependence cancel each other.

The predicted spectral response at the four critical points of the tuning spectrum
— the cold state of the 1534 nm resonance and 1550 nm resonance, and the “hot
state” (at 223K above room temperature) — is shown in Fig. 6.11. Fig. 6.11(a) shows
both resonant passbands in the cold state (at room temperature), and Fig. 6.11(b)
shows them in the hot state. The target response is shown in solid line, while the
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shaded bars around the response show the variation of the response with 30 nm
width variation in all waveguides.

The spectral response is remarkably unchanged between the first and second
resonance, and in particular between the cold state and the hot state (there is a very
slight narrowing in the latter). The through-port extinction ratio, the most sensitive
part of the filter, is maintained above ~22 dB in all tuning states.

The filter design meets typical telecom specifications at all channels — 30dB
adjacent channel rejection, <3 dB loss, >30-35 dB extinction in the through port
(see Table 1.1). To achieve a high through port extinction, these filters are designed
to use a two-stage configuration, as demonstrated in Sec. 7.1 [119]. Multistage
configurations provide sufficient robustness in the through-port response to enable
high extinction ratios in practical devices, and at least two stages are required to
use the standard add-after-drop configuration typically used in industry (though in
general these stages need not be identical). This is done in order to avoid the need
to impose an extremely high extinction ratio from add to drop port, since the add
port typically has a high-power signal at the start of a link, whereas a drop port is
handling an arriving signal that may be highly attenuated. Therefore add-to-drop
extinction must be considerably larger than the input-to-through-port extinction.

The simulated filter design responses here are computed using a spatial scatter-
ing state-variable model (similar to that in Sec. 9.3.1), where each scattering point
is a directional coupler modeled by the canonical form in Figs. 2.5, 2.6, 2.7, 2.10.
The parameters for the model of each coupler are obtained from the 3D FDTD
simulations, summarized in Fig. 6.9 and 6.10.

6.2.4 Experimental demonstration

The experimental demonstration of the fourth-order tunable filter was realized in
the waveguide cross-section shown in Fig. 6.3. The geometry of the filter is shown
in Fig. 6.12(a), and an optical micrograph of the fabricated device is shown in
Fig. 6.12(b). The rings are arranged in a folded geometry (rather than in a linear
arrangement as in [38]) in order to localize all resonators to the middle of the
e-beam tool writing field, and to balance fabrication proximity effects to some
degree. Note that microring 1 and 4 are not coupled in the design, and in the
realization are placed far enough apart (1.6 pum) that the coupling is effectively
nil. This is in contrast to loop-coupled structures, proposed in Appendix C of this
thesis, where ring 1 and 4 might be coupled so as to establish a cavity coupling
loop.

Whereas in the demonstration of SiN filters [90, 119] care was taken to calibrate
for resonance frequency shifts due to CIFS and fabrication-related proximity effects
(in a first fabrication run), and apply those corrections in the device run, this was
not done here due to lack of time. It was not of critical concern since all resonators
have individual heaters and can be lined up by thermal tuning.
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Figure 6.11: Fourth-order tunable silicon microring-resonator filter theoretical passband
shape vs. wavelength tuning. (a) At room temperature, resonant passbands # 53 and #
52 are at 1534 nm and 1550 nm, respectively. Wavelength dependence of the coupling
coefficients and symmetric width errors of 30 nm cause very little passband shape vari-
ation. (b) At AT = 4223K above room temperature, both passbands tune by a full FSR to
1550 nm and 1566 nm, respectively, showing virtually no change in passband shape while
tuning, due to the small on-resonance coupling variation shown in Fig. 6.10.
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Figure 6.12: Fourth-order, tunable series-coupled-cavity add-drop filter in silicon (4'"-
order): (a) design layout of actual device, (b) optical micrograph of fabricated add-drop
filter in silicon.

The experimentally measured through and drop port responses are shown in
Fig. 6.13. The microheaters are actuated to align the filter with a number of ITU grid
specified channels, shown in gray boxes for a 40 GHz clear window and 100 GHz
channel spacing. Fig. 6.13(a) shows a 16 nm FSR. Fig. 6.13(b) shows a close view
of the drop and through port responses showing a cold state and three tuned states,
at 2, 4 and 6 channel spacings away from the cold state. The theoretical response
of the nominal design is shown overlaid with the experimental responses, showing
good agreement. The filter shows on the order of 1dB loss, 30dB out-of-band
rejection and 20 dB in-band extinction in the through port. This enables 40 dB
extinction in a two-stage configuration. This is the first demonstration of high-
order, tunable microring-resonator filters capable of channel add-drop filtering.
They show a substantial in-band extinction response.

The passbands were tuned by no more than six channels in the initial experi-
ment over concerns that the microheaters may burn out by oxidation at the higher
powers (40-50 mW). A part of the tuning range was used to compensate a 400 GHz
misalignment of the resonances of the first and fourth ring relative to the second
and third. The reason for this misalignment is likely fabrication-related proximity
effects (CIFS was evaluated to be small, see Fig. 6.9). In this fabrication, a calibra-
tion run for frequency matching was not performed due to lack of time. However,
this technique, previously applied to SiN filters [90, 119], can easily be applied
in Si designs. Nevertheless, the demonstration of full-FSR tuning in single-ring
cavities of identical design gives confidence that the four ring filters demonstrated
should be tunable across their full FSR. More careful experiments, and additional
passivation, should allow the demonstration of full-FSR tuning in these devices.
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Figure 6.14: Dispersion of fabricated telecom-grade (4"-order, series-coupled-cavity) mi-
croring resonator add-drop filter in silicon. The dispersion is extracted by Hilbert trans-
forming a smoothed experimental amplitude response [Fig. 6.13(b)].

Besides the amplitude response, a key criterion for WDM telecom network
applications is dispersion. For a 40 GHz channel window, less than 20 ps/nm of
dispersion is typically required (Table 1.1). The filter in this section was designed
to have a wide bandwidth in order to place the channel window away from its
dispersion peaks which are at band edges.

The phase response of the fabricated filter was evaluated using the Kramers-
Kronig (Hilbert transform) approach to extracting the amplitude from phase re-
sponse and vice versa. Fig. 6.14 shows the design drop and through port dis-
persion (they are identical), and the “experimental” drop-port dispersion extracted
from the experimental amplitude response data, with some smoothing to remove
high frequency noise. The agreement is good, and the dispersion is estimated to
be at most 50-60 ps/nm at the very edges of the channel, and considerably less
inside.

6.3 Conclusions

In this chapter, the first demonstration of wide full-FSR tuning of silicon resonators
was described. Rigorous design of filters for wide tunability was discussed, in-
cluding resonance-frequency-independent passband response shape (i.e. nearly
resonance-frequency-independent coupling). Fourth-order, tunable silicon micror-
ing resonator add-drop filters were designed and demonstrated, having passbands
that are substantially independent of the tuned resonant frequency. The filters
show 1dB of drop loss and high extinction ratios in the drop and through port
responses that make them suitable for telecom channel add-drop applications for
chip-scale R/T-OADMs.
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Chapter 7

Resonant filter synthesis and design

7.1 Multistage filters*

7.1.1 Introduction

High-index-contrast (HIC) microring resonators support high-Q modes with a large
free spectral range (FSR) that enables planar microphotonic filters to operate over
the multi-terahertz channel spectra of densely wavelength-division multiplexed
(DWDM) networks. Previous work on high-order (multi-cavity) resonant filters
was focused on achieving flat-top drop-port responses with a sharp rolloff (~30 dB
at closely spaced adjacent channels), low loss (<3 dB) or a wide FSR [38, 88, 137].
Equally important for add-drop applications is a high-extinction, box-like notch re-
sponse across the channel band in the through port — in excess of 30 dB - to avoid
so-called coherent crosstalk between the drop and add data. Critical coupling
enables a high-extinction notch response from a lossy cavity, but it is sensitive
to variations and insufficiently selective for high-spectral-efficiency applications.
And, the technique does not trivially generalize to high-order filters. Rigorous
design and resonance matching techniques have enabled the demonstration of
3*d-order filters with 14 dB notch extinction [89]. Higher extinctions require over-
coming the response sensitivity to resonance alignment and coupling errors. Such
notch filters have other important applications in optical single-sideband modula-
tion, fluorescence spectroscopy, astronomy and quantum encryption schemes.

In this section, high-order add-drop filters based on strongly confined SiN
waveguides are described, constructed by feed-forward (FF) cascading of reduced-
order stages. The resulting through-port responses are less sensitive to the fine
dimensional tolerances for coupling coefficients and resonance frequencies asso-
ciated with HIC. The latter make it difficult to achieve high through-port extinction

*This section reproduced, with modifications, from the published version of this work in [136].
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Figure 7.1: Multistage add—drop filters: incoherently cascaded stages in (a) the through-port
path, and (b) the through and drop port paths.

in a single high-order, series-coupled-cavity (SCC) filter [38]. Multistage filters
also permit lower drop loss due to partial divorce of the drop- and through-port
synthesis. The design and experimental demonstration of one-, two-, and three-
stage filters using identical 3-ring stages, fabricated in Si-rich SiN, is described.
They exhibit a 20 nm FSR, a 40 GHz passband with 2 dB drop loss, 30 dB adjacent
channel rejection, and reach >50dB in-band extinction in the through port.

7.1.2 Sensitivity of the through-port-response extinction

Fig. 7.1 illustrates multistage arrangements of arbitrary filter blocks forming a cas-
cade in the in-to-through signal ‘path” only (a) or in both the through and drop
paths (b). In previous work, cascading of single rings enabled sharper resonant
lines and increased through-port extinction [138], but flat passbands are not pos-
sible without prohibitive insertion loss resulting from the necessary detuning. On
the other hand, cascaded higher-order thin-film filters have been employed to in-
crease extinction [139]. This approach has merit, and integrated filters present
further advantages of negligible cascading loss, controllable stage-to-stage varia-
tion, and high-Q cavities. With non-identical stages further advantages are found
for the design of multiport responses in the presence of loss.

In multistage filters, synthesis for multiple response functions is partially de-
coupled, unlike SCC designs. In Fig. 7.1(a), the first-stage parameters influence the
in-to-through and in-to-drop responses, the last stage is shared by in-to-through and
add-to-through responses, while intermediate stages affect only the in-to-through
response. With at least two stages, add and drop ports are isolated in the common
add-after-drop arrangement. Were the first stage a broadband 3 dB splitter, drop
and thru response shape design would be fully decoupled, at the cost of a 3 dB
loss in each. Hence, there is a tradeoff between spectral design decoupling, which
permits separate optimization, and loss.

Separate design leads to lower drop stage order and lower loss. A flat-top
response with both high out-of-band drop-port rejection and high in-band through-
port extinction requires a filter of higher order than one meeting either single
requirement. The minimum order N of a bandpass filter is determined by a
spectral fill factor on the one hand (channel bandwidth to channel spacing ratio,
BSR), and approximately by the sum of desired in-band (R;) and out-of-band
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Figure 7.2: (a) Normalized through-port response sensitivity to fractional error in coupling
and resonance frequencies; (b) loss and tolerance to errors of a comparable single-stage
filter and (c) multistage filter.

(R,) rejection levels in dB: N ~ (R; + R,)/[201og3(2/BSR — 1)] for maximally
flat filters (similarly for equiripple). Since the allowable passband ripple is up to
large fractions of a dB (typically < 1dB in-band rolloff), drop-port criteria alone
could be met by a lower order filter. Conversely, an SCC filter with 30 dB in-band
extinction in the through port requires, by power conservation, a corresponding
drop response with <0.004 dB passband ripple. This calls for a high order filter,
leading to high drop loss. Conversely, since the allowable passband ripple in
add-drop filters is up to large fractions of a dB, drop-port criteria alone could be
met by a lower order filter.

Through-port extinction in SCC filters is particularly sensitive to errors, and a
high extinction is much more difficult to realize in practice than a sharp rolloff
in the drop port. Drop-port rejection through a chain of N co-resonant coupled
resonators is guaranteed to roll off at a rate of 6N dB per octave of detuning,
independent of the precise details of coupling and frequency matching. Passband
flatness does depend on these parameters but is also fairly robust to variations
([46], see also Chap. 4.1). On the other hand, both precise matching and coupling
control are required for a high extinction through port to be achieved. Alternative,
parallel-coupled ring geometries [140] provide higher tolerance of through-port
extinction but lower tolerance of drop-port out-of-band rejection.
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Sensitivity of the through port extinction may be estimated analytically using
a coupled-mode model [38]. In passbands and stopbands, where one response
function is near unity, flat-top passive filters are first-order insensitive to parame-
ter errors. Therefore we consider a parabolic normalized measure of sensitivity,
SH(w),a = 0%|H(w;a)?/0(Ina)?* where the parameter o may represent error in
coupling coefficients (fractional), or frequency mismatch (normalized to band-
width). In Fig. 7.2a, the through-port sensitivity is computed theoretivally for a
4th_order filter example that meets typical WDM criteria, for the four relevant pa-
rameter types: inner and outer ring resonance frequencies and couplings (each
category carrying approximately uniform values in flat-top filters). A Chebyshev
filter with R; ~35dB in-band extinction and a normalized bandwidth of 1 rad/s
employs energy couplings {13, u3, p3} = {1.5,0.36,0.18} (proportional to power
coupling coefficients, k2, i = 1,2, 3) [38]. The plot shows the worst-case through-
port extinction within the channel band due to fractional error in each of the
coupling coefficients and due to resonance frequency mismatch (between outer
and inner resonators) as a fraction of the filter bandwidth, separately; and the total
extinction floor due to the net effect of all parameters. The symmetric geometry
is assumed to be preserved when errors are introduced. This is the most likely
case in fabrication. All parameters contribute similarly, and an error of 15% in
all parameters leads to an extinction floor at 10 dB. While response sensitivity to
each parameter is of the same order, the expected uncertainty of the frequency
mismatch is typically greater than that of the coupling coefficients.

We may compare the 4"-order SCC filter, suitable for a 100 GHz-spaced WDM
channel grid, with a multistage filter meeting comparable requirements. Incorpo-
rating finite cavity loss Q’s of 25,000, Fig. 7.2(b) shows 1000 overlaid responses
representing a uniformly distributed random fractional error in power couplings
and in frequency mismatch as a fraction of bandwidth (£15% in both cases). The
extinction is limited by the random perturbations to ~10dB. By comparison, in
a multistage filter [Fig. 7.2(b), right] a 3"d-order first stage is sufficient (and others
are set identically), resulting in lower drop loss (here, 2.5 dB instead of 3 dB), and
provides a partial decoupling of the design variables with respect to the response
functions, and a more robust total through-port extinction of 30 dB. In higher order
filters, multistage designs provide a greater reduction of the drop loss.

7.1.3 Rigorous electromagnetic design

For experimental demonstration, one-, two- and three-stage filters [Fig. 7.1(a)]
were designed for 40 GHz channels on a 100 GHz WDM grid. Identical 3"4-order
stages were employed to simplify stage-to-stage resonance alignment. Each stage
has a drop passband with 0.05 dB ripple, rolling off to 0.2 dB at the channel band-
edges and 30 dB rejection 80 GHz from center-band; and a through-port extinction
of 22 dB over mid-channel (15 dB near band edges). For a three-stage filter, the
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extinction is thus 66 dB (45 dB). A 20 nm FSR calls for 8 pm ring radius, and ring-bus
and ring-ring couplings of 10.3%, 0.22%.

The electromagnetic design follows Ref. [89] and was tailored to measured
core and cladding indices (2.181, 1.455) and core-layer thickness, 396 nm. Wide,
thin waveguide cross-sections reduce ring sensitivity to width tolerances and side-
wall roughness, and curb polarization mixing [89]. The filter is designed for TE
input. An integrated polarization diversity scheme is to be used for polarization-
independent operation [20, 31, 33]. In previous work, we found 1.5 dB drop loss
intrinsic in design (bending, coupler scattering) [89]. Here, we chose a wider
(900%x396 nm) ring waveguide with a deeper (200 nm) overetch, increasing the
radiation Q of the fundamental (TE;;) resonance associated with bending loss to
~ 250,000 at 1530 nm. Spurious TM;; and TEs; resonances were kept to low
Q’s under 2000 and 25, respectively, to prevent them from contributing to coupler
losses [89]. With narrower, 702 nm bus waveguides, rigorous three-dimensional
finite-difference time-domain (FDTD) simulations produced design ring-bus and
ring-ring gap spacings of 120 nm and 372 nm (rounded to the 6 nm e-beam step
size) corresponding to the desired coupled-power ratios. Coupler loss was reduced
by 5x from Ref. [89] and 10x from Ref. [88]. With total “design insertion loss” at
0.35dB, coupler loss accounts for 0.1 dB, bend loss for 0.25 dB.

7.1.4 Fabrication and optical characterization results

One-, two- and three-stage filters were fabricated by a process based on direct-write
scanning-electron-beam lithography (SEBL), described in Ref. [90]. The pattern was
defined in 200 nm of poly-methyl-methacrylate (PMMA) using a Raith 150 SEBL
system at 30 keV. A hardmask was formed by evaporating and lifting off a thin
film of Ni. Waveguides were formed by a 590 nm-deep conventional reactive-ion
etching step using a gas mixture of CHF3 and Os. Finally, the Ni hardmask was
removed. Fig. 7.3(a) shows a scanning electron micrograph (SEM) of a 3-stage
device.

Care was taken to prevent lithographic distortions. The exposure pattern was
designed for lithographic field distortions to affect the filter stages in common
mode, such that they remain frequency aligned. To compensate for the resonance
frequency mismatch reported in Ref. [88, 90], a 3.8-4.2% higher e-beam dose was
applied to the middle ring of each stage to increase its dimensions and match its
frequency to the outer rings.

Figs. 7.3(b-d) show measured drop- and through-port responses, for TE-polarized
input, of one-, two- and three-stage frequency-compensated filters. Care was taken
during characterization to ensure that the drop- and through-port responses have
a consistent relative insertion loss scale. Measurement of high-extinction through
ports necessitated filtering the laser line pedestal in the characterization setup by
a narrowband following filter [21]. Fig. 7.3(b) shows close agreement between
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Figure 7.3: (a) SEM of fabricated three-stage filter. Measured response spectra of (b) one-
(with design plot), (c) two- (inset shows FSR) and (d) three-stage filter showing high in-band
extinction (inset: individual stage responses, design and experiment, showing <5 GHz
stage alignment).

the intended design and measured result for a single-stage filter, validating the
design and demonstrating the fabrication accuracy. The only fitted parameters
were the center wavelength of 1538.36 nm, and the middle-to-outer ring reso-
nance frequency mismatch of 2.3 GHz. Excess ring propagation loss of 12 dB/cm
was extracted by independent measurement and included in the theoretical model
plot. Improving on Ref. [89], the single-stage filter has a 40 GHz 1 dB-passband
with 2 dB drop loss, 30 dB out-of-band rejection, and 18 dB through-port extinc-
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tion — the highest reported in a high-order microring filter — owing to the frequency
matching and low loss. Evidence suggests that the propagation loss is associated
primarily with material absorption in Si-rich SiN. In-band dispersion is zero near
center-band with an average wavelength slope of ~ 0.3 ns/nm?. In the design, it
varies from +40 ps/nm to -40 ps/nm across the 40 GHz passband.

The two-stage filter [Fig. 7.3(c)] shows a similar drop response with increased
through-port extinction of over 30 dB across the channel, meeting typical require-
ments for WDM add-drop filtering. The inset shows a realized FSR above 20 nm.
While theory predicts an extinction >60dB for compensated 3-stage filters, the
observed extinction [Fig. 7.3(d)] is above 51 dB across a 32 GHz window, limited
by intra- and inter-stage frequency mismatch. Rings in compensated filters are
synchronous to ~2 GHz, corresponding to a matching of average ring widths to
better than 70 pm. The 3-ring filter stages are frequency aligned to <5 GHz (~12%
of the bandwidth; see Fig. 7.3(d), inset), a critical requirement for practicability of
multistage filters without post-fabrication trimming or active adjustment of individ-
ual rings. Adjacent channel insertion loss in the through port of a single stage is
<0.3 dB. This puts a limitation on the number of stages that can be tolerated.

Drop and through port cascading

Multistage filters based on symmetric 2-ring stages were also designed and fabri-
cated. They do not require frequency compensation and are less sensitive to vari-
ations, but require cascading in both the drop and the through paths [Fig. 7.1(b)]
to meet similar drop-port rolloff criteria. They are also limited in range of appli-
cability to WDM applications with coarse requirements. These structures will be
described in greater detail elsewhere.

7.1.5 Asymmetric stages and loss-compensated multistage filters

The separation of functions afforded by the multistage design offers further ad-
vantage when substantial cavity losses are accounted. In particular, asymmetrical
filter designs can be used to advantage. First, the concept of asymmetrical series-
coupled-cavity filters for the purposes of loss-compensated flat-top responses and
impedance-mismatched partially dropping filters (e.g. channel monitors) is pre-
sented. Second, the application of asymmetric filters as stages in a multistage
arrangement is summarized by an example.

Asymmetrical series-cavity filters for loss compensation and channel monitors

Series-coupled cavity (SCC) high-order resonators [38] have a symmetric distri-
bution of coupling coefficients to produce flat-top (maximally flat or equiripple)
responses. However, when losses are introduced into the cavities, as is necessary
to model realistic situations, the effect of the loss is to round passband edges. Large
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rounding of the passband can affect the amplitude spectrum of the filtered signal,
or introduce loss dependent on the wavelength alignment of the filter with the
signal channel.

In this work, asymmetrical series-coupled-cavity filter designs are proposed.
They are found to enable pole-preserving designs that can compensate for the
passband shape distortions of cavity losses at the expense of larger midband inser-
tion loss.

SCC filters have all-pole drop-port responses. Therefore, the algorithm pro-
posed to arrive at a loss-compensated filter design is one that preserves the pole po-
sitions (which determine filter shape) of the lossless filter as cavity loss is smoothly
introduced into the design. One starts with a lossless filter design, and gradually
introduces loss, then corrects the coupling coefficients to preserve all the pole
positions. It turns out that an N*"—order (N-cavity) filter has N poles, but N + 1
coupling coefficients including input and output couplings to bus waveguides.
This is in contrast to the low-pass electrical circuit (ladder-network) prototype that
is equivalent to this filter” which, for fixed access port impedances, has exactly N
inductive and capacitive elements.

Therefore, even after meeting all requirements to keep the pole positions fixed
after the introduction of loss, there is one degree of freedom remaining. This degree
of freedom is equivalent to impedance matching. Let us choose the first coupling
coefficient (of the first ring coupling to the input waveguide) as the free parameter.
Then, if the input coupling is varied, while the other couplings are adjusted to keep
the pole positions fixed either when the input coupling is modified, or when loss is
introduced, or both, the result is that the filter passband shape is maintained. When
the input coupling is varied, the overall insertion loss level of the filter response
changes however, as its analogy with impedance matching would imply.

This has two consequences. First, it allows one, in a lossy filter, to find the
lowest loss design (among the possible cases parametrized by adjusting the addi-
tional degree of freedom) in addition to maintaining the flat-top filter shape. There
is indeed a minimum-loss design and it generally turns out to have an asymmet-
rical distribution of coupling coefficients in higher-order filters. Incidentally, it
has been suggested in previous literature that the critical coupling condition max-
imizes drop-port response transmission in a single-ring add-drop filter [55, 141].
This claim is not true. It can be simply proven that for a fixed bandwidth Lorentzian
response, the lowest drop-port loss is arrived at, in fact, in a design with equal input
and output coefficients. While it is well known and true that critical coupling is
optimal in one sense in that all power is extracted from the input waveguide, in
this case, more power is given up to the loss mechanism, so overall the drop loss
is higher than in the symmetric case. However, the generalization described here
to higher-order filters does indeed typically lead to asymmetrical distributions of

This correspondence was briefly described by the author in [8].
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couplings.

The second consequence of the extra degree of freedom is that it allows new
flat-top filter designs even in substantially lossless resonant filters. For example, by
lowering the input coupling, and adjusting the remaining couplings to maintain the
flat-top filter shape, an impedance-mismatched flat-top filter is designed that drops
only a fraction (e.g. 10%) of the input signal, and leaves the remainder to continue
into the through port. If the input coupling was lowered from the nominal value,
then the filter is in the undercoupled regime, which means it provides lower out of
band dispersion in the through port, and also has a larger coupling gap and lower
group delay for through-port channels. These factors mean that it can be used as
an efficient channel monitor that introduces very low excess losses and dispersion
into through-port channels.

It should be noted that flat-top responses may not be optimal for telecom
applications. For example, Bessel filters with rounded passbands provide linear
phase (no dispersion) in the passband of SCC filters. It turns out that asymmetrical
designs can be used to arrive at these designs too. When loss is introduced into
a flat-top filter, the passband rounds where it is most sensitive to loss, i.e. at the
band edges where high-Q supermodes are found. Then, one may fix the passband
shape, remove the loss and vary the coupling distribution to preserve the shape in
a lossless case. For filters rounder than a Butterworth response, the couplings will
typically be asymmetric.

Further details, analysis and examples of this work are described at greater
length in [142].

Asymmetrical stages in multistage filters

In the presence of substantial cavity losses, passbands are rounded. A multistage
configuration (Fig. 7.4) can further enable independently designed asymmetric first
and last stages to maintain flat-top input-to-drop and add-to-through responses,
while the intermediate stage ensures a maximum rejection across the channel band
in the through (input-to-through-port) response. The first and last stage couplings
are the same: {6.8,0.084,0.22,1.9}%, designed to maintain a flat-top filter shape in
a 3-ring SCC filter with 3 THz FSR (realizable with low bend loss in SiN microring
resonators) and a loss Q of 15,000 in the cavities. The middle stage, on the other
hand, is designed to compensate the deteriorated through port that results in the
first and third stages and has the couplings: {8.2,0.16,0.16, 15.6}%. The resulting
response, shown in the figure, demonstrates a flat-top drop-port response and a
flat extinction in the through port in a filter with substantial finite losses. Of course
there is an insertion loss, but this aspect cannot be avoided.
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Figure 7.4: Multistage filters based on asymmetric, loss-compensated filter stages: (a)
Loss-compensated multistage filter simulation. Non-identical stages give (b) flattened lossy
passband and high-extinction through-port (published in [142]).

7.1.6 Conclusions

Multistage add-drop filters based on HIC, third-order microring-resonator stages
were experimentally demonstrated. They showed tight stage-to-stage resonance
alignment and accurate realization, matching design, of 40 GHz flat-top responses
with ~ 30dB in-band extinction and 20 nm FSR. The filters satisfy basic require-
ments for a 100 GHz WDM grid, without the need for post-fabrication trimming or
active adjustment of individual cavities.

The presented multistage add-drop filters demonstrate the first high-extinction,
rectangular notch spectra achieved experimentally in microring resonators, ex-
ceeding 50dB. These are also the first microphotonic filters to show low-loss,
high-fidelity flat-top responses that meet the full spectral requirements of WDM
add-drop filtering. The ease of increasing complexity in microphotonic circuits
promises a path to higher extinction levels and spectral selectivity where macro-
scale approaches are limited.

Asymmetrical SCC filters were described that allow flat-top filters compensated
for loss, minimum-loss design, as well as lossless flat-top filters with impedance
mismatch and low dispersion for fractional-power dropping for channel monitoring
applications. Multistage filters based on asymmetrical stages allow both through
and drop port responses compensated for the spectral response distorting effects of
loss.

It is shown in other parts of this work (Chaps. 8 and 9) that these filters are in
principle suitable for hitless tuning [143], an important capability for wavelength
routing networks that is difficult to achieve in bulk-optical technologies.
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Chapter 8

Universally balanced
interferometers as bypass schemes

In this section, a new class of interferometers is proposed in which the spectrum
entering one input port may be split among the interferometer arms in an arbitrarily
chosen wavelength- and/or time-dependent manner, but is fully recombined in a
single corresponding output port by symmetry. On account of the guaranteed con-
structive interference, the proposed devices are referred to as universally balanced
interferometers (UBIs). They are a generalization of a bypass switch proposed by
Haus [143] and summarized in Sec. 8.2.1. The types of interferometers that have
proven useful in optics (Mach-Zehnder, Fabry-Perot, Michelson) have generally
entailed fixed-reflectivity mirrors and adjustable arm lengths. In UBISs, illustrated
in Fig. 8.1, the “mirror” design is largely arbitrary [and may contain couplers,
resonators, switches, and non-reciprocal elements — see Fig. 8.2(a)], while the in-
terferometer arms are fixed. Hence, they are primarily suitable for microphotonic
circuit realization.

An important application of UBIs is as a general bypass scheme for photonic
devices. A generic UBI modified by an inserted optical processing device F' in
one interferometer arm is shown in Fig. 8.1. This configuration permits the device
access to a part of the input spectrum routed to it by input mirror A. The part of the
spectrum passing unaffected through the device F' is recombined with the bypass
signal in a single output port (of A’). New generalized filter designs emerge that
address hitless tuning [143] and dispersion-free multiplication of the free spectral
range (FSR) of microresonators [63, 144], enabling their introduction into chip-
scale tunable wavelength routers.

First, | describe the physical principle of operation and show that UBIs guaran-
tee broadband constructive interference into one output port, for a general class of
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input mirror choices. This principle is represented as a simple conceptual “lossless
UBI rule”, and a second generalization, the “lossy UBI rule”. Next, sensitivities of
UBIs to loss, phase error, and asymmetric actuation are described. Then, folded

UBIs — using non-reciprocal delay lines — are described, along with their potential
applications.

Among several novel applications of UBIs, | propose a spectrum slicing UBI
that suppresses undesired resonances and provides a new way to multiply the ef-
fective FSR and wavelength tunability of a microphotonic add-drop filter, without
adding excess dispersion. | outline a geometrical proof, based on canonical repre-
sentations described in Sec. 2.2, that UBIs using arbitrary cascaded Mach-Zehnder
lattice filters [145] as mirrors contribute zero excess dispersion in general, even
when the splitter and combiner are each dispersive.

A A
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Figure 8.1: Conceptual representation of general universally balanced interferometer (UBI),
with a filter inserted in one arm and excited from one input port, recombines all unfiltered
spectrum in one output port (published in [63]).
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Figure 8.2: (a) lllustrative example to show that the UBI splitting “mirror” A may be of
arbitrary design (and may even be non-reciprocal); (b) a folded UBI arrangement, in a
free-space representation. A folded UBI requires a non-reciprocal 7 differential phase shift.

A non-reciprocal phase shift corresponds to the action of a gyrator element [48] (published
in [63]).
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8.1 Theory of UBIs

8.1.1 Principle of operation: a physical viewpoint

Consider a generic interferometer with a splitter “mirror” A and a combiner mirror
A’ (Fig. 8.1 without filter F), each having 2 input and 2 output ports. In a folded em-
bodiment in Fig. 8.2(b), A and A" are coincident. Sufficient conditions to construct
a UBI are that: combiner A’ operate as a time-reversed and port-complementary*
replica of the splitter A; each be a substantially lossless and reflectionless (LR)
4-port; and the interferometer arms be fixed with a 7 differential phase shift (DPS).
Referring to Sec. 2.2.1, a general 4-port optical hybrid A that is LR can be repre-
sented by a 2 x 2 unitary transfer matrix U (with b = U - @) of the most general form
(2.10). Factorized into a form more suitable for a physically intuitive description,

Uis
= ; V1= ke i/ €%
U = e . . 8.1
€ [ ik e 102 Me*wl ®.1
e V[ VTTR ive ][ e o,
B 1 ivE  V1—k e~
symmetrized so that 6, = (¢11+¢22)/2, 01 = (P11 —P22)/2 and Oy = (P12 — P21)/2;
where elements of U are labeled wu, = |umn| ™. One coupling ratio and

three phases remain as free parameters, the fourth phase having been fixed by the
requirement of unitarity (2.7) that ¢11 + g2 — P12 — do1 = £7.

This 7 unitary phase condition contributes in an essential way to the construc-
tion of a UBI. Otherwise, design of the “mirror” A is arbitrary, and may contain
couplers, resonators, switches, and non-reciprocal elements (circulators, gyrators).
lts T-matrix, U, may be wavelength-dependent and controllable in time (such as
a tunable filter or switch), i.e. U = U(\,p), where p parametrizes the possi-
ble (switch) configurations. The A and p dependence is understood and omitted
henceforth.

A general physical argument for the design of a UBI can be given by considering
a canonical physical model for splitter A (see Sec. 2.2.1). Only the left-most two
matrices in the factorization in Eq. (8.1) are physically relevant to interference
in Fig. 8.1. Thus, arbitrary splitter A may at any one (\,p) be described as an
ideal directional coupler with coupling ratio x and a characteristic phase shift
¢o = 01 + 02 in one output arm. This is illustrated in Fig. 8.3(a) excited from one
port.

With the objective of recombining all signal power from the interferometer
arms into one waveguide, it is instructive to think in terms of time reversibility of

*A “port-complementary” replica here means a replica that is excited from the opposite input
port (of two input ports) with respect to the original structure.
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exact 180" phase shift

(c)

Figure 8.3: Canonical models of arbitrary LR 4-port mirrors, and of a constructed UBI.
(a),(b) Excitation at port 1 or 2 gives respectively 7/2 F ¢, differential phase at the outputs;
(c) cascading splitter from (a) and the time-reversed and 180° rotated version of (b) cancels
arbitrary phase ¢,. If the remaining = differential phase shift is compensated, perfect
constructive interference is obtained, i.e. a UBI is derived (published in [63]).

Maxwell’s equations. Reversing time shows that properly phased arm excitations
re-enter the upper waveguide to the left. This conclusion might suggest using a
V-reflected mirror-image (see Fig. 2.4) replica device in cascade at the output to
recombine the signal. However, an interferometer constructed from a splitter A,
and a combiner that is a V-mirror-image replica of A with respect to a vertical
reflection axis (flipped left-to-right on page) is inconvenient in the general case.
This is because the arm lengths have a phase difference of 2¢,, dependent on the
arbitrary design of A, that must be compensated; and ¢, may be wavelength (or
time) dependent (a few specific designs that have intrinsically ¢, = 0 are presented
later in the chapter). In general, a more profitable approach is to consider the same
splitter A excited from the complementary input port [Fig. 8.3(b)]. The splitting
ratio is the same, but the phase difference between higher and lower intensity
outputs, as illustrated, is now 7/2 + ¢, instead of 7/2 — ¢,. This is enforced by
the unitary phase condition (2.7). Now, we take the time-reversed operation of
Fig. 8.3(b), mirror imaged with respect to both a vertical (V) and horizontal (H)
axis of reflection, to represent output combiner A’. This is equivalent to a rotation
of splitter A by 180" (HV operation) in the plane of the chip. Then, the arbitrary
phases ¢, cancel and only a 7 differential phase shift remains [Fig. 8.3(c)]. If the
w-radian DPS is compensated by inserting a broadband 7 phase shift in one arm,
a general UBI device of the form of Fig. 8.1(a) is derived.

The matrix formalism shows this rigorously. In the time-reversed solution
(subscripted by tr) corresponding to a particular excitation of splitter A, the outputs
become the inputs (b* — ay,), the inputs become the outputs (a* — b;,) and
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the time-reversed transfer matrix is Uy, = [ﬁ*]_l (in the time-reversed solution,
material-response phasor tensors are conjugated as € — € and 7z — 7). Note that
time reversal corresponds to conjugation of the field phasors or mode amplitudes
[67, p. 82]. For asplitter A and combiner A’ comprising lossless (€ = & 7=7"and
reciprocal (€ = ETﬁ = ﬁT) media, the time-forward and time-reversed solutions
are supported by one and the same structure. For non-reciprocal lossless media,
the time-reversed solution is supported by a structure with a reversed orientation
of the built-in (and any applied) DC bias magnetic fields (Hpc # 0 in Fig. 8.1).
Thus, A and A" may be non-reciprocal and still form a valid UBI structure, except
in a folded arrangement [Fig. 8.2(b)] where they are coincident and must therefore
be reciprocal. This is a rare if not unique application of the time-reversal principle
for the design of a device, where it is not used in the context of a symmetry under
time reversal (which leads to reciprocal devices), because the “time-forward” and
“time-reversed” operation occur in separate copies of a device.

8.1.2 The UBI rule

The total transfer matrix of the UBI in Fig. 8.1 involves [from right to left in eq. (8.2)]
the splitter A (matrix U), a « differential phase shift matrix, and the matrix of the sec-
ond, time-reversed element (Uy,), sandwiched by Pauli matrices here representing
reflection about a horizontal axis (H operation):

T:[“]Uﬁ[“””‘]u 5.)
1 0 1 0 0 &7

= prm— =T
From unitarity, Uy, = [U ]7! = U , as described in Sec. 2.2 (Fig. 2.4). This, and
the form (8.1) for U lead to the simplified total matrix

T = 200 0 ) (8.3)
0 —1

Thus, all signal entering an input port recombines in one output port, regardless of
the splitting ratio and phase relationship within the interferometer determined by
the splitter A. No assumptions about the particular design of splitter A were made
beyond unitarity of U. Itis interesting, from (8.2) and (8.3), to see that A’, preceded
and followed (not shown) by a w-radian differential phase shift, is a kind of inverse
— in the sense of amplitude only — to the arbitrary unitary operator corresponding
to splitter A; however, a common-mode phase spectrum 6,(A, p) is not canceled
by A’ in general.

This property may be summarized in a different but equivalent manner by
noting that the cascade (i.e. matrix product) of this “inverse” of A and the T-matrix
of the splitter A itself, is the identity matrix, to within a phase-factor (which may
be wavelength- and time-dependent), as illustrated in Fig. 8.4. This property will
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be referred to as the UBI rule, and more specifically as the lossless UBI rule, as its
derivation relied on energy conservation (but holds valid for non-reciprocal as well
as reciprocal devices). This rule is helpful for analysis of interferometer structures
and is used here to derive a proposed dispersionless Vernier filter scheme, as well
as to derive an alternative lossy UBI rule in other parts of this chapter.
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Figure 8.4: The lossless UBI rule: a UBI with lossless (reciprocal or non-reciprocal) splitter A
and combiner A’ is equivalent to a pair of non-interacting waveguides with a 7 differential
phase shift and a common-mode phase 6,, as per Eq. (8.3).

8.1.3 Broadband 7 differential phase shifts and UBI sensitivities

From the derivation of the UBI rule it is clear that the 7 differential phase shift plays
an essential role. Therefore, in this section, first the sensitivity of UBI operation to
deviations from a 7 phase shift in this principal parameter is shown to be reasonably
weak. Since, for broadband operation, a # DPS must be substantially maintained
over the entire operating wavelength range, designs of an ultra-broadband = DPS
are next analyzed and proposed. Finally, the sensitivity of UBIs to non-idealities
in other important parameters such as finite loss of the splitter A, and asymmetry
between elements A and A’, are addressed and UBIs are shown to be remarkably
tolerant in principle and in the appropriately defined sense in each case.

Previous work using interferometers with a = DPS

We briefly address previous work that exhibits most similarity to UBIs in principle
of operation. Haus’ hitless switch [143] relies on this principle, and thus belongs to
the general class of UBIs, as summarized later in Sec. 8.2.1. In earlier work, Henry
et al. employed a 7 differential phase shift to flatten the wavelength response of a
Mach-Zehnder Bragg grating filter [146]. In addition, considerable work exists in
integrated-optics literature on so-called cascaded-MZI, or lattice, filters [66, 145],
including ones using point-symmetric configurations [66] like UBIs. However,
the previous use of point-symmetric structures for flattened cross-state passbands
[66] does not rely on a m DPS, and therefore does not fall in the UBI class of
devices. Furthermore, to avoid confusion it should be restated here that UBIs may
contain arbitrary reflectionless 4-port photonic circuits in splitter A, and are not
limited to cascaded-MZI configurations, though several applications of UBIs may
employ them. Further to this point, it is worth restating that Fig. 8.3 is an abstract
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canonical representation of an arbitrary lossless UBI (at a fixed wavelength A and
configuration p), and does not refer solely to a concrete directional coupler. It
may indeed represent devices comprising resonators, magnetooptic devices such
as circulators, etc.

UBI sensitivity to 7 differential phase shift error

In Fig. 8.5(a), the effect of error in the differential phase shift of 7 radians on the UBI
transmission is plotted. The range of possible insertion losses due to incomplete
recombination of output signals by the combiner device A’ is indicated for a range
of fractional error in the = DPS. Itis shown that less than 1 dB loss in recombination
at the combiner A’ is obtained for up to 30% deviation from the ideal = DPS,
substantially less than 0.2dB for less than 10% deviation, and virtually no excess
loss for under 5% deviation. A gray region between two contours shows all possible
loss values, for various relative amplitude ratios of the two signals entering A’. This
gives a general requirement for physical realizations of the DPS. Ideally, the DPS
should be between 0.957 and 1.057 over the operating wavelength range. The
largest loss in recombination is seen when the splitting ratio of the splitter device
Ais near 1 : 1, shown as the bottom limit of the gray region of possible losses in
Fig. 8.5(a). In contrast, virtually no signal is lost in operating regimes where the
splitter device substantially transfers all power to one or the other optical path,
because the interferometric character of the device is not important in that case
(represented as the top boundary of the gray loss region).
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Figure 8.5: (a) Tolerability of lossless UBI transmission efficiency to error in the 7 differential
phase shift, showing corresponding signal recombination loss, equivalent to “hit loss” for
UBI-based hitless switch implementations; (b) deviation from a 7 phase shift of a standard
half-guided-wavelength and an ultra-broadband = DPS design. (published in Ref. [143])
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Design of broadband r differential phase shifts

Since UBIs employ arbitrary splitter A and combiner A’ (subject to their required
relative configuration), they operate in a regime with nearly perfect signal recom-
bination at a single output port over a bandwidth that is only as broadband as the
7 differential phase shift realization employed. The most straightforward physical
realization of a  DPS is a half-guided-wavelength arm length difference (at a given
wavelength) in the waveguide pair connecting splitter A and combiner A’. The
guided wavelength of the propagating mode is related to its propagation constant
B as Aguided = 27/(3. A half guided-wavelength may be equivalent to a = DPS at
a select wavelength, but waveguide dispersion (and plain frequency dependence
of the propagation constant) causes the DPS to vary with wavelength. Never-
theless, the short length guarantees a reasonably large bandwidth. For example,
identical cross-section slab waveguide arms with core index 2.2, cladding index
1.445 and thicknesses of 0.5 um (TE) give less than 5% deviation in the m DPS
from its nominal value over 140 nm bandwidth, as shown in Fig. 8.5(b). This is
sufficient bandwidth to cover optical communication bands, with negligible loss in
recombining the total power and negligible “hit” loss (if used for hitless switching).

Next, an approach is proposed for designing ultra-broadband DPS sections.
For cases where wider bandwidth or lower hit loss is required, the dispersion of
the waveguides in the two interferometer arms of the UBI may be engineered by
using non-identical waveguide cross-sections. If the two waveguides 1 and 2 have
lengths Ly and Lo, then in the ideal case, for a m DPS to be established the following
needs to hold for all frequencies of interest, w: (1(w)L1 — f2(w)La = 7 + 27m,
with m integer. In a band of interest near w,, a first-order Taylor-series expansion
of B(w) in frequency detuning dw yields two requirements (from the zeroth and
first order terms in dw):

B1(wo) L1 — P2(wo) Lo = £ + 271m
8ﬁ1 L 8,82 o L]_ L2
ZPL | — == =1 _ ==

Ly =
ow ow |, Vgl |, Vg2

=0

Wo Wo

The first equation requires that there be a = DPS at the reference frequency. The
second equation requires that the group delays across the two sections be matched.
Such waveguide designs are realizable. For sake of illustration, again a two-
dimensional example is given — a pair of slabs as above, this time of identical
lengths L1 = Ly = 6.5um, but having widths of 0.5 um and 0.9 um, respectively.
The pair yields a 7 DPS within 5% over more than 900 nm, as shown in Fig. 8.5(b).
It is interesting to note that two waveguides with different widths and otherwise
identical design may have the same transit time and (since they have equal lengths)
equal group velocities (to within 0.05%), even though their propagation constants
differ by over 5%. This match, of course, exists only at the design wavelength of
1550 nm. With guides of non-identical design, in practice propagation loss in the
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two arms (e.g., sidewall-roughness-induced loss [127]) can be different and cause
imbalance in the UBI. Care is required in design to ensure balanced arm losses.
For short-length waveguides this may not pose a problem, and otherwise it can be
compensated.

A second, more important issue is that a functional device that is inserted into
the UBI (see Fig. 8.1), such as a channel add/drop filter, may alter the phase balance.
If the device adds phase and dispersion over the wavelength range over which UBI
operation is expected, it may be compensated by design in the second arm (by
altering the design of that waveguide or inserting a designed phase-compensating
device) to restore the 7 DPS. This issue is demonstrated in hitless switch designs in
Sec. 8.2.1, and was the driving factor for novel designs in Chap. 9 which address
and circumvent this problem.

UBI sensitivity to antisymmetric perturbations

UBIs rely on identical splitter A and combiner A’ (except for their orientation and
any bias magnetic field in the non-reciprocal case). Therefore, common-mode
perturbations of the splitter and combiner — ones which change both in the same
way — do not alter ideal UBI operation in the sense that complete constructive
interference into a single output port is preserved, although the spectrum split-
ting response into the two UBI arms between the splitter and combiner will be
accordingly affected.

On the other hand, antisymmetric perturbations to A and A’ directly affect
the overall constructive interference that characterizes UBIs. Here, sensitivity of
UBI operation to antisymmetric perturbations of splitter A and combiner A’ is
considered.

The splitter and combiner have T-matrices that are cross-transposes’ of each
other, and may be represented in standard form (2.10). Referring to the canonical
representation for LR 4-ports in Fig. 2.6, for the lossless splitter A, it may be ob-
served by inspection that antisymmetric perturbations to 6,, 6, or 62 in A and A’
lead effectively to an error in the DPS between the splitter and combiner, the sen-
sitivity to which was addressed in Fig. 8.5(a). Therefore, here only antisymmetric
perturbation of the coupling ratio is considered.

Now, suppose that we introduce an arbitrary antisymmetric error to the cou-
pling ratio « in the transfer matrices of the splitter and combiner. The coupling
ratio in the splitter A is increased by ¢, such that Kk — k + dx, and the coupling
ratio in the combiner A’ is decreased by dx. Since perturbations cannot increase
K to first order when x = 1 (nominally) or decrease it when x = 0, let us first
rewrite the coupling ratio in terms of a beat length so that v/1 — x = cos(6,;) and
vk =sin(6,). The phase 6,, has physical significance as an optical beat length in
a synchronous directional coupler, for example, and therefore errors in 6, are an

fsee definition (2.5) in Chap. 2.
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appropriate way to characterize error sensitivity at all nominal values of k. The
nominal transfer matrix of the splitter can then be rewritten as

cos(f,)et?  isin(f,)et?
—i62 —i6;

=C 0
UA = UA’ = €Z °

isin(fy)e cos(fx)e

If an antisymmetric error is introduced (e.g. due to limitations in device fabrication),
then 6, — 6, + 60 in the splitter A, and 6,, — 6, — 60 in the combiner A’. The
T-matrix of the total UBI, comprising the perturbed splitter A, an ideal 7 DPS, and
the perturbed combiner A’ is

T:UA,.[; i ] T, o
% cos(246) —ieTH01+02) 5in(256) ®.5)
B ie~H01102) 5in(260) — cos(246) '

A few conclusions may be drawn from this transmission response of the asym-
metrically perturbed UBL. First, it is independent of the nominal coupling phase
0., which means that the UBI sensitivity to antisymmetric perturbation 46 is the
same for all nominal values of 6, (this is reasonable as there is no reason why
there should be a special coupling phase value). Secondly, if the antisymmetric
coupling perturbation is zero, 60 — 0, the combiner A’ is identical to the splitter
A and the total transfer matrix is the ideal UBI transfer matrix in eq. (8.3).

On the other hand, if finite asymmetry is present due to fabrication errors,
then d6 # 0. The matrix elements 771 and T5s, that have unity magnitude in an
ideal UBI and are the response functions of interest, are reduced from unity to
second-order in 6. This is evident from a Taylor-series expansion of the matrix in
eq. (8.5) in orders of 66, so that T1; = cos(200) = 1 — 26% + O(56*). Therefore
the UBI transmission response function of interest is first-order insensitive to small
asymmetric perturbations in the coupling ratio of the splitter A and combiner A’.

This insensitivity can be restated in terms of the power coupling ratio . For k+
5k = sin®(0, + 66), and for small 66, the coupling ratio error §x and corresponding
coupling phase error §6 are related by: 6x = 2y/kv/1 — k6. Therefore, a given
error in the coupling phase 6, results in the largest absolute perturbation to the
coupling ratio k when k = 1/2, i.e. at the 3dB coupling ratio point. This is
consistent with sensitivity to the errors in the DPS, which was also shown to be
most acute at the equal splitting ratio point.

A further comment is in order regarding the sensitivity to antisymmetric cou-
pling ratio perturbations. Even though the recombining response 711, as shown, is
first-order insensitive to antisymmetric perturbations to the coupling ratios of the
splitter A and combiner A’ at any particular wavelength in the wavelength range
of interest, this cannot be translated to a conclusion that all UBI designs are highly
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tolerant to dimensional errors. In some possible device designs for a splitter A,
the dx (or 66) perturbation of the ideal T-matrix, if resulting from a dimensional
error for example, can be highly sensitive to that dimensional error. In this case,
a minute dimensional error can cause a large dx, and thus the demonstrated first-
order insensitivity in dx will be insufficient to preserve successful operation. An
important example are high-Q (narrow-band) resonators. A resonant filter, such as
a microring-based channel add-drop filter, supports drop-port responses that have
narrow resonant lineshapes. The sensitivity of the resonant frequency to dimen-
sional error can be very large, as shown in Chap. 5 (Fig. 5.9). For example, typical
microring resonators formed of SiN single-mode waveguides in Appendix E and
Sec. 7.1 were shown to have approximately 40 GHz/nm sensitivity of the resonance
frequency to the width of the waveguide. The width is lithographically defined
and therefore typically a larger contribution to resonance error than waveguide
thickness. Based on this information, only a 1A error in ring-waveguide width will
shift a resonance by 4 GHz. If the bandwidth of the resonant response of interest
is on the order of 4 GHz, clearly the transmission of the device can change from
nearly 100% to nearly 0% at one wavelength, due to the dimensional error. The
resulting dx in the coupling ratio of a splitter A containing such a resonator is of
order 1, and thus no first or even higher order insensitivity would help make the
operation robust to such errors.

This is a fundamental limitation of UBIs. However, this problem is eliminated
by the inherent symmetry in folded UBIs, proposed in Sec. 8.3, which use the same
device as the splitter and combiner element.

UBI sensitivity to loss

For practically relevant devices, the impact of finite loss on the operation of UBIs
must also be considered. Recall that the initial derivation of the UBI principle in
Sec. 8.1.1 relied on the assumption of lossless devices in two ways: first, in the
use of time reversibility in the analysis; and second, in making use of the unitary
phase condition (2.7).

Loss may be introduced into the splitter A and combiner A’, into the pair of
waveguides connecting them (including the = DPS), or both. Arbitrary common-
mode loss, gain or phase modulation in the two waveguides is permitted and
does not impair the operation of an UBI. Common-mode operations on the optical
signals in the two waveguides “commute” with the splitter A and combiner A’, so
the common-mode loss, gain or phase shift may be moved from inside the UBI to
outside, i.e. before the splitter, or after the combiner, without affecting the overall
response of the device.

Antisymmetric loss in the waveguide arms cannot be tolerated, but if it can be
predicted at the design stage it may still be compensated by adding a balancing
loss element in the lower-loss waveguide arm.
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When small but finite loss is introduced into the splitter A and combiner A’, on
the other hand, not only is loss introduced, but the unitary phase condition (2.7)
is violated. However, it was shown in Sec. 2.2.4 that passive reflectionless 4-ports
satisfy a bound (2.29) on the characteristic phase, that is analogous to the unitary
phase condition, the bound being tighter for lower maximum loss values. Referring
to Fig. 2.11(c), for example, we may infer that for an arbitrary passive splitter A
with no more than 10 : 1 maximum splitting ratio from one port, and 1 dB of loss,
the characteristic phase is = to within about +10%. For larger splitting ratios, the
characteristic phase is less well bound. However, it was shown that UBIs are most
sensitive to phase errors at balanced splitting ratios of the splitter and combiner,
near 1: 1, and very weakly sensitive at high splitting ratios of the order of 10 : 1 or
more. Therefore, UBIs are not highly sensitive in general to reasonably small losses
of the order of 1dB. It is noted that here the impact of loss on the time-reversal
aspect was disregarded, and in the future this should be accounted to complete
this analysis.

8.1.4 Reciprocal passive/active UBIs by SVD and the lossy UBI rule

The argumentation regarding sensitivity of UBIs to small losses in the previous sec-
tion holds in the context of reciprocal and non-reciprocal splitter A and combiner
A" elements. An exact generalization of the UBI principle may be derived that is
valid for passive and active devices with arbitrarily high loss or gain, if the scope
is restricted to reciprocal devices only.

UBIs that use a highly lossy splitter A and combiner A’ elements cannot be
expected to recombine all input signal energy at the output, since some signal
energy is lost to the particular loss mechanisms present in A and A’. These loss (or
gain) mechanisms may be broadband or arbitrarily wavelength dependent. Under
these constraints, the best possible outcome in terms of proper UBI operation would
be for all remaining signal to be recombined into a single output port. This may
be accomplished by lossy UBIs when splitter A and combiner A’ are reciprocal.
It is first demonstrated briefly using the T-matrix transformations in Fig. 2.4, and
then shown in a more physically intuitive way using the SVD canonical form in
Fig. 2.10. B

If the transfer matrix of the splitter A is U, then for a reciprocal device, the
combiner A’ — being a 180" rotated copy of A — has the T-matrix, according to
Fig. 2.4,

= =C U2 U12
Uy=U, = .
U2l U1

Although this passive-device derivation is based on reciprocity, while the lossless
derivation was based on time reversal, the total transfer matrix of the UBI compris-
ing a reciprocal, lossy splitter A, a pair of optical waveguides with a 7-radian DPS,
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and a corresponding combiner A’ as described above is of identical form to (8.2)
and results in:

T 1 frm— _
=Uy - [ 0 ] Uy = [u11u22 U21U12 0

Sl

0 €™ 0 —U11U22 + U21UL2

Therefore, although the diagonal elements show that recombining output may in
general have lossy and wavelength dependent constructive interference, the zero
off-diagonal elements show that this is the best that can be done with the given
lossy splitter and combiner devices as all remaining power is recombined into one
output port. As a result, the general property of UBIs to recombine arbitrarily split
input signal is shown to hold for arbitrarily large losses in the case of reciprocal
splitter A and combiner A’, in the sense that all remaining power is recombined
into one output port.

More generally, a lossy/gainy UBI rule can be found, that holds for passive
and active splitters and combiners that are reciprocal, as shown in Fig. 8.6(a), by
analogy with the lossless UBI rule (Fig. 8.4). It is found by considering the SVD
canonical form of Fig. 2.10 for the splitter A and combiner A’, and offers greater
insight than that afforded by the straightforward reciprocity derivation above.

Fig. 8.6(b) shows the SVD canonical form of a UBI architecture (Fig. 8.4) having
an arbitrary passive or active splitter and combiner, each being represented by the
SVD canonical form for an arbitrary reflectionless 4-port (Fig. 2.10). Each of the
splitter A and combiner A’ accordingly comprises two lossless abstract directional
couplers, separated by a maximum and minimum gain section, along with the
phase degrees of freedom.

We may use the established lossless UBI rule (Fig. 8.4) to simplify this form by
inspection, by noting that the output coupler of the splitter, the central = DPS, and
the input coupler of the combiner form a lossless UBI. The latter may be replaced
by a m DPS section to collapse the structure to that shown in Fig. 8.6(c). Now, each
waveguide arm in the middle of the device has the same gain equal to the product
of the maximum and minimum SVD gain of the splitter, gmaxgmin. Since this is a
common-mode gain, it “commutes” with the lossless couplers, and may be pulled
out of the middle, either in front of the splitter, or behind the combiner, as shown
in Fig. 8.6(d), without affecting the transmission response of the structure. Finally,
now the left-hand side of the remaining structure is again a lossless UBI, and may
be replaced by a plain = DPS. As a result, the structure on the right-hand side of
Fig. 8.6(a) is obtained, and the lossy/gainy UBI rule is derived. Therefore, we have
used the lossless UBI rule to derive the lossy/gainy UBI rule.

An interesting observation from the lossy/gainy UBI rule, based on the SVD,
that is not made apparent by the reciprocity derivation, is that UBIs not only ensure
maximal constructive interference into one port when using reciprocal splitters and
combiners, but also that the loss is “smoothed” as the transmission is the geometric
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Figure 8.6: (a) The lossy/gainy UBI rule (restricted to the reciprocal case): a UBI comprising
reciprocal splitter A, a w-radian DPS, and combiner A’ is equivalent to a pair of non-
interacting waveguides with a m DPS, a common-mode phase 26,, and a common-mode
gain that is the geometric average of the SVD min/max gains of splitter A; (b) canonical
representation of an arbitrary lossy/gainy UBI using canonical form in Fig. 2.10; (c,d)
reduced forms after applying the lossless UBI rule (Fig. 8.4) and rearranging “commuting”
sections.

average of the maximum and minimum SVD gain (or loss) of the individual splitter
or combiner.

8.1.5 Approximating inverse physical operations of R 4-ports

Since the lossless and lossy UBI rules show the construction of devices that resem-
ble the inverse operation of a R 4-port, it is of interest to consider whether an exact
inverse may be constructed.

In UBIs based on lossy/gainy reciprocal 4-ports, while all output power is in
one port, this may be more or less than the total input power, depending on the
loss/gain of the system. To obtain a unity magnitude output response of the UBI
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and obtain an “identity matrix” in magnitude, a modification may be made to
the UBI principle. Referring to Fig. 8.6(b), the combiner A" may be altered so
that its SVD gains are not equal but related to those of the splitter A, as follows:
min(A") = 1/gmax(A), gmax(A") = 1/gmin(A). That is, if a passive (lossy) splitter
A has maximum and minimum “gains” less than unity in magnitude, the combiner
A" must be an active structure with positive gain, i.e. gmin(A’), gmax(A4") > 1.
Referring to Fig. 8.6(a), clearly by this action the general UBI is reduced to the form
of the lossless UBI (Fig. 8.4). What this relationship between the combiner A’ and
the splitter A means in physical terms, and whether a simple, symmetry-preserving
action exists that can implement this transformation is left for future investigations.

Besides an identity magnitude response, an ideal inverse combiner must cancel
the phase response of the splitter device. However, there is a fundamental limi-
tation to our ability to construct an ideal inverse to an optical system, including
both lossless and passive/active splitter/combiners A, A’, which is rooted in the
phase response, and calls for violating causality. That is, the common-mode phase
response 6, of splitter A must be replaced by —6, in the combiner A’ for a true
inverse operation. This is not possible, in general, in physical terms as a positive
group delay in A would call for a negative group delay in A’. A simple thought
experiment that confirms this is to consider a splitter A comprising parallel, un-
coupled waveguides, each with a single-microring-resonator all-pass filter. The
combiner would then require rings with negative (unphysical) circumference, i.e.
round-trip time, to cancel the group delay.

Therefore, the closest possible approximation to a true inverse would be an
approximation of the true inverse to within a constant group delay. This may
be accomplished by using combiner A’, sandwiched by a 7-radian DPS on each
side, as already described, where A and A’ have the same 6,, and following the
combiner A" with a set of ideal all-pass filters to flatten the group delay spectrum.
While there exist efficient algorithms that permit the approximation of a desired
group-delay spectrum to arbitrarily high order [147-149], these schemes break the
symmetry of the UBI, and the all-pass filters will in practice have additional loss,
which requires attention in engineering. Nevertheless, such schemes may be of
interest as the generation of various operator functions in physical (and in particular
optical) systems is of interest in quantum computation and quantum information
processing [150], and the inverse is a fundamental operation. In addition, as
fabrication technology improves, microphotonic circuits may become of interest
in these fields.
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Figure 8.7: Basic waveguide geometry and configuration of hitless switch based on Ag
switches, with embedded reconfigurable device, D1 [143].

8.2 Applications and novel devices based on UBIs

8.2.1 Haus hitless switch and generalizations

In this section, a new microphotonic “hitless switch” is described (Fig. 8.7). It was
proposed by Prof. H. A. Haus [143], predates the work on the general UBI principle
described in the rest of this chapter, and was the direct motivation for the author
to consider the latter, more fundamental generalization*. Hence the presentation
is chronologically out of order. However, this arrangement is preferable because
the “Haus switch” turns out to be an instance of the general class of UBIs, and can
be understood based on the developed UBI rule [Figs. 8.4, 8.6(a)]. In the original
work [143], the switch was treated by coupled-mode theory, in the context of A3
switches, and that more specific analysis will be omitted here.

The switch, illustrated in Fig. 8.7, is a solution to the hitless filter tuning prob-
lem. By enabling continuous, uninterrupted transition of an optical input signal
to a bypass path, it permits tuning of wavelength add-drop filters without disturb-
ing intermediate channels. The scheme comprises two symmetrically actuated,
2x2 Ap-type optical switches, anti-symmetrically cascaded in a balanced Mach-
Zehnder configuration, and a 7 differential phase shift in the interferometer arms.
By symmetry, it provides for wavelength-independent hitless operation before, dur-
ing and after switch reconfiguration, permitting slow switching (slower than the
bit period), independent of bitrate, to be used. Compact implementations using
high-index-contrast, MEMS-actuated switches were proposed.

To circumvent switch-state-dependent phase introduced by A switches, the

The original memo on the switch was written by H.A. Haus in March 2003, with the author and
colleague M.R. Watts as contributors. It was last revised by him the day before his death, May 20,
2003 [151]. The paper [143] was put together in Nov. 2004 based on this memo, and consideration
of the fundamental principles at work led the author to the UBI principle and various generalizations
presented in this chapter. The problem of hitless tuning, addressed first by this result, and now by
other work in this thesis as well, was brought to the authors’ attention in February 2003 by L. Socci
and M. Romagnoli of Pirelli Labs, Italy.
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Figure 8.8: Response in the interferometer arms and at the “hitless” output port in various
states of the symmetrically actuated A8 switches. A symmetric error in coupling ||l of £
10% affects individual arm responses (hence filter extinction), but the hitless output remains
unaffected with unity transmission.

inputs of the second switch are reversed with respect to the inputs of the first; and,
a 7 differential phase shift is introduced in the interferometer arms [Fig. 8.7(a)l.
For hitless operation, the switches are synchronously actuated. This is in contrast
to approaches that imply feedback control or careful adjustment of a phase ele-
ment and/or one switch state depending on the state of the other [28, 29]. For
express channels, the hitless scheme proposed is as broadband as the = phase shift
introduced, independent of the bandwidth of the individual switches, as may be
concluded from the UBI rule.

In the proposed hitless switching scheme, one arm of the interferometer con-
tains the device to be reconfigured — a wavelength-tunable channel add/drop filter
—and the other arm is free. First, leaving out the filter, the behaviour of the switch
interferometer alone [Fig. 8.8(a)l, based on generic 03 switches, is considered
[Fig. 8.8(b)]. It shows that, in different switch states of the A3 switches, the frac-
tion of power in each arm may vary, but the output is uniformly 100% in one port
(in the lossless case). In addition, an error in the optical coupling length that is
common-mode in the two switches (as might be expected in lithography) affects
output to each arm but not the signal recombining property of the interferometer.
These are consistent with the properties of UBIs described in Sec. 8.1.3.

Now, for a hitless-switchable filter, the filter (D1 or D2 in Fig. 8.7) is inserted
in one arm of the switch. Then, a second concern is that the inserted device, e.g.
an add/drop filter, may alter the phase balance by virtue of its own wavelength-
dependent phase response. If the device adds excessive parasitic phase and dis-
persion over the wavelength range that requires hitless operation for through-port
channels, this phase must be compensated by design in one of the arms to restore
a 7 phase shift.
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Figure 8.9: Hitless switching of a 34 order microring-resonator add-drop filter: (a) drop-
and (b) through-port amplitude responses vs. the bar-state, =2, of a single AJ3 switch.

Fig. 8.9 shows simulated drop- and through-port responses of a third-order
microring-resonator example filter within a hitless switch for various switch states,
2. The filter, shown on a 100-GHz channel grid, has 4 THz FSR and ring-bus and
ring-ring couplings of {7%,0.08%}. Hitless switching from a first state — dropping
a channel - to a second state — complete bypass — is shown, whereupon the filter
may be tuned to a new channel. The resonant filter has excess dispersion outside
its channel window that is larger at smaller detunings from the passband. This
dispersive response contributes a phase that unbalances the DPS in the switch and
leads to a parasitic hit loss of 0.4dB at adjacent channel edges.

When multistage filters are considered, the hit loss can be larger. In this
example, a cascade of two identical stages leads to 0.9 dB hit loss, and of three
stages to 2.2 dB.

In some present telecom applications such levels of hit loss may be tolerable
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Figure 8.10: MEMS-actuated hitless switch implementation: (a) multi-layer waveguide
switch layout, in folded geometry using one membrane, (b) a vertically-actuated MEMS A
switch cross-section.

because the switch can be actuated gradually, and because there may be sufficient
tolerance in the link budget. On the other hand, requirements on power balancing
between channels, and increases in data rate and channel density may eventually
reduce the tolerability of this hit. In general it is desirable to reduce this transient
loss to much lower levels. This hit loss may be reduced in a number of ways,
including improved designs of the filter that is embedded, such as low-dispersion
designs proposed in [142], and briefly described in Sec. 7.1.5.

For the hitless switching application broadband switches are required. Broad-
band AS switches were not required for hitless recombining, as the UBI rule
tolerates arbitrary splitters. However they are necessary in order to route the oper-
ating spectrum fully to the tunable filter or to the bypass path across the wavelength
of interest for filtering.

MEMS implementations

A number of approaches exist to broadband directional couplers [152] and switches.
Here, a MEMS-based implementation is described. The compact implementation
employs a HIC waveguide switch with MEMS-actuated dielectric slab 3 perturba-
tion® Due to exponentially vanishing evanescent fields of a guided mode, short,
strong couplers are more broadband than long, weakly-coupled ones. This is be-
cause a small wavelength-dependent change in propagation constant will affect
the field amplitude at larger distances from the core exponentially, while the length
contributes linearly. For full switching k! = 7/2, and for strong coupling high in-
dex contrast is desirable. Then, large Ag is in turn required to achieve switching.
A dielectric slab that interacts with the evanescent field of a waveguide and can

§1n this work, MEMS-actuated A3 switches (and resonator tuning by similar evanescent MEMS
actuation) were proposed by colleague M. R. Watts. The folded switch arrangement employing a
single MEMS actuator was proposed by the author. In previous work, MEMS-actuated switches and
tunable resonators have been investigated, for example by Magel [107] and Marcatili [51].
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be physically positioned by a MEMS assembly into proximity or contact with the
waveguide can provide strong AS perturbation. Operation of one such switch,
in a vertical geometry where the coupler waveguides are in different lithographic
layers and the slab moves up and down, is illustrated in Fig. 8.10(b). In addition
to a strong AS detuning, the slab “pulls” the guided mode of the top waveguide
toward it, thus also reducing the coupling x and further increasing the §/x ratio
that is relevant for switching. A disadvantage of a two-layer configuration is that
the waveguides must swap layers in the intermediate arms in order to provide
an opposite Aj for the second switch as required. This requires inter-layer opti-
cal coupling that can be achieved with adiabatically tapered coupler designs. A
symmetric hitless switch design with equal lengths of each layer guide ensures bal-
anced losses and optical length. A folded geometry may then be used to provide
symmetric switch actuation, where one MEMS slab acts over both the input and
output switch-coupler [Fig. 8.10(a)].

The given MEMS implementation is an example. Alternatively, single-lithographic-
layer MEMS-perturbation schemes may be pursued akin to similar ones used for
variable resonator coupling [97]. More generally, any realization of a AS switch
and a 7 phase shift will work.

Generalizations

The c