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ABSTRACT
The 13C content of microbial products are controlled by many factors, including the 13C 
content of the growth substrate, growth rate, the flux of carbon through various parts of 
the biochemical network, and the isotopic fractionation imposed by the enzymes of that 
network. We analyzed the 13C content of products of the methanogen Methanosarcina 
barkeri and found that fractionation varied strongly with substrate availability. 

These results inform our analysis of methanogen lipids from carbonates of the Lost City 
Hydrothermal Field. This ultramafic ecosystem produces methane highly enriched in 13C 
relative to most biotic methane. We find that the 13C enrichment in methanogen lipids 
is even stronger – demonstrating that the Methanosarcinales in active vents are methane 
producers, and that they are likely carbon-limited. Archaea in other parts of the vent field at 
Lost City are methanotrophs. The application of lipid biomarkers helps unravel the multiple 
biological and abiotic sources of methane at Lost City. 

Closer examination of lipids from Lost City shows that most are ether-type glycolipids. The 
dominance of glycolipids over phospholipids may be a phosphorus-conservation strategy 
in waters that are likely phosphorus-poor. Ether core lipids are similar to those produced 
by sulfate-reducing bacteria in environments where methane is oxidized anaerobically. 
Insoluble residues in Lost City carbonates contain proteinaceous organic material and have 
end-member δ15N values near 0‰, suggesting active nitrogen fixation is occurring.

Biomass and lipids from Yellowstone hot springs also showed surprising enrichments in 
13C. The common factor is high pH; unusual 13C enrichment may be common in alkaline 
hydrothermal systems.

Organisms in terrestrial and marine alkaline hydrothermal systems produced organic 
carbon with δ13C outside of the usual biological range. This informs our application of 
carbon isotopes as biosignatures, and suggests that biological and abiotic organic carbon 
may sometimes have 13C contents that are indistinguishable.
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Chapter 1
Introduction

This thesis examines the organic geochemical signatures of organisms inhabiting 

alkaline hydrothermal ecosystems. It focuses on two environments: a marine system 

driven by serpentinization – the Lost City Hydrothermal Field, and a terrestrial system in 

Yellowstone National Park. In comparing these two systems a few common patterns emerge. 

Archaea are dominant members of both microbial communities, but their phylogenetic 

affinities and metabolic strategies vastly differ. In both systems bacteria synthesize ether 

lipids. Microbes may be fixing nitrogen in each of the systems. Perhaps most significantly, 

each system contains biologically-derived organic carbon that is surprisingly enriched in 

13C.

At Lost City methane is being produced biologically, and probably also abiotically. 

Methanogenesis proceeds without any electron acceptors derived from oxygenic 

photosynthesis, and so in some ways Lost City may be a good analogue for an Archaean 

seafloor biosphere. Disentangling the complex methane production here will be important 

to students of the Archaean. 

Much attention has been given to the fact that some abiotic reactions, particularly 

in experimental hydrothermal systems, produce abiotic carbon that is depleted by 25‰ 

to 60‰ relative to its source. This result confounds the use of 13C-depleted carbon as 

an isotope biosignature. The concept of an isotope biosignature is further damaged by 

the work presented herein, which demonstrates that organic carbon may be biologically 

derived, yet have δ13C near 0‰ vs. VPDB. This may be particularly true in the very types of 

environments often considered analogues for early Earth or extraterrestrial ecosystems. An 

important result of this study is that ranges of δ13C for biological and abiotic organic carbon 

overlap: identification of the source of organic carbon must come from other approaches.
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1.1 alkaline hydroThermal sysTems and early life on earTh

Hydrothermal environments require three ingredients for their existence: heat, 

water, and rock. They may be expected anywhere these three ingredients are mixed, and 

hydrothermal systems are widespread along the mid-ocean ridges (Kelley et al., 2002; 

Wilcock et al., 2004), at volcanic hotspots such as Iceland and Yellowstone (Brock, 1978). 

The first hydrothermal systems likely appeared on Earth as soon as the surface was cool 

enough to allow liquid water. Their presence on other terrestrial planets such as Mars 

(Bock and Goode, 1996) and Europa (Lowell and DuBose, 2005) is a subject of extensive 

speculation.

As fluids are heated at depth, water-rock interaction alters their chemistry and can 

significantly modify the concentrations of dissolved species contained within. Ever-changing 

fluid chemistry, temperature, and kinetic barriers to reactions ensure that a hydrothermal 

fluid is rarely in chemical equilibrium. In some cases kinetic barriers to reactions may be 

overcome by mineral catalysts. In other cases biology supplies enzymes to take advantage 

of the thermodynamic gradient. Upon emergence at the surface, hydrothermal water mixes 

with cool surface fluids and the resultant disequilibrium may drive a new set of reactions, 

with or without the catalysis of biologically supplied enzymes.

Thermodynamic modeling has suggested that spontaneous reactions driven by the 

mixture of hydrothermal fluid and seawater can include the synthesis of organic acids, 

alcohols, and ketones (Shock, 1996; Shock and Schulte, 1998), amino acids (Keefe et al., 

1995), and the constituents of nucleotides (Holm et al., 2006). The potential for abiotic 

synthesis of organic compounds in these settings has advanced the idea hydrothermal settings 

are candidate locations for the origin of life (Russell, 2003; Shock, 1996; Skophammer et 

al., 2007).

Alkaline hydrothermal systems are particularly interesting in that regard. Under 

warm (~100 ºC) alkaline conditions, amino acids can be converted to peptides on an 

iron-nickel catalyst (Huber and Wachtershauser, 1998). Addition of the mineral brucite 



13

– a mineral commonly found in alkaline ultramafic hydrothermal systems – allows a 

continuous cycle of peptide formation and recycling (Huber et al., 2003). Gradients in pH 

under similar alkaline conditions can drive the formation of lipid vesicles (Hanczyc et al., 

2003) – perhaps from fatty acids that had been synthesized abiotically (Shock and Schulte, 

1998). Brucite may also play a role in scavenging phosphate and borate from seawater, 

both of which can contribute to the abiotic synthesis of nucleotides (Holm et al., 2006; 

Ricardo et al., 2004).

The universal tree of life has been cited in support of a hydrothermal origin of life. 

In universal phylogenies based on sequences of 16S small-subunit DNA from across the 

three domains of life, thermophiles occupy the deepest branches (Barns et al., 1996; Stetter, 

1996). Other approaches to tree construction result in a different topology for the universal 

phylogeny, but preserve the notion of a thermophilic universal ancestor. For example 

Ciccarelli et al. (2006) use a concatenated gene set of 31 genes, mainly encoding for 

ribosomal proteins, with orthologs occurring in each of the 191 fully sequenced organisms 

present in their database.  This produces a tree with thermophilic Firmicutes and archaea 

near the root. However, the very existence of a universal tree of life is controversial and 

subject to challenge (Doolittle and Bapteste, 2007). Furthermore, even if a valid universal 

tree of life is indeed recoverable through molecular methods it will inform our understanding 

of the last universal common ancestor, and not necessarily the first common ancestor at 

the origin of life. One plausible explanation for the position of thermophiles on the tree 

is that the Hadean late heavy bombardment created an evolutionary bottleneck through 

which only thermophiles survived (Nisbet and Sleep, 2001). In either case, investigating 

the organisms inhabiting these settings has the potential, at least, to shed some light on 

evolutionary history.

1.2. serPenTinizaTion – a source of h2, ch4 and ni

 A large part of this thesis focuses on an environment in which chemistry is 
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controlled by serpentinization. Serpentinization is the hydration of olivine to a mineral of 

the serpentine group plus brucite and magnetite (Schroeder et al., 2002). It produces highly 

alkaline fluids found at the Lost City Hydrothermal Field. Three reactions describe the 

major pathways of serpentinization below 500˚C (Schroeder et al., 2002):

These hydrogen produced by these reactions accumulates to millimolar levels.  Additionally, 

under conditions of serpentinization pyroxenes become unstable and decompose:

.

These reactions produce exceptionally reducing fluids with enhanced calcium ion 

concentrations and high pH. The conditions produced are reducing enough that they 

may stabilize nickel-iron alloys such as awaruite (FeNi3), that would decompose under 

more oxidizing conditions (Sleep et al., 2004). A detailed description of serpentinization 

reactions is given by Frost and Beard (2007). Serpentinization reactions are exothermic 

and in principle could give rise to a warm, alkaline, reducing hydrothermal fluid without a 

magmatic heat source (Lowell and Rona, 2002). 

 Serpentinization has attracted the attention of many geochemists because the 

abundant H2 it produces is a biologically attractive electron donor, and because the 

magnetite and nickel-iron alloys produced by the reaction can catalyze the abiotic formation 

of methane, and perhaps other organic compounds in laboratory settings (Foustoukos and 

Seyfried, 2004; Horita and Berndt, 1999; McCollom and Seewald, 2001; McCollom and 

Seewald, 2007). The abiotic organic carbon produced in these experiments can have a 

13C content with δ values in the range that is usually typical of biological organic carbon 

(Horita and Berndt, 1999; McCollom and Seewald, 2006). This result restricts the use of 

2
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13C-deletion in organic carbon as an isotope biosignature in ancient rocks or elsewhere in 

the solar system. 

Serpentinization of peridotite is rare on Earth today, occurring only where mantle 

rock is exposed at the Earth’s surface in ophiolites or through faulting and mantle uplift 

at sites like the Atlantis massif (Blackman et al., 2002). However, ultramafic rock would 

likely have been common on the Archean seafloor (Nisbet and Fowler, 2004), and 

serpentinization reactions would have been correspondingly more important. The hydrogen 

and methane supplied either abiotically by serpentinization, or biologically by the microbial 

communities inhabiting serpentinizing fluids, would have contributed to the Archaean 

atmosphere and biosphere. Constraints on the concentrations of hydrogen (Catling, 2006; 

Tian et al., 2006; Tian et al., 2005) and methane (Pavlov et al., 2000) in the Archaean 

atmosphere are highly contentious. The source of methane in the Archaean atmosphere has 

been equally contentious (Sherwood Lollar and McCollom, 2006; Ueno et al., 2006a; Ueno 

et al., 2006b). Understanding the sources and quantities of hydrogen and methane supplied 

by hydrothermal environments should contribute to the resolution of these controversies. 

 In the context of alkaline hydrothermal settings as possible locations for the orgin 

or early evolution of life, it is interesting to note the importance of the availability of nickel 

in ultramafic hydrothermal settings. As previously mentioned, nickel alloys can catalyze 

the abiotic synthesis of methane, but nickel is also essential for biological methanogenesis. 

Carbon monoxide dehyrogenase and hydrogenase, both key enzymes in methanogenesis 

are nickel dependent in many methangogens. Perhaps even more importantly, the key final 

step methanogenesis - in which energy is conserved and methane produced - is the activity 

of methyl-coenzyme M reductase. This enzyme is absolutely dependent on coenzyme F430, 

the only nickel tetrapyrrole known in nature, as a cofactor. F430 is also the most reduced 

tetrapyrrole known, containing only five double bonds (Thauer, 1998). Methanogens are 

absolutely dependent on this nickel enzyme. In archaeal methanotrophs where this enzyme 

comprises 7% the total extractable protein, the dependence appears even greater (Krueger et 
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al., 2003). The relationship between apparent requirement for nickel in both biological and 

abiotic methanogenesis remains unexplored, but opens intriguing evolutionary questions. 

In this thesis we focus intensely on the biological signatures of methanogens, both in 

laboratory (Chapter 2) and field (Chapter 3) settings.

1.3 The losT ciTy hydroThermal field 

The Lost City hydrothermal field is the best known example of a low-temperature 

hydrothermal system driven by serpentinization reactions (Kelley et al., 2001; Kelley et 

al., 2005). It is located on the ultramafic Atlantis Massif at 30˚N near the inside corner 

intersection of the Mid-Atlantic Ridge and the left-lateral Atlantic Transform Fault (Figure 

1-1, Figure 1-2). The massif is approximately 15 km west of the Mid-Atlantic Ridge, and 

magnetic anomaly patterns suggest the local crust is 1.5 Mya (Kelley et al., 2001).

Topographic highs are common at inside corners of transform offsets along the Mid-

Atlantic Ridge, and are likely to be the result of low-angle detachment faulting between 

the lower crust and upper mantle (Cann et al., 1997). The Atlantis Massif is interpreted 

as mantle material exhumed by an associated detachment fault. It is ~15 km across and 

bounded on its southern face by an escarpment with ~3,800 m of relief relative to the 

Atlantis Fracture Zone. (Schroeder et al., 2002) calculate the volume of peridotite of the 

Atlantis massif as ~30 km3.  The summit of the massif at ~700 m water depth consists of 

foliated serpentinites, overlain by carbonate cemented sedimentary breccias and a well 

lithified, bedded carbonate. The breccias include hydrothermal and bedded carbonate 

material, and are overlain with pelagic ooze. (Figure 1-3)

The LCHF rests on a terrace of the Atlantis massif at 750-850 m water depth and 

is underlain by altered mafic and ultramafic rocks. The field consists of active and inactive 

hydrothermal structures, the largest of which is 60 m tall (Kelley et al., 2005). Carbonate 

chimneys are largely composed of aragonite and brucite, and are precipitatied upon the 

admixture of alkaline vent water (up to 30 mM Ca2+, pH 9-11) with ambient seawater 
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Figure 1-1: Location of Lost City and other vent fields along the Mid-Atlantic Ridge

Figure 1-2: Location of the Atlantis Massif relative to Atlantis Fracture Zone and Mid-
Atlantic Ridge



18

Figure 1-3: Schematic of the Lost City Hydrothermal Field on the flank of the Atlantis 
Massif
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Figure 1-4: Active carbonate towers precipitating at the Lost City Hydrothermal Field
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(Ludwig et al., 2006). Active venting in most cases occurs at the tops of these chimneys 

where fresh white aragonite is being precipitated as delicate “fingers” and dendritic growth 

(Kelley et al., 2001; Kelley et al., 2005; Ludwig et al., 2006). Representative structures are 

shown in Figure 1-4.

Inactive chimneys are composed of aragonite and calcite, with or without brucite 

(Fruh-Green et al., 2003) and range widely in porosity, friability and texture, although they 

are commonly more consolidated than active structures. The differences between active 

and inactive structures may be largely attributed to the conversion of aragonite to calcite, 

dissolution of brucite, and precipitation of new calcite in the inactive structures by reaction 

with seawater. The interpretation of recrystallization of carbonate in inactive structures is 

supported by 87Sr/86Sr values, which in active chimneys are indicative of basement rock 

values, but in inactive chimneys reflects the 87Sr/86Sr value of seawater (Fruh-Green et 

al., 2003). The hydrothermal structures overlie and postdate the cap carbonate, and lack 

pelagic cover, suggesting that they are relatively young (Kelley et al., 2001). Accelerator 

mass spectrometry (AMS) 14C age-dating of carbonate vent structure suggests that they 

range in age from modern to a minimum of 25 ky (Fruh-Green et al., 2003). Vent-fluid 

precipitated carbonate is also found in abundant veins in the peridotite and as breccia and 

fracture infillings. AMS 14C age-dating of these carbonates suggest that they are up to 32 

ky.

 At Lost City the possibility that exothermic serpentinization reactions are supplying 

the heat to vent fluids is excluded by heat balance models (Allen and Seyfried, 2004). By 

examination of the salinity of vent fluids, this study demonstrated that the ratio of water to 

rock interaction is high, and that heat supplied by hydration of olivine insufficient to reach 

the temperatures measured in vent fluids. Heat supplied by a steep geothermal gradient 

or a magmatic source is required. This finding is important when considering the kinetic 

barriers that must be overcome for the generation of abiotic methane, and the utility of Lost 

City as an analog for ultramafic Archaean seafloor.
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Figure 1-5: Bison Spring, Lower Geyser Basin, Yellowstone National Park
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1.4 yellowsTone

 Terrestrial alkaline hot springs in Yellowstone National Park are chemically 

distinct from the serpentinite-hosted ecosystem at Lost City. Alkalinity in these systems 

is carbonate-buffered, but and pH varies between 7.5 and 9. Yellowstone also contains 

sulfuric acid springs with pH between 2 and 4, and this thesis presents a small amount 

of data on these as well. We focus our study here on a spring in the Lower Geyser Basin, 

unofficially dubbed ‘Bison Pool’ (Figure 1-5).

 There are vast chemical, environmental, and microbial differences between the Lower 

Geyser Basin of Yellowstone and the hydrothermal chimneys of Lost City. We investigated 

the ecosystem at Yellowstone to determine if common organic geochemical signatures of 

alkaline hydrothermal settings would emerge from two very different environments. 

1.5 Thesis ouTline

Chapter 2 presents the results of experiments designed to understand the extent of 

carbon isotope fractionation in a methanogen Methanosarcina barkeri. These experiments 

attempted to constrain the how isotope fractionation would change as a function of 

substrate availability. These data were useful in interpreting the results of Chapter 3, 

where we examined the 13C content of lipids from carbonate chimneys at the Lost City 

Hydrothermal Field. These data suggest that the ecosystem at this location is dominated by 

methanogenic archaea, but that these archaea are carbon-limited, resulting in a surprising 

enrichment in 13C in their lipids. In Chapter 4 we attempt to do decipher the multiple 

origins of methane at Lost City. Serpentinization in this ecosystem is driving abiotic 

methane production at high temperature, while the activity of methanogenic archaea is 

supplying methane in lower temperature environments. At least some of the archaea at 

Lost City are consuming methane, and the 13C content of their lipids suggests this methane 

may derive from a source that has not yet been identified. Chapter 5 presents detailed data 

on the structure of bacterial and archaeal diether lipids. Notably, most of the lipids at Lost 
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City are glycolipids. We suggest that this may be a strategy for conserving phosphorus, and 

we note that there are unusual similarities between the archaeal and bacterial lipids. These 

may have evolutionary relevance. Chapter 6 presents the results of analysis of insoluble 

residues from Lost City carbonates. This filament-like debris appears to be largely derived 

from protein, and contains enough organic nitrogen to measure its 15N content. The values 

of δ15N imply that active nitrogen fixation is occurring in the carbonate towers. In Chapter 

7 we present data regarding the 13C and 15N contents of pink streamer communities in 

Yellowstone National Park, and find that these alkaline hydrothermal environments also 

produce organic carbon unusually enriched in 13C. 
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Chapter 2 
Stable carbon isotope fractionation between substrates and products of 

Methanosarcina barkeri

absTracT

 Stable carbon isotope ratios are an important tool for understanding methanogenesis 

in the environment.  When applied to biological methanogenesis, interpretation of carbon 

isotope ratios requires a thorough understanding of how the availability of different 

substrates affects the eventual δ13C of methane, biomass and lipids. Methanosarcina barkeri 

was grown on four substrates: methanol, trimethylamine (TMA), acetate, and H2/CO2, 

under variable conditions in which the substrate was either present in excess or limited 

in availability. The extent of isotopic fractionation between the carbon substrate and the 

products of M. barkeri was dependent on the substrate type and availability.

 Growth on unlimited substrate resulted in a range of observed isotope fractionation, 

with growth on methanol yielding methane, biomass, and lipids most depleted in 13C 

relative to substrate, and growth on acetate yielding the least depleted products. Autotrophic 

fractionations were intermediate. Substrate limited growth afforded smaller depletions in 

13C on all substrates.

There were large differences in the δ13C among the M. barkeri lipids produced 

within each experiment, with the notable exception of growth on acetate. The 13C content 

of lipids was generally well correlated with that of biomass, with archaeol showing the 

strongest relationship. The 13C content of individual lipids varied with substrate availability 

in some cases, but did not show patterns that could be used to identify the growth substrate 

of methanogens in natural environments. 
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2.1. inTroducTion

 Methane is an important component of the Earth’s carbon cycle, not least because of 

its role as a greenhouse gas. Despite this, there is still insufficient quantitative understanding 

of the various sources of methane to the atmosphere and hydrosphere. These include 

abiotic CO2 reduction, thermogenic cracking of hydrocarbons, and microbial production 

by methanogens. Biological methanogenesis is carried out by a subset of Euryarchaeota, 

which use a distinct biochemical pathway to transform CO2 or organic compounds to 

biomass, energy, and methane (Conrad, 2005; Thauer, 1998; Whiticar, 1999). 

Stable isotopes can be employed as tracers of methane through the global carbon 

cycle. Methane is often attributed to biological or abiotic sources based on little more than 

δ13C values, or with a combination of δ13C and δD values. But the multitude of factors 

controlling 13C fractionation suggests that the use of δ13C values of methane alone does not 

always uniquely constrain its source.

 Interpretation of the isotopic signatures of methanogens and their metabolic 

products requires a solid foundation that can only be achieved with controlled laboratory 

experiments.  Isotopic data have been used to determine whether biological methanogenesis 

is principally autotrophic (using H2 and CO2) or heterotrophic (Conrad, 2005; Whiticar 

et al., 1986). Heterotrophic methanogenesis occurs in only a subset of methanogens, 

principally the Methanosarcinaceae. These organisms are thought to use acetate as their 

primary substrate during heterotrophic growth, but a variety of other small compounds 

may serve as substrates, including methanol, methylated amines and methyl sulfides. In 

marine environments, these compounds may be of high enough abundance to serve as 

significant substrates for methanogens (Summons et al., 1998).

For isotopic measurements to play a role in understanding the substrates used in 

methanogenesis, it is important to define the difference in isotopic fractionations associated 

with autotrophic and heterotrophic methanogenesis.  A common rule of thumb is that 

biological methane with δ13CPDB between -110‰ and -60‰ is derived from autotrophic 
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methanogenesis (Conrad, 2005; Whiticar et al., 1986), while methane with δ13C between 

-60‰ and -50‰  is derived from acetoclastic methanogenesis (Whiticar et al., 1986). 

However, there are very few studies that constrain these ranges, and research in this area 

remains limited. More definitive understanding is in great demand (Conrad, 2005).  

Most studies of the isotope biogeochemistry of methane cycling have focused on 

methane.  Several recent reports have examined the 13C content of the lipids of methane 

cycling Archaea in environmental samples to understand their ecological role (Hinrichs et 

al., 1999; Pancost et al., 2000; Schouten et al., 2001; Thiel et al., 2001).  In these studies, 

archaeal lipids with large 13C depletions relative to Vienna Pee Dee belemnite (VPDB) 

(generally with δ13C ≤ -60‰) are considered to be of methanotrophic origin, while those 

with δ13C ≥ -30‰ are considered to represent inputs of methanogens. However, there are 

few data to inform us about the relationship between the 13C content of substrates and that 

of products: the lipids, biomass, and methane produced by methanogens.  To date, only 

one study (Summons et al., 1998) has reported fractionations between the substrate and 

lipids of methanogens, in this case grown on trimethylamine (TMA). Methane produced 

by Methanosarcina barkeri was depleted by 50.2‰, biomass by 20.9‰, and lipids 

by up to 36.8‰ relative to the source TMA (Summons et al., 1998).  Fractionation in 

Methanococccoides burtonii was slightly larger. The impact of Archaeal physiology and 

environmental conditions on the isotopic signatures of methanogen products must be better 

constrained to improve understanding of the flow of carbon through environments where 

methane is cycled.

Fractionation of carbon in methanogenesis results from the preferential use of the 

lighter isotope (12C) over the heavier isotope (13C) during methane production. This can be 

observed as the difference between the delta values (δ13C) of the substrate carbon source 

and the product:

When substrate is in abundant supply for a given set of conditions, the observed 

product
13

substrate
1313 CδCδCΔδ   
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fractionation is maximized. Magnitude of fractionation depends on many factors, including 

temperature, growth phase, the hydrogen supply, the species of methanogen and the isotope 

effects associated with the enzymes in its carbon acquisition pathways (Botz et al., 1996; 

Conrad, 2005; Games et al., 1978; House et al., 2003; Penning et al., 2005; Valentine et 

al., 2004).  Organic substrates are rarely abundant in nature, and it is unlikely that the 

full magnitude of isotope discrimination is commonly expressed during heterotrophic 

methanogenesis. Inorganic carbon is more frequently abundant, although there may be 

cases in which it is limited.

The fractionation between substrate and product also depends on the topology of 

the biosynthetic network involved in methane production. This network has many branch 

points that shuttle carbon to various biological products. The relative fluxes of carbon to 

various products at any branch point, the fractionations imposed by each enzyme, and the 

reversibility of each of the enzymes are all important factors in determining the isotopic 

difference between substrate and any particular product (Hayes, 2001). Depending on the 

biological product being examined, the carbon source and the number of enzymes by which 

it has been processed may be different.

 The multiple substrates for biological methanogenesis are metabolized differently. 

Each substrate enters the biochemical network and is quickly converted to the intermediate 

that most closely resembles its redox state and chemical composition: acetate is 

immediately processed to acetyl-CoA, methanol and TMA to methyl-S-CoM, and CO2 

to formylmethanofuran. The relative fluxes of carbon through the biochemical network 

to methane or biomass are in principle dependent on the standard free energy yield of the 

methanogenesis reaction for that substrate, and on the substrate concentration.  In practice, 

the fluxes may depend on more complex biological requirements.

 The core biosynthetic pathways of methanogenesis and biomass production 

(Thauer, 1998) lead to the production of methane and biomass, including lipids. Simplified 

schematics are shown for each substrate in Figure 2-1. The network of intermediates is 
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similar in each case, but the direction and magnitude of carbon flow differs among them. 

All methanogens, with the exception of those growing on acetate, require CO2 for the 

synthesis of the carboxyl group of acetyl-CoA. All methanogens require CO2 for pyruvate 

synthesis. Methylotrophic and acetotrophic methanogens also produce CO2 from their 

substrates during catabolism (Figure 2-1b,c). The acetotrophic pathway produces CO2 as a 

byproduct of the dissociation of acetyl-CoA while methane is derived exclusively from the 

acetate methyl group. It is possible that CO2 required for anabolism could be derived from 

the CO2 pool produced catabolically, but this has not been investigated. 

 During autotrophic growth, CO2 is initially reduced by the enzyme 

formylmethanofuran dehydrogenase and will end up as methane or biomass (Figure 2-1). A 

second carbon fixing enzyme, carbon monoxide dehydrogenase, is involved in the synthesis 

of acetyl-CoA for autotrophic and methylotrophic methanogens. A third CO2 fixing step is 

required for pyruvate synthesis from acetyl-CoA. Thus, for autotrophic growth, three carbon 

fixing steps are involved in biomass production, whereas only one is required for methane 

production.  Recognizing the differences in the metabolic pathways to the production of 

biomass, methane, and lipids is essential for understanding the differences in the carbon 

isotopic composition of these products. 

 We sought to examine the variability of the δ13C of M. barkeri biomass, methane, 

and lipids (PMI, archaeol, and sn-2 hydroxyarchaeol) as functions of growth substrate and 

substrate availability. The isotopic compositions of these products can vary substantially for 

different methanogens. There can be isotopic differences between products formed under 

laboratory conditions and those produced in the natural environment. We chose to study 

Methanosarcina barkeri because of its ability to utilize various substrates (CO2/H2, acetate, 

TMA, and methanol). M. barkeri is the type species of the genus Methanosarcina. The 

species of this genus are environmentally diverse, existing in both marine and nonmarine 

ecosystems. Some species within the group are halophilic (Zinder, 1993).  Methanosarcina 

species are also detected in sewage sludge and animal rumens (Balch et al., 1979). M. 
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barkeri is mesophilic with a maximum growth temperature of 40 ºC (Zinder et al., 1985). 

Methanosarcina species are closely related to the ANME-2 group of methane oxidizing 

Archaea (Orphan et al., 2001a), commonly found at cold seeps. 

Previous studies have shown that the isotope fractionation between substrate 

and methane in M. barkeri varies substantially, with intermediate fractionation under 

autotrophic growth, small fractionation during growth on acetate (Gelwicks et al., 1994; 

Krzycki et al., 1987; Penning et al., 2006), and large fractionation during growth on 

methylated substances (Krzycki et al., 1987; Summons et al., 1998). We sought to obtain 

a better understanding of the nature of carbon isotope fractionation in methanogens and of 

the effects of substrate concentration.  This information will be useful in evaluating carbon 

isotope data in methanogenic environments.

2.2. exPerimenTal

2.2.1 Culturing

 The methanogen Methanosarcina barkeri strain Fusaro was grown on medium 

modified from Kandler and Hippe (1977) with pH adjustment to 6.7, and addition of 0.125 

mg resazurin, 2 mM Na2S, and 0.05 g/l yeast extract (cultures with acetate received 0.1 g/l 

yeast extract). M. barkeri stock cultures were maintained in 165 ml glass bottles sealed 

with butyl rubber stoppers, which contained approximately 100 ml culture, and a N2:CO2 

(80:20) headspace at a pressure of 75 kPa. Cultures of M. barkeri were grown separately 

on three organic substrates: methanol (250 mM), sodium acetate (200 mM) or TMA (100 

mM).  The substrate concentrations used during these experiments had been determined to 

be the highest possible concentration that could be used without causing growth inhibition. 

Autotrophically grown cultures received no organic substrates and were provided H2:CO2 
(80:20 at 100 kPa) with a smaller liquid to volume ratio (50 ml culture in a 165 ml bottle) 

in order to supply larger amounts of gaseous substrate. All cultures were incubated without 

agitation at 37 ºC in the dark. 
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 Cultures were prepared as inocula for isotope fractionation experiments on a similar 

medium but with a higher salt content to reduce clumping, as per Summons et al. (1998).  

Inocula were prepared individually in 1.4 l capacity bottles with butyl rubber stoppers 

adapted to fit stoppered severed Balch tubes.  The cultures were prepared to a final volume 

of 700 ml with 70 ml (10% v/v) inoculum, and grown until analysis of methane in the 

headspace (440 ml) indicated that the substrate had just been entirely consumed, as close to 

the end of exponential growth as possible.  Inoculum for the acetate amended experimental 

cultures did not consume all the substrate, such that 2.16 mmol acetate was transferred with 

the 140 ml inoculum. The 13C contents of biomass and lipids were determined for each 

inoculum culture by the same methods used for samples.

2.2.2 Isotope fractionation experiments

Parallel series of M. barkeri cultures were established from inoculum cultures 

for each of the three organic substrates.  One set was allowed to consume only a small 

fraction (~5%) of the substrate, which was provided in abundance at the beginning of the 

experiment, in order to maximize isotope fractionation. By allowing consumption of only 

5% of carbon, the effects of Raleigh isotope distillation of the substrate were minimized. 

The second set of cultures was designed to consume 100% of the substrate provided in 

limited 10 mM intervals throughout the experiment, to minimize isotope fractionation. 

Increments of substrate were added when cultures were determined to have used most of 

the substrate available from earlier additions, based on methane production in identical 

substrate monitoring cultures. Cultures grown with hydrogen as a substrate were provided 

with H2:CO2 in a headspace (100 kPa) at the beginning of the experiment (abundant 

hydrogen), or this gas mix was added in increments that amounted to 5% of the headspace 

volume (headspace was N2:CO2) at two day intervals (limited hydrogen). Growth data for 

cultures analyzed for biomass are reported in Table 1. Growth data for parallel cultures of 

larger size for H2/CO2 and TMA biomarker isotope analysis are reported in Table 2. In the 
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acetate and methanol experiments the same material was used for both biomass and lipid 

analysis, and all relevant growth parameters are reported in Table 1. This table includes data 

on methane-production rates for the growth-monitoring cultures that were run in parallel 

with the separate cultures for biomass and biomarkers.

All cultures were grown in triplicate. Each experiment included at least one sterile 

(autoclaved) control.  Triplicate cultures were also established with medium that did not 

receive substrate (organic or hydrogen) in order to measure methane production associated 

with substrate carried over from the inoculum.  It was not possible to measure the course 

of substrate conversion to methane in the experimental cultures because any sampling of 

those bottles could lead to isotope fractionation of the gases. Accordingly, a set of growth 

monitor cultures was prepared and inoculated. Sampling of methane from these cultures 

continued throughout the experiment in order to approximate substrate conversion to 

methane in the cultures used to determine isotopic fractionation.  Finally, small cultures 

were also established in 25 ml Balch tubes (15 ml cultures) which were autoclaved after set 

intervals to stop activity, and which were exclusively used to measure the δ13C of methane 

and carbon dioxide over the course of each experiment.  These values were measured 

at or regressed to time zero to estimate the initial δ13C of methane for each experiment, 

which was used to approximate the maximum fractionation ε. A true measure of ε was not 

possible as we did not monitor substrate consumption over time due to the potential for 

isotope fractionation caused by routine sampling. For each culture we report both the initial 

estimated δ13C of methane and the δ13C at the end of the experiment.  All cultures for each 

experiment were inoculated at the same time from a single inoculum to reduce variability.

2.2.3 Methane analysis

 Methane was quantified by gas chromatography (GC).  Methane production in 

inoculum cultures was monitored by extracting 0.1 ml gas samples from culture headspace 

with a N2 flushed gastight syringe and analyzing methane content on a Shimadzu mini-
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GC equipped with a flame ionization detector. Injections were repeated in triplicate and 

peak areas were compared to a standard curve that related peak area to µmol methane in 

external standards prepared daily by injecting methane into sealed serum bottles. Methane 

production was converted to substrate consumption by means of Buswell’s equation (Suflita 

et al., 1997).

The pressure in the cultures was measured with a pressure gauge (Cole-Parmer) 

and used to calculate the total methane in each culture, taking temperature and atmospheric 

pressure into account. The amount of organic substrate that had been converted to methane 

was calculated based on the expected yield of methane from each substrate as per equations 

1-4.

(1) 4 CH3OH  3 CH4 + CO2 + 2 H2O   ΔGº’ = -106 kJ/mol CH4

(2) CH3COOH  CH4 + CO2     ΔGº’ = -36 kJ/mol CH4

(3)  4 (CH3)3N + 6 H2O  9 CH4 + 3 CO2 + 4 NH3 ΔGº’ = -76 kJ/mol CH4

(4) CO2 + 4 H2  CH4 + 2H2O    ΔGº’ = -130 kJ/mol CH4

2.2.4 Harvesting of experimental cultures

 Once experimental cultures were estimated to have reached the intended substrate 

consumption (based on the monitoring cultures), the headspace pressure, methane, and 

pH for each culture were measured. The biomass was then collected via centrifugation 

at 6000 x g for 30 minutes.  Cells were washed with phosphate buffer (pH 7.4), and the 

cell pellet after centrifugation was collected, frozen, lyophilized, and the dry weight was 

determined. The molar yield of biomass was estimated assuming the biomass was 45% C 

(Weimer and Zeikus, 1978).  The flow to biomass was calculated as the percent of substrate 

carbon incorporated into biomass relative to the total moles of substrate carbon produced 

as methane or biomass, where the measured biomass was divided by three to account for 

the fact that only a third of the carbon comes directly from these substrates, with the rest 

coming from subsequent carboxylation reactions. 
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2.2.5 Lipid Analysis

 Lipids were extracted from up to 10-15 mg dry cell material using the method 

of Bligh and Dyer (Bligh and Dyer, 1959). All glassware for lipid analysis was pre-

combusted at 450 ºC. Total lipid extracts were derivatized with N,O-bis(trimethylsilyl) 

trifluoroacetamide (BSTFA) + 1% trimethylchlorosilane (TMCS) in pyridine. Analysis of 

derivatized samples took place on one of two instruments. The first was a Varian Saturn 

2000 gas chromatograph/mass spectrometer equipped with a 30 m DB5-MS column with 

the oven temperature program 70 ºC for one minute, followed by a ramp of 25 ºC/minute to 

165 ºC, held at 165 ºC for 4 minutes and then raised at 20 ºC/minute to 320 ºC followed by 

a final hold of 43 minutes. The second was an Agilent 6890 gas chromatograph equipped 

with a J&W DB-1MS column (60 m x 0.32 mm, 0.25 µm film) and an Agilent 5971 mass 

selective detector. Chromatographic conditions were initially 60 ºC for 2 minutes, then 60-

320 ºC at 8 ºC/min.

2.2.6 Isotope Analysis

 Gas samples (methane and CO2), methanol, and TMA were injected on an Agilent 

6890 gas chromatograph equipped with an AT-Q column (30 m x 0.32 mm, Alltech) with a 

constant temperature of 40 ºC and a helium carrier flow of 3 ml/minute. The GC was coupled 

to a combustion furnace interfaced to a Finnigan MAT DeltaPlus isotope ratio monitoring 

mass spectrometer operated with IsodatNT.  Precision of isotope results was determined 

using standards and found to be better than 1‰ vs. VPDB. Growth on methanol and acetate 

produced methane very slowly. As a result we were unable to reliably determine the initial 

δ13C of methane produced at the initial time points of these experiments.

 Biomass and sodium acetate were analyzed using a Fisons NA 1500 Elemental 

analyzer operated with an oxidation furnace at 1030 ºC and a reduction furnace at 650 ºC 

coupled to a Finnigan MAT DeltaPlus XP  isotope ratio monitoring mass spectrometer 
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operated with Isodat 2.0. Precision of isotope results were measured with standards and 

found to be better than 0.3‰ vs. VPDB. Biomass results were corrected for the inoculum 

by mass balance.

 Compound specific isotope results for lipids were obtained with a ThermoFinnigan 

TraceGC equipped with a J&W DB-1MS column (60 m x 0.32 mm, 0.25 µm film). 

Chromatographic conditions were initially 60 ºC for 2 minutes, then 60-320 ºC at 8 ºC/

min. The GC was coupled to a combustion furnace interfaced to a Finnigan MAT DeltaPlus 

XP isotope ratio monitoring mass spectrometer operated with Isodat 2.0. Precision of 

isotope results were measured with standards and found to be better than 0.3‰ vs. VPDB, 

and sample replicates produced variations less than 0.5‰ vs. VPDB. Isotope results 

were corrected for the TMS derivative by mass balance where appropriate. The isotopic 

composition of a heptadecanol standard was measured by GC-IRMS, then derivatized with 

the BSTFA reagent used for sample derivatization. We measured the δ13C value of the 

resultant heptadecanol-TMS. Comparison of these two δ13C values allowed us to calculate 

the δ13C of the TMS group by mass balance.  Lipid δ13C values were then corrected for the 

presence of one (archaeol) or two (hydroxyarchaeol) TMS groups by mass balance. Mass 

balance calculations were then applied to correct for the presence of the inoculum.

2.3. resulTs and discussion

2.3.1 Growth and metabolism

M. barkeri grew on acetate, CO2, TMA and methanol but failed to grow on formate 

or dimethylsulfide. Initial measurements of growth cultures indicated that the amount of 

methane carried over with the inoculum was ≤ 0.033 mmol and that sterile controls did not 

produce methane. Data for growth parameters are given in Table 1.

2.3.1.1. CO2

 Autotrophic growth produced methane more slowly than any other substrate with 
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abundantly supplied H2 and even more slowly with limited H2 (Table 1). The ratio of 

produced biomass to methane (mg/mmol) was higher under abundant H2 than limited H2 

for one set of cultures (Table 2) as well as growth monitoring cultures (data not shown).  

In the other set (Table 1), the values were not significantly different, and the yield under 

abundant conditions only appeared low due to a poor yield in a single culture. Under both 

growth conditions, the organisms had sufficient CO2 for growth, and the increased diversion 

of carbon to biomass with abundant hydrogen suggests that M. barkeri was growing more 

efficiently under this condition. This may reflect a shift in the metabolic priorities whereby, 

during growth at low hydrogen partial pressures, the metabolism of M. barkeri optimizes 

for efficient hydrogen use for energy generation by methanogenesis whereas under high 

hydrogen availability the organism optimizes for some other parameter, possibly growth 

rate.

2.3.1.2 Acetate

 Cultures grown on acetate grew sluggishly, with a seven day lag time before growth 

began. Cultures provided with abundant acetate produced methane about 3-5 times faster 

than autotrophic cultures, and the methane production rates were similar under conditions 

of abundant and limited supplies of substrate. Therefore, differences in carbon flows and 

isotopic fractionation are due to the extent of carbon usage, not the kinetics.  The ratio of 

carbon diverted to biomass versus methane in the culture grown on limited acetate was the 

lowest of any of the experiments. This suggests that these cultures were energy starved. 

Acetate limited methanogenesis is expected to be the least thermodynamically favored 

condition examined (Zinder, 1993), so under those conditions it is expected that a high 

proportion of substrate will be diverted to energy generation leading to a low biomass 

yield. However, in general we did not observe any correlation of growth yield with free 

energy of reaction.  
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2.3.1.3 Methanol

 When supplied with abundant methanol, M. barkeri metabolized the substrate 

without a lag period and the rate of methanogenesis was very fast, allowing harvesting 

of cultures in only three days. Carbon dioxide production was indicated by the declining 

δ13C value of headspace CO2. Initial headspace CO2 was -13‰ vs. VPDB, and decreased 

linearly over four days to -36.6‰, a value approaching the substrate δ value of -46.2‰. 

Production of CO2 caused the pH of the growth media to drop to 6.25. The flow of carbon 

to biomass versus methane was higher for abundantly supplied methanol than for acetate 

or H2/CO2.

 When grown on limiting methanol, the methanogenesis rate was nearly an order 

of magnitude slower than on abundant methanol. Growth ceased after 30 days, without 

complete consumption of substrate, most likely due to the drop in pH to 6.01 (in our studies, 

methanogenesis in M. barkeri was inhibited at pH < 6.2). The flux of carbon to biomass 

versus methane was approximately half of that observed for growth on abundant methanol. 

This higher relative flux of carbon to methane with limited substrate may be indicative of 

the lower free energy yield of methanogenesis under limited substrate concentrations.

 

2.3.1.4 Trimethylamine

 Methanogens inoculated into cultures with abundant TMA as a carbon substrate 

displayed an initial growth lag, followed by a methanogenesis rate that was the fastest 

observed for any abundant substrate culture. The ratio of carbon flow to biomass versus 

methane was the highest measured for any experiment, despite the fact that the free energy 

yield per mole of methane produced is not as high for growth on TMA as it is for growth 

on CO2 or methanol. 

 Growth on limited TMA continued until 81% of the substrate was consumed, at 

which point the pH had decreased below 6.2. The methanogenesis rate was the highest of 

any set of experimental conditions, and yielded one of the highest percentages of carbon 
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flow to biomass, despite the limited substrate availability; although it was significantly less 

than with abundant substrate, as with the other organic substrates.

2.3.2 Fractionation in biosynthetic pathways

2.3.2.1 CO2

 Carbon dioxide undergoes the most complex transformation of any substrate in 

order to become methane. The transformation of CO2 to methane requires seven enzymatic 

steps (Figure 2-1a). The first five of these enzymes are common to both the catabolic and 

anabolic pathways with methyl-tetrahydrosarcinapterin (methyl-H4SPT) occupying the 

position of the biosynthetic branch point. The methyl group of this intermediate can be 

reduced to methane with the conservation of energy or it may be transferred to another 

carbon, forming acetyl-CoA. The 13C content of the products of autotrophic methanogenesis 

therefore depend on the degree to which each of these enzymes discriminates against 13C 

as well as the flux through the critical branch-point. Autotrophic methanogenesis yields 

methane that is 17‰ (House et al., 2003) to 71‰ (Botz et al., 1996) more depleted in 13C 

than the substrate.

 Isotopic results of autotrophic growth experiments are given in Table 3. They are 

consistent with two previous studies that showed fractionations of 45-46‰ between CO2 

and methane (Krzycki et al., 1987), but were higher than the 17‰ fractionation reported 

in a recent study (House et al., 2003). Growth on the higher partial pressure of hydrogen 

showed less carbon isotopic fractionation between substrate and methane than did growth 

on low partial pressures of hydrogen, consistent with the previous work of Valentine et al. 

(2004). That study suggested that the difference in isotope discrimination between high and 

low hydrogen pressures could be due to “differential reversibility” of the enzymes – that 

under low hydrogen pressures several steps of the pathway were reversible and that this 

reversibility allows full expression of the isotope fractionation associated with each step. 

In contrast, under high hydrogen pressures, enzymatic steps were highly exothermic and 
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irreversible, yielding quantitative transfer of carbon from each biosynthetic intermediate to 

the next and limiting the observed isotope fractionation. 

 The two experiments show differences in isotope discrimination between substrate 

and lipids, supporting the notion of differential reversibility. The isotopic composition 

of lipids is closely related to the isotopic composition of the lipid precursor acetyl-CoA 

(Hayes, 2001). The results (Table 3) show that each lipid in the H2-limited cultures is more 

depleted in 13C than the corresponding lipid in the H2–abundant cultures. Both lipids and 

methane show differences in δ13C of 20‰ or more between H2-abundant and H2-limited 

growth. This suggests that the large 13C depletion during growth on limited H2 occurs in 

their shared intermediate – methyl-H4SPT – and is present in at least the methyl position of 

acetyl-CoA. The large difference in 13C content between abundant and limited H2 growth 

conditions was not observed in bulk biomass, for reasons that are not yet understood. 

 We detected significant differences among the isotopic compositions of individual 

isoprenoid lipids produced within each H2/CO2 growth experiment. At face value, all 

isoprenoid lipids should have the same isotopic composition, since all are synthesized from 

isopentenyl diphosphate (IPP) by the mevalonate pathway (Koga and Morii, 2007). In 

fact, under both substrate limited and substrate abundant conditions sn-2 hydroxyarchaeol 

was depleted in 13C by about 3‰ relative to co-occurring archaeol. PMI was in both cases 

depleted in 13C relative to the archaeols and this depletion was more pronounced in the fast 

growing cultures (≤11.1‰) than in the slow growing cultures (≤2.3‰).

 The reason for the differences in the isotopic compositions of these lipids remains 

unknown, but one possibility is that the differences may reflect the timing of lipid production 

during growth. If PMI were synthesized during early growth while the substrate is more 

depleted in 13C, and the archaeols were synthesized later in growth, their difference in δ13C 

could be explained by progressive enrichment of the substrate. However, we do not have 

direct evidence for differential synthesis of these compounds over the course of growth. 

The magnitude of change in δ13C of methane throughout the course of growth (Table 3) is 
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also a result of the 13C enrichment of substrate, and is greater than the difference in δ13C 

between lipids. However, the small difference in 13C content between archaeol and sn-2 

hydroxyarchaeol even in the slow growing culture may suggest another explanation for the 

differences between these two compounds, perhaps because they are coupled as precursor 

and product.

2.3.2.2 Acetate

 Acetate could be considered the simplest substrate for assimilation since it is a direct 

precursor of acetyl-CoA. In M. barkeri, acetate is converted to acetyl-CoA by the enzymes 

acetate kinase and phosphotransacetylase. Acetyl-CoA is located at a crucial branch point 

in the metabolic network (Figure 2-1b) and undergoes one of two fates. The first is the 

disproportionation of acetyl-CoA by carbon monoxide dehydrogenase with the production 

of CO2 from the carboxyl group of the acetate and the transfer of the methyl group to 

methyl-tetrahydrosarcinapterin from which it is subsequently reduced to methane in the 

energy conserving pathway. Thus methane is derived from the methyl group of acetate 

only. The other possible fate for acetyl-CoA is that the whole molecule serves as the raw 

material for biomass production entering into lipids or total biomass.

 Results of isotope experiments, shown in Table 3, are consistent with the relatively 

simple incorporation of acetate into biomass. Fractionations between substrate and total 

biomass are small, the lowest for any substrate tested. Similarly, the fractionation between 

substrate and methane is the lowest for any substrate tested but greater than the values of 

22‰ (Krzycki et al., 1987), 24‰ (Gelwicks et al., 1994), and 27‰ (Zyakun et al., 1988) 

determined in previous studies. Fractionations between substrate and lipids are small in 

the case of abundant substrate and negative in the case of limited substrate. Together, these 

data imply that the fractionation imposed by the enzymes in the catabolic pathway is larger 

than those in the anabolic pathway, and 13C is preferentially diverted to the anabolic branch 

and to lipids. Acetate is the only substrate on which growth results in lipids being enriched 
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in 13C relative to both substrate and bulk biomass. This relationship could be useful in 

environmental samples for distinguishing between autotrophic and acetoclastic growth if 

the δ13C of the substrates is constrained.

 

2.3.2.3 Methanol and trimethylamine

 The methylated substrates methanol and TMA are processed in a very similar manner 

by M. barkeri. Methanol is introduced to the methanogenic pathway by a transfer of the 

substrate methyl group to methyl-S-CoM by the enzyme methylcobalamin:coenzyme M 

methyltransferase. This intermediate has two potential fates, the first being the reduction of 

the methyl group to methane by methyl-coenzyme M reductase. This step is associated with 

the production of energy. The second possible fate for the methyl group is incorporation 

into biomass by being transferred to tetrahydrosarcinapterin by methyl-H4SPT:coenzyme 

M methyltransferase. The methyl-H4SPT can be oxidized to CO2 via the five enzymatic 

steps between formylmethanofuran dehydrogenase and F420-dependent methylene-H4SPT 

reductase, or it can be combined with a molecule of CO2 by carbon monoxide dehydrogenase 

into acetyl-CoA and subsequently to lipids and other biomass.

 TMA is incorporated into the biochemical network by the enzyme 

trimethylamine:coenzyme M methyltransferase producing dimethylamine and transferring 

one methyl group to methyl-S-CoM. This is metabolically processed in the same manner 

as methanol.

 Results from carbon isotope experiments with M. barkeri grown on methanol are 

summarized in Table 3. These experiments show that despite the entrance of methanol into 

the biosynthetic network only two enzymatic steps away from the production of methane, 

the difference in 13C content between substrate and methane was larger for methanol than 

for any other substrate, and was the same as that determined in a previous study (Krzycki 

et al., 1987). Similarly, differences in δ13C between substrate and total biomass were larger 

for growth on methanol than for any other substrate. 
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 Under limited substrate conditions, the isotopic fractionation between methanol and 

lipid was approximately equal for PMI, archaeol and sn-2 hydroxyarchaeol. With abundant 

substrate, however, the differences are manifest: archaeols were depleted in 13C by about 

15‰ relative to PMI.  

 Isotope discrimination between TMA and methane in these experiments was greater 

than for growth on acetate, similar in magnitude to growth on methanol or slow growth on 

CO2 and greater than that determined in a previous study (Summons et al., 1998). Isotopic 

discrimination between TMA and total biomass was large, like the discriminations seen 

between methanol and biomass.

 Isotope discriminations between TMA and individual lipids showed deviations from 

the pattern observed in methanol growth cultures. Under substrate abundant conditions, 

archaeols were depleted by about 4‰ relative to PMI, which is a smaller difference than 

seen in the methanol cultures. Under substrate limited conditions, the fractionation between 

substrate and lipid increased by 4-5‰ from archaeol to PMI to sn-2 hydroxyarchaeol, 

much greater differences than in the methanol cultures.

Differences in δ13C values between the substrate and methane, and substrate and 

biomass or lipids, were similar for the substrates methanol and TMA. During growth on 

abundant substrate, fractionations were slightly larger between substrate and the biomass 

and methane products when the substrate was methanol than when it was TMA. This seems 

to suggest that methanol:coenzyme M methyltransferase discriminates against 13C more 

strongly than trimethylamine:coenzyme M methyltransferase.  However, if this were true 

we would expect all the products of growth on methanol to be more depleted relative to 

substrate than the products of growth on TMA. This is not the case for PMI. Furthermore 

we would expect to see products of growth on methanol more depleted than products of 

growth on TMA even at low substrate concentrations. The reverse is true. This suggests that 

the differences in fractionation among products, between substrates, and between substrate 

concentrations is the result of a complex interplay of enzymes. The biosynthetic network 
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may respond to different conditions by using different enzymes (in the case of TMA vs. 

methanol) and moving carbon around its biosynthetic network in different ways. 

2.3.2.4 General trends and correlations

 Figure 2-2a plots the difference in carbon isotopic composition of substrate and 

biomass versus that between substrate and initially produced methane for each of the four 

abundant-substrate experiments. The result from each experiment plots to the right of the 

1:1 line (illustrated by the dashed line), indicating that methane is more depleted in 13C 

than biomass. Remarkably, in spite of the multiple pathways involved, the substrate-initial 

methane and substrate-biomass fractionations (for abundant substrate conditions) are well 

correlated.  Further experiments under different conditions, such as continuous culture, are 

therefore warranted.

 Figure 2-2b plots the difference in carbon isotopic composition between substrate 

and final biomass and methane for the four abundantly supplied substrates, and a compilation 

of comparable data (open symbols) from several previous studies (Balabane et al., 1987; 

Belyaev et al., 1983; Fuchs et al., 1979; House et al., 2003; Summons et al., 1998). These 

studies were performed primarily with H2/CO2 as the substrate under conditions of abundant 

substrate supply and varying degrees of substrate consumption.  These confirm the general 

trend that methane appears depleted relative to biomass, although in most cases the extent 

of this difference is not as pronounced as it is in our experiments.

 Figure 2-3 plots the difference in δ13C between substrate and individual lipids versus 

that between substrate and biomass for each experiment.  This plot shows that growth on 

acetate is unique in producing lipids that are uniformly less depleted than biomass, relative 

to substrate. Growth on other substrates usually produces lipids which are more depleted 

in 13C than total biomass, with varying degrees of deviation from the 1:1 line.

 The wide range of fractionation between substrate and lipid with variation in 

substrate availability will probably frustrate attempts to make precise predictions of the δ13C 
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Figure 2-2: a) Plot of the difference in δ13C between substrate and biomass (Δsubstrate-biomass; y-axis) vs. 
Δsubstrate-CH4 between substrate and initial methane (x-axis) for each of the four experiments with abundantly 
provided substrate. b) Plot of the Δbiomass-substrate versus the Δ between substrate and final methane produced 
in experiments conducted in this study (solid symbols) and from abundant substrate experiments from a 
survey of literature data (open symbols). Dashed lines are 1:1 lines.
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Figure 2-3: Plot of the Δsubstrate-biomass
  versus the Δ between substrate and individual lipids for each 

experiment. Symbols indicate the lipid type: PMI, archaeol or sn-2 hydroxyarchaeol. Results from each 
experiment are identified by a letter (A: acetate, H: H2/CO2, M: methanol, T: trimethylamine) and a 
subscript (a: abundant, l: limited) placed above the cluster of its three lipid points.  The dashed line is a 1:1 
line.
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of methanogen lipids in natural environments, even in cases where the δ13C of substrates is 

well constrained. It may be more feasible to suggest ranges into which lipids are expected 

to fall relative to substrate, with acetate showing the smallest deviations (< 20‰) and other 

substrates displaying much larger ranges. 

 We detected variations in the patterns of δ13C values among the various individual 

lipids produced under different growth conditions. In general, differences in 13C content of 

individual lipids were greater when the organisms grew on abundant substrate than when 

grown on limited substrate, but this rule was not universal (see growth on TMA, Table 2-3 

and Figure 2-3). Growth on acetate yielded lipids that were generally most similar to each 

other in 13C content while growth on abundant methanol yielded large differences between 

PMI and archaeols. No pattern emerged of δ13C relationships among the individual lipids 

that could usefully be employed to distinguish the growth substrate of a methanogen in situ 

by examination of lipid isotopes. 

 A previous study of isotopic fractionation between methylated substrates and lipids 

noted the large difference in 13C content of the methane and lipid products (Summons et 

al., 1998). The authors of that study predicted that under conditions of substrate limitation, 

the larger 13C depletion in methane might result in lipids that were enriched relative to 

the methylated substrate. Another study (Fuchs et al., 1979) found methanogen biomass 

enriched relative to substrate during growth on limited CO2. Mass balance requires the 

production of a 13C enriched product if another product is 13C depleted and the consumption 

is quantitative.  However we note a complicating factor: methanogens fix CO2 even when 

growing on methylated substrates (Figure  2-1). Fractionation imposed on CO2 assimilated 

by carbon monoxide dehydrogenase will manifest itself in the δ13C of lipids. This study 

indicates that even under substrate limited conditions, lipids are always depleted relative 

to the methylated substrates. This was much more pronounced during growth on TMA 

than on methanol. In these experiments however, substrate consumption did not reach 100 

percent (Tables 2-1 and 2-2).
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 In environmental samples, lipids derived from methanogens can not be distinguished 

from those derived from Archaeal methanotrophs on the basis of their structure. The 

diagnostic criteria is usually the δ13C value; when lipid δ13C is less than around -60‰ the 

lipids are interpreted to derive from methanotrophs (Blumenberg et al., 2004; Hinrichs 

et al., 1999; Pancost et al., 2000; Thiel et al., 2001). In many cases this assumption has 

been supported by other evidence (Blumenberg et al., 2005; Boetius et al., 2000; Orphan 

et al., 2001b; Raghoebarsing et al., 2006). Our results suggest that such interpretations 

should continue to be made cautiously, as there may be some overlap between the δ13C 

of lipids produced by methanogenic and methanotrophic archaea. We have shown that 

methylotrophic M. barkeri can produce lipids that are depleted in 13C by more than 50‰ 

relative to substrate. Methylated substrates are likely to derive from primary producers 

(Summons et al., 1998) and could have δ13C as depleted as -30‰ vs. VPDB in natural 

environments. It follows that lipids produced by methanogens using those substrates could 

have δ13C as negative as -80‰. It is unlikely that the largest possible fractionations for 

methylated substrates will be expressed since compounds such as TMA and methanol are 

not likely to be abundant in natural environments. But even with growth on limited TMA 

M. barkeri produced lipids nearly 30‰ depleted relative to substrate. The expected δ13C 

values for lipids produced by this organism could reasonably be expected to reach -60‰ 

in natural environments, overlapping with values that are often considered diagnostic for 

methanotrophy. Among pathways examined here, methylotrophic methanogenesis is the 

most likely to produce lipids strongly depleted in 13C, although other pathways might also 

in cases where extreme 13C depletion in substrates is a possibility. We do not suggest that 

previous reports of methanotrophy are incorrect, but stress that the possible range of δ13C 

values of methanogens may extend to more negative values than commonly realized. 

2.4. conclusions

 Experimental cultures of M. barkeri grown on four different substrates under 
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substrate limited and substrate abundant conditions revealed considerable variation 

in the 13C content of the various biological products. Variation is extensive enough that 

knowledge of the isotopic composition of a substrate does not allow prediction of the 

isotopic composition of products in natural environments. Discrimination against the 

heavier isotope in the production of methane was similar for the methylated substrates and 

CO2, and much lower with acetate as a substrate. In the production of lipids, growth on 

methylated substrates discriminated against 13C most significantly, followed by CO2 and 

acetate. 
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Chapter 3
Extraordinary 13C enrichment of diether lipids at the 

Lost City Hydrothermal Field suggests a carbon-limited ecosystem

absTracT

 Active and inactive carbonate chimneys from the Lost City Hydrothermal Field 

contain up to 0.6% organic carbon with diverse lipid assemblages. The δ13C values of 

total organic carbon range from -21.5‰ vs. VPDB at an extinct carbonate chimney to 

-2.8‰ at a 70˚C actively venting carbonate chimney near Marker 7 (Figure 3-1). Samples 

collected at locations with total organic carbon having δ13C values > -15‰ also contained 

high abundances of isoprenoidal and nonisoprenoidal diether lipids. Samples with TOC 

more depleted in 13C lacked or contained lower amounts of these diethers.

The relationship between high δ13C values for TOC and the presence of diethers 

is supported by compound-specific isotopic analysis. Isoprenoidal and nonisoprenoidal 

diethers have extraordinary 13C enrichments for biological lipids. The lipid biomarkers sn-2 

hydroxyarchaeol, sn-3 hydroxyarchaeol, and dihydroxyarchaeol, which are characteristic 

of methanogenic Archaea, have δ13C values that range from -2.9 to +6.7‰ vs. VPDB. 

Diethers and monoethers with non-isoprenoidal side chains are also present, are of presumed 

bacterial origin, and have structures similar to those produced by sulfate reducing bacteria in 

culture and found in natural communities at cold seeps. Diethers have δ13C values between 

-11.8‰ and +3.6‰ in samples that also contained abundant hydroxyarchaeols. In samples 

without abundant hydroxyarchaeols, the nonisoprenoidal diethers were more depleted in 

13C, with δ13C as low as -28.7‰.

The lipid assemblage of hydroxyarchaeols and nonisoprenoidal glycerol diethers 

that characterizes the active chimneys is typical of natural environments in which methane 

is oxidized anaerobically. In contrast to the latter, the δ13C values of the Lost City lipids are 

heavy. At Lost City, these lipids are likely produced by hydrogen-consuming methanogens. 
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Hydrogen concentrations in some vent fluids exceed 14 mmol/kg and they are in all 

cases greater than 1 mmol/kg (Proskurowski et al. Chem. Geol. 229 (2006), 331). High 

hydrogen concentrations create the thermodynamic drive that favors methane generation 

over methane oxidation. Lipids specific for methane-cycling archaea are enriched in 13C 

relative to the methane in vent fluids, thereby excluding methane as their carbon source. 

In combination, these lines of evidence show that Methanosarcinales inhabiting Lost City 

carbonate chimneys are methanogens and not methane-oxidizing methanotrophs. 

 The Lost City ecosystem is biogeochemically important because it is driven by 

serpentinization – a reaction that can be expected wherever ultramafic rock interacts 

with water. Hydrogen and methane from such environments may have been important 

components Earth’s early biosphere. However the presence of abundant methanogenic 

archaea complicates efforts to understand the relative contributions of biotic and abiotic 

methanogenesis in these environments.

3.1 inTroducTion

The discovery of the Lost City Hydrothermal Field (LCHF) in 2000 (Kelley et al., 2001; 

Kelley et al., 2005) marked the first recognition of an ocean-floor ecosystem driven by the 

serpentinization of ultramafic rock. Ultramafic rocks are a significant component of the 

oceanic lithosphere (Fruh-Green et al., 2004b). They may have been widespread on early 

Earth (Shock and Schulte, 1998), and can be expected on other terrestrial planets (Sleep et 

al., 2004) and on Europa (McCollom, 1999). Because of the alkalinity and reducing power 

produced abundantly by serpentinization, the alteration of ultramafic rocks by water has 

important geochemical and biological consequences. Study of these environments may 

bear on prebiotic chemistry, early Earth evolution, and the potential for life elsewhere. 

The LCHF is located on the peridotitic Atlantis massif 15 km west of the mid-

Atlantic ridge at a depth of 750 to 900 m. Fluids are alkaline and reducing, and cool relative 

to magma-driven hydrothermal systems at mid-ocean ridges. The heat source driving 
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hydrothermal circulation at Lost City has been proposed to derive entirely from exothermic 

serpentinization reactions (Kelley et al., 2001; Kelley et al., 2005). However, this view has 

been challenged on the basis of heat-balance calculations showing that this source may be 

inadequate (Allen and Seyfried, 2004) and that geothermal heat must also be important. 

Hydrothermal fluid temperatures range from <40 to 90˚C with pH between 9 and 11, Ca2+ 

concentrations up to 30 mmol/kg, CH4 concentrations up to almost 2 mmol/kg, and H2 

concentrations up to nearly 15 mmol/kg.

Hydrogen is a preferred electron donor for many microbes. Autotrophic methanogenesis 

couples oxidation of H2 to reduction of CO2 with the production of methane and is predicted 

to be thermodynamically favorable in the H2-rich fluids produced by serpentinization 

(Sleep et al., 2004). Autotrophic methanogenesis requires no direct or indirect byproducts 

of oxygenic photosynthesis and may be one of the more ancient metabolic strategies on 

Earth. There is evidence for methanogenesis as far back in Earth history as the Archaean 

(Hayes, 1994; Ueno et al., 2006), although this some of this evidence has been subsequently 

challenged (Sherwood Lollar and McCollom, 2006), and some biologists dispute the 

early evolution of methanogenic archaea (Cavalier-Smith, 2006). Microbes that use other 

terminal electron acceptors such as sulfate are also capable of using H2 as an electron donor 

and, when these electron acceptors are present, such organisms generally outcompete 

methanogens (Hoehler et al., 1998; Kristjansson et al., 1982).

The most spectacular features of the LCHF are massive calcium carbonate and brucite 

chimneys which grow up to 60 meters tall from the peridotite seafloor. Radiocarbon 

measurements indicate that the carbonate has been precipitating at its present location for 

at least 30 ky (Fruh-Green et al., 2003). The carbonate has δ13C between +1.4‰ and +2.9‰ 

and δ18O between +1.5‰ and +5.2‰ relative to VPDB, while 87Sr/86Sr values are between 

0.70760 and 0.70908. These data indicate a source dominated by seawater, and suggests 

that precipitation of calcium carbonate occurs upon mixing of seawater with vent fluids. 

The Ca2+ source is dominantly hydrothermal, while the  CO3
2- derives predominantly from 
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seawater (Fruh-Green et al., 2003; Ludwig et al., 2006). Measurements of Sr isotopes and 

wt% Mg in carbonate chimneys have shown that mixing ratios of seawater and vent fluids 

vary between chimneys (Ludwig et al., 2006).

The carbonate towers host a rich microbial ecosystem. Analyses of 16S rDNA and 

cell counts by fluorescence in situ hybridization (FISH) show that active vent structures 

contain a predominance of archaea (Brazelton et al., 2006; Kelley et al., 2005) , with 

Methanosarcinales prevalent in active, high-temperature vent structures and ANME-1 

group methanotrophs present in two samples from lower-temperature carbonate veins, and 

one active vent (Brazelton et al., 2006; Kelley et al., 2005). Studies of bacterial diversity 

indicate that Firmicutes are present in higher-temperature, active vent fluids, along with 

methane-oxidizing and sulfur-oxidizing bacteria  (Brazelton et al., 2006; Kelley et al., 

2005). The coexistence of obligate aerobes and obligate anaerobes in the same samples 

suggests that different microbial communities inhabit different environments around the 

vents, possibly an anaerobic community inhabiting reducing anaerobic hydrothermal fluid 

within carbonate structures and aerobic microbes inhabiting zones on carbonate surfaces 

where hydrothermal fluid mixes with oxygenated seawater.

Here we report on the chemical and isotopic composition of organic matter 

in the carbonate chimneys at the LCHF. This data sheds light on the nature of the Lost 

City Methanosarcinales and on the biological production of methane. Understanding of 

the source of methane at Lost City is significant in informing our understanding of the 

evolution of the biosphere. Methane is an important trace gas in the modern atmosphere 

and was probably abundant in the atmosphere during the first two billion years of Earth 

history (Catling et al., 2001; Kasting and Ono, 2006) when it may have played an important 

role in regulating global temperature (Lowe and Tice, 2004; Pavlov et al., 2001). The role 

of methanogens in moderating the H2 level in the atmosphere is an important component of 

Precambrian climate models (Kasting, 2005) and the abundance of H2 in the Precambrian 

atmosphere is hotly debated (Catling, 2006; Tian et al., 2006; Tian et al., 2005). Methane 
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has been detected in the Martian atmosphere (Formisano et al., 2004) where its source is 

unknown. Understanding systems such as Lost City should shed light on these issues.

3.2. meThodology

Carbonate samples were collected during Atlantis cruise AT-7-41 using the 

submersible Alvin and stored in Teflon containers at -20°C until processing. Subsamples 

were freeze-dried and crushed to a fine powder, then ultrasonically extracted three times 

(ca. 30 min) in a mixture of dichloromethane (DCM):methanol (3:1, v/v) and all three 

extracts were combined. Extracts were centrifuged at 2000 rpm for 15 minutes to remove 

residual carbonate particles and then the bulk of solvent was evaporated at 35°C under a 

stream of dry nitrogen. Elemental sulfur was removed from the extracts by passing over a 

column of activated copper, followed by filtration of the extract through a 40 μm combusted 

glass Buchner funnel. Total lipid extracts were weighed and are reported as μg of lipid per 

gram of dry rock extracted.

Aliquots of lipid extracts were analyzed as their trimethylsilyl ethers and esters by 

reacting with N,O-bis(trimethylsilyl)trifluoro-acetamide (BSTFA + 1% TMCS) in pyridine 

at 60°C for thirty minutes. The remainder of the total lipid extract was separated over 

silica gel into five fractions using an elution scheme of solvents of increasing polarity: 

aliphatic hydrocarbons 1⅜ dead column volume (DV, measured by slow addition of the 

first eluent with calibrated syringe) hexane, aromatic hydrocarbons 2 DV 4:1 hexane:DCM, 

ketones 2 DV DCM, alcohols 2 DV 4:1 DCM:ethyl acetate, fatty acids and diols 2 DV 

7:3 DCM:methanol. Individual lipids were identified using a HP 6890 gas chromatograph 

fitted with a PTV injector operated in splitless mode and equipped with a Varian CP-Sil-5 

(60-m length, 0.32 mm inner diameter, and 0.25-um film thickness) fused silica capillary 

column and coupled to an Agilent 5973 mass-selective detector. Lipids were identified by 

comparisons of mass spectra and retention times with authentic standards or samples where 

these compounds have previously been characterized. Diether lipids were identified by 
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comparison to similar authentic standards, and we report their masses without attempting 

to solve their detailed structures. Lipids were quantified relative to coinjected standards.

In some cases the side chains of ether lipids were cleaved by reaction with 1.0 

M boron tribromide (BBr3, Aldrich) in dichloromethane (DCM). Approximately 200 μl 

BBr3 was added to lipid extracts in dry vials under a stream of argon, after which vials 

were sealed and heated to 60ºC for 2 hours. After the reaction was complete, the resulting 

bromides were reduced to hydrocarbons by adding the DCM solution containing bromides 

to approximately 1 ml of Super-Hydride solution (1.0 M lithium triethylborohydride in 

tetrahydrofuran, Aldrich) in dry vials under a stream of argon and reacting at 60ºC for 2 

hours. Samples were cleaved and reduced in parallel with an ether lipid standard to confirm 

quantitative cleavage of side chains to hydrocarbons.

Carbon-isotopic compositions of individual lipids were determined using a 

TraceGC gas chromatograph fitted with a PTV injector and equipped with  a Varian DB-1 

(60-m length, 0.32 mm inner diameter, and 0.25-um film thickness) fused-silica capillary 

column and coupled to a ThermoFinnigan Deltaplus XL isotope-ratio-monitoring mass 

spectrometer via a combustion interface at 850°C. Column temperatures were programmed 

from 60°C at 10°C/min to 100°C, to 320°C at 4°C/min, and then held isothermal for 20 

minutes. Carbon isotope ratios were determined relative to an external CO2 standard that 

was regularly calibrated relative to a reference mixture of n-alkane (Mixture B) provided 

by Arndt Schimmelmann (Indiana University). All lipid isotope values were corrected by 

mass balance for the carbon present in the TMS derivative. 

Total organic carbon contents of carbonates were determined by weighing freeze-

dried and finely crushed carbonate samples (20-40 mg) in triplicate into clean silver 

capsules. The silver capsules were placed in an evacuated chamber for seven days with 

vapor in equilibrium with concentrated HCl and several grams of P2O5 which served as 

a dessicant. Complete removal of carbonate was verified by addition of 50 – 100 μl of 

concentrated HCl directly to the silver capsules at 60°C. Samples were dried at 60°C 
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overnight, and residual CaCl2 was allowed to remain with the samples. Silver capsules 

were burned in a Fisions Elemental Analyzer at 1030°C coupled to a ThermoFinnigan 

Delta Plus XL isotope ratio monitoring mass spectrometer. Inspection of the resulting 

CO2 traces with ThermoFinnigan IsoDat software confirmed the absence of carbonate 

remaining in the samples. Total organic carbon contents were calculated by integration of 

peak areas compared to an external standard with known carbon content. Stable carbon 

isotope ratios were determined with an external CO2 standard calibrated to international 

reference materials NBS-22 oil, CH-6 sucrose and an internal lab standard (acetanilide) 

and reported in Vienna Pee Dee Belemnite (VPDB) notation.

3.3. resulTs and discussion

3.3.1 Total Organic Carbon

 Thirty-seven carbonate samples had total organic carbon contents averaging about 

0.2% and varying between approximately 0.05% and 0.5% TOC (Table 3-1). The 13C 

content of the organic carbon was widely variable with δ13C from -27.7‰ to -2.8‰. TOC 

and δ13C are uncorrelated (Figure 3-2a). As will be discussed below, the enhanced 13C 

contents are consistent with the 13C contents seen in individual lipids. Diether lipids are 

the most 13C enriched components and samples with the highest concentrations of diether 

lipids also tend to have the highest δ13CTOC (Figure 3-3). Samples taken from various parts 

of the same carbonate tower have values of δ13CTOC varying by up to 14.4‰ . Replicate 

measurements for a single sample yield variations < 0.5‰. Accordingly, larger variations 

reflect natural heterogeneity of microbial communities within a tower. 

 Exceptional enrichment in 13C is most prevalent in actively venting structures. 

(Table 3-1). Of samples that are characterized as active or inactive, only active structures 

contained total organic carbon with δ13C > -10‰, and inactive structures all contained TOC 

with δ13C < -15‰. A histogram (Figure 3-4) shows the distribution of δ13C values for TOC 

with regard to vent activity.
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Table 3-1: Total organic carbon content and δ13CTOC for all collected carbonate samples. Marker location 
and carbonate type (after Ludwig et al., 2006) are denoted Type A: active, I: inactive, F: fissure. Samples 
were analyzed in two batches at the Woods Hole Oceanographic Institue (w) and at the Massachusetts 
Institute of Technology (m).

Marker Sample 13C % TOC Type
3 LC 3862-1219 -12.2 0.15 A m
3 LC 3862-1219 -11.4 0.12 A w
2 LC 3864-1524 -15.5 0.11 A m
2 LC 3864-1537 -8.8 0.12 A m
1 LC 3864-1647 -18.2 0.18 I m
1 LC 3864-1647 -15.3 0.14 I w

fracture fill near mkr 7 LC 3865-1322 -15.1 0.10 F m
7 LC 3867-1225 -3.5 0.43 A m
7 LC 3867-1225 -6.1 0.46 A m
7 LC 3867-1225 -5.2 0.25 A w
7 LC 3867-1228 -7.5 0.36 I m
7 LC 3867-1228 -2.8 0.21 I w

Under Poseidon LC 3867-1308 -19.8 0.12 I m
Under Poseidon LC 3867-1308 -19.0 0.10 I w

C LC 3869-1404 -7.8 0.20 A m
C LC 3869-1404 -14.9 0.23 A m
C LC 3869-1404 -9.2 0.24 A w
C LC 3869-1443 -7.0 0.47 A m
C LC 3869-1443 0.40 A w
C LC 3869-1446 -4.7 0.34 A m
8 LC 3871-1147 -11.3 0.13 A w
8 LC 3871-1147 -11.1 0.10 A w
C LC 3871-1319 0.60 A w
C LC 3871-1319 -18.4 0.33 A w
2 LC 3871-1442 -18.8 0.09 I m
2 LC 3871-1442 -19.3 0.10 I m
2 LC 3871-1442 -17.7 0.15 I m

below W part vent field LC 3871-1512 -20.9 0.05 I m
extinct carbonate LC 3872-1544 -21.5 0.23 I m
lithified carbonate LC 3873-1203 -19.8 0.04 I m

LC 3873-1413 -17.6 0.40 F m
9 LC 3875-1244 -16.1 0.10 I w
B LC 3875-1409 -18.4 0.29 A w

hump spire LC 3876-1104 -18.0 0.20 A w
hump spire LC 3876-1104 -18.3 0.22 A m

on serpentinite basement LC 3876-1113 -20.1 0.10 I m
X1 LC 3876-1133 -16.3 0.15 F m
X1 LC 3876-1133 -14.9 0.17 F w

carbonate growing on serpentinite LC 3876-1219 -15.8 0.16 F m
B LC 3876-1427 -18.7 0.06 F w
B LC 3876-1436 -16.2 0.07 A w

carbonate sediment LC 3877-1214 -21.5 0.11 I m
old ext. chimney LC 3877-1501 -19.3 0.15 I m
extinct carbonate LC 3877-1501 -19.5 0.11 I w

Nature cover LC 3877-1606 -18.8 0.09 A m
Nature cover LC 3877-1606 -17.3 0.05 A w

Poseidon LC 3878-1630 -16.4 0.14 I m
Poseidon edifice LC 3878-stow -6.9 0.37 ? m
Poseidon edifice LC 3878-stow -21.3 0.10 ? w

H LC 3879-1216 -11.7 0.05 A w
carbonate close to serpentinite LC 3879-1258 -20.1 0.06 F m

2 LC 3879-1500 -4.6 0.07 A w
7 LC 3879-1605 -3.1 0.28 A w
7 LC 3879-slurp -6.5 0.44 A m

carbonate assoc. w black rock LC 3880-1353 -17.0 0.16 F m
active, below Nature tower LC 3880-1532 -16.3 0.08 A m

X2 LC 3880-1557 -19.0 0.09 F w
X2 LC 3880-1557 -20.0 0.11 F m

flange at H LC 3881-1201 -17.4 0.12 A m
H LC 3881-1225 0.36 A w
H LC 3881-1228 -14.1 0.13 A w
H LC 3881-1228 -16.9 0.09 A m

mussel acres at H LC 3881-1256 -16.6 0.28 I m
mussel acres at H LC 3881-1256 -15.1 0.13 I w

H - inactive LC 3881-1325 -18.8 0.10 I m
3 LC 3881-1408 -15.6 0.13 A m
3 LC 3881-1408 -15.6 0.05 A w
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 The 13C content of total organic carbon in Lost City carbonates can be loosely 

modeled as a mixture between two end-members. One end-member is marine carbon 

incorporated from the water column, that can be estimated to have δ13C = -20‰ (Goericke 

and Fry, 1994). Vent organisms comprise the second end-member δ13C near -2‰. If 

TOCmarine is assumed to be near constant at 0.06%, and TOCvent varies from 0 to 0.5%, it 

produces the curve shown in Figure 3-2b.

3.3.2 Archaeal lipid distribution and 13C content

To estimate the relative inputs of archaeal biomass at various LCHF vent sites, we 

measured the abundances of lipids diagnostic for archaea. We sampled carbonates from 

active and inactive vent structures from several locations that spanned the range of fluid 

temperatures at Lost City.

 Archaeol, a lipid unique to archaea, was detected in approximately one-half of the 

Figure 3-3: Plot of diether content vs. δ13CTOC for samples with lipid analyses, showing that TOC highly 
enriched in 13C contain higher amounts of isoprenoidal and non-isoprenoidal diether lipids.
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samples (Table 3-2). Concentrations ranged from below detection limit up to 600 ng of 

archaeol per gram of dry carbonate. In most cases archaeol was enriched in 13C relative to 

typical phytoplanktonic products, with δ values up to +6.0‰. The average value of δarchaeol 

in carbonate chimneys was +1.5‰. In only one case did a sample contain archaeol with a δ 

<-4.2‰. That sample, with δarchaeol = -77‰  was an inactive carbonate collected 30 meters E 

of marker H (marker X2, sample 3880-1557). The low value of δarchaeol  implies that archaea 

at this site consume methane. Correspondingly, a microbiological survey of 16S rDNA  

(Brazelton et al., 2006) has detected ANME-1 methanotrophic archaea at this location. 

All other samples containing archaeol also contained sn-2 hydroxyarchaeol, sn-3 

hydroxyarchaeol, and a putative dihydroxyarchaeol. Both sn-2 hydroxyarchaeol and 

dihydroxyarchaeol were more abundant than archaeol in each case. The concentrations 

and δ13C values of archaeol and sn-2 hydroxyarchaeol are strongly co-variant in Lost City 

carbonates. (Figure 3-5a, 3-5b). Concentrations of archaeol strongly correlate with those 

of dihyxroxyarchaeol (Figure 3-5c), but the δ values are unrelated (Figure 3-5d).  The 

Figure 3-4: Histogram showing frequency of δ13CTOC for samples classified as “active”, “inactive” 
and “fissure” after Ludwig et al., 2006. Samples enriched in 13C are dominantly from active carbonate 
chimneys.
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concentration of sn-2 hydroxyarchaeol averages 2.6 times that of dihydroxyarchaeol, and 

both of these compounds are more abundant than sn-3 hydroxyarchaeol (Figure 3-6). This 

pattern, which might not be expected with mixed inputs from various species, is suggestive 

that all of the hydroxyarchaeol compounds are synthesized by a single archaeal strain, 

although the isotope data suggest a that dihydroxyarchaeol may have multiple sources. Two 

other compounds with spectra similar to hydroxyarchaeols are also common at Lost City – 

one eluting after sn-3 hydroxyarchaeol and one just after dihydroxyarchaeol (Figure 3-6). 

These compounds are probably similar in structure to hydroxyarchaeols. Compounds with 

similar retention times and spectra have been detected in sediments at the Haakon Mosby 

Mud Volcano (M. Elvert, pers. comm.), which contains ANME-3 methanotrophs. The 

ANME-3 group is very closely related to the methanogens found at Lost City (Losekann et 

al., 2007). These compounds may be specific to this clade.

In environmental samples, detection of hydroxyarchaeols is usually related to the 

presence of the archaeal orders Methanosarcinales or Methanococcales, including the 

ANME-2 group and the closely related ANME-1 archaeal methanotrophs (Blumenberg 

et al., 2004; Hinrichs et al., 2000; Pancost et al., 2001). There are a few exceptions to 

this rule, however. Within the Methanobacteriales, Methanosphaera species have been 

reported to synthesize hydroxyarchaeol (Koga et al., 1998; Sprott et al., 1999), as has 

Methanobrevibacter (Sprott et al., 1999). One halophilic archaeon, Natronobacterium, 

is also reported to synthesize the compound (Upasani et al., 1994). In many Lost City 

carbonates, sn-2 hydroxyarchaeol is the single most abundant extractable lipid.

 Microbiological studies suggest that hydroxyarchaeols indeed derive from 

Methanosarcinales. Examination of 16S rRNA sequences from Lost City carbonates has 

shown that archaeal diversity is low and dominated by a phylotype of Methanosarcinales 

denoted as Lost City Methanosarcinales  (Brazelton et al., 2006). LCMS was the sole 

archaeal phylotype in most carbonate chimneys with the exception of samples from Marker 

C, characterized by sequences corresponding to both LCMS and ANME-1. Two samples 
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from carbonate veins hosted in serpentinite (marked X1 and X2) contained ANME-1 only 

(X2) or ANME-1 dominated with a very small amount of LCMS (X2). 

Ether-cleavage reactions (BBr3/SH, see methods) did not yield any C40 products. 

Accordingly, GDGTs must be absent. Such compounds are commonly detected in 

methanogens and in anaerobic archaeal methanotrophs (Blumenberg et al., 2004; Hinrichs 

et al., 1999; Hinrichs et al., 2000; Pancost et al., 2001). The hydrocarbon 2,6,10,16,19-

pentamethylicosane  (PMI) was present in two samples. Its δ13C value was between +7‰ 

and +10‰ (Table 3-2).

When hydroxyarchaeols are detected in methanotrophic archaea, typically they are 

extremely depleted in 13C with δ values of -80 to -100‰ (Hinrichs et al., 2000). At Lost 

City, hydroxyarchaeols are uniformly highly enriched in 13C, with an average δ13C near 

+2‰ (Table 3-2). Lipids with such high 13C enrichments are rare. Lipids with δ13C = +4‰ 

have been detected in a geothermal sinter in New Zealand (Pancost et al., 2006), but the 

Lost City PMI, with δ13C = +10‰ establishes a new record for enrichment of 13C in a 

natural lipid. 

Such a striking enrichment in 13C suggests that the assimilation of carbon by 

Methanosarcinales at Lost City must be unusual. The LCMS phylotype has in some 

cases been included in the newly defined ANME-3 group, apparently on the basis of the 

close correspondence of its 16S rDNA sequence to sequences from environments where 

methane is being oxidized anaerobically such as the Haakon Mosby Mud Volcano (Knittel 

et al., 2005). The ANME-3 group has been defined as a methanotroph on the basis of 

its association with zones of methane consumption and sulfide production, and archaeol 

and sn-2 hydroxyarchaeol highly depleted in 13C (Niemann et al., 2006). Later reports 

have defined the ANME-3 clade more narrowly, and exclude the LCMS (Losekann et al., 

2007). Our findings support the latter view, and suggest that the LCMS phylotype is not 

methanotrophic. Three convergent lines of evidence support this view. 

First, the δ13C of methane at Lost City is reported to be -13.6‰ to -8.8‰ (Kelley 
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et al., 2005). Lipids are significantly more enriched in 13C than methane, therefore 

methane is excluded as a viable carbon source for these organisms. In AOM environments 

Methanosarcinales lipids are exceedingly depleted relative to methane, often by amounts 

up to 60‰ (Hinrichs et al., 1999). Second, DIC is lower in abundance than methane but 

more enriched in 13C. This pattern would not occur if large amounts of methane were 

being oxidized to DIC. Third, the concentrations of hydrogen within the vent fluids are up 

to nearly 15 mM. These high hydrogen concentrations provide a strong thermodynamic 

drive for methanogenesis but not for the reverse reaction. Under the millimolar hydrogen 

concentrations at Lost City, anaerobic oxidation of methane would be thermodynamically 

difficult, favored only if an H2-consuming syntroph were available to remove large amounts 

of hydrogen over short distances within the consortium (see Appendix 1). However 

ANME-1 organisms were detected at Marker C (Brazelton et al., 2006) where hydrogen 

concentrations are higher than 7 mmol/kg (Proskurowski et al., 2006).

If not methanotrophic, the LCMS phylotype is likely methanogenic. 

Methanosarcinales are physiologically diverse and capable of producing methane from a 

variety of substrates including CO2, acetate, methanol, and trimethylamine. The extraordinary 

abundance of hydrogen in Lost City vent fluids suggests that it is the most viable electron 

donor for methanogenesis.The methanogenesis is therefore likely autotrophic, although 

heterotrophic methanogenesis using substrates such as formate or methanol can not be 

absolutely excluded. Formate or methanol might form by reduction of CO formed from 

CO2 under some hydrothermal conditions, but the pH at Lost City limits CO2 availability 

and these substrates are unlikely to be available in abundance (Seewald et al., 2006).

The isotope discrimination between CO2 and hydroxyarchaeols produced by 

autotrophic Methanosarcinales varies with a number of conditions and particularly 

hydrogen concentration (Chapter 2). At high concentrations of H2 carbon-isotopic 

differences between CO2 and lipids are smaller than at low concentrations, probably due 

to differential reversibility of the enzymes in the methanogenic pathway (Valentine et 
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al., 2004). In parallel investigations, we have found that the fractionation between CO2 

and sn-2 hydroxyarchaeol in Methanosarcina barkeri at high hydrogen concentrations is 

approximately 12‰, compared to more than 40‰ at low hydrogen concentrations (Chapter 

2).

Values of δ13C of inorganic carbon in Lost City vent fluids range between -8‰ to 

+3‰ (Kelley et al., 2005). The similar 13C contents between lipids and DIC can be explained 

by carbon limitation. If available inorganic carbon is consumed nearly completely, isotopic 

discrimination will be minimized. Seawater contains approximately 2 mmol DIC/kg and 

the high concentrations of reductants, produced by serpentinization are, in principle, of 

sufficient abundance to reduce all DIC to biomass and methane. End-member vent fluids 

have methane concentrations that approach, but do not exceed 2 mmol/kg (Bouloubassi et 

al., 2006; Pancost et al., 2001; Proskurowski et al., 2006), suggesting that a large proportion 

of the DIC in the starting fluid is reduced to methane. Concentrations of inorganic carbon at 

Lost City are indeed estimated to be very low. Carbonate alkalinity is reported to be below 

one-third that of seawater (Proskurowski et al., 2006). At a pH of 11 and temperature of 70 

ºC that suggests the DIC concentration is less than 0.4 mmol/kg.

We propose that the LCMS organisms inhabiting the carbonate towers at Lost City 

are fixing inorganic carbon and that they are carbon-limited. This limitation results from 

two factors. The first is the abundance of reductants, which allows the conversion of most 

of the DIC to biomass and methane. Residual carbonate alkalinity is slightly enriched in 

13C from seawater DIC. The second factor is the high pH and temperature, which results in 

limited concentrations of bioavailable CO2 and bicarbonate. At pH 11 and 70 ºC more than 

99% of DIC is carbonate. 

CO2 limitation has been shown to limit the growth rate of phytoplankton under 

optimal growth conditions (Riebesell et al., 1993) leading to enriched values of δ13Cphytoplankton 

(Rau et al., 1989). In that case phytoplankton remove CO2 from seawater resulting in a 

shortfall in CO2 concentration at their cell surface. Equilibrium concentrations are restored 
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by diffusion of CO2 towards the cell surface and by the reaction that converts bicarbonate 

to CO2. The relative importance of diffusion and reaction can be estimated by comparing 

the size of the diffusive boundary layer surrounding a cell (equivalent to the cell radius 

for cells with a radius of less than 1 mm) to the reacto-diffusive length scale (Riebesell et 

al., 1993). In surface seawater (pH = 8.1) the reacto-diffusive length scale varies between 

approximately 300 μm at temperatures slightly above 15 ºC, to 800 μm at temperatures 

near 0 ºC (Riebesell et al., 1993). Since the reacto-diffusive length scale is much larger 

than the diffusive boundary layer of phytoplankton (~15 μm), only diffusion is significant:  

conversion of bicarbonate does not contribute significant CO2 to the cell (Riebesell et al., 

1993). 

At the hydrothermal conditions in Lost City vent fluids, the reacto-diffusive length 

scale is on the order of 1 μm (Appendix 2). This length scale is similar to the size of 

a bacterial or archaeal cell. Under such conditions equilibrium reactions transforming 

bicarbonate to CO2 are important and may supply most carbon to the cell surface. At high 

pH and temperature however, the equilibrium isotope fractionation between CO2 and 

bicarbonate is minimized. At 70 ºC and pH 11 he two species have δ values within 2‰. 

This may help to explain the high 13C content of biological products at Lost City.

 It is also possible that the inorganic carbon source is bicarbonate, which is 

biologically converted to CO2 with carbonic anhydrase. At the temperature and pH of Lost 

City vent fluids, bicarbonate is also very limiting, and is enriched in 13C relative to CO2.  

Conversion of carbonate to CO2 is not enzymatically catalyzed. 

Whether the carbon source is bicarbonate or CO2, the high pH and tempertature 

limit their availability. It is likely that these conditions result in lipids with 13C contents 

similar to that of the inorganic carbon. Studies of complementary systems could help to 

resolve controls on 13C content. At the Rainbow field, for example,  concentrations of H2 

are similar to those at Lost City but vent fluids are acidic (Charlou et al., 2002). 
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3.3.3 Bacterial lipid distribution and 13C content

We detected nonisoprenoidal ether lipids at Lost City in nearly all samples analyzed 

(Table 3-2). Diethers were most abundant and ranged in mass from 556 Da (C31:2-TMS) 

to 652 Da (C38:2-TMS) with saturated and unsaturated side chains ranging in length from 

C13 to C18. A detailed description of these diether structures is provided in Chapter 5. The 

range of structures is similar to that described in cold-seep carbonate crusts associated with 

Mediterranean mud volcanoes (Bouloubassi et al., 2006; Pancost et al., 2001), including the 

Series I, II, and III components, and several additional series of diethers that do not fall into 

the categories described from the Mediterranean cold seeps. There was no apparent pattern 

to the variety of diether structures between samples, although diethers with masses of 584 

Da and 608 Da (TMS derivatives) were particularly common. Multiple chromatographic 

peaks yield identical mass spectra, suggesting that isomeric structures are present. Several 

samples also contain glycerol monoethers, with C16:1 and C18 nonisoprenoidal side chains 

being most abundant.

Ether lipids, which are common in archaea, are rare in bacteria. They are, however, 

produced by  Aquificales, Ammonifex, Thermodesulfobacterium and several sulfate-

reducing δ-proteobacteria (Huber et al., 1992; Langworthy et al., 1983). In all cases, the 

known bacterial diethers have nonisoprenoidal carbon chains. Archaeal diethers have 

isoprenoidal side chains, with few exceptions (Nishihara et al., 2000). A tetraether lipid 

containing putative isoprenoidal and nonisoprenoidal carbon chains and with an unknown 

microbial source has been reported in low abundance in marine and lacustrine sediments 

(Schouten et al., 2000), but further reports of such lipids are lacking. For these reasons we 

interpret the nonisoprenoidal lipids at Lost City as bacterial in nature.

 It is common to find isoprenoidal and nonisoprenoidal ether lipids co-occurring in 

marine sediments with values of δ13C so low that the carbon source can only be methane. 

A combination of geochemical and microbiological techniques has confirmed that the 

nonisoprenoidal lipids are produced by sulfate-reducing bacteria that are the syntrophic 
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partner of methane-oxidizing archaea that oxidize methane anaerobically (Blumenberg 

et al., 2004; Hinrichs et al., 1999; Hinrichs et al., 2000; Orphan et al., 2001; Orphan et 

al., 2002). The archaeal members of these consortia belong to the ANME-1 or ANME-2 

phylogenetic clusters. The bacterial members belong to the sulfate-reducing Desulfosarcina/

Desulfococcus group.

 If Lost City Methanosarcinales are methanogens, methane-oxidizing consortia 

are unlikely to be a dominant part of the community in active carbonate chimneys. 

Microbiological studies fail to detect the presence of known syntrophic partners to such 

consortia (Brazelton et al., 2006). No δ-proteobacterial sulfate-reducers or other known 

ether-lipid producers were detected, so the source of the nonisoprenoidal diether lipids 

is enigmatic. Diverse Firmicutes related to the sulfate reducer Desulfotomaculum were 

detected in the Lost City carbonates and are presumed to be the sulfate reducers which, 

in these environments, use H2 as an electron donor (Brazelton et al., 2006). Accordingly, 

Clostridia are candidates for producers of the non-isoprenoidal diethers. Clostridia 

commonly produce ether-lipid plasmalogens and incorporate them in their cellular 

membranes (Goldfine, 1997). However, studies of Desulfotomaculum have not detected 

diethers (Londry et al., 2004; Pikuta et al., 2000). At least one Clostridium, Ammonifex, 

does produce diethers (Huber et al., 1996), and the Firmicute lipid biosynthesis pathway 

shares many characteristics with archaea (Skophammer et al., 2007). However, Firmicutes 

were undetected in two carbonate vein samples (X1, and X2) (Brazelton et al., 2006) 

containing nonisoprenoidal diethers, seemingly ruling them out as the sole source for these 

lipids.

Regardless of their source, nonisoprenoidal ether lipids, like the isoprenoidal 

diethers, are in many cases unusually enriched in 13C. The most extreme enrichments 

are found where hydroxyarchaeols are also abundant. In samples with both sn-2 

hydroxyarchaeol and dihydroxyarchaeol, the δ13C of nonisoprenoidal diethers ranged from 

-11.8‰ to +3.6‰ (Table 3-2, Figure 3-8) and that of monoethers ranged from -19.2‰ to 
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-3.9‰. The nonisoprenoidal diethers were typically a 2-10‰ more depleted in 13C than 

hydroxyarchaeols. In many cases nonisoprenoidal monoethers were still more depleted. 

We propose that the low availability of DIC is responsible for the 13C enrichment in non-

isoprenoidal ether lipids, just as it is for the archaeal diethers.

In carbonate tower samples where hydroxyarchaeols were not abundant, 

nonisoprenoidal diethers were more depleted in 13C, with δ13C ranging from -14.3‰ to 

-28.7‰. Values of δ for  monoethers ranged from  -19.6‰ to -26.7‰. There was one 

exception: a sample from Marker 3 (3881-1408) in which archaeal lipids were absent had 

nonisoprenoidal diethers with δ averaging near -6‰. Although archaeal lipids were absent, 

the LCMS phylotype was detected in this sample by presence of its 16S rRNA genes 

(Brazelton et al., 2006). 

The availability of carbon is apparently limited only in carbonate chimneys 

containing LCMS organisms. The δ13C values found in samples at X1 and X2 range from 

those typical of carbon-fixing microbes to values sufficiently negative to suggest methane 

as a carbon source (-45‰). At site X2, diethers with the most positive values of δ13C are 

enriched relative to archaeol by slightly less than 50‰ – a difference that is within the 

range found between archaeal and bacterial diethers at AOM sites (Hinrichs et al., 2000). 

However, no bacterial syntrophic partners or sulfate-reducing Firmicutes are found in the 

carbonate vein sites (Brazelton et al., 2006), so the source of the non-isoprenoidal ether 

lipids remains unclear.  Conceivably, the ANME-1 organisms at these sites are operating 

without a syntrophic partner (Orphan et al., 2002). 

 The C30 hopanoids diploptene and diplopterol were also detected in a number of the 

vent chimney samples and are unambiguously bacterial products. Their δ13C values (-26‰ 

to -2‰; Table 3-2) resembled those of bacterial diethers. 

3.3.4 Eukaryotic lipid distribution and 13C content

 Sterols were detected in all analyzed samples. Cholesterol was most common 
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probably derived from input from animals inhabiting the surfaces of the carbonate 

chimneys (DeChaine et al., 2006; Kelley et al., 2005) and from detritus trapped from the 

water column. Stigmasterol and β-sitosterol were also common and are likely sourced from 

eukaryotic phytoplankton. Many samples contained both unsaturated and saturated C28 and 

C29 sterols likely to have derived from phytoplankton or other eukaryotic inputs. Ergosterol 

was detected in trace amounts in some samples and is likely to be a product of one of the 

two fungal lineages detected at Lost City (Lopez-Garcia et al., 2007). 

Cycloartenol was commonly detected in concentrations approaching 500 ng per 

gram of dry rock. Its identity was confirmed by mass spectrum and coinjection with an 

authentic standard (Figure 3-8). Cycloartenol is a ‘protosterol’ (Summons et al., 2006) that 

is known to be the immediate product of the cyclization of oxidosqualene in plants and algae 

as well as in several groups of protists. To date it has been reported as the accumulating 

final product in only one organism, the myxobacterium Stigmatella aurantiaca Sg a15 

(Bode et al., 2003). In other organisms concentrations detected in cellular extracts are 

typically minor, reflecting its role as a biosynthetic intermediate. Its accumulation can be 

enhanced by accumulation of metabolic inhibitors (Hata et al., 1987; Haughan et al., 1988) 

or by genetic mutation of the downstream sterol modification pathway. 

 At Lost City, cycloartenol is the most abundant sterol in some samples. This 

implies that it is being accumulated in an organism without subsequent modification to a 

demethylated sterol. Given that the animal protosterol is always lanosterol and that C28 and 

C29 phytosterols are dominant in marine algae, these groups can probably be excluded as 

the source. Myxobacteria are not detected in 16S rDNA surveys at Lost City (Brazelton et 

al., 2006). The most probable source of abundant cycloartenol is a protist inhabiting the 

carbonate chimneys. 

A diverse population of protists has been detected in Lost City carbonates, with 

ciliates being the most dominant, other alveolates, fungi, heterokonts, radiolaria and other 

cercozoa, and heterolobosea also detected (Lopez-Garcia et al., 2007).  Detailed information 
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about sterol biosynthetic pathways in these groups of protists is sparse. Most non-opisthokont 

protists with a known sterol synthetic pathway make cycloartenol as a protosterol. The two 

known exceptions that make lanosterol, trypanosomatids and dinoflagellates, do not occur 

in Lost City carbonates, although a more deeply-branching relative of each of these groups 

is present (kinetoplastids and ciliates, respectively). However, only the opisthokonts can be 

conclusively ruled out as possible sources for cycloartenol. 

Given the abundance of cycloartenol in some carbonates, its source is likely to be 

an important part of the microbial ecology. The triterpenoid tetrahymenol (Harvey and 

McManus, 1991; Ten Haven et al., 1989), commonly attributed to ciliates, was detected 

several Lost City vent carbonates. This is not unexpected, due to the detection of gene 

sequences representative of ciliates (Lopez-Garcia et al., 2007). The 13C content of 

tetrahymanol ranged from -3.5 to -26.5, similar to the range in bacterial lipids. Ciliates 

may be consuming bacterial biomass; marine bacteriovorous ciliates commonly produce 

tetrahymanol (Harvey et al., 1997; Harvey and McManus, 1991). Consumption of bacteria 

in AOM environments at the Kazan mud volcano has been previously reported (Werne et 

al., 2002).

 Sterols are not in any case as exceptionally 13C-enriched as diethers. However, 

variability in δ13C is greater than would be expected if all inputs were marine. Cholesterol 

ranges in δ13C from approximately -28‰, near the expected value for a marine sterol, 

to -23.2‰, which may reflect input by animals with a dietary composition that includes 

13C enriched vent microbes. Cycloartenol varies even more, with δ13C near -30‰ in the 

carbonate vein X2, which has diethers relatively depleted in 13C. Cycloartenol in carbonate 

chimneys with abundant archaeol lipids has δ13C as high as -15.4‰. This large range of 

δ13C values is consistent with cycloartenol begin derived from protists feeding in part on 

archaea and bacteria in the carbonate chimneys.  C28 and C29 sterols are also enriched in 

some samples with δ13C up to a maximum of near -20‰ at Marker C, suggesting that 

their sources are not entirely from the water column. Synthesis of a sterol such that it is 
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fully demethylated on its α-face, such as stigmasterol, requires 11-12 molecules of O2. But 

synthesis of cycloartenol requires only one molecule of O2 (Summons et al., 2006).  We 

speculate that cycloartenol might be a favored sterol from a microaerophilic eukaryote 

inhabiting vent fluids with only sporadic access to oxygenated seawater.

Free fatty acids, potentially derived from both eukaryotes and bacteria, were 

detected in nearly all samples.  Concentrations ranged to over 1500 ng per gram of dry 

rock. Abundances and δ13C values of fatty acids are listed in Table 3-2. Like the diethers, 

fatty acids have highly variable contents of 13C, spanning a range from approximately -1‰ 

to -27‰. The most 13C-depleted fatty acids were found in the carbonate veins, where all 

-80 -70 -60 -50 -40 -30 -20 -10 0 10

Vein

Carbonates

δ13C, ‰

Archaeols
Glycerol diethers

Fatty acids

Glycerol monoethers

Cycloartenol

Other sterols

Fluids

Archaeal
Lipids
Abundant

Archaeal
Lipids
Rare

CH4 DIC

Figure 3-10: Ranges of carbon isotopic compositions for different compound classes at Lost City. Ranges 
for methane and DIC are measured from fluid samples over the entire field (Kelley et al., 2005). Ranges for 
lipids are reported by grouping samples into those with abundant archaeal lipids (3862-1219, 3864,1524, 
3864-1537, 3867-1225, 3867-1228, 3869-1404, 3869-1443, 3869-1446, 3879-slurp), rare archaeal lipids 
(3865-1322, 3876-1133, 3876-1219, 3876-1436, 3881-1132, 3881-1325, 3881-1408), and the vein sample 
at marker X2 (3880-1557).
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detected lipids had δ13C < -15‰. Similarly, the most 13C-enriched fatty acids were found in 

the samples containing abundant hydroxyarchaeols, where carbon-limitation is evident by 

virtue of the exceptional 13C enrichment in common with the ether lipids. Many of the most 

13C enriched samples displayed a pattern where saturated fatty acids were notably more 

enriched in 13C than monounsaturated fatty acids (Figure 3-9). This is interpreted to mean 

that saturated fatty acids in these samples are predominantly derived, along with the ether 

lipids, from the carbon-limited anaerobic environment inside the carbonate chimneys. Mono-

unsaturated fatty acids probably originate both from this environment and from organisms 

inhabiting the chimney exterior and overlying water column. At first glance this pattern 

is consistent with a requirement for oxygen in fatty acid desaturation. However, we note 

that there are two types of fatty acid desaturases in nature. The first is an aerobic pathway 

that occurs in both bacteria and eukaryotes, and the second is an anaerobic pathway that is 

restricted to bacteria (Bloch, 1969; Shanklin and Cahoon, 1998). In principle this should 

mean that both saturated and monounsaturated fatty acids should reflect mixed inputs 

from the anaerobic carbon limited environment inside the vent chimneys, and the aerobic 

carbon-replete external environment. The extraordinary 13C enrichment in saturated fatty 

acids suggests they predominantly derive from inside the vent chimneys, but the precise 

reasons for this are unknown.

  Isotopic compositions of the various biomarker classes detected at Lost City are 

summarized in Figure 3-10.

3.3.5 Biological sulfate reduction

 Sulfate reduction is inferred at Lost City on the basis that vent fluids have sulfate 

concentrations of 1 to 4 mmol/kg, significantly lower than ambient seawater but higher than 

would be expected if precipitation of anhydrite were dominant (Kelley et al., 2005). Sulfate 

in low-Mg end-member fluids is enriched in 34S relative to seawater by up to 10‰. Sulfate 

concentrations are strongly negatively correlated with sulfide concentrations (Kelley et 
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al., 2005).  While all of these observations point to biological sulfate-reduction, the sulfur 

cycle at Lost City is not fully defined. Sulfide has δ34S between +34‰ and +37‰ (Fruh-

Green et al., 2004a) and concentrations do not exceed 2.8 mM. Enrichment of 34S in sulfide  

relative to sulfate is not expected during biological sulfate reduction (Canfield, 2001) and 

the summed concentrations of sulfide plus sulfate are significantly less than the 28 mM 

found in the seawater from which vent fluids are derived. Serpentinites are a net sink for 

sulfur (Alt and Shanks III, 2003) and may contain the ‘missing’ sulfur. Given these results, 

the best evidence for biological sulfate reduction at Lost City is the presence of the sulfate-

reducing Firmicute Desulfotomaculum.

 The coexistence of sulfate-reducing bacteria and methanogens is unusual. In marine 

sediments, sulfate-reducing bacteria outcompete methanogens for H2 due to the higher 

energy yield of sulfate reduction compared to CO2 reduction (Hoehler et al., 1998) and 

the greater substrate affinity of sulfate-reducer enzymes for H2 (Kristjansson et al., 1982). 

However, under very high hydrogen concentrations methanogens and sulfate-reducing 

bacteria can coexist. Enzymatic affinities for hydrogen are in the micromolar range for 

both sulfate-reducers and methanogens (Kristjansson et al., 1982); the millimolar hydrogen 

concentrations at Lost City exceed this threshold and allow coexistence. 

 Biological sulfate reduction has been invoked to explain the wide variation in 

hydrogen concentrations among fluids that differ only slightly in temperature. There are 

no obvious correlations between the concentrations of non-isoprenoidal diether lipids 

in vent carbonates and the hydrogen concentrations in vent fluids at the same location. 

–However, only small portions of any given carbonate chimney were sampled, and we 

have not positively linked the non-isoprenoidal diether lipids to sulfate-reducing bacteria. 

Therefore we do not exclude the possibility that sulfate reduction is a strong control on 

hydrogen concentration.
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3.3.6 Implications for Earth history and astrobiology

 The anaerobic ecosystem within the carbonate towers at Lost City may be particularly 

relevant as an analogue for some early Earth ecosystems. In particular, autotrophic 

methanogenesis using CO2 or bicarbonate as an electron acceptor proceeds exergonically 

without need for any products of oxygenic photosynthesis. This is in contrast to many other 

anaerobic ecosystems which usually require indirect byproducts of photosynthesis such 

as sulfate or nitrate. The bacterial component of the ecosystem at Lost City likely relies 

on sulfate, but it is also possible that sulfate was sometimes present very early on in Earth 

history (Shen and Buick, 2004). 

 The alkaline conditions at Lost City are favorable for some aspects of prebiotic 

chemistry (Russell, 2003). Intriguingly, recent attempts to root the universal tree of life 

based on analyses of insertions and deletions within paralogous genes have suggested that 

the widely accepted root between archaea and bacteria may be an artifact of long branch 

attraction (Skophammer et al., 2007). Instead, several alternative sites for the root have 

been proposed within the Gram Positive Bacteria, including a root on the branch leading 

to the Firmicutes plus Archaea. The particular importance of these two groups at Lost City 

(Brazelton et al., 2006) points to the potential importance of Lost City type environments 

may have had to early microbial evolution. 

 The fluxes of microbially derived and abiotic methane at Lost City will be important 

in constraining the composition of the early atmosphere. Methane is often invoked to solve 

the faint young sun problem (Kasting, 2005), but models applying this to the Hadean and 

Archean Earth require an accurate understanding of whether off-axis vent systems can 

supply abundant methane before the evolution of archaeal methanogens. Furthermore, 

the possibility of the production of abundant biological methane that is enriched in 13C 

complicates the understanding of the timing of the evolution of biological methanogenesis.  

These questions should be illuminated by an isotopic analysis of the light hydrocarbons at 

Lost City.
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Organic carbon or methane in hydrothermal deposits can not be distinguished as 

biotic or abiotic based solely on a δ13C value of less than -25‰ (McCollom and Seewald, 

2006; Sherwood Lollar and McCollom, 2006). The isotope results at Lost City extend this 

concept to the full range of 13C contents found in nature. If ultramafic ecosystems rich in 

H2 were important on the early Earth, preserved organic compounds of biological origin 

detected in those systems may not have the characteristic 13C depletion that is commonly 

associated with life. 

3.4. conclusions

The H2-rich fluid chemistry of Lost City vent fluids and the isotopic compostions 

of the archaeal and bacterial diether lipids lead us to conclude that the Lost City 

Methanosarcinales phylotype is a methanogen. Similar 13C enrichments in non-isoprenoidal 

diethers demonstrate that the conditions causing unusual δ13C values are not restricted to 

archaea. The most plausible explanation for these data is that the vent communities are 

carbon-limited and the full extent of fractionation between DIC and biomass is not being 

expressed.

Conditions of CO2 limitation are rare on Earth. As a result, depletion in 13C is 

usually necessary (but not sufficient) evidence that preserved organic carbon is biological 

in origin. The results from Lost City suggest that even this bias may not be appropriate 

for all environments. Ultramafic ecosystems may have been important on early Earth, 

and may be present elsewhere in the solar system. The results presented here suggest 

that biological organic carbon in such systems may have a wide range of 13C contents.   

Many investigations have emphasized that 13C-depleted organic carbon is not necessarily a 

signature for biology. Similarly, our results show that detection of organic carbon with 13C 

contents near or greater than mantle CO2 may in some cases be biologically derived.
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Chapter 4
Multiple origins of methane at the Lost City Hydrothermal Field

absTracT

 The Lost City hydrothermal field emits fluids rich in hydrogen and methane, 

with serpentinization reactions exerting a strong influence on fluid chemistry. Cycling 

of methane in these fluids is a complex interaction of biological and abiotic sources and 

sinks. Carbon isotope compositions of archaeal lipids suggest that there may be at least two 

isotopically distinct sources of methane at Lost City. The first source is a mixture of abiotic 

and biological methane, detected at actively venting sites with 13δCH4 = -13.6‰ to -8.8‰. 

The second source has not been directly detected, but is inferred to be -27‰ to -70‰ on 

the basis of detection of archaeal lipids at one site with 13δ = -77‰. 

 The high hydrogen concentrations at Lost City create a thermodynamic drive for 

methane production. Kinetic inhibition for this reaction is overcome by catalysis, perhaps 

with NiFe alloys stabilized under reducing conditions, and by enzymatic activity. Abiotic 

methanogenesis may be dominant at Lost City, but this is probably not the case in all 

serpentinizing systems.

4.1 inTroducTion

 The fluids of the Lost City Hydrothermal Field have been noted for their abundant 

hydrogen (~15 mmol/kg) and methane (~2 mmol/kg) contents (Kelley et al., 2005). Due 

to the serpentinization reactions that influence fluid chemistry, the source of methane in 

Lost City fluids is suspected to be partially or largely abiotic (Proskurowski et al., 2006). 

However, this interpretation is complicated by the fact that carbonate towers precipitating 

at Lost City are inhabited by abundant archaea (Brazelton et al., 2006) that are producing 

methane (Chapter 3) . Ultramafic rocks like those that host Lost City would likely have 

been an abundant component of the seafloor on a young hot Earth (Nisbet and Fowler, 
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2004), and low-temperature serpentinization reactions can be expected to have had a 

correspondingly larger influence on the chemistry of the Archaean atmosphere and ocean. 

Similarly, serpentinization might influence environmental chemistry or potentially even 

support microbial communities on other terrestrial planets that contain both ultramafic rock 

and water (Chapelle et al., 2002; McCollom, 1999). Therefore it is critical to understand 

the degree to which methane production in these systems requires biology. 

 The 13C contents of methane in Lost City fluids is markedly greater than that produced 

by methanogenic archaea in typical sedimentary systems. At Lost City δmethane ranges from 

-13.6‰ to -8.8‰ vs. VPDB (Kelley et al., 2005), while biological production usually 

results in δmethane ≤ -50‰ (Whiticar, 1999). The abundance of 13C in Lost City methane is 

consistent with an abiotic source, but it does not exclude a biological origin if fractionation 

is minimized by limited availability of carbon substrate. Archaeal lipids at Lost City are 

enriched in 13C relative to methane, consistent with biological production of methane from 

a limited substrate (Chapter 3). Lipids in both methanogenic and methanotrophic archaea 

are depleted in 13C relative to their source of carbon. Comparison of δlipid to that of dissolved 

inorganic carbon and methane in vent fluids allows us to put constraints on carbon cycling 

in the hydrothermal fluids and begin to decipher the sources and sinks of methane. 

 Abundances of deuterium in methane and hydrogen might also be used to constrain 

methane sources. At high temperatures, the abundance of deuterium in these species 

approaches isotopic equilibrium. This equilibrium is temperature-dependent and has been 

used as a geothermometer at Lost City and at other hydrothermal vents (Proskurowski et 

al., 2006). Activity of methanogenic archaea can be expected to influence the deuterium 

contents of both hydrogen and methane. Hydrogenase, a key enzyme operating in autotrophic 

archaea, enhances the rate at which the deuterium content of hydrogen re-equilibrates with 

H2O at temperatures below 110ºC. Microbial methane, which is thought to have deuterium 

content related primarily to that of water, contributes to the total methane pool. We present 

a deuterium-isotope model for the mixture of abiotic and microbial methane and suggest 
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criteria by which a dominantly biological input can be identified.

4.2 abioTic ProducTion of meThane

4.2.1 Natural and experimental evidence

The abundant hydrogen produced in serpentinization reactions leads to conditions 

that thermodynamically favor the reduction of CO2 (Shock and Schulte, 1998). Several 

experimental studies have indicated that methane and higher hydrocarbons may be 

produced abiotically in ultramafic hydrothermal systems by Fischer-Tropsch type (FTT) 

processes (Berndt et al., 1996; Foustoukos and Seyfried, 2004; Horita and Berndt, 1999; 

McCollom and Seewald, 2001). Methane alone can also be produced by other processes at 

hydrothermal systems (McCollom and Seewald, 2007; Seewald et al., 2006). Indeed, the 

evidence at natural hydrothermal systems for abiotic synthesis of any compounds other 

than methane is equivocal.  Where such evidence has been proposed in natural settings 

(Holm and Charlou, 2001), it has subsequently been challenged (Simoneit et al., 2004). 

In laboratory settings, some of the first experiments to investigate reduction of CO2 to 

higher hydrocarbons under simulated serpentinization conditions initially appeared to be 

successful (Berndt et al., 1996). However, reassessments of this result have suggested that 

the hydrocarbons detected were contaminants in the experimental system (McCollom and 

Seewald, 2001). Later experiments (Foustoukos and Seyfried, 2004) suggested that abiotic 

synthesis of ethane and propane is possible with chromite as a catalyst,  but the exact role 

of chromite in these reactions remains unclear (McCollom and Seewald, 2007).

The thermodynamic drive for methane production is a necessary but not sufficient 

condition for its abiotic synthesis. Kinetic inhibition may limit the amount of methane 

produced in a natural system regardless of the energetic drive to create it. All of the 

experimental investigations that have examined abiotic methane production under 

serpentinization conditions have yielded far less methane than would be predicted based on 

thermodynamics alone, suggesting that the reactions are kinetically inhibited (McCollom 
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and Seewald, 2007). The only experiment in which large amounts of methane have been 

created used a nickel-iron alloy (Horita and Berndt, 1999). These alloys are stable only 

under very reducing conditions, but ultramafic hydrothermal systems like Lost City may 

be reducing enough (McCollom and Seewald, 2007). 

Abiotic methane has been reported from a number of hydrothermal systems, including 

the high temperature hydrothermal systems of the Mediterranean (Fiebig et al., 2007), the 

ultramafic Rainbow hydrothermal field (Charlou et al., 2002; Holm and Charlou, 2001) and 

potentially, the deep subsurface of the Precambrian Shields of Canada and South Africa 

(Sherwood Lollar et al., 2006; Sherwood Lollar et al., 2002). The criteria most commonly 

used to identify methane sources are its 13C and deuterium contents, which are compared 

to empirically defined ranges (Figure 4-1). The range expected for abiotic methane is not 

precisely constrained. Abiotic methane is expected to be enriched in 13C, primarily based 

on the reported δ values of methane at locations where abiotic methanogenesis is thought 

to be occurring (Abrajano et al., 1988; Charlou et al., 2002; Fritz et al., 1992). However, 

experiments have suggested that abiotic methanogenesis could discriminate against 13C by 

up to 60‰ (Horita and Berndt, 1999).

The 13C content of methane at Lost City falls does not fall within the range typically 

ascribed to biotic production; δ13C ranges from -13.6‰ to -8.8‰ vs. VPDB (Kelley et 

al., 2005). δD is reported as -120‰ ± 12‰ vs. VSMOW (Proskurowski et al., 2006) with 

approximately 70% of the measurements falling within the usual biological range. Methane 

from Lost City plots at the extreme end of the thermogenic field; yet this methane is unlikely 

to be thermogenic. Lost City is an unsedimented hydrothermal field located on young crust 

near the center of the North Atlantic gyre with no obvious source of abundant organics. 

Methane, therefore, is likely to be produced by abiotic serpentinization or by biology.

4.2.2. Potential for abiotic methane production at Lost City

  Methane concentrations in Lost City hydrothermal fluids are uniformly greater than 
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1 mmol/kg (Proskurowski et al., 2006). The highest temperatures attained in the Lost 

City system are 110 – 150 ºC (Proskurowski et al., 2006) and considerably lower than 

temperatures at the Rainbow hydrothermal field (Holm and Charlou, 2001). The lack of 

anhydrite precipitation at Lost City has also been interpreted as evidence that serpentinization 

temperatures never exceed 150 ºC (Kelley et al., 2005).  

Low maximum temperatures at Lost City raise significant questions about the 

conditions conducive to generation of abiotic methane. Experimental serpentinization 

studies have generally been carried out at temperatures higher than 150 ºC due to the 

slow reaction kinetics (McCollom and Seewald, 2001; Seewald et al., 2006). At Lost City 

abiotic formation of methane may be slow but attainable if residence times between fluid 

and the host-rock are very long. 

Based on experimental data (McCollom and Seewald, 2001), Fiebig et al. (Fiebig 

et al., 2007) proposed the following equation (modified after (Giggenbach, 1997)  for the 

chemical exchange between CO2 and CH4: 

    

where ct is the half-time for chemical exchange in years, and T is the temperature 

(K). Fiebig et al. assume that chemical equilibrium should be approached after four half-

times. In that case the equilibration of methane with CO2 at Lost City, with a reaction 

temperature of 110 ºC to 150 ºC should take 13.6 My to 1.1 My, which spans the range of the 

1.5 Ma crust at the Atlantis Massif (Kelley et al., 2001). Fiebig et al. note that equilibration 

of CH4 and CO2 at Mediterranean fumaroles is also much faster than predicted by equation 

1, but suggest that this is due to the presence of a water-saturated vapor phase. Such a 

phase is unlikely to be present at a high-pressure low-temperature site such as Lost City. If 

Lost City methane is indeed being produced by reduction of CO2 during serpentinization, 

then equation 1 suggests that maximum temperatures probably approach 150 ºC, although 

disequilibrium production might be reached at lower temperatures. Alternatively, lower 

temperature equilibrium could conceivably be due to the formation and catalytic action of 

Tc /444006.5log 
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a nickel-iron phase (Horita and Berndt, 1999) which is stabilized under the highly reducing 

conditions, as previously noted.

However, it is worth noting that geochemical models suggest that redox equilibrium 

at Lost City is sluggish (Allen and Seyfried, 2004). Given the high hydrogen concentrations, 

sulfate in hydrothermal fluid should be quantitatively reduced to sulfide, but is not (Allen 

and Seyfried, 2004). The reduction of sulfate is thermodynamically more favorable than 

the reduction of CO2 and its slow reduction implies that slower rates are indeed controlling 

abiotic chemical redox equilibrium. Furthermore, although experimental data suggests 

the potential for methane formation with olivine or nickel-iron phases as a catalyst, these 

experiments were not carried out in the presence of sulfide. The role of sulfur compounds 

in FTT synthesis is not well understood and could possibly poison the reaction (McCollom 

and Seewald, 2007). The role of sulfur in these reactions remains a topic for future 

experimental work.

4.3. biological ProducTion of meThane

Carbonates at Lost City contain abundant archaea containing 16S rDNA genes 

clustering within the Methanosarcinales (Brazelton et al., 2006; Kelley et al., 2005; 

Schrenk et al., 2004). These organisms fall within a large clade of methanogens, but also 

fall either within (Knittel et al., 2005) or very close (Losekann et al., 2007) to the ANME-3 

methanotrophic clade. Lipids associated with these archaea are unusually enriched in 13C 

(Kelley et al., 2005). The question of whether these archaea are operating as methanogens 

or methanotrophs is definitively resolved in favor of methanogenesis by the observation 

that at actively venting sites the 13C content of archaeal lipids is greater than the 13C content 

of methane (Chapter 3). 

The activity of methane-producing archaea requires that at least some proportion of the 

methane at Lost City is biological. Indeed, the carbon-isotopic compositions of dissolved 

inorganic carbon, methane, and methanogen lipids do not exclude the possibility that all of 
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the methane at Lost City is biologically derived. Evidence for biological methanogenesis 

is extensively addressed in Chapter 3.

4.4 archaeal meThanoTroPhy

ANME-1 methanotrophs are also observed at a few sites at Lost City, particularly 

in cooler environments (Brazelton et al., 2006; Kelley et al., 2005). At one site, marker X2, 

the dominant Lost City Methanosarcinales phylotype was undetected, but ANME-1 was 

present. That site contained the methanogen lipid archaeol with δarchaeol = -77‰, suggesting 

it is indeed derived from a methanotroph. Hydroxyarchaeols were not detected at this site.

At most locations at Lost City, sn-2 hydroxyarchaeol was more abundant than 

archaeol. This is seemingly a characteristic of the Lost City phylotype Methanosarcinales. 

However archaeol is typically more abundant than sn-2 hydroxyarchaeol in ANME-1 

archaea (Blumenberg et al., 2004). Archaeol was detected in only small amounts at site X2, 

so if this site is indeed dominated by ANME-1 methanotrophs it is perhaps unsurprising 

that sn-2 hydroxyarchaeol was undetected.

Site X2 was located in an area where no fluid samples were collected, so δmethane at 

this location is unknown. However, the extent of 13C depletion in the lipid from this sample 

suggests that it may derive from a source of methane with 13C contents outside the range 

that has previously been observed in Lost City fluids.

Examination of the fractionation between methane and lipids in methanotrophic 

archaea is understudied, probably because anaerobic methanotrophs are difficult to culture 

and have not been isolated in pure culture. The 13C contents of both methane and lipids 

for have been reported at several locations where anaerobic methanotrophs dominate 

the archaeal community. Figure 4-2 shows the ranges of δ values for methane, archaeol, 

and sn-2 hydroxyarchaeol in several environments dominated by ANME-1 organisms. In 

samples from the Eel River Basin archaeol is depleted by approximately 50‰ relative 

to methane (Hinrichs et al., 1999). Other sites show lesser depletions. At each site sn-2 
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hydroxyarchaeol is more depleted in 13C than archaeol. 

If the methane constituting the carbon source for ANME-1 methanotrophs at marker 

X2 has δmethane within the range measured in Lost City fluids, then the fractionation between 

methane and lipid falls outside the range previously observed in other ANME-1 organisms. 

Thus, Lost City ANME-1 may be exhibiting the largest fractionation yet observed in 

methanotrophic archaea. Alternatively, they are consuming a second, unsampled source 

of methane with lower 13C content. The previously observed range of 13C discrimination 

between methane and ANME-1 archaeol leads to the prediction that ANME-1 organisms at 

Lost City are consuming methane with δ13C between -27‰ and -70‰ (Figure 4-2).

The precise location of site X2 is not well constrained. The cruise report states 

that this sample (3880-1557) was a fracture-filling carbonate recovered from an area up 

to 50 m to the east of Marker H (map, Chapter 3, Figure 3-1) at a depth of 860 meters. 

This description suggests that this sample was likely recovered outside of the main area of 

venting. If methane produced at Lost City consists of multiple inputs, both biological and 

abiotic, it is possible that the source dominating fluids at this edge of the field is not the 

same as that at the active high temperature vents. No fluids were collected here and this 

hypothesis will likely remain untested until a return expedition to Lost City is mounted.

4.5. resolving mixed sources of meThane

4.5.1. Patterns of Fischer-Tropsch products

Methane attributed to sources in the mantle is usually distinguished by three criteria. 

These are: δ13C greater than -25‰, association with light hydrocarbons with  δ13C values 

that decreased with increasing molecular weight , and  association with mantle values of 

3He/4He (Sherwood Lollar et al., 2006). At hydrothermal systems such as the Rainbow 

Field at the mid-Atlantic ridge, the abiotic origin of methane is inferred because its carbon 

isotope ratios (δ13C = -16 to -24)  constitute enrichment in 13C beyond the typical biogenic 

range (Charlou et al., 2002; Simoneit et al., 2004). Recent studies have demonstrated that 
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methane produced by FTT processes be depleted in 13C relative to DIC by 35‰ to 60‰, with 

larger depletions occurring at lower temperatures (Horita and Berndt, 1999; McCollom and 

Seewald, 2006). Thus, abiotic methane can have δ13C values less than -25‰;  13C depletion 

is not by itself a criterion by which biological methane can be identified (Schoell, 1988; 

Sherwood Lollar and McCollom, 2006) . 

Sherwood Lollar et al. (2002) proposed criteria by which to identify abiotic 

hydrocarbons on the basis of stable isotopes. Geological FTT processes can produce 

higher hydrocarbons (ethane, propane, butane) along with methane. Abiotic ethane shows 

a depletion in 13C but an enrichment in 2H relative to abiotic non-thermogenic methane 

(Sherwood Lollar et al., 2002). However, this can be complicated in systems where 

archaeal methanogens provide an additional methane source (Sherwood Lollar et al., 2006; 

Sherwood Lollar et al., 2002). In several such cases examined by Sherwood Lollar et 

al.(2006) this pattern held for only the samples containing the most 13C enriched methane 

at a given site. These 13C enriched samples were considered to an abiotic end member, 

and the δ13C of biological methane was inferred by comparing the δ13C of methane to the 

ratio of methane to higher hydrocarbons (>1000 for biological methane) in samples from 

several sites. With the resulting two end members, a mixing model was constructed and 

used to estimate the relative inputs of biological and abiotic methane. Such a model holds 

promise at Lost City, where higher hydrocarbons have been detected (Proskurowski et al., 

2005) but not yet analyzed isotopically. Sherwood Lollar et al. (2006) noted that the most 

13C-enriched (abiotic) methane at each site was consistently detected at the sites with the 

highest H2 concentrations while lower H2 concentrations were inferred to have been drawn 

down by methanogens operating at sites with higher proportions of biological methane.

One site showing this pattern is the deep fracture system under a mine in the 

Precambrian Shield of South Africa (Moser et al., 2005). Here, hydrogen gas is produced by 

radiolysis of water and drives the formation of both abiotic and biotic methane. Waters are 

alkaline, warm, with low DIC (between 100 and 200 μm) and the micromolar H2 supports 
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communities of methanogens and Desulfotomaculum. These conditions and microbial 

community are analogous to the conditions at Lost City.

Lost City hydrogen concentrations are substantially higher (up to nearly 15 mM) 

compared to 0.16 to 165 μM in the South African system. The 13C contents of the methane are 

also higher. Methane δ13C values are -13.6‰ to -8.8‰ at Lost City and -42.2‰ to -39.5‰ 

in the South African system. This is consistent with the relationship between methane δ13C 

and hydrogen concentrations described by Sherwood Lollar et al. (Sherwood Lollar et al., 

2006). However we note that unlike in the South African mine, hydrogen concentrations at 

Lost City are at least one order of magnitude higher than DIC concentration. Furthermore, 

while the South African mine system shows differences in δ13C between DIC and methane 

of 23.2‰ to 27.2‰, at Lost City the differences are smaller. The smaller differences are 

consistent with carbon limitation limiting isotope fractionation in methane production, be 

it biological or abiotic.

Other criteria can also be applied to distinguish abiotic from biological methane. 

For example both abiotic methane produced by FTT processes and methane produced by 

thermogenic cracking of higher-molecular-weight hydrocarbons have an Anderson-Shulz-

Flory (AFS) distribution, defined as a log-linear relationship with decreasing concentration 

related to increasing length of the alkyl chain (Fiebig et al., 2007; Sherwood Lollar et al., 

2002). Hydrocarbons produced by FTT reactions should be progressively depleted in 13C 

and enriched in D with increasing molecular weight, because the lighter isotope of carbon is 

more readily incorporated into a growing polymer, while bonds between carbon and 1H are 

weaker and  more readily broken that those between carbon and deuterium (Des Marais et 

al., 1981). Such a hydrocarbon distribution, with compounds up to C4 has been detected at 

Lost City (Proskurowski et al., 2005), although isotopic results have not yet been reported. 

The presence of higher hydrocarbons at Lost City is somewhat surprising, since the low 

temperatures and high pH of the LCHF fluids are likely to inhibit the production of CO 

from CO2 (Seewald et al., 2006), and since low temperature catalysis of CO2 reduction 
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has overcome kinetic barriers only with NiFe substrates (Horita and Berndt, 1999), which 

produce exclusively methane as a product (Anderson, 1984; Horita and Berndt, 1999) . CO 

has been postulated to be the critical intermediate for FTT synthesis of abiotic hydrocarbons 

and Lost City may provide a good test of that hypothesis. Still, the AFS distribution suggests 

that a proportion of the methane at Lost City is abiotic. Biological processes can also 

produce low molecular weight hydrocarbons, although compounds heavier than C3 have 

not been detected (Hinrichs et al., 2006). 

4.5.2. Deuterium isotope patterns

4.5.2.1 Deuterium isotope results

Methane at Lost City has δD values of -120 ± 12‰ (Proskurowski et al., 2006) and 

these can be compared to the δD of H2 as a geothermometer. When this is done the results 

correlate linearly with the results from the H2O-H2 thermometer (Figure 4-3), suggesting 

serpentinization temperatures near 100 ºC (Proskurowski et al., 2006), but with the methane 

geothermometer consistently recording a temperature nearly 24ºC cooler than the hydrogen 

geothermometer. 

The deuterium content does not immediately preclude a biotic source for methane. 

The δD of Lost City fluid waters is +2‰ to +7‰ (Proskurowski et al., 2006). Autotrophic 

methanogens produce methane with δD that is independent relative to δD-H2 but 

dependent on δD-H2O (Valentine et al., 2004). Deuterium fractionation between H2O and 

autotrophic CH4 was measured to have a wide range (127‰ - 275‰) for the methanogen 

Methanothermobacter marburgensis (Valentine et al., 2004) and other methanogens 

fractionate with similar magnitude (Whiticar, 1999). The difference in δD between water 

and methane at Lost City is of similar magnitude (100‰ - 150‰). These fractionations 

are all within or very close to the low end of fractionations that have been observed from a 

biological origin. They are plausibly biological; the isotopic signatures of methane at Lost 

City are therefore fully consistent with a biological source. Similarly, other ultramafic sites 
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where 13C enriched methane has been detected, such as the Oman and Zambales ophiolites, 

should be investigated for the possibility that some of the methane is biological.

4.5.2.2. Deuterium isotope mixing

 We introduce the concept of isotopic concordance in geothermometry as a tool 

to consider the influence of methanogenic archaea on the deuterium content of hydrogen 

and methane. In a fluid that has previously equilibrated at higher temperatures microbial 

methanogenesis can alter the high temperature geothermometry signal, so that a concordant 

signal is no longer observed. While concordance is an ideal that is probably never observed 

in natural samples, understanding the causes of deviations from it can help us better 

constrain the sources of hydrothermal methane. 

 When H2 and H2O are in isotopic equilibrium at hydrothermal temperatures, H2 is 

substantially depleted in deuterium relative to water. The magnitude of depletion is greater 

Figure 4-3: Strong correspondence of methane and hydrogen geothermometers, showing consistently 
lower temperatures predicted by CH4-H2 thermometer. Data is obtained from Table 1 in Proskurowski et al. 
(2006). 
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at cooler temperatures. Several investigators have determined equilibrium fractionation 

factors between these species. The equation that most robustly aligns with experimental 

testing (Horibe and Craig, 1995) is:

 (Bardo and Wolfsberg, 1976).

Similarly, Horibe and Craig (1995) give an empirically-derived equation for the 

equilibrium between CH4 and H2: 

.

 

 In principle, if full equilibrium in the CH4-H2-H2O system were attained, the 

fractionation factors would lie on the curve in Figure 4-4a. The geothermometer has been 

calibrated for temperatures only above 200ºC, so it is unclear whether it is applicable at 

lower temperatures (dashed line). For the purposes of this argument we follow precedent 

(Proskurowski et al., 2006) and extrapolate the calibration to low temperature; the merit of 

this is discussed below.

 Measurements of the deuterium content of methane and hydrogen in vent waters 

are plotted in Figure 4-4b (data from Prosukurowski et al.(2006)).  Most are discordant, 

and that the deviation from the ideal is greater at the low temperature Lost City site than 

at the high temperature black smoker sites. The reasons for these discordant temperature 

results are beyond the scope of this investigation, but may be related to sluggish isotope 

equilibrium at low temperatures (Proskurowski et al., 2006). We draw attention only to its 

consistent pattern: with the exception of one sample from the Oman ophiolite (discussed in 

more detail below), all natural hydrothermal fluids plot above the concordance line (Figure 

4-4b).

 Activity of methanogenic archaea can be expected to affect the deuterium content 

of both hydrogen and methane in a fluid. This activity should produce deviations from 
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Figure 4-4: a) Theoretical temperature concordance diagram showing fractionation in the CH4-H2O-H2 
system. This concordance considers equations for CH4-H2 equilibrium (Horibe and Craig, 1995) and H2O-
H2 equilibrium (Bardo and Wolfsberg, 1976).
b) same plot as a with data from black smokers, Oman ophiolite, and Lost City plotted (Proskurowski et al., 
2005).
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temperature concordance. Here we explore the manner in which this deviation should 

occur, in expectation that activity of methanogens can be identified where concurrent 

abiotic methane is present.

 Autotrophic methanogens use the enzyme hydrogenase to activate molecular 

hydrogen for use as a biochemical reductant (Thauer, 1998). In order to synthesize one 

unit of methane, four units of hydrogen are required. However, experimental work has 

determined that hydrogenase is probably only about 50% efficient in methangogens 

(Valentine et al., 2004). Hydrogenase is a rapidly reversible enzyme, and catalyzes the 

isotopic equilibration of hydrogen with water (Valentine et al., 2004). Therefore, where 

autotrophic methanogens are active they can be expected to facilitate isotopic equilibration 

of hydrogen with water at ambient temperature. 

 Methanogens produce methane with a deuterium content that is primarily related 

to the deuterium content of water, although under high hydrogen partial pressures at 

least one-fourth of methane hydrogen may be directly derived from molecular hydrogen 

(Valentine et al., 2004). In one experimental study (Valentine et al., 2004) fractionation 

factors were found to range from 127‰ to 275‰ (α = 1.16 to 1.43), while another found a 

range of 170‰ to 250‰ (α = 1.20 to 1.33) (Whiticar, 1999).   The smaller end of this range 

is probably not directly applicable to hydrothermal settings. This result was obtained by 

growing methanogens on a high partial pressure of hydrogen with a much higher deuterium 

content than that expected to be produced in equilibrium with H2O (Valentine et al., 2004 

Experiment D-2, 2δH2 = -190). This experiment superbly demonstrated the potential for 

direct incorporation of deuterium from molecular hydrogen into methane under high 

hydrogen partial pressures. In natural settings 2δH2 in this range is probably produced only 

by fermentation of organic material. In hydrothermal settings the natural range of methane 

deuterium depletion relative H2O is probably in the range of 150‰ to 275‰.

 Figure 4-5a shows the concordant temperature equilibrium curve for methane and 

hydrogen in natural water with 2δH2O = +5‰, which is approximately the value at Lost City 
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(Proskurowski et al., 2006). The red dots represent the expected 2δ values for methane 

and hydrogen that have equilibrated at 150 ºC. The lower red dot is placed directly on 

the concordance curve and the upper dot is placed off the curve in the discordant range 

generally observed in hydrothermal fluids.

 Activity of methanogens can be expected to contribute to the reequilibration of 

hydrogen at lower temperatures. The highest temperature at which methanogens are known 

to grow is 110 ºC, the upper growth limit for Methanopyrus kandleri (Kurr et al., 1991). At 

110 ºC the equilibrium 2δH2 on this curve is approximately -610‰. This therefore constitutes 

an upper limit to the value of 2δH2 supplied by hydrogenase-catalyzed reequilibration.

 Methanogens are expected to produce methane with 2δCH4 in the range -150‰ to 

-275‰, more negative than that produced abiotically at higher temperatures. The upper 

boundary of the grey box represents the maximum expected 2δCH4 for biological methane.

 The black dot shows a potential end member for deuterium content of microbial 

methane and hydrogen. This black dot can be expected to fall anywhere within the 

area delineated by the grey box, which is bounded as explained in the previous two 

paragraphs.

 The dotted black lines denote potential mixing curves. Evolution of deuterium 

content of methane and hydrogen will move approximately along these curves as biological 

methanogenesis continues. The curves are drawn as linear lines for schematic purposes, 

but they need not be straight. The shape of these curves will depend on i) the ratio of 

biologically equilibrated hydrogen to biologically produced methane (estimated at 4:1 by 

Valentine et al., 2004, but note that additional hydrogenase activity can be contributed by 

organisms that are not methangens) and ii) the ratio of hydrogen concentration to methane 

concentration in hydrothermal fluids. If these two ratios are similar then the mixing line 

should be nearly straight. If the ‘biologically produced’ H2/CH4 ratio is greater than the 

concentrations in the environment, the curves will be concave up, where as they will be 

convex if the reverse is true. 
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Figure 4-5: a) Theoretical temperature concordance diagram plotted as δ values from water with 2δ = 
+5‰. Red points are theoretical starting points for deuterium contents of methane and hydrogen in a fluid 
equilibrated at 150 ºC. Methane and hydrogen produced by activity of methanogens is expected to fall 
within the grey box. The upper bound of the box on the CH4 axis is controlled by the minimum expected 
biological fractionation between deuterium contents of H2O and biological CH4 (~150‰). The upper bound 
of the box on the H2 axis is controlled by the isotope equilibrium between H2O and H2 at the maximum 
temperature that methanogens can survive (~110 ºC). The black point is an example of a potential 
biological end-member and could fall anywhere within the grey box. The dashed lines are potential mixing 
lines.
b) Same plot as (a) with data from natural hydrothermal settings plotted (Proskurowski et al., 2005). The 
only point clearly falling within the biological field is that from the Oman ophiolite.
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 In hydrothermal fluids dominated by biological methanogenesis we can expect 

2δ values to approach or fall within the grey box. Figure 4-5b shows the same curve as 

Figure 4-5a, but with 2δ values for the hydrothermal fluids at Lost City and black smokers 

denoted (Proskurowski et al., 2006). This approach suggests that the activity of biological 

methanogenesis is not the dominant control on deuterium isotopic abundances in methane 

and hydrogen at Lost City, or any of the other hydrothermal sites. However, given that 

we know that some of the methane at active vents at Lost City is certainly biological 

(Chapter 3), there has undoubtedly been some movement of points along mixing lines. This 

may imply that the isotope geothermometer approach slightly underestimates maximum 

temperatures.  

 The deuterium contents of methane and hydrogen produced by the serpentinization 

of the Semail ophiolite in Oman suggests possible biological control of the isotopic 

equilibration at that site (Abrajano et al., 1988). A biological origin for the methane here 

has previously been excluded on the basis of its 13C enrichment (δ13C = -15‰ to -20‰) 

(Abrajano et al., 1988). However our work (Chapter 3) has suggested that under the high 

partial pressures of hydrogen produced by serpentinization, 13C enrichment beyond the 

usual biological range may be expected. If methane at this site is not biologically produced, 

then equilibration there has occurred at very low temperatures. Further investigation of this 

site is required to ascertain the origin of methane in the Oman ophiolite. 

4.6 conclusions

 Examination of the carbon isotope composition of methane and the deuterium 

contents of methane and hydrogen can shed light on the origins of methane and the relative 

contributions of biological and abiotic inputs. Our approach suggests that methane at the 

warmest vent fluids at Lost City are dominated by abiotic inputs. 

Carbon isotope contents of archaeal lipids are consistent with a biological source 

of methane in actively venting chimneys. The contribution of biological methane to a 
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largely abiotic pool may lead to isotope geothermometry results that slightly underestimate 

maximum temperatures.

 One site at the edge of the Lost City field had lipids recording archaeal methanotrophy, 

consistent with the work of others documenting ANME-1 methanotrophs there. The extreme 

depletion in 13C of lipids relative to measured 13C of methane invites the consideration of 

a methane source. This source should be depleted in 13C relative to that of measured vent 

waters. The nature of this source (abiotic or biotic) is unknown, and can not be determined 

solely on the basis of estimated 13C content. 

 The determination of a likely preponderance of abiotic methane at Lost City is 

instructive for our understanding of contributions of reduced carbon to the Archaean 

biosphere. But we must proceed with care. Although serpentinization at Lost City appears 

to be producing abiotic methane, fluid temperatures at this site require an external heat 

source (Allen and Seyfried, 2004). We do not yet know if serpentinization alone produces 

enough heat to overcome kinetic barriers to methane generation. One site where this may 

be better explored is in the ophiolite complex of Oman. The fluids there are cooler than 

at Lost City and heat might be supplied solely by serpentinization (Abrajano et al., 1988). 

However, that site might well be dominated by biological methane.
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Chapter 5
Structural diversity of diether lipids in carbonate chimneys at the 

Lost City Hydrothermal Field

absTracT 

 Nonisoprenoidal diether lipids detected in carbonate chimneys at the Lost City 

hydrothermal field are glycolipids. Ether-linked glycolipids are common in archaea, but 

have no known bacterial source. Production of glycosyl headgroups might be an effective 

evolutionary strategy for conservation of phosphate in fluids that are likely to be phosphate-

poor. The structural diversity of the diether core lipids is similar to inferred bacterial ether 

lipids detected in carbonate crusts at cold seeps where anaerobic oxidation of methane 

(AOM) is the dominant biogeochemical process. At Lost City, methane cycling is dominated 

by a single archaeal strain of Methanosarcinales that produces methane and several 

isoprenoidal diethers. The isoprenoidal diethers, derived from archaea, are bare lipids, 

having a hydroxyl in place of a large polar headgroup. The non-isoprenoidal glycolipid 

diethers are, by inference, bacterial in origin, and likely possess a sn-1,2-dialkylgylcerol 

stereochemistry. 

5.1. inTroducTion

 Differences in membrane lipids are a defining characteristic that separates the 

domains Archaea and Bacteria. Archaeal lipids are synthesized from a backbone of sn-

glycerol-1-phosphate (G-1-P), while bacterial lipids are synthesized from sn-glycerol-3-

phosphate (G-3-P), and some authors have suggested that this stereochemical difference 

led to the evolutionary divergence of bacteria and archaea (Koga et al., 1998; Pereto et al., 

2004; Wachtershauser, 2003). If that is true, lipids may be a key to understanding early 

evolution. For example, one study has suggested that the root of the tree of life does not 

lie between the bacteria and archaea, that the earliest branching may group archaea with 
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Firmicutes, and predicts that Firmicutes should have lipids with archaeal traits (Skophammer 

et al., 2007). Indeed global phylogenies of fully sequenced organisms place thermophilic 

Firmicutes as the deepest branching bacteria (Ciccarelli et al., 2006). 

Archaea typically have core lipids consisting of isoprenoidal side-chains linked 

to glycerol while bacterial core lipids are n-alkyl or modified n-alkyl side chains linked 

to glycerol. Archaeal core lipids contain ether linkages between glycerol and side-chains 

whereas bacteria, with few exceptions, have ester linkages. Archaea often synthesize 

membrane-spanning tetraethers, while bacterial membranes are nearly always composed 

of lipid bilayers. 

 Glycerol ether lipids have also been detected in a variety of thermophilic bacteria, 

such as Thermodesulfobacterium (Langworthy et al., 1983), Thermotoga (Sinninghe Damste 

et al., 2007) Aquifex (Huber et al., 1992), and Ammonifex (Huber et al., 1996). They are also 

inferred to be present in the membranes of sulfate-reducing Desulfosarcinales in consortia 

with methanotrophic archaea (Orphan et al., 2001). Tetraethers with non-isoprenoidal alkyl 

moieties have been reported in diverse marine and terrestrial environments (Schouten et 

al., 2000), and are likely bacterial in origin. Membrane-spanning lipids have been detected 

ether-linked to a single glycerol in Thermotoga (De Rosa et al., 1988). Some of these 

characteristics are well-conserved. There are no reported exceptions to the sterochemical 

distinction between bacterial and archaeal lipids. No bacteria have been reported to have 

glycerol-linked isoprenoids as core lipids, and only one archaeon, Pyrococcus, is known to 

synthesize straight-chain alcohols in its core lipid (Nishihara et al., 2000).

 In this study we report the structures of a wide diversity of diether lipids in the 

carbonates of the Lost City hydrothermal field. The isoprenoidal diethers in these carbonates 

are predominantly derived from the single strain of Methanosarcinales that inhabits the 

carbonates (Chapter 3). The precise source of the non-isoprenoidal diethers is unknown, 

but they are presumed to be derived from bacteria. The non-isoprenoidal diethers are 

diverse, and include each of the three series reported to exist in cold-seep carbonate crusts 
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(Pancost et al., 2001), as well as structures that are similar but do not fall into these three 

categories. Our results suggest that bacterial diether lipids have a wider range of structural 

diversity than previously reported and that, at least at Lost City, they are glycolipids. 

Ether glycolpids are common in archaea, and so their presence in bacteria further blurs the 

distinction between the characteristics of bacterial and archaeal lipids.

5.2. meThods

Carbonate samples were collected from the Lost City Hydrothermal Field during 

Atlantis cruise AT-7-41 using the submersible Alvin and stored in Teflon containers 

at -20°C until processing. Subsamples were freeze-dried and crushed to a fine powder, 

then ultrasonically extracted three times (ca. 30 min) in a mixture of dichloromethane 

(DCM):methanol (3:1, v/v) and all three extracts were combined. Extracts were centrifuged 

at 2000 rpm for 15 minutes to remove residual carbonate particles and then the bulk of 

solvent was evaporated at 35°C under a stream of dry nitrogen. Elemental sulfur was 

removed from the extracts by passing over a column of activated copper, followed by 

filtration of the extract through a 40 μm combusted glass Buchner funnel. 

To analyze total lipid extracts we performed analytical high-performance liquid 

chromatography following methods previously established (Sturt et al., 2004). Briefly, 

lipids were separated on a LiChrospher® Diol column (125 mm x 2mm, 5μm) with a 

linear solvent gradient and the HPLC was coupled to a ThermoFinnigan LCQ Deca XP 

ion-trap mass spectrometer. Solvents contained ammonia and formic acid to act as adducts 

that help ionization of polar lipids. The mass spectrometer scanned m/z 500 – 2000 and 

performed MSn experiments in a data dependent acquisition mode where the base peak 

was fragmented up to MS3 in both positive and negative ion modes. The MSn data allowed 

us to gather information about the masses of the headgroup and core lipid by reference to 

standards previously published (Sturt et al., 2004). 

For GC-MS analysis the total lipid extract was separated over silica gel into five 
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fractions using an elution scheme of solvents of increasing polarity. Most diethers eluted 

in the alcohol fraction (F4) with a mixture of 4:1 DCM:ethyl acetate. Diether diols such as 

hydroxyarchaeol eluted in fraction F5 with ethyl acetate. 

Diethers were derivatized to their trimethylsilyl ethers and esters by reacting with 

N,O-bis(trimethylsilyl)trifluoro-acetamide (BSTFA + 1% TMCS) in pyridine at 60°C for 

thirty minutes, and analyzed with a HP 6890 gas chromatograph fitted with a PTV injector 

operated in splitless mode and equipped with a Varian CP-Sil-5 (60-m length, 0.32 mm 

inner diameter, and 0.25-um film thickness) fused silica capillary column and coupled to 

an Agilent 5973 mass-selective detector. 

Cleavage of ether side chains was achieved by reaction with 1.0 M boron tribromide 

(BBr3, Aldrich) in dichloromethane (DCM). Approximately 200 μl BBr3 was added to lipid 

extracts in dry vials under a stream of argon, after which vials were sealed and heated to 

60 ºC for 2 hours. After the reaction was complete, the resulting bromides were reduced 

to hydrocarbons by adding the DCM solution containing bromides to approximately 1 ml 

of Super-Hydride solution (1.0 M lithium triethylborohydride in tetrahydrofuran, Aldrich) 

in dry vials under a stream of argon and reacting at 60 ºC for 2 hours. This procedure was 

done in parallel on an ether lipid standard to confirm quantitative cleavage of side chains 

to hydrocarbons.

5.3. resulTs and discussion

5.3.1 HPLC-ESI-MSn analysis

Identification of polar lipids by HPLC-ESI-MSn followed methods previously 

established (Sturt et al., 2004). Compounds are separated primarily on the basis of the 

polarity of the headgroup. By monitoring the MS-MS reactions in both positive and negative 

mode, we can in many cases discern information about the identity of the polar headgroup 

and the nature of the links between the glycerol backbone and the apolar sidechains (i.e. 

ether or ester links) (Sturt et al., 2004). 
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The molecular ion (very abundant in the MS1 spectrum) is selected for refragmentation 

to a daughter spectrum (the MS2 spectrum). The mass difference between the molecular 

ion in MS1 and its products in MS2  in positive-ionization mode is particularly useful for 

identifying the nature of the headgroup. In many phosophlipids the polar headgroup is lost 

during this fragmentation.  The mass loss determined by the difference in m/z between the 

molecular ion and the most abundant ion in the MS2 spectrum usually corresponds to the 

mass of the headgroup (in some cases including the mass of an adduct introduced with the 

HPLC mobile phase). The details of fragmentation may differ between ether-linked and 

ester-linked lipids (Sturt et al., 2004). Glycolipids behave similarly, and show a pattern in 

the fragmentation of MS1 to MS2 that corresponds to loss of a C6 sugar. (Sturt et al., 2004). 

There are variants on this rule based on the proton affinity of each fragment (McLafferty 

and Turecek, 1993); in some phospholipids such as phosphatidylcholine the headgroup 

retains the charge and is detected in the MS2 spectrum. In such cases the mass difference 

between ions in MS1 and MS2 reveals information about the size of the core lipid. In some 

cases the fragmentation of MS1 to MS2 yields no mass difference that corresponds to any 

known polar headgroups. This may be interpreted as the detection of lipids containing 

unknown polar headgroups, or other compounds. 

 Negative ionization is especially useful for deducing the nature of the links in 

the core lipid between the glycerol and side chains, and in some cases the sizes of the 

individual chains. In many phospholipids the MS2 spectrum includes m/z that corresponds 

to a fragment lacking both the headgroup and the sn-2 chain. This facilitates the calculation 

of the masses of both the sn-1 and sn-2 side chains (in bacterial lipids) or sn-2 and sn-3 in 

archaeal lipids. Glycolipids exhibit different behavior under negative ionization. Typically, 

negative-ion mass differences within the MS1, MS2 and MS3 spectra of glycolipids reveal 

only fragmentation of the glycosyl headgroup (Sturt et al., 2004).

 Figure 5-1 shows the positive-ionization-mode chromatogram of polar lipids from 

sample 3862-1219. The distribution of polar lipids is relatively simple, with four main 
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Table 5-1: HPLC-ESI-MSn mass retention time and mass transition data for samples analyzed in this study. 

+ +
Time MS1 MS2 MS1 --> MS2 Interpretation

3862-1219
2.41 541 316 225 unknown 4
6.16 720 541 179 monoglycosyl + NH4
23.40 766 577 189 DAG PG
26.07 1116 400 716 unknown 2b
26.73 882 541 341 diglycosyl + NH4
25.16 868 527 341 diglycosyl + NH4

3867-1225
2.75 686 557 129 hydroxyarchaeol
4.18 753 377 376 unknown
4.99 713 549 164 unknown
6.57 720 541 179 monoglycosyl + NH4
7.46 706 527 179 monoglycosyl + NH4
20.23 1004 412 592 unknown 2a
25.22 868 527 341 diglycosyl + NH4
26.84 894 553 341 diglycosyl + NH4
29.59 1129 nd unknown
24.10 738 549 189 PG
23.55 764 575 189 PG

3867-1228
2.58 670 373 297 archaeol
2.68 686 557 129 hydroxyarchaeol
5.56 832 653 179 monoglycosyl + NH4: monogylcosyl archaeol
11.24 718 511 207 unknown 1
18.23 686 557 129 hydroxyarchaeol
20.45 1004 412 592 unknown 2a
23.55 764 500 264 unknown 3
24.01 738 549 189 DAG PG
25.42 852 511 341 diglycosyl + NH4
27.08 878 537 341 diglycosyl + NH4
28.25 834 538 296 unknown
31.00 938 836 102 unknown
33.40 866 686 180 unknown
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+ +
Time MS1 MS2 MS1 --> MS2 Interpretation

3869-1404
2.48 686 557 hydroxyarchaeol
4.48 713 658 55 unknown
6.55 732 553 179 monoglycosyl + NH4
6.95 690 511 179 monoglycosyl + NH4
7.77 690 511 179 monoglycosyl + NH4
9.04 730 551 179 monoglycosyl + NH4
14.61 550 450 100 unknown
17.16 623 508 115 unknown
19.90 1004 412 unknown 2a
23.19 792 603 189 DAG PG
25.32 894 553 341 diglycosyl + NH4
27.37 880 839 41 unknown
27.65 878 537 341 diglycosyl + NH4
28.16 834 538 296 unknown
28.17 834 538 296 unknown
29.87 1444 1241 203 unknown
30.16 850 554 296 unknown
34.12 866 669 197 unknown
34.12 866 nd

3869-1446
2.20 670 373 archaeol
2.48 686 557 hydroxyarchaeol
3.58 693 541 152 unknown
4.42 659 398 261 unknown
6.10 718 539 179 monoglycosyl + NH4
6.30 716 537 179 monoglycosyl + NH4
6.48 690 511 179 monoglycosyl + NH4
7.19 690 511 179 monoglycosyl + NH4
9.96 746 539 207 unknown
12.38 941 821 120 unknown
20.53 1004 412 592 unknown
23.52 792 603 189 DAG PG
24.76 894 553 341 diglycosyl + NH4
25.19 852 511 341 diglycosyl + NH4
25.90 1116 400 716 unknown
26.47 882 541 341 diglycosyl + NH4
26.94 878 537 341 diglycosyl + NH4
28.24 834 538 296 unknown
28.76 786 184 602 PC
30.22 850 554 296 unknown
32.79 894 697 197 unknown
33.31 866 669 197 unknown

3876-1133
6.57 716 537 179 monoglycosyl + NH4
7.08 690 511 179 monoglycosyl + NH4
12.13 594 397 197 unknown
20.68 978 414 564 unknown
22.15 1010 444 566 unknown
23.59 764 500 264 unknown
24.24 736 547 189 DAG PG
25.12 1130 926 204 unknown
26.61 688 547 141 DAG PE
28.90 786 184 602 PC
30.56 1817 1299 518 unknown
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components. The MS-MS spectra of the first (least polar) compound to elute does not 

correspond to a lipid polar headgroup that we could identify. The second compound (6.2 

minutes) and the compound eluting at 26.7 minutes have MS-MS spectra that identify 

them as monoglycosyl and digylcosyl lipids, respectively, while the peak a 23.4 minutes 

is a polar lipid with a phosphatidylglycerol (PG) headgroup. The small peaks eluting just 

before 26.7 minutes are another digylcosyl headgroup, and an unidentified lipid (Table 

5-1).

 Both the monoglycosyl and diglycosyl headgroups are apparently associated with 

diether lipids. Figure 5-2 shows the positive- and negative-ion multidimensional mass 

spectra of the largest peak in the chromatogram (RT = 26.7 min). In positive ion mode the 

initial mass loss is 341 Da. This is consistent with the loss of a digylcosyl headgroup plus a 

NH4
+ adduct as shown in Figure 5-2, and is similar to the loss of headgroup from archaeal 

ether lipids such as tetraethers (Sturt et al., 2004).  We note that there is a 1 Da difference 

in the mass loss between the glycolipid tetraethers (Sturt et al., 2004) which show a loss of 

342, and this sample. We interpret this as a rearrangement that transferrs a hydrogen atom 

between the headgroup and core lipid (Figure 5-2). The mass of the core lipid, 541 Da, is 

consistent with such a rearrangement operating on a diether lipid core that has saturated 

alkyl chains with a total of 32 carbon atoms. The data in negative ion mode are consistent 

with this interpretation. The initial mass loss in negative ion mode is consistent with a loss 

of the formate adduct. The mass of the MS2 negative ion is 863.4 Da which is consistent 

with a digylcosyl glycerol diether lipid with 32 saturated carbon atoms in the side chains, 

having lost a single hydrogen. The MS3 spectrum is consistent with a  further fragmentation 

of the molecule within the glycolipid headgroup, with a bond breaking between the two 

sugar moieties.

 The detailed multidimensional spectrum shows a number of glycolipid diethers of 

different molecular masses. These are detailed in Table 5-1. Similar analyses were repeated 

for the lipid extracts of a number of samples from Lost City. Chromatograms in Figure 
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10 20 30 400 10 20 30 400

3867-1225 7 active

3867-1228 7 active

3869-1446 C active

3876-1133 X1 inactive

3862-1219 3 active

3869-1404 C active

OH
MG

PG
DG

PC

PE

Figure 5-3: Positive ion chromatograms of lipid extracts from several active samples at Lost City, showing 
abundant glycolipids in all. Abbreviations: OH: hydroxyl (no polar headgroup); MG: monogylcosyl; PG: 
phosphatidylglycerol; DG: digylcosyl; PC: phosphatidylcholine; PE: phosphatidylethanolamine.

retention time (minutes)
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5-3 reveal that the dominant types of polar lipids are similar in all the active samples, 

which include abundant monogylcosyl and digylcosyl diethers, along with less abundant 

diacyl phosophatidyl glyceols and bare hydroxyarchaeol (containing only a hydroxyl 

instead of a polar headgroup on sn-1). The inactive sample (3876-1133) shows reduced 

amounts of monogylcosyl diethers and lacks digylcosyl diethers, but contains both diacyl 

phosphatidylgylcerol, diacyl phosphatidylethanolamine, and phosphatidylcholine lipids. It 

is the only sample to contain each of these three headgroup types.

 All the inferred ether lipids detected in HPLC-ESI-MSn  data at Lost City have 

monoglyco- or digylco- headgroups, with the exception of the archaeol lipids archaeol 

and hydroxyarchaeol, which have hydroxyl headgroups. The core lipid masses associated 

with the gylcolipids are inconsistent with the side chains being C20 phytanyl groups, as 

are common in archaea. We propose, therefore, that these lipids are bacterial, an inference 

supported by GC-MS data. The significance of the lack of a polar headgroup is not known. 

While this could indicate that the lipids do not derive from living cells, that interpretation 

would be inconsistent with the results of 16S rDNA surveys (Brazelton et al., 2006; 

Schrenk et al., 2004). Bare lipids (lacking polar headgroups) are known to occur in living 

methanogens (Koga et al., 1993; Nishihara et al., 1989; Poulter et al., 1988) and the bare 

lipids detected at Lost City may well derive from living cells.

5.3.2 GC-MS analysis

 GC-MS analyses of lipid extracts from Lost City reveal information complementary 

to that determined by analyses of polar lipids. Diether lipids are abundant in GC-MS traces, 

as would be expected given the abundance of diether glycolpids. Monoethers are detected 

in much lower abundances and are discussed in Chapter 3. Our analysis of alcohol fraction 

of total lipid extracts is complementary to the HPLC-ESI-MSn data, and does not directly 

analyze glycolipid. However, since polar headgroups are easily lost after cell death (Sturt 

et al., 2004), we infer that these neutral lipids are closely related to the glycolipids.
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 Figure 5-4 shows the m/z 133 chromatogram of tms-derivatives of the alcohol (F4) 

fraction of sample 3862-1219. The largest peak, at 59.7 minutes has the spectrum shown 

in Figure 5-4b. The spectrum and Kovats retention index of this peak (RI = 3722) are 

consistent with the identity of this peak being a C35 diether that is substituted with two n-C16 

alkyl groups, presumably on the sn-1 and sn-2 positions (Figure 5-4b).  This interpretation 

was confirmed by analysis of an authentic (racemic) C35 gylcerol diether standard, which 

had an identical retention index and spectrum. 

 From this information, we infer that the most abundant peaks in the GC-MS 

chromatogram and in the peak in the HPLC-ESI-MSn chromatogram correspond to the 

same compound. The spectra in each case are consistent with a this compound being a 

diether lipid with a C35 core. The GC-MS data gives relevant information concerning the 

structure of the side chains inferred to be at sn-1 and sn-2, while the HPLC-ESI-MSn data 

suggests that this same compound has a diglyco- headgroup.

 A study by Pancost et al. (2001) provides the basis for interpretation of the structures 

of these diethers. That study defined diethers in three series: Series I  contains an iso- or 

anteiso- branched C15 alkyl moiety at the sn-2 position, Series II contains a cyclopropyl C17 

alkyl moiety at the sn-2 position, and Series III contain a C15 straight-chain alkyl moiety at 

the sn-2 position and another straight-chain alkyl moiety at the sn-1 position. 

All three of these series are detected in Lost City carbonates (Table 5-2). Identification 

of these series is by analysis of the mass spectrum and Kovats retention index (Kissin et al., 

1986) of the intact diethers. The diether mass spectrum contains the information necessary 

to discern the size of the side chains at the sn-1 and sn-2 positions, while the Kovats 

retention index can be used to infer the presence and type of methylation in one or both of 

the side chains. In some cases the retention index may indicate that the methylation pattern 

differs between the two alkyl substituents. In those cases the retention index alone can not 

determine which chain has which pattern. This information may be inferred in cases where 

ether cleavage experiments exclude the presence of certain alkyl chains. This is not always 
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Table 5-2: Kovats Retention index, molecular ion (as tms derivative), isotopic, and putative structural 
information for the diether core lipids analyzed in this study. Mass spectra for these compounds can be 
found in Appendix 3. 

carbon number branching
RI M+ C# sn- 1 sn- 2 Group 13C sn- 1 sn- 2 ID #

3862-1219 3428 570 C32 15 14 III n n 6
3454 584 C33 15 15 Id i i 7
3477 584 C33 15 15 If ai ai 9
3489 584 C33 16 14 i n 11
3525 584 C33 14 16 -4.9 n n 14
3563 598 C34 16 15 I ai ai 16
3597 598 C34 16 15 I -8.9 n i 20
3621 598 C34 16 15 III -2.5 n n 22
3696 610 C35:1 16:1 16 cp ai 25
3703 610 C35:1 16 16:1 n cp 27
3722 612 C35 16 16 III -4.7 n n 29
3756 626 C36 17 16 -8.5 i ai 31
3795 640 C37 17 17 IV 7-Me 7-Me 34
3813 624 C36 17 16 -4.2 n n 36
3822 624 C36:1 16 17:1 IIc n cp 38
3899 638 C37:1 18:1 16 -7.4 cp ai 40
3911 640 C37 18 16 III -5.4 n n 41
4020 652 C38:1 19:1? 16? cp n 43

3867-1225 3460 584 C33 15 15 Id -6.4 i i 7
3483 584 C33 15 15 If -7.9 ai ai 9
3515 582 C33:1 16:1 14 cp ai 12
3526 582 C33:1 16:1 14 -5.0 n cp 13
3530 584 C33 14 16 n n 14
3567 598 C34 16 15 I -4.9 ai ai 16
3587 596 C34:1 16:1 15 I cp i 18
3603 598 C34 16 15 I -5.4 n i 20
3629 612 C35 17 15 IV -3.4 7-Me i 23
3692 608 C35:2 16:1 16:1 ? ? 24
3711 610 C35:1 16 16:1 n cp 27
3717 608 C35:2 16:1 16:1 -6.0 cp cp 28
3724 612 C35 16 16 III n n 29
3760 626 C36 17 16 -10.1 i ai 31
3815 624 C36 17 16 -7.6 n n 36
3824 624 C36:1 16 17:1 IIc n cp 38
3885 636 C37:2 18:1 16:1 ? ? 39
3899 638 C37:1 18:1 16 -9.0 cp ai 40
4006 652 C38:1 19:1? 16? cp n 43
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carbon number branching
RI M+ C# sn- 1 sn- 2 Group 13C sn- 1 sn- 2 ID #

3867-1228 3285 556 C31 15 13 -6.8 ai ai 1
3297 556 C31 14 14 n i 2
3333 556 C31 14 14 III -2.3 n n 3
3370 570 C32 15 14 Ia -5.6 ai i 4
3405 570 C32 14 15 Ic -5.5 n ai 5
3431 570 C32 15 14 III -7.5 n n 6
3455 584 C33 15 15 Id -3.9 i i 7
3466 584 C33 15 15 Ie i ai 8
3479 584 C33 15 15 If -6 ai ai 9
3486 582 C33:1 16:1 14 -1.8 cp i 10
3512 582 C33:1 16:1 14 cp ai 12
3527 582 C33:1 16:1 14 -2.0 cp n 15
3565 598 C34 16 15 I ai ai 16
3572 596 C34:1 16:1 15 I ? ? 17
3584 596 C34:1 16:1 15 I -6.2 cp i 18
3594 596 C34:1 16:1 15 Ig -8.8 cp ai 19
3618 596 C34:1 16:1 15 I -3.7 cp n 21
3628 612 C35 17 15 IV -1.3 7-Me i 23
3691 608 C35:2 16:1 16:1 ? ? 24
3717 608 C35:2 16:1 16:1 -3.5 cp cp 28
3753 624 C36:1 17 16:1 -1.9 7-Me ? 30
3765 624 C36:1 17 16:1 ? ? 32
3778 624 C36:1 ? ? ? ? 33
3796 640 C37 17 17 IV 7-Me 7-Me 34
3803 622 C36:2 18:1 16:1 ? ? 35
3820 622 C36:2 16:1 17:1 -4.6 cp cp 37
3885 636 C37:2 18:1 16:1 -7.7 ? ? 39
3896 636 C37:1 18:1 16 -7.5 cp ai 40
3927 636 C37:2 17:1 17:1 IId -5 ch cp 42

3869-1404 3479 584 C33 15 15 If 0.8 ai ai 9
3511 582 C33:1 16:1 14 -1.1 cp ai 12
3523 582 C33:1 16:1 14 3.6 cp n 13
3565 598 C34 16 15 I 3.6 ai ai 16
3573 596 C34:1 16:1 15 I -3.8 ? ? 17
3584 596 C34:1 16:1 15 I 0 cp i 18
3595 596 C34:1 16:1 15 Ig -10.6 cp ai 19
3627 612 C35 17 15 IV 2.2 7-Me i 23
3690 608 C35:2 16:1 16:1 -5.3 ? ? 24
3702 608 C35:2 16:1 16:1 ? ? 26
3707 610 C35:1 16 16:1 n cp 27
3713 608 C35:2 16:1 16:1 0.1 cp cp 28
3720 612 C35 16 16 III n n 29
3759 626 C36 17 16 -1.2 i ai 31
3797 640 C37 17 17 IV 1.4 7-Me 7-Me 34
3813 626 C36 17 16 0.3 n n 36
3886 636 C37:2 18:1 16:1 -9.3 ? ? 39
3898 638 C37:1 18:1 16 -11.2 cp ai 40
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carbon number branching
RI M+ C# sn- 1 sn- 2 Group 13C sn- 1 sn- 2 ID #

3869-1446 3454 584 C33 15 15 Id -2.2 i i 7
3477 584 C33 15 15 If -3.3 ai ai 9
3522 582 C33:1 16:1 14 +2.6 cp n 13
3563 598 C34 16 15 I ai ai 16
3583 596 C34:1 16:1 15 I cp i 18
3595 596 C34:1 16:1 15 Ig cp ai 19
3598 598 C34 16 15 I -4.9 n i 20
3626 612 C35 17 15 IV 7-Me i 23
3704 610 C35:1 16 16:1 n cp 27
3712 608 C35:2 16:1 16:1 -1.4 cp cp 28
3718 612 C35 16 16 III n n 29
3754 626 C36 17 16 i ai 31
3795 640 C37 17 17 IV 7-Me 7-Me 34
3812 624 C36 17 16 ?? n n 36
3821 624 C36:1 16 17:1 IIc -0.9 n cp 38
3884 636 C37:2 18:1 16:1 ? ? 39
3897 638 C37:1 18:1 16 cp ai 40
3911 640 C37 18 16 III n n 41
3927 636 C37:2 17:1 17:1 IId ch cp 42

3876-1133 3702 608 C35:2 16:1 16:1 -22.1 ? ? 26
3759 626 C36 17 16 -17.3 i ai 31
3796 640 C37 17 17 IV 7-Me 7-Me 34

authentic standard 3721 612 C35 16 16 n n
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Figure 5-5: Mass spectrum and structure for a C33 diether in 3862-1219

Figure 5-6: Spectra and putative structures of two nonisoprenoidal diethers with methyl groups at the ω7 
position.
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applicable however, and in some compounds the identification of n-alkyl, iso-, and anteiso- 

chains are interchangeable.

 In addition to the three series of diethers described by Pancost et al. (2001), the 

Lost City carbonates contain diverse diethers that are structurally similar but do not readily 

conform with that classification scheme. At least forty-three distinct diether compounds 

can be detected in Lost City carbonates. Most are similar to the three series detected by 

Pancost et al. (2001) and contain n-alkyl, iso-, and anteiso- branched alkyl substituents, 

but with a wider variety of carbon numbers.  For example in sample 3862-1219 we detect 

a C33 diether that contains a C16 alkyl moiety at the sn-1 position and a C14 alkyl moiety at 

the sn-2 position (Figure 5-5). Examination of the diether spectra from samples at Lost City 

revealed that they have alkyl substituents that range in size from C13 to C18, with carbon 

numbers from 14 to 17 being most common. Some of these chains are unsaturated, although 

the presence of an unsaturation is limited to those side chains with carbon numbers of 16 

and greater. The retention indices of unsaturated diethers are largely consistent with the 

presence of cyclopropyl and cyclohexyl groups, as described by Pancost et al. (2001). 

 GC-MS data regarding diether compounds are listed in Table 5-2. Small 

inconsistencies exist in retention indexes among our samples. In particular, compounds in 

sample 3867-1225 in many cases have a retention index that is 5-8 units higher than the same 

compound in other samples. We attribute this to slight variations in analytical conditions 

between samples, which were analyzed over the span of several months. Additionally we 

note that the retention index we report for many compounds is in many cases 5-8 units 

earlier than that reported by Pancost et al. (2001), including that we measure for the diether 

standard. This is also likely due to slight differences in analytical conditions. 

 While most of the diethers we detected are generally similar to the three series 

reported by Pancost et al. (2001), differing only in the carbon numbers of their side chains, 

several of the new diethers had retention times that suggested that their structures might be 

distinct. Two compounds, one a C35 diether and the other a C37 diether, stood out by virtue 
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of RIs that were 100 and 125 units smaller, respectively, than would expected for Series 

III compounds of identical mass. These compounds have fully saturated side chains, and 

have been designated series IV. The retention times are consistent with C17 side chains that 

are methylated at the ω7 position. The C35 diether elutes with a RI of 3628, consistent with 

a C17 alkyl chain methylated at the ω7 position, and an iso-C15 alkane at the sn-2 position. 

The C37 diether has a RI of 3796, consistent with each of the side chains consisting of a  

C17ω7 alkyl moiety. (Figure 5-6, Table 5-2). Cleavage of the ether-bonded side chains with 

boron tribromide, and reduction of the resulting bromides to hydrocarbons with lithium 

triethylborohydride yields 7-methyl hexadecane. This is consistent with the methylation 

of the side-chains at the ω7 position. Ether cleavage products include the other expected 

structures, including 5-methylhexadecane and 6-methylhexadecane, which result from the 

presumed 11,12-methylenehexadecyl moiety previously described (Pancost et al., 2001).

 Both odd- and even-numbered carbon chains contain methylation at the iso- position, 

as reported at other sites (Pancost et al., 2001). Lost City samples also are methylated at 

anteiso- positions in both odd and even carbon numbers. Products with these methylation 

patterns are predicted by the RIs of the diethers, and their presence is confirmed by 

examination of ether-cleavage products. Methylated chains with even carbon numbers are 

probably unusual. In methylated fatty acids, the presence of even chain-length methylated 

moieties is unusual, as it requires a slightly different synthetic pathway. Even-chain 

methylated ethers are likely to be similar. In fatty acid synthesis, methylation is introduced 

by incorporation of methylmalonyl-CoA instead of malonyl-CoA during chain elongation 

(Kaneda, 1991; Michal, 1999). The ‘extra’ carbon thus incorporated forms the methyl 

group. The expectation is that mono-branched fatty acids (and by analogy, alcohols), which 

are usually elongated from acetyl-CoA as a starting molecule, will predominantly be of odd 

carbon number.  To generate even carbon numbered methylated alkyl chains, propionyl-

CoA must be substituted for acetyl-CoA as the primer (Michal, 1999). In culture studies, 

odd-carbon numbered monomethyl fatty acids are indeed observed to predominate, but the 
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presence of even-carbon number monomethyl fatty acids in some cultured sulfate reducers 

(Rutters et al., 2001) shows that this process is not unknown.

5.3.3 Nonisoprenoid ether-linked glycolipids

Together these data suggest that the abundant diethers in Lost City carbonates are 

glycolipids containing previously undetected alkyl moieties. Both of these results expand 

the diversity of lipids that are synthesized by bacteria.

The initial report of diether lipids in Thermodesulfobacterium commune (Langworthy 

et al., 1983) was suggestive of the presence of glycolipid diethers. The glycolipid fraction 

in that report likely contained diethers, but a detailed analysis confirming the presence of 

diethers was performed only on the phospholipid fraction. While glycolipids are common 

in many bacteria (Shaw, 1970), glycolipid diethers have been confirmed only in archaea.

The glycolipids detected at Lost City have masses that are inconsistent with 

the presence of phytanyl side chains. GC-MS analysis of the diether fractions reveals 

compounds that are identical to, or closely resemble compounds previously described as 

non-isoprenoidal diethers (Pancost et al., 2001). Ether cleavage of the diether side chains 

does not reveal the presence of isoprenoidal hydrocarbons other than phytane, which 

is derived from archaeol. Nonisoprenoidal diether lipids are also detected at Lost City 

sites where 16S rDNA surveys do not detect the Lost City Methanosarcinales phylotype 

(Brazelton et al., 2006). Lipid extracts at these sites lack archaeol, and ether cleavage of 

the diether fraction of these extracts lack phytane. All this evidence is consistent with these 

diether compounds having nonisoprenoidal side chains.

Archaeal diversity is very limited in Lost City carbonates, with one predominant 

phylotype related to Methanosarcinales (Brazelton et al., 2006; Kelley et al., 2005; Schrenk 

et al., 2004). In carbonates in which this archaeal strain is detected, we detect archaeol, 

along with sn-2 hydroxyarchaeol and dihydroxyarchaeol, and the relative proportions of 

these samples is nearly invariant between samples (Chapter 3). This is highly suggestive 
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that the Lost City Methanosarcinales produce these compounds. The nonisoprenoidal 

diethers are therefore likely to derive from bacteria. A specific bacterial source for these 

lipids is unknown, as none of the bacterial families detected at Lost City (Brazelton et al., 

2006) are known to synthesize diether lipids. 

 Diether lipids are common in carbonate crusts at cold seeps where anaerobic oxidation 

of methane (AOM) occurs. Previous studies (Bouloubassi et al., 2006; Pancost et al., 2001) 

have demonstrated that at least three series of such diethers occur in these environments. 

In these environments, nonisoprenoidal diether lipids are likely to derive from bacteria 

in the Desulfosarcina/Desulfococcus group (Blumenberg et al., 2004). Nonisoprenoidal 

diethers are most closely associated with environments in which AOM is carried out by 

ANME-1 archaea. In environments dominated by ANME-2 archaea, the associated bacteria 

predominantly produce fatty acids with similar carbon skeletons to the diether skeletons 

(Blumenberg et al., 2004). For example, Desulfosarcina/Desulfococcus bacteria associated 

with ANME-2 archaea commonly produce an ai15:0 fatty acid (Blumenberg et al., 2005; 

Blumenberg et al., 2004) and in some cases produce a cy17:0w5,6 fatty acid (Nauhaus 

et al., 2007) similar to the 11,12-methylenehexadecyl moiety in diethers associated with 

ANME-1 archaea (Pancost et al., 2001). 

The ω7 methylated C17 alkyl moieties detected in diether lipids at Lost City have 

carbon backbones that are structurally similar to 10-methylhexadecanoic acid, which 

is a common fatty acid substituent in sufate-reducing δ-proteobacteria bacteria such as 

Desulfobacter, Desulfobacterium (Dowling et al., 1986; Londry et al., 2004), Geobacter 

(Lovley et al., 1993) Desulfosarcina and Desulforhabdus (Rutters et al., 2001). We also 

detect other alkyl substituents, such as ai15:0 and 11,12-methylenehexadecyl, that have 

previously been described from ether lipids associated with sulfate-reducing proteobacteria 

(Bouloubassi et al., 2006; Pancost et al., 2001). These alkyl chains are also known as ester-

linked fatty acids in δ –proteobacterial cultures (Dowling et al., 1986; Londry et al., 2004; 

Lovley et al., 1993; Rutters et al., 2001), and in environments where sulfate-reducing δ 
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–proteobacteria are presumed to play a key role (Blumenberg et al., 2004; Ringelberg et 

al., 1989). In most of these studies these alkyl chains are components of phospholipids. The 

diversity of glycolipids in sulfate-reducing δ –proteobacteria remains unclear due to the 

limited number of cultures studied to date.

In any case it is noteworthy that such unusual methylated and cyclized carbon moities 

are maintained across a wide range of environments, and even when other fundamental 

aspects of lipid synthesis (ether vs. ester bonds, phospholipids vs. glycolipid) are altered. 

The physiological function of these methylated and cyclized chains remains unknown. It has 

been hypothesized that the differences between these and straight-chain moieties may play 

a role in modulating the phase-transition temperature of lipid membranes (Kaneda, 1991). 

This remains untested. One intriguing possibility is that in anaerobic environments it may 

be physiologically less costly to modulate membrane fluidity by altering the methylation 

pattern of the membrane compared to introducing a double bond. 

5.3.4 Origin of nonisoprenoidal diether lipids at Lost City

One of the more confounding aspects of the abundant nonisoprenoidal diether 

lipids at Lost City is the lack of an obvious source for them. While the lipid assemblage 

consisting of both isoprenoidal and nonisoprenoidal diethers invites comparison to that 

found at AOM sites (Blumenberg et al., 2004), the dominant archaea at Lost City are 

methanogens, not methanotrophs. Furthermore, methanotrophic communities typically 

have a δ–proteobacterial sulfate-reducing partner in the consortium, but none of the usual 

partners are detected at Lost City (Brazelton et al., 2006). In AOM environments these 

sulfate reducers are the presumed source of nonisoprenoidal diethers. Other potential 

sources for diether lipids include bacteria related to Thermodesulfobacterium (Langworthy 

et al., 1983) or Aquifex (Huber et al., 1992), but these organisms are also undetected in Lost 

City carbonates (Brazelton et al., 2006).

The most common sulfate-reducing bacterium detected in Lost City carbonates 
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is a Clostridium similar to Desulfotomaculum. Clostridia are not known to make diether 

lipids with the one known exception of Ammonifex (Huber et al., 1996). Many Clostridia 

do produce ether-ester plasmalogens in their lipid membrane (Goldfine, 1997), which 

could  in principle be detected as glycerol monoethers. However, these are known only 

as phospholipids (Goldfine, 1997). Desulfotomaculum is not reported to make ether lipids 

(Londry et al., 2004; Pikuta et al., 2000), but the studies that have examined its lipid 

content specifically examined fatty acids. It is unclear whether ether lipids would have 

been detected had they been present. Most Clostridia also do not make methylated fatty 

acids, but there are a few exceptions (Kaneda, 1991). One study of the fatty acid methyl 

esters of Desulfotomaculum acetoxidans did not reveal the presence of any iso-, anteiso-, 

ω7-Me, or cyclopropyl moieties (Londry et al., 2004). However other investigations have 

dectected small amounts of iso-C15 moieties in D. acetoxidans (Dowling et al., 1986), and 

both iso-C17 and anteiso-C17 in Desulfotomaculum alkaliphilum (Pikuta et al., 2000), which 

is closely related to the Lost City phylotype . The presence of similar alkyl moieties in the 

fatty acid fraction is promising, but inconclusive. 

The abundance of glycolipids compared to phospholipids at Lost City invites 

ecological and evolutionary speculation. In oligotrophic environments some bacteria have 

the capability to conserve phosophorus by utilizing alternate lipid polar headgroups (Van 

Mooy et al., 2006). The fluid chemistry at Lost City is both high in pH and precipitates 

brucite. Brucite quantitatively removes phosphorus from fluids at high pH. This reaction is 

so effective that it is a standard quantitative analytical protocol for removal and analysis of 

phosphorus concentrations in seawater (Karl and Tien, 1992). We therefore speculate that 

Lost City hydrothermal fluids are low in phosphate, and that the synthesis of glycolipids 

is a phosphorus-conservation strategy. If Lost City is indeed a good analogue for an 

environments in which early life may have flourished, we might further specultate that 

glycolipids were an evolutionary predecessor to phospholipids. 

Whatever the source of the nonisoprenoidal ether lipids at Lost City, its lipid synthetic 
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pathway is interesting from the point of view of the evolutionary development of lipid 

synthesis. These nonisoprenoidal diethers have an unprecedented combination of  bacterial 

(nonisoprenoidal chains) and archaeal (diether glycolipid) traits. It has been speculated 

that Lost City might be an attractive analogue for the environment in which life originated 

(Kelley et al., 2001; Kelley et al., 2005; Russell, 2003; Skophammer et al., 2007). The Lost 

City ecosystem is dominated by Firmicutes and archaea that may be related to organisms 

inhabiting the deepest branches of the tree of life (Ciccarelli et al., 2006; Skophammer et 

al., 2007). Identification of the source of nonisoprenoidal lipids at Lost City will advance 

our understanding of the evolutionary and ecological role of these organisms.

5.4 conclusions

Abundant diether lipids at Lost City are derived from archaea, principally 

Methanosarcinales, and unidentified bacteria. Nonisoprenoidal diether core lipids are more 

structurally diverse at Lost City than in any previously desribed environment. Analysis of 

the intact polar lipids reveals that the nonisoprenoidal diethers have glycosyl headgroups, 

which is unprecedented in bacteria. Lost City vent fluids are likely to be phosphorus-poor, 

and synthesis of glycolipids instead of phospholipids may be a phosphorus conservation 

strategy.
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Chapter 6
Analysis of insoluble residues from carbonates of the 

Lost City Hydrothermal Field

absTracT 

 Recalcitrant organic material from carbonate chimneys at the Lost City Hydrothermal 

Field is associated with acid-insoluble mineral residues. Residues comprise up to 11.1 

mg per gram of rock and are composed of between 2.5 and 30.8 wt% organic carbon. 

Organic carbon in residues is more highly enriched in 13C than total organic carbon in 

carbonates; residue δ13Corganic values are as high as -0.3‰ vs. VPDB. There is a strong 

negative correlation between the δ13C and the δ15N of residues, suggesting a mixture of two 

end members from marine and vent organisms. The δ15N of vent organic matter approaches 

0‰, suggesting that hydrothermal primary producers are fixing nitrogen. Biomarker lipids 

suggest that the main primary producers at Lost City are methanogenic archaea, and we 

propose that these organisms are fixing nitrogen.

 Catalytic hydropyrolysis of residues yielded a range of hydrocarbons consistent 

with structures previously reported for isoprenoidal and nonisoprenoidal diethers. The 

main organisms inhabiting vent chimneys produce diether lipids. MRM experiments 

revealed a series of hopanes, including 3-methylhopanes. This result suggests that 

aerobic methanotrophy, in addition to anaerobic methanogenesis, plays a role in Lost City 

ecosystems. Analysis of residues by in-line pyrolysis-GC-MS resulted in the production of 

mostly aromatic products, most of which are likely derived from proteins.

6.1 inTroducTion

 Organic carbon from carbonate chimneys at the Lost City hydrothermal field is 

surprisingly enriched in 13C, likely due to the limited availability of dissolved inorganic 

carbon to the organisms inhabiting that ecosystem (Chapter 3). Extractable lipids from 
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Lost City carbonates have provided information about the nature of carbon cycling at Lost 

City, suggesting that the main archaeal phylotype is a methanogen.

 Much of the organic material in ancient rocks is insoluble in organic solvents. This 

material, called kerogen, is a geopolymer that is thermally broken down over time. The 

formation of kerogen is not well understood, but selective preservation of non-hydrolysable 

biopolymers resistant to biodegradation is thought to play a role (Tegelaar et al., 1989). Upon 

dissolution of Lost City carbonates in acid, we noted the presence of a non-hydrolysable 

residue with filamentous character that we considered a possible biological product. We 

characterized the content of organic carbon and nitrogen in this residue and attempted to 

determine its nature.

6.2 maTerials and meThods

6.2.1 Collection and residue isolation

Carbonate samples were collected and extracted as described previously. Extracted 

carbonate powders were placed in a 250 ml Erlenmeyer flask, and covered in a small volume 

(10 – 20 ml) of pre-extracted DI water. To this volume we slowly added concentrated HCl, 

at rate of 5 to 10 ml per hour. The total volume of HCl added was calculated to be less than 

what was necessary to dissolve the carbonate in its entirety, and the pH of the solution was 

monitored to ensure that it remained near neutral after several hours equilibration between 

acid and carbonate. 

 After 24 hours of equilibration between acid and carbonate, the liquid, along with 

an insoluble residue and minor amounts of carbonate, was poured off into a glass centrifuge 

tube. This mixture was extracted three times with dicholoromethane (approximately a 2:1 

volume of acidified water: DCM). During the extraction we noted a solid residue that 

accumulated at the boundary between the organic and aqueous phases. After the third 

extraction of the carbonate and residue mixture, the aqueous phase along with the residue 

was transferred to a centrifuge tube, and centrifuged for 10 minutes at 2000 rpm. The 



155

aqueous phase was then poured off. Because some residue was lost during this process, the 

reported concentrations of residues are considered minima. To the remaining solid residue 

we added 20 ml of pre-extracted DI water and sonicated for 10 minutes, then centrifuged 

again and poured off the water. This process was repeated twice more in order to remove 

residual CaCl2. The residue was then freeze dried and weighed. Each dried residue was 

then re-acidified with 5 ml of 2N pre-extracted HCl to remove any remaining carbonate. 

After 30 minutes reaction time, the samples were centrifuged and washed as before, and 

then freeze-dried a second time. This cycle of acidification, washing and freeze-drying 

was repeated a third time, at which point we detected no remaining reaction with HCl and 

inferred that all remaining carbonate had been removed. 

6.2.2. Elemental analysis

 Elemental analysis of residues was undertaken with a Fisons NA 1500 Elemental 

Analyzer coupled with helium dilution to a Finnigan MAT DeltaPlus XP isotope ratio-

monitoring mass spectrometer. The elemental analyzer was operated with the oxidation 

furnace at 1030 ºC and the reduction furnace at 650 ºC. Typically between 0.5 and 5 mg of 

dry residue was required to obtain sufficient carbon and nitrogen peak areas for analysis. 

The mass spectrometer was operated with Isodat 2.0 software and its precision was 

periodically monitored with international standards, and found to be better than 0.3‰ (1σ). 

Each sample was measured at least in triplicate to determine δ13C and δ15N, and peak areas 

were integrated and calibrated with a known standard to calculate total organic carbon 

(%C) and nitrogen (%N) contents. 

6.2.3. Hydropyrolysis and GC-MS

Two residues were mixed with an aqueous solution of ammonium 

dioxydithiomolybdate . in proportions such that molybdenum constituted 2 wt% of the 

total mass.  The ammonium dioxydithomolybdate decomposes under pyrolysis conditions 
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to yield a sulfided molybdenum phase that is catalytically active for hydropyrolysis (HyPy). 

HyPy was performed in an open-system temperature-programmed reactor configuration 

(Love et al., 1995). The catalyst-loaded samples were initially heated in a stainless steel 

reactor tube to 250 oC at a rate of 300 oC per minute, then to 520 oC at 8 oC per minute, with 

a hydrogen pressure of 15 MPa and a constant hydrogen gas flow of 6 L min-1 through the 

reactor bed. Products were collected in a silica gel trap cooled with dry ice. Between samples 

the HyPy apparatus cleaning run was heated to 520 oC under high hydrogen pressure to 

clean the apparatus. Experimental blanks, using clean silica gel in the reactor tube instead 

of a sample, were regularly analyzed and the products monitored and quantified to ensure 

that trace organic contamination levels were acceptably low.

Hydropyrolysates were separated by silica gel adsorption chromatography 

into aliphatics (saturated alkanes plus alkenes), aromatics and polars (or N, S, O 

compounds) by sequential elution with hexanes, hexanes:dichloromethane (3:1 v/v) and 

dichloromethane:methanol (3:1 v/v), respectively. Elemental sulfur was removed from the 

extracts by passing over a column of activated copper. Hydrocarbons were identified using 

a HP 6890 gas chromatograph fitted with a PTV injector operated in splitless mode and 

equipped with a Varian CP-Sil-5 (60-m length, 0.32 mm inner diameter, and 0.25-um film 

thickness) fused silica capillary column and coupled to an Agilent 5973 mass-selective 

detector for full-scan analyses or to an AutoSpecQ for MRM analyses.

6.2.4 In-line Pyrolysis and GC-MS

 In-line pyrolysis experiments were performed with a CDS (Chemical Data System, 

Oxford, Pennsylvania, USA) Pyroprobe 5150.  Each sample was loaded into a quartz tube 

and pyrolyzed at 650 oC for 10 seconds in a helium flow of 15 – 25 ml per minute. The 

transfer line was held at 320 oC and was coupled to a HP 6890 gas chromatograph equipped 

with a DB-1 (60-m length, 0.32 mm inner diameter, and 0.25-um film thickness) fused 

silica capillary column. The GC oven was initially set to 60 oC, where it was held for 2 
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Figure 6-1: Photo of flasks with Lost City carbonates. a) undissolved carbonates; b) dissolution 
process showing development of rich foam.

a)

b)
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Figure 6-2: Filaments on carbonate chimney at Lost City Hydrothermal Field
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minutes, and then heated at 10 oC per minute to 100 oC followed by an increase of 4 oC to 

320 oC where it was held for 20 minutes. The GC was coupled to an AutoSpecQ operated 

in full scan mode. 

6.3 resulTs and discussion

6.3.1 Elemental and Isotope analysis

 Upon treatment with acid, Lost City carbonates reacted violently and the aqueous 

phase developed into a rich foam (Figure 6-1) that in our experience with carbonates is 

unusual. In addition, the removal of the carbonate matrix revealed an insoluble residue 

with a filamentous appearance. These resembled filaments observed on actively venting 

structures at Lost City (Figure 6-2). The amount of residue recovered from the carbonates 

comprised up to slightly more than 1% of the total dry weight of the rock, although we 

estimate that the actual weight percent of residue is slightly higher than this, since recovery 

was imperfect (Table 6-1). 

 Isolated residues showed wide variation in their organic content. Elemental analysis 

revealed that residues consist of between 2.5 and 30.8 weight percent carbon, and 0.4 to 

12.4 weight percent nitrogen. While Lost City carbonates are up to 0.6% total organic 

carbon, the carbon in insoluble residues apparently accounts for near 0.05% of the dry rock 

weight. This accounts for near 30% of the total organic carbon (TOC) in the rocks in the 

two fissure samples, collected at sites X1 and X2, and near 20% of the TOC from sample 

3869-1404. At the other sites, carbon from recovered residue accounts for approximately 

11% of TOC or less. 

 The residues are unusual in that the ratio of carbon to nitrogen is remarkably low. 

Of the eight residues examined, seven have a C/N ratio between 2.4 and 3.3, with a mean 

of 2.8 (Figure 6-3). One residue (3869-1404) does not fit this pattern and has C/N = 16.2, 

although the nitrogen content in this sample was anomalously low.  These ratios are low 

when compared to the canonical C/N ratio observed in marine phytoplankton, defined by 
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%C = 2.4*(%N) + 0.93
R2 = 0.96
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Figure 6-3: Correlation of wt% carbon and wt% nitrogen showing consistent C/N ratio of 2.4. This equates 
to a molar C/N ratio of 2.8. 
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the Redfield ratio of 106:16 (C/N ~ 6.6) (Arrigo, 2005). Lower ratios of carbon to nitrogen 

might be expected if the organic material is proteinaceous, or contains abundant nucleic 

acids. Nucleic acids are soluble in aqueous media and would be expected to be removed by 

the extraction process. Proteins would be water-soluble after hydrolysis, and the extent of 

their exposure during the acid treatment would determine whether they were removed. One 

possible explanation for this problem is that the residue consists of proteins that are acid-

resistant or adsorbed to an inorganic matrix. The wt% carbon of the residue suggests that 

large proportions of it are inorganic. For example, the 20 standard protein-forming amino 

acids are between 34% and 73% carbon, a range higher than the 2.5 to 30.8 wt% carbon 

range of the residues. 

 The δ13C of the organic carbon in residues roughly parallels the δ13C of total organic 

carbon (Figure 6-4). In general the organic carbon in the residues is slightly enriched in 13C 

relative to total organic carbon. Values for δ13C of total organic carbon at Lost City can be 

�15N = -0.32*�13C + 2.39
R2 = 0.81
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Figure 6-5: Relationship of δ13C and δ15N in residue organic material, showing strong anticorrelation, with 
marine end member at upper left and vent end member lower right.
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approximated to lie on a mixing line between 13C depleted detrital input from the marine 

water column (δ13C ~ -20‰ at 30ºN latitude (Goericke and Fry, 1994)) and 13C enriched 

input from carbon-limited autotrophs inhabiting the carbonates (δ13C ~ 0‰) (Chapter 3). 

If residues were to derive primarily from vent organisms, a δ13C near the vent end-member 

would be predicted. A strong correlation between δ13CTOC and δ13Cresidue would be expected if 

inorganic material bound organic material without preference to whether it was derived from 

the vent or the water column. This is the correspondence we observe, but the enrichment of 

13C in the residues relative to TOC suggests a slight preference for the incorporation of vent 

organic material over water-column material, albeit with significant scatter in the data. 

Residue δ15N is strongly anticorrelated with δ13C (Figure 6-5). Such anticorrelations are 

rare, although correlations between δ15N and δ13C have been noted in marine sediments and 

are explained by mixing between end member terrestrial and marine carbon (Peters et al., 

1978). At Lost City mixing is likely to be the explanation for anticorrelation. In the inferred 

marine end-member, with δ13C ~ -20‰, δ15N is near +10‰. This value is very close to the 

marine end-member δ15N observed in the North Pacific (Peters et al., 1978), although it is 

slightly higher than that observed in sediments in the subtropical North Atlantic (~ +6‰, 

(Altabet, 2006)). The other end-member, which has δ15N near +2‰ represents organic 

material from the hydrothermal vent. This is similar to the δ15N value that would be 

expected in an assemblage of organisms that included N2-fixers. Seawater in equilibrium 

with atmospheric N2 has δ15N of approximately +0.7‰, and the fractionation imposed by 

fixation is small, typically less than 2‰ (Altabet, 2006), so that marine diazotrophs typically 

have δ15N values near 0‰.  Nitrogen fixation by autotrophic methanogens in hydrothermal 

settings has been observed in Methanocaldococcus jannaschii at Axial Volcano on the Juan 

de Fuca Ridge (Mehta and Baross, 2006). The methanogens at Lost City are closely related 

to Methanosarcina, which is also an archaeal diazotroph (Raymond et al., 2004) . Isotopic 

evidence suggests that the process of thermophilic nitrogen fixation may be underway at 

Lost City. 
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Figure 6-6: A total ion current chromatogram from GCMS analysis (full scan data) of saturated 
hydrocarbon fraction of the hypropyrolysate of sample 3867-1228. a)full scan chromatogram showing 
the major n-alkanes and methylated alkanes. b) enlarged view of the region between 24.5 and 28 minutes, 
showing methyl-branched alkanes and C16 alkylcyclohexane. Peak marked with * is C17 alkylbenzene.
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 Nitrogen fixation activity would suggest that an adequate supply of fixed nitrogen 

is lacking. Hydrothermal fluids at mid-ocean ridges commonly have low concentrations of 

nitrate, which is consumed as an electron acceptor (Butterfield et al., 2004). At Lost City, 

the highly reducing conditions during serpentinization are likely to reduce any nitrate in the 

fluids. Loss of nitrate can be partially compensated by production of ammonia (Butterfield 

et al., 2004). Abiotic nitrogen fixation in hydrothermal settings can supply ammonia, 

but maximum fluids temperatures at Lost City are around 150 ºC (Kelley et al., 2005; 

Proskurowski et al., 2006), which is too low for abiotic nitrogen fixation to be a significant 

reaction (Brandes et al., 1998). 

6.3.2. Hydropyrolysis

 Hydropyrolysis of two samples revealed that the dominant products were likely 

derived from bacterial and archaeal diether lipids. Figure 6-6 shows the trace of the aliphatic 

fraction of the hydropyrolysate of sample 3867-1228. Straight chain n-alkanes with lengths 

of 14 to 18 carbons were detected, along with numerous methyl-branched compounds. The 

most abundant of the methyl-branched alkanes are 2-methyl and 3-methyl tetradecane. 

These are consistent with the presence of iso- and anteiso- branched C15 moieties in the 

diether compounds, as reported previously (Chapter 5). 

 Five isomers of methylpentadecane are detected, with the methyl branch occurring 

at positions 2 through 7. These occur in near-equal abundance, but methylation at the 2- 

and 3- positions is slightly favored. Similar results are reported in the C17 series, with 

detection of six isomers of methylhexadecane. We note that 7-methyl hexadecane is 

particularly abundant. This is unsurprising, as among previously reported diether structures 

we noted the appearance of an abundant diether with a mass of 640 Da, and a retention time 

suggesting the presence of two 7-methyl heptadecane moieties. The appearance of methyl 

branches positions 4, 5, and 6 in the hydropyrolysates are likely derived from cyclopropyl 

moieties in side chains of non-isoprenoidal diethers. Cyclopropyl unsaturations are 
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commonly detected in bacterial diethers (Pancost et al., 2001) and would be expected to 

produce mid-chain methyl alkanes as pyrolysates. We also detect small amounts of C16 

alkylcyclohexane.  This is also a common moiety in nonisoprenoidal diethers, and is likely 

the desaturated side chain detected in some of the diethers at Lost City. The same suite of 

hydrocarbons was detected in the hydropyrolysate of 3876-1104, with additional detection 

of C12-C14 n-alkanes.

 Small amounts of pristane and larger amounts of phytane are also detected in the 

hydropyrolysate of sample 3867-1228. Pristane is commonly considered a diagenetic 

product of the oxidative degradation of phytol. In this sample both pristine and phytane are 

likely to derive from the phytanyl side chains of archaeal diethers. In the hydropyrolysate of 

3876-1104 (not shown) pristine and phytane were not detected, suggesting that the relative 

input of archaeal biomass was smaller in this sample than in  3867-1228. This interpretation 

is consistent with the δ13C of total organic carbon previously reported. Sample 3867-1228 is 

relatively enriched in 13C (δ13C ~ -7‰ vs. VPDB) reflecting abundant input of 13C-enriched 

archaea, while 3876-1104 is more 13C depleted (δ13C ~ -18‰) suggesting it contains largely 

marine inputs. The lack of phytane implies that the marine input does not contain abundant 

chlorophylls or that the component with δ13C near -20‰ is not associated with debris from 

marine phytoplankton.

 Analysis of hydropyrolysates with MRM experiments shows that they contain 

small amounts of steranes and hopanes. Hopanes are present with carbon numbers from 

C30–C35 (Figure 6-7). The MRM trace also reveals the presence of gammacerane, the 

hydropyrolysis product tetrahymanol, which is presumably derived from ciliates. Hopanes 

with carbon numbers C27 to C29 are lacking, consistent with a thermally immature source. 

Thermal immaturity of hopanes is confirmed by their stereochemistry, which is dominantly 

the biological (but thermally unstable) 17β,21β isomer for all except for C30 hopane. 

Small amounts of 3-methylhopanes (C31-C34) are also present. Although 

functionalized hopanoids were not detected, the presence of 3-methylhopanes is usually 
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taken as a marker for the presence of aerobic Type I methanotrophs (Brocks and Summons, 

2004). This is consistent with results from 16S rDNA studies which show the presence of 

Methylobacter in many of the carbonate chimneys (Brazelton et al., 2006). These organisms 

presumably live in contact with aerobic seawater and consume methane produced by the 

archaea within the carbonates.

6.3.3 Pyrolysis-GC-MS

 Pyrolysis-GC-MS experiments produced a range of mainly aromatic compounds. 

Figure 6-8 shows a typical product profile, consisting mainly of aromatic compounds.   

Most of these compounds are likely to be derived from amino acids (Stankiewicz et al., 

1997). These are summarized in Table 6-2. Toluene may also be derived from thermal 

rearrangement of lipids. Several diketopiperazine compounds are also detected, derived 

from peptide bonds between amino acids. The predominance of peaks potentially derived 

from peptides suggests that the residue material consists largely of protein.

   
6.4 conclusions

 Insoluble residues from Lost City carbonates are partially biological, but largely 

inorganic. The organic residue that remains is a mixture of products from vent biota and 

the water column. Hydropyrolysis confirmed the structures of the alkyl moieties of diether 

lipids, and suggested that aerobic methanotrophy plays a role in carbon cycling at Lost 

City. Pyrolysis-GC-MS suggests that the residues largely consist of protein material, which 

may help explain their high nitrogen content. The ratio of the isotopes of nitrogen in this 

residue strongly suggests that vent biota is supported by nitrogen fixation. In combination, 

we suggest that archaeal methanogens in Lost City vent carbonates are actively fixing 

nitrogen.
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Figure 6-8: Chromatogram of pyrolysate products from in-line-pyrolysis-GC-MS experiment (Sample 
number 3881-1228). Numbers refer to compounds denoted in Table 6-2.

Peak # Compound Precursor(s)
1 pyrrole Proline
2 toluene Phenylalanine
3 methylpyrrole Proline, Hydroxyproline
4 ethylbenzene Phenylalanine
5 styrene Phenylalanine
6 dimethylpyrrole Diketopiperazine
7 benzaldehyde unknown
8 methylphenol Tyrosine
9 ethylcyanobenzene Phenylalanine
10 propylcyanobenzene Phenylalanine
11 indole Tryptophan
12 methylindole Tryptophan
13 diketopiperazine Pro-Ala
14 diketodipyrrole Hydroxyproline
15 diketopiperazine Pro-Pro

Table 6-2: Identities of the peaks in the chromatogram in Figure 6-8, along with their presumed sources.
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Chapter 7
Composition of biomass in hydrothermal Pink Streamer Communities: 

Isotopes and Lipids

absTracT

 Biomass of streamer communities from alkaline hot springs in Yellowstone 

National Park has a wide range of values in its stable isotope ratios of carbon and nitrogen. 

Some biomass is surprisingly enriched in 13C, with δ13Cbiomass as high as -2.4‰. Analysis 

of the total lipid extracts of these streamer communities shows that they are composed of 

archaea and bacteria, a result supported by parallel 16S rRNA surveys being undertaken 

by coworkers. Analysis of intact polar lipid structures shows that the degree of cyclization 

of archaeal lipids is independent of the polar headgroup. It also shows that in hot-spring 

runoffs streams the relative contribution of bacteria to the microbial community increases 

downstream with decreasing temperature and increasing pH. The values of δ13Cbiomass also 

decrease downstream. 

Ether lipids derived from Aquificales are enriched in 13C relative to archaeal ether 

lipids. This result conflicts with reports from other alkaline hotspring environments, and 

suggests that in these environments Aquificales can operate either as heterotrophs or 

autotrophs. 

Microbial biomass with δ13C values near 0‰ appears to be a common feature of 

alkaline hydrothermal systems, a result that should be considered when the 13C content of 

organic carbon is employed as a biosignature. 

7.1 inTroducTion

Bacterial and archaeal thermophiles occupy the deepest roots of the 16S rDNA tree 

of life (Barns et al., 1996; Ciccarelli et al., 2006; Stetter, 1996), and it has been postulated 

the universal common ancestor of life on Earth inhabited a hydrothermal environment 
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(Nisbet and Sleep, 2001). These are among the reasons that thermal ecosystems have 

been intensively investigated as potential analogues for early ecosystems on Earth or for 

microbial processes elsewhere in the solar system (Bock and Goode, 1996). 

Putative fossils of microbes in ancient hydrothermal systems have been reported 

from rocks as old as 3.2 Ga (Duck et al., 2007; Rasmussen, 2000; Zang, 2007). Most 

reports of possible fossilized microbes in Archaean hydrothermal deposits are millimeter-

scale filamentous structures (Duck et al., 2007; Rasmussen, 2000; Reysenbach and Cady, 

2001). These structures preserve morphology, but evidence for their phylogenetic placement 

or metabolic strategies can only be inferred. Indeed the very biogenicity of these fossils 

is subject to challenge (Brasier et al., 2006). Demonstrably biogenic fossils are present 

in Phanerozoic deposits, including the siliceous sinters of the Devonian Rhynie Chert, 

best known for plant fossils but also preserving microbial fossils (Trewin, 1996) and from 

Devonian to Carboniferous sinter deposits in the Drummond Basin of Australia (Walter et 

al., 1996).

Information about microbes in early hydrothermal systems could conceivably be 

understood through examination of recalcitrant biomarker lipids. Lipid biomarkers have 

been detected in siliceous sinter precipitates in modern New Zealand hot springs (Pancost 

et al., 2005), suggesting that such deposits may hold the potential to be preserved over long 

time periods. Examination of lipid structures and their isotopic composition in modern hot 

springs can provide context by which ancient hot springs might be better understood.

Modern systems are not perfect analogues to understanding hydrothermal 

ecosystems on early Earth. The organisms inhabiting modern hydrothermal systems have 

deep phylogenetic roots, but are adapted to modern – not Archaean – environments. Perhaps 

most significantly, organisms such as Aquificales, which are deeply rooted on the 16S 

rDNA tree of life, are obligate aerobes. Prior to 2.2 Ga atmospheric pO2 was likely less than 

10-5 the present atmospheric level (Farquhar et al., 2007; Pavlov and Kasting, 2002) and 

availability of suitable electron acceptors would have been far more restricted than in modern 
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environments. It is also possible that to some degree the bacterial inhabitants of modern 

terrestrial hot springs are supported by carbon or nutrients derived from the surrounding 

ecosystem. For example, in Yellowstone National Park hot springs exist in the presence 

of a rich assembly of flora and fauna, including insects and animals that are capable of 

transporting material between hot springs, and of contributing their own biomass and waste 

to hot spring environments. Evidence supports the notion that thermophilic microbes have 

evolved to benefit from this coexistence. For example the bacterial thermophile lineage 

Thermotogales, which is common in Yellowstone hot springs, is deeply rooted on the tree 

of life (Stetter, 1996), but at least one representative of this genus contains numerous genes 

involved in pathways that can be used to degrade polysaccharides and sugars derived from 

plants (Nelson et al., 1999).  If terrestrial hot springs supported life during the Archaean 

era, the organisms in them and their metabolic strategies must have differed from their 

modern analogues. Utilization of modern terrestrial hot springs as Archaean analogues 

must be undertaken with great care to avoid spurious comparisons. This can be approached 

by a thorough understanding of the chemical, physical, and genetic controls on any signal 

observed in modern environments and inferred to be analogous to ancient ones.

Pink streamer communities are commonly observed in alkaline terrestrial hot springs 

in Yellowstone (Brock, 1978; Reysenbach et al., 1994; Setchell, 1903) and elsewhere 

around the world (Jones et al., 2001; Konhauser et al., 2001). The microbes comprising 

streamer communities are often filamentous, but also include associated non-filamentous 

types. The term ‘streamer’ has been applied to these communities (Walter et al., 1996), and 

we use it here to refer to a flow-oriented accumulation of millimeter to centimeter long 

strands of microbial and other biomass and silica. The term ‘filament’ has sometimes been 

used to refer these accumulations as well as to filamentous cell morphologies, but the term 

‘streamer’ avoids this confusion.  Streamers are rapidly encrusted by silica, a process which 

destroys most morphological taxonomic information (Jones et al., 2001), but suggests a 

mechanism for potentially enhanced preservation of organic material.  Streamer-forming 
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and associated microbes could be entrained in the silica and preserved as the filamentous 

organic fossils. 

 Macroscopic filamentous communities of hyperthermophiles are common in 

the outflow streams of alkaline hot springs in Yellowstone National Park, USA. These 

communities form distinctive morphological streamer forms that attach to rocks or other 

hard surfaces in outflow streams (Figure 7-1). A report of the sequences of 16S rDNA 

recovered from pink streamer communities (PSC) at Octopus Spring indicated that they 

consist mainly of bacteria related to the deeply-branching Aquificales and Thermotogales. 

Archaeal contributions were undetected (Reysenbach et al., 1994). However, subsequent 

studies of the constituents of alkaline hot springs have reported archaea related to 

Thermoproteus, Thermosphaera, and several groups of Desulfurococcales (Meyer-

Dombard et al., 2005). While none of these archaea are filaments - Thermoproteus is a 

rod, Thermosphaera and other Desulfurococcales are coccoid – they are reported to be the 

main archaeal constituents of streamer communities at Bison Pool (Meyer-Dombard et al., 

unpublished). 

Study of the carbon isotopic compositions of pink streamer biomass and lipids 

has suggested that Aquificales at Octopus Spring are heterotrophs consuming formate 

(Jahnke et al., 2001). That report also noted a discrepancy between 13C content measured 

in PSC biomass and the 13C content of Aquificales biomass predicted from in situ lipid 

δ13C. This discrepancy could be accounted for by suggesting the presence of a second, 

undetected component of the pink streamer community, predicted to have δ13C near -5‰. 

One possibility that might account for this ‘missing’ biomass that it is derived from archaea. 

Examination of the 13C content of ether lipids from archaea can test this hypothesis. 

7.2 meThods

7.2.1. Sample collection and preparation

 Streamer biomass was collected in the outflow channels of hot springs in Yellowstone 
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5 cm

Figure 7-1: Pink streamers communities in the runoff stream at Bison Pool, Yellowstone National Park.
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National Park during summer field seasons in 2003-2005. Sample locations included hot 

springs in the Lower Geyser Basin and Sylvan springs area. Streamers were sampled with 

forceps, placed in Whirlpak sample bags, and frozen at -20 ºC within 4 hours of collection. 

Frozen samples were shipped on dry ice to MIT and immediately transferred to a -20 

ºC freezer upon arrival. At one location (informally named ‘Bison Pool’) in the Sentinel 

Meadows area of the Lower Geyser Basin, we temporarily located a web of cotton string in 

the outflow stream, designed to facilitate colonization of streamer communities. Experience 

had suggested that this setup would allow the rapid development of fresh biomass (D. 

Meyer-Dombard, pers. comm.), which might limit contribution of detrital biomass from 

upstream locations. Each mesh apparatus was put in place in July 2005 and collected in 

August 2005 at the three locations shown in Figure 7-2. The pair of apparatus (04A, 04B) 

placed most proximally to the source were bathed in stream water with a temperature near 

78 ºC.  A third apparatus (05) was at approximately 75 ºC. Water temperatures above 74 ºC 

are greater than the highest known temperatures at which photosynthetic growth is known 

to occur in thermophilic environments(Brock, 1978), and these three samples were placed 

with the expectation of the growth of chemosynthetic organisms only. A fourth apparatus 

(06) was placed at 66 ºC, where growth of organisms with photosynthetic pigments could 

be visually observed. Each apparatus is shown in Figure 7-3 after 3 days and 6 weeks of 

growth. Aliquots of the collected biomass were lyophilized and ground to a fine powder 

using a pre-combusted mortar and pestle. Dry biomass was then either combusted for 

elemental analysis and bulk isotope data, or extracted for lipid analysis. The Sulfolobus 

sample was obtained courtesy of Linda Jahnke.

7.2.2. Elemental analysis

 Elemental analysis of dry biomass was undertaken with a Fisons NA 1500 Elemental 

Analyzer coupled with helium dilution to a Finnigan MAT DeltaPlus XP isotope-ratio-

monitoring mass spectrometer. The elemental analyzer was operated with the oxidation 
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furnace at 1030 ºC and the reduction furnace at 650 ºC. Typically between 2 and 5 mg of 

dry, crushed streamer biomass was required to obtain sufficient carbon and nitrogen peak 

areas for analysis. The mass spectrometer was operated with Isodat 2.0 software and its 

precision was periodically monitored with international standards, and found to be better 

than 0.3‰ (1σ). Each sample was measured at least in triplicate to determine δ13C and δ15N, 

along with total organic carbon (TOC) and nitrogen (TON) contents. 

7.2.3. Lipid extraction

 Lipids were extracted with a modified Bligh and Dyer method (Bligh and Dyer, 

1959). Dried crushed biomass (200 to 500 mg) was placed in a solvent-cleaned 50 ml 

Teflon centrifuge tube, along with 19 ml of 10:5:4 methanol:dichloromethane:water. The 

mixture was vigorously shaken for 5 minutes and subsequently sonicated for 30 minutes, 

then centrifuged at 5000 rpm using a Eppendorf 5804 centrifuge. The supernatant was 

decanted into precombusted 60 ml glass vials. A two-phase mixture was obtained by adding 

5 ml of chloroform and 5 ml of water to each vial, and the organic phase was removed with 

a Pasteur pipette and added to a new vial. This extraction procedure was repeated three 

times in total. A modified Bligh and Dyer mixture was used for the third extract, in which 

the water was replaced with 1% trichloroacetic acid in water. The organic phases from the 

three extracts were pooled, and dried under a stream of N2. Elemental sulfur was removed 

from the extracts by passing over a column of activated copper, followed by filtration of the 

extract through a combusted glass Buchner funnel (poresize ~40 μm). Total lipid extracts 

were weighed and yields are reported as μg of lipid per gram of dry biomass extracted.

7.2.4. HPLC-MS

Lipid extracts were analyzed by analytical high-performance liquid chromatography-

mass spectrometry following methods previously established (Sturt et al., 2004). Briefly, 

lipids were separated on a LiChrospher® Diol column (125 mm x 2mm, 5μm) with a linear 
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August, 2005.
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solvent gradient and the HPLC was coupled to a ThermoFinnigan LCQ Deca XP ion-trap 

mass spectrometer. Solvents contained ammonia and formic acid, which form adducts with  

polar lipids to enhance ionization. The mass spectrometer scanned m/z 500 – 2000 and 

performed MSn experiments in a data-dependent acquisition mode where the base peak 

was fragmented up to MS3 in both positive and negative ion modes. The MSn data provided 

information about the masses of the headgroup and core lipid by reference to standards 

previously published (Sturt et al., 2004). 

7.2.5. GC-MS

Aliquots of lipid extracts were analyzed as their trimethylsilyl ethers and esters by 

reacting with N,O-bis(trimethylsilyl)trifluoro-acetamide (BSTFA + 1% TMCS) in pyridine 

at 60°C for thirty minutes. The remainder of the total lipid extract was separated over silica 

gel into five fractions using an elution scheme of solvents of increasing polarity: aliphatic 

hydrocarbons 1⅜ dead column volume (DV) hexane, aromatic hydrocarbons 2 DV 4:1 

hexane:DCM, ketones 2 DV DCM, alcohols 2 DV 4:1 DCM:ethyl acetate, fatty acids and 

diols 2 DV 7:3 DCM:methanol. Individual lipids were identified using a HP 6890 gas 

chromatograph fitted with a PTV injector operated in splitless mode and equipped with 

a Varian CP-Sil-5 (60-m length, 0.32 mm inner diameter, and 0.25-um film thickness) 

fused silica capillary column and coupled to an Agilent 5973 mass-selective detector. 

Lipids were identified by comparisons of mass spectra and retention times with authentic 

standards or samples where these compounds have previously been characterized. Diether 

lipids were identified by comparison to similar authentic standards, and we report their 

mass without attempting to solve their structure. Lipid abundances were quantified relative 

to a coinjected standard.

7.2.6. Ether cleavage

Side chains of ether lipids were cleaved by reaction with 1.0 M boron tribromide 
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(BBr3, Aldrich) in dichloromethane (DCM). Approximately 200 μl BBr3 was added to lipid 

extracts in dry vials under a stream of argon, after which vials were sealed and heated to 

60 ºC for 2 hours. After the reaction was complete, the resulting bromides were reduced 

to hydrocarbons by adding the DCM solution containing bromides to approximately 1 ml 

of Super-Hydride solution (1.0 M lithium triethylborohydride in tetrahydrofuran, Aldrich) 

in dry vials under a stream of argon and reacting at 60 ºC for 2 hours. This procedure was 

tested in parallel on an ether lipid standard to confirm quantitative cleavage of side chains 

to hydrocarbons.

7.2.7. GC-irMS

Stable carbon isotopic compositions of individual lipids were determined using a 

Thermo TraceGC gas chromatograph fitted with a programmable temperature vaporizing 

(PTV) injector and equipped with  a Varian DB-1 (60-m length, 0.32 mm inner diameter, 

and 0.25-um film thickness) fused silica capillary column and coupled to a ThermoFinnigan 

Deltaplus XL isotope ratio  monitoring mass spectrometer via a combustion interface 

operated at 850°C. Column temperatures were programmed from 60°C at a constant 

flow of 2.5 ml/min and a temperature gradient of 10°C per minute to 100°C, followed 

by a temperature gradient of 4°C per minute to 320°C then isothermal for 20 minutes. 

Stable carbon isotope ratios were determined relative to an external CO2 standard that was 

regularly calibrated relative to a reference mixture of n-alkane (Mixture B) provided by 

Arndt Schimmelmann (Indiana University). Reported values for the isotopic compositions 

of lipids were corrected by mass balance for the carbon present in the TMS derivative 

where applicable. 

7.3. resulTs and discussion

7.3.1. Elemental analysis

 Figure 7-4, Table 7-1 shows the distribution of 13C and 15N contents of bulk biomass 
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in chemotrophic streamer communities from a variety of locations in Yellowstone. These 

communities have δ13C values ranging from -24.8‰ to -2.4‰ vs. VPDB and δ 15N ranging 

from -6.0‰ to +14.4‰ vs. air N2. There is no apparent correlation between the values of 

δ13C and δ 15N. 

Figure 7-5 shows δ13C and δ15N plotted vs. temperature and pH at the collection 

locations. There is no clear relationship of δ13C with either temperature or pH, but δ15N 

correlates with pH (R2 = 0.54; Figure 7-5a). We note that the heaviest enrichments (δ13C > 

-15‰ and δ15N > +3‰) all occur at only where conditions are alkaline. 

We sampled biomass from multiple locations in the outflow stream of Bison Pool in 

2004 and 2005. Within this outflow stream both δ13C and δ15N are correlated with distance 

from the spring source, with proximal samples most enriched in 13C and depleted in 15N 

(Figure 7-6).

Previous reports have shown that pink streamer communities at Octopus Spring 

have bulk biomass near -15‰ (Jahnke et al., 2001), and similar 13C contents are reported 

from biomass inhabiting vent communities at Mammoth Hot Springs (Zhang et al., 2004). 

The latter report also indicated that 13C content of biomass decreased with distance from the 

source at Mammoth Hot Springs. The wide range of δ13C values can be partially explained 

by variation in community composition and of metabolic strategies among the community 

members that make up pink streamer samples. Fixation of inorganic carbon via the Calvin-

Benson and acetyl-CoA cycles normally impart a greater discrimination against 13C than 

carbon fixation by the reductive tricarboxylic acid cycle (rTCA) or 3-hydroxypropionate 

cycle (Hayes, 2001).  If the relative abundance of organisms using the Calvin cycle versus 

rTCA increases with distance from the source, that would result in the a decrease in net 

community δ13C. Such a change was suggested to explain the variation in travertine systems 

(Zhang et al., 2004) and may be applicable in alkaline siliceous sytems as well. 

Biomass δ15N is greater than 0‰ and increases with distance from the source at 

Bison Pool. If nitrogen fixation were dominant, then organic δ15N would be expected to be 
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near 0‰. However this is unlikely, since the high temperature microbial communities are 

dominated by Crenarchaea, Aquificales, and Thermodesulfobacteria (Meyer-Dombard et 

al., 2005), none of which are known to be dizaotrophs (Raymond et al., 2004).  The data 

suggest that the biological source of nitrogen is supplied in the form of ammonia. The 

equilibrium between ammonia gas and dissolved ammonium ion associated with a large 

isotopic fractionation (~34‰ at 25 ºC). Evaporative loss of volatile ammonia results in 

increasing δ15N of residual dissolved ammonium.  This effect is predicted to be smaller in 

fluids with a pH below the pK of ammonium (9.24). Figure 7-5a shows the δ15N of biomass 

samples from hot spring outflows in Yellowstone with a wide range of pH. These data are 

consistent with ammonium being an important source of organic nitrogen, and show that 

biomass from lower pH outflow streams generally have lower δ15N values.

7.3.2. Intact Polar Lipid Analysis

7.3.2.1. Archaeal lipids

 We analyzed the intact polar lipid (IPL) composition of streamer communities at 

several locations along the outflow stream at Bison Pool and Ojo Caliente. Intact polar 

lipids are derived from living cells, and analysis of both the polar headgroup and core lipid 

provides more taxonomic information about the source organism than the core lipid alone 

(Sturt et al., 2004). 

 Figure 7-7 shows lipid density maps for lipid extracts from the four colonization sites 

at Bison Pool. In this presentation of LCMS data, time is represented on the horizontal axis 

and molecular ion mass is represented on the vertical axis. This presentation is convenient 

because it allows the simultaneous display of coeluting compounds with different molecular 

masses. Peak areas are represented by the intensity of the spot for each compound. This 

method allows rapid qualitative comparison of the differences between the IPL profiles 

of two or more samples. Figure 7-7 shows only the molecular ion of each compound. 

Also collected, but not shown, are the multidimensional MS-MS spectra, which along with 
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retention time is used to identify the headgroup and core lipid of each compound.

 Figure 7-7 shows the wide range of IPL types present in the streamer community 

at Bison Pool. Polar archaeal tetraethers are dominated by glycosylated forms, including 

monogycosyl, digylcosyl, triglycosyl, and trace tetragylcosyl variants. Lipids that contain 

both phosphatidyl and glycosyl headgroups are also present (Figure 7-8). Within each polar 

group, we detect archaeal tetraethers with 0-4 rings. Tetraethers with more than four rings 

are not detected. Schouten et al. (2007) report that archaea that synthesize GDGTs with more 

than four rings are primarily found within the orders Sulfolobales and Thermoplasmatales, 

which primarily grow at low pH. Therefore it is unsurprising that organisms in alkaline 

thermophilic environments produce GDGTs with up to only four rings (Schouten et al., 

2007).

We calculated degree of cyclization (Uda et al., 2001) for the tetraethers associated 

with each polar headgroup in each sample. These results are reported in Table 7-2. In 

general, differences in degree of cyclization were smaller between polar headgroups than 

between samples. The sample that was collected in situ at higher temperature (YNP 229), 

and those allowed to colonize the string web at the same site (04A, 04B all had degrees 

of cyclization around 1.3 – 1.4 when integrated for all lipid headgroups. This result was 

very consistent among all samples and across all headgroups, with the exception of the 

digylcosylated GDGTs in 04B. Experiments with archaea grown in laboratory cultures 

have suggested that an increasing degree of cyclization in GDGTs accompanies an 

increase in growth temperature (Gliozzi et al., 2002; Uda et al., 2001). Lipids extracted 

from hydrothermal settings have not supported this relationship (Schouten et al., 2007). 

One report has suggested that crenarchaeol abundance is strongly affected by temperature, 

with a maximum at 40 ºC (Zhang et al., 2006), but subsequent investigations dispute this 

(Schouten et al., 2007). We did not detect crenarchaeol in our samples. Figure 7-9 shows 

degree of cyclization of each sample plotted versus the temperature and pH measured at the 

time of collection. These data suggest a decrease in degree of cyclization with increasing 
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Monogylcosyl functionalized lipids with the core lipid masses corresponding to these structures were 
detected in Bison Pool runoff, although the positions of the methyl groups has not been confirmed. 

T pH monoglycosyl digylcosyl (1) digylcosyl (2) trigylcosyl P-monoglycocyl P-diglycosyl Sum
DMD-04A 78.1 7.7 1.46 1.24 1.40 0.91 1.36 1.34 1.32
DMD-04B 78.1 7.7 1.97 1.09 2.31 1.33 1.39 1.19 1.28
DMD-05 74.9 7.8 2.78 1.97 2.64 2.49 - 2.44 2.46
DMD-06 66.1 7.9 2.85 2.25 2.23 2.35 - 2.32 2.45
YNP 229 78.6 7.7 1.54 1.29 1.52 1.04 - - 1.40
YNP 228 67.5 7.9 2.23 - - - - - 2.23
YNP 101 79.0 8.2 1.52 0.94 0.99 0.57 1.24 0.90 1.04
YNP 048 82.6 7.5 1.90 1.20 0.99 0.74 1.21 0.99 1.12

Table 7-2: Degree of cyclization of archaeal GDGTs, overall and categorized by polar headgroup. 
Calculated after the manner of Uda et al., (2001): Degree of cyclization = (%monocyclic + 2 x %bicyclic + 
3 x %tricyclic+ 4 x %tetracyclic)/100. ‘Sum’ is the degree of cyclization of the weighted integration of all 
tetraethers. 
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growth temperature, but the number of data points collected is too few to rigorously support 

this conclusion. 

 Archaeol with monoglycosyl headgroups is detected in samples 04A, 04B, and 

05, and digylcosyl archaeol is detected only in sample 05.  

7.3.2.2. Bacterial lipids

 We detect trace amounts of bacterial tetraether lipids in the biomass collected at the 

highest temperature locations. These are functionalized with monoglycosyl and digylcosyl 

headgroups. Monoglycosyl bacterial GDGTs contained 5 or 6 methyl groups (corresponding 

to GDGTs XII, XIII, and XIV in the nomenclature of Schouten et al., 2007), while diglycosyl 

bacterial GDGTs were detected only with five methyl groups (XIII) (Figure 7-10).

Monoglycosyl diesters are not abundant in the high temperature sites, but are 

detected in the low temperature (photosynthetic) sample, along with digylcosyl diesters.

 Lipids with aminopentanetetrol (APT) headgroups are abundant in all samples, and 

relatively more abundant in samples collected at higher temperature. Diether, diester, and 

mixed ether/ester lipid cores are associated with APT headgroups, and contain acid and 

alcohol moieties of 18 and 20 carbons with up to two unsaturations. APT is associated 

with Thermodesulfobacteria and Aquificales (Sturt et al., 2004), as well as the archaeal 

order Methanomicrobiales (Garcia et al., 2006). Diphosphatidylgylcerol lipids, exclusively 

with three acyl chains are present. Side chains range from C16 to C20 and typically are 

present with two unsaturations among them. The most common diphosphatidylglycerol 

lipids at the higher temperature sites contains three C18 moieties, but the tri-C16 and tri-C20 

are also present. At the photosynthetic site the C16, C18, C18 diphosphatidylglycerol is the 

most abundant variant.

 Phosphatidylethanolamine is most abundant as the 16,16 diacyl variety and is 

most abundant in the photosynthetic samples. Phosphatidylgylcerol displays a similar 

pattern, with greatest relative abundance in the photosynthetic zone. A 16,18 fatty acid 



193

04A 04B 05 06
Archaeal tetraethers

MG-GDGT 5.9 3.2 5.9 1.1
DG-GDGT - 1 10.7 13.3 5.2 0.9
DG-GDGT - 2 6.0 2.6 3.7 0.8
TrG-GDGT 2.9 3.0 1.6 0.1
MG-PO4-GDGT 0.9 0.8 0.0 0.8
DG-PO4-GDGT 24.3 29.7 9.6 0.0
Total archaeal GDGT 50.6 52.7 26.0 3.8

Bacterial tetraethers
MG-nonisoprenoidal GDGT 1.8 0.9 0.0 0.0
DG-nonisoprenoidal GDGT 0.7 0.4 0.0 0.0

Archaeal diethers
MG-archaeol 0.3 0.5 0.0 0.0

Bacterial lipids
MG 2.5 6.4 1.3 0.2
APT 10.9 10.9 16.7 5.5
PE 7.6 5.4 10.1 1.7
PC 6.2 12.3 30.6 0.0
PI 18.8 10.5 10.8 4.1
PG 0.5 0.3 2.2 17.3
SQDG 0.0 0.0 0.0 66.2
Total bacterial lipids* 46.6 45.8 71.7 95.1

Archaea 51.0 53.2 26.0 3.8
Bacteria 49.0 47.1 71.7 95.1

*excluding bacterial tetraethers

Table 7-3: Relative abundance of major polar headgroups in Bison Pool colonization experiment, showing 
increasing bacterial contribution with decreasing temperature (sample 04A,B =highest T; 06 = lowest 
T). Relative abundance is semiquantitative, and is determined by integrated peak area compared to total 
integrated peak area of all identified lipids without correction for response factor.
 
Abbreviations:
MG-GDGT: monogylcosyl glycerol dibiphytanyl glycerol tetraether
DG-GDGT-1: diglycosyl glycerol dibiphytanyl glycerol tetraether (peak 1)
DG-GDGT-2: diglycosyl glycerol dibiphytanyl glycerol tetraether (peak 2)
TrG-GDGT: triglycosyl glycerol dibiphytanyl glycerol tetraether
MG-PO4-GDGT: monogylcosyl phosphatidyl glycerol dibiphytanyl glycerol tetraether
DG-PO4-GDGT: digylcosyl phosphatidyl glycerol dibiphytanyl glycerol tetraether
MG-nonisoprenoidal GDGT: monogylcosyl glycerol nonisoprenoidal dialkyl glycerol tetraether
DG-nonisoprenoidal GDGT: digylcosyl glycerol nonisoprenoidal dialkyl glycerol tetraether
MG-archaeol: monoglycosyl archaeol
MG: monoglycosyl
APT: aminopentanetetrol
PE: phosphatidylethanolamine
PC: phosphatidylcholine
PI: phosphatidylinositol
PG: phosphatidylglycerol
SQDG: sulfoquinovosyldiacylglycerol
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configuration is dominant in that lipid type. Sulfoquinovosyldiacylglycerol (SQDG) lipids 

appear in the photosynthetic sample only, and have saturated side chains with a total of 34 

or 36 carbons.

 Variations in the proportions of headgroups making up the lipid extract are apparent 

in the data presented in Table 7-3. The streamers sampled at the highest temperature (04A, 

and 04B) contain the highest proportion of archaeal tetraethers, the bulk of which are 

functionalized as digylcosyl lipids or digylcosyl-phosphatidyl lipids. In addition, small 

amounts of bacterial tetraethers are present at the highest temperature sites. The headgroups 

phosphatidylcholine, phosphatidylinositol and aminopentanetetrol are most abundant on 

the diacyl and diether bacterial lipids at these sites. In the lower temperature site, which 

appears to contain abundant photosynthetic biomass, the most abundant lipids are SQDG 

lipids. SQDG is a common lipid in photosynthetic organisms, and is localized to thylakoid 

membranes (Ohta et al., 1997). 

 At least two significant unidentified lipid groups appear in the density maps in 

Figure 7-7. The first elutes near 28 minutes in all four samples and is a pseudohomologous 

series with molecular ions of 1262, 1276, 1290, and 1304 Da. In positive ion MS-MS each 

of these loses 269 Da in the first mass transition. This mass loss probably corresponds 

to the mass of the unidentified polar headgroup (Sturt et al., 2004). The second group 

of abundant unidentified lipids elutes between 40 and 45 minutes, but contains only one 

dominant molecular ion with a mass of 1722 Da. Positive ion MS-MS suggests that this 

lipid contains a digylcosyl polar headgroup and a core lipid mass of 1380 Da. 

7.3.3. Ether cleavage products 

 Cleavage and reduction of lipid ether bonds is a useful way to generate GC-amenable 

hydrocarbons that can be easily analyzed mass-spectrometrically and isotopically. 

 Ether cleavage products were generated from several sets of samples, including 

samples collected in situ from Ojo Caliente and grown on the colonization apparatus at 
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Figure 7-11: Hydrocarbons derived from ether cleavage of lipids from Ojo Caliente. Numbers refer to 
chain lengths of n-alkanes. Isoprenoids are i25: C25 regular isoprenoid; C40: biphytane; C40 1R: biphytane 
with one pentacyclic ring; C40 2R: biphytane with two pentacyclic rings. Groups denoted I-IV are methyl-
branched alkanes.
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Bison Pool. The ether cleavage products shown in Figure 7-11 from Ojo Caliente reveal 

that there is limited variation in the year-to-year distribution of ether lipids sampled from 

the same location. The C40 products from GDGTs show similar distributions, although the 

sample collected in 2003 has a slightly higher degree of cyclization than that collected in 

2004, which consistent with the LCMS data. 

 Among the products with carbon chains shorter than C40 we detected straight chain 

hydrocarbons with chain lengths primarily C18 to C20. Ether lipids in Aquificales contain 

alkyl side chains predominantly of these lengths (Jahnke et al., 2001) ; Aquificales are the 

likely source for these lipids. We detected several groups (labeled I-IV, Figure 7-11) of 

methyl branched alkanes, but we are unable to specify their sources other than to identify 

them as bacterial. The Bison Pool samples have a relatively abundant peak monounsaturated 

hydrocarbon eluting immediately after nC25. A C25 regular isoprenoid was detected in each 

sample, and is presumed to be archaeal.

We detected several unexpected products with hydrocarbon chain lengths greater 

than C40. Figure 7-12 shows the portion of the chromatogram of YNP 101 that includes the 
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x20
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Figure 7-12: Magnified view of hydrocarbons eluting after 50 minutes derived from ether cleavage of YNP 
101 lipid extract. Unknown compounds are numbered 1-7.
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Figure 7-13: Mass spectra of compounds in the chromatogram in Figure 12. Strucutures for C40, C40 1R, and 
C40 2R are shown. Unknown structures are labeled 1-7.
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C40 products. The first three peaks in this area of the chromatogram are readily identifiable 

as biphytane and biphytane derivatives with one and two pentacyclic rings (Figure 

7-13). However seven peaks that elute after this, with the spectra shown in Figure 7-13. 

These structures remain unidentified, but they share features with biphytanes.  Unknown 

compounds 1, 5, 6, and 7 are likely acyclic isoprenoids, while unknowns 2, 3, and 4 are 

isoprenoids which almost certainly contain at least one ring, likely a cyclopentane ring. 

Although unknown peak 1 elutes at approximately the time expected for the tricyclic 

isoprenoid derived from crenarchaeol (DeLong et al., 1998; Schouten et al., 1998; Schouten 

et al., 2000), its mass spectrum excludes that structure from consideration. Due to their late 

elution times, each of these compounds probably contains more than 40 carbon atoms. 

Since they are not detected in the total lipid extracts, but released only upon cleavage of 

ether bonds, they could be diether or tetraether compounds, most likely tetraethers due to 

their large size. However the corresponding intact polar lipids have not been detected in 

our LCMS data to date. This may be simply a function of concentration; these compounds 

are far less abundant than the C40 compounds, and their corresponding tetraethers might 

well be below detection limits.  Understanding the physiological function of these lipids 

is problematic. GDGTs are thought to span a lipid membrane, forming a monolayer that 

is of approximately equal dimension to conventional membrane-forming lipid bilayers. 

Additional methylene units would change the thickness of that bilayer. Therefore it seems 

probable that higher homologues of GDGTs are not in the bilayer.  

 Streamers growing in the chemosynthetic zone, as shown by their proliferation on 

the colonization apparatus in Bison Pool yielded similar products to the in situ streamers in 

Ojo Caliente (Figure 7-14). We detected abundant C40 isoprenoids and higher homologues 

in the high-temperature samples. Lower temperature samples were notably different, with 

much lower concentrations of C40 isoprenoids. 
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Figure 7-14: Hydrocarbons derived from ether cleavage of lipids from Bison Pool runoff stream 
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Peak YNP 048 YNP 101 04A 04B 05
C18 -3.5 -2.8 -2.2 -0.4 -6.0
C19 -6.2 -7.6 -8.2 -4.3 -15.1
C20 -2.5 -1.3 -3.7 -0.1 -4.5
Grp I -1 -7.3 -4.5 -11.5 -7.9 -18.6
Grp I -2 -5.3 -2.6 -5.2 -1.2 -14.1
Grp I -3 -4.3 -2.2 -2.3 -0.4 -6.1
Grp I -4 -3.0 -1.4 -3.4
Grp I -5 -2.9 -2.7 -2.0 0.8 -7.4
Grp II -1 -7.3 -7.1 -16.0
Grp II -5 -5.9 -7.1 -10.4 -3.4 -16.6
iC25 -21.6 -21.2 -15.2 -15.1
Grp III -1 -1.3 0.5 -4.2 -1.6 -5.7
Grp III -2 -3.0 -0.3 -8.9 -2.9 -15.5
Grp III -3 -4.0 -0.8 -6.2 -1.5 -29.8
Grp III -5 -3.0 -0.9 -3.9 -0.3 -9.4
IV -3.5 -1.9 -27.7
C24 -34.9 -31.6 -26.4
C25 -31.0 -26.8 -28.4
monounsaturated hydrocarbon -3.3 0.6 -11.4
C26 -35.6 -33.8 -34.0
iC30? -24.9
C27 -33.7 -30.5 -30.9
C28 -35.2 -33.9 -33.3
C29 -36.7 -34.7 -34.9
V -33.9 -33.3 -32.3
C30 -36.9 -36.6 -33.5
C31 -34.5 -33.1 -32.1
VI -33.3 -29.0
biphytane -16.0 -14.9 -12.2 -12.5 -13.8
C40 1R -19.1 -17.3 -12.9 -12.8 -13.2
C40 2R -22.4 -21.5 -15.5 -15.0 -16.7
C40 unknown @ 61 minutes -18.5

Table 7-4: Stable carbon isotope compositions of hydrocarbons derived from ether cleavage reactions from 
Bison Pool and Ojo Caliente. Roman numerals refer to groups of methyl-branched alkanes; within each 
group the carbon number of the alkanes are the same. There are up to 5 isomers within each group (e.g. 
Group I-1 – I-5).
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7.3.4. GC-irms

 We analyzed the compound-specific 13C contents of hydrocarbons derived from ether 

cleavage reactions and the results are reported in Table 7-4. Samples from Ojo Caliente and 

from Bison Pool are consistent in that the same hydrocarbons show similar δ13C values. C18 

to C20 n-alkanes are relatively enriched in 13C with δ13C values between 0‰ and -8‰ in the 

high temperature samples. In sample 05, nC19 is more depleted in 13C with δ13C = -15.1‰.

 Archaeal lipids are more depleted in 13C than n-alkanes. The C25 regular isoprenoid, 

detected in all the ether cleavage fractions has δ13C near -21‰ at Ojo Caliente, and near 

-15‰ in Bison Pool runoff. C40 isoprenoids are more variable in their 13C contents. In all 

samples biphytane is the C40 lipid most enriched in 13C, and 13C content decreases with 

increasing number of rings. This pattern was strongest in the high temperature samples, 

where the difference between biphytane and the C40 2R (the C40 isoprenoid with two rings) 

was greater than 6‰. This pattern is not expected if each of these compounds derives from 

the same source organism. Although the biosynthesis of C40 lipids is not well understood, it is 

thought that a C86 tetraether core is first synthesized as two C43 diethers that are subsequently 

joined (Koga and Morii, 2007). The introduction of rings into large molecules such as this 

is unlikely to be associated with a large isotopic fractionation. In ether-cleavage products 

of a Sulfolobus culture (Figure 7-14, Table 7-5), the δ13C of C40 isoprenoids differed by less 

than 2‰. 

 At Ojo Caliente the groups of unidentified branched alkanes (denoted I-IV in 

Figure 7-11), which derive from an unknown source, had δ13C that were greater than -8‰. 

These values resembled the n-alkanes derived from Aquificales. However, in the Bison 

Pool outflow some of these branched alkanes were much more depleted in 13C, suggesting 

that they might derive from multiple sources. 

As a general pattern, in both the in situ streamer communities at Ojo Caliente and 

in the streamers that colonized the apparatus at Bison Pool, bacterial lipids were enriched 

in 13C relative to archaeal lipids. The Aquificales products at these locations were also 
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50 52 54 56 58 60 62 64

Compound 13C
C40 1R -16.3
C40 2R (1) -13.1
C40 2R (2) -14.0
C40 3R (1) -12.4
C40 3R (2) -14.3
C40 4R -16.3

Table 7-5: Stable carbon isotope compositions of hydrocarbons derived from ether cleavage reactions from 
Sulfolobus culture
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Figure 7-15: Hydrocarbons derived from ether cleavage of lipids from Sulfolobus.

enriched in 13C relative to the Aquificales from Octopus Spring (Jahnke et al., 2001).  

However that study examine ester-linked lipids, while this study examines ether-linked 

lipids. A comprehensive study of both ether- and ester-linked lipids should be undertaken 

for a better understanding of carbon cycling in these environments. Jahnke et al. (2001) 

report that Aquificales at Octopus Spring likely consume formate as their carbon substrate, 

but Aquificales are also capable of autotrophic growth via the reductive tricarboxylic acid 

cycle (rTCA). Such growth normally produces biomass depleted by 4-13‰ relative to 
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CO2(aq) (Hayes, 2001), although Jahnke et al. (2001) observed only a 3‰ between CO2 

and the biomass of Thermocrinus ruber in culture.

The δ13C values of Aquificales at Ojo Caliente and Bison Pool are consistent with the 

fractionation seen in autotrophic growth of Thermocrinus. The discrepancy between these 

results and that from Octopus Spring (Jahnke et al., 2001) suggests that there variability 

in metabolic strategy between similar streamer communities in various hot springs. Future 

studies trageting the full range of lipid products may shed light on this hypothesis.

7.4. conclusions

The presence of isotopic variability between compounds and of organic carbon 

that is highly enriched in 13C is not unprecedented. Values of δorg vary by as much as 

25‰ in alkaline hot springs in New Zealand and contain Aquificales-derived lipids with 

δ13C as high as +3.9‰ (Pancost et al., 2006). Microbial mats in Yellowstone hot springs 

containing Chloroflexus communities have been reported to contain lipids with δ13C as 

high as -8.9‰ (van der Meer et al., 2000). In each case the extraordinary enrichment of 13C 

has been attributed to the pathway of carbon fixation. Chloroflexus operates primarily as an 

autotroph in these environments, fixing carbon by the 3-hydroxypropionate pathway, and 

the Aquificales are likely to be rTCA autotrophs. In deep sea alkaline thermal environments 

at the Lost City hydrothermal field, similar isotopic compositions have been reported in 

the lipids derived from methanogens (Kelley et al., 2005). In that case the 13C enrichment 

has been attributed to carbon-limitation (Chapter 3). In terrestrial environments that are 

in constant contact with atmospheric CO2, limitation of available carbon seems unlikely. 

This suggests that speciation of DIC, controlled by pH and temperature may be crucial. 

As temperatures and pH rise the speciation of DIC is driven away from CO2 and towards 

bicarbonate and carbonate.  At high temperatures and pH the amount of inorganic carbon 

available as CO2 is small. The role of changes in DIC concentration and δ13C due to 

disequilibrium concentrations in vent fluids is not well constrained. Studies in other alkaline 
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thermal environments have suggested that CO2 is oversaturated in high temperature fluids 

and rapidly degasses as waters cool. The magnitude of equilibrium isotope fractionation 

between CO2 and carbonate is inversely correlated with temperature, so degassing as fluids 

cool produces increased enrichments  in 13C of residual DIC. At Mammoth Hot Springs 

degassing produces an enrichment in δDIC of about 5‰ (Fouke et al., 2000). At Bison Pool 

the largest enrichments in δ13C of organic are seen in high temperature samples. This result 

is not likely to be produced by the effects of degassing, and may reflect a combination of 

three processes: speciation of DIC away from CO2, δ
13C of CO2 that is close to that of DIC 

at high temperatures, and the processes by which organisms assimilate carbon.

These results invite the question of how frequently biomass and individual lipids 

with high δ13C values occur in alkaline thermal environments. This is a relevant line of 

inquiry for students of geobiology. In Archaean rocks including hydrothermal deposits,  

organic carbon with δ13C near -25‰ has been proposed to be biological in origin (Duck et 

al., 2007; Rosing, 1999). However, 13C depletion is not sufficient for a claim of biogenicity 

(Brasier et al., 2004) because similar depletions may be produced abiotically (McCollom 

and Seewald, 2006).  It has usually been implicitly assumed that a 13C depletion similar in 

magnitude to that imposed by known carbon assimilation pathways is necessary to infer 

that ancient carbon is biological; carbon lacking this depletion would be interepreted as 

abiotic. In modern hydrothermal systems, unmistakably biological carbon lacking the 13C 

depletion typically imposed by carbon assimilation pathways shows that such assumptions 

are not always valid.
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Appendix 1
‘Reverse methanogenesis’ as a hypothesis for archaeal methanotrophy

a1.1 ‘reverse meThanogenesis’

‘Reverse methanogenesis’ has been the primary hypothesis invoked to explain the 

anaerobic oxidation of methane. This hypothesis suggests that ANME consortia are supported 

by interspecies hydrogen transfer between methanotrophic archaea and sulfate reducing 

bacteria (Valentine and Reeburgh, 2000). In this model, CH4 is oxidized by methanotrophic 

archaea to CO2 and H2. This reaction can proceed only if it is thermodynamically favored. 

Thermodynamic favorability is achieved if H2 is continually removed by a sulfate-reducing 

syntroph. Environmental genomics supports this hypothesis (Hallam et al., 2004), showing 

that ANME-1 archaeal methanotrophs possess nearly the same suite of genes as methanogens 

for encoding enzymes along the pathway between CO2 and CH4 (ANME-1 lack only mer) 

and could, in principle, operate as methanogens in reverse.

If this hypothesis is correct, then the millimolar hydrogen concentrations in Lost 

City vent fluids would be expected to exclude anaerobic methanotrophy. However, several 

reports have suggested that the interspecies hydrogen transfer hypothesis may be incorrect.  

Addition of H2 to AOM enrichments does not significantly increase the sulfate reduction 

rate (Nauhaus et al., 2005). This may be inconsistent with the interspecies hydrogen transfer 

hypothesis, because the sulfate-reducing syntroph would be expected to be a H2 consumer. 

More recently an isotope-tracer experiment showed that addition of H2 to AOM enrichments 

decreases the rate of methane oxidation, but does not halt it (Moran et al., 2007). Because 

high hydrogen levels would be expected to thermodynamically inhibit methanotrophy 

under the ‘reverse methanogenesis’ hypothesis, this was proposed as evidence that the 

intermediate was a substance other than H2. 

Moran et al. (2007) propose methyl sulfide (MeSH) as an alternative intermediate 

metabolite, and showed that addition of methyl sulfides to AOM enrichements results in 
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a decrease in methane oxidation rates (Moran et al., 2007). Methyl-sulfide is an attractive 

option for the intermediate, because it is easily derived from methyl-S-CoM, which would 

be the first product formed from methane by a methanogen operating in reverse (Hallam 

et al., 2004). However, the evidence presented by Moran et al. (2007) is unconvincing for 

several reasons.

First, the magnitude of the decrease in rate of methanotrophy is similar upon 

addition of methyl sulfide as it is with addition of hydrogen. Moran et al. (2007) report that 

addition of hydrogen resulted in a 33% decrease in CH4 oxidation over 60 days, with all 

of the decrease in rate occurring in the first week. When dosed with MeSH, the methane 

oxidation rates are reported to drop 68%. However, it is not clear that this calculation is 

valid. Figure 3 of Moran et al. (2007) indicates that the culture that was dosed with MeSH 

on day 14 of the experiment was already growing more slowly than the control culture, 

even before MeSH addition. The report of a 68% drop in methane oxidation rate in the 

experimental culture compared to the control does not account for the reduced growth rate 

of the experimental culture. If this were taken into account the true reduction in growth rate 

may be closer to 50%. 

This 50% reduction in methane oxidation rate is attributed to the inhibitory effects 

of supplying the enrichment culture with the metabolic intermediate between archaea and 

bacteria. It is subject to question whether a 50% reduction in methane oxidation rate with 

supply of MeSH is sufficient evidence for thermodynamic inhibition by this substrate when 

a 33% reduction with supply of hydrogen has been presented as evidence that hydrogen is 

not the intermediate. Both compounds result in a decrease in methane oxidation rate that is 

of similar magnitude, so it is unclear why the interpretations should differ.

Second, no evidence is presented that the reduction in methane oxidation rate upon 

MeSH addition is due to thermodynamic inhibition. There are a number of ways that MeSH 

might inhibit methane oxidation. MeSH might be toxic to methanogens, or it could act to 

inhibit an enzyme involved in methane oxidation. No evidence has been presented that 
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excludes these possibilities.

Third, if MeSH is the intermediate, its addition should promote a large increase in 

sulfate reduction rates. This could be dectected as an increase in the sulfide concentration, 

but no such data is reported.

Methyl sulfide is an attractive candidate for the metabolic intermediate in AOM 

consortia, but its identification as the intermediate has not been adequately demonstrated. 

Both MeSH and hydrogen addition result in large decreases in methane oxidation rates, 

but questions remain about both. The nature of the metabolic intermediate remains an open 

question.
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Appendix 2
Dissolved Inorganic Carbon at the Lost City Hydrothermal Field

a2.1 inTroducTion

Several questions remain outstanding regarding dissolved inorganic carbon in Lost 

City Vent fluids. The foremost of these is the concentration of DIC. Kelley et al. (2005) 

report that “carbonate alkalinity is less than one-third of seawater values”. We use this and 

other information about vent fluids to evaluate this interpretation, to better understand the 

precipitation of carbonate at Lost City, and to evaluate the potential for carbon-limitation 

of microbial growth.

a2.2 background

 Aliquots of hydrothermal vent fluids were not collected at the Lost City Hydrothermal 

Field with the specific intention to preserve them and analyze their DIC contents (Kelley 

et al., 2005). For this reason, fluid samples collected for sulfur isotope analyses were also 

used for DIC analysis. Initial attempts lead to errors (Kelley et al., 2005), the final result 

is reported only with respect to carbonate alkalinity (“less than one-third of seawater 

values”). 

a2.3 carbonaTe PreciPiTaTion

Carbonate towers precipitate at Lost City because calcium carbonate is oversaturated 

in some mixture of vent fluids and seawater. This precipitation may be biologically mediated 

or influenced. Several lines of evidence suggest that this precipitation occurs when vent 

fluids are mixed with seawater. These include:

A2.3.1 ∆14C of carbonate:

Actively venting structures give modern radiocarbon ages. This indicates that 
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carbonate is directly derived from seawater, and may contain bomb radiocarbon. (Früh-

Green et al., 2003)

A2.3.2 Sr isotopes:

 Active vent structures contain 87Sr/86Sr carbonate = 0.7070 to 0.7075 This can be 

compared to seawater and mantle end-members (seawater = 0.7091, mantle = 0.7025).

The 87Sr/86Sr of carbonate suggests that precipitation of aragonite and brucite is derived 

from mixing of hydrothermal fluids (assumed to equilibrate at mantle 87Sr/86Sr) in an 

approximately 27:73 ratio with seawater. (Fruh-Green et al., 2003)

A2.3.3 δ18O:

 Older vent structures have δ18O values in the range of +1‰ to +3‰ vs. VPDB. 

Fruh-Green et al. (2003) suggest that this is consistent with precipitation from glacial 

waters, but note that other samples are strongly enriched in 18O. The range of δ18O in vents 

is -7‰ to +5‰ (Kelley et al., 2005). If these precipitated in equilibrium with water with 

δ18OH2O = 0‰ vs. VSMOW, it indicates precipitation temperatures of up to 42 ˚C (Zhou 

and Zheng, 2003). However the δ18O values above +2‰ vs. VPDB can not be explained by 

equilibrium precipitation, and must reflect 18O enrichment, presumably due to water-rock 

interaction, and precipitation at ambient temperatures.

  One active structure has δ18O = +2.2‰vs. VPDB (Fruh-Green et al., 2003). 

Assuming that carbonates are precipitating from water with δ18OH2O = +0‰ vs. VSMOW, 

this indicates a precipitation temperature of about 2.7 ˚C, although fluids at this site are 

75 ˚C (Fruh-Green et al., 2003). This seemingly indicates a dominance of seawater over 

vent fluid in the mixture from which carbonate precipitates. Basement fissures have δ18O = 

-14.2‰ to -16.8‰, suggesting precipitation at temperatures of 115 ˚C to 135 ˚C.
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A2.3.4 Ca concentrations

 High T fluids have higher Ca (normalized to zero Mg) than low T fluids

This indicates that carbonate is precipitating (lowering Ca) upon seawater mixing

(Kelley et al., 2001)

A2.3.5 Magnesium

 Active vent structures contain up to 27 wt% magnesium. If vent fluids contain zero 

Mg, then the Mg in carbonate must be derived from seawater, suggesting mixing during 

precipitation. Most extinct vents have equilibrated with seawater and contain < 1 wt% Mg 

(Kelley et al., 2005; Ludwig et al., 2006).

a2.4 fluid chemisTry

A2.4.1 Saturation state

 A summary of bulk fluid chemistry is shown in Table A2-1. At the conditions 

measured for end-member vent fluids, carbonate should be oversaturated in vent fluids. This 

is consistent with the apparent precipitation of high temperature carbonate in fracture fills, 

but does not explain why carbonate towers precipitate only upon mixing with seawater.

 There are two possible explanations for why carbonate precipitation mainly occurs 

only upon mixing with seawater. First, carbonate precipitation can be kinetically inhibited 

in many of the vent fluids. This occurs in surface seawater where calcium carbonate is 

oversaturated, but presumably because of the presence of 53 mM Mg2+, which forms ion-

Vent fluid T 40 ºC - 90 ºC
pH 9 - 11

[CH4] 1 - 2 mM
[H2] 1 - 15 mM

[Ca2+] 10 - 30 mM
[Mg2+] 0

CA < 1/3 seawater
Table A2-1: Bulk properties of Lost City vent fluids
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pairs with CO3
2-, effectively lowering CO3

2- activity and poisoning calcium carbonate 

precipitation. However, Lost City vent fluids contain zero Mg2+. Without the presence of 

the major kinetic inhibitor, kinetic inhibition of carbonate precipitation is unlikely. 

 The second possibility is that one or more parameters have been measured 

incorrectly. The most likely culprit is the DIC concentration, which is not directly reported 

at all. Since carbonate oversaturation increases with temperature, precipitation of calcium 

carbonate at ambient temperatures suggests that seawater must provide a key ingredient 

for carbonate precipitation. This suggests that DIC in fluid waters is actually less than the 

equivalent of one-third of seawater carbonate alkalinity.

 A simple fluid mixing model suggests that if DIC concentrations are low, both 

seawater and vent fluids are undersaturated or near saturated with respect to calcium 

carbonate, but that the mixed fluid is massively oversaturated (Figure A2-1). Addtionally, 

the mixed fluid have lower magnesium ion concentrations than seawater, depressing this 

kinetic barrier to precipitation. This model assumes that total alkalinity, temperature, 

cations (Mg2+, Ca2+) and DIC undergo conservative mixing, and and iteratively calculates 

calculates pH, carbonate speciation, and saturation state for the mixed fluid.
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Figure A2-1: Calcite and aragonite saturation state attained by mixing two end member fluids. Seawater 
end member pH = 8.1, T = 7 ºC, S = 35, total alkalinity (TA) = 2.2 mmol kg-1, carbonate alkalinity (CA) = 
2.125 mmol kg-1, DIC = 2.1 mmol kg-1, [Ca2+] = 10.4 mmol kg-1. Hydrothermal end member pH = 11, T = 
70 ºC, S = 35.5, TA = 183 mmol kg-1, CA = 0.02 mmol kg-1, DIC = 0.01 mmol kg-1, [Ca2+] = 30 mmol kg-1. f 
= fraction hydrothermal fluid in mixture.
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A2.4.2 Controls on δ18Ocarbonate 

 If mixed fluids are precipitating aragonite, we could make the assumption that they 

are in equilibrium with the precipitating carbonate. If that is true, the δ18Ocarbonate should 

reflect the 18O contents of the mixed fluids and the temperature of precipitation, and those 

mixed fluids are a mass balance between the two end members. If we assume a mixture of 

seawater (δ18O = 0‰, 7 ˚C) and vent fluid (δ18O = +2‰, 70 ˚C), the aragonite precipitated 

in equilibrium will fall near the curve denoted in Figure A2-2.

 Most values of δ18Oaragonite fall close to 0‰ vs. VPDB, but a few range as low as 

-7‰ and as high as +13‰ (Kelley et al., 2005). The higher values are interpreted to reflect 

enrichment during fluid/rock interaction, presumably after precipitation. The lower values 

are consistent with precipitation at high temperature.

 However, the assumption of isotope equilibrium during precipitation may not be valid. 

Equilibration of 18O between carbonate and H2O occurs only via hydration or hydroxylation 

of CO2 (Zeebe and Wolf-Gladrow, 2001). In the high temperature, high pH vent fluids, CO2 

is almost non-existent, and even in the mixed fluids its concentration is very low. The time 

required to achieve 18O equilibrium in these fluids is probably on the order of 104 minutes 
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Figure A2-2: δ18O of calcium carbonate precipitated in equilibrium with fluid mixture as a function of f 
(fraction vent fluid). End member compositions as described in main text.
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(Zeebe and Wolf-Gladrow, 2001), while the precipitation rate is likely to be very fast – 

several 10’s of μmol per square meter per hour (Zhong and Mucci, 1993). If precipitation 

is fast enough that equilibrium can not be attained, then the δ18Oaragonite should still reflect a 

pseudo-equilibrium, because hydrothermal fluid δ18Oaragonite should be in equilibrium with 

vent fluid temperatures, and seawater δ18Ocarbonate should be in equilibrium with seawater 

temperatures. The input of hydrothermal carbonate to the precipitated aragonite should 

add an 18O-depleted component to the bulk precipitate. In this case δ18O can be considered 

a mass balance between hydrothermal and seawater carbonate contributions, and not a 

temperature proxy. This could only be avoided if hydrothermal water were heavy with 

regard to δ18O in the correct amount to exactly offset the temperature effect (which seems 

extremely unlikely) or if there is some measure of equilibrium occurring, which is difficult 

at high pH. If δ18Ocarbonate reflects a mass balance of hydrothermal and seawater inputs, then 

in most cases at Lost City it supports an extremely low input of hydrothermal carbonate 

into the carbonate that is precipitated.

 a2.4 reacTion and diffusion

 In high pH environments, the relative abundance of CO2 is very small (Table A2.1). 

For organisms that require CO2 (those that can not utilize bicarbonate), CO2 can be limiting 

under some conditions, even when DIC concentrations are millimolar or more (Riebesell et 

al., 1993; Wolf-Gladrow and Riebesell, 1997). The reason for this is that at pH higher than 

7 only a small percentage of DIC is available as CO2. The remainder is bicarbonate and 

carbonate. As CO2 is depleted at a cell surface, it must be replenished. The resupply of CO2 

comes from two sources: i) diffusion of CO2 towards the cell surface, and ii) conversion of 

bicarbonate to CO2. 

The layer surrounding the cell that has depleted CO2 concentrations is the diffusive 

boundary layer (DBL). The thickness of this layer is determined by the size of the cell; for 

bacteria and archaea it is typically ~1 μm. The rate at which CO2 permeates this layer is 



219

determined by the diffusion coefficient for CO2 (a function of temperature and salinity). 

The conversion of bicarbonate to CO2 is determined by kinetic coefficients. Two 

reactions play a role. The first, the hydration of CO2, is most important at low pH:

CO2 + H2O ↔ H+ + HCO3
- 

The second, the hydroxylation of CO2, is predominant at high pH: 

CO2 + OH- ↔ HCO3
-.

The relative importance of the diffusive supply of CO2 and the reaction supply 

of CO2 is determined by the square root of the ratio of the diffusion coefficient to the 

combined reaction rate (pH-dependent) of the CO2-forming reactions. This ratio has length 

units and is denoted as the reacto-diffusive length scale (ak) (Wolf-Gladrow and Riebesell, 

1997; Zeebe and Wolf-Gladrow, 2001).

The reacto-diffusive length scale can be compared to the size of the DBL. When ak 

is greater than the DBL, diffusion is the most important process. Under these conditions 

CO2 is not formed by reaction at an appreciable rate, and cells can become CO2 limited if 

they fix CO2 at a rate that matches the diffusive supply.

When the reacto-diffusive length scale is less than or equal to the thickness of 

the DBL, conversion of bicarbonate to CO2 can make an appreciable contribution to the 

CO2 supply. Assuming suffient bicarbonate, cells will not become limited under these 

conditions.

Figure A2-3 shows contours of the reacto-diffusive length scale (in μm) for a range 

of temperatures and pH. The length at a temperature of 70 ºC and pH of 11 – typical of 

the Lost City fluids is ~1 μm – similar to the size of microbial cells and to the thickness 

of the DBL. Under these conditions, carbon limitation because of insufficient conversion 

between bicarbonate at CO2 is unlikely. At slightly lower pH and temperature ak is on the 

order of a few 10’s of μm. Under these conditions diffusion-limited carbon limitation might 
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play a role if CO2 is the only carbon source. 

a2.5 conclusions

Our analysis suggests that a number of lines of evidence are consistent with the 

hypothesis that DIC concentrations in Lost City vent fluids may in many cases be smaller 

than have been previously reported. We also suggest that sluggish conversion between 

bicarbonate and CO2 can not be responsible for carbon limitation, and therefore high 

δ13C of organic material. Carbonic anhydrase may allow fixation of bicarbonate directly. 

Although bacarbonate concentrations are also very low in hydrothermal fluids, the rate of 

equilibrium between bicarbonate and carbonate is six to seven orders of magnitude faster 

than the equilibrium between bicarbonate and CO2. Sluggish equilibrium can be ruled out 

as a factor limiting carbon availability to microbes, leaving low concentrations as the most 

likely explanation for carbon limitation.
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Appendix 3

Mass spectra and putative structures of 
nonisoprenoidal diethers

This supplement contains the information used to deduce the structures of 
nonisoprenoidal diethers in Lost City carbonates.

Figure A3-1 shows a generalized structure of a nonisoprenoidal diethers, and 
the major fragment ions derived from it.
The tables give the major ion masses that are helpful in deciphering the 
identity of a nonisoprenoidal diether

Table A3-1 shows the molecular ion (as TMS derivative) for a 
nonisoprenoidal diether of common masses. It is often easier to identify the 
carbon number of the diether by examining the spectrum and finding the M-
104 ion. 

Table A3-2 shows the fragment ions for important fragments. These 
fragments are shown in Figure 1. The fragments described as “sn-2 major 
ion,” sn-2 minor ion” and “sn-1 + OTMS –H” are commonly among the most 
abundant ions of mass >133 in the chromatogram. They are particularly 
useful for identification of the masses of the sn-1 and sn-2 alkyl chains.

The diether spectrum does not generally distinguish the various side chain 
isomers. The spectrum is identical whether side chains are n-alkyl, iso-, 
anteiso, or ω7-Me. These isomers are inferred by the Kovats retention index 
(RI) (Kissin and Feulmer, 1986; Kissin et al., 1986), a practice that has 
previously been demonstrated to be applicable to nonisoprenoidal diethers 
(Pancost et al., 2001). 
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Carbon number M+ M-104
31 556 452
32 570 466
33 584 480
34 598 494
35 612 508
36 626 522
37 640 536
38 654 550
39 668 564
40 682 578

B

M-104
A

sn-2 minor

sn-2 major

sn-1 alkyl

sn-1 + OTMS-H

O

O

O-TMS

R

R

M+

A = sn-1 alkyl +145
B = sn-1 alkyl + 28

Table A3-1

Table A3-2
Carbon number alkyl sn- 1 + OTMS -H sn- 2 major ion sn- 2 minor ion

13 183 271 314 328
14 197 285 328 342
15 211 299 342 356
16 225 313 356 370
17 239 327 370 384
18 253 341 384 398
19 267 355 398 412
20 281 369 412 426
21 295 383 426 440
22 309 397 440 454

Figure A3-1
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structure sn-1*C# sn-1 chainsn-1
structure sn-2*

C# sn-2 chainsn-2

Carbon #M+M+

Kovats RIRI
Pancost IDID #ID

Mass spectrum

* indicates that structures could be interchanged 
between sn-1 and sn-2

Format of the data in Appendix 3
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ID 1
RI 3285
M+ 556 C31
sn-1 15 ai
sn-2 13 ai
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Average of 53.405 to 53.491 min.: H7MA1921.D (-)
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356

109 183 271239211151 395328 452 486 541429
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Abundance

Average of 53.601 to 53.664 min.: H7MA1921.D (-)
57

130

85

103

285

328149 197 225 381177 257 452356 430 471

ID 2
RI 3297
M+ 556 C31
sn-1 14 n
sn-2 14 i



228

50 100 150 200 250 300 350 400 450 500 550
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000
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Abundance

Average of 54.135 to 54.205 min.: H7MA1921.D (-)
57

130

85

285
107 357 396328159 486225197 255 452 555

ID 3
RI 3333
M+ 556 C31
sn-1 14 n
sn-2 14 n
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Average of 54.684 to 54.739 min.: H7MA1921.D (-)
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130

85

285 342
239211155 466183 313 393 555370 429

ID 4 Ia
RI 3370
M+ 570 C32
sn-1 15 ai
sn-2 14 i
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ID 5 Ic
RI 3405
M+ 570 C32
sn-1 14 n
sn-2 15 ai
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ID 6
RI 3431
M+ 570 C32
sn-1 15 n
sn-2 14 n
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Average of 55.924 to 55.995 min.: H7MA1921.D (-)
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85
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356239211155 271 328 480183 569384 429 513

ID 7 Id
RI 3455
M+ 584 C33
sn-1 15 i
sn-2 15 i
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Average of 56.089 to 56.152 min.: H7MA1921.D (-)
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ID 8 Ie
RI 3466
M+ 584 C33
sn-1 15 i*
sn-2 15 ai*
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ID 9 If
RI 3479
M+ 584 C33
sn-1 15 ai
sn-2 15 ai
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Average of 56.372 to 56.427 min.: H7MA1921.D (-)
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ID 10
RI 3486
M+ 582 C33:1
sn-1 16:1 cp
sn-2 14 i
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Average of 56.419 to 56.474 min.: H7MA1917.D (-)
57
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85

313

370253 285111 225149 197 480169 341 429

ID 11
RI 3489
M+ 584 C33
sn-1 16 i*
sn-2 14 n*
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Average of 56.748 to 56.780 min.: H7MA1921.D (-)
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ID 12
RI 3512
M+ 582 C33:1
sn-1 16:1 cp
sn-2 14 ai
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ID 13
RI 3522
M+ 582 C33:1
sn-1 16:1 cp
sn-2 14 n
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ID 14
RI 3525
M+ 584 C33
sn-1 14 n
sn-2 16 n
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ID 15
RI 3527
M+ 582 C33:1
sn-1 16:1 cp
sn-2 14 n
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ID 16 I
RI 3565
M+ 598 C34
sn-1 16 ai
sn-2 15 ai
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ID 17 I
RI 3565
M+ 596 C34:1
sn-1 16:1 ?
sn-2 15 ?
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ID 18 I
RI 3584
M+ 596 C34:1
sn-1 16:1 ?
sn-2 15 ?
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RI 3594
M+ 596 C34:1
sn-1 16:1 cp
sn-2 15 ai
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RI 3565
M+ 598 C34
sn-1 16 i
sn-2 15 i
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ID 21 I
RI 3618
M+ 596 C34:1
sn-1 16:1 cp
sn-2 15 n
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M+ 612 C35
sn-1 17 i
sn-2 15 7-Me
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ID 24
RI 3691
M+ 608 C35:2
sn-1 16:1 ?
sn-2 16:1 ?
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ID 25
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M+ 610 C35:1
sn-1 16:1 cp
sn-2 16 ai
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ID 27
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M+ 610 C35:1
sn-1 16 n
sn-2 16:1 cp
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ID 31
RI 3759
M+ 626 C36
sn-1 17 i*
sn-2 16 ai*
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ID 36
RI 3813
M+ 626 C36
sn-1 17 n
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ID 37
RI 3820
M+ 622 C36:2
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sn-2 17:1 cp

50 100 150 200 250 300 350 400 450 500 550 600
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

m/z-->

Abundance

Average of 60.940 to 61.050 min.: H7MA1921.D (-)
55

83

131

368279 313 622165 253200 518225 339 429401



263

50 100 150 200 250 300 350 400 450 500 550 600
0

2000

4000

6000

8000

10000

12000

14000

m/z-->

Abundance

Average of 60.955 to 61.042 min.: H7MA1934.D (-)
55

83

131

313
368279253171 208 625520342 429

ID 38 IIc
RI 3821
M+ 624 C36:1
sn-1 16 n
sn-2 17:1 cp



264

50 100 150 200 250 300 350 400 450 500 550 600
0

5000

10000

15000

20000

25000

30000

m/z-->

Abundance

Average of 61.937 to 62.015 min.: H7MA1921.D (-)
55

83

131

354265 637293165 200 382 429239 325 532

ID 39
RI 3885
M+ 636 C37:2
sn-1 18:1 ?
sn-2 16:1 ?



265

50 100 150 200 250 300 350 400 450 500 550 600
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

m/z-->

Abundance

Average of 62.148 to 62.203 min.: H7MA1917.D (-)
57

83

117

145
356293200 638327253225173 384 535429

ID 40
RI 3898
M+ 638 C37:1
sn-1 18:1 cp
sn-2 16 ai



266

50 100 150 200 250 300 350 400 450 500 550 600
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

m/z-->

Abundance

Average of 62.321 to 62.454 min.: H7MA1917.D (-)
57

130
85

341
281 398313253 371155 207 536 639181 429 503

ID 41
RI 3911
M+ 640 C37
sn-1 18 n
sn-2 16 n



267

50 100 150 200 250 300 350 400 450 500 550 600
0

1000

2000

3000

4000

5000

6000

7000

8000

m/z-->

Abundance

Average of 62.604 to 62.706 min.: H7MA1934.D (-)
55

83

131

368207 279161 325235
430 532 636

ID 42
RI 3927
M+ 636 C37:2
sn-1 17:1 ch
sn-2 17:1 cp



268

50 100 150 200 250 300 350 400 450 500 550 600 650
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

m/z-->

Abundance

Average of 61.481 to 61.560 min.: H7JA0201.D (-)
57

117

83

356

145
325235

395193 282 652548430 503 620461 593

ID 43
RI 4013
M+ 652 C38:1
sn-1 19:1? cp
sn-2 16? n



269

50 100 150 200 250 300 350 400 450 500 550 600
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

m/z-->

Abundance

Average of 58.608 to 58.742 min.: H7JL3025.D (-)
57

130

85

313

356
253

225155 281 508191 389 597

ID authentic standard
RI 3721
M+ 612 C35
sn-1 16 n
sn-2 16 n


	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures and Tables
	Chapter 1: Introduction
	Chapter 2: Stable carbon isotope fractionation Methanosarcina
	Chapter 3: Lost City carbon-limited ecosystem
	Chapter 4: Sources of Methane at Lost City
	Chapter 5: Structures of diether lipids
	Chapter 6: Analysis of Lost City residues
	Chapter 7: Yellowstone Pink Streamer Communities
	Appendix 1: Reverse methanogenesis
	Appendix 2: DIC at Lost City
	Appendix 3: Mass spectra of nonisoprenoidal diethers

