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Abstract

In this thesis we consider a multi-period truckload pick-up and delivery problem
dealing with real-time requests over a finite time horizon. We introduce the notion of
postponement of requests, whereby the company can postpone some requests to the
next day in order to improve its operational efficiency. The postponed requests must
then be served on the next day. The daily costs of operation include costs associated
with the trucks’ empty travel distances and costs associated with postponement. The
revenues are directly proportional to the length of job requests. We evaluate the
profits of various re-optimization policies with the possibility of postponement. An-
other important notion of trucking operation corresponds to repositioning strategies
which exploit probabilistic knowledge about future demands. A new repositioning
strategy is proposed here to provide better decisions. For both notions, extensive
computational results are provided under a general simulation framework.
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Chapter 1

Introduction

The explosion of information technologies and the importance of the logistics industry

have led researchers to focus on dynamic vehicle routing and scheduling problems.

The advances in telecommunications have enabled companies to use real-time in-

formation to enhance the performance of sophisticated decision tools in the area of

vehicle routing. To achieve competitive advantages, companies must be able to ef-

fectively process real-time information as it arrives. The Dynamic Vehicle Routing

Problem is an important class of the logistics industry where intelligent use of real-

time information can differentiate one company from another by means of superior

service.

In a real-time setting, service requests arise dynamically throughout the course

of the system’s operation. Any assignment decision is made based upon the infor-

mation gathered until that point. In addition, known current information as well as

historical data can be combined to predict partial future demand’s information. Fu-

ture demands, including customer locations and service times, are subject to random

variations over time. With respect to the Dynamic Vehicle Routing Problem, the use

of probabilistic knowledge about future requests could help improve the efficiency of

fleet management.

In addition to exploiting probabilistic knowledge about demand, we consider a

multi-period version of the problem, which, in practice, arises with common service

level agreements. Specifically, some level of service in signed contracts requires the
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assurance of a number of days within which the request has to be met. In this context,

companies have flexibility in serving their customers within the commitment period.

Instead of either fulfilling or rejecting a service request on the day of that request,

service level agreements allow a company to postpone the request and carry it out

within a specified period.

The practical importance of the Dynamic Vehicle Routing Problem is evident in a

variety of its real-world applications, e.g., courier services, repair services, and ambu-

lance dispatching. One case of the Dynamic Vehicle Routing Problem is the Dynamic

Multi-Vehicle Truckload Pick-up and Delivery Problem, where several vehicles must

visit and service a number of customers. The problem includes the consideration of

single load capacity and of time windows within which to start service at customers;

additional restrictions on trucks and services must be accounted for when seeking to

maximize revenues.

1.1 Motivations

Freight transportation constitutes a significant fraction of the economy of most na-

tions. For example, the findings of the U.S. Department of Transportation1 show that,

in 1998, over 15 billion tons of freight valued at over $9 trillion were transported across

the U.S. transportation system. The truck fleet accounted for 80 percent of the total

value of U.S. shipments that year. Today, the truck mode is predicted to have the

fastest growth in terms of the value of shipments over the next two decades. Trucks

are expected to carry over 75 percent more tons in 2020, representing a large share of

total tonnage. The economic importance of the freight transportation is one of our

motivations to use operations research tools in order to improve its efficiency.

Operations research tools for vehicle routing and scheduling problems have long

been developed and successfully implemented in practice. This development has

provided significant improvement. As information technologies have considerably im-

proved, the field of dynamic vehicle routing has emerged and has currently become an

1http://www.ops.fhwa.dot.gov/freight/documents/faf overview.pdf
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important dimension in trucking operations. Even small advancement in the develop-

ment of new operations research tools can potentially contribute to a large reduction

in operational costs. The development and implementation of real-time optimization

models are the focus of our research.

1.2 Literature Survey

Although the vehicle routing problem as well as its real-time version have been widely

studied in the literature, by and large, the only solutions that have been successfully

applied are those of the static vehicle routing problem. In other words, there remains

much needed additional work for the development of real-time practical applications.

Generally, Vehicle Routing Problems (VRPs) involve job scheduling vehicles in an

efficient order such that job requirements are met. Deterministic versions of static

VRPs, have been widely addressed in the literature. Bodin et al. (1983 [9]), and

Fisher (1995 [2]) provide extensive surveys of the VRPs and present solutions to the

problems. Bienstock et al. (1993 [8]) and Bramel et al. (1993 [10], 1997 [11]) provide

probabilistic analyses of various heuristic approaches to solve the deterministic version

of these static VRPs. One can also refer to Ball et al. (1995 [2]) for more surveys

concerning the probabilistic analyses of the VRPs.

The stochastic versions of static VRPs have also been of interest to many re-

searchers. For example, the VRPs with Poisson-distributed loads were examined by

Golden and Stewart (1978 [17]). Jaillet (1985 [20], 1988 [21]) introduces the Proba-

bilistic Traveling Salesman Problem which involves the appearance of jobs that are

described in terms of probability distributions. Bertsimas (1988 [4]), and Bertsimas

and Howell (1993 [3]), further examine theoretical aspects of the problem and present

some heuristic approaches to tackle it. Later, Laporte et al. (1994 [22]) pose the

problem as an integer program and solve it by using a branch-and-cut method.

The dynamic version of the Traveling Salesman Problem (TSP), which involves

the dynamic assignment of resources to tasks, was introduced by Psaraftis (1988 [29]).

Bertsimas and van Ryzin (1991 [7], 1993a [5], 1993b [6]) also examine the dynamic ver-
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sion of Traveling Repairman Problem. They investigate a dynamic routing problem

in the Euclidean plane with random on-site service times. They evaluate the perfor-

mance of various dispatching rules according to the average time spent by customers

in the system, based on queuing-theory calculations. Gendreau et al. (1999 [14]) have

proposed a general heuristic strategy to tackle the dynamic VRP with time windows.

The heuristic for inserting a new arrival of request is presented to improve the quality

of solutions of a tabu search. The denial of jobs, costs of operations, and waiting

time are taken into consideration in their work. Ichoua et al. (2000 [18]) further

considered methods that allow vehicle diversions for dynamic VRPs with time win-

dows. They state that the number of unfulfilled requests can be reduced if diversion

is allowed. Larsen et al. (2002 [23]) consider this problem in the context of partial

dynamic VRPs and examine the effects of the degree of dynamism on the quality of

solution. Regan et al. (1995 [30], 1996a [31], 1998 [32]) evaluate truckload pickup

and delivery problems in a real-time setting when the vehicle diversion is taken into

account. Various local rules for the real-time assignment of vehicles are examined in

their work. Later, Lund et al. (1996 [26]) suggest a sequential scheme such that when

new demand occurs, the dispatcher performs a re-optimization. Consequently, Yang

et al. (1998 [34]) introduce re-optimization real-time policies into truckload pickup

and delivery problems, and these policies are tested under a more general setting.

Prior to a study from Powell et al. (2002 [28]), most of the research in the dynamic

VRPs was considered only in terms of one-day horizon. Powell et al. have conducted

research on truckload transportation with a horizon of several days, servicing a ge-

ographically dispersed region. For more extensive surveys of the dynamic aspect of

the vehicle routing problem, one may refer to Spivey (2004 [33]).

The stochastic version of dynamic VRPs has also attracted increasing attention.

For example, Gendreau et al. (1996 [15]) analyze dynamic VRPs under the influence

of stochastic customer demands. Generally, the stochastic version of the VRPs has

been solved as a stochastic mathematical program by using a tabu-type algorithm.

However, this approach requires large computational time in order to obtain a high-

quality solution; therefore, it is less useful in a real-time environment. A mathematical
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formulation considered in Powell et al. (2000a [16]) provides a formulation of the static

version of the dynamic VRP in this thesis. We explore relevant works and summarize

them in the following three subsections.

1.2.1 Dynamic Multi-Vehicle Truckload Pick-up and

Delivery Problems

Yang, Mahmassani, and Jaillet (1998 [34]) present the dynamic vehicle routing on

a continuous time, continuous space, and infinite horizon approach. Yang et al.

(2004 [35]) introduce near-optimal procedures and evaluate them against various local

rules for the dynamic assignment of vehicles in real-time. They explore optimization-

based approaches for the Multi-vehicle Truckload Routing Problem. These approaches

use a mathematical formulation in order to instantaneously re-optimize the current

solution in the real-time environment of truckload pick-up and delivery problems. At

the arrival of each request, the real-time version of the Truckload Routing Problem

is solved as a static version, using the appropriately corresponding mathematical for-

mulation of the instance of the problem. Thus, we refer to the static version as the

off-line problem. The solution to the off-line problem provides a new routing assign-

ment. The work done by Yang et al. also considers the notion of diversion, which is

discussed in Ichoua et al. (2000 [18]). A truck can be re-assigned to different jobs if

the jobs have not been serviced. The analysis in Yang et al. accounts for the perfor-

mance of local rules and near-optimal approaches under varying input parameters.

The results reveal that a re-optimization policy outperforms the other local rules.

1.2.2 A Priori Dynamic Pick-up and Delivery Problems

Another important issue in the field of dynamic vehicle routing is how to effectively

utilize information about future requests. Powell (1996 [27]) shows that it is advan-

tageous to take into consideration the prediction of future demands. Later, the issue

of repositioning an idle vehicle or an empty-moving vehicle in anticipation of future

requests is examined in Larsen, Madsen, and Solomon (2004 [24]). The problem ad-
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dressed in this work is the Traveling Salesman Problem with time windows. The

distribution region is divided into a number of smaller regions, hereafter called zones.

Each region corresponds to a Poisson process with different arrival rates and has an

idle point for vehicles to reposition at. The objective was to minimize a weighted sum

of total lateness and total travel time for all requests. When a vehicle finished a job,

the best idle location would be derived from an algorithm. The idle location would

then be assigned to the vehicle if there was enough flexibility before the next service

request. Larsen et al. focus on overnight mail service providers in which a fleet of

vehicles visit a site of request in order to either pick up or deliver a package. The

problem is further investigated in Ichoua et al. (2006 [19]) under a similar framework

which related to long-distance express mail services. When the customers called a

central office to pick up their mail, the vehicles were then sent to collect the mail

and bring it back to the central office. Some heuristics that take into account future

customer requests are evaluated in a simulation framework in their work.

1.2.3 Dynamic Multi-Period Pick-up and Delivery Problems

In most dynamic pick-up and delivery problems, a trucking company makes a decision

only about either acceptance or rejection of requests within the horizon of one day.

Some research studies have divided the requests into known requests (off-line requests)

and unknown requests (on-line requests) in the context of one day. Therefore, it

is interesting to look into the multi-period dimension of dynamic problems. The

multi-period dimension in the context of dynamic routing is analyzed by studying

simple algorithms and their competitive ratio in Angelelli et al. (2008 [1]). They

introduce the dynamic multi-period routing problem, capturing the characteristics

of postponement policies. In particular, they consider the following case: there are

customers that require services at the beginning of each period. Some of the customers

allow their service to be postponed to a later day. Thus, in each period there are

immediate customers as well as postponed customers requesting to be served. The

objective is to minimize the total travel distance over the planning horizon of two

consecutive periods. In the present thesis, we address the flexibility of postponement
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by looking into a simple problem and analyze the impacts of postponement under

various situations through a simulation framework.

1.3 Research Objectives

The objective of this thesis is to explore key issues of dynamic vehicle routing problems

for truckload pickup-and-delivery service. We develop dynamic operational policies to

determine how to effectively assign the fleet of trucks to a sequence of jobs in different

zones. Revenue management policies through acceptance/rejection/postponement

decisions under various demand situations are analyzed. The demands are categorized

as postponable and non-postponable requests. Then, we evaluate the performances

of dynamic decision policies to assess their benefits in various situations.

We build on the optimization-based approaches of the Multi-vehicle Truckload

Routing Problem which is discussed in Yang et al.(2004 [35]). Various policies are

investigated through computer simulation to gain insights into the a priori dynamic

problems described in Section 1.2.2 and the dynamic multi-period problems described

in Section 1.2.3.

One distinctive feature in this thesis is the approach that exploits probabilistic

knowledge of future requests. The issue of relocating vehicles in the a priori dynamic

problems is investigated in the context of the dynamic truckload problem. We apply

repositioning strategies, using some probabilistic rules, to the truckload pick-up and

delivery problem. The repositioning strategies are examined under various degrees of

dynamism and various degrees of heterogeneity of pre-defined areas of distribution.

With respect to the previously cited multi-period dynamic problems, we analyze

the problems in a general simulation framework. The requests can be serviced within

two days and are categorized as postponable or non-postponable. If a request is non-

postponable, it has to be either fulfilled on the day of request or rejected. Postponable

requests may be served on the following day if beneficial and feasible; otherwise, they

are either accepted or rejected on the day of request.

With regard to the three kinds of problems introduced above, our contribu-
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tion is the development and evaluation of empirical experimentation on a general

expectation-based heuristic. Moreover, an extensive simulation-based study on multi-

period problems is conducted and simple online policies are proposed. In order to

assess the performance of the proposed policies, we compare them with a full re-

optimization approach that does not involve any sophisticated decisions. The full

re-optimization approach method instantaneously re-optimizes the current solution

as more information arrives.

The study of the “real-time” vehicle routing problem through a computational

analysis is divided into two main domains in this thesis: repositioning decisions and

postponement decisions. The key questions that will be addressed in our research are

the following:

Repositioning Decisions

• Is the knowledge of future demands always useful for the management of a fleet

of vehicles?

• Under what conditions would a repositioning strategy be beneficial?

• Does the degree of heterogeneity of the distribution region impact the results

of repositioning strategies?

Postponement Decisions

• Under what conditions can postponement strategies generate more profits?

Would more requests be captured?

• Does the requests that end up being postponed belong to some class that is

easy to be recognized?

1.4 Outline of the Thesis

This thesis is organized as follows. Chapter 2 offers an overview of the dynamic

routing problems dedicated to truckload pick-up and delivery service problems over
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multiple periods. Chapter 3 discusses the off-line problems in a real-time environ-

ment. Chapter 4 describes proposed policies for repositioning decisions and addresses

the key characteristics of postponement issues. The general framework of simula-

tion used to evaluate the proposed policies is reported in Chapter 5. In Chapter 6,

the empirical results obtained from extensive computational simulation are discussed

and conclusions are summarized. Chapter 7 discusses future directions for relevant

research topics. Appendix A displays the numerical data obtained from the two do-

mains of simulation. Appendix B details how to obtain expected Euclidean distances

between two points in a two-dimensional Euclidean space. Appendix C describes

theoretical methodologies of how probabilistic events are generated.
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Chapter 2

Conceptual Framework

This chapter provides an overview and formal definition of the problems related to

real-time truckload routing problems. In Section 2.1, we first introduce the problems.

Later in section 2.2, we provide the detailed notation necessary for mathematical

formulations.

2.1 Problem Definition

2.1.1 The Real-Time Truckload Routing Problem

We consider a trucking company routing a fleet of trucks, which serve a dynamic series

of customers within several geographical zones. Each job, issued by a customer, is a

request of picking up and delivering a load throughout a distribution region. A truck

can carry only one job at a time and must deliver it to the destination before servicing

another job. All trucks are assumed to move at the same constant speed. The pick-up

location, the delivery location, the earliest pick-up time, and the deadline of the job

are provided by customers when they request their service. A single depot of trucks

is located at the center of the region. All trucks leave the depot in the morning and

have to return to the depot at the end of the day.

The issue of relocating an empty truck in anticipation of future demand through

exploitation of probabilistic knowledge is addressed in this thesis. The requests unfold
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over time in a number of geographical zones, according to a Poisson process with

different arrival rates. Each zone has an idle point at which trucks can be repositioned.

The idle point corresponding to a zone is located at the center of that zone. If the

probability of having at least one request at an idle point is high enough, a truck

that has finished serving its current client will be asked to go to the idle point. To

decrease the inefficiency in repositioning, the truck will be repositioned if its next

already accepted service allows the truck enough time to insert the additional job

with high probability.

Acceptance or rejection of a job is determined within a response time specified by

the customer. The price of each accepted job is proportional to the distance between

the job’s pick-up and delivery locations. The company incurs operating costs subject

to the distance traveled by trucks. The objective of the company is to maximize the

net profit by implementing an efficient strategy for handling this sequence of jobs. The

strategy needs to address decisions related to job acceptance/rejection, postponement,

job-truck assignment, as well as repositioning in a real-time environment.

2.1.2 The Multi-Period Real-time Truckload Routing

Problem

We add here the option of postponement, associated with jobs that can be postponed

to a later day. Under a certain contract, a customer can indeed decide whether the

job can be postponed or not, and how long it can be postponed. In case of the post-

ponement of a job, the company will incur a cost associated with that postponement.

In this thesis, the time frame of the operation is assumed to be three consecutive

days. No job exists at the start of the first day. The company may postpone some

jobs, servicing them on the next day. At the beginning of the second day, some jobs

may have already been postponed from the first day, and there may be more jobs

arriving during that day. On the last day, we assume that no jobs can be postponed.

Finally, we assume that each job can be serviced in a period of one day.
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2.2 Problem Statement for the Multi-Period

Real-time Truckload Routing Problem

2.2.1 Notations

IP The set of idle points, where vehicles can be repositioned

K The set of trucks indexed from 1 to K

τ cls The deadline at the depot (all trucks must be back at the depot by that time)

v The constant speed of trucks, which is the same for all trucks

oi The pick-up location of job i

di The delivery location of job i

τarv
i The arrival time of job i

τavl
i The earliest pick-up time of job i

T pck
i The pick-up time width

τpdn
i The deadline for pick-up of job i

τddn
i The deadline for delivery of job i

T res
i The amount of allowable time it takes to respond to job i

Li The length of job i, i.e., the time needed to go from oi to di

pi A boolean variable indicating if job i is postponable or not

oip The location of idle point ip, where ip ∈ IP

D(p,q) The Euclidean distance between two locations, p and q (see Appendix B)

2.2.2 Dynamic Model Statement

At the beginning of each day (t = 0), all K trucks are idle at the central depot

and they must be back at the depot by the end of that day (t = τ cls). The time

evolution of the system on each day is indexed by a continuous variable t ∈ [0, τ cls].
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Figure 2-1: Time Line of a Job Request

At any given time t ≥ 0, the truck positions, job pick-up and delivery locations are

assumed to be points in a bounded region of the Euclidean plane. During the day,

the dynamics of the system is driven by a sequence of job requests, which are indexed

by i according to the order of job arrival. The information about job i is available at

its arrival time τarv
i , and is characterized by a vector Ji as follows:

Ji = (oi,di, T
res
i , τavl

i , τddn
i , pi). (2.1)

The traveling time between the pick-up location oi and the delivery location di of

job i is denoted by Li. T res
i gives the company the flexibility of whether to take job

i, i.e. the final decision of job i must be done within an amount of T res
i time. τddn

i

denotes the latest delivery time of job i. So, a truck must pick up a job no later than

τpdn
i = τddn

i - Li.

At the instant of job arrival, the new demand information is included into the

system. This information be added to the sequence (Ji, τ
arv
i )i≥1, which completely

describes all requests. The company faces a series of decisions, including job accep-

tance/rejection decisions, postponement decisions, and job-truck assignment decisions

on accepted jobs. Any decision at time t is based on the information up to time t and

some probabilistic knowledge about future demand. Temporary decisions that have

been made related to jobs and assignment are implemented, when appropriate, until
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the arrival of the next job, which will trigger a re-optimization. Conversely, those

decisions may be changed when the next job arrives. Since new information revealed

at a job arrival can impact decisions, we refer to a job arrival epoch as a decision

epoch. For example, a re-optimization1 can be used at a decision epoch. After time

τarv
i + T res

i , the decision about job i must have been finalized and cannot then be

changed. In case of acceptance, the job may be fulfilled on the day of the request or

postponed for the next day.

2.2.3 States

A state Sd(t) at instant t on the dth day is described by the following state vectors:

Sd(t) = {sd(t),Qd(t), ld(t), Ld(t), Pd(t)},

where

sd(t) = (sk
d(t))k∈K ∈ ({−1, 0, +1} ∪ IP)|K| contains the status of each truck,

sk
d(t) =







































0 truck k is idle,

−1 truck k is moving empty toward its next assigned load,

+1 truck k is moving loaded,

ip truck k is moving to the idle point ip (ip ∈ IP).

Qd(t) = (Qk
d(t))k∈K contains the ordered list of non-completed jobs assigned to each truck,

ld(t) = (lkd(t))k∈K contains each truck’s location at time t,

Ld(t) = the set of temporarily rejected jobs,

Pd(t) = the set of jobs being postponed.

1The process of re-optimizing the assignment plan incorporating new demand information. This
process solves the off-line problem and returns a near-optimal solution at each decision epoch.
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2.2.4 Transitions

Sd(t) completely describes the dynamics of the system on the dth day under a given

policy. Given a sequence of requests (Ji, τ
arv
i )i≥1, consider the post state denoted as

Sd(t
+), where t+ = t + δt (δt → 0)

1. If t is a decision epoch, i.e. t = τarv
j for a job j:

The state parameters are then fully updated according to the result from the

policy, discussed in Chapter 4.

2. If t is not a decision epoch:

Let t < τarv
j and job j will be the next job arriving into the system. The state

parameters are updated as follows:

(a) update Ld(t) and Pd(t):

For all i ∈ Ld(t) such that t ≤ t+ = τarv
i +T res

i ≤ τarv
j , Ld(t

+) = Ld(t)\{i};
in addition, if pi is true, Pd(t

+) = Pd(t) ∪ {i}

(b) update on the idle trucks (any k such that sk
d(t) = 0) :

If ip is the best idle point that is a result of the repositioning policy,

discussed in 4, sk
d(t

+) = ip, lkd(t
+) = lkd(t), and Qk

d(t
+) = ∅. If repositioning

is not beneficial, sk
d(t

+) = 0, lkd(t
+) = lkd(t), and Qk

d(t
+) = ∅.

(c) update on the trucks moving empty:

• Truck k is moving toward job i: (any k such that sk
d(t) = −1)

Truck k will arrive at oi at time t′ = t + D(lkd(t), oi)/v. Hence, for

t+ < min{t′, τarv
j }, set sk

d(t
+) = −1, Qk

d(t
+) = Qk

d(t), and lkd(t
+) =

lkd(t) + (oi − lkd(t))(t
+ − t)/(t′ − t).

If t′ ≤ τarv
j , sd(t

′) = +1, lkd(t
′) = oi, and Qk

d(t
′) = Qk

d(t). Otherwise, t′

is the decision epoch.

• Truck k is moving towards idle point ip: (any k such that sk
d(t) = ip)

Truck k will arrive at oip at time t′ = t + D(lkd(t), oip)/v. Hence, for

t+ < min{t′, τarv
j }, set sk

d(t
+) = −1, Qk

d(t
+) = Qk

d(t), and lkd(t
+) =

lkd(t) + (oip − lkd(t))(t
+ − t)/(t′ − t).
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If t′ ≤ τarv
j , sd(t

′) = 0, lkd(t
′) = oip, and Qk

d(t
′) = Qk

d(t). Otherwise, t′

is the decision epoch.

(d) update on the trucks moving loaded: (any k such that sk
d(t) = +1)

Let job i be the first element in Qk
d(t). Truck k will arrive at di at t′ =

t+D(lkd(t), oi)/v. Hence, for t+ ≤ min{t′, τarv
j }, set sk

d(t
+) = +1, Qk

d(t
+) =

Qk
d(t), and lkd(t

+) = lkd(t) + (di − lkd(t))(t
+ − t)/(t′ − t). If t′ ≤ τarv

j , sd(t
′) =

0, lkd(t
′) = di, and Qk

d(t
′) = Qk

d(t)\{i}. Otherwise, t′ is the decision epoch.

2.2.5 Objective

The definition of time-dependent set of variables that keep track of the

dynamics of the system.

A binary variable indicating whether or not truck k is moving empty at time t is

described by

Ek
d (t) =











1 if sk
d(t) = −1 or sk

d(t) = ip,

0 otherwise.

A set of jobs which have been requested by time t is described by

Nd(t) = {i|τarv
i ≤ t}.

A set of jobs which has been permanently accepted by time t is described by

Ad(t) = {i|τarv
i + T res

i ≤ t, i /∈ Ld(τ
arv
i + T res

i )}.
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A set of jobs which has been permanently rejected by time t is described by

Zd(t) = {i|τarv
i + T res

i ≤ t, i ∈ Ld(τ
arv
i + T res

i )}.

A set of jobs which are completely serviced by time t is described by

Yd(t) = {i|τdln
i ≤ t, i ∈ Ad(t)}.

The objective function of the system

In order to assess the performance of the system under a certain policy, we define some

relevant parameters. Let α be the revenue per unit distance of service movement, and

let γ be the postponement penalty (a multiplier of the revenue parameter α). The

number of days is denoted as DAY . The cumulative net revenue up until time t on

dth day, Rd(t), is explained by the following equation.

Rd(t) = α
∑

i∈Ad(t)

vLi − γα
∑

i∈Pd(t)

vLi − v

∫ t

0

Ek
d (τ)dτ (2.2)

Rd(t) expresses the net revenue of fleet’s operation on the dth day. The revenues

are generated by the serviced jobs, and are explained by α
∑

i∈Ad(t)

vLi. The operational

costs includes: the cost associated with postponement, explained by γα
∑

i∈Pd(t)

vLi; and

the cost of empty movement of the trucks, explained by v
∫ t

0
Ek

d (τ)dτ .

The total net revenue of the trucking company operating up to time t on the

DAY th day, TDAY (t), is as follows:

TDAY (t) =

DAY −1
∑

d=1

Rd(τ
cls) + RDAY (t) (2.3)
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Chapter 3

Mathematical Model for the

Off-line Problems

3.1 The Multiple Vehicle Pick-up and Delivery

Problem

3.1.1 Definition of the Re-optimization Problem

The off-line problem considers K trucks as in the Real-Time Truckload Routing Prob-

lem, described in the previous chapter. A near-optimal routing assignment is returned

by the algorithm. Suppose that t is the time when the re-optimization routine is

started. Define τ int
k as the initial available time of truck k and bk as the initial lo-

cation of the truck. Both variables are updated according to the dynamics of the

system, previously discussed in Subsection 2.2.4. If truck k is moving loaded with job

i, bkand τ int
k are di and the finishing time of job i, respectively. If truck k is moving

empty or idle, τ int
k and bk are t and the location of truck k, respectively. The jobs

considered in this off-line problem are those that have been requested so far, but have

not been serviced (picked up). Let N denote the number of such jobs.

At each decision epoch, the N jobs may consist of permanently accepted jobs,

temporarily accepted jobs, and temporarily rejected jobs. The formulation needs to

35



impose constraints to guarantee the service of those permanently accepted jobs. For

the jobs that had previously been temporarily decided upon, their status may be

changed due to any re-optimization. Note that a new job can always be rejected

with the company continuing the previous plan. The off-line problem and the re-

optimization will be used interchangeably hereafter.

3.1.2 Re-optimization Model Statement

Notations

N The set of jobs

N0 The set of jobs and the depot, indexed by 0

A The set of accepted jobs that have not yet been serviced

bk The initial location of truck k ∈ K

oi The pick-up location of job i

di The delivery location of job i

o0 = d0 The location of the depot

τavl
i The earliest pick-up time of job i

T pck
i The pick-up time width

τddn
i The deadline for delivery of job i

Li The length of job i, i.e., the time needed to go from oi to di

Empty-movement Times

Dk
ij The amount of time to travel in the Euclidean plane between di and oj ,

∀k ∈ K, ∀(i, j) ∈ {(i, j)|i 6= j, ∀i, j ∈ N}

Dk
bki The amount of time to travel in the Euclidean plane between location bk

and oi, ∀k ∈ K, ∀i ∈ N0
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Dk
i0 The amount of time to travel in the Euclidean plane between di and

the depot, ∀k ∈ K, ∀i ∈ N

Empty-movement Costs

Ck
ij The costs associated with traveling in the Euclidean plane between di and oj,

∀k ∈ K, ∀(i, j) ∈ {(i, j)|i 6= j, ∀i, j ∈ N}

Ck
bki The costs associated with traveling in the Euclidean plane between bk and oi,

∀k ∈ K, ∀i ∈ N0

Ck
i0 The costs associated with traveling in the Euclidean plane between di and

the depot, ∀k ∈ K, ∀i ∈ N

Decision Variables

xk
ij =











1 if truck k visits job j immediately after job i,

0 otherwise.

∀i, j ∈ N ∩ {i 6= j}, ∀k ∈ K

xk
ii = xk

i =











1 if job i is rejected by truck k,

0 otherwise.

∀i ∈ N , ∀k ∈ K

zi =











1 if job i is rejected,

0 otherwise

∀i ∈ N

xk
bki =



























1 if truck k visits job i

immediately after its initial location bk,

0 otherwise.

∀i ∈ N , ∀k ∈ K
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xk
bk0 =



























1 if truck k visits the depot

immediately after its initial location bk,

0 otherwise.

∀k ∈ K

xk
i0 =



























1 if truck k ends up idle at the depot

immediately after the visit at node i ,

0 otherwise.

∀i ∈ N , ∀k ∈ K

xk
0bk = 1 (for consistency of the problem formulation) ∀k ∈ K

xk
ibk = 0 (for consistency of the problem formulation) ∀i ∈ N , ∀k ∈ K

xk
bkbk = 0 (for consistency of the problem formulation) ∀k ∈ K

tpck
i ∈ ℜ+ denotes the pick-up time of job i ∀i ∈ N

tk0 ∈ ℜ+ denotes the arrival time of truck k at the depot ∀k ∈ K

Objective function of the model

Maximize α
∑

i∈N

Li × (1 − zi) − (
∑

j 6=i∈N

∑

i∈N

Cij

∑

k∈K

xk
ij+

∑

k∈K

∑

j∈N0

Cbkj × xk
bkj +

∑

k∈K

∑

i∈N

Ci0 × xk
i0) (3.1)

The first term in the objective function is the revenue generated by the accepted jobs.

The first term in the parenthesis is the cost associated with the empty movement

between two jobs. The second term in the parenthesis is the empty-movement cost

associated with traveling from the initial location of trucks to the first job. The last

term is the cost of empty movement between the last job to the depot. The objective

is to maximize the profit, which equals to the revenue minus the total costs.
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Constraints of the model

∑

j∈N0∪{bk}

xk
ij = 1, ∀i ∈ N0 ∪ {bk}, ∀k ∈ K (3.2)

∑

i∈N0∪{bk}

xk
ij = 1, ∀j ∈ N0 ∪ {bk}, ∀k ∈ K (3.3)

xk
bk0 ≤ xk

i , ∀i ∈ N , ∀k ∈ K (3.4)
∑

k∈K

xk
i = zi + (|K| − 1), ∀i ∈ N (3.5)

∑

k∈K

(Dk
bki + τ int

k ) · xk
bki ≤ tpck

i , ∀i ∈ N (3.6)

(Dk
bk0 + τ int

k ) · xk
bk0 ≤ tk0, ∀k ∈ K (3.7)

tpck
i ≥ τavl

i , ∀i ∈ N (3.8)

tpck
i ≤ τavl

i + T pck
i , ∀i ∈ N (3.9)

tpck
i + Li + Dk

ij ≤ tpck
j + M · (1 − xk

ij), ∀i, j ∈ N , ∀k ∈ K (3.10)

tpck
i + Li + Dk

i0 ≤ tk0 + M · (1 − xk
i0), ∀i ∈ N , ∀k ∈ K (3.11)

tpck
i + Li ≤ τddn

i , ∀i ∈ N (3.12)

tk0 ≤ τ cls, ∀k ∈ K (3.13)

zi = 0, ∀i ∈ A (3.14)

tk0, t
pck
i ≥ 0, ∀i ∈ N , ∀k ∈ K

zi ∈ {0, 1}, ∀i ∈ N

xk
ij ∈ {0, 1}, ∀i, j ∈ N0 ∪ {bk}, ∀k ∈ K

Constraints 3.2, 3.3, 3.4, and 3.5 represent an assignment problem. Specifically,

constraint 3.4 implies that if truck k goes to the depot directly from its initial location,

no job can be assigned to truck k. Constraint 3.5 ensures that each job can be served

by at most one truck. In other words, there should be at least k − 1 trucks rejecting

a job. Constraint 3.6 enforces that truck k arrives at the pick-up location of job i

after Dk
bki

+ τ int
k if i is the first job serviced by k. Similarly, Constraint 3.7 enforces

that truck k arrives at the depot after Dk
bki

+ τ int
k if it serves no job. Constraints 3.8

39



and 3.9 ensure that any job’s pick-up time is not earlier than its earliest pick-up

time, and it can be picked up no later than after the allowable T pck
i time window.

Constraint 3.10 imposes the arrival at the pick-up location of job j within Li + Dk
ij

on any truck k if job j is to be fulfilled after job i. Similarly, constraint 3.11 enforces

that truck k arrives at the depot at least Li + Dk
i0 if job i is the last job of the day.

Constraint 3.12 confirms that any jobs must be delivered before the deadline if they

are serviced. Constraint 3.13 ensures that truck k must arrive at the depot before it

is closed. For any job i that is in Set A, it is permanently accepted and will never be

rejected; so, zi is set to 0 as expressed in Constraint 3.14.

3.2 The Multiple Vehicle Pick-up and Delivery

Problem with Postponement

The off-line problem in the Multiple Vehicle Pick-up and Delivery Problem with

Postponement is quite similar to the one in Section 3.1. There are additional con-

siderations associated with postponement. First, the off-line problem in the context

of postponement consists of a re-optimization with some additional constraints and

a slightly different objective function. Second, the postponable requests that are re-

jected, as a result of the re-optimization problem, may be postponed and fulfilled the

next day. Therefore, an algorithm for ensuring the feasibility of postponing requests

is needed. Finally, since postponed requests are known before the start of each day,

we perform an “over-night” optimization incorporating all known requests to obtain

an optimal routing solution. The solution of the over-night optimization provides

a basis input for the subsequent re-optimization during the day. In the subsequent

sections, let us divide the off-line problem in three subproblems and treat each of

them in a different section.
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3.2.1 Definition of the Re-optimization Problem

The re-optimization problem in the context of postponement needs to include a guar-

antee of service for the previously postponed requests. Additional constraints ensuring

this commitment must be included in addition to the constraints described in sec-

tion 3.1.2. The flexibility gained by implementing postponement will, however, come

at the expense of a discount associated with that postponement. In mathematical

terms, this will be done by adding another term accounting for the cost of postpone-

ment (a penalty) to the objective function of the re-optimization problem. This term

is shown in equation 3.1. This penalty is seen as a discount on the revenue for each

job’s postponement. In this thesis, we will allocate the revenue generated from a

postponed job on the day that the job is serviced, but we will allocate the cost of

postponement on the arrival day of the job.

3.2.2 Definition of the Feasibility of Postponement Problem

Prior to postponing a job request, it is important to ensure that there exists enough

capacity for the request to be serviced on the next day. When a trucking company

employs a postponement strategy and signs a service agreement contract with many

clients, there may be a lot of jobs being postponed. Such a case will definitely cause

congestion in the system on the following day if the arrival rate of requests is relatively

high. To ensure enough capacity to fulfill a postponed request, a feasibility-check

algorithm is needed. The objective is to find a feasible assignment that will be used

for the next day, taking into account all postponed jobs known up to the time the

algorithm is called. At a decision epoch, the feasibility-check algorithm is called, and

immediately returns its decision about postponement before the re-optimization. The

status of a postponable request will be changed to non-postponable if postponing the

request causes infeasibility on the next day. Such a request will then be re-considered,

whether to be serviced or not, only on the day of its request.
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3.2.3 Definition of the Over-night Optimization Problem

The over-night optimization is simply an optimization algorithm that runs during

the night before the operation of the next day. Its mathematical formulation slightly

differs from the formulation of a re-optimization problem. First, input parameters

of the over-night optimization is different. The initial available time of all trucks

is set to t = 0. Their initial location is the depot. Second, all postponed jobs are

considered as non-postponable jobs. The over-night optimization is assumed to be

“fully optimal” because of unlimited time in seeking an optimal solution. The solution

to the over-night optimization problem provides a starting solution for the subsequent

“re-optimization” during the day.

3.2.4 Re-optimization Model Statement

Additional Notations

On a given day, let

P be the set of postponed jobs from previous day

M be the set of postponable jobs on current day

Objective function of the model

Maximize α
∑

i∈N

vLi × zi − (
∑

j 6=i∈N

∑

i∈N

Cij

∑

k∈K

xk
ij+

∑

k∈K

∑

j∈N0

Cbkj × xk
bkj +

∑

k∈K

∑

i∈N

Ci0 × xk
i0)

− γ
∑

i∈M

vLi × zi (3.15)

Compared to equation 3.1, the last added term is regarded as the cost associated

with a discount on prices for postponable jobs. A postponable job j ∈ M that is

rejected, is then automatically postponed if feasibility permits. For example, if a

solution to the re-optimization problem is to reject job j, the job may be serviced on
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the following day depending on the availability of trucks. In case of postponement,

the client will get a discount price of the service. In our construction of the problem,

this cost of discount incurs on the day of the request, and the generating revenue will

pay out on the next day.

Additional constraints of the model

zi = 0, ∀i ∈ P (3.16)

This constraint is to ensure that the postponed jobs from the previous day will be

fulfilled today.
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Chapter 4

Dynamic Operation Policies

4.1 The Repositioning Decisions

We introduce a policy that allows idle truck to reposition to a more “attractive” area,

where it is highly likely that there will be a new request. We assume that the requests

for pick-up are distributed across the region according to a Poisson distribution with

parameter λp which varies over zones. We assume that delivery locations are uniformly

distributed throughout the region. The trucking company may take advantage of the

repositioning strategy to effectively manage the fleet of trucks.

A predefined region is shown in Figure 4-1. Each zone p has an idle point located at

its center, where a repositioned truck will be waiting. The requests for pick-up in zone

p are generated dynamically according to a Poisson distribution with parameter λp.

The expected number of new customers in the zone, where a truck has repositioned

is equal to △τp ·λp, where △τp is the amount of time between the time that the truck

has arrived in zone p and the time it will have to leave for servicing the next job

previously listed in its queue.

To determine whether to reposition a vehicle toward an idle point or have it remain

at its current location, we have to compare the trade-offs between the two options.

To derive any potential benefits from repositioning to an idle point and ensuring

feasibility, there are three criteria we consider in making a repositioning decision.
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Figure 4-1: Predefined Region

4.1.1 Feasibility Condition for Repositioning

This condition ensures that if a vehicle is repositioned at an idle point, this will

not prevent it to service the next accepted job it may have had in its queue. The

repositioned vehicle must arrive at an idle point no later than the time it has to leave

for servicing the next job within its pick-up deadline. Clearly, there is no benefit

in repositioning a vehicle if no new job is assigned to the vehicle while repositioned.

The trucking company will only incur extra empty-movement cost. The following

conditions substantially reduce the chance of such a situation.

4.1.2 Rate-of-Requests Condition for Repositioning

The probability of receiving at least one new request in zone p during the time interval

△τp must be sufficiently high. For this purpose, a threshold ~ is introduced as a

minimum probability of repositioning. A vehicle will not be repositioned at an idle

point if the corresponding probability is less than the value of the threshold. Formally,

given that the requests arrive according to a Poisson process with intensity λp in zone

p, the probability of receiving m requests during △τp can be expressed as

P{X = m} =
1

m!
(λp △ τp)

me−λp△τp, m = 0, 1, 2, . . . (4.1)

where X is defined as the number of new requests in zone p over △τp.

This means that the probability of receiving at least one request during the time

interval △τp is

P{X ≥ 1} = 1 − e−λp△τp (4.2)
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Hence, the vehicle will not be repositioned and remains idle at its current position if

P{X ≥ 1} < ~. (4.3)

Otherwise, the vehicle may be repositioned at one of those idle points satisfying this

condition.

4.1.3 Flexibility Condition for Repositioning

Once the feasibility condition and the rate-of-requests condition have been satisfied,

the flexibility condition will be investigated. Whether a vehicle is repositioned or not

is also determined by the possibility that the insertion of new job l (if it is served)

would violate the deadline of the queuing job j. Figure 4-2 demonstrates a “good”

repositioning, which new job l can be inserted between job i and job j. However, the

new job, namely l, could violate job j as mentioned earlier. Figure 4-3 illustrates the

situation where a repositioned vehicle may receive a new request that conflicts with

the schedule of the next job, namely j, in the queue. When the vehicle is idle and

is asked to reposition, it will arrive at an idle point at time τp = τ idle
i + Tip. If the

vehicle then accepts the new job l that has the pick-up location in zone p, the total

amount of time to complete this job and arrive at the pick-up location of job j will

be at least Tpl + Ll + Tlj. △w is the amount of waiting time at idle point p prior to

leaving for job l. We can express

△w = τarv
l − τp. (4.4)

E[△w] =
1

λp

(4.5)

As depicted in Figure 4-3, if job l is served and finished after the pick-up deadline

for job i (τddn
i ), the acceptance of job l will inevitably conflict with the accepted

job j. If job j has been permanently accepted, the acceptance of job l would result

in an intractable situation for the fleet management because the repositioned truck

could not service job l and the other trucks might be occupied. Thus, the vehicle
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cannot accept job l even if it would be more profitable to do so. In that case, the

repositioning decision is not successful, leading to the unnecessary cost of empty-

movement. Therefore, to protect against this situation, a “flexibility” parameter is

introduced for each possible idle point considered by the truck. This parameter is

a random variable indicating the amount of the remaining time before the pick-up

deadline of job j (τddn
j ) after the repositioned vehicle had waited, serviced job l, and

arrived at the pick-up location of job j. The flexibility parameter for the idle point p

is given by the following equation:

ǫp = τpdn
j − (τ idle

i + Tip + △w + Tpl + Ll + Tlj) ∀p ∈ IP (4.6)

By construction, this heuristic probably leads to penalizing idle points that are further

away from the vehicle’s current location; conversely, it may favor the nearest idle

point. A vehicle is considered to reposition at idle point p if the value of the flexibility

parameter of idle point p is greater than that of the current location ǫ0: ǫp > ǫ0.

Since these parameters are random variables, we will use their expected value for

comparison. If the expectation of ǫp is greater than zero where ǫp = maxz∈IP{ǫz},
the vehicle will be repositioned at the idle point p, hereafter called “p-repositioning.”

The expectation of all flexibility parameters are then compared. Equation 4.7 shows

the mathematical expression of the expectation of ǫp.

E[ǫp] = τpdn
j − (τ idle

i + Tip +
1

λp

+ E[Tpl] + E[Ll] + E[Tlj ]) ∀p ∈ IP (4.7)

Appendix B details how to compute the expected distances (the last three terms

in equation 4.7) in Euclidean space. The expected Euclidean distance between two

uniformly distributed random points can be presented in a closed-form equation.

Appendix B also includes the discussion of the expected distance from a fixed point

to a random point in a square region. Therefore, the expectations in equation 4.7 can

be computed and yield the value of E[ǫp].
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In conclusion, p-repositioning takes place when p satisfies all three criteria: Fea-

sibility Condition; Rate-of-Requests Condition; and Flexibility Condition. If there

exists more than one candidate of p, the p that has the highest value of E[ǫp] will be

chosen as p-repositioning.

τ idle
i The time that the truck becomes idle at location di

τp The time that the truck arrives at the idle point p

τpck
l The pick-up time of new job l

τpdln
j The deadline of pick-up of job j

△w The amount of time the truck is idle at the idle point p

ǫ The amount of time that exceeds the pick-up deadline of the next
job in queue (flexibility parameter)

Tip The amount of time from di to reposition at the idle point p

Tpl The amount of time from the idle point p to ol

Ll Time length of job l

Tlj The amount of time from dl to oj

Table 4.1: Time Variables in Figure 4-2 and Figure 4-3
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Figure 4-2: Advantageous Situation for Repositioning Policies
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Figure 4-3: Disadvantageous Situation for Repositioning Policies

4.2 The Postponement Decisions

4.2.1 Types of Requests

Two types of requests are considered in this thesis: postponable and non-postponable

requests. Each request is assumed to require a service of length not exceeding a

period of one day. A non-postponable request is defined as a request that cannot

be postponed. On the other hand, a postponable request can be postponed either

due to infeasibility or economic reasons. However, there is a cost associated with

postponement.

4.2.2 Postponement Objective

The company begins with no job on the first day. At the beginning of each following

day, some requests are already known, which are the ones that have been previously

postponed. The requests that arrive during the day are called “on-line requests.”

During the day of operation, the company faces decisions whether or not to fulfill

requests. If a job cannot be served on the day of the request, it may be served the

next day. Hence, postponement may be beneficial because the company may take

advantage of postponing a postponable request in order to accept a non-postponable

request on that day.Given the flexibility of postponement, the company may gain

benefits from postponing some requests to the next day. Some non-postponable re-

quests may not be fulfilled if all trucks are occupied with either non-postponable or
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postponable requests. Consequently, having the flexibility to postpone some requests

can reduce the congestion of fleet operation on the current day. However, the com-

pany contractually incurs a cost of postponement and makes a commitment to serve

the postponed job on the next day; this might in turn lead to present tough deci-

sions on the following day due to this commitment.The objective of re-optimization

in multi-period setting is to maximize revenue, given the length of the information

horizon1. The information horizon includes the remaining part of the current day and

may partially include the information for the next day. Since the optimization time in

real-time settings is generally limited, utilizing excessive information may potentially

result in a poor-quality solution. Conversely, the shorter information horizon may not

allow the company to fully exploit the availability of the vehicles. Thus, the length of

the information horizon plays an important role in effective management of the fleet.

If the information horizon consists of the information on the current day only, we may

end up postponing many postponable requests to the next day. As a consequence,

the postponed requests which are assured to be served on the next day will make it

difficult to deal with possible future requests. On the other hand, if the information

horizon consists of two consecutive days, we may be able to manage the fleet more

effectively on both days depending on the performance of computing machines.

We will be investigating whether a policy that allows postponement is beneficial.

In such a policy, three types of the off-line problem, previously discussed in Section 3.2,

will be faced throughout the operation.

1Information horizon is the horizon which the re-optimization routine considers. It is defined as
an amount of time in our case.
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4.3 Real-time Policies

4.3.1 Single-Period Policies (Repositioning)

A Benchmark Policy

OPT1 serves as a benchmark policy for evaluating the other policies in the con-

text of repositioning. It is a re-optimization policy without any sophisticated

methodology. The basic re-optimization solves an off-line problem at the in-

stance of a job arrival. The information horizon includes the remaining time

of the day. This policy takes into consideration all possible re-allocation of

trucks and all acceptance/rejection decisions. OPT1 optimizes the acceptance

and re-allocation decisions as if no future job would ever be requested.

Advanced Policies

REPO is a re-optimization policy that builds on OPT1 and incorporates the repo-

sitioning decisions, excluding the consideration of the flexibility condition. In

addition, p-repositioning will take place when equation 4.3 is satisfied and p

yields the highest value of equation 4.2. Section 4.1 has described the key char-

acteristics of repositioning strategy. In this way, REPO exploits probabilistic

knowledge of future request arrivals.

FREPO is a re-optimization policy that builds on REPO and incorporates the con-

sideration of the flexibility condition as described in Section 4.1.3.

4.3.2 Multi-Period Policies (Postponement)

A Benchmark Policy

OPT3 serves as a benchmark policy in the context of postponement. It is a re-

optimization policy that uses OPT1 throughout the time horizon of three con-

secutive days. The information horizon does not look ahead into the next day;
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however, the information horizon includes the remaining time of the current

day.

An Advanced Policy

POS is a re-optimization policy that builds on OPT3 and incorporates the post-

ponement decisions. Before the fleet of trucks starts to operate in each day,

the over-night problem has been solved in addition to solving the off-line in-

stances during the day. POS considers the postponement decisions as detailed

in Section 3.2.
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Chapter 5

Simulation Framework

An event-based simulation defined in Larson and Odoni (1981 [25]) is used to evaluate

the proposed policies under various probabilistic settings and varying parameters.

The policies are tested under several scenarios in such a way that computational time

remains manageable.

5.1 Simulation Framework for Repositioning

Policies

Notation Description

α The revenue per unit of service distance

λ0 The intensity of the merged Poisson process throughout the re-
gion

λp The intensity of the Poisson process corresponding to zone p

ρ The ratio of high intensity to low intensity used for varying the
degree of heterogenous of a predefined region

Table 5.1: Notations for the repositioning policies in addition to Table 2.2.1
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5.1.1 Time Horizon

The time horizon is assumed to be over one day, from 8:00AM to 4:00PM, counted

as 480 minutes. The next section describes how job requests are generated over the

time horizon.

5.1.2 Generation of Job Requests

The homogeneous Poisson processes are used to generate new requests in order to

obtain τarv
i . Figure 5-1(a) shows the distribution region, represented by a unit square,

which is partitioned into different zones. As can be seen from the figure, the region

is divided into 4 different zones 1, 2, 3, and 4. Each zone corresponds to a different

intensity rate, i.e., λp for zone p ∈ {1, 2, 3, 4}. The intensity of the merged Poisson

process λ0 of the whole distribution region is
∑4

p=1 λp. Any particular request of

the merged process has probability λp
∑

4

p=1
λp

of originating from zone p. The degree

of concentration of the pick-up locations depends on ρ. On the other hand, the

destination locations of the jobs are independently identically uniformly distributed

throughout in the region. The time window associated with each request is generated

as follows:

• T adv
i ’s are drawn independently from a uniform distribution with the interval

[T adv
min, T adv

max]. So, τavl
i = τarv

i + T adv
i .

• T pck
i ’s are drawn independently from a uniform distribution with the interval

[T pck
min, T pck

max]. So, τpdn
i = τavl

i + T pck
i .

• T res
i ’s are set constant.

To ensure that no request requires a truck to work beyond the closing time of the

depot, such a request will be eliminated and the one generated before will be the last

request of the day.
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Figure 5-1: Figure 5-1(a) shows the region divided into the four zones. The idle point
p is located at the center of zone p. Figure 5-1(b) and Figure 5-1(c) show the region
type 1 and the region type 2, respectively. The letter “H” designates a high-request
zone, while the letter “L” designates a low-request zone.
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5.1.3 Testing Scenarios

The distribution region is a unit square, representing 50×50 km2 area. The fleet size

is set to 15 trucks with all trucks moving at the same constant speed of 40 kms/hour.

The choice of α = 4 implies that the revenue per unit of service distance is four times

higher than the loss revenue per unit of empty distance. Table 5.2 summarizes the

numerical values that are assigned to the fixed parameters.

Parameters K α T pck
min T pck

max T adv
min T adv

max T res τ cls

Value 15 4 10 60 10 90 5 480

Table 5.2: Main parameters used for all scenarios

The expected distance between two random points in a unit square is approxi-

mately 0.5214 (see Appendix B). A good limit for the average rate of traffic intensity

is the inverse of the average distance times the speed, which is equal here to 0.026. In

addition, the expected inter-arrival time for demands in the whole distribution region

is chosen to be 1/(Kλ0). The appropriate value of λ0 is bounded above by 0.026.

There are two types of zone considered in our simulation. Figure 5-1(b) and 5-1(c)

present the two different types of the region. To explore the impact of the degree of

heterogeneity on the repositioning policies, we introduce a “Hi-Lo ratio” ρ, which is

the ratio of the high intensity to the low intensity of Poisson processes. In addition, we

evaluate the repositioning policies by calculating total profits (= operating revenues -

costs of movement) and acceptance rates (= accepted requests / total requests). For

every set of input parameters, and for every policy under investigation, we simulate

40 independent runs. The analysis is drawn from the sample mean of all independent

runs.
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Notation Description

α The revenue per unit of service distance

λ0 The intensity of the merged Poisson process throughout the re-
gion

µ The probability of an arriving request being postponable

γ The discount rate for a unit of distance associated with the
postponement of jobs

Table 5.3: Notations for the postponement policies in addition to Table 2.2.1

5.2 Simulation Framework for Postponement

Policies

5.2.1 Time Horizon

The time horizon is assumed to be over three days. A daily working service is from

8:00AM to 4:00PM, counted as 480 minutes.

5.2.2 Generation of Job Requests

The pick-up and delivery locations of the jobs are independently identically uniformly

distributed. The time window associated with each request is generated the same

as in Section 5.1.2. The uniformly distributed requests are generated dynamically

according to a Poisson distribution with parameter λ0. Any particular request has

the probability µ of being a postponable request.

5.2.3 Testing Scenarios

The computational analysis has been conducted on several scenarios with various

parameters of the requests over the distribution region of 50 × 50 km2. The fleet

size is 15 vehicles, each of which moving at the same constant speed of 40 kms/hr.

The input parameters include γ, µ, and λ0. For every set of input parameters, and

for every policy under investigation, we simulate 40 independent runs. The analysis
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is drawn from the sample mean of all independent runs. In postponement, the 2nd

day represents the expected long-run horizon of a fleet operation. Two aspects of

the results are evaluated: profit and acceptance rate. The profits shown hereafter

are calculated with operating revenues (deducted by the discount) minus costs of

movement. The acceptance rates are the ratio of the sum of postponed and accepted

requests to the sum of total arriving requests and postponed requests on the 2nd day.
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Chapter 6

Computational Results

Each scenario is simulated a total of 40 independent runs. The variation of the results,

shown in Table 6.1 and Table 6.2, suggests that 40 independent runs are sufficient to

differentiate the performance of the repositioning policies. However, it is important

to note that the sample mean of the measures may not be a good approximation to

assess individual policies. In case of postponement, Table 6.3 and Table 6.4 show

that the variation of results is statistically insignificant, by means of the variances,

when there are 40 independent runs. Therefore, the sample mean of all runs is used

as our approximation for the comparison of the policy measures. All computational

experiments have been processed on a 1.7GHz Intel Pentium IV machine with 512MB

of RAM.

The re-optimization calls the CPLEX solver to solve instances of the off-line prob-

lems. To assure timeliness and robustness of the solution, the number of jobs is limited

to 40. Moreover, the re-optimization is allocated a maximum time of 3 minutes for

each optimization.

6.1 Results for Repositioning Policies

To determine the range of interesting values for the parameters, λ0, ρ, and ~, several

preliminary computational tests were performed on samples with the fixed parameters

given in Table 5.2. The value of λ0 was then investigated at 0.025 while varying the
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other two parameters. The value of ρ was chosen from [1,3] and the value of ~ was

investigated over the range [0.8, 1].

Figure 6-1 and Figure 6-2 present the results obtained from both types of region in

terms of profit and acceptance rate. In region type 1, it can be seen from Figure 6-1

that the profits generated from REPO are under 3% less than the profits generated

from OPT1 for all values of ρ. On the other hand, our proposed FREPO gener-

ated more profits than OPT1. These results indicate that REPO does not improve

the profit. In region type 2, none of the strategies improves the chance of profits.

Nonetheless, FREPO performs 1.5% better than REPO in terms of profits.

The performance of FREPO and REPO is further compared. Figure 6-3 and

Figure 6-4 indicate that higher acceptance rates can be gained in both regions by

implementing FREPO and REPO. In particular, REPO can capture more customers

than FREPO in both regions as evidenced by the greater acceptance rates. Inter-

estingly, the percentage differences shown in Figure 6-5 and Figure 6-6 demonstrate

that as the value of ρ increases, the relative acceptances rates of both FREPO and

REPO decreases.

The effect of heterogeneity is present here as we can see from the considerable

decrease of the percentage differences in profits between REPO and OPT1, obtained

from both regions. REPO yields the worst profits among all three strategies in both

regions. Although REPO exploits probabilistic knowledge of future demands, the

empty-movement cost can be significant, leading to highly excessive costs. Since

repositioning must require extra distances, only “good” repositionings could generate

more revenues that profitably cover the extra empty-movement cost. When there are

dispersed concentrations of job requests (as in region type 2), even FREPO cannot

capture the significant empty movement costs. In such dispersed concentrations of

requests, the region must be partitioned in a more efficient pattern so as to reduce

the distances among idle points. As a result of the flexibility condition, FREPO can

successfully eliminate the unnecessary repositionings and generate higher profits than

OPT1. This case only occurrs in the region where demand is centralized in one zone.

Clearly, the acceptance rates of both FREPO and REPO are higher than OPT1 since
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both of them allow much more flexibility in optimizing the selection of the requests

to fulfill.

6.2 Results for Postponement Policies

To determine the interesting values for the parameters, γ, µ, and λ0, several compu-

tational tests were preliminarily performed in the samples with the fixed parameters

given in Table 5.2. The value of λ0 was varied from 0.010 to 0.025, holding the other

two parameters constant at some values. In particular, the value of µ was investigated

over the range [0.0, 1.0] and γ was tested at either 0.0 or 0.1.

As a result of the tests, POS yields statistically greater profits when lambda0 is

at least 0.010. One reason is that postponement leads to excessively penalized costs

(γ = 0.1); when the system is not congested by requests, there can be inessential

postponement and the choice of which jobs are to be postponed is very limited. In

consequence, postponed jobs could reduce the flexibility of job scheduling in low-

demand scenarios because they require trucks to service at a specified period of time.

For instance, when there are fewer jobs to be served, some low-revenue jobs can

be postponed. These jobs could obstruct the possibility of accepting higher-revenue

jobs on the later day. The results show that POS does not produce profits that are

significantly greater than OPT3 does when λ0 < 0.010. As can be seen in Table 6.3,

when λ0 = 0.010 and µ ∈ {0.25, 0.5}, the profits obtained from POS are very close

to the profits obtained from OPT3. In case of λ0 being greater than 0.019 with high

values of µ, there are too many jobs that are postponed from the first day to the second

day. The computational performance was limited in such a case; in addtion, the

acceptance rates are relatively low even when λ0 = 0.019. The result for λ0 > 0.019 is

not simulated. We then investigate various scenarios with λ0 ∈ {0.010, 0.015, 0.019}.
The characteristics of the long-run fleet operation with continuous postponement

decisions can be represented by the results on the 2nd day with enough number of

independent runs. Figure 6-7 displaying the percentage differences in profits between

POS and OPT3 indicates that postponement is on average statistically beneficial
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since all the bars are positive. When µ is at 1.00, more than 2% profit margins

can be derived from postponement decisions even if the discount rate is 10%. This

is attributed to the fact that the flexibility of postponement is fully utilized. Two

different regimes of profits. may be differentiated. There is a significant change in

profits when λ is changed from 0.010 to 0.015. Since there are many more jobs to be

selected for postponing, postponement can significantly improve the chances of profit.

Yet, when profits between λ0 = 0.015 and λ0 = 0.019 are compared, profits are not

considerably increased since the system is already saturated with sufficient requests.

On the other hand, the acceptance rates are substantialy decreased with the in-

crease in λ0. Figure 6-8 shows the negative bars in all cases when λ0 is at least 0.015.

When λ0 is low, acceptance rates are not different because only a few postponements

have occurred. By and large, postponement decisions can greatly exacerbate the

number of accepted jobs in those high-demand scenarios. In conclusion, when the

demand in the distribution region is high enough, the postponement decisions can

help select highly profitable jobs, trading off with rejecting many low-revenue jobs.

We further investigate the role of the heterogeneity in postponable demand. In

our construction, the value of µ signifies the heterogeneity in postponable demand.

The result confirms our intuition that the increase in the degree of the heterogeneity

in postponable demands can improve the chance of profits. As shown in Figure 6-7,

when the value of µ increases, the percentage differences of POS compared to OPT3

is also increased in all values of λ0. Conversely, the acceptance rates also decrease

with the increasing µ. As in Figure 6-8, this behavior becomes significant at higher

λ0. Figure 6-9 and Figure 6-10 reveal that the distribution of percentage differences

are quite deviated; however, the trend of increasing profits with the increase in the

degree of the heterogeneity clearly exists.

Another issue we have raised is that: does the requests that end up being post-

poned belong to some class that is easy to be recognized? In an extreme case, if there

are two jobs (high-revenue job and low-revenue job) to be postponed, would the POS

policy tend to prioritize the high-revenue job or vice versa? The data used to analyze

are collected from information about the jobs that were postponed from the 2nd day to
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the 3rd day. We use boxplots, as shown in Figure 6-11 and Figure 6-12, for describing

the characteristics of postponed jobs and compared them with randomly-generated

jobs. In all cases, we can see that the median of revenues for all policies is very close.

Only those jobs that generate extreme revenues (either very high or very low) may

not be postponed.

6.3 Summary of Findings

6.3.1 Repositioning Decisions

• Is the knowledge of future demands always useful for the management of a fleet

of vehicles?

As evidenced by the failure to increase profits in both regions when implement-

ing REPO, the exploitation about the knowledge of future demands is not al-

ways beneficial if improperly implemented. If the knowledge of future demands

is used in an ineffective management, a trucking company is unlikely to gain

benefits from it. Moreover, since the forecast is never 100% correct, attention

needs to be paid on the implementation of any use of such knowledge. However,

this is not to say that the knowledge of future demands is not informative.

• Under what conditions would a repositioning strategy be beneficial?

One important condition we have shown is that when the distribution region

is heterogenous in demands, implementing FREPO is beneficial in a demand-

centralized region.

• Does the degree of heterogeneity of the distribution region impact the results

of repositioning strategies?

Besides using an effective algorithm to reposition vehicles, the distribution re-

gion must be partitioned in a proper pattern to reduce the distances among

idle points. This has been shown through the failure of FREPO to improve the

expected profits in region type 2.
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6.3.2 Postponement Decisions

• Under what conditions can postponement strategies generate more profits?

Would more requests be captured?

The use of postponing requests has sufficiently been proven in our simulation

to be a good alternative for fleet management. POS yields a significant increase

in profits; however, it may be not beneficial when the arrival rate of requests is

too low. The derived profits obtained from POS is increased with the increase

in the heterogeneity of postponable demands. The flexibility of choosing what

jobs to be postponed is even greater if all requests are postponable. The re-

sult has revealed that approximately 6% profit margin can be gained in case of

λ0 = 0.019. An increase in profits can be obtained with increasing number of

postponable requests even though the company offers its customer a 10% dis-

count. However, the company is making higher profits at the expense of lower

acceptance rates, which decrease with the increasing number of postponable

requests.

• Does the requests that end up being postponed belong to some class that is

easy to be recognized?

None of the requests will be given a priority of postponement. Jobs will be

treated equally when they are considered for postponement. Note that only

those jobs with extreme revenues on either side are less likely to be postponed.
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Table 6.1: Repositioning: Statistics for the percentage differences in profits compared
to OPT1 (N = 40)

ρ Statistics Region Type 1 Region Type 2

% REPO % FREPO % REPO % FREPO

1.00 mean -1.02% 0.15% -1.02% 0.15%

s.d.
√

N
0.77% 0.81% 0.77% 0.81%

2.00 mean -2.11% 0.51% -3.40% -1.52%

s.d.
√

N
0.50% 0.55% 0.58% 0.41%

3.00 mean -2.61% 0.23% -3.19% -1.57%

s.d.
√

N
0.51% 0.60% 0.77% 0.57%

Table 6.2: Repositioning: Statistics for the percentage differences in profits compared
to OPT1 (N = 40)

ρ Statistics Region Type 1 Region Type 2

% REPO % FREPO % REPO % FREPO

1.00 mean 2.68% 1.87% 2.68% 1.87%

s.d.
√

N
1.06% 1.08% 1.06% 1.08%

2.00 mean 1.70% 1.59% 1.16% 0.13%

s.d.
√

N
0.53% 0.60% 0.45% 0.37%

3.00 mean 1.70% 1.12% 1.09% 0.45%

s.d.
√

N
0.49% 0.49% 0.66% 0.41%

Table 6.3: Postponement: Statistics for the percentage differences in profits (N = 40)

µ Statistics λ0 = 0.010 λ0 = 0.015 λ0 = 0.019

γ = 0.0 γ = 0.1 γ = 0.0 γ = 0.1 γ = 0.0 γ = 0.1

0.25 mean 0.30% 0.55% 1.34% 1.78% 1.42% 1.17%

s.d.
√

N
0.18% 0.28% 0.40% 0.40% 0.60% 0.63%

0.5 mean 0.97% 0.90% 2.10% 2.24% 2.26% 2.60%

s.d.
√

N
0.34% 0.39% 0.53% 0.58% 0.49% 0.53%

0.75 mean 1.61% 1.34% 4.34% 3.77% 4.16% 3.95%

s.d.
√

N
0.47% 0.38% 0.96% 0.80% 0.83% 0.83%

1 mean 2.16% 1.89% 5.45% 4.85% 6.15% 4.65%

s.d.
√

N
0.53% 0.49% 0.88% 0.77% 1.15% 1.05%
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Table 6.4: Postponement: Statistics for the percentage differences in acceptance rates
(N = 40)

µ Statistics λ0 = 0.010 λ0 = 0.015 λ0 = 0.019

γ = 0.0 γ = 0.1 γ = 0.0 γ = 0.1 γ = 0.0 γ = 0.1

0.25 mean -0.04% 0.07% -0.15% -0.04% -1.95% -2.17%

s.d.
√

N
0.04% 0.24% 0.40% 0.40% 0.39% 0.47%

0.5 mean 0.05% 0.18% -0.71% -0.51% -3.33% -2.94%

s.d.
√

N
0.24% 0.35% 0.46% 0.43% 0.45% 0.51%

0.75 mean -0.13% -0.22% -1.14% -1.14% -5.35% -4.49%

s.d.
√

N
0.31% 0.28% 0.57% 0.53% 0.74% 0.71%

1 mean 0.27% 0.54% -0.69% -1.26% -6.33% -6.15%

s.d.
√

N
0.21% 0.33% 0.47% 0.42% 1.00% 0.85%
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Figure 6-1: The percentage differences of profits between FREPO/REPO and OPT1
performing in region type 1
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Figure 6-2: The percentage differences of profits between FREPO/REPO and OPT1
performing in region type 2
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Figure 6-3: The acceptance rates at λ0 = 0.025 in region type 1
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Figure 6-4: The acceptance rates at λ0 = 0.025 in region type 2
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Figure 6-5: The percentage differences of acceptance rates compared to OPT1 at
λ0 = 0.025 in region type 1
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Figure 6-6: The percentage differences of acceptance rates compared to OPT1 at
λ0 = 0.025 in region type 2
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Figure 6-7: The percentage differences of profits between POS and OPT3
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Figure 6-8: The percentage differences of acceptance rates between POS and OPT3
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Figure 6-9: The boxplot of the percentage differences of profits between POS and
OPT3 at λ0 = 0.015
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Figure 6-10: The boxplot of the percentage differences of profits between POS and
OPT3 at λ0 = 0.019
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when λ0 = 0.019

76



Chapter 7

Conclusions

7.1 Summary

In this thesis, we have studied the dynamic vehicle routing problems and developed a

real-time solution method to maximize the profits. A new strategy that takes advan-

tage of probabilistic knowledge about future demands to efficiently manage the fleet

of trucks is proposed. Several issues related to this strategy were addressed and exam-

ined. The results show that the proposed approach provides improvements over the

original algorithm in some “critical” situations involving a particular type of hetero-

geneity of the region with a sufficient arrival rate of request. In particular, when there

exists heterogeneity in demands over the distribution region, the proposed strategy is

more profitable in a demand-centralized region. Furthermore, the proposed strategy

maintains better relationship with the customers as evidenced by the higher accep-

tance rates. Nonetheless, we have raised a concern over the repositioning strategy

when a distribution region has idle points that are not properly arranged throughout

the region. That is, the patterns of partitioning the region should also be taken into

consideration before any repositioning strategy is implemented.

Another notion of the dynamic vehicle routing problems we have introduced is

postponement. A new policy that allows trucking companies to postpone their re-

quests to the following day is proposed. This policy improves the chances of profits

for the company even with a discount of 10% in order to incentivize customers for
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postponement. This improvement has shown to be more substantial with increasing

postponable demands. In addition, there is no priority given to any request when con-

sidered for the postponement. When deciding whether to implement a postponement

policy, the company need to address the compensation of customers who are willing

to postpone their requests. In our case, the discount of 10% is given to those who are

willing to postpone; however, the company is trading the profits with the acceptance

rates. The relationship with customers could be worse off. Thus, the selection of

long-established customers to avoid their rejection should be of great interest to the

company.

7.2 Future Work

With respect to future development of repositioning strategies, it should be of interest

to develop heuristics that reduce unnecessary repositioning movement in order to

effectively exploit the knowledge of future demands. Moreover, different patterns of

partitioning the distribution regions are necessary in order to adequately define the

importance of repositioning strategies.

More sophisticated scenarios can be extended to analyze the impacts of discounts

on postponement. The ratio of postponable requests to non-postponable requests may

also be a variable to investigate further, so as to understand how many customers

and what kind of customers a company should contract out for postponement if all

customers cannot be postponed. It is also important that an algorithm that efficiently

tackle large size problems be developed in order to extensively analyze the case with

higher arrival rate of requests.
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Appendix A

Tables of Numerical Data

Table A.1: Repositioning: Profits of Region Type 1

Index ρ = 1 ρ = 2 ρ = 3

OPT REPO FREPO % (REPO) % (FREPO) OPT REPO FREPO % (REPO) % (FREPO) OPT REPO FREPO % (REPO) % (FREPO)

1 157.63 156.19 159.46 -0.92% 1.16% 167.70 164.18 168.20 -2.10% 0.30% 129.60 127.70 133.71 -1.47% 3.17%

2 151.99 159.44 158.27 4.90% 4.13% 143.01 147.00 143.43 2.79% 0.29% 153.31 160.17 158.37 4.48% 3.30%

3 145.95 141.90 140.99 -2.77% -3.40% 147.66 142.83 154.67 -3.27% 4.75% 156.69 145.80 149.37 -6.95% -4.67%

4 161.30 154.92 160.97 -3.96% -0.21% 157.90 152.92 155.54 -3.16% -1.50% 145.24 143.20 145.07 -1.40% -0.12%

5 140.63 138.44 138.52 -1.55% -1.50% 159.10 163.49 162.87 2.76% 2.37% 137.10 137.32 143.05 0.16% 4.35%

6 149.73 143.94 146.04 -3.87% -2.47% 152.40 138.05 146.79 -9.42% -3.68% 137.71 133.88 140.13 -2.78% 1.76%

7 158.24 159.53 163.33 0.81% 3.21% 164.14 160.09 161.79 -2.47% -1.43% 138.32 130.84 137.32 -5.41% -0.73%

8 163.78 157.64 165.56 -3.75% 1.09% 142.91 138.59 145.72 -3.03% 1.97% 141.21 144.89 145.87 2.60% 3.30%

9 163.28 165.32 172.89 1.25% 5.89% 143.92 139.78 142.82 -2.88% -0.76% 144.63 142.08 147.39 -1.76% 1.91%

10 145.81 147.34 152.66 1.05% 4.70% 148.05 150.32 150.53 1.53% 1.67% 141.38 140.75 139.53 -0.45% -1.31%

11 170.52 169.52 168.68 -0.58% -1.08% 142.12 140.32 141.53 -1.26% -0.42% 135.99 131.03 141.99 -3.65% 4.41%

12 146.86 150.72 149.06 2.63% 1.50% 165.25 152.60 161.03 -7.65% -2.55% 150.59 141.00 149.83 -6.37% -0.50%

13 148.49 144.74 143.75 -2.52% -3.19% 146.77 144.95 149.86 -1.24% 2.11% 140.56 133.96 136.56 -4.69% -2.84%

14 155.42 145.01 146.13 -6.70% -5.98% 156.58 150.71 155.07 -3.75% -0.96% 117.22 116.04 119.27 -1.01% 1.75%

15 110.44 133.12 139.32 20.54% 26.15% 147.08 140.72 143.93 -4.32% -2.14% 147.61 143.13 146.30 -3.03% -0.89%

16 164.76 163.18 161.26 -0.96% -2.13% 146.04 139.89 150.54 -4.21% 3.08% 154.20 152.91 148.62 -0.84% -3.62%

17 157.33 148.26 157.11 -5.77% -0.14% 135.74 134.27 141.35 -1.08% 4.13% 156.61 147.16 153.65 -6.03% -1.89%

18 139.96 140.88 140.74 0.65% 0.56% 168.66 173.21 169.46 2.70% 0.48% 163.64 157.15 160.80 -3.97% -1.73%

19 152.26 141.06 147.58 -7.35% -3.07% 150.59 140.40 143.66 -6.77% -4.60% 139.40 128.87 137.76 -7.55% -1.18%

20 140.79 140.61 140.17 -0.13% -0.44% 115.21 119.21 130.81 3.47% 13.54% 144.71 141.53 142.22 -2.20% -1.72%

21 168.18 165.15 162.25 -1.80% -3.53% 146.50 147.55 152.47 0.71% 4.08% 166.28 166.62 166.66 0.20% 0.23%

22 167.42 156.94 172.97 -6.26% 3.31% 159.49 156.31 160.68 -1.99% 0.75% 142.20 136.90 142.97 -3.73% 0.54%

23 154.09 150.18 145.68 -2.54% -5.45% 143.12 142.21 150.86 -0.64% 5.41% 150.94 146.91 151.72 -2.67% 0.52%

24 142.43 151.44 142.79 6.32% 0.25% 162.24 156.93 158.75 -3.28% -2.15% 145.29 142.03 143.64 -2.25% -1.14%

25 145.01 143.48 142.29 -1.06% -1.87% 141.96 135.30 145.35 -4.69% 2.39% 127.74 135.96 149.32 6.43% 16.89%

26 143.27 145.55 142.05 1.59% -0.85% 147.45 140.99 148.37 -4.39% 0.62% 143.09 142.00 140.69 -0.77% -1.67%

27 139.42 125.88 133.03 -9.71% -4.58% 160.55 153.80 155.06 -4.21% -3.42% 141.10 140.07 139.53 -0.73% -1.11%

28 162.14 163.42 163.11 0.79% 0.60% 153.15 154.93 154.16 1.16% 0.66% 158.78 155.48 150.41 -2.08% -5.27%

29 141.63 138.21 146.12 -2.42% 3.17% 131.98 128.15 126.81 -2.90% -3.92% 153.79 155.21 155.13 0.92% 0.87%

30 158.70 160.20 162.01 0.94% 2.08% 148.32 140.86 150.57 -5.03% 1.51% 161.94 161.01 171.74 -0.57% 6.05%

31 151.27 145.90 154.95 -3.55% 2.44% 154.08 157.26 150.55 2.06% -2.29% 142.33 131.49 136.29 -7.62% -4.24%

32 160.76 157.15 159.52 -2.25% -0.77% 145.47 138.70 147.25 -4.65% 1.22% 161.95 161.69 165.07 -0.16% 1.93%

33 156.17 158.14 151.37 1.26% -3.08% 144.30 146.37 140.99 1.44% -2.29% 140.29 134.11 142.50 -4.41% 1.57%

34 162.47 157.65 154.70 -2.96% -4.78% 157.95 152.91 149.33 -3.19% -5.46% 152.15 140.28 143.10 -7.80% -5.95%

35 161.71 161.94 162.33 0.14% 0.38% 133.14 127.80 137.45 -4.01% 3.24% 148.02 138.11 146.03 -6.69% -1.34%

36 156.62 151.39 150.25 -3.34% -4.07% 145.91 134.70 143.95 -7.68% -1.34% 133.82 126.37 133.70 -5.57% -0.09%

37 146.67 141.93 145.91 -3.23% -0.52% 136.84 136.91 144.59 0.05% 5.66% 125.43 120.40 123.31 -4.01% -1.69%

38 166.87 171.47 169.71 2.76% 1.70% 155.03 151.96 157.82 -1.98% 1.80% 158.08 157.11 158.89 -0.61% 0.51%

39 163.93 151.32 165.37 -7.69% 0.88% 150.88 154.73 149.59 2.55% -0.86% 157.69 148.53 155.08 -5.81% -1.66%

40 161.19 162.99 154.35 1.12% -4.24% 150.92 150.18 147.91 -0.48% -1.99% 125.65 120.55 127.49 -4.06% 1.46%
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Table A.2: Repositioning: Acceptance Rates of Region Type 1

Index ρ = 1 ρ = 2 ρ = 3

OPT REPO FREPO % (REPO) % (FREPO) OPT REPO FREPO % (REPO) % (FREPO) OPT REPO FREPO % (REPO) % (FREPO)

1 0.680 0.713 0.680 -14.42% 3.02% 0.582 0.582 0.568 0.00% -2.35% 0.701 0.709 0.744 1.22% 6.10%

2 0.765 0.756 0.782 -12.12% -14.54% 0.672 0.704 0.712 4.76% 5.95% 0.654 0.724 0.709 10.84% 8.43%

3 0.761 0.789 0.761 1.37% -2.84% 0.772 0.798 0.798 3.41% 3.41% 0.740 0.740 0.740 0.00% 0.00%

4 0.727 0.711 0.758 -1.19% -10.05% 0.718 0.701 0.709 -2.38% -1.19% 0.654 0.669 0.654 2.41% 0.00%

5 0.771 0.807 0.798 -12.82% -24.00% 0.672 0.703 0.711 4.65% 5.81% 0.586 0.607 0.579 3.66% -1.22%

6 0.808 0.828 0.808 -9.91% -1.26% 0.728 0.696 0.696 -4.40% -4.40% 0.798 0.819 0.819 2.67% 2.67%

7 0.597 0.597 0.631 -2.14% 26.69% 0.585 0.599 0.577 2.41% -1.20% 0.757 0.757 0.757 0.00% 0.00%

8 0.762 0.754 0.738 -11.81% 10.34% 0.672 0.697 0.706 3.75% 5.00% 0.841 0.879 0.897 4.44% 6.67%

9 0.675 0.706 0.722 -9.22% -2.35% 0.612 0.612 0.589 0.00% -3.80% 0.659 0.667 0.659 1.20% 0.00%

10 0.641 0.656 0.664 9.84% 1.77% 0.704 0.722 0.730 2.47% 3.70% 0.653 0.678 0.661 3.90% 1.30%

11 0.766 0.766 0.758 0.56% -15.16% 0.770 0.814 0.805 5.75% 4.60% 0.650 0.632 0.667 -2.63% 2.63%

12 0.750 0.806 0.778 1.59% -0.29% 0.762 0.722 0.730 -5.21% -4.17% 0.748 0.748 0.748 0.00% 0.00%

13 0.712 0.748 0.730 -5.98% -7.83% 0.669 0.692 0.692 3.37% 3.37% 0.656 0.680 0.664 3.66% 1.22%

14 0.624 0.624 0.617 29.12% 0.33% 0.806 0.816 0.825 1.20% 2.41% 0.626 0.673 0.673 7.46% 7.46%

15 0.478 0.669 0.669 38.24% 48.97% 0.661 0.679 0.696 2.70% 5.41% 0.712 0.704 0.688 -1.12% -3.37%

16 0.651 0.644 0.630 17.69% -0.77% 0.766 0.766 0.775 0.00% 1.18% 0.646 0.661 0.630 2.44% -2.44%

17 0.741 0.731 0.741 -7.26% 7.74% 0.687 0.696 0.704 1.27% 2.53% 0.798 0.769 0.769 -3.61% -3.61%

18 0.734 0.766 0.742 -5.43% -5.82% 0.694 0.716 0.709 3.23% 2.15% 0.691 0.654 0.699 -5.32% 1.06%

19 0.883 0.862 0.872 -19.66% -22.73% 0.709 0.692 0.701 -2.41% -1.20% 0.682 0.682 0.701 0.00% 2.74%

20 0.694 0.712 0.694 6.37% -0.67% 0.738 0.796 0.835 7.89% 13.16% 0.689 0.706 0.681 2.44% -1.22%

21 0.707 0.722 0.714 -0.84% 3.61% 0.701 0.726 0.701 3.66% 0.00% 0.732 0.748 0.732 2.15% 0.00%

22 0.656 0.672 0.695 2.76% -3.79% 0.675 0.714 0.675 5.88% 0.00% 0.632 0.669 0.669 5.95% 5.95%

23 0.734 0.742 0.742 5.54% -7.62% 0.775 0.794 0.824 2.53% 6.33% 0.678 0.703 0.703 3.75% 3.75%

24 0.782 0.812 0.782 -5.80% -0.56% 0.737 0.763 0.728 3.57% -1.19% 0.778 0.778 0.769 0.00% -1.19%

25 0.795 0.795 0.777 -9.77% -13.14% 0.717 0.717 0.755 0.00% 5.26% 0.690 0.667 0.675 -3.42% -2.27%

26 0.713 0.722 0.722 6.44% -11.96% 0.759 0.795 0.786 4.71% 3.53% 0.628 0.642 0.628 2.33% 0.00%

27 0.776 0.766 0.776 -1.28% -15.75% 0.766 0.712 0.730 -7.06% -4.71% 0.654 0.685 0.677 4.82% 3.61%

28 0.771 0.831 0.814 -19.32% -1.55% 0.622 0.667 0.622 7.14% 0.00% 0.759 0.787 0.750 3.66% -1.22%

29 0.771 0.790 0.781 0.40% -17.99% 0.775 0.765 0.745 -1.27% -3.80% 0.633 0.633 0.626 0.00% -1.08%

30 0.722 0.741 0.731 4.14% -7.33% 0.752 0.761 0.761 1.14% 1.14% 0.669 0.693 0.709 3.53% 5.88%

31 0.661 0.661 0.677 -5.24% 8.19% 0.627 0.641 0.620 2.25% -1.12% 0.716 0.743 0.725 3.85% 1.28%

32 0.835 0.807 0.817 -19.52% -12.97% 0.672 0.656 0.672 -2.33% 0.00% 0.727 0.711 0.695 -2.15% -4.30%

33 0.623 0.659 0.623 26.77% 15.00% 0.790 0.830 0.800 5.06% 1.27% 0.717 0.708 0.725 -1.16% 1.16%

34 0.752 0.776 0.744 -9.98% 5.42% 0.677 0.692 0.708 2.27% 4.55% 0.793 0.793 0.793 0.00% 0.00%

35 0.669 0.677 0.669 9.86% 6.54% 0.735 0.765 0.755 4.00% 2.67% 0.713 0.704 0.704 -1.22% -1.22%

36 0.733 0.700 0.708 -7.39% -18.60% 0.679 0.649 0.709 -4.40% 4.40% 0.597 0.620 0.605 3.90% 1.30%

37 0.824 0.815 0.815 -5.75% -5.08% 0.777 0.796 0.825 2.50% 6.25% 0.782 0.812 0.772 3.80% -1.27%

38 0.627 0.664 0.672 -8.25% 15.21% 0.575 0.588 0.588 2.27% 2.27% 0.722 0.746 0.746 3.30% 3.30%

39 0.664 0.672 0.657 -3.29% -5.60% 0.642 0.664 0.620 3.41% -3.41% 0.627 0.635 0.643 1.27% 2.53%

40 0.721 0.746 0.689 0.00% -6.69% 0.721 0.721 0.721 0.00% 0.00% 0.673 0.673 0.673 0.00% 0.00%
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Table A.3: Repositioning: Profits of Region Type 2

Index ρ = 1 ρ = 2 ρ = 3

OPT REPO FREPO % (REPO) % (FREPO) OPT REPO FREPO % (REPO) % (FREPO) OPT REPO FREPO % (REPO) % (FREPO)

1 157.63 156.19 159.46 -0.92% 1.16% 155.43 140.67 149.00 -9.50% -4.14% 146.44 140.18 141.75 -4.27% -3.20%

2 151.99 159.44 158.27 4.90% 4.13% 164.28 150.24 155.83 -8.55% -5.14% 132.46 130.87 134.46 -1.19% 1.52%

3 145.95 141.90 140.99 -2.77% -3.40% 155.37 154.65 159.46 -0.46% 2.63% 140.83 137.43 145.26 -2.41% 3.15%

4 161.30 154.92 160.97 -3.96% -0.21% 160.74 160.82 161.28 0.05% 0.33% 151.42 151.75 156.28 0.22% 3.21%

5 140.63 138.44 138.52 -1.55% -1.50% 146.79 142.04 154.44 -3.24% 5.21% 146.36 145.56 140.52 -0.55% -3.99%

6 149.73 143.94 146.04 -3.87% -2.47% 150.82 144.77 145.32 -4.01% -3.65% 169.60 168.92 166.42 -0.40% -1.88%

7 158.24 159.53 163.33 0.81% 3.21% 152.10 141.94 148.48 -6.68% -2.38% 146.76 153.61 151.54 4.67% 3.26%

8 163.78 157.64 165.56 -3.75% 1.09% 135.21 133.43 133.47 -1.32% -1.29% 160.86 159.22 161.32 -1.02% 0.29%

9 163.28 165.32 172.89 1.25% 5.89% 153.64 153.99 153.79 0.23% 0.10% 149.70 148.14 149.74 -1.05% 0.03%

10 145.81 147.34 152.66 1.05% 4.70% 143.08 147.72 145.23 3.24% 1.50% 155.80 146.17 151.78 -6.18% -2.58%

11 170.52 169.52 168.68 -0.58% -1.08% 156.80 149.43 146.54 -4.70% -6.54% 135.93 133.36 130.51 -1.89% -3.99%

12 146.86 150.72 149.06 2.63% 1.50% 163.58 157.78 158.95 -3.54% -2.83% 151.93 145.65 149.67 -4.13% -1.49%

13 148.49 144.74 143.75 -2.52% -3.19% 158.17 147.73 151.83 -6.60% -4.01% 154.02 153.07 151.25 -0.62% -1.80%

14 155.42 145.01 146.13 -6.70% -5.98% 161.71 164.41 154.61 1.67% -4.39% 145.47 142.76 143.74 -1.87% -1.19%

15 110.44 133.12 139.32 20.54% 26.15% 134.32 129.55 136.49 -3.55% 1.62% 156.63 155.16 160.08 -0.94% 2.20%

16 164.76 163.18 161.26 -0.96% -2.13% 154.18 156.50 154.79 1.50% 0.40% 138.71 130.81 136.02 -5.69% -1.94%

17 157.33 148.26 157.11 -5.77% -0.14% 151.60 140.87 150.05 -7.08% -1.02% 140.74 141.62 142.12 0.62% 0.98%

18 139.96 140.88 140.74 0.65% 0.56% 150.16 137.87 146.34 -8.18% -2.54% 142.94 135.77 145.35 -5.02% 1.69%

19 152.26 141.06 147.58 -7.35% -3.07% 165.54 154.17 168.26 -6.87% 1.64% 150.98 143.91 149.56 -4.68% -0.94%

20 140.79 140.61 140.17 -0.13% -0.44% 163.05 162.25 159.73 -0.49% -2.04% 162.99 165.06 162.76 1.27% -0.15%

21 168.18 165.15 162.25 -1.80% -3.53% 149.27 143.26 144.38 -4.03% -3.28% 142.20 123.09 129.66 -13.44% -8.82%

22 167.42 156.94 172.97 -6.26% 3.31% 137.12 124.80 132.43 -8.98% -3.42% 146.59 127.63 129.84 -12.93% -11.43%

23 154.09 150.18 145.68 -2.54% -5.45% 160.25 147.56 155.57 -7.92% -2.92% 150.94 144.62 147.06 -4.19% -2.57%

24 142.43 151.44 142.79 6.32% 0.25% 170.46 164.68 165.08 -3.39% -3.16% 171.20 162.24 162.53 -5.23% -5.06%

25 145.01 143.48 142.29 -1.06% -1.87% 162.36 157.97 162.39 -2.70% 0.02% 163.72 159.36 164.18 -2.66% 0.28%

26 143.27 145.55 142.05 1.59% -0.85% 130.00 126.10 129.90 -3.00% -0.08% 127.35 116.26 127.91 -8.71% 0.44%

27 139.42 125.88 133.03 -9.71% -4.58% 146.22 149.62 146.22 2.33% 0.00% 137.53 140.83 143.55 2.40% 4.37%

28 162.14 163.42 163.11 0.79% 0.60% 162.52 150.26 156.64 -7.54% -3.62% 155.50 155.31 158.28 -0.12% 1.79%

29 141.63 138.21 146.12 -2.42% 3.17% 147.82 148.51 140.66 0.47% -4.84% 143.93 151.53 146.74 5.28% 1.95%

30 158.70 160.20 162.01 0.94% 2.08% 137.59 124.58 133.60 -9.45% -2.90% 152.79 144.52 149.09 -5.41% -2.42%

31 151.27 145.90 154.95 -3.55% 2.44% 162.02 158.05 159.82 -2.45% -1.36% 155.76 158.50 159.01 1.76% 2.09%

32 160.76 157.15 159.52 -2.25% -0.77% 129.78 127.83 128.05 -1.50% -1.33% 163.40 160.93 154.87 -1.51% -5.23%

33 156.17 158.14 151.37 1.26% -3.08% 138.30 128.53 138.38 -7.06% 0.06% 161.70 156.48 148.38 -3.23% -8.24%

34 162.47 157.65 154.70 -2.96% -4.78% 145.73 146.64 136.06 0.62% -6.64% 140.48 133.58 132.69 -4.91% -5.54%

35 161.71 161.94 162.33 0.14% 0.38% 152.46 155.17 155.38 1.77% 1.91% 156.36 124.37 150.72 -20.46% -3.60%

36 156.62 151.39 150.25 -3.34% -4.07% 157.45 155.34 155.08 -1.34% -1.51% 141.48 136.11 140.97 -3.79% -0.36%

37 146.67 141.93 145.91 -3.23% -0.52% 157.95 149.57 155.74 -5.31% -1.40% 158.60 152.72 159.86 -3.71% 0.80%

38 166.87 171.47 169.71 2.76% 1.70% 161.78 159.12 160.36 -1.64% -0.88% 159.01 147.42 151.79 -7.29% -4.54%

39 163.93 151.32 165.37 -7.69% 0.88% 165.79 164.99 170.56 -0.48% 2.88% 148.10 136.99 138.17 -7.50% -6.70%

40 161.19 162.99 154.35 1.12% -4.24% 144.72 135.66 142.25 -6.25% -1.71% 147.84 152.64 143.11 3.24% -3.20%

81



Table A.4: Repositioning: Acceptance Rates of Region Type 2

Index ρ = 1 ρ = 2 ρ = 3

OPT REPO FREPO % (REPO) % (FREPO) OPT REPO FREPO % (REPO) % (FREPO) OPT REPO FREPO % (REPO) % (FREPO)

1 0.680 0.713 0.680 3.26% -4.29% 0.702 0.694 0.702 -1.18% 0.00% 0.651 0.667 0.643 2.38% -1.19%

2 0.765 0.756 0.782 2.75% -6.08% 0.786 0.750 0.768 -4.55% -2.27% 0.718 0.727 0.736 1.27% 2.53%

3 0.761 0.789 0.761 -7.24% -6.20% 0.706 0.722 0.706 2.25% 0.00% 0.714 0.732 0.714 2.50% 0.00%

4 0.727 0.711 0.758 -16.67% 3.79% 0.605 0.626 0.619 3.37% 2.25% 0.754 0.754 0.754 0.00% 0.00%

5 0.771 0.807 0.798 3.56% -4.39% 0.798 0.817 0.837 2.41% 4.82% 0.737 0.763 0.728 3.57% -1.19%

6 0.808 0.828 0.808 -21.59% -11.18% 0.634 0.672 0.634 6.02% 0.00% 0.718 0.742 0.726 3.37% 1.12%

7 0.597 0.597 0.631 36.30% 22.29% 0.814 0.814 0.823 0.00% 1.09% 0.730 0.765 0.739 4.76% 1.19%

8 0.762 0.754 0.738 -7.40% -15.18% 0.706 0.731 0.697 3.57% -1.19% 0.647 0.684 0.662 5.81% 2.33%

9 0.675 0.706 0.722 4.49% 4.27% 0.705 0.721 0.713 2.33% 1.16% 0.703 0.746 0.720 6.02% 2.41%

10 0.641 0.656 0.664 35.83% 8.06% 0.871 0.925 0.903 6.17% 3.70% 0.693 0.685 0.709 -1.14% 2.27%

11 0.766 0.766 0.758 -0.83% 13.80% 0.759 0.750 0.731 -1.22% -3.66% 0.871 0.911 0.842 4.55% -3.41%

12 0.750 0.806 0.778 -11.45% 2.75% 0.664 0.664 0.649 0.00% -2.30% 0.771 0.761 0.771 -1.19% 0.00%

13 0.712 0.748 0.730 -3.75% -7.73% 0.685 0.693 0.693 1.15% 1.15% 0.657 0.694 0.664 5.68% 1.14%

14 0.624 0.624 0.617 19.21% 16.65% 0.744 0.760 0.736 2.15% -1.08% 0.728 0.720 0.728 -1.10% 0.00%

15 0.478 0.669 0.669 41.28% 61.36% 0.675 0.709 0.667 5.06% -1.27% 0.771 0.763 0.763 -1.10% -1.10%

16 0.651 0.644 0.630 1.69% 18.56% 0.662 0.669 0.677 1.14% 2.27% 0.771 0.790 0.771 2.47% 0.00%

17 0.741 0.731 0.741 -8.51% 7.24% 0.678 0.653 0.669 -3.66% -1.22% 0.794 0.822 0.804 3.53% 1.18%

18 0.734 0.766 0.742 -8.48% -15.84% 0.672 0.657 0.649 -2.22% -3.33% 0.618 0.632 0.647 2.38% 4.76%

19 0.883 0.862 0.872 -25.58% -20.90% 0.657 0.636 0.679 -3.26% 3.26% 0.698 0.667 0.667 -4.55% -4.55%

20 0.694 0.712 0.694 2.16% 6.65% 0.709 0.724 0.717 2.22% 1.11% 0.740 0.764 0.756 3.30% 2.20%

21 0.707 0.722 0.714 -3.59% 8.43% 0.681 0.717 0.690 5.19% 1.30% 0.766 0.729 0.738 -4.88% -3.66%

22 0.656 0.672 0.695 16.74% -0.50% 0.766 0.748 0.748 -2.44% -2.44% 0.653 0.613 0.621 -6.17% -4.94%

23 0.734 0.742 0.742 -3.95% -1.24% 0.705 0.697 0.721 -1.16% 2.33% 0.725 0.725 0.743 0.00% 2.53%

24 0.782 0.812 0.782 -4.62% -22.62% 0.746 0.762 0.746 2.13% 0.00% 0.605 0.605 0.605 0.00% 0.00%

25 0.795 0.795 0.777 -14.54% -8.94% 0.679 0.687 0.694 1.10% 2.20% 0.724 0.732 0.764 1.12% 5.62%

26 0.713 0.722 0.722 6.99% 1.61% 0.763 0.753 0.753 -1.35% -1.35% 0.724 0.755 0.755 4.23% 4.23%

27 0.776 0.766 0.776 -6.34% 3.38% 0.726 0.761 0.701 4.71% -3.53% 0.802 0.830 0.840 3.53% 4.71%

28 0.771 0.831 0.814 -12.25% 2.13% 0.677 0.684 0.692 1.11% 2.22% 0.788 0.779 0.788 -1.12% 0.00%

29 0.771 0.790 0.781 -6.20% -4.65% 0.724 0.732 0.691 1.12% -4.49% 0.736 0.760 0.760 3.37% 3.37%

30 0.722 0.741 0.731 -4.04% 1.31% 0.693 0.683 0.703 -1.43% 1.43% 0.732 0.724 0.740 -1.11% 1.11%

31 0.661 0.661 0.677 8.35% 14.01% 0.717 0.708 0.717 -1.16% 0.00% 0.754 0.787 0.779 4.35% 3.26%

32 0.835 0.807 0.817 -11.93% -16.87% 0.735 0.745 0.725 1.33% -1.33% 0.694 0.701 0.679 1.08% -2.15%

33 0.623 0.659 0.623 13.43% -2.01% 0.707 0.716 0.716 1.22% 1.22% 0.611 0.641 0.611 5.00% 0.00%

34 0.752 0.776 0.744 -5.86% 1.62% 0.708 0.743 0.681 5.00% -3.75% 0.764 0.755 0.764 -1.23% 0.00%

35 0.669 0.677 0.669 4.72% 19.27% 0.701 0.744 0.735 6.10% 4.88% 0.798 0.675 0.763 -15.38% -4.40%

36 0.733 0.700 0.708 18.52% 3.58% 0.869 0.888 0.869 2.15% 0.00% 0.760 0.779 0.769 2.53% 1.27%

37 0.824 0.815 0.815 -10.48% -15.06% 0.738 0.746 0.738 1.11% 0.00% 0.700 0.746 0.708 6.59% 1.10%

38 0.627 0.664 0.672 5.96% 11.41% 0.664 0.650 0.657 -2.20% -1.10% 0.698 0.667 0.698 -4.55% 0.00%

39 0.664 0.672 0.657 1.09% 2.95% 0.671 0.693 0.693 3.19% 3.19% 0.684 0.684 0.658 0.00% -3.75%

40 0.721 0.746 0.689 -5.27% 3.35% 0.683 0.675 0.683 -1.22% 0.00% 0.745 0.773 0.745 3.66% 0.00%
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Table A.5: Postponement: Profits at λ0 = 0.010

Index µ = 0.25 µ = 0.50 µ = 0.75 µ = 1.00

OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1)

1 98.31 98.31 96.48 0.00% -1.87% 85.45 85.45 84.81 0.00% -0.74% 80.78 80.78 79.49 0.00% -1.59% 82.90 82.90 80.53 0.00% -2.87%

2 90.44 90.44 90.66 0.00% 0.24% 71.48 76.79 75.43 7.42% 5.52% 70.80 70.80 70.61 0.00% -0.27% 66.85 69.48 69.90 3.93% 4.56%

3 69.01 69.01 68.96 0.00% -0.08% 81.88 84.04 85.01 2.64% 3.82% 88.91 88.91 89.84 0.00% 1.04% 91.18 91.18 91.16 0.00% -0.02%

4 61.89 62.33 60.74 0.71% -1.87% 92.23 92.02 92.33 -0.22% 0.11% 93.21 96.97 95.04 4.04% 1.97% 74.53 74.53 77.83 0.00% 4.43%

5 96.90 96.90 97.58 0.00% 0.70% 126.31 126.31 118.89 0.00% -5.87% 87.59 86.49 88.83 -1.25% 1.42% 59.75 66.37 64.40 11.08% 7.79%

6 85.61 85.33 85.99 -0.32% 0.45% 73.45 73.45 72.91 0.00% -0.74% 105.64 105.64 106.44 0.00% 0.75% 71.47 73.34 71.80 2.63% 0.47%

7 74.13 73.94 72.13 -0.26% -2.71% 92.95 92.71 93.07 -0.26% 0.12% 62.29 68.72 64.64 10.33% 3.78% 83.27 84.56 82.34 1.55% -1.12%

8 78.95 78.95 79.83 0.00% 1.13% 64.73 64.73 64.88 0.00% 0.23% 106.74 108.14 106.98 1.32% 0.22% 76.86 79.26 78.09 3.11% 1.59%

9 120.65 120.65 120.61 0.00% -0.04% 93.13 94.04 94.26 0.97% 1.21% 65.68 66.95 67.68 1.93% 3.04% 88.73 88.47 91.36 -0.29% 2.96%

10 75.65 75.65 76.29 0.00% 0.84% 73.94 80.37 80.32 8.69% 8.63% 76.55 76.55 76.56 0.00% 0.01% 81.82 81.82 81.85 0.00% 0.04%

11 96.70 96.70 99.93 0.00% 3.34% 112.84 112.84 113.46 0.00% 0.55% 69.69 73.04 70.74 4.81% 1.51% 82.72 82.72 84.20 0.00% 1.79%

12 87.82 87.82 87.13 0.00% -0.78% 65.98 67.29 68.56 1.99% 3.92% 97.57 101.26 100.85 3.79% 3.37% 96.66 97.95 97.31 1.34% 0.68%

13 56.85 60.10 60.06 5.71% 5.65% 69.51 71.63 72.18 3.05% 3.83% 83.87 84.67 85.64 0.95% 2.11% 81.49 81.49 81.34 0.00% -0.18%

14 70.06 70.06 69.96 0.00% -0.14% 79.13 81.33 79.01 2.78% -0.15% 121.76 127.63 127.99 4.82% 5.12% 78.11 78.11 78.25 0.00% 0.17%

15 98.80 98.80 98.93 0.00% 0.13% 84.01 84.01 84.45 0.00% 0.51% 77.03 77.03 76.17 0.00% -1.11% 87.24 87.71 86.34 0.54% -1.04%

16 78.53 78.53 78.16 0.00% -0.47% 73.47 73.47 74.21 0.00% 1.00% 91.06 91.06 90.82 0.00% -0.26% 115.47 120.54 114.19 4.38% -1.11%

17 105.54 105.54 107.51 0.00% 1.87% 59.63 59.63 59.58 0.00% -0.08% 52.87 52.82 52.97 -0.09% 0.19% 89.49 89.49 89.53 0.00% 0.04%

18 58.15 58.15 58.31 0.00% 0.26% 68.85 67.82 68.80 -1.49% -0.07% 77.83 81.91 79.85 5.25% 2.60% 62.25 62.25 62.49 0.00% 0.39%

19 96.68 95.80 96.89 -0.91% 0.22% 72.26 72.87 74.01 0.84% 2.43% 71.40 70.27 71.12 -1.59% -0.40% 75.69 79.73 76.16 5.33% 0.61%

20 55.65 55.65 58.56 0.00% 5.22% 66.10 66.10 68.82 0.00% 4.12% 33.17 34.72 34.72 4.67% 4.67% 66.58 73.00 72.00 9.66% 8.15%

21 79.24 79.24 79.26 0.00% 0.02% 97.12 100.98 101.32 3.98% 4.33% 82.69 82.69 80.78 0.00% -2.31% 114.60 114.42 115.67 -0.15% 0.94%

22 86.20 86.20 86.27 0.00% 0.08% 109.32 112.24 111.53 2.67% 2.02% 84.75 86.57 82.96 2.16% -2.10% 83.71 83.71 83.60 0.00% -0.13%

23 108.00 108.00 108.72 0.00% 0.67% 88.20 88.13 87.62 -0.08% -0.66% 68.82 68.82 69.32 0.00% 0.71% 72.39 72.39 74.60 0.00% 3.06%

24 88.17 88.17 87.96 0.00% -0.24% 69.21 69.21 69.62 0.00% 0.60% 72.69 72.69 72.85 0.00% 0.22% 105.88 106.12 107.28 0.22% 1.32%

25 87.98 87.98 87.79 0.00% -0.21% 83.54 83.54 84.08 0.00% 0.65% 98.66 98.66 98.50 0.00% -0.15% 93.59 93.59 91.26 0.00% -2.49%

26 84.84 87.34 87.80 2.94% 3.49% 80.88 80.88 80.88 0.00% 0.00% 81.29 81.29 81.78 0.00% 0.59% 74.09 75.82 75.16 2.34% 1.45%

27 67.08 67.08 67.07 0.00% -0.02% 75.35 75.35 75.25 0.00% -0.14% 64.55 64.55 64.08 0.00% -0.72% 52.31 52.31 52.37 0.00% 0.12%

28 86.07 86.81 85.69 0.86% -0.44% 75.19 75.19 76.38 0.00% 1.58% 64.82 64.82 66.15 0.00% 2.04% 61.40 65.49 65.43 6.67% 6.56%

29 86.36 86.36 86.22 0.00% -0.16% 81.43 81.43 82.70 0.00% 1.56% 66.56 69.62 70.35 4.60% 5.71% 81.36 81.36 80.91 0.00% -0.55%

30 98.21 98.21 100.81 0.00% 2.65% 91.55 88.72 90.16 -3.09% -1.52% 80.33 82.71 84.23 2.96% 4.86% 76.68 81.59 79.44 6.41% 3.60%

31 68.41 70.08 70.28 2.45% 2.74% 70.10 71.29 66.87 1.70% -4.61% 59.64 59.64 60.12 0.00% 0.80% 103.92 103.92 102.03 0.00% -1.82%

32 97.71 97.71 97.99 0.00% 0.29% 107.64 107.64 107.16 0.00% -0.45% 84.82 78.67 85.75 -7.25% 1.10% 87.13 87.13 86.96 0.00% -0.18%

33 87.99 87.99 88.57 0.00% 0.66% 84.29 85.60 83.84 1.55% -0.54% 75.85 76.09 72.95 0.32% -3.83% 103.87 103.87 108.33 0.00% 4.30%

34 87.45 87.45 87.26 0.00% -0.22% 87.14 87.14 87.06 0.00% -0.09% 78.03 78.76 78.94 0.94% 1.17% 76.62 76.62 77.69 0.00% 1.40%

35 79.54 79.54 80.27 0.00% 0.92% 86.93 86.93 87.20 0.00% 0.32% 87.02 88.88 86.86 2.14% -0.18% 85.12 89.14 90.99 4.72% 6.89%

36 96.94 96.94 96.98 0.00% 0.03% 68.97 68.97 69.19 0.00% 0.31% 74.73 78.20 78.41 4.65% 4.93% 102.99 103.97 105.36 0.95% 2.30%

37 106.52 108.11 108.25 1.50% 1.63% 77.30 79.80 79.67 3.22% 3.06% 54.68 54.68 55.96 0.00% 2.33% 88.94 95.09 95.45 6.92% 7.32%

38 96.65 96.65 96.65 0.00% 0.00% 95.23 95.23 95.38 0.00% 0.16% 62.94 64.62 62.25 2.68% -1.08% 83.00 93.02 91.63 12.08% 10.40%

39 93.71 93.71 94.45 0.00% 0.79% 63.15 64.78 63.90 2.58% 1.20% 81.62 87.29 86.45 6.94% 5.92% 68.35 68.35 68.29 0.00% -0.08%

40 90.15 89.60 87.72 -0.61% -2.69% 79.68 79.46 79.64 -0.28% -0.06% 80.08 84.33 84.31 5.31% 5.29% 93.82 96.75 97.34 3.12% 3.76%
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Table A.6: Postponement: Profits at λ0 = 0.015

Index µ = 0.25 µ = 0.50 µ = 0.75 µ = 1.00

OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1)

1 123.80 126.26 123.45 1.98% -0.28% 113.50 118.75 122.48 4.62% 7.91% 107.66 110.27 110.20 2.43% 2.36% 132.74 145.98 143.09 9.97% 7.80%

2 108.92 112.30 117.01 3.10% 7.43% 115.08 115.08 111.14 0.00% -3.42% 143.33 141.60 143.90 -1.21% 0.39% 103.13 123.63 118.04 19.88% 14.46%

3 108.70 109.41 112.44 0.65% 3.44% 139.16 135.36 139.97 -2.72% 0.58% 112.25 125.30 123.31 11.63% 9.85% 108.69 115.39 116.93 6.17% 7.58%

4 118.98 126.16 122.59 6.03% 3.03% 144.92 141.07 151.98 -2.66% 4.87% 121.75 125.68 122.25 3.23% 0.41% 105.34 115.81 116.02 9.94% 10.14%

5 118.43 119.56 118.42 0.96% 0.00% 111.67 115.07 112.42 3.05% 0.67% 125.96 137.22 136.72 8.93% 8.54% 123.19 125.86 132.18 2.17% 7.29%

6 132.96 132.96 131.75 0.00% -0.91% 132.96 134.67 132.62 1.29% -0.26% 127.96 130.83 129.53 2.24% 1.22% 109.34 116.62 115.78 6.66% 5.89%

7 133.12 134.33 135.51 0.91% 1.80% 148.55 146.05 152.06 -1.68% 2.37% 154.40 153.26 157.62 -0.74% 2.08% 124.93 131.47 127.13 5.23% 1.75%

8 136.51 137.38 133.01 0.63% -2.57% 115.34 117.22 115.30 1.63% -0.04% 120.15 123.00 122.50 2.37% 1.96% 119.39 123.48 126.06 3.42% 5.58%

9 162.64 164.23 161.40 0.97% -0.76% 132.50 133.42 135.50 0.70% 2.27% 118.11 129.53 121.54 9.68% 2.91% 97.16 111.74 109.44 15.00% 12.64%

10 143.56 137.65 141.64 -4.12% -1.34% 127.33 133.04 137.98 4.48% 8.36% 90.22 97.98 98.82 8.60% 9.54% 115.27 120.57 116.08 4.60% 0.71%

11 130.19 128.34 128.46 -1.42% -1.33% 129.93 140.45 139.07 8.10% 7.03% 98.27 101.43 102.69 3.21% 4.49% 131.51 135.12 137.75 2.75% 4.75%

12 143.14 154.66 149.22 8.05% 4.25% 122.19 122.19 119.43 0.00% -2.25% 132.57 132.35 130.57 -0.16% -1.51% 129.86 134.34 140.82 3.45% 8.44%

13 135.40 135.40 134.97 0.00% -0.31% 125.82 127.20 127.18 1.10% 1.08% 116.37 129.09 120.65 10.94% 3.68% 108.64 109.12 111.66 0.44% 2.77%

14 130.23 131.64 137.80 1.08% 5.82% 117.84 121.01 125.27 2.69% 6.30% 154.30 153.59 152.47 -0.46% -1.19% 129.66 129.66 123.40 0.00% -4.83%

15 104.11 102.23 105.66 -1.81% 1.48% 110.69 119.55 117.24 8.01% 5.92% 114.47 148.25 134.92 29.51% 17.86% 124.01 125.39 131.26 1.11% 5.85%

16 147.92 148.24 147.13 0.21% -0.53% 127.55 132.32 130.47 3.74% 2.29% 116.15 117.08 122.82 0.80% 5.74% 122.57 125.40 119.98 2.31% -2.12%

17 89.32 90.26 90.68 1.05% 1.52% 132.29 133.36 135.53 0.81% 2.45% 105.75 118.93 115.59 12.46% 9.31% 125.50 127.85 128.40 1.87% 2.31%

18 90.14 90.14 93.89 0.00% 4.15% 87.05 87.05 85.90 0.00% -1.32% 114.66 118.39 117.43 3.25% 2.42% 86.99 108.09 95.96 24.26% 10.32%

19 113.54 117.61 119.25 3.59% 5.03% 104.44 103.64 105.02 -0.77% 0.56% 119.08 119.08 113.09 0.00% -5.03% 124.92 126.05 127.12 0.90% 1.76%

20 122.09 122.09 123.59 0.00% 1.22% 129.76 128.52 126.81 -0.95% -2.28% 128.97 128.00 128.12 -0.75% -0.66% 116.65 121.03 121.76 3.75% 4.38%

21 116.46 116.46 117.88 0.00% 1.22% 115.27 121.77 115.18 5.64% -0.07% 114.71 119.07 116.59 3.79% 1.63% 121.03 116.76 114.49 -3.52% -5.41%

22 108.36 111.90 112.82 3.27% 4.12% 93.35 98.77 99.01 5.81% 6.07% 129.41 135.07 134.72 4.37% 4.11% 101.20 103.76 105.04 2.53% 3.80%

23 121.70 124.60 125.09 2.38% 2.78% 118.29 127.28 124.70 7.60% 5.41% 115.60 118.78 120.57 2.76% 4.30% 119.31 124.80 127.77 4.60% 7.09%

24 135.83 131.37 137.92 -3.28% 1.53% 99.35 99.35 109.22 0.00% 9.94% 91.31 103.36 105.64 13.19% 15.69% 131.05 137.15 136.97 4.65% 4.51%

25 123.14 125.47 125.88 1.89% 2.23% 113.00 116.62 115.18 3.21% 1.93% 134.35 129.58 132.61 -3.55% -1.29% 134.90 135.16 134.55 0.19% -0.26%

26 101.92 108.56 106.85 6.51% 4.83% 124.89 121.97 122.12 -2.34% -2.22% 119.55 118.19 119.55 -1.14% 0.00% 117.01 130.17 132.48 11.25% 13.22%

27 128.76 133.32 126.70 3.54% -1.60% 137.24 134.93 134.29 -1.68% -2.15% 137.06 137.34 135.34 0.21% -1.25% 125.99 128.57 127.85 2.04% 1.48%

28 95.75 98.42 100.66 2.79% 5.13% 137.21 137.21 133.84 0.00% -2.45% 133.95 133.95 133.99 0.00% 0.03% 116.68 127.40 127.49 9.18% 9.26%

29 133.94 135.83 141.25 1.41% 5.46% 109.49 113.82 111.66 3.95% 1.99% 123.23 133.73 135.60 8.52% 10.03% 108.71 120.10 119.40 10.48% 9.84%

30 137.33 139.17 139.82 1.34% 1.81% 113.50 113.50 113.54 0.00% 0.04% 133.20 137.45 135.48 3.19% 1.71% 133.01 134.29 134.77 0.97% 1.32%

31 140.54 146.28 146.03 4.08% 3.91% 144.15 143.00 142.71 -0.79% -0.99% 122.83 130.15 134.38 5.96% 9.40% 101.51 104.99 100.12 3.42% -1.37%

32 119.51 118.16 121.97 -1.13% 2.05% 114.67 123.40 123.63 7.61% 7.81% 108.88 114.99 115.74 5.61% 6.29% 121.23 133.83 128.88 10.40% 6.31%

33 121.61 124.89 126.31 2.69% 3.86% 127.72 127.72 126.63 0.00% -0.86% 124.62 125.42 126.99 0.64% 1.90% 103.25 107.29 103.47 3.91% 0.21%

34 141.77 140.64 145.64 -0.80% 2.73% 109.08 108.56 111.39 -0.48% 2.12% 118.78 120.09 120.32 1.10% 1.30% 105.69 115.87 117.88 9.63% 11.53%

35 118.57 118.57 118.62 0.00% 0.04% 116.75 127.85 127.46 9.50% 9.17% 119.47 119.47 121.44 0.00% 1.65% 141.29 141.63 141.10 0.24% -0.13%

36 127.14 129.33 130.84 1.73% 2.91% 112.57 117.25 115.99 4.16% 3.04% 104.80 120.35 118.45 14.84% 13.02% 83.27 84.22 83.77 1.14% 0.60%

37 149.56 147.56 148.30 -1.34% -0.84% 121.17 128.81 127.85 6.31% 5.52% 129.41 132.39 134.20 2.31% 3.70% 151.50 163.16 163.96 7.69% 8.22%

38 121.92 121.92 117.76 0.00% -3.41% 123.66 123.66 119.81 0.00% -3.11% 119.03 123.33 127.56 3.62% 7.17% 130.44 131.21 131.01 0.59% 0.44%

39 103.38 109.28 103.59 5.70% 0.20% 118.31 118.38 120.72 0.06% 2.04% 127.40 129.86 123.04 1.93% -3.42% 102.49 113.03 113.12 10.28% 10.37%

40 98.23 99.24 99.37 1.03% 1.17% 140.93 146.85 145.60 4.21% 3.31% 137.01 137.41 137.50 0.29% 0.35% 120.34 125.55 127.16 4.34% 5.67%
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Table A.7: Postponement: Profits at λ0 = 0.019

Index µ = 0.25 µ = 0.50 µ = 0.75 µ = 1.00

OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1)

1 141.43 133.05 136.88 -5.93% -3.22% 138.07 141.48 144.04 2.47% 4.32% 151.94 152.63 150.16 0.45% -1.17% 130.57 142.15 130.67 8.87% 0.08%

2 121.25 138.94 134.49 14.60% 10.92% 116.40 122.73 126.97 5.43% 9.09% 148.32 148.49 151.00 0.11% 1.81% 99.61 140.46 130.49 41.01% 31.01%

3 159.91 154.61 163.00 -3.31% 1.93% 132.55 136.82 136.25 3.22% 2.79% 159.63 166.53 159.29 4.32% -0.21% 158.07 159.35 160.68 0.81% 1.66%

4 164.86 161.60 162.94 -1.98% -1.16% 136.51 142.97 146.27 4.73% 7.15% 122.75 132.27 132.29 7.75% 7.77% 137.35 150.19 141.12 9.35% 2.75%

5 137.42 137.82 141.29 0.30% 2.82% 120.14 130.32 122.30 8.47% 1.80% 159.15 157.55 161.11 -1.01% 1.23% 138.01 155.67 155.37 12.79% 12.58%

6 141.03 150.18 145.33 6.48% 3.05% 133.58 139.34 141.30 4.31% 5.78% 153.26 154.57 150.51 0.85% -1.79% 127.20 135.06 127.06 6.18% -0.10%

7 150.76 151.67 151.76 0.60% 0.66% 137.23 140.37 138.80 2.29% 1.14% 130.30 135.06 137.00 3.65% 5.14% 146.33 145.68 146.52 -0.45% 0.13%

8 143.19 146.50 143.59 2.31% 0.28% 130.92 140.06 139.15 6.98% 6.29% 129.81 138.03 144.95 6.33% 11.66% 117.64 120.98 117.23 2.83% -0.35%

9 133.73 136.93 138.43 2.39% 3.52% 137.58 142.28 140.97 3.41% 2.46% 133.76 153.07 150.25 14.43% 12.33% 142.32 143.39 142.09 0.75% -0.16%

10 141.75 146.13 138.26 3.09% -2.46% 127.40 138.12 134.81 8.41% 5.81% 152.33 155.56 151.21 2.12% -0.73% 131.29 131.37 135.26 0.06% 3.02%

11 153.52 158.95 158.69 3.54% 3.36% 145.89 146.94 145.95 0.72% 0.04% 137.55 145.66 151.67 5.90% 10.27% 146.57 148.42 145.89 1.26% -0.47%

12 142.38 133.62 145.06 -6.16% 1.88% 143.25 149.15 144.98 4.11% 1.21% 127.18 128.30 131.07 0.88% 3.06% 145.69 146.49 141.08 0.55% -3.16%

13 149.65 152.81 158.15 2.11% 5.68% 145.25 152.56 158.15 5.03% 8.88% 137.63 147.66 153.68 7.29% 11.66% 136.14 149.25 147.40 9.63% 8.27%

14 135.44 138.55 134.37 2.30% -0.79% 138.88 133.68 137.71 -3.74% -0.84% 148.66 147.41 147.78 -0.84% -0.59% 164.64 171.57 173.79 4.21% 5.56%

15 159.66 160.41 150.66 0.47% -5.64% 135.36 132.61 137.17 -2.03% 1.33% 140.21 150.22 143.99 7.14% 2.70% 145.47 153.80 150.68 5.73% 3.58%

16 147.77 145.39 145.20 -1.61% -1.74% 137.57 138.36 140.17 0.57% 1.89% 140.85 151.73 145.95 7.73% 3.62% 127.70 135.36 127.86 6.00% 0.12%

17 123.88 132.30 137.11 6.79% 10.68% 143.30 144.00 152.92 0.49% 6.71% 136.88 139.22 137.67 1.71% 0.58% 141.23 146.42 148.85 3.67% 5.39%

18 147.46 150.36 144.98 1.97% -1.68% 140.15 141.76 142.16 1.15% 1.43% 113.60 117.63 120.07 3.55% 5.70% 123.15 124.92 124.98 1.44% 1.49%

19 147.94 147.38 131.68 -0.38% -10.99% 134.11 134.49 146.92 0.29% 9.56% 146.57 142.72 142.57 -2.63% -2.73% 151.90 148.18 153.17 -2.45% 0.84%

20 138.72 138.72 135.90 0.00% -2.04% 134.36 139.19 143.02 3.59% 6.44% 119.04 143.77 142.47 20.78% 19.68% 134.87 143.24 142.17 6.21% 5.41%

21 126.24 128.22 126.29 1.57% 0.04% 146.05 137.90 144.33 -5.58% -1.18% 140.78 142.43 143.30 1.17% 1.79% 131.84 146.62 153.70 11.21% 16.58%

22 133.61 133.45 135.68 -0.12% 1.55% 151.37 153.86 154.25 1.64% 1.90% 110.30 121.97 113.83 10.57% 3.20% 143.85 150.11 150.97 4.35% 4.95%

23 141.05 141.96 140.54 0.64% -0.36% 126.66 130.75 127.28 3.23% 0.48% 131.16 135.56 129.98 3.35% -0.90% 142.60 157.53 149.75 10.47% 5.01%

24 117.48 120.40 123.70 2.49% 5.29% 149.94 151.00 152.88 0.70% 1.96% 123.26 144.75 143.67 17.44% 16.56% 118.38 135.84 139.08 14.75% 17.49%

25 143.05 144.07 147.51 0.72% 3.12% 145.12 146.10 145.26 0.68% 0.10% 138.01 137.11 134.40 -0.65% -2.61% 127.26 138.90 131.56 9.14% 3.38%

26 143.09 145.62 145.60 1.77% 1.76% 136.96 141.83 144.33 3.56% 5.39% 131.42 133.84 137.46 1.84% 4.59% 121.42 134.96 127.14 11.15% 4.72%

27 123.46 131.10 123.93 6.19% 0.38% 155.61 160.64 160.21 3.23% 2.96% 144.76 139.49 149.39 -3.64% 3.20% 143.34 154.45 150.20 7.75% 4.79%

28 154.05 155.37 150.65 0.86% -2.20% 131.55 133.94 134.88 1.81% 2.53% 132.25 140.90 145.26 6.54% 9.84% 130.22 138.81 144.59 6.59% 11.04%

29 155.08 149.12 155.40 -3.85% 0.20% 140.79 144.39 144.84 2.56% 2.87% 124.89 131.16 136.81 5.02% 9.55% 149.27 152.38 152.86 2.08% 2.40%

30 133.36 132.66 133.74 -0.52% 0.28% 145.40 148.98 142.78 2.46% -1.80% 155.01 158.31 154.91 2.12% -0.07% 145.47 155.67 150.88 7.01% 3.72%

31 150.47 150.06 153.74 -0.27% 2.18% 118.78 119.47 116.42 0.57% -1.99% 139.79 150.10 139.91 7.38% 0.08% 143.47 151.71 152.87 5.74% 6.55%

32 127.79 132.36 135.99 3.58% 6.42% 148.18 141.89 144.54 -4.24% -2.45% 130.70 133.33 131.41 2.02% 0.55% 129.38 137.68 138.96 6.42% 7.41%

33 155.74 147.49 151.99 -5.30% -2.41% 120.93 123.74 124.41 2.32% 2.88% 142.69 155.51 149.45 8.99% 4.74% 135.97 147.76 151.96 8.67% 11.76%

34 124.93 133.20 133.31 6.62% 6.70% 139.16 139.62 147.42 0.33% 5.93% 132.71 132.38 135.39 -0.24% 2.03% 148.32 152.94 151.63 3.12% 2.23%

35 124.07 129.03 125.22 4.00% 0.93% 111.74 118.91 116.12 6.42% 3.92% 145.54 156.31 150.11 7.40% 3.14% 125.96 129.65 125.57 2.94% -0.30%

36 152.12 157.46 155.67 3.51% 2.33% 137.09 145.47 142.25 6.11% 3.76% 161.13 165.11 164.63 2.47% 2.17% 128.85 123.00 122.63 -4.54% -4.83%

37 138.09 145.00 143.60 5.01% 3.99% 154.65 150.49 149.05 -2.69% -3.62% 137.99 134.49 136.38 -2.53% -1.17% 133.52 152.94 146.66 14.55% 9.85%

38 126.56 128.75 125.00 1.73% -1.23% 145.95 149.86 142.55 2.68% -2.33% 146.57 146.97 156.37 0.27% 6.69% 140.07 142.41 136.67 1.67% -2.43%

39 123.58 124.26 125.74 0.55% 1.75% 154.98 156.43 153.96 0.93% -0.66% 121.05 120.52 122.73 -0.44% 1.38% 151.47 151.71 146.84 0.16% -3.06%

40 113.41 113.40 114.50 -0.01% 0.97% 156.19 161.77 156.13 3.58% -0.04% 149.90 159.83 154.94 6.62% 3.36% 128.22 133.59 137.33 4.19% 7.10%
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Table A.8: Postponement: Acceptance Rates at λ0 = 0.010

Index µ = 0.25 µ = 0.50 µ = 0.75 µ = 1.00

OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1)

1 0.98 0.98 0.97 0.00% -1.72% 0.96 0.96 0.96 0.00% 0.00% 1.00 1.00 0.98 0.00% -2.04% 1.00 1.00 0.96 0.00% -4.17%

2 0.95 0.95 0.95 0.00% 0.00% 0.91 0.93 0.93 2.91% 2.91% 0.98 0.98 0.98 0.00% 0.00% 0.95 1.00 1.00 4.76% 4.76%

3 0.98 0.98 0.98 0.00% 0.00% 0.98 0.98 1.00 0.04% 2.04% 0.98 0.98 1.00 0.00% 2.00% 1.00 1.00 1.00 0.00% 0.00%

4 1.00 1.00 0.98 0.00% -2.44% 0.96 0.96 0.96 0.00% 0.00% 0.96 0.98 0.96 1.99% 0.07% 1.00 1.00 1.00 0.00% 0.00%

5 0.96 0.96 0.98 0.00% 1.96% 0.96 0.96 0.93 0.00% -3.08% 0.98 0.98 0.98 0.07% 0.07% 1.00 0.98 1.00 -2.50% 0.00%

6 1.00 1.00 1.00 0.00% 0.00% 0.98 0.98 0.98 0.00% 0.00% 0.96 0.96 0.96 0.00% 0.00% 0.98 0.98 0.98 0.05% 0.00%

7 1.00 1.00 0.98 0.00% -2.08% 1.00 1.00 1.00 0.00% 0.00% 0.95 0.98 0.95 3.04% 0.14% 0.98 0.98 0.98 0.04% 0.00%

8 0.94 0.94 0.96 0.00% 2.13% 0.90 0.90 0.90 0.00% 0.00% 0.98 0.98 0.97 0.03% -1.64% 1.00 1.00 1.00 0.00% 0.00%

9 0.98 0.98 0.98 0.00% 0.00% 1.00 0.96 0.96 -3.77% -3.77% 0.95 0.96 0.96 0.21% 0.21% 0.98 0.96 0.98 -2.00% 0.08%

10 0.98 0.98 0.98 0.00% 0.00% 1.00 1.00 1.00 0.00% 0.00% 0.98 0.98 0.98 0.00% 0.00% 1.00 1.00 1.00 0.00% 0.00%

11 0.93 0.93 0.91 0.00% -1.64% 0.97 0.97 0.97 0.00% 0.00% 0.98 0.96 0.98 -2.17% 0.00% 0.92 0.92 0.98 0.00% 6.52%

12 0.98 0.98 1.00 0.00% 1.96% 0.93 0.94 0.94 0.15% 0.15% 0.98 1.00 0.98 1.79% 0.06% 0.98 0.98 0.98 0.03% 0.03%

13 1.00 1.00 1.00 0.00% 0.00% 0.95 0.93 0.93 -2.16% -2.16% 1.00 0.96 1.00 -4.08% 0.00% 0.92 0.92 0.94 0.00% 2.13%

14 1.00 1.00 1.00 0.00% 0.00% 0.95 0.95 0.95 0.11% 0.00% 0.99 0.99 0.97 0.06% -1.31% 0.98 0.98 0.98 0.00% 0.00%

15 0.91 0.91 0.93 0.00% 1.89% 0.96 0.96 0.98 0.00% 2.17% 1.00 1.00 0.98 0.00% -2.13% 0.96 0.96 0.96 0.09% 0.00%

16 0.92 0.92 0.92 0.00% 0.00% 0.93 0.93 0.95 0.00% 2.50% 0.91 0.91 0.91 0.00% 0.00% 0.99 0.99 0.99 0.09% 0.00%

17 0.95 0.95 0.96 0.00% 1.85% 0.91 0.91 0.98 0.00% 7.32% 0.95 0.95 0.97 0.00% 2.70% 0.97 0.97 0.98 0.00% 1.79%

18 0.89 0.89 0.89 0.00% 0.00% 0.96 0.96 0.96 0.00% 0.00% 0.90 0.90 0.88 0.24% -2.04% 0.91 0.91 0.91 0.00% 0.00%

19 1.00 1.00 0.98 0.00% -1.75% 0.95 0.98 0.97 2.77% 2.70% 0.98 0.98 0.98 0.00% 0.00% 0.97 0.98 0.95 0.14% -2.56%

20 0.92 0.92 0.97 0.00% 6.06% 1.00 1.00 0.98 0.00% -2.38% 0.92 0.92 0.92 0.36% 0.36% 1.00 1.00 1.00 0.00% 0.00%

21 0.98 0.98 0.98 0.00% 0.00% 0.98 0.98 1.00 0.03% 1.72% 0.96 0.96 0.94 0.00% -2.04% 0.95 0.93 0.95 -1.67% 0.00%

22 1.00 1.00 1.00 0.00% 0.00% 0.97 0.98 0.98 1.78% 1.78% 0.92 0.94 0.90 2.30% -2.17% 0.98 0.98 1.00 0.00% 2.00%

23 0.95 0.95 0.95 0.00% 0.00% 0.96 0.94 0.94 -1.92% -2.04% 1.00 1.00 0.96 0.00% -4.26% 0.94 0.94 0.96 0.00% 2.27%

24 0.98 0.98 0.98 0.00% 0.00% 0.96 0.96 0.98 0.00% 2.33% 1.00 1.00 1.00 0.00% 0.00% 0.95 0.95 0.95 0.15% 0.15%

25 0.98 0.98 0.98 0.00% 0.00% 0.98 0.98 0.98 0.00% 0.00% 1.00 1.00 1.00 0.00% 0.00% 0.95 0.95 0.95 0.00% 0.00%

26 1.00 1.00 1.00 0.00% 0.00% 1.00 1.00 1.00 0.00% 0.00% 0.98 0.98 0.98 0.00% 0.00% 0.93 0.93 0.93 0.16% 0.16%

27 0.95 0.95 0.95 0.00% 0.00% 0.96 0.96 0.93 0.00% -2.27% 0.95 0.95 0.97 0.00% 2.78% 0.97 0.97 0.97 0.00% 0.00%

28 1.00 1.00 1.00 0.00% 0.00% 0.93 0.93 0.98 0.00% 4.65% 0.95 0.95 0.97 0.00% 2.70% 0.98 0.98 0.95 0.12% -2.27%

29 0.98 0.98 0.98 0.00% 0.00% 0.96 0.96 0.95 0.00% -1.89% 0.93 0.91 0.93 -2.14% 0.37% 0.97 0.97 0.97 0.00% 0.00%

30 0.96 0.96 0.98 0.00% 1.92% 0.98 0.95 0.95 -3.60% -3.60% 1.00 0.98 1.00 -2.04% 0.00% 0.98 1.00 0.96 2.33% -2.22%

31 0.95 0.95 0.95 0.14% 0.14% 0.98 1.00 0.96 2.27% -2.27% 0.97 0.97 0.97 0.00% 0.00% 0.96 0.96 0.96 0.00% 0.00%

32 0.94 0.94 0.94 0.00% 0.00% 0.95 0.95 0.95 0.00% 0.00% 1.00 0.92 1.00 -8.00% 0.00% 0.96 0.96 0.96 0.00% 0.00%

33 0.98 0.98 0.98 0.00% 0.00% 1.00 0.98 0.98 -1.89% -1.92% 0.98 0.94 0.94 -4.13% -4.26% 0.93 0.93 0.98 0.00% 5.56%

34 0.98 0.98 0.96 0.00% -2.08% 1.00 1.00 1.00 0.00% 0.00% 0.98 0.98 0.98 0.05% 0.05% 1.00 1.00 1.00 0.00% 0.00%

35 1.00 1.00 1.00 0.00% 0.00% 0.98 0.98 0.98 0.00% 0.00% 0.98 0.98 0.98 0.04% 0.00% 0.94 0.98 0.98 4.30% 4.30%

36 0.98 0.98 0.98 0.00% 0.00% 0.95 0.95 0.95 0.00% 0.00% 1.00 1.00 0.98 0.00% -2.08% 0.91 0.93 0.95 1.89% 3.77%

37 0.97 0.95 0.95 -1.69% -1.69% 0.93 0.93 0.93 0.13% 0.13% 1.00 1.00 1.00 0.00% 0.00% 0.96 0.96 0.96 0.14% 0.14%

38 0.98 0.98 0.98 0.00% 0.00% 0.92 0.92 0.94 0.00% 2.04% 0.97 1.00 0.95 2.63% -2.63% 0.92 0.94 0.93 2.66% 0.64%

39 0.96 0.96 0.96 0.00% 0.00% 0.95 1.00 0.95 5.26% 0.13% 0.94 0.96 0.98 2.17% 3.96% 0.97 0.97 0.97 0.00% 0.00%

40 0.95 0.95 0.93 0.00% -1.89% 0.96 0.96 0.96 0.00% 0.00% 0.96 0.98 0.98 2.27% 2.27% 0.96 0.96 0.95 0.20% -1.62%
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Table A.9: Postponement: Acceptance Rates at λ0 = 0.015

Index µ = 0.25 µ = 0.50 µ = 0.75 µ = 1.00

OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1)

1 0.94 0.93 0.94 -1.39% 0.00% 0.88 0.92 0.90 3.76% 2.16% 0.92 0.86 0.92 -5.94% 0.00% 0.99 0.99 0.99 0.10% 0.06%

2 1.00 0.97 1.00 -3.33% 0.00% 0.88 0.88 0.86 0.00% -1.59% 0.88 0.87 0.87 -1.14% -0.99% 0.95 0.99 0.94 3.69% -0.75%

3 0.97 0.97 0.98 0.06% 1.75% 0.91 0.84 0.89 -7.20% -2.25% 0.83 0.84 0.82 1.06% -0.47% 0.90 0.91 0.93 2.10% 3.80%

4 0.99 0.99 0.96 0.04% -2.78% 0.85 0.85 0.88 0.00% 2.83% 0.96 0.94 0.94 -1.47% -1.47% 0.95 0.94 0.96 -1.33% 0.21%

5 0.92 0.92 0.92 0.12% 0.12% 0.93 0.94 0.94 1.77% 1.68% 0.88 0.90 0.90 2.23% 2.23% 0.95 0.94 0.96 -0.92% 0.71%

6 0.99 0.99 0.99 0.00% 0.00% 0.80 0.79 0.81 -1.41% 1.41% 0.97 0.99 0.97 1.43% 0.00% 0.94 0.96 0.96 1.96% 1.96%

7 0.96 0.95 0.95 -1.25% -1.25% 0.88 0.82 0.83 -6.29% -5.71% 0.86 0.77 0.79 -10.74% -7.70% 0.96 0.87 0.91 -9.30% -5.79%

8 0.85 0.82 0.80 -3.45% -5.35% 0.97 0.97 0.97 0.05% 0.00% 0.96 0.97 0.97 1.65% 1.61% 0.97 0.97 0.99 0.09% 1.58%

9 0.78 0.78 0.79 -0.39% 0.76% 0.91 0.90 0.91 -0.89% 0.46% 0.97 0.93 0.97 -3.80% 0.14% 0.90 0.91 0.88 1.07% -1.73%

10 0.85 0.83 0.83 -2.47% -2.47% 0.93 0.84 0.84 -9.52% -9.52% 0.98 0.98 1.00 0.16% 1.89% 0.91 0.89 0.88 -2.48% -4.17%

11 0.96 0.93 0.95 -2.74% -1.31% 0.92 0.91 0.91 -0.60% -0.71% 0.95 0.95 0.98 0.25% 3.59% 0.91 0.90 0.91 -1.15% 0.12%

12 0.86 0.89 0.88 2.93% 2.65% 0.91 0.91 0.88 0.00% -2.90% 0.89 0.88 0.87 -1.10% -2.17% 0.90 0.91 0.90 0.78% -0.52%

13 0.94 0.94 0.94 0.00% 0.00% 0.88 0.87 0.86 -1.45% -2.70% 0.90 0.86 0.83 -3.91% -7.49% 0.94 0.93 0.93 -1.45% -1.13%

14 0.90 0.91 0.93 0.25% 2.95% 0.84 0.81 0.84 -4.09% -0.55% 0.84 0.85 0.84 1.18% 0.00% 0.93 0.93 0.92 0.00% -1.49%

15 0.97 0.95 0.98 -1.61% 1.64% 0.95 0.99 0.97 3.50% 1.91% 0.90 0.93 0.90 2.66% 0.09% 0.90 0.90 0.85 0.48% -5.56%

16 0.78 0.81 0.77 3.95% -1.01% 0.93 0.97 0.95 4.52% 1.65% 0.97 0.96 0.95 -1.18% -2.41% 0.93 0.92 0.92 -1.30% -1.41%

17 0.98 0.98 0.98 0.03% 0.03% 0.93 0.90 0.89 -2.44% -3.47% 0.97 0.97 0.96 0.26% -1.17% 0.95 0.93 0.95 -2.50% 0.13%

18 0.95 0.95 0.95 0.00% 0.09% 0.98 0.98 0.98 0.00% 0.00% 0.96 0.93 0.95 -2.58% -1.25% 0.95 1.00 0.92 5.66% -2.59%

19 0.87 0.88 0.86 0.41% -0.97% 0.92 0.92 0.94 0.00% 1.80% 0.86 0.86 0.85 0.00% -1.47% 0.97 0.96 0.96 -1.39% -1.39%

20 0.90 0.90 0.90 0.00% 0.00% 0.95 0.93 0.93 -1.35% -1.45% 0.99 0.99 0.99 0.02% 0.02% 0.96 0.96 0.97 0.21% 1.53%

21 0.93 0.93 0.95 0.00% 1.45% 0.84 0.86 0.85 3.03% 1.52% 0.99 0.96 0.93 -2.68% -5.33% 0.78 0.74 0.74 -4.29% -5.42%

22 0.96 0.97 0.97 1.43% 1.43% 0.95 0.97 0.95 1.85% 0.18% 0.97 0.94 0.93 -3.58% -4.73% 0.95 0.95 0.95 0.08% 0.16%

23 0.91 0.95 0.96 4.48% 5.97% 0.96 0.99 0.96 3.12% 0.13% 0.93 0.89 0.88 -3.89% -5.37% 0.97 0.95 0.95 -2.46% -2.62%

24 0.90 0.84 0.90 -5.80% 0.00% 0.90 0.90 0.97 0.00% 7.02% 0.91 0.97 0.97 6.20% 6.20% 0.91 0.92 0.92 0.59% 0.59%

25 0.96 0.97 0.96 1.41% 0.11% 0.92 0.91 0.89 -1.41% -3.08% 0.89 0.88 0.90 -1.30% 0.15% 0.95 0.94 0.93 -1.25% -2.37%

26 0.92 0.93 0.92 2.09% 0.30% 0.97 0.93 0.94 -4.23% -2.77% 0.91 0.88 0.88 -3.09% -2.90% 0.97 0.94 0.96 -2.64% -1.12%

27 0.91 0.91 0.91 0.25% 0.13% 0.82 0.78 0.81 -4.79% -1.03% 0.92 0.89 0.87 -4.01% -5.38% 0.88 0.86 0.85 -3.14% -4.29%

28 0.95 0.95 0.95 0.08% 0.15% 0.85 0.85 0.86 0.00% 0.19% 0.88 0.88 0.89 0.00% 1.37% 0.93 0.94 0.91 0.48% -2.44%

29 0.88 0.89 0.92 1.52% 4.22% 0.93 0.92 0.92 -1.04% -0.92% 0.95 0.98 0.97 2.56% 1.42% 0.91 0.96 0.94 5.11% 3.58%

30 0.92 0.93 0.93 1.27% 1.27% 0.97 0.97 0.97 0.00% 0.00% 0.91 0.87 0.86 -4.40% -5.71% 0.94 0.91 0.92 -3.30% -2.28%

31 0.91 0.91 0.89 -0.96% -2.38% 0.85 0.84 0.85 -1.00% 0.18% 0.94 0.81 0.85 -13.75% -9.61% 0.97 0.97 0.95 0.05% -1.59%

32 0.86 0.88 0.90 1.77% 4.43% 0.92 0.90 0.88 -2.10% -3.50% 0.99 0.99 0.99 0.08% 0.06% 0.96 0.99 0.94 3.19% -1.21%

33 0.94 0.94 0.96 0.09% 1.58% 0.90 0.90 0.90 0.00% 0.00% 0.96 0.95 0.99 -1.32% 2.78% 0.97 0.95 0.97 -1.44% 0.05%

34 0.91 0.84 0.85 -6.78% -6.59% 0.94 0.93 0.94 -1.41% 0.17% 0.95 0.94 0.92 -1.59% -3.26% 0.95 0.96 0.96 0.36% 0.36%

35 0.94 0.94 0.90 0.00% -4.33% 0.97 0.96 0.94 -1.06% -3.53% 1.00 1.00 1.00 0.00% 0.00% 0.84 0.83 0.80 -0.64% -3.92%

36 0.97 0.99 0.97 1.43% 0.08% 0.97 0.99 0.99 1.54% 1.54% 0.91 0.96 0.94 5.51% 3.96% 1.00 1.00 1.00 0.00% 0.00%

37 0.89 0.83 0.84 -5.91% -4.71% 0.97 0.99 0.99 1.68% 1.63% 1.00 1.00 1.00 0.00% 0.00% 0.90 0.82 0.82 -8.45% -8.63%

38 0.94 0.94 0.93 0.00% -1.52% 0.99 0.99 0.96 0.00% -2.38% 0.94 0.94 0.95 0.42% 1.73% 0.92 0.88 0.88 -4.94% -5.11%

39 0.88 0.92 0.88 4.62% 0.00% 0.99 0.96 0.97 -2.60% -1.28% 0.84 0.86 0.82 1.50% -2.63% 0.94 0.92 0.93 -1.20% -1.08%

40 0.91 0.93 0.93 2.06% 2.06% 0.82 0.84 0.84 1.47% 2.53% 0.96 0.95 0.95 -1.29% -1.29% 0.87 0.88 0.90 1.90% 3.40%
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Table A.10: Postponement: Acceptance Rates at λ0 = 0.019

Index µ = 0.25 µ = 0.50 µ = 0.75 µ = 1.00

OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1) OPT3 POS (0) POS (0.1) % (0) % (0.1)

1 0.90 0.83 0.84 -7.35% -6.08% 0.85 0.80 0.83 -4.84% -1.41% 0.84 0.75 0.75 -9.91% -9.64% 0.78 0.81 0.75 4.21% -3.57%

2 0.91 0.92 0.88 0.75% -3.77% 0.90 0.83 0.86 -7.49% -4.63% 0.88 0.81 0.86 -7.69% -2.20% 0.72 0.82 0.76 13.92% 5.31%

3 0.75 0.70 0.71 -6.37% -5.30% 0.78 0.76 0.76 -2.89% -2.29% 0.86 0.83 0.86 -3.43% 0.26% 0.89 0.77 0.79 -13.65% -10.83%

4 0.82 0.84 0.82 2.30% 0.20% 0.85 0.87 0.87 2.33% 2.33% 0.94 0.91 0.89 -3.11% -5.17% 0.85 0.74 0.74 -13.05% -13.05%

5 0.93 0.89 0.91 -3.44% -2.05% 0.87 0.85 0.82 -2.09% -5.00% 0.84 0.77 0.83 -7.88% -0.57% 0.72 0.74 0.76 3.29% 5.72%

6 0.89 0.89 0.88 0.40% -0.95% 0.90 0.85 0.87 -5.31% -2.88% 0.88 0.86 0.82 -2.04% -6.49% 0.87 0.77 0.77 -10.81% -11.34%

7 0.79 0.79 0.80 0.00% 1.42% 0.85 0.79 0.78 -7.99% -8.66% 0.73 0.71 0.71 -2.25% -1.85% 0.83 0.80 0.80 -4.19% -3.97%

8 0.88 0.87 0.86 -0.94% -2.20% 0.89 0.91 0.88 1.73% -0.88% 0.88 0.85 0.88 -3.07% -0.52% 0.95 0.95 0.95 0.08% 0.08%

9 0.85 0.86 0.83 1.80% -2.33% 0.90 0.89 0.90 -0.79% 0.26% 0.93 0.91 0.91 -1.56% -1.56% 0.91 0.87 0.87 -5.24% -5.24%

10 0.77 0.79 0.76 3.03% -1.04% 0.81 0.79 0.76 -2.38% -6.49% 0.80 0.79 0.75 -1.37% -5.77% 0.90 0.81 0.82 -10.18% -8.81%

11 0.80 0.76 0.74 -4.40% -6.91% 0.84 0.82 0.80 -2.61% -4.66% 0.82 0.83 0.84 0.67% 2.11% 0.84 0.81 0.81 -4.63% -4.63%

12 0.85 0.82 0.82 -3.43% -3.22% 0.85 0.82 0.82 -3.50% -3.27% 0.94 0.92 0.93 -1.18% -1.08% 0.84 0.78 0.77 -7.08% -7.84%

13 0.78 0.77 0.80 -2.37% 2.07% 0.84 0.85 0.84 1.13% 0.35% 0.86 0.77 0.82 -10.78% -5.13% 0.90 0.78 0.84 -13.46% -6.85%

14 0.83 0.80 0.77 -2.88% -7.28% 0.88 0.83 0.86 -5.16% -2.21% 0.81 0.76 0.78 -5.83% -3.69% 0.83 0.75 0.76 -9.68% -8.02%

15 0.80 0.77 0.75 -3.15% -5.68% 0.93 0.87 0.88 -6.75% -5.56% 0.82 0.80 0.74 -2.43% -8.97% 0.78 0.76 0.75 -2.56% -3.14%

16 0.82 0.82 0.81 0.24% -1.10% 0.85 0.85 0.86 -0.56% 0.80% 0.90 0.87 0.83 -3.46% -8.17% 0.90 0.86 0.81 -4.89% -10.00%

17 0.89 0.83 0.84 -6.92% -5.50% 0.89 0.85 0.88 -4.83% -1.51% 0.86 0.84 0.85 -1.75% -0.90% 0.79 0.74 0.74 -5.98% -5.72%

18 0.88 0.82 0.83 -6.02% -5.28% 0.88 0.84 0.86 -4.55% -2.04% 0.87 0.82 0.86 -5.84% -1.69% 0.78 0.75 0.73 -3.73% -5.78%

19 0.90 0.88 0.80 -2.35% -11.73% 0.94 0.90 0.95 -3.75% 1.60% 0.83 0.77 0.81 -7.32% -2.47% 0.88 0.82 0.88 -7.64% -0.34%

20 0.87 0.87 0.88 0.00% 1.22% 0.88 0.84 0.90 -3.53% 2.41% 0.87 0.83 0.84 -3.57% -2.55% 0.84 0.76 0.80 -9.42% -4.71%

21 0.82 0.79 0.81 -3.75% -1.68% 0.84 0.77 0.78 -8.66% -7.19% 0.85 0.82 0.82 -3.12% -3.12% 0.79 0.72 0.74 -8.86% -7.14%

22 0.81 0.80 0.78 -0.75% -3.17% 0.81 0.77 0.75 -5.43% -7.83% 0.96 0.91 0.92 -4.84% -3.93% 0.81 0.73 0.70 -10.33% -13.53%

23 0.85 0.85 0.82 0.55% -3.34% 0.87 0.85 0.86 -1.91% -0.80% 0.93 0.79 0.78 -14.35% -15.71% 0.88 0.82 0.80 -7.13% -9.06%

24 0.99 0.94 0.96 -4.20% -2.84% 0.84 0.79 0.82 -5.66% -2.14% 0.95 0.89 0.91 -5.81% -3.57% 0.87 0.90 0.93 3.85% 6.72%

25 0.82 0.80 0.82 -2.00% 0.23% 0.88 0.85 0.87 -3.87% -1.46% 0.88 0.84 0.80 -4.76% -9.31% 0.89 0.79 0.79 -10.31% -10.55%

26 0.85 0.84 0.85 -0.72% 0.60% 0.87 0.84 0.85 -3.89% -2.73% 0.76 0.73 0.74 -3.88% -2.27% 0.91 0.86 0.87 -5.40% -4.28%

27 0.83 0.82 0.80 -0.18% -3.32% 0.81 0.81 0.82 0.00% 1.15% 0.81 0.65 0.72 -19.00% -11.29% 0.86 0.86 0.84 0.17% -2.58%

28 0.77 0.75 0.75 -2.76% -2.51% 0.80 0.78 0.77 -2.06% -3.35% 0.85 0.78 0.85 -7.79% -0.09% 0.88 0.76 0.80 -13.61% -9.41%

29 0.75 0.72 0.76 -4.33% 0.28% 0.76 0.72 0.71 -6.09% -7.32% 0.88 0.85 0.88 -3.20% -0.39% 0.82 0.73 0.71 -10.91% -13.53%

30 0.87 0.86 0.87 -1.00% 0.53% 0.87 0.88 0.85 1.52% -2.11% 0.88 0.90 0.89 2.47% 1.18% 0.85 0.70 0.72 -17.18% -14.49%

31 0.84 0.84 0.81 -0.44% -3.78% 0.82 0.82 0.79 -0.61% -3.50% 0.81 0.73 0.73 -10.26% -10.06% 0.92 0.80 0.81 -13.25% -12.49%

32 0.87 0.87 0.90 0.52% 3.16% 0.85 0.80 0.82 -5.88% -3.64% 0.97 0.96 0.97 -1.33% 0.04% 0.85 0.78 0.80 -7.61% -5.58%

33 0.81 0.77 0.81 -4.96% -0.49% 0.91 0.89 0.91 -2.50% 0.37% 0.83 0.85 0.78 1.82% -6.67% 0.74 0.74 0.76 -0.17% 2.18%

34 0.94 0.94 0.95 -0.99% 0.31% 0.82 0.77 0.80 -6.80% -2.78% 0.83 0.81 0.82 -3.23% -1.70% 0.78 0.74 0.73 -4.70% -6.14%

35 0.86 0.83 0.84 -3.19% -1.67% 0.87 0.84 0.82 -3.36% -6.11% 0.88 0.75 0.73 -14.18% -16.31% 0.84 0.83 0.82 -1.33% -2.84%

36 0.90 0.88 0.89 -1.91% -0.71% 0.90 0.89 0.86 -0.19% -4.09% 0.83 0.77 0.78 -7.60% -5.82% 0.88 0.73 0.75 -17.27% -15.56%

37 0.93 0.92 0.93 -1.61% -0.67% 0.87 0.85 0.84 -2.08% -3.37% 0.84 0.71 0.74 -15.76% -12.33% 0.78 0.72 0.73 -7.51% -5.92%

38 0.93 0.92 0.91 -1.41% -2.82% 0.88 0.88 0.87 -0.99% -2.10% 0.87 0.81 0.80 -6.52% -7.56% 0.91 0.81 0.81 -10.63% -10.63%

39 0.90 0.89 0.92 -1.19% 1.52% 0.78 0.76 0.77 -2.15% -1.28% 0.92 0.87 0.91 -5.13% -0.94% 0.79 0.79 0.76 0.24% -3.21%

40 0.88 0.86 0.88 -2.50% -1.09% 0.78 0.71 0.67 -8.77% -13.67% 0.81 0.78 0.78 -3.61% -3.61% 0.87 0.81 0.82 -6.59% -5.22%
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Appendix B

Expected Euclidean Distances

Between Two Points

Definition: The Euclidean distance between two points p = (p1, p2, . . . , pn) and

q = (q1, q2, . . . , qn) in Euclidean n-space, is defined as:

D(p,q) = Dpq =

√

√

√

√

n
∑

i=1

(pi − qi)2 (B.1)

B.1 The expected distance from an idle point to a

random pick-up point

One can refer to Eilon et al. (1971 [13]) and Daley et al. (1976 [12]) for more

information about the analysis of the expected distances of random points. Let φp

be the location of the idle point in zone p.

E[D(φp, ol)] = E[Dφp
ol]

=
1

∑

p

λp

∑

p

λpE[Dφp
ol|ol is in zone p] (B.2)
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We show how to compute φp = φ2, there are three cases as shown in Figure B-1

Case: Within square, e.g. (b)

E[Dφ2
ol|ol is in zone 2] = E[

√

(φx2 − oxl)2 + (φy2 − oyl)2|ol is in zone 2]

= 0.5214 × d for d×d square zone (B.3)

Case: Adjacent squares, e.g. (a), (c)

E[Dφ2
ol|ol is in zone 1] = E[

√

(φx2 − olx)2 + (φy2 − oly)2|ol is in zone 1]

≈ d(1 +
d2

2d2
) = 1.5d for d×d square zone (B.4)

Case: Corner point contact squares, e.g. (d)

E[Dφ2
ol|ol is in zone 4] = E[

√

(φx2 − olx)2 + (φy2 − oly)2|ol is in zone 4]

≈
√

2d(1 +
d2

2(
√

2d)2
) ≈ 1.7678d for d×d square zone

(B.5)

From B.2, for φp = φ2 we will get

E[D(φ2, ol)] =
1

∑

p

λp

{

1.5λ1d + 0.5λ2d + 1.5λ3d + 1.7678λ4d
}

(B.6)

B.2 The expected distance from a random pick-up

point to a random delivery point

E[D(ol,dl)] = E[Dol
dl]
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=
1

∑

p

λp

∑

p

λpE[Dol
dl|ol is in zone p] (B.7)

For example, the case of ol in zone 1 is shown in Figure B-2

E[Dol
dl|ol is in zone 1] = E[

√

(olx − dlx)2 + (oly − dly)2|ol is in zone 1]

≈ 3
√

2d ≈ 4.2426d for d×d square zone (B.8)

B.3 The expected distance from a random delivery

point to a fixed pick-up point

E[D(dl, oj)] = E[Ddl
oj]

= s[1 +
(2d)2

2s2
] , (B.9)

where s =
√

(oxj − 0.5)2 + (oyj − 0.5)2
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Figure B-1: The distance from the idle point in zone 2 (φ2) to a random pick-up point
in different zone
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Figure B-2: The distance from a random pick-up point to a random delivery point
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Figure B-3: The distance from a random delivery point to a fixed pick-up point
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Appendix C

Simulating Probabilistic Events

The methodological approach of simulating probabilistic events presented in Ap-

pendix C is drawn from Larson and Odoni (1981 [25]). We summarize relevant

methods used in our simulation in this appendix.

C.1 Discrete Random Variable

The inversion method is used to generate samples from discrete random variables.

This is shown in Figure C-1. If y’s ∈ {1, 2, 3, 4} are the values that the discrete

random variable Y can take and pY (y) and PY (y) are the pmf and cdf, respectively,

of Y , the method consists of (1) drawing a random number r, and (2) finding the

smallest value y such that

PX(yi) =
∑

all y≤yi

pX(y) ≥ r (C.1)

In that case we set ys = yi (where ys denotes the sample value of Y ). Note that the

set {1, 2, 3, 4} corresponds to four geographical zones in the region.
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?

Figure C-1: Use of the inversion method for sampling from discrete distributions.

C.2 Negative Exponential Random Variable

Define T a time interval before a successive event (a new request). It is therefore

essential that we be able to generate random sample values, τs, of the random variable

T with the pdf

fT (t) = λe−λt, for t ≥ 0

As we know, the cumulative distribution of T is

FT (t) =

∫ t

0

λe−λτdτ = 1 − e−λt, for t ≥ 0

Let us then set a random number r (uniformly distributed between 0 and 1) equal to

FT (t). We have

rFT (t) = 1 − e−λt

or, equivalently,

t =
− ln(1 − r)

λ
(C.2)

Note that equation C.2 allows us to draw sample observations of T . that is, each

time we wish to draw a sample ts, all we have to do is draw a random number r and
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use C.2. In fact, since 1 − r is also a random number uniformly distributed between

0 and 1, we can also bypass the subtraction. That is, we can use a random number

distributed between 0 and 1 directly as follows:

τs =
− ln r

λ
(C.3)

C.3 Simulating Poisson Events

Since we consider the sequence of job arrival epochs τarv
i as the Poisson process arrival

times. The Poisson pmf P{N(T ) = k} is the probability of observing k events in a

time interval T when interarrival times are independent with negative exponential

distribution. To generate random observations of N(T ) for any given T , we follow

the procedure shown in Figure C-2, appeared in Larson and Odoni (1981 [25]). We

keep generating exponentially distributed time intervals τs1, τs2, τs3, . . . [by using C.2]

until the total length of time represented by the sum of these intervals exceeds T for

the first time. That is, we find j such that

j
∑

i=1

τsi ≤ T <

j+1
∑

i=1

τsi

Then our sample observation of N(T ) is given by Ks = j.

It is important to note that the sum of independent Poisson random variables,

Xi’s, with the parameter λi is a Poisson random variable with the parameter
∑

i λi.

97



-
t

t = 0

6

1st event

6

2nd event

6

3rd event

6

4th event

-�
T

-�
τs1

-�
τs2

-�
τs3

-�
τs4

Figure C-2: Generation of random observations from Poisson distribution. In this
figure, ks = 3.
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