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Abstract

Waste consolidation is a crucial step in the development of cost-effective, nation-wide
material reclamation networks. This thesis project investigates typical and confor-
mational tendencies of a hypothetical end-of-life electronics recycling system based
in the United States. Optimal waste processor configurations, along with cost drivers
and sensitivities are identified using a simple reverse logistics linear programming
model. The experimental procedure entails varying the model scenario based on:
type of material being recycled, the properties of current recycling and consolidation
practices, and an extrapolation of current trends into the future. The transition from
a decentralized to a centralized recycling network is shown to be dependent on the
balance between transportation costs and facility costs, with the latter being a much
more important cost consideration than the former. Additionally, this project sets
the stage for a great deal of future work to ensure the profitability of domestic e-waste
recycling systems.
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Chapter 1

Introduction

Recycling is known to most people as an activity in domestic waste separation with

few tangible or financial benefits. Nevertheless, material reclamation flows at many

scales play important roles in a number of industries. The development of more,

complex systems that can handle both a greater volume and a wider variety of waste

materials is a pursuit that is crucial to the establishment of a sustainable society, not

to mention a potentially lucrative source of new economic growth.

Dematerialization, or, an "absolute or relative reduction in the quantity of mate-

rials required to serve economic functions [6]," is a philosophy central to an emerg-

ing generation of engineers, designers, and policy-makers. Similarly, environmental

impact as a fourth criterion of design decisions-along with cost, aesthetics, and

performance-is advocated in texts such as Cradle to Cradle [7] and Design + Envi-

ronment [8]. In the process of minimizing either the total environmental impact or

just the bill of materials of some product, issues of material reclamation arise, in a

technical sense as well as logistical one.

Effective material recovery is the key to a truly closed-loop industrial ecology. For

natural materials (wood pulp, cotton fibers, etc.) this goal can be achieved through

the exclusion of all synthetic materials and preservatives; natural material reclama-

tion via biodegradation returns the materials to the Earth system. With technical

and synthetic materials, this route is not available (to the defense of humanity, our

industrial ecosystem has had less than 300 years to evolve, while nature has had 4.6



billion). Nevertheless, material reclamation is possible at many other scales: tailings

and scrap can be recovered from a stamping process and added back into the melt,

uniform-composition plastics can be brought back to monomer form, and to a certain

extent complex consumer products can be collected and recovered through a series of

steps. It is increasing the effectiveness of the final example that is the focus of this

thesis project.

1.1 Barriers to Material Reclamation

As promising as the benefits of closed materials loops seem to be, a number of barriers

still exist to the development of mature material reclamation systems. Barriers exist

at many points in product life cycles, and can be economic, political, technical, social,

or a combination. Many of these barriers exist because concerns with product or

material end-of-life (EoL) scenarios still play a very small role in overall design and

engineering.

Cost Costs of running recycling programs are hotly contested, as standards and tools

for analyzing the life-cycle costs of materials and products are still developing. A

public recognition of this uncertainty, or more aptly, a belief that all municipal

recycling programs operate at a loss, poses a significant stumbling block to

the expansion of recycling and material reclamation systems [9]. High costs of

inefficient collection schemes combined with the low revenues from the sale of

the reprocessed material-if it gets sold at all--offer a great challenge to be

overcome. Additionally, a decision about who should shoulder the substantial

initial financial burden of recycling and material reclamation has yet to be made

on a large scale, in particular by the American market or government. In various

countries and regions around the world, waste management strategies such as

extended producer responsibility (EPR) have been either voluntarily adopted

by or forced upon some manufacturers to incorporate life-cycle costs into their

operating costs [4]. In this strategy, now that the producer has to pay for the

recycling or disposal of their products, they have the option to share the cost



burden with their customers and are financially incentivized to recover as much

as they can from their discarded products. From the consumer's perspective this

may initially seem undesirable; yet it is actually just shifting expenses currently

collected through taxes to each individual product. This strategy also penalizes

overly complex and unrecoverable materials while promoting the production of

easily disassembled and recycled products. Nevertheless, as private recycling

systems begin to expand, system redundancy and unnecessary costs will need

to be dealt with.

Policy Policy barriers to widespread, effective recycling and material reclamation ex-

ist largely due to economic uncertainty in production, consumption, and waste

disposal and a great deal of politicization and ignorance-compounding the

uncertainty-to the true environmental costs of different waste disposal tech-

niques [10]. Although there are many different types of public recycling pro-

grams around the country, many policies restrict the uses of non-virgin materials

to low-risk, low-impact application, such as synthetic lumber and filler mate-

rial. For example, reclaimed asphalt or concrete is limited to sub-grade filler

in the Massachusetts Highway system [11], despite proponents' arguments sug-

gesting beneficial properties from this reclaimed aggregate in surfacings as well

[12]. Nevertheless, stringent restrictions on the uses of recycled plastics in food

packaging highlights the justifiable mistrust of potential contaminants that may

have leached into recycled plastics [13]. This back-end policy effort protecting

human health might be less effective than an up-front policy influencing the

recyclability of virgin materials or security of material reclamation processes.

Technology Although technical issues are often not the prohibitive element in solu-

tions to large societal problems, recycling technologies aren't proving themselves

to be the panacea to humanity's waste problem. Many recycling processes sim-

ply do not output material functionally equivalent to their virgin counterparts.

For example, recycled plastics often lack the purity, strength, or optical prop-

erties desired by consumers [14]. In the case of plastic or glass bottles, this



problem stems from poor front-end preparation for recycling--e.g., ineffective

labeling, indelible dyes-or poor separation technologies. While metals can

often be very effectively removed from a waste stream, the separation and re-

moval of different plastics currently requires a multi-stage process that takes

time, energy, and money [15]. This problem is compounded when one attempts

to reclaim value from composite or highly engineered materials. The solution

to similar problems in the natural world-bacteria that break waste materials

down into an undifferentiated form-lacks an analogue in the technosphere [16].

The emergent properties attained by composite materials are incredibly valu-

able to today's society-new recycling technologies and waste paradigms must

be developed to justify continuing to use these materials.

Society A final and often overlooked barrier to widespread material reclamation is

the powerful stigma that has been placed on all "waste" materials by modern

society. An incomplete understanding of materials science leads the layperson

to the erroneous conclusion that a product made from a recycled material is

necessarily less functional and less reliable than a virgin material. Although

some recycled paper is thicker, coarser and less-white than virgin paper, who

is to say that blindingly bright, bleached white paper is the optimal product?

For some reason, much more faith is placed in products created from materials

found often in low concentrations in natural repositories than in materials al-

ready extracted from the Earth and proven to be functional. Of course, much

more investment has been put into mining natural resources than mining an-

thropogenic resources.

This stigma extends to another important barrier: material separation. When

clear, green, and brown glass are not separated at home, it saves the consumer

an extra few seconds at the garbage can, but eliminates the possibility that

that waste flow can be used for clear glass bottles again without manual sorting

somewhere else down the line. Co-mingled recyclable bins may have increased

the total amount of material recycled, but arguably has limited the utility of



those waste flows. Comfort with one's trash is needed for a truly endemic

recycling system. Of course, all downstream infrastructures and processes must

reflect and capitalize on this initial consumer effort for the change to really

happen.

Although barriers to material reclamation can be generally lumped into different

categories, they are all highly interrelated and interdependent. The "root" of the

problem can be traced to anywhere in the supply-demand cycle. This thesis looks at

a small snapshot of what it takes to have a large-scale material reclamation network.

Improving the effectiveness of any part of the recycling system can have effects in

the larger reverse supply chain (RSC), and may help to bypass some of the barriers

discussed above.

1.2 Research Overview

This project attempts to determine the optimal configuration for an EoL RSC infras-

tructure. It makes use of linear optimization to minimize the total cost of a material

reclamation system given a set of hypothetical inputs. Varying these inputs will pro-

vide a picture of the cost drivers of the RSC. Additionally, analysis of the changes

in economic, logistical, and environmental characteristics of each case highlights the

sensitivities of both the RSC and the model itself.

This research was initiated by the Hewlett-Packard Company (HP) asking a simple

question of RSC conformation: Is a centralized or decentralized RSC infrastructure a

more cost effective system for consolidating EoL electronics? HP, the world's largest

computer and information technology corporation, has embarked on a campaign to

reduce the considerable environmental impact of its products and supply chains. Its

behavior on this front has the potential to be very influential, especially because it is

willing to invest in basic research in parallel to its action.

The project focuses on the consolidation step of a RSC; this step is important

because it allows for the aggregation and expansion of local material reclamation

networks to regional or national scales. The cost optimization of such a small part



of the product life-cycle may seem inconsequential in the face of a movement in the

design and engineering community that seeks to take a holistic attitude towards life

cycles [7]. Vindication comes with the application of scientific methodology to this

disaggregation of the product life cycle. This process finds an analogue in the scientific

effort expended in the optimization of an individual part of a mechanical system; the

analysis provides important specifics to the extant body of knowledge that can be

used to understand the whole. Insights travel from the whole to the part as well.

This project deals with electronics waste (e-waste) for a number of reasons, none

of which invalidate the results or analysis technique if applied to other waste streams.

The main reason e-waste is being investigated is the rapidly growing fraction of the

municipal solid waste (MSW) stream that is composed of electronics, much of which

have economic value, are easily recyclable, or are toxic. According to the United

State Environmental Protection Agency (EPA), electronics make up between 1 and 4

percent of total MSW, or around 2 million tons per year [3]. Other sources estimate

e-waste volumes to be upwards of 7 million tons per year, and increasing between 3

and 5 percent per year, faster than the growth of the MSW stream [17]. E-waste is

discussed in more detail in the next section.

1.3 Relationship to Prior Work

This project exists at a fascinating intersection of a number of previously well-

established research thrusts. Reverse logistics, mathematical programming and mod-

eling, optimization of recycling systems and processes, and the social and environ-

mental problems caused by e-waste are all topics that have significant presences in

scholarly publications. Additionally, there have been a few projects or case studies

that are very similar to this one.

1.3.1 Reverse Logistics

An RSC is an economic network of people, businesses, and/or governments charged

with not the distribution of a good or service, as is the case with a traditional supply



chain, but the collection and reclamation of some previously distributed material,

good, or product. Originally conceived to deal with product recalls-in which prod-

ucts have to be returned to the producer, defective products-which often times

would end up in alternative markets, or dedicated service industries-in which prod-

ucts or services are guaranteed for some period of time, this management paradigm

has gained popularity in material reclamation industries [18]. To this end, a number of

case studies have been performed that highlight the growing popularity of returnable

containers [19], waste collection for material reclamation [20, 21], and even e-waste

[22, 23]. In fact, an extensive survey of RSCs performed in 2002 [24] reports that

more than 25% of all of the case studies performed deal with e-waste. This is dispro-

portionate to the total waste stream, but indicates the high level of interest in either

utilizing e-waste as a resource for raw materials or spare parts, or just extending the

life-cycle of the complex materials that enable electronics to function.

Despite-or perhaps because of-the large number of RSC case studies, there is a

rich vein of research dealing with characterizing reverse logistics [25] and developing

new management strategies [26]. RSCs are conflictingly described as either a com-

pletely different phenomenon from forward supply chains [18] or an element in a new

breed of "green supply chain" that merges forward and reverse supply chains [27].

Finally, the applications of reverse logistics are just as broad as any other economet-

ric paradigm. Purely economic concerns [28] and approaches that embody the entire

life-cycle of a product [29] have many instances of overlap.

1.3.2 Material Recovery Optimization

There is a constant battle being fought over the economic viability of recycling. Pro-

ponents of recycling and material reclamation have a number of tools at their disposal,

including some very sophisticated modeling and mathematical programming. A sum-

mary of some examples follows.

Aluminum and vehicle recycling Analyses examine large-scale aluminum recy-

cling through a number of optimization techniques [30] and the specific impacts



aluminum-intensive vehicles may have on the recycling industry [31], in partic-

ular due to the sensitivity of aluminum to impurities. Another vehicle recycling

study [32] uses genetic algorithms to conclude that current focuses on optimiz-

ing and expanding the recycling system are misguided; more effort needs to

be placed in redesigning the automobile to simplify or tailor the product for

material recovery.

Electronics waste E-waste is a popular topic for mathematical modeling. Cost

models have been used to support the claim that the cost of policies to manage

e-waste outweigh the benefits accrued from properly discarding the waste [33]

as well as to explore new ways to ensure the profitability of e-waste recycling

[34]. Linear optimization and other mathematical programming are also used

to model and optimize the existing electronics recycling industry [35, 36].

RSCs Mathematical programming can be used to optimize the entire life-cycle of a

computer, including the configuration of waste processors in Delhi, India [37]. A

primary conclusion from this study is the interrelationship between all aspects

of the computer's life-cycle, in particular the effect upstream considerations (de-

sign, assembly, etc.) have on RSC configuration. Mathematical models have

been built to help understand the relationships between sources, recyclers, pro-

cessors, and consumers in an e-waste RSC [38] and the complexities of vehicle

routing and material recovery technologies in general recycling cases [39]. Fi-

nally, in what is a ideal industrial ecology case, the inter-industrial symbiotic

waste flows that are emerging in Japan are analyzed and modeled with the dual

optimization of cost and C02 production [40].

1.3.3 E-waste

The potential for environmental harm from improperly discarded e-waste is evident

in Table 1.1. While the bulk of the composition of a PC is glass, plastic, and common

metals, the high concentration of lead is immediately a cause for worry. Lead shows

up in many older solders and cathode ray tubes. Nevertheless, a glance at some



of the materials that show up at lower concentrations reveals many elements that

are carcinogenic or otherwise toxic, e.g., cadmium, mercury, and arsenic [1]. It is

this potential for human and environmental damage from improper disposal, along

with the high value of other component materials-primarily copper, silver, gold, and

platinum-that motivates e-waste material recovery.

Material % Weight Material % Weight
Silica 24.8803 Bismuth 0.0063
Plastics 22.9907 Chromium 0.0063
Iron 20.4712 Mercury 0.0022
Aluminum 14.1723 Germanium 0.0016
Copper 6.9287 Gold 0.0016
Lead 6.2988 Indium 0.0016
Zinc 2.2046 Ruthenium 0.0016
Tin 1.0078 Selenium 0.0016
Nickel 0.8503 Arsenic 0.0013
Barium 0.0315 Gallium 0.0013
Manganese 0.0315 Palladium 0.0003
Silver 0.0189 Europium 0.0002
Beryllium 0.0157 Niobium 0.0002
Cobalt 0.0157 Vanadium 0.0002
Tantalum 0.0157 Yttrium 0.0002
Titanium 0.0157 Platinum Trace
Antimony 0.0094 Rhodium Trace
Cadmium 0.0094 Terbium Trace

Table 1.1: Composition of a generic PC [1].

A highly publicized study co-authored by members of the Basel Action Network

and the Silicon Valley Toxics Coalition in 2002 [17] exposed the externality costs asso-

ciated with the e-waste recycling systems of the time, which would ship 50% - 80% of

collected electronics to Asia where they would be disassembled and valuable materials

extracted with little or no regard to human and environmental health. Unmanaged

incineration, open acid baths, and other processing techniques are causing cancers,

poisoning water resources, and destabilizing communities. These claims are echoed

in an overview of the environmental impact of e-waste in Africa [411. In combination

with studies that introduce cost-effective and environmentally-sound methods of re-

cycling or disposing of electronics domestically [42, 43, 44, 45, 46], these reports are



motivation for the development of large, e-waste material recovery systems.

The European Union (EU) is on the forefront of e-waste regulation with its dual

directives on "waste electrical and electronic equipment (WEEE)" [47] and on the

"restriction of the use of certain hazardous substances in electrical and electronic

equipment" (RoHS) [48]. The WEEE directive, as it is widely known, codifies impor-

tant definitions of e-waste, encourages green design, and requires that every member

country collect and recycle at least 4 kg (8.82 lbs) of WEEE per capita. The RoHS

directive, among other things, expressly forbids the use of "lead, mercury, cadmium,

hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl

ethers (PBDE)" in new electrical and electronic products. These two directives offer

a model for policy-based e-waste management world-wide.

The attention e-waste is receiving in scholarly media is evidenced by a 2005 issue

of the Environmental Impact Assessment Review focusing entirely on e-waste [49].

Topics covered in that issue include an analysis of the WEEE and RoHS EU direc-

tives in a global perspective [50], barriers to e-waste recycling in China [51], and a

comparison of the e-waste recycling systems in Switzerland and in India [52], a paper

that details optimal e-waste solutions in the context of regional economics, culture,

society, values, industrial capabilities, and politics.

Finally, a report from Gallatin County, Montana [53] that documents an extremely

successful e-waste collection event offers positive empirical evidence of the ability of

communities to deal with e-waste without overwhelming regulatory pressure. This

event, which occurred in 2006, ended up collecting 3.08 lbs/capita of e-waste while

costing only 0.2 cents/person. Of course, these numbers are not very extensible;

shipping costs were waived by the trucking company as this was a one-time event.

1.3.4 Equivalent Studies

There have been a number of studies that occupy an equivalent space as this project

does. One of the first, completed at the Georgia Institute of Technology in 1999,

examined the optimal geographic configuration of processors for recycling thermo-

plastic carpet in the state of Georgia [54]. This study, updated in 2004 to include the



whole United States [55], introduced a number of the constraints and terminologies

used here in this thesis. The same group continued their research with an analysis

of e-waste recycling in Georgia [56, 57], effectively communicating the importance of

geographic RSC configuration to the viability of using waste electronics as a resource.

Another e-waste processor study, performed in 2001, focused on Taiwan [58].

1.3.5 Motivation for this Thesis Project

The location in research space taken up by this project addresses some of the gaps in

the studies reviewed above. Primarily, it combines work on RSCs, linear optimization,

and the problems of e-waste and presents a nation-wide e-waste facility configuration.

The 20,000-foot view taken in this project prioritizes cost factors in the development

of this nascent field, giving it more of an applied focus than many of the other studies.

In that vein, it presents the beginnings of a solution to some of the problems caused

by e-waste and a way for industries to truly start to use e-waste as a viable raw

material resource.

1.4 Introduction to Linear Optimization

Linear optimization is a type of mathematical programming that attempts to meet

a desired objective given a set of data and constraints. The technique is aptly de-

fined [59] as "a mathematical procedure for determining optimal allocation of scarce

resources [59]." This wording belies the tool's utility and ubiquity in business and

economics. An example given in [59] describes a hypothetical manufacturing plant

with limited labor resources that can create two different products, each unique in

its cost, required production time, and available production capacity. The objective

is to maximize profit, while the constraints are the production capacities and labor

availability. Examples like this one are pervasive in introductory texts on linear opti-

mization. Needless to say, the utility of the tool is shown by producing a result that is

non-intuitive; the ideal mix of expensive--and time intensive-and cheaper products

is not the one initially hypothesized.



Linear optimization can also be used to optimize very large systems. While the

example given above can easily be solved using simple algebraic or graphical methods,

the optimization of a global courier service or a waste disposal network easily includes

thousands if not millions of pieces of data. Computer-enabled linear optimization

allows for the accurate orientation of extremely large data sets, if one has access to

sufficient computing power. Increasingly complex problems are being tackled with

linear optimization, many of which utilize higher-level mathematics to even phrase.

Limitations of this problem solving method arise when values are required to be

integers, when non-linearity is introduced to the problem, and when data sets grow

to a size not well handled by modern solving algorithms [59].

1.5 Thesis Outline

The objective of this project is to assess the relative strengths and weaknesses of

different types of e-waste RSCs and to make a recommendation as to the optimal

configuration. The methodology, alluded to in Section 1.2, utilizes a simple linear

optimization model, discussed in Chapter 2. Construction of the model occurred

first. This task involved learning the programming language, writing programming

code, selecting and collecting raw data, tailoring data sets into the appropriate form,

and creating an interface to easily define and run case studies. The experimental

procedure was completed next. In this task, described in Chapter 3, initial sensitivity

studies were conducted to select an appropriate set of variables and variable ranges

followed by the utilization of the model in conjunction with judiciously constructed

variable ranges to produce a large set of results. These results come in three types:

logistical, economic, and environmental, and are presented in Chapter 4. An emphasis

was placed on limiting the experimental scope in light of the condensed, one-semester

research window. The remainder of the semester was dedicated to the analysis of the

model results (also Chapter 4) and presentation of conclusions, which can be found

in the eponymous Chapter 5. Conclusions were drawn with a number of audiences in

mind, including the academic, who may be interested in modeling methodology, the



business-oriented, who may be thinking about reverse logistics, and the environmen-

talist, who may be looking for data on the environmental footprint of a particular

product. Future work is also presented in Chapter 5.





Chapter 2

Model

The model developed and utilized in this project is a simple linear optimization pro-

gram, run using LINGO, a computer optimization tool from LINDO Systems, Inc.

LINGO, while functionally able to operate using data hard-coded into the program-

ming code, is especially useful due to its ability to interface with Microsoft Excel

spreadsheets. Inputs from Excel can be very large, complex, and multidimensional-

data known as sets in LINGO lingo--making this a very powerful tool. LINGO can

also output selected results to Excel. The model used in this project, while function-

ally simple, synthesizes a great deal of data. This section will go through the specifics

of each part of the model and describe the model design criteria.

2.1 Model Overview

As described in section 1.4, an objective function is optimized with respect to data

inputs and a set of constraints. The objective function for this model minimizes the

total cost of a recycling network, which in this case is the sum of the transportation

costs, operating costs, collection costs, and fixed costs. The data inputs and con-

straints attempt to give this objective function some physical significance. The text

of the model first introduces the data sets and systems to be optimized, follows with

a statement of the objective, defines the technical scope with a set of constraints,

and closes with instructions about output variables. A transcript can be found in



Appendix A.

2.2 Functional Elements

Objective Function The objective function embodies the simplicity of the model

and of the technique in general. The function interprets the entire system as the

sum of just four terms: transportation cost, collection cost, operating cost, and

fixed cost. It guides the selection of the generator-to-processor waste material

flows that meet all of the necessary criteria (see below) and minimize total cost.

Constraints There are four constraints. The first three inequalities ensure physical

limits are being respected; the fourth constraint is purely clerical, and allows

for the selection of individual processor types and locations. Without it, all

processor locations and types would be engaged every time, destroying the

utility of the model. The first two constraints enable the recycling minima

introduced in section 2.3.2. The first constraint makes sure individual regional

processing volumes are greater than the minimum required and less than the

total amount of waste generated. The second constraint does the same, but on

a national scale. The third constraint makes sure that the selected processors

have the capacity to handle a sufficient volume of waste.

2.3 Data Inputs

Two types of data are used here: those that define the system, and those that can

be varied to optimize the system. The system is defined by the set of waste gen-

eration points, the set of potential processor locations, and the range of processor

capacities. Additionally, there are characteristics about each of these sets which can

be varied to further refine the system definition. Variable data include recycling rate,

transportation cost, facility cost, collection cost, and waste volume.



2.3.1 System Definition

A graphical representation of the system within which this model operates can be seen

by the map in Figure 2-1. This map displays the 24 equally-populated source regions

and designated consolidation points. Each source region was defined using a GIS map

of the congressional districts of the contiguous United States as of the 2000 census.

Seventeen-sometimes 18-congressional districts are aggregated within each source

region. This results in a per-region population of 11,368,000 and a total population

of 273,000,000. Attempts were made to minimize the ratio of circumference to area

in each of the regions while staying faithful to existing state or economic regional

boundaries. One major city within each generation region has been designated as a

consolidation point (Table 2.1); in the hypothetical system this city would serve as the

hub for all regional collection before any transcontinental transport. When possible,

a centrally-located metropolis was selected for this role. In calculating transportation

route lengths, measurements were taken to and from these points.

1 Boston, MA 9 Tampa, FL 17 Kansas City, MO
2 Albany, NY 10 Cleveland, OH 18 Boise, ID
3 New York, NY 11 Detroit, MI 19 Dallas, TX
4 'renton, NJ 12 Indianapolis, IN 20 Houston, TX
5 Baltimore, MD 13 Memphis, TN 21 Las Vegas, NV
6 Richmond, VA 14 New Orleans, LA 22 San Diego, CA
7 Charlotte, NC 15 Chicago, IL 23 Los Angeles, CA
8 Atlanta, GA 16 Minneapolis, MN 24 San Francisco, CA

Table 2.1: A list of consolidation cities for all 24 source regions.

Possible types and locations of processor facilities are also indicated in Figure 2-

1. These eight locations all contain major electronics recycling facilities. They are:

Atlanta, GA; Dallas, TX; Detroit, MI; Durham, NC; La Vergne, TN; Minneapolis,

MN; Newark, NJ; and Sacramento, CA. Sacramento is the only site on the west

coast and Dallas is the next location going east. These may seem poorly distributed,

however, the allocation of sites roughly follows the American population density.

Finally, a range of processor facility sizes was selected using existing facility in-

formation as a guide. Twelve sizes were selected: 1, 2, 5, 10, 15, 20, 25, 30, 35, 40,



Figure 2-1: Geographical representation of the project scenario. The continental
United States is broken up into 24 source regions, each represented by a single consol-
idation point. The eight processor options are: A) Newark, B) Durham, C) Atlanta,
D) Detroit, E) La Vergne, F) Dallas, G) Minneapolis, and H) Sacramento.

45, and 50 million lbs of waste processed per year.

Distances between each generator source point and potential processor location,

used for calculating route-length-dependent transportation costs, were calculated us-

ing a free on-line service called the Distance Table Calculator [60]. This tool calculates

all of the distances between two lists of locations using a Google Maps API. This table

of distances can be found in Appendix B.

2.3.2 System Variables

Limiting the range of possible cases served by this project was essential in establishing

an accomplish-able research plan. Therefore, five elements were chosen to be inde-

pendent variables: transportation cost, recycling rate, total waste volume, collection

cost, and factory cost

Transportation costs are calculated using a tool provided by Chris Caplice at the

MIT Center for Transportation & Logistics that calculates total cost using pa-

rameters derived from regression analyses of dry van and full truckload (FTL)



costs. Some of these component parameters are source and destination zip

codes, distance, volume, and trip frequency. On average, this cost is around

$1.20 per mile. For cases in which both generator and processor are located in

the same city, a default 10 mile trip is used. To make this value dynamic, a

per-mile surcharge can be added in to represent variability in fuel costs or other

costs related to shipping waste materials. This model assumes FTL shipping,

an industry standard that substantially affects shipping rates. More specifics

about the truckload calculator model are omitted with respect to proprietary

considerations.

Recycling rate is represented here by processing minima required of each region,

of the total system, or of both. In physical terms, this would be affected most

likely by regulation. This value is calculated as the quotient of recycled volume

and total waste generated.

Waste volume generation is calculated as the product of waste generated per

capita and the total population. The per capita volume is input based on

average values for for the material under consideration.

Collection cost is related to all of the activities performed before the waste arrives

at the consolidation site. Curbside pickup, separation, maintenance of recycling

depots, and even publicity encouraging recycling can conceivably be wrapped

into this cost. This cost is not dependent on the sizes of the selected facilities,

and is input per pound.

Facility cost is the sum of two other costs, each of which is scaled differently across

the range of capacities. Fixed cost, which incorporates the physical infrastruc-

ture of the facility, increases with increasing volume. The other factory cost

component is operating cost. Like collection cost, it is input based on the vol-

ume processed, however this rate decreases with increasing facility capacity.

Scaling factors were selected to ensure appropriate consistency of costs across

the range of facility sizes while taking into account economics of scale. Fixed



costs increase to the 0 .6th power and operating costs decrease to the 0 .9 th power

with increasing facility capacity.

Operating costs are highly material specific. They incorporate labor, energy,

and revenue from the sale of reclaimed material-the latter of course decreasing

the total cost. In this model, factory costs are varied uniformly by a linear

multiplier. In reality, the variability of factory costs can be attributed to any or

all of the component costs-energy spikes, labor shortages, decreased demand

for reclaimed material, taxes, new processing technologies, etc.-however to

the model, these factors are immaterial, and all that matters is the total cost.

Factory costs are calculated using a cost model [61]. This tool incorporates

costs and other data about a particular factory-material costs and amounts,

labor costs, rate of return, energy costs, equipment lifetime, building size, and

processing specifics-and outputs information about the total cost of running

the factory.

2.3.3 Case Variables & Other Factors

Other factors can be enabled to vary the functionality of the model. Material-specific

elements, such as truck capacity, can be varied to increase the accuracy of cases

comparing the recycling systems of different material types. Low density products

or materials, like plastic cases, would have a lower truck capacity (in lbs) than high

density products, like baled aluminum cans. Regional differences can also be ac-

centuated. Regional cost-of-doing-business (CODB) rankings, adopted from a 2005

Milken Institute study [62], can be used to represent the market forces that favor

siting factories in lower-cost areas. In the model, facility and collection costs are

adjusted to reflect this variability when CODB is engaged. A table of these values

can be seen in Appendix C. Recycling rates can also be switched to reflect average

population density in each region. Realistically, one would expect a higher recycling

rate on Long Island than in rural Montana just because cities have more mechanisms

for waste collection, variations in standards of living notwithstanding.



2.4 Outputs

The LINGO model outputs three pieces of data, which the spreadsheet interface

manipulates in a number of ways. As indicated in the final lines of the LINGO

transcript (Appendix A), the model outputs an array of all of the flows-including

source, sink, and volume-and aggregated calculations of cost and processed volume.

Once these values are imported into the spreadsheet, many more important pieces of

information can be extracted.

2.4.1 Mass Flows & Processor Selection

High-level answers to the guiding questions of this project are given in the mass flows.

Here, the waste generated in each source region is shown to be shipped in entirety or

in part to a particular processor, split among two or more processors, or not processed

at all. Depending on the constraints, entire regions can conceivably go unserved, as

nation-wide recycling minima are met entirely by other regions. It is important to

observe the number of under-served and un-served regions when evaluating the ability

of a selected infrastructure to withstand changes in either total volume or distribution

of waste generated.

Degree of centralization of the recycling infrastructure is indicated by these results

as well. A highly centralized infrastructure will see all of the waste to be processed

nation-wide shipped to one or two locations served by high capacity processors. A

decentralized network will provide a smaller processor at many regionally-distributed

sites. Total miles driven is also an indication of centralization-for the same waste vol-

ume processed, a higher mileage indicates a centralized network, while lower mileage

indicates a decentralized network.

Total mass processed and generated are also retrieved. Although the latter pa-

rameter is fixed by the case scenario under investigation, the former parameter is

only given a lower bound. Conceivably, total cost minimization could occur with a

processing volume higher than the absolute minimum.



2.4.2 Cost Breakdown

Cost contributions from each of the four component costs-transportation, fixed, col-

lection, and operating-along with the total cost of the recycling system, are impor-

tant pieces of data to be analyzed across a variable range to understand sensitivities

as well as overall feasibility. Overall fixed and operating costs are found by adding

together the costs of each selected processor. Collection costs come from the total

waste value. Transportation costs of each route are determined by volume and ship-

ping distance; the total transportation cost is the summation of all of the flows. The

relative contribution of each cost parameter as a percent of total cost can inform

sensitivity of the model. For example, high variability of a cost that makes up a large

percentage of the total cost will have a higher impact on overall system dynamics

than variability of a cost that only contributes a small bit to the total cost. These

four costs are also calculated per unit mass to allow for normalization and comparison

across different waste volumes.

2.4.3 Environmental Impact

A limited environmental impact assessment is also conducted. Emissions data from

transportation are compared with emissions data from the production of component

materials in two types of e-waste: CPUs and CRT monitors. The objective of this

analysis is to observe the trade-offs between shipping a large mass over a long dis-

tance, therefore producing emissions from the combustion of diesel fuel, and the offset

emissions from secondary materials processing.

Two types of e-waste are analyzed to represent the large number of materials and

compositions in e-waste. The compositions and average masses of CPUs and CRT

monitors only include relatively large contributors by mass [2]. The compositions of

representative products used here can be seen in Table 2.2.

Emissions analyzed and their dependencies on both mass processed and miles

driven are shown in Table 2.3. Primary refers to production from raw materials and

ores. Secondary refers to production from already-refined materials. The difference



Material CPU Tower Monitor
Glass (wt. %) 0 44
Steel (wt. %) 67 18
Copper (wt. %) 7 5
Aluminum (wt. %) 5 2
Plastic (wt. %) 19 24
Lead (wt. %) 0.299 3.863
Silver (wt. %) 0.015 0.008
Gold (wt. %) 0.004 0.002
Other (wt. %) 1 0
Total Mass (lbs) 33.95 19.93

Table 2.2: Representative compositions of two types of e-waste [2]

between primary and secondary production is what is offset by utilizing recycled

materials. These emissions values were calculated using the tables in Appendix D.

Due to inconsistencies between the materials in the composition data and in the

emissions data, may simplifications were made. Diesel emissions were calculated

assuming a fuel economy of 5.65 miles per gallon (MPG) [63].

Although these are not all of the residues from combustion and manufacturing, the

emissions analyzed here provide a picture of the general environmental impact of these

industrial activities. Carbon dioxide and methane are well known as contributors to

global warming. Carbon monoxide is known to be detrimental to urban air quality.

Nitrous oxide is a potent global warming gas in addition to being a contributor

to ozone depletion. Nitrogen oxides are smog- and acid rain-forming emissions, a

property shared with sulfur oxides. NMVOC refers to non-methane volatile organic

compounds, a general term for pollutants that have been shown to be carcinogens,

cause respiratory problems, damage the ozone layer, soil, and groundwater.



Primary Secondary Diesel
Emission CPU (lbs/ton) CRT (lbs/ton) CPU (lbs/ton) CRT (lbs/ton) lbs/1000 mi

C02 145142.36 2661.4 37577.2 7863.27 3503.85
CO 136.27 38.65 10.45 2.18 15.48
CH4  13.72 9.28 0.86 0.18 0.14
N2 0 1.17 0.59 0.32 0.07 0.09
NOx 277 105.45 113.64 23.8 12.5
SOx 1133.17 459.34 498.64 185.06 No Data
NMVOC No Data No Data No Data No Data 3.05

Table 2.3: Emissions data used in the simplified environmental impact assessment.
Primary and secondary processing of CPU and CRT are shown in lbs of pollutant
per ton of electronic component. Diesel emissions are shown in lbs of pollutant per
1000 miles driven.

2.5 Model Design Decisions

2.5.1 Integer Values

Although pricing in the model assumes FTL shipping, it required too much computing

power to restrict the value (mass flow)/(truck capacity) to integer values. The effects

of this assumption will have on the model depends on two main factors: the amount

of waste that would actually be shipped in less-than truckload (LTL) conditions and

how strict a physical manifestation of this model would keep to the hypothetical rules.

If the processed volume is so high that only a little waste spills over each year into

a LTL route, then there is no real problem with not using integers. Most likely, an

integer constraint would increase the transportation cost slightly and indicate that

only very few source regions would experience 100% service. Assuming the model

had the ability to apply FTL and LTL pricing, this may be a situation where more

waste may be processed than the absolute minimum, depending on the cost of LTL

routes. In real life, this problem would probably be avoided through short term

on-site stockpiling or other similar strategies.



2.5.2 Frequency-Dependent Transportation Costs

The MIT CTL trucking cost model, when used dynamically, takes into account sur-

charges added to infrequent routes. Because the matrix of source points and processor

options is fixed, and because LINGO does not interface with MS Excel during op-

timization, the cost model was used only once, to identify all of the possible route

costs. The addition of a number of "if" statements to the objective function, each

one representing a route frequency, resulted in a prodigious slowdown in the model

solve time. Because the surcharge values range from about $50 to $150 and the cases

being examined in this project are upwards of $50,000,000, a decision was made to

eliminate the frequency surcharge from the calculation.

2.5.3 Facility Redundancy

The way the model is built, only one facility of each size can be assigned to any given

processor city. This has obvious limitations when the waste volume is such that a

city needs to process more than twice the capacity of the largest processor option.

However, in real life, the logical solution would not be to build multiple processors,

but one, larger facility. For consistency, the same range of facility capacities was

used for almost all of the cases-further discussion of this decision can be found in

section 5.2.

2.5.4 Environmental Impact Optimization

Especially when compared with full life-cycle assessments (ISO 14040 series), the en-

vironmental analysis described in section 2.4.3 is lacking. Due to inconsistencies in

analytical boundaries and input inventory, the calculations are not meant to provide

an overwhelmingly accurate representation of the environmental impact of recycling.

Instead, they are meant to serve as an order-of-magnitude estimation for use in com-

parisons. Performing even a single environmental impact assessment on e-waste is a

viable topic for a Ph.D. thesis. In ideal circumstances, a full environmental impact

assessment would be added to the objective function, forcing the model to report a



recycling infrastructure that minimizes the entire life-cycle cost as well as life-cycle

environmental impact. However, that step is outside the scope of this project.



Chapter 3

Experimental Procedure

The main scenarios evaluated can be illustrated by a 3x5 array (Table 3.1), with an

experimental run corresponding to each cell in the array. On one of the axes, one finds

the five variables selected for this project: transportation cost, facility cost, collection

cost, waste volume generated, and recycling rate. In each case, only the specified

variable is varied-all other parameters are fixed. On the other axis lie three different

system scenarios: one that assumes uniform waste collection and variable CODB,

one that keeps both collection and CODB constant, and one that has both factors

regionally variable. In addition to these 15 main experimental runs, four specialized

cases were examined: one that greatly elevates the e-waste generation volume, one

that engages and varies a regional recycling minimum in addition to the nation-wide

constraint, and two that observe the applicability of this model to other materials:

PET bottles and aluminum cans.

Scenario 1 Scenario 2 Scenario 3
CODB Varied CODB Constant CODB Varied
Coll. Constant Coll. Constant Coll. Varied

Transportation Cost
Facility Cost
Collection Cost Cases
Waste Generated
Recycling Rate

Table 3.1: Array illustrating the experimental procedure



3.1 Selection of the Base Case

A base case was selected that represented a slightly ambitious but physically relevant

recycling situation. Illustrated in Table 3.2, the base case provides not just a starting

point for this analysis, but also a constant for comparison during analysis. From this

base case, each of the five variables are varied independently one by one to see the

individual effect of each factor on the otherwise unchanged system.

CODB Varied
Collection Type Constant
Transportation Surcharge $0/mi.
Facility Cost Multiplier lx
Collection Cost $0.05/lb.
Waste Generated 0.5 lb./capita
Recycling Rate 90 %

Table 3.2: Base Case Parameters

Physical analogues for each of these variables are given in the next section.

3.2 Description of the Five Variables

While ranges for each of the five variables can be selected simply to observe behavior

of the model, a more effective approach is to select variable ranges with physical

significance. For uniformity, 20 values, along with a sometimes-invoked 0
th value,

make up each variable range. All utilized variable ranges and, if available, their

associated physical analogues can be seen in the tables below along with paragraphs

to explain the ranges and calculation of the analogues. Full explanations of the

variables can be found in section 2.3.2. Tables 3.3 and 3.4 display the ranges and any

relevant physical data for each of the variables.

3.2.1 Facility Cost

The facility cost multiplier operates on a core pair of values calculated for a 15

million lb/year facility. Using [61], fixed costs were found to be $1.5 million in total



Facility Cost Collection Cost
Cost Fixed Cost Operating Cost Material (Revenue)

Multiplier ($/yr) ($/lb) Cost ($/lb) ($/lb)
0 0 0 0 (0.052) 0
1 .1 150,000 0.004 (0.048) 0.005
2 .2 300,000 0.008 (0.044) 0.01
3 .3 450,000 0.012 (0.040) 0.015
4 .4 600,000 0.016 (0.036) 0.02
5 .5 750,000 0.020 (0.032) 0.025
6 .6 900,000 0.024 (0.028) 0.03
7 .7 1,050,000 0.028 (0.024) 0.035
8 .8 1,200,000 0.032 (0.020) 0.04
9 .9 1,350,000 0.036 (0.016) 0.045

10 1 1,500,000 0.040 (0.012) 0.05
11 1.1 1,650,000 0.044 (0.008) 0.055
12 1.2 1,800,000 0.048 (0.004) 0.06
13 1.3 1,950,000 0.052 0.000 0.065
14 1.4 2,100,000 0.056 0.004 0.07
15 1.5 2,250,000 0.060 0.008 0.075
16 1.6 2,400,000 0.064 0.012 0.08
17 1.7 2,550,000 0.068 0.016 0.085
18 1.8 2,700,000 0.072 0.020 0.09
19 1.9 2,850,000 0.076 0.024 0.095
20 2 3,000,000 0.080 0.028 0.10

Table 3.3: Variable Ranges, pt. 1



Transport Cost
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Table 3.4: Variable Ranges, pt. 2
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and operating costs 4 cents/lb, or $600,000. These values are then mapped to the

other facility sizes using regressions discussed in Section 2.3.2. A total list of values

across the range of facility capacities can be seen in Appendix E. The facility cost

range multiplies these two base values by the cost multiplier, which ranges from 0 to

2. Many factors contribute to both the fixed and operating costs; only one--recycled

material cost or revenue--was selected to illustrate the meaning of the cost multiplier

here. Recycled material can be either a cost or a source of revenue for a recycler.

The market value of a recycled material greatly influences the cost effectiveness of a

recycling system. Revenues seen here illustrate a conservative yet realistic range of

prices for recycled mixed electronics. Although material cost contributes only to the

operating cost, its variability shows how certain factors can change to justify the cost

multiplier.

3.2.2 Collection Cost

Although the range of collection costs used in this project could refer to the variabil-

ity of cost of fuel in trucks, labor costs, or even entirely different types of collection

paradigms, one would need an additional collection cost model to understand how

these factors interact, something not included in this model. Furthermore, the under-

standing of the real costs of collecting e-waste is difficult to characterize, as the space

is shared by private firms and public organizations. Collection costs in this project

range from 0 to 10 cents per lb, calculated in a similar manner to facility cost.

3.2.3 Transportation Cost

Assuming the average diesel tractor trailer in the US gets 5.65 MPG [63], a fuel cost

in $/gallon can be calculated from the transportation surcharge values, which range

from 0 $/mi to 1 $/mi, by multiplying the surcharge value by the fuel economy value.

As of August 13, 2007, diesel prices averaged $2.85/gallon in the US [64]. With recent

fuel price volatility expected to continue into the future, the range investigated here

is appropriate.



Contributing to total transportation cost, yet not utilized as a variable in this

study, is truckload mass. The conservative assumption used in this model is that

25,000 lbs of e-waste can be shipped at once. Given that the maximum weight al-

lowance for these trucks is 40,000 lbs, this represents a significant source of inefficiency

in shipping.

3.2.4 Waste Volume Generated

The last two variables are not directly tied to recycling cost, instead focusing on

the size of the recycling network. First is waste volume generated. Using a per

capita mass, this value can be related to types of materials being disposed. E-waste

here has a limited definition-only high tech products like computers and televisions,

not washing machines. The base case of 0.5 lb per person could refer to one in

every 50 people throwing out a 25 lb CRT monitor annually (a realistic estimation

in some places) or every person disposing 1 and 2/3 4.8 ounce iPhones yearly (not so

realistic) [65]. Turnover of laptops (3-8 lbs) and desktops (upwards of 100 lbs) is so

high that the range used in this project: 0 to 1 lbs/capita, might actually be on the

low end. On the other hand, with increased miniaturization, even if waste generation

in terms of numbers of devices keeps increasing into the future, overall waste mass

could conceivably stay constant.

3.2.5 Recycle Rate

In even the best waste disposal systems, not all of the waste generated gets recycled.

The selection of 90% as the base case was an optimistic one--90% recycling may allow

us to avoid significant future environmental degradation and use waste electronics as

a viable resource for raw materials. This value can refer to a percent of the total

waste stream diverted to recycling in units of whole products-9 out of 10 computers

getting recycled. This variable is run from 0% to 100%, although both extremes are

not realistic.



3.3 Scenario Descriptions

Adding another dimension to the project, both CODB and collection rate have the

ability to be constant or varied by region. In real life, population density, economic

vitality, and other factors greatly influence waste disposal decisions, including those

governing recycling. Varying characteristics of the background system on which a

network of facilities will be placed gives insights not only into the important qualities

to consider when actually creating a reverse supply chain but also the sensitivity

of this model to changes in the system setup. All five of the previously described

parameter variations are performed in each of the three following scenarios.

3.3.1 Scenario 1: Varied CODB & Constant Collection Rate

The first scenario, and the one in which the base-case scenario was envisioned, uses

the state-by-state CODB ranking system developed by the Milken Institute [62]. The

other variable, collection rate, is kept constant. The CODB index is used just to

influence the facility and collection costs. It is normalized by setting the CODB of

the state with the mean ranking to 100.

3.3.2 Scenario 2: Constant CODB & Constant Collection

Rate

The second scenario keeps both variables constant. This is the least realistic of the

possibilities, but gives insight into the behavior of the model, as it eliminates as

many exogenous variables as possible. In this scenario, the cost of building a facility

in Alabama is the same as building one in Illinois.

3.3.3 Scenario 3: Varied CODB & Varied Collection Rate

The final scenario varies both CODB and Collection Rate. The latter variable is

varied by linking a source region's recycling rate to its population density. Using as

a normalization factor the mean population density, the total waste collected stays



the same as in the previous two scenarios, but the breakdown favors the big cities

significantly. The regional population densities can be found in Appendix B.

3.4 Additional Cases

The next step is to select specialized cases of particular interest to investigate. The

cases selected here involve all five of the variable parameters.

3.4.1 WEEE Volume

One element in the WEEE directive passed by the EU in 2003 mandates that member

states collect 4 kg (8.82 lbs) of e-waste per person. Although this directive includes

electrical equipment (i.e. any product with a cord) in addition to electronic equip-

ment, it is a useful analysis to see the results of this model when evaluating a system

with such elevated waste volumes. If the model is robust enough to consider such a

waste flow, then this analysis may give insights into the ability of nascent material

reclamation infrastructures to scale up to meaningful volumes.

3.4.2 Regional Recycling Minima

For all 15 cases run in the body of the research, source regions have no individual

recycling minima. This case adds an additional constraint onto the base case defined

in section 3.1 to observe a result of regional waste collection requirements that are

beginning to be enacted nationwide. In all three system scenarios (the three permuta-

tions of variability in CODB and collection rate), a regional recycling rate minimum

is introduced, ranging from 0% to 100%.

3.4.3 Other Materials

Material reclamation is a larger problem than just with electronics waste. Movement

towards a design and engineering philosophy that approaches used products and ma-

terials as viable sources of raw materials requires not only new design processes but



also effective RSCs. A useful metric for gauging the effectiveness of this investigation

can be attained through comparison with existing, more mature recycling systems.

Two materials that have established domestic recycling flows are observed. Material

price data were gathered from public sources of prices in materials markets.

In Table 3.5, system parameters for both materials are displayed [3, 4]. Assump-

tions were made regarding facility costs for each of these materials, and due to the

total waste volumes under consideration, larger facilities were added to the model.

Another main difference from e-waste is the truck capacity for each of these materi-

als. In this hypothetical arrangement, waste products do not arrive at the recycling

facility in the same state as when thrown away; physical consolidation-in addition

to the waste flow consolidation discussed in this project-is often employed to allow

for a better use of available shipping weight, exceeding the e-waste shipping mass of

25,000 lbs.

PET Bottles Polyethylene terephthalate (PET) is a ubiquitous material in packag-

ing; soda and water bottles made of PET are often marked with the number 1

recycling code. According to the EPA, 850,000 tons of PET was discarded in

2005 by Americans, equaling 5.67 lbs per capita [3]. Used often in homogeneous,

discrete products (bottles), curbside pickup is possible, something that doesn't

explain the material's mediocre recycling rate, 34.1% [3]. The value of baled,

mixed PET bottles is 21 cents/pound.

Aluminum Cans Aluminum is one of the most effectively recycled materials; pro-

cessing secondary aluminum requires less than 10% of the energy required to

processes primary aluminum. 1.45 million tons of aluminum cans are thrown

away every year, and despite the cost savings, only 44.8% of this valuable waste

is reclaimed [3]. After collection and sorting, aluminum cans are often densified.

Densified Al cans can be sold for upwards of $2000 per ton, or almost a dollar

per pound.



Material Baled PET Bottles Densified Al Cans
Secondary Price ($/lb) 0.21 0.96
Generation (lb/capita) 6 9.7
Truck Capacity (lbs) 35,000 39,000
Recycling Rate 34.1% 44.8%
Base Fixed Cost ($/lb) 0.09 0.07
Base Operating Cost ($/lb) 0.05 0.05
Collection Cost ($/lb) 0.54 0.29

Table 3.5: Additional Materials Input Data [3, 4].



Chapter 4

Results & Analysis

This chapter presents and discusses the results from the experimental cases described

in the last chapter. Beginning with the base case to establish a point of comparison,

major results are presented in a way that hopefully highlights trends and patterns

in model behavior, preceding a discussion section that synthesizes these results into

suggestions for creating a real reverse supply chain. Other data presented here are

the environmental impact analysis and the results from the additional cases described

in Chapter 3.

4.1 Base Case

The base case results illustrate a configuration neither highly centralized nor decen-

tralized. Shown in Figure 4-1 is the configuration of waste processors selected by the

model as the optimal configuration superimposed on the scenario map. The three

processor facilities selected are located in Durham, NC, La Vergne, TN, and Dallas,

TX. Although these three sites are all centrally located, they effectively break the

country into three distinct zones, each serving the shaded region in which they are

located. Most of the source regions are fully served. Two regions-10 and 18-send

waste to two different processors each. One region-22-is only 60% served, and

two-23 and 24-are not served at all. Notice that the three under- or un-served re-

gions are all on the west coast, farthest away from the three selected processor sites,



removed from other regions of high population density, and in a state with a high

CODB. As set forth in the case constraints, 90% of all waste is recycled-to meet this

goal the model selected two 50 million lb processors (Durham and LaVergne) and one

25 million lb processor (Dallas).

The cost breakdown (Figure 4-2) among the four constituent costs-transportation,

collection, operating and fixed-has facility costs dominating with 56%, transporta-

tion cost contributing the least at 17%, and collection cost making up the remainder.

Figure 4-1: Geographical representation of base case results

4.2 Sensitivity Analysis Results

Table 4.1 displays five different solution characteristics from experimental permuta-

tions of five variables in all three scenarios: (1) the base case scenario, (2) constant

CODB, and (3) varied CODB with collection rate tied to population density. In each

of the 75 cells, one of three symbols has been placed, indicating the effect each vari-

able has on the particular solution characteristic. The letter H indicates the variable

has a large effect across the whole variable range; the change can either be continuous

or discrete. The letter L means that although change in the variable causes a change,



Base Case Cost Breakdown
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Figure 4-2: Cost breakdown of base case

it is just a small change or effects solely at the extremes of the variable range. The

symbol 0 indicates the variable has no discernible effect on the behavior of the metric.

4.2.1 Significant Solution Characteristics

Examination of Table 4.1 can give high-level insight to the sensitivities of each type

of solution characteristic to changes in each variable, which then leads the way to

more investigation. This discussion focuses on results from scenario 1, in which the

base case was carried out. In this and subsequent sections, representative figures are

displayed in the body of this paper to illustrate trends. For a full display of graphical

results, see Appendix F.

Total Cost

The total system cost is very sensitive to all of the variables except for transportation

cost. As seen in Figure 4-3, the relatively small increase in transportation cost is not

enough to restructure the system and therefore cause changes in the other three costs

as well. The small change from just over $20 million to $23 million is in contrast with



Total Cost Unit Source Central-
Scenario Variable Cost Breakdown Cost Regions ization

Fac. Cost H H H L H
Coll. Cost H H H 0 0

1 Trans. Cost L L L L L
Volume H L L 0 H
Rec. Rate H L L H H

Fac. Cost H H H L H
Coll. Cost H H H 0 0

2 Trans. Cost L L L L L
Volume H L L L H
Rec. Rate H L L H H

Fac. Cost H H H L H
Coll. Cost H H H L L

3 Trans. Cost L L L H L
Volume H L L L H
Rec. Rate H L L H H

Table 4.1: Qualitative summary of main results. Key: H-big effect, L-small effect, 0-
no effect. Scenario 1-varied CODB, constant coll. rate; Scenario 2-constant CODB,
constant coll. rate; Scenario 3-varied CODB, varied coll. rate.

the change in total cost that can be seen from the waste volume variable (Figure 4-4),

which results in a total cost ranging from a mere $2.5 million all the way up to almost

$40 million. It is evident that the variability in total cost is very sensitive to changes

in processed volume-changed here by both volume and recycle rate--and by changes

in dominant cost elements.

Cost Breakdown

If the change in total cost is driven mostly by the changes in one or two cost categories,

then the cost breakdown will also change significantly. This can be seen well in

Figure 4-5, which at the low end of facility costs sees transportation cost and collection

cost making up all of the cost but receding to less than 40% of the total at the

maximum facility cost. Interestingly, most of the change comes from collection cost

and the transportation cost component changes little. Although waste volume and

recycling rate both cause large changes in total cost, Figure 4-6 indicates that the



Scenario 1 - Total Cost - Transport Cost
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Scenario 1 - Total Cost - Volume
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Figure 4-4: Total cost as a function of waste volume generated
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ratios between the cost components change very little across the variable ranges.

The lumpiness of the sections, particularly transportation cost, can be attributed to

reconfigurations of the system as volume increases.

Scenario 1 - Cost Breakdown - Facility Cost
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Figure 4-5: Cost breakdown as a function of facility cost

Unit Cost

Unit cost of the RSC is calculated by dividing total cost by weight processed at

every point. The cost parameters (facility, collection, and transportation), have unit

cost results that are redundancies of their total cost results because total processed

volume does not change over the ranges of these variables. This phenomenon can be

seen in Figures 4-7 and 4-8, in which the constant processed volume is represented

by a horizontal line across both graphs. On the other hand, variables that affect the

waste streams rather than directly affecting the cost have unit cost results that differ

significantly from the total cost results. A comparison between Figures 4-9 and 4-4

shows the small effect volume actually has on the unit cost, despite its influence in

total cost. The correlation between processed volume and total cost is not totally
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Scenario 1 - Cost Breakdown - Volume
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Figure 4-6: Cost breakdown as a function of waste volume generated

linear, however, as the unit cost graph displays an elevated unit cost at low volumes.

This can be attributed to the benefits from economies of scale at high volumes.

Source Regions

The final two solution characteristics describe configurational characteristics of the

systems designed by the model. Source region service refers to how well every region

is served by the system. Overall, this value stays unchanged throughout the ranges

of most of the variables. The glaring exception is recycling rate. In Figure 4-10

it is demonstrated that as recycling rate increases, so does the ratio of fully-served

regions to un-served regions. Nevertheless, similar to those results that are constant,

the model tends to minimize the number of regions that are neither fully nor totally

un-served. An example of this can be seen in Figure 4-11. This bar graph shows no

variation; across the range, 21 of the regions are fully served, three regions are totally

unserved, and only one region gets partially served.
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Scenario 1 - Cost per lb. - Facility Cost
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Figure 4-7: Unit cost as a function of facility cost

Scenario 1 - Total Cost - Facility Cost
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Scenario 1 - Cost per lb. - Volume
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Figure 4-9: Unit cost as a function of waste volume generated

Scenario 1 - Generator Region Service - Recycle Rate
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Scenario 1 - Collection Cost - Generator Region Service
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Figure 4-11: Source region service as a function of collection cost

Degree of Centralizaton

The degree of centralization of the RSC is demonstrated by the juxtaposition of a bar

graph indicating both the total number of facilities assigned by the model and the

number of cities in which those facilities were placed with a line indicating the total

mileage driven on the shipping routes. Results from the facility cost experimental run

are shown in Figure 4-12, and demonstrate a range from extreme decentralization at

the minimum facility cost and total centralization at the maximum facility cost. In

the decentralized case, seven of the eight possible processor sites are engaged, often

with many facilities at each site. Total mileage is low because waste does not have to

travel far to get from source region to the local processor. As facility costs increase,

so does the total distance traveled, eventually stabilizing just over 2.5 million miles

for most of the experimental range. At this distance, the entire system is served by

just three processors in three different cities, just like the base case. As facility costs

continue to increase to double that of the base case, all the waste gets sent to just one

city: La Vergne, TN, and transportation cost must increase to serve this single city.



Because the total volume of waste has not decreased at all, three processors must be

engaged in this city to handle the processing load.

While the other two cost variables, (collection and transportation), do not affect

system centralization significantly, the two waste volume-based variables present in-

teresting results. In Figure 4-13, total mileage increases with the number of cities and

processors. In contrast to the trend towards centralization seen in Figure 4-12 that

occurs as total mileage increases, here, a medium degree of centralization persists or

even lessens throughout the entire experimental range. At the low end, only a small

amount of waste is generated, and so requires the services of only one processor. How-

ever, this processor is serving regions nation-wide. As volume increases, the waste

flows become too great for just one or two sites, and three sites are engaged to handle

the recycling, although towards the high end of the run even multiple facilities per

site is not a sufficient solution and a fourth city is selected. The very large mileage

number at the high end of the experiment is not necessarily from a great deal of

centralization; it is a manifestation of the elevated number of shipments that must

be made to handle the high waste volume.

4.2.2 Variable Influence on Solution Characteristics

Another important consideration is the influence of the variables on solution charac-

teristics. An initial impression of the relative influence of each of the variables can

be attained by observing the number of H's, L's and O's in Table 4.1. By this reck-

oning, the variables can be ranked, from most influential to least (scenario 1 only):

Facility cost, Recycle rate, Collection cost, Volume, Transport cost. Differences that

come about from the removal of CODB variation or the addition of a population

density-based collection rate are discussed in section 4.2.3.

Facility Cost The facility cost significantly influences the behavior of the model

solution. Because it is a significant part of the base case cost breakdown, facility

cost variability has a large impact on the cost of the system. Changes in facility

cost elicit configurational changes, something illustrated by small bumps in the



Scenario 1 - Processor Centralization - Facility Cost
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cost figures, such as in Figure 4-8 at 0.3x and at 1.9x facility cost multiplier.

However, these changes have little impact on cost. Although varying the facility

cost has little effect on service to source regions, it does have a large effect

on the processor centralization. Nevertheless, around the base case there is a

buffer allowing some variation in facility cost without any change in processor

configuration.

Recycle Rate Recycle rate has the second largest effect on cost and configuration

of the RSC. Although total cost increases with processed volume, the relation-

ship is not directly proportional. At low recycling rates, facility cost makes

up a larger component of the total cost than the other cost elements and cre-

ates high unit costs. As expected, a low recycling rate results in only small

numbers of source regions being tapped for e-waste. Interestingly, as recycling

rate increases, the model moves from region to region, exhausting the supply

of e-waste from the already-served regions before opening up another region.

This is most likely a result of the facility cost being greater than transportation

cost-instead of opening another facility to manage the e-waste from another

region, existing routes are utilized, again echoed by processor centralization

results, shown in Figure 4-14. Here, transportation costs are seen increasing

until facilities are maxed out, at which time another city is given a facility. But

again, around the base case-90%-there is an allowance for variation.

Collection Cost Collection cost is treated very similar to facility cost, and therefore

has a similar, yet smaller, impact on the behavior of the model. The main

difference is that the collection cost has no impact on the configuration or

degree of centralization of the system. The way it is modeled in this project

has collection cost not directly linked to facility cost or transportation cost, so

at least in the range investigated here it serves as just an additional cost.

Waste Generated Waste volume variation behaves like the recycle rate in cost re-

sults, but displays independent configurational results. Volume-related vari-

ables result in cost increasing with total processed volume, and although the



Scenario 1 - Processor Centralization -- Recycle Rate
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Figure 4-14: Degree of centralization as a function of recycle rate

cost breakdown and unit cost are similar to that of recycle rate, the effect is

smaller. Because in this analysis there is a constant 90% recycle rate of every-

thing generated, there is no change in service to the source regions. On the

other hand, the significant variance in total waste processed leads to a signifi-

cant change in processor configuration. At volumes greater that 0.6 lbs/capita,

the model places multiple facilities in the selected processor cities, indicating

that the volume is getting larger than the model can deal with reliably. Nev-

ertheless, at even larger volumes, the system becomes more decentralized with

more cities, more facilities, and more shipping routes. Total mileage seems to

be very susceptible to waste volume, as it undergoes a correction just before

every reconfiguration.

Transport Cost The smallest of the constituent costs, transportation cost has a

similar behavior to that of collection and facility costs, but even less influential.

A small impact on total cost, cost breakdown, and unit cost, the only sign that

transportation cost is actually having an effect on model configuration is a small



decrease in total mileage to keep transportation costs down that is facilitated by

the adjustment of source region service arrangements. At high transportation

costs, more regions are partially served, and fewer are totally unserved.

4.2.3 The Effects of CODB & Collection Rate

Table 4.1 gives a high-level indication of the effect of CODB and collection rate

calculations on the model. An in-depth analysis reveals specifics about the effects

of regional variance in establishing a RSC and also the effects of adding additional

complexity to the model.

CODB

The elimination of the regional CODB occurs in scenario 2. Apart from an overall

increase in the total cost of recycling, the elimination of CODB values increases

configurational variability. CODB values give geographic locations intrinsic values.

Regions with low CODB will attract processors-it is the equivalent of having local

energy minima in a thermodynamic system. The system must exceed some minimum

activation energy-here represented by either a low facility cost or high transportation

cost-in order to escape the influence of these sites. Without the lower CODB that

exists in middle-America, flows between certain source regions and processors sites

are not only different from those in scenario 1, they are also more variable within a

single experimental run.

In Figure 4-15, which shows the distribution of selected processors in all of the

experimental cases, notice the broader distribution of processor locations selected

by the model when CODB is constant. In particular, centrally-located sites like

Dallas and Durham, which are used heavily when CODB is engaged, are sacrificed

for Sacramento and Detroit, indicating a trend towards decentralization. The big

exception, of course, is La Vergne, TN, which is utilized irrespective of scenario. The

lines extending from the top of each bar on the graph give the number of processors

assigned to each site. From this data, it can be seen that Durham and La Vergne are



sites of very heavy centralization-exceeding the capacity of even the largest available

processor multiple times. Other sites, like Minneapolis and even Sacramento, seem

to be much more incidental or appropriately sized.

Processor Selection Frequency

Atlanta

Dallas

Detroit

Durham

La Vergne

Minneapolis

Newark

Sacramento

60

# of Instances
100 120

1llScenario 1 mScenario 2 E Scenario 3

Figure 4-15: Selection frequency of each processor site. Scenario 1-varied CODB,
constant coll. rate; Scenario 2-constant CODB, constant coll. rate; Scenario 3-varied
CODB, varied coll. rate.

Collection Rate

The addition of another region-discriminating variable adds another layer of physi-

cality to this model. Linking collection rate to population density segregates source

regions into, essentially, cities and everything else (discussed in Section 3.3.3). Los

Angeles, New York City, and to a much smaller extent the regions represented by

Trenton and Chicago significantly outweigh the remainder of the regions, which con-

sist of many miles of rural landscape. With the ability to make small changes in

source region service that will result in large changes in the waste flows, this added

layer of complexity introduces a great deal of variability in waste sourcing. The sig-

nificantly higher waste volumes in Los Angeles and New York lead to greater activity
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particularly on the west coast, as seen in Figure 4-16.

Figure 4-16 displays the number of instances in each of the three scenarios that

each source region is fully, under-, or un-served by the model. This takes into account

every experimental case, including recycle rate, which increases the concentration of

un-served regions. The graph shows only minor variability in the first 15 regions, but

the latter nine contain some interesting information. First of all, it shows that in

scenario 1, although the west coast is pretty much avoided, the rest of the country is

very well served. Not so with scenario 2. Without CODB values, the model selects

odd regions to ignore: Minneapolis, Houston, and San Diego. Combined with data

from Figure 4-15, it still seems quite arbitrary. With both CODB and collection now

regionally varied, many of the results resemble those from scenario 1, except that this

scenario seems to vary service the very dense Los Angeles region over most others

as the main mechanism for achieving optimum conditions. Finally, similar to the

scenario 2 results, Minneapolis is again not well served.

4.3 Environmental Impact

Results from the limited environmental impact assessment show that energy and

environmental benefits from offsetting primary electronics manufacturing outweigh

the costs from the substantial transportation necessary to facilitate that offset. A

representation of this relationship can be seen in Figure 4-17, in which the base case

environmental impact is portrayed (note the logarithmic scale on the y-axis). This

figure shows just how significant the environmental gains stand to be with the success

of an e-waste RSC. The two emissions on the right, SO_ and NMVOC, are included

just as points of comparison, even though they are not complete data sets.

Because emissions from transportation are linearly dependent on total mileage

and emissions from both CRT and CPU manufacturing are linearly dependent on

total processed volume, results from each variable range are not distinct from those

described in the previous sections.
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Figure 4-16: Variability of service to each source region. Scenario 1-varied CODB,
constant coll. rate; Scenario 2-constant CODB, constant coll. rate; Scenario 3-varied
CODB, varied coll. rate.



Scenario 1 Base Case Environmental Impact

1I+10 -

1.E+09

1.E+08

1.E+07-

1.E+06

1.E+05

1.E+04

1.E+03 -

1.E+02 -

1.E+01 -

1.E+00 -

I III I
II ItI IIIIII III I

I
I
I
I
I
I
I
IIIII~YIINI~

C02 CO CH4 N20 NOx SOx NMVOC
Emsalon Type

1ITransport ECPU Offset DCRT Offset

Figure 4-17: Base case environmental impact

4.4 Additional Cases

4.4.1 WEEE Directive Volume

The short description of the behavior of the model when faced with the 4 kg per capita

e-waste element in the EU WEEE directive is that it broke. The massive amount of

waste introduced to the system-more than 17 times the base case value-highlight

many of the failings of this model, primarily that it has a finite number of facility

capacity options. This configuration engages 75 facilities in all 8 processing location

options, a wholly unrealistic result. Of course this would not be as big of a problem

if multiple identical facilities were able to be assigned to any given site. With a total

cost exceeding $390 million, this result does not take advantage of the economies of

scale the system would be sure to enjoy at such immense processing volumes. At

this level, it is possible, however, that transportation costs would play a larger part

in dictating infrastructure configuration. Nevertheless, the failure of this model to

output meaningful data does bring attention to the fact that the transition from waste
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volumes being considered by HP and others to waste volumes that the EU directive

claim are environmentally meaningful is not insignificant.

4.4.2 Regional Recycling Minima

As more and more states adopt their own e-waste policies, nation-wide reclamation

networks will have to take into account local recycling minima. The uniform regional

recycling minimum constraint is unrealistic because it treats waste from every region

equally, an assumption that is fallacious. The addition of this constraint causes some

change in total cost because the facilities now have to serve every source region. This

causes either an inflated transportation cost as regions on the coasts ship their wastes

to locations on the interior, or new facilities get built to serve the coasts. In the

cases that were run, the former occurred in the scenario 1 model (variable CODB),

but when CODB was constant and when both CODB and collection rate were varied

a facility was built in Sacramento, although east cost regions were still served by

mid-west facilities.

No other significant changes occurred due to the addition of a regional recycling

constraint. A future step is to give this recycling rate geographical variability, that

is, link regional recycling rates with real data.

4.4.3 Other Materials

The objectives of running experimental cases with cost and volume data from other

recycled materials were to see a) if the model developed with e-waste in mind is

extensible to other materials, and b) if these much more mature recycling flows give

any more insight to the sensitivities of centralized or decentralized recycling systems.

When possible, results are displayed on maps.

PET Bottles

Results from the plastic bottle recycling case differ only slightly from the original base

case, with the major exception that larger facilities are used. The model selected



La Vergne, Durham, and Dallas as the processor sites, placing two 100 million lb.

facilities in Durham and Dallas and a total of 360 million lbs of capacity in La Vergne.

Figure 4-18 and Table 4.2 show the effect the 34% recycling rate has on the model.

While the total recycled volume is much greater than the e-waste volumes, this

recycling system only serves the southern and eastern parts of the country. Unsur-

prisingly, the selected processor sites correspond to some of the lowest CODBs.

Figure 4-18: Geographical representation of processor configuration for recycling PET
bottles

Aluminum Cans

Aluminum can recycling as modeled by this program produces a result similar to

that from the PET bottles. In Figure 4-19 and Table 4.3, it is shown that, due to an

increased volume, a fourth processing site has been added in the south-east. However,
this could be due more to the inability of the model to continue adding larger facilities

than an actual cost savings.



Source
1-Boston
2-Albany
3-New York
4-Trenton
5-Baltimore
6-Richmond
7-Charlotte
8-Atlanta
9-Tampa
10-Cleveland
11-Detroit
12-Indianapolis
13-Memphis
14-New Orleans
15-Chicago
16-Minneapolis
17-Kansas City
18-Boise
19-Dallas
20-Houston
21-Las Vegas
22-San Diego
23-Los Angeles
24-San Francisco

F-Dallas
100 Mlbs

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

68,205,078
29,985,280

0
0
0
0

B-Durham
100 Mlbs

0
0
0
0

31,794,922
68,205,078

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

E-La Vergne
360 Mlbs

0
0
0
0
0
0

68,205,078
68,205,078
68,205,078

0
0

68,205,078
68,205,078
18,974,610

0
0
0
0
0
0
0
0
0
0

Table 4.2: Waste flows for PET bottle recycling

Service
0%
0%
0%
0%

47%
100%
100%
100%
100%

0%
0%

100%
100%

28%
0%
0%
0%
0%

100%
44%
0%
0%
0%
0%

----



Source
1-Boston
2-Albany
3-New York
4-Trenton
5-Baltimore
6-Richmond
7-Charlotte
8-Atlanta
9-Tampa
10-Cleveland
11-Detroit
12-Indianapolis
13-Memphis
14-New Orleans
15-Chicago
16-Minneapolis
17-Kansas City
18-Boise
19-Dallas
20-Houston
21-Las Vegas
22-San Diego
23-Los Angeles
24-San Francisco

C-Atlanta
270 Mlbs

0
0
0
0
0
0

49,470,248
110,264,876
110,264,876

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

F-Dallas
225 Mlbs

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

4,038,196
0

110,264,876
110,264,876

0
0
0
0

B-Durham
270 Mlbs

0
0
0

49,470,248
110,264,876
110,264,876

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

E-La Vergne
421 Mlbs

0
0
0
0
0
0

60,794,628
0
0
0

29,410,743
110,264,876
110,264,876
110,264,876

0
0
0
0
0
0
0
0
0
0

Table 4.3: Waste flows for aluminum can recycling

Service
0%
0%
0%

15%
100%
100%
100%
100%
100%

0%
27%

100%
100%
100%

0%
0%
4%
0%

100%
100%

0%
0%
0%
0%



Figure 4-19: Geographical representation of processor configuration for recycling alu-
minum cans

4.5 Discussion

Data have been presented here with the intention of developing a preliminary set of

guidelines for setting up an RSC for material recovery. Transferring the assumptions

inherent in the model from the virtual world, in which these experiments were run,

to the physical world, however, might actually turn out to be only relevant in highly

specialized cases. Nevertheless, the results from the 15 main cases and four secondary

cases can be used to start codifying rules about the behavior and sensitivities of e-

waste RSCs.

The input values chosen for the base case resulted in a solution that is resilient

to fluctuations in costs and volumes. This three-facility, regionally-centralized setup

could potentially be the most cost effective configuration. It is a compromise between

a decentralized setup, in which there are savings in transportation, and a centralized

setup, which can take advantage of economies of scale at the very high facility ca-

pacities. The exact locations of these facilities cannot be suggested with any great

certainty, as the physical susceptibility such a facility might have to local concerns

are not confidently included in the model.



Assuming reasonable model inputs, the main barrier to long-term cost effectiveness

of such an RSC is the high cost of the actual processing. Facility cost, which includes

both operating and fixed costs, is not only consistently higher than the cost of col-

lection and transportation, but it also seems to be the deciding factor in a discussion

about degree of centralization. This is the most likely reason that some processors

choose to send e-waste to Asia for further processing. In the United States, high labor

and property costs make it challenging for some recycling facility to make much of a

profit. E-waste is no different. Non-standardized products in a still-evolving waste

stream make it difficult for processors to justify investing in anything but the most

generalized equipment.

Uncertainty is also a big barrier to adoption. Uncertainty in waste composition,

as mentioned above, can drive down revenues; uncertainty in the degree to which

total costs are susceptible to regional variations are also dangerous. In the model,

regional CODB, collection rate, and recycling minima are all investigated, and while

some conclusions can be drawn as to the impact these parameters have on the model

behavior, there is uncertainty in the degree to which the model reflects reality. After

all, although elevated CODB costs might cause the model to place processors away

from the coasts, transitional RSCs might require facilities located in densely populated

cities on the coasts in order to find a large enough waste stream.

The environmental elements of this project as described in Section 4.3 are ques-

tionable. Although the analysis was preluded by a caveat to take the results as purely

illustrative of the kind of results one might get in a real environmental impact assess-

ment, one may wonder how results would change if minimizing environmental impact

were a second objective, like it is in [37]. This objective would require a way of com-

paring environmental impacts, i.e. weighting one type of damage, like eutrophication,

over another, like global warming potential; even so, the energy advantage secondary

metals processing has over primary processing is significant. However, an accurate

assessment of displaced energy consumption requires information about where the re-

covered material goes. Does it, like plastics, become some low quality filler material,

or like steel in cars, does it get put back into the very role it had been playing?



Although it seemed like the other materials chosen for the additional cases were

appropriate--after all, plastic and aluminum are both heavily recycled consumer

goods, something that one may claim e-waste should be--it is possible that these

types of materials are not ideal points of reference. Plastic and aluminum containers

are very simple, ubiquitous, cheap, and homogeneous products. The most compli-

cated step in recycling these materials can be argued to be the initial separation from

the rest of the co-mingled waste stream. Electronics, on the other hand, are phenom-

enally complex devices, engineered at the atomic level in some cases. Although this

study treats e-waste processing as a black box, represented by a set of cost figures,

perhaps a better model for comparison is another highly complex, common product

that is already heavily recycled: the automobile.

Cars are very common products that define our society (the same can be said

for electronics). They are highly complex, with many different parts, complicated,

international supply chains, and have a mature recycling industry. Also, the environ-

mental impact not of car disposal, but of car use, is a common worry. The situations

are very similar, so instead of looking to external producers, consumers, and other

market forces to manage e-waste, electronics OEMs should develop a way to a) make

their products easily recyclable or repairable, b) figure out a way to utilize a much

higher concentration of secondary materials than are being used today, and c) start

making the symbiotic relationships that naturally exist between two organisms that

subsist off of the other's outputs.



Chapter 5

Conclusions & Future Work

5.1 Summary & Lessons Learned

E-waste has recently become a topic of great interest. Rapidly increasing e-waste vol-

umes due to a combination of higher electronics production, lower costs, and shorter

product lifespans have opened up many investigations into the harmful effects of

improper disposal of e-waste. Additionally, there has been a realization that many

electronic components have significant value as scrap. HP, among other large corpo-

rations, is looking to reduce the impact its activities and products have on the envi-

ronment, probably in a large part as a way to increase the company's moral capital,

but also because they realize our society is not so slowly destroying the environment.

To that end, reverse logistics tools are being used to try to develop guidelines for the

development of the most cost-effective e-waste material reclamation system possible.

This project uses linear optimization to gain a high-level understanding of the driving

costs of this RSC and to make a recommendation as to the degree of centralization

of the optimal configuration.

Results from the main experimental cases supplemented with information from

the limited additional cases, can be synthesized into a few guidelines or conclusions

regarding characteristics of a cost effective e-waste RSC.

o Facility cost is the most influential of all the cost elements. It is the largest cost



component, and, depending on the composition of the waste stream, has the

potential to be highly variable.

* A regionally centralized system appears to be the most cost-effective, at least

in the general sense. It serves as a compromise between the transportation

cost-effectiveness of a decentralized configuration and the economies of scale

of a centralized configuration. Of course, as facility costs are greater than

transportation costs, the system will likely be more centralized than not.

* Sensitivity of the three- or four-facility configuration to input parameter varia-

tion seems to be low. This indicates that even if the base case was inaccurate,

many of the results would have been the same as reported here.

* The ease of transition from a small-volume recycling system to a large one,

as illustrated by the two volume-related parameters, is not certain. Although

small variations in waste volume are not disruptive to the selected processor

configuration, the results from this project do not necessarily predict the trend

continues to much larger waste streams. In other words, it is as yet inconclusive

if the degree of centralization observed in low-volume RSCs is the same as in

high-volume RSCs.

* From either a cost or technical point of view, it looks like an e-waste RSC only

has high-level elements in common with other MSW recycling systems. The

current black-box approach taken by this and other studies that allows e-waste

to be evaluated like MSW may be limiting in the long run. Aspects of design

and production that hinder material recovery will likely be uncovered only at

EoL. Communication of these specific design issues may be muted by black-

box treatment, even though product redesign would likely lead to improved

economic and environmental performance.

* Results from the addition of regionally variable parameters, like CODB and

collection rate, reinforce the regional differences in this country. From purely

a cost perspective, population densities and costs of living lead to a somewhat



rigid RSC configuration. However, once other factors begin to be introduced,

such as state regulations, the definition of "optimal" configuration is less clear.

Many of the other results from this project give insight into how to improve the

linear optimization model. These include:

* The WEEE volume case highlighted the inability of this model to handle very

high volumes. It also made suspect some of the results from the main exper-

imental group that had high volumes. The solution to this issue is to simply

provide a larger selection of processor capacities.

* The environmental results alluded to the increased value this model would have

if environmental impact were added to the objective function.

* Uncertainty is discussed many times in this thesis project, although always

qualitatively. The broad assumptions made in the model lend themselves to the

inclusion of a quantitative uncertainty factor, similar to that in [57].

All in all, some of the best lessons from this project may be found in the next

section, Future Work. So many questions arose during the experimentation that could

not be answered due to the time constraints that this project could almost be best

used for as a jumping off point for the next studies.

5.2 Future Work

The problem of large-scale e-waste consolidation and material recovery is not solved.

In fact, at the completion of this work, there are more questions about the topic than

there were before. Attaining a fully closed-loop industrial ecosystem will require a

gradual evolution, especially because of society's current paradigm of cradle-to-grave

material consumption. Also, it seems that there is a trend in new classes of problems.

At the beginning there are few answers but also few questions. For the first few

years, as interest builds, real answers still come very infrequently, but the volume of

questions and even confusion grows rapidly because of the better understanding the



scientific community is getting of the actual problem. Finally, there is the break-even

point, when the rate of new question generation slows and solutions begin emerging,

something that continues until the mainstream moves on to a new topic, declaring

the old topic well-enough solved. Reverse logistics is very much in its nascence, and

its application to recycling is even newer. This study opens many doors with regards

to next steps, both directly and indirectly.

In the process of completing this project, a number of limitations were identified:

in the model, in the initial assumptions, and in the experimental choices. A pro-

ductive next step would be to select new variable ranges, a modified set of starting

assumptions, a different base case, and a more robust model, and continue to inves-

tigate the conformational tendencies of e-waste RSCs. Some of the trends discussed

in section 4.5 may hold fast, indicating some physical significance of those results.

A second realm for future investigation stems from the results from the additional

cases as described in section 4.4. Just touching upon other related factors in this

project gave the main experimental procedure a bit more dimension, but only to the

extent that these initial forays-regulatory pressures on recycling, regional variability,

and comparisons between e-waste and other waste streams-be investigated further.

All three topics, among many others, are ripe for investigation.

A more indirect next step has to do with the role this topic can play in a broader

sense. These may be the beginnings of a large paradigm shift in which anthropogenic

resources are utilized to fuller and fuller extents. To assist with this transition,

research should be conducted on the effects the composition of the e-waste stream has

on the e-waste RSC. Predictions as to the ability of material recovery technology to

keep up with increased miniaturization and ubiquitous computing, all framed in terms

of total cost and environmental impact, would be valuable to technology companies,

policymakers, consumers, and academics.

Finally, as a research project with a direct application (i.e. HP's e-waste policy)

this thesis is well poised to spawn other projects that straddle the border between

industry and scholarship. Achieving closed loops in industry is not something that

can be done solely in an academic setting; market players are important partners. A



longer-term research initiative coming out of this project would be to work with the

major players in an existing e-waste RSC and study how concerns that may not be

easily communicated through cost information but are important in the larger picture,

e.g., how recyclers can influence OEMs to produce products easier to recycle without

requiring regulation. As e-waste volumes grow in the short term, it will be imperative

that mechanisms be in place to one day mitigate the looming environmental crisis.





Appendix A

LINGO Transcript

MODEL:

!Capacitated Plant Location Problem;

SETS:

GENERATORS: eWGen;

!Every generator location has a characteristic amount of e-waste generated;

PROCESSLOC: CODB;

!Every processor location has a characteristic cost of doing business;

FACILITIES: Capacity, bFIX_COST, bCollectCost, bOpCost;

!Each different type of facility has a capacity, fixed cost, collection

cost, and operating cost;

ROUTES (GENERATORS, PROCESSLOC): SHIPPINGRATE;

!Each route (generator/process loc. combination) has a particular distance

and shipping rate;

PROCESSORS (PROCESSLOC, FACILITIES): FIX_COST, CollectCost, OpCost, OPEN;

!Each possible processor is defined as a combination of all possible sites

and all possible processor types;

ARCS(PROCESSLOC, FACILITIES, GENERATORS) : COST, VOL;

!Every combination of start- and end-points and facility types;

ENDSETS



DATA:

!General parameters;

ProcessedTotal = 0OLE('thesis_modelHPRUN.xls','ProcMinTotal');

!as % of total waste generated;

ProcessedPerCity = OOLE('thesis_model_HPRUN.xls','ProcMinPerCity');

!as % of total waste generated;

Truck_Capacity = 0OLE('thesismodel_HPRUN.xls','Truck_cap');

!ibs per truckload;

CODB_INDEX = 0OLE('thesis_model_HP_RUN.xls','IndexBasis');

!CODB index normalization factor;

!Table data;

GENERATORS, eWGen =

0OLE('thesis_model_HP_RUN.xls','Generators', 'eWG

PROCESSLOC, CODB =

0OLE('thesis_model_HP_RUN.xls', 'proclocations',

FACILITIES =

0OLE('thesismodelHPRUN.xls', 'FacilityTypes')

Capacity, bFIX_COST, bCollectCost, bOp_Cost =

0OLE('thesismodelHPRUN.xls', 'baseFacData');

SHIPPINGRATE =

0OLE('thesismodel_HP_RUN.xls','ShippingRates');

ENDDATA

en');

'CODB');

@FOR( PROCESSORS(L, F): [assignlocalcost]

FIX-COST (L, F) = bFIXCOST(F) * CODB(L)/CODBINDEX;

CollectCost(L, F) = bCollectCost(F) * CODB(L)/CODBINDEX;

Op_Cost(L, F) = bOpCost(F) * CODB(L)/CODBINDEX;

!The objective -- minimize total cost;

[TTLCOST] MIN = @SUM( ARCS(L,F,G):

;



SHIPPING_RATE(G,L)*VOL(L,F,G)/Truck_Capacity

+ VOL(L,F,G)*(Collect_Cost(L,F)

+ Op_Cost(L,F)))

+ @SUM( PROCESSORS: FIX_COST * OPEN);

!The individual city processed meets generation goal per city;

@FOR( GENERATORS(G): [GenSatpCty]

@SUM( ARCS(L,F,G): VOL(L,F,G)) >= ProcessedPerCity * eWGen(G));

@FOR( GENERATORS(G): [Availability]

@SUM( ARCS(L,F,G): VOL(L,F,G)) <= eWGen(G));

!Total processed meets goal;

Total_Processed = @SUM(ARCS:VOL);

[TTLGENSAT] TotalProcessed >= ProcessedTotal * OSUM(GENERATORS:eWGen);

!The supply constraints;

@FOR( PROCESSORS(L,F): [SUPPLY]

@SUM( ARCS(L,F,G): VOL(L,F,G)) <= Capacity(F) * OPEN(L,F));

!Make OPEN binary(0/1);

@FOR( PROCESSORS: @BIN( OPEN));

DATA:

BOLE('thesis_model_HP_RUN.xls','flows') = VOL;

0OLE('thesismodel_HP_RUN.xls', 'Total_Cost', 'Total_Processed') =

TTL_COST, Total_Processed;

ENDDATA

END





Appendix B

Distance Table (miles)

Generators Processors Pop. Density

Atlanta Dallas Detroit Durham La Vergne Minneapolis Newark Sacramento (people/sq. mi.)

Boston 1103.2 1833.8 724 705.2 1101 1399.6 225.6 3023.1 189

Albany 1006.2 1669.6 559.7 647.2 1079.5 1233.9 151.1 2858.9 206

New York 889.2 1597.1 613 491.2 877.6 1195 10 2815.7 6927

Trenton 836.3 1558.8 615.9 438.1 834.1 1207 52.1 2830.5 937

Baltimore 701.3 1434.2 525.7 303.2 701.1 1107.8 181 2728.5 315

Richmond 539.8 1274.2 620.8 152.7 610.3 1202.9 322.2 2836.3 139

Charlotte 243.6 1025.5 677.1 144 430.4 1257.6 641.9 2786.8 159

Atlanta 10 781.2 721.8 383.3 233.7 1158.7 881.5 2527.1 148

Tampa 456.4 1155.1 1183.4 675.4 689.9 1659.9 1132.7 2911.2 384

Cleveland 713.6 1216.4 168.3 548.3 542 750.4 452.8 2371.4 243

Detroit 720 1216.5 10 711.1 553 696.7 604.2 2308.6 242

Indianapolis 532.9 898.9 312.9 656.1 304.7 610.9 697.7 2181.9 150

Memphis 387.4 452.5 802.5 742.5 230 949 1136.6 2094.2 83

New Orleans 467.4 519.9 1063 853.4 540.3 1348.7 1304.1 2285.1 75

Chicago 751.1 921.7 302.6 866.2 522.9 409 777.7 2043.6 400

Minneapolis 1158.3 940.7 696.1 1289.2 930.2 10 1191.6 1959.6 59

Kansas City 800.5 500.4 793.2 1050 572.3 436.3 1183.7 1773.5 37

Boise 2174.3 1621.9 1957.6 2506.9 1941.9 1467.2 2456.2 552.8 18

Dallas 780.9 10 1255.1 1194.5 681.9 940.9 1588.5 1733.9 56

Houston 809.9 239 1374.9 1195.1 859.4 1231 1614.4 1932.3 90

Las Vegas 2151.1 1214.4 2010.7 2323.8 1810.2 1656.5 2509.4 575 27

San Diego 2137.5 1357 2346.1 2562.1 2048.5 1991.8 2857.6 503.8 134

Los Angeles 2215.8 1435.4 2279.3 2580.4 2024 1999.4 2890.7 383.9 5237

San Francisco 2594.4 1728.2 2406.7 2837.6 2324 2040.9 2905.2 87.1 132





Appendix C

Cost of Doing Business Index

State Index

Hawaii

New York

Massachusetts

* California

Connecticut

Alaska

* New Jersey

Delaware

* Minnesota

* Michigan

Vermont

Nevada

Illinois

Washington

Rhode Island

New Hampshire

Maryland

Pennsylvania

Maine

New Mexico

Wisconsin

Florida

Wyoming

Virginia

Arizona

143.1

130.7

125.5

124.2

122.7

120.8

120.7

109.6

107.9

106.1

106

103.8

103.7

103.5

103

101.9

101.8

100.2

96

95.6

95.4

95.1

94.7

94.7

94

Ohio

* Texas

Oregon

Colorado

* North Carolina

* Georgia

Louisiana

Kansas

Indiana

Kentucky

Missouri

Utah

Nebraska

* Tennessee

Alabama

West Virginia

Arkansas

Oklahoma

South Carolina

Mississippi

Idaho

Montana

Iowa

North Dakota

South Dakota

"*" are used in this study

State Index

93.3

92.8

92.6

92.6

91.6

91.6

89.1

88.9

88.8

87

86.8

86.8

86.5

86.2

86.2

86.1

85.3

84.8

84.2

84.1

83.3

80.6

80.2

76.9

71.9

Entries marked with a [62].





Appendix D

Environmental Analysis Data

Materal CO2  CO CH4  N20 NOx SOx
Ferrous Metals 7.6553 0.0008 0.0001 0.0000 0.0074 0.0069
Aluminum 35.8535 0.1436 0.0007 0.0003 0.1049 0.1247
Copper 13.9942 0.0038 0.0003 0.0001 0.0425 0.8366
Lead 4.6684 0.0015 0.0001 0.0001 0.0155 0.0250
Plastics 8.0185 0.0044 0.0041 0.0002 0.0255 0.0218
Glass 2.7780 0.0009 0.0000 0.0000 0.0155 0.0044
Rubber 5.1800 0.0008 0.0002 0.0000 0.0043 0.0330
Nickel 4.9200 0.0088 0.0002 0.0004 0.0161 0.3562

Table D.1: Emissions from primary materials production (lbs/ton) [2]

Materal CO2  CO CH4  N20 NOx SOx
Ferrous Metals 2.7812 0.0008 0.0001 0.0000 0.0084 0.0087
Aluminum 2.7174 0.0009 0.0001 0.0000 0.0082 0.0043
Copper 6.2974 0.0017 0.0002 0.0001 0.0191 0.3765
Lead 0.7611 0.0002 0.0000 0.0000 0.0021 0.0104

Table D.2: Emissions from secondary materials production (lbs/ton) [2]



Coal
Fuel oil
Natural gas
Nuclear
Hydro
Biomass
Other Renewables

45.55%
4%

16.97%
18.5%
12.66%
1.64%
0.67%

Table D.3: 2000 U.S. grid mix [5]



Appendix E

Facility Costs

Fixed Operating ($/lb)

$295,418

$447,769

$775,923

$1,176,079

$1,500,000

$1,782,602

$2,037,983

$2,273,575

$2,493,890

$2,701,920

$2,899,773

$3,089,004

$0.0524

$0.0489

$0.0446

$0.0417

$0.0400

$0.0389

$0.0380

$0.0373

$0.0368

$0.0363

$0.0358

$0.0355

Capacity

01Mlbs

02Mlbs

05Mlbs

10Mlbs

15Mibs

20Mlbs

25Mlbs

30Mlbs

35Mlbs

40Mlbs

45Mlbs

50Mlbs-----





Appendix F

Graphical Results

Below are all 75 graphs from the main experimental procedure.
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Scenario 2
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Scenario 3

CODB Varied

Collection Varied
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