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Abstract

A vision system that locates and tracks the corners of a rectangle image has been
designed. The system forms the framework upon which machine vision algorithms suit-
able for use on a space robot will be used. An attempt has been made to implement two
algorithms to determine the pose of the rectangle from its two dimensional image. The
algorithms attempted to use the screen locations of the corners. The corner location algo-
rithm performed satisfactorily but was occasionally prone to misplacing the corners for
certain image configurations. Tracking was achieved using three different methods. The
simplest, in which the search for a corner proceeds from the its last known screen loca-
tion was shown to perform better than the other two, which attempted to extrapolate the
trajectories of the corners. The pose determination algorithms implemented the inverse
perspective transformation (IPT) and the inverse orthographic transformation (IOT). The
IPT requires all four corners of the image to calculate the pose of the rectangle but the
IOT requires only three. The IPT assumes that the image arises from a perspective view
of the target whereas with the IOT, it is assumed that it is formed by orthographically
projecting the target onto the image plane. Neither the IPT or the IOT as currently imple-
mented produced satisfactory results. However, the performance of the IOT is consider-
ably ambiguous since the rectangle pose angles that it returns are with respect to the
image and not to the camera. Future study is therefore required to relate the results from
the IOT to the camera angles by knowing the accurate camera geometry. Since the IOT
requires only three corners to calculate the pose, there exists the possibility of using a
least squares procedure on the four sets of results that may be obtained from a rectangle
image to improve the accuracy of the results.

Thesis Supervisor : Harold L. Alexander
Charles Stark Draper Assistant Professor
of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 General Laboratory Activities

For the past decade, the MIT Space Systems Laboratory (SSL) has conducted re-
search directed toward creating techniques and tools with which the industrialization of
space will require. Orbital productivity, achieved by extra-vehicular activity (EVA); tele-
robots and autonomous vehicles, has been studied by SSL with such applications in mind
as spacecraft and space station construction and orbital infrastructure support.

A major effort has been directed toward tele-operator and robot research to sup-
port orbital productivity studies. EVA is a particularly hazardous task. For the missions
that are envisioned by todays space engineers and scientists, astronauts may be required
to work in conditions which are as dangerous, if not more so, than at the bottom of the
ocean. The hazards of EVA are numerous. Astronauts will be subjected to high radiation
dosages and unique task related stresses, both physical, since movement is retarded by a
cumbersome space suit, and psychological, caused by a number of factors but including
the nature of working in a hostile environment. It is for these reasons that research into
reducing the amount of human effort in space by the use of robots and tele-operated vehi-
cles has been pursued in SSL. Work within the space tele-robotic field has included de-
veloping novel control strategies, the integration of multi-sensor systems within a control
loop, and human/robot interaction. These strategies are tested on neutrally buoyant space
vehicles within the MIT Alumni Swimming Pool to simulate their response in an envi-
ronment that approximates the near weightless condition of orbital flight.

1.2 Focus of Research

The laboratory has relied on a variety of conventional navigational sensors for tel-



erobotic operations. For example, the vehicle MPOD (Multi-mode Proximity Operations

Device) employs :

1) An inclinometer system consisting of three pendula, each of which is

constrained to rotate about one of three mutually perpendicular refer-

ence axes. The rotation of the pendula about their respective axes indi-

cates the angles that the gravity vector makes with these axes. There are

several important drawbacks to this system. Firstly, since the pendula

bearings must be damped such that they do not oscillate about their

equilibria, their speed of response is limited. Even a damping which

corresponds to the fastest response time results in some oscillation. This

damping also varies over time as the material suffers wear. Secondly,

when the vehicle is in a configuration such that the gravity vector is par-

allel to one of the pendulum axes, that pendulum will adopt some arbi-

trary angle, making it difficult to calculate the gravity vector orientation.

It may also be prone to large swings due to small angular displacements

from this singular condition.

2) A rate-gyroscope package where each gyroscope returns an angular rate

about one of three reference axes. The output signals of these devices

are usually very noisy, corrupting the measurements.

3) 3-DAPS (Three-Dimensional Acoustic Positioning Device). This sys-

tem uses a system of fixed ultrasonic emitters and vehicle mounted hy-

drophones. By sequencing sound pulses and measuring the time

elapsed from the start of the pulse to its detection by the hydrophones,
the distances to the emitters can be calculated from which the vehicle

orientation may be inferred [Rowley, V.M. 1989]. Problems associated

with 3-DAPS are its low update rate of around one and a half seconds,
loss of data associated with the vehicle body or some other object

blocking the path between a hydrophone and an emitter, and data cor-

ruption due to other acoustic sources within the test vicinity.

The main thrust of this study was to investigate the use of machine vision, to cir-



cumvent many of the problems associated with the current laboratory navigation tech-
niques, some of which have been detailed above. Machine vision does not rely on any
moving components and hence will not suffer from deterioration. Moreover, vision is not
susceptible to the electrical noise which affects several of the sensors currently in use.
Additionally, like 3-DAPS, it is possible to obtain both range and orientation with respect
to some reference frame in a self contained system.

target upon vision sytem
references

mono-vision camera

locking port

docking 
target

neutrally buoyant vehicle

Figure 1.2-1) A neutrally buoyant space robot simulator
using a vision system as a sensor for a feed-
back control in a docking operation

However, machine vision has a real application in a space environment since systems
that rely on some medium to propagate sound waves, like 3-DAPS, cannot operate in
space. A primary aim of this project was to create a system that could be incorporated,
with as little modification as possible, into one of the current neutrally buoyant vehicles
such that a variety of vehicle control algorithms can easily be integrated. A secondary

f`
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aim was to investigate the possibility of machine vision as a means of feedback for an au-
tomatic control system in an autonomous robot and as a means of operator feedback for
manual control of a space tele-robot. The system could potentially be incorporated with-
in a feedback control loop on a vehicle in order to assist in such tasks as docking (see fig-
ure 1.2-1) ), path following, and station keeping.

1.3 Scope of Project

Research is oriented around creating a system that has the ability to implement a
certain class of image understanding algorithms. The algorithms to which particular at-
tention was paid were those that are capable of extracting 3-D information from a single
2-D view of a planar object. A planar object is used since such shapes are likely to be
common in a real space infrastructure. For example, such shapes may compose purpose-
ly laid paths for robot vehicles to follow, or marked on docking targets or even the struc-
tural elements of orbital assemblies. Planar objects also have simple geometries that can
easily be modeled within a computer so that many aspects of machine vision like image
recognition and feature point labeling are greatly simplified. Edge detection is likely to
be easier than with more complex shapes due to a roughly even illumination over the sur-
face. The use of non-planar targets , with their increased geometric complexity, may
cause range and orientation determination difficulties due to such factors as increased in-
ternal modeling requirements and increased algorithm size. This would create increased
computer memory and speed requirements.

The use of a single 2-D image for navigation purposes has several advantages
over stereo vision. These include reduced hardware requirements since only one camera
and a video digitizer are required. This is a pertinent issue for space operations since the
less equipment need to complete a given task is highly desirable due to the expense of
transporting materials to orbit. There is also the reduced risk of system breakdown since
there are fewer components that may fail. Many algorithms exist for the 2-D image un-
derstanding, two of which will be investigated as possible techniques for vehicle naviga-
tion.



1.4 Image Processing

1.4.1 Background

Image processing can be classified into four main areas [Lim, J.S. 1990]:

1) Image enhancement, to improve image quality or intelligibility for human
and machine processing,

2) Image restoration, to reduce the degradation of an image that has been
corrupted by noise or some other agent,

3) Image coding, to compress the relevant information to as few bits as pos-
sible,

4) Image understanding, to extract useful information from an image.

It is the last step with which this project will mainly be concerned. However, var-
ious aspects of the other steps may be required for this last step to take place. The last
step differs from the others in that the output from an image understanding algorithm is a
symbolic representation of that image, whereas for the other steps the output is also an
image [Lim, J.S. 1990]. This last step usually entails locating various feature points in an
image, where an image feature is defined to be an attribute which can be used in an
image understanding algorithm and a feature point is a feature that can be completely de-
scribed by its image coordinates.

The determination of the orientation of a planar surface is a fundamental comput-
er vision task. It is well known in the science of photogrammetry (the process of survey-
ing, especially from aerial photographs) that if the 3-D coordinates and their correspond-
ing 2-D perspective projections of an object are known, then the observer position as well
as the look angles (the orientation of the observer with respect to the object) may be com-
puted. Photogrammetry theory may be slightly extended to determine the pose of a tar-
get, provided that its geometry and its image coordinates are known [Haralick, R.M. 1980].
This project will be concerned with the particular case of determining the pose of a rect-



angular target with respect to a video camera. A rectangle is used since only four points,
namely its vertices, are required to describe it fully. In order that the processed informa-

tion may be used within a feedback control system, it is required that the configuration

parameters be determined in real-time.

To achieve the desired goal, the algorithmic requirements of a vision system for

real-time applications may be specified as follows :

1) Edge detection,

2) Locating feature points,

3) Feature point identification,

4) Tracking feature points as they move on the screen,

5) Determining the pose of the rectangle from the time varying image.

It is the last step that the next chapter will describe in detail.



Chapter 2

Theoretical Development

2.1 Inverse Image Transformations

The 3-D world is viewed as if rays from objects are projected onto an imaginary

plane, called the image plane, which exists between the observer and the object being
viewed. Image transformations relate the 3-D world to images on the image plane,
whereas inverse transformations achieve the opposite. In order to determine the pose of a
target from its image, inverse image transformations are used. In order for the inverse
transformations to work, it is necessary to know some subset of its feature point loca-
tions. For the purpose of this project, where the target is a rectangle, the feature points
are naturally the corners.

This chapter describes two kinds of inverse image transformations that may be-
implemented in a vision system. The first is the inverse perspective transformation and
the other is the inverse orthographic transformation.

2.2 Image Projection

The mathematics of projection are not new [Plastock, R.A., Kalley, G. 1986]. For hun-

dreds of years, artists, engineers and architects have represented 3-D objects on a 2-D
medium, for example the canvas upon which a scene is painted. There are two different
kinds of projection : perspective and parallel (orthographic). Perspective projection rep-
resents a scene as it appears, whereas parallel projection retains the true size and shape of
the object. Humans view objects through perspective projection. However, the parallel
projection may be approximated as a perspective projection if a linear scale factor is in-
cluded. This approximation becomes inaccurate if the object subtends a large angle in



the direction of the field of view. This is due to the scale being unable to represent the
entire object. The orthographic projection with a scale factor is termed a "weak perspec-
tive projection". The inverse perspective and orthographic transformation will now be
presented.

2.2.1 The Perspective Transformation and its Inverse

Perspective images are formed as rays from an object converge to a single point.
This is the basis of the pin-hole camera , shown in figure 2.2.1-1) [Rummel, P. 1989].

tz
Image

Pin-hole
"lens"f

Points in 3-D
spacef

Image
nlane

Image plane distance from
center of lens

Figure 2.2.1-1) The pin-hole camera model for the per-
spective transformation



A perspective image of an object places an observer at the center of projection
and the image appears on an image plane between the observer and the object ( figure
2.2.1-1) ). Perspective images are characterized by perspective foreshortening and van-
ishing points ( figures 2.2.1-2) and 2.2.1-3) ).

Image nlane

d

lt h

y
) - f

r

Figure 2.2.1-2) The effect of perspective foreshorten-
ing

-

Vanishing points

Figure 2.2.1-3) Vanishing points in a perspective image

It should be noted that the following development is carried out for a rectangle ex-
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isting in a z = zo plane. A modification is then made to the theory to take into account

that fact that the software assumes the target to lie in a y = yo plane.

z

Figure 2.2.2-1) The tilt, swing and pan angles of a

camera about the x, y and z axes

2.2.2 The Look-Angles from the Perspective Projection of a Rectangle

It is required to solve for the camera look angles i.e. the tilt; ), swing; , and pan;

0 angles (figure 2.1.2-1) ). Notice that camera convention dictate the tilt angle is defined
to be positive clockwise. The perspective image of a rectangle parallel to the x-y plane is
projected onto the image plane which is located at a distance f in front of the center of

projection. The locations of the image corners are given by [Haralick, R.M. 1989]:



xi cos sin x'ix I, i=1,2,3,4

Zi  --sin cos ( Zi

x=f x cosO + y sin 0

-x cos 4 sin 0 + y cos ý cos 0 + z sin 4

Sfx sin # sin 0 - y sin 0 cos 0 + z cos 0Sos sin + y cos cos + z sin
-x cos ) sin 0 + y cos # cos 0 + z sin 4

2.1)

2.2 a)

2.2 b)

If the perspective projection (x*, z*) is known then the set of 3-D coordinates that
could have produced this image point is given by :

x

z

x' cos -fsin 0 cos + z' sin 8 sin X -cs sin
= [ x' sin 0 + f cos 6 cos 4 - z' sin sin

f sin f+sin +z' cos z
f sin 4 + z' cos #

2.3)

for some X. X may take on any value since an infinite number of points that lie on the
ray defined in Eq 2.3) above may have produced the image point.

where

x
y
Z



Figure 2.2.2-1) The target rectangle with respect to
the world reference frame

The set of points defined in Eq. 2.3) may be restricted by constraining the all four image
points to have arisen as perspective projections of the corners of a rectangle. If the rect-
angle is as shown in figure 2.2.2-1), the vertices are given by :

x1 + W
p2 = Y

Zl

x1

1 Yl
zi

2.4)

x1
P3 = Y1

Zl

+L xl + W
p4 = y1 +L

Zl

where yi > f. Their corresponding image points are :
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pi = x iPi

The observer look-angles may be obtained from Eqs. 2.3) and 2.4) [Haralick, R.M. 1989] :

= tan-1 [ A(z )-z) - B(z - z) - C(z - z) + D(z -z)] 2.6)[A(x -x;) -B(x -x-) -C(x -x*) + D(x* -x2)]

where

A= (x24 ~-X4 •
E

B (x1 z3 - 3 z1)
E

C (3 4 -X4 3
F

D= (xZ2 - X2 z1)
F

E = f [ (x1 - x)(z - z4)

2.7 a)

2.7 b)

2.7 c)

2.7 d)

2.7 e)

2.7 f)

- ( - X4)(z - Z13 )]

< = tan-'(x Z4 - X4 2)(Z 1 - 3) - (X Z3 - X3 Z1)(z Z4) 2.8)
f [(X 1 - x3)(2 -z 4) - (X - X4)(Z- 3)

1

-

, i = 1, 2, 3,4 2.5)

* * * * * * *
F=f[ (x - x2) 3 -14) - (X3 - X4)(Zl - 2) ]



-t o = s (x' z- xZ z.)(x -X ( x4) -(X 4 -x4 )(x' - x3)
f [(x -x;)(z - z4) - (x -x4)(,i - z3)

yP
Pl

Figure 2.2.2-2) The orientation of the target used in

implementing the inverse perspective

transformation

For the purpose of this particular analysis, the rectangle is assumed to lie in the y = yl

(yl > f) as shown in figure 2.2.2-2). From equation A1-21) in appendix A. 1, the look an-
gles are recalculated as :

= sin-1(cos 0 cos 0 ) 2.10)

0 = tan~-co s i cos

-sin 4
2.11)

2.9)

SV

- ---r-- ------- ·- I···------·- - --- ---e ---- ·- ·------- ------- ··-· - --- · - - --·- - -·-· lr·----- -- - ----- ·~Le



tan (cos 5 sin 4 - sin sin cos 8 )
51= tan-1  2.12)

(sin ( sin G - cos 5 sin 4 cos 0 )

where the dashed angles are those calculated earlier.

As can be seen from Eqs 2.10) - 2.12), the camera orientation may be determined

without knowledge of the dimensions of the target. If the dimensions are known, howev-

er, the range may be also be calculated. The coordinates of the bottom left hand corner

can be found as :

yl =

W(x'2 sin 0 + f cos 0 cos - z2 cos 0 sin 4)) (x I sin 8 + f cos 0 cos - z1 cos 0 sin 4)
(x2 - xl) fcos 4 + (X1Z2 - X2Z1) sin 4

2.13)

x1 cos 0 - f sin 0 cos 4 + zI sin 0 sin 2
xl = y, 2.14)

x, sin 0 - f cos 0 cos 4 + z' cos 0 sin

f sin 4 + z1 cos 2.15)
zl = y 2.15)

x I sin 0 - f cos 0 cos 4 + zi cos 0 sin 4

2.2.3 The Scaled Orthographic Transformation and its
Inverse (The Weak Perspective Transformation)

Unlike the perspective transformation where all rays from the object converge to a

single point (the center of projection), under orthographic projection, rays emanating

from the target are parallel to each other, preserving the dimensions of the target under

the projection. The scaled inverse orthographic projection attempts to find the rotations

and scaling upon which the orthographic projection of the target, considered as a plane
that can be rotated in 3-D space, must be operated such that it matches the image. The
target projection must therefore be translated in the 2-D plane, rotated in 3-D space and



then appropriately scaled such that its own orthographic projection coincides with that of

the target's.

The transformation that achieves the above operations is called a similarity trans-

form.. A 3-D similarity transform T may be represented thus :

T(x)= sRx+l R, t, x E 93, sE 91 2.16)

2.2.4 Evaluating the Transformation

The rotation matrix and the scale factor can be computed in a series of simple

steps [Huttenlocher D. P. 1988], given three points of a planar target in 3-D space and their

corresponding image points (see Appendix A.1) :

Xmi

Pmi =  ymi i = 1, 2, 3 2.17)
Zmi

and the corresponding screen points :

=Xs'] i = 1, 2, 3 2.18)
Psi [ysiJ

1) Rotate and translate the target such that Pm, is at the origin (0, 0, 0)

and Pm2 and Pm3 are in the x-y plane,

2) Define the translation vector b = -pmi and translate the screen points

by b so that Pm, is at the origin, Pm2 is at pm2 + b and Pm, is at

Pm3 + b,

3) Solve for the linear transformation :

L =[111 112]
1/21122



given by the two pairs of equations :

1llXm2 + l12Ym2 = XS:

11Xm3, + 112Ym3 = Xs:

121Xm 2 + 122Ym 2 = Xs

121Xm 3 + 122Ylm = X'

4) Solve for ci and c2 using :

c = 1 (w + /w2 + 4 q2)

and

C2 = -q
c2=1

where

w = 2 + 1222- ( + l22 )

and

q = 111112 + 12112:

5) The scaled rotation matrix is given by :

(2 121 -Cl 122 )

( Cl 112- C2 111 )

( 111122 - 12 112 )
s

2.19 a)

2.19 b)

2.20 a)

2.20 b)

2.21)

2.22)

111

sR= 121

Cl1

112

122

C2

where

2.23)



s= /21+121 +1.

The angles by which the target projection must be rotated may now be obtained

from the rotation matrix. If the rotations are assumed to have arisen from consecutive ro-

tations about the x, y and z axes respectively i.e. :

R = Rot (z, N) Rot ( y, 0) Rot (x, 0) 2.24)

or more explicitly :

cW CO
R = -sy so

Lo
cv so s o + sq co

-sW s( sO + c+V cO

-co sO

-cW so cO + s5w so

s' s co  + c i sO

co cO

the angles are therefore given by :

0 = atan2( R31, cWR11 - sWR21 )
= atan2( -R31, cR 33 - sR 33 )

S= atan2( -R21, R11 )

2.26 a)

2.26 b)

2.26 c)) = atan2( -R32 , R33 )

where the atan2() function accepts two arguments and returns a value between ± x.

There exists a singularity problem with Euler angles when 0 = ± 90' i.e. when

R31 = ± 1. This means that Ni and 4 cannot be solved for independently. The singularity

problem is overcome by fixing either Ni or 4 at its previous value [Spofford, J. 1986] and

solving for the other. Fixing y, we have :

Ni = Nfold

0 = atan2( sWR13 + cWR23, sWR12 + CvR22)
2.27)

2.25)



The scale factor s provides a simple way of determining the range of the target.

Since under an orthographic projection of an object, all dimensions are retained, the scale

factor indicates the amount by which the target must scaled to obtain the image dimen-

sions. Using the fact that all images are really produced by perspective projection, the

similar triangles property may be used to obtain the range.

Referring to figure 2.1.2-2), if the scale factor gives the amount by which the or-

thographic projection of the target onto the image plane must be multiplied i.e.

hs = d 2.28)

then, knowing the image plane distance from the from the observer at the origin as f, the
range r is given by :

r=f 2.29)S



Chapter 3

Implementation Requirements

3.1 Introduction

This chapter details the needs of a vision system that is to implement algorithms

that are based on knowledge of the feature points of the target. Feature point detection

based on a binary search is first discussed. Three different techniques for feature point
tracking using are then proposed.

3.2 Feature Point Location

The perspective and alignment transformations outlined in the previous chapter,

assume knowledge of the four corner locations of the rectangle. Before the transforma-
tions can be applied therefore, some feature point extractor is required to obtain the cor-
ners. For real-time use, it is both infeasible and wasteful to use a global screen search for
each new frame. A more realistic method would be a local search based upon past corner
positions.

The feature point extractor used makes use of the fact that each comer is at the in-
tersection of two edges, where each edge is a straight line. Since two points completely
define a line, the extractor finds two points on each edge adjacent to the corner and solves
for their intersection.

The target, which is a planar surface, has a uniform intensity. The image is
thresholded such that everything above a defined intensity u will be treated as pure white
and everything below as pure black. This permits a binary search to be performed across



an edge,which now appears as a step change in intensity.

3.2.1 Locating Edge Boundary Crossings

An algorithm that searches a circle in the vicinity of a feature point has been de-

veloped. There are two distinct sections to the search; an approximate search which lo-

cates the region in which an edge exists, and a fine search which locates an edge point to

within a precision e.

Referring to figure 3.2.1-1) the following operations are performed :

1) A vector r is projected from a point in the vicinity of a cor-

ner,

2) The coordinates, denoted by position vector po and intensi-

ty u(po), of the vector end point are noted,

3) The vector is rotated by an amount AO,

4) The intensity at the end of the vector is again checked. If it
is different from before, it is known that an edge lies be-
tween the current and previous points. If the intensity is
the same as the last point, the vector is again rotated until
a point of different intensity is found.
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Figure 3.2.1-1) Projection of a search vector r from the initial
search point t to find a brightness change

Algorithm "Roughsearch" :

project vector r from initial search
point

get position vector po and intensi-
ty u(po) of search vector endpoint

P1l- Po

u(p 1) -- u(po)

iterate :

Po <-- Pi

u(po) -- u(pi)

rotate r by an amount AO

get position vector pi and
intensity u(pl) of current

r po



vector endpoints.

while u(pl) = u(po)

store p 1

An accurate location of an edge boundary is found using the algorithm

"Finesearch", whose description follows :

1) The line joining the recently checked point whose intensity

is different from the previous point i.e. pl and P0o is bi-

sected by a point P2.

2) Get intensity u(p2) of P2,

3) If the intensities u(pl) and u(p2) are not equal, then P2 lies

on the other side of the edge separating it from pl. In this

case, P2 becomes the reference point whose intensity is

opposite to Pl i.e. Po -- P2, otherwise pl -- P2,

4) d, the square of the Cartesian distance between the points

that represent opposite intensities is calculated,

5) If d is greater than a specified tolerance value, then repeat

the process, otherwise, the edge boundary is taken to be

the point defined by position vector Pt.

Algorithm "Finesearch"

iterate :

P2 = (P + Po)

2
Get intensity u(P2) of P2



if u(p2) : u(pI) :
Po = P2

else :
P1 = P2

d = Ip l- pol 2

while d > E2

Figure 3.2.1-2) shows the sequence of operations for two passes of the finesearch algo-
rithm.
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Figure 3.2.1-2) The fine binary search operation to locate an
edge boundary

This process is repeated beginning with a new Roughsearch from the point where
Roughsearch originally found a brightness change. This results in two edge points at a
distance which is equal to the magnitude of r from the initial search point. The magni-
tude of r is decreased and the entire process is repeated. This results in four edge points,
two on each edge adjacent to the vertex. The labeling scheme used is shown in figure
3.2.1-3).
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Figure 3.2.1-3) The convention for edge boundary crossing labeling

The first subscript denotes the current comer and the second denotes the edge boundary
crossing.

3.2.2 Edge Gradient Determination

Given two points on a line, the gradient of that line can be determined.
Furthermore, given two points on two different lines, the point of intersection may be
solved. This simple observation allows the determination of the locations of the corners
of the rectangle.

It should be noted that the equations of the edges are independent on the labeling
of the crossings. Referring to figure 3.2.1-3), the gradient of edgei, is given by :

Z(edgei, o) - Z(edgei, 1)
X(edgei,o) - X(edgei, 1)

where the X and Z symbols denote the x and z components of the points as their argu-
ments.



3.2.3 Feature Point Solving

Given the gradients and boundary locations of the edges adjacent to the feature

points, the point of intersection of the edges may now be solved. Given the equations of

the edges :

z - bi = ml(x - l) 3-3a)
3-3a)

z - b2 = m2(x - C2) 3-3b)

where

bl = Z(edgei, 1)

cl = X(edgei, 1)

mi = grad(edgei)

b2 = Z(edgei, 3 )

c2 = X(edgei, 3)

m2 = grad(edgei)

Solving Eqs.3-3a) and 3-3b) :

X(pi) mic - m2c2 + b2 - bl
ml - m2

Z(pi) = ml(X(pi) - cl) + bi

3-4a)

3-4b)

However, a problem exists when one of the edges has infinite gradient. The above devel-

opment must be modified to cater for this condition. A line with infinite gradient is given
by:

x=K 3-5)

where K is a constant. The two possible solutions for edgei, = oo or edgei2 = o are given

below:



if ml = oo

X(pi) = X(edgei, 1)

Z(pi) = m2(X(pi) - X(edgei, 3)) + Z(edgei, 3)

if m2 = oo

X(pi) = X(edgei, 3)

Z(pi) = mi(X(pi) - X(edgei, 1)) + Z(edgei, 1)

3.3 Point Tracking

In order that the pose be determined for a time varying image, the rectangle cor-

ners need to be tracked over time. The tracking algorithm should be robust enough to

track the motions of the points that may be generated by the motion of an underwater ve-

hicle.

The anticipated feature points positions are determined using the history of their

positions in the past and extrapolating forward in time. Presented first is a feature point

update routine which anticipates the next location to be the current feature point. This is

essentially a method which assumes that the motions are so small that the corners are ap-

proximated as being stationary. Zero motion is of course incorrect but it is hoped that the

method places the point sufficiently near the true location that the local search, outlined

in section 3.2, will allow the true location to be detected. Two other methods that use ex-

trapolation techniques are compared with each other and with the simple update method

outlined above.

Method 1 is merely a simple update and is given by :

Pi+l = Pi 3-6)



Method 2 uses the current position and velocity of the feature point, where velocity is de-

fined to be the vector difference in the current and previous feature point position. It is

given by :

Pi+1 = Pi + (Pi - Pi-1) 3-7)

This may be written as :

Pi+1 2 -1 Pi 3-8)
Pi 0 1 Pi-1

Method 3 extends the above further and also uses the acceleration of the feature point.

The acceleration is defined to be the difference between the current and previous veloci-

ties. The anticipated feature point location is therefore given by :

Pi+1 = Pi + (Pi - Pi-1) + ((Pi - Pi-i)- (Pi - Pi-1)} 3-9)

This may be written as :

Pi+1 3 3 -2- Pi
Pi = 1 0 0 Pi-1 3-10)

Pi-1 -O 1 0- Pi-2

The position of the corners as computed using the above methods and the point

finding algorithm will be compared by attempting to track the corners of an image of a

rectangle as it moves on the screen. The moving image was achieved by changing the

camera angles.

The above methods are relatively crude ways of tracking feature points in time

varying images. More complex methods of point tracking are available, for example

ones in which a set of possible trajectories for each feature point is calculated and the

most likely one chosen [Hwang, V.S.S. 1989]. However, what is sacrificed in terms of com-

plexity is gained in computational speed.



Chapter 4

Calibration of Vision Software

4.1 Determining the Image Plane Distance to the Camera

The use of perspective transformations to determine the pose of an object requires

knowing the distance of the image plane from the observer origin i.e. the center of projec-

tion. Knowing the dimensions of an object and those of its image and the distance of the

target from the lens, an experiment can be carried out to determine the location of the

plane with respect to the lens.
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Figure 4.1-1) The camera arranged such that the optic

axis is perpendicular to the image plane



Figure 4.1-1) shows a schematic of the camera/image plane/target setup. The image
plane is at a distance f from the center of the lens. The camera was auto-focussed for a
range of 1.2 metres. This means that an object placed at a distance of 1.2 m from the lens
causes the virtual image to coincide with the CCD array of the camera. It is not impor-
tant that the camera focus is a constant value, since the resultant change in the image
plane distance is negligible compared to the range of the target. A circular reference tar-
get, shown in figure 4.1-2), with graduations marked on its horizontal and vertical diame-
ters was placed in front of the camera.

0.217 m

Figure 4.1-2) The target used for determining various
operating parameters

The image gradation sizes were then measured. Using three different measurements to
decrease the probability of measurement error, similar triangles can be used to determine
the distance of the image plane. The camera was placed at a distance r away from the tar-
get. The range was measured as the distance from the point at which a plumb bob, hung
from the front of the camera, made contact with the ground to the wall on which the tar-
get was mounted. For an object of size h, range r and corresponding image size d (see
figure 2.1.2-2), the image plane distance f may be calculated :



4.1)f dr
h

The target was placed at a distance of 1.025m i.e. r = 1.025 m and three sets of measure-

ments, shown in the Table 4.1, were taken

Table 4.1 Data for Calculating Image Plane Distance

From the above results, an average can be found to give the image plane distance :

f = 0.86 m

4.2 Determining Pixel Dimensions

In order that the system work with real linear measurement units i.e. metres, feet
etc., instead of pixel coordinates, it is necessary to discover the dimensions of one pixel.
Once this is obtained, the x and z scale factors can be calculated i.e. the amount by which
the x and z pixel coordinates must be multiplied to obtain the position in terms of metres.

It should be noted that the RS-170 video standard results in 480 lines of digitized
information per frame. However, the frame grabber is organized in a 512 by 512 array.

This means that there are 32 lines in the frame grabber memory which are not used in the

digitizing process. However, this offset in the z direction need not be taken into account
within the software.

h (m) d (m) f (m)

0.100 0.08 0.824

0.080 0.07 0.901

0.060 0.05 0.858



One method would be to use knowledge of the monitor dimensions. With the x

and z dimensions and the number of pixels for each direction known, it is relatively easy

to find the pixel dimensions. Another technique would be to draw a square on the screen

and to measure the sides to discover the aspect ratio for each pixel. Knowing the number

of pixels for each direction, it is relatively easy to find the x and z dimensions of a pixel.

An alternative is to place a target such that it lies in the image plane. Knowing that the

image of an object lying in the image plane will have all the same dimensions as the ob-

ject, the number of pixels can be counted in the x and z directions to find how many pix-

els represent each dimension.

The last two methods will be used; the former, firstly to give the pixel dimensions

and the latter to verify the distance of the image plane to the center of the lens. The first

method is unsatisfactory since the screen dimension is not a reliable method of measuring

the monitor aspect ratio since this may be changed by the manual vertical and horizontal

controls.

4.2.1 Method 1

A square of side 200 pixels was plotted on the screen and the linear dimensions of

the resulting rectangle were measured directly from the screen. The x and z dimensions

were measured as :

xd = 0.093 m

and

zd = 0.073 m

Dividing these quantities by 200 gives the size of one pixel :

xpdl = 4.65 * 104 m

and



zpd, = 3.65 * 10 4 m

4.2.2 Method 2

The target shown in figure 4.1-2) was placed such that it coincided with the image
plane i.e. image dimensions were the same as real dimensions. The pixel locations of the
center, the topmost and rightmost gradations were noted :

pc= [ [277259 2=[ 277]
394 PC 385

259

The length of the horizontal radius rh in pixels is given by:

rh = 385 - 277
= 108

and the vertical radius by:

rv = 394 - 259
= 135

The corresponding pixel dimensions are found by dividing the lengths that the above
radii represent. They are given by :

S0.05
XPd2= 108

= 4.63 * 10"4 m

and



LQ.05
zpd = 135

= 3.70 * 104 m

These quantities are very similar to those obtained using method one. This verifies the

image plane distance f of 0.86 metres. The average of the quantities are found thus to re-

duce the measurement uncertainty further:

Xpdl + Xpd2
xpd= 2

_ (4.65 + 4.63) * 10-

2
= 4.64 * 104 m

Zpdl + Zpd2
Zpd= 2

_ (3.65 + 3.70) * 10-
2

= 3.675 * 104 m

The quantities xpd and zpd are incorporated as scaling factors in the vision software to ob-

tain the image coordinates in metres.



Chapter 5

Computer Implementation

5.1 Introduction

This chapter describes the implementation of the algorithms outlined in the previ-

ous chapters and how various programming issues constrained their application. The var-

ious problems associated with implementation and how they have been overcome are pre-

sented. All software was written in 'C' and compiled using the Microsoft 5.1 compiler

on an IBM PC-AT compatible microcomputer.

5.2 General Implementation Issues

5.2.1 Introduction to Frame Grabber Operation

The video source for the frame grabber is the RS-170 standard video signal. The
signal is composed of digital timing pulses and analog video information. An interlacing
scheme where every odd-numbered horizontal scan line is first displayed i.e. the first line
then the third etc, followed by the even-numbered lines.

An image is digitized with a resolution of 512x512 pixels and 8-bit accuracy re-
sulting in the image being represented by a total of 256 gray levels, a total of 256K of
memory is required. Only 64K of the frame grabber memory are addressable at any one
time with each block representing one of four quadrants of the screen. A point on the

screen is therefore referenced by its quadrant number and local quadrant coordinate with
respect to the local origin, located at the top left hand comer of the current block.
Knowing the location of a point with respect to the screen coordinate frame, the appropri-
ate 64K memory block may be chosen and local coordinates determined. Once this is



achieved the memory location corresponding to the point may be accessed. The memory
block is chosen by placing the appropriate value in the frame memory block select regis-
ter (Appendix A.2).

5.2.2 Image Thresholding

The target, being essentially planar, is assumed to be evenly lit. The image is
thresholded so that everything above a critical brightness is taken to be pure white and
everything below to be pure black. Even though this information is not translated to the
display, the routines that access the FG memory only return values of pure black or pure
white. The critical brightness is determined by looking at the brightness across an edge
and taking the mean gray level across it. The gray level variation over a target edge is
plotted in figure 5.2.2-1).

As can be seen from figure 5.2.2-1), the edge is very well defined. The mean in-
tensity is seen to be around 160. This value is taken to be the threshold value about
which the binary search returns either "bright" or "dark".

Gray-level variation across an edge of a planar target

200

100-
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position across edge

Figure 5.2.2-1) Gray-level variation across an edge of a planar target
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5.3 Implementation Details

5.3.1 The Binary Search

The binary search is implemented almost identically to the algorithms

"Roughsearch" and "Finesearch". The important differences are made in an effort to

increase speed and to prevent problems that could occur if the discrete nature of the
image is neglected. Infinesearch , the line joining the points of differing brightness was

divided in two. Since division is computationally expensive and noting that the points al-

ways have integer components, a bit-wise shift right operation (which is a division by

two in binary notation) can be carried out. This is a much more efficient operation than

division. The edge crossing routine is performed by the function "findedge" located in

file findedge.c (Appendix A.3).

There is a limit to the accuracy that a binary search can achieve when operating

on discrete data. For the case when the points of differing binary intensity is only one

pixel apart, the binary search will cause a limit cycle to ensue about the edge boundary.
It is therefore necessary to terminate the search when the points are two pixels apart.
This limits the accuracy of the edge boundary finding algorithm.

5.3.2 Gradient Finding and Feature Point Detection

When solving for the equations of the edges to find their point of intersection, it is

necessary retain intermediate variables as floating point type, even though the result will
be an integer quantity. If the intermediate results are typecast as integers, a high degree
of accuracy will be lost and the feature point will be poorly located.

5.4 Image Transformation Implementation Issues

The perspective and orthographic transformations were implemented in a straight-

forward fashion and were a direct translation of the governing equations equations.

However, with respect to perspective transformation, the target is assumed to lie in a

y = yo plane. This necessitates slight modifications to the equations which are detailed in



Appendix A.1.

The alignment transformation needs only three feature points to process. Since a

rectangle is used as the target, a degree of redundancy is available. However, the basic

transform was implemented without using any redundancy, hence only three comer posi-

tions are required. The redundant case is discussed in Chapter 8.

In order permit large angular deviations of the camera but maintain the image on

the screen, it was necessary to relocate the origin at the center of the screen. This trans-

lates the origin to the position (255, 255), in pixel coordinates.

5.5 Overall Software System

The requirements, hardware constraints and the operating environment of the vi-
sion system have been defined in chapters four and five. The process of software devel-

opment is achieved by dividing the tasks defined in chapter four into functional units and
defining the required data paths that connect each unit with one or more neighbors.

Figure 5.5.1-1) shows the architecture of the system.

A description of the system as outlined in figure 5.5.1.1) follows. It should be
noted that the communication paths denoted by solid lines indicate routes that are always
used. The dashed path between FINDEDGE and PLACE need not be open for correct

operation of the system since PLACE merely displays on the screen points that have been
located using the other functions. Once the manager program POINTFIND is invoked,
the user supplies initial information to the SETUP function. This data consists of the ini-

tial search points that the algorithms finesearch and roughsearch require. Once this data
is supplied, POINTFIND calls FINDEDGE, which implements the binary search and
edge labeling algorithm.
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Figure 5.5.1.1) The functional units and the data paths used in the vision software

FINDEDGE returns the boundary crossings of the image edges which are passed via

POINTFIND to the edge gradient finding function GRAD. SOLVER then utilizes the
data provided by FINDEDGE and GRAD to solve the equations of the lines specified by
the gradients and edge crossings. Assuming that the equations are the ones that describe
the edges i.e. provided that the edge labeling was correct, the locations of the corners of
the image will be returned. These points are then input into a selected pose determining
routine.



Chapter 6

System Experiments

6.1 Introduction

This chapter first presents the performance of the basic vision system, i.e. the

edge crossing, feature point locating, and feature point tracking algorithms detailed in

chapter three. The chapter then describes the performance of the pose determination al-

gorithms described in chapter two. Performance is evaluated using two versions of the

software : one in which the edge crossing, feature point determination and pose determi-

nation algorithms are tested on a static image and another in which all but the pose deter-

mination algorithms are tested on a time varying image. Time varying images were gen-

erated by varying the camera's look angles. The calculation of pose was not carried out

using the dynamic images due to difficulties in measuring the look angles when the cam-

era was being moved.

For the static image tests, the performance was assessed using a series of images

which were stored on disk. Dynamic tests were carried out using a series of test video

images of the target and also by manually rotating the camera about the pan, tilt and

swing axes.



6.2 Feature Location System Evaluation

6.2.1 Static Tests

6.2.1.1 Edge Finding Performance

The edge crossing algorithms "Roughsearch" and "Finesearch", implemented in
function "findedge" (see Appendix A.3) performed satisfactorily. For the static tests,
square markers were placed on the screen at the calculated locations of the edge crossings
so that they could be seen by the operator. Given initial search points that are located at
distances less than the magnitude of the smaller search vector r2, findedge always finds
four edge crossings in the vicinity of each of the feature points. The function was very
fast and located the required number of points for the line solving algorithm within 0.03
seconds. However, problems occurred when the target was in certain configurations.

When the image was as shown in figure 6.2-1), the algorithm labeled the edge
crossings incorrectly. This problem arose when the end of the search vector rl was ini-
tially projected into an area of opposite intensity to the area to which the end of r2 was
projected. For this case, the labeling for the corner was as shown in figure 6.2-2).

Sr2

pure black

initial search point

z
tx

Figure 6.2-1) A configuration susceptible to incor-
rect labeling of edge boundaries



This problem could easily be solved by appropriately placing the point from which the
search vectors are projected. This may be achieved by choosing the initial search point
such that the intensities at the end of the vectors are equal.

edgei, o

edgei, 3

//
corner i

Figure 6.2-2)

- edgei, 1

- edgei, 2

Incorrect labeling as a result of the image
configuration as shown in figure 6.2-1)

6.2.1.2 Feature Point Location

When the edge crossings are labeled correctly, the program pointfind always lo-
cated the feature points to within a few pixels of the corners, as perceived on the screen
by the operator. However, when the function findedge used the incorrect labeling due to
the problem outlined in section 6.2.1.1, the feature point was placed incorrectly but al-
ways in the vicinity of the correct corner. This problem occurred due to the line solving
algorithm solving for the incorrect pair of lines. This case is shown in figure 6.2-3).



ited position
comer

Figure 6.2-3) Calculated position of corner due to
labeling as shown in figure 6.2-2)

Another problem of point placement occurred even when the crossings were la-
beled correctly. When integer arithmetic was used all the variables in the line intersec-
tion solving routine, accuracy was lost. It was observed that the algorithm in this case
calculated the correct value in the x direction (figure 6.2-4) but the incorrect z position.
This occurred because the z position was derived from the previously calculated x posi-
tion. It was found that even though the coordinates of the corner should be integer val-
ues, since they refer to the pixel position, it is necessary to use high precision variables
for all the intermediate calculations and to convert to integer values only when the final
answers are required. In future applications, floating point variables should be used
throughout only until a final result is required.

calculated
position of the

Figure 6.2-4) Misplacement of a corner in the z-direction if integer
arithmetic is used in the intermediate calculations



6.2.2 Dynamic Tests

6.2.2.1 Edge Crossing and Feature Point Detection

When feature point related information was evaluated, the edge crossing were not

displayed as for the static tests. Since writing to the screen takes a significant amount of

time, causing a significant reduction in frame update rate, only the calculated positions of

the feature points were displayed. Therefore, the ability to find and correctly label the

edge crossings was indirectly assessed by observing the calculated positions of the cor-

ners.

6.2.2.2 Stationary Camera Tests

For most configurations, the feature points were placed in the correct vicinity of

the corners. A slight wandering of the calculated positions was observed however, even

though no target or camera angles were changed.

A time-varying "weave" pattern is observed on digitized images. Upon detailed

inspection of the weave effect, it was observed that it causes calculated feature point po-

sitions to wander. It was also noted that the interference caused feature positions to

change mainly in the z-direction. The wavering of the calculated feature points was

probably due to changes on the order of a few pixels in the edge crossing positions. This

could cause the calculated position of the feature points to change from frame to frame.

This effect was examined in depth since it could conceivably cause instabilities in a pose
determining algorithm.

The effect of the interference was examined for two particular images : one where
the software was expected to locate the feature points correctly ( figure 6.2-5a) ) and an-

other where it was expected to fail intermittently ( figure 6.2-5b) ). The software is ex-

pected to work correctly for the image type shown in figure 6.2-5a) when the initial

search points are at the corners of the image, which was the case after the first frame.

This was guaranteed when the images of the target were updated but the target pose and

camera angles were unchanged. For both cases, the x and z positions of point po as cal-

culated by the system were examined. Data from one hundred frames was examined with



the results displayed in figures 6.2-6a) - 6.2-7b).

Favorable orientation Unfavorable orientation

Figure 6.2-5a), 6.2-5b) Favorable and unfavorable orientations for the
edge labeling algorithm

Configuration 1

Figure 6.2-6a) shows the x position variation in the calculated corner position
when the image is as shown in figure 6.2-5a). It can be seen that for 42% of the frames
there was a one-pixel variation about an average of 136 where 64% had this value, with
some isolated points (4%) having an x-component with a two pixels deviation from the
average.

Figure 6.2-6b) shows the z position variation in the calculated comer position for
the same case. The percentage of points one pixel away from the average z position
(39%) was less than that for the corresponding x average position. There was also a
greater percentage of points located two pixels from the average (17%).



Configuration 2

Figure 6.2-7a) shows the x position variation when the image is as shown in fig-
ure 6.2-5b). It is immediately observed that there is no one pixel variation. However,
19% of the points are misplaced by 26 pixels. Since there is no "one pixel noise" appar-
ent on the graph, it appears as though a one-pixel deviation caused the feature point to be
grossly miscalculated.

Figure 6.2-7b) shows the z position for the same case as above. The one-pixel de-
viation is again exhibited. Even though the average value for this case was 377, the devi-
ations occurred around the 376 value. It appears as though that the z component is more
susceptible to this noise than the x component.

When the static version of the point finding program was run several times using
a stored image, the same same coordinates were returned every time. The "wandering"
effect caused by the "weave noise" was therefore probably due to the interaction of the
camera and the frame grabber, since it was only observed when the frame grabber was
being continually updated with a fresh image of the stationary target.

6.2.2.2 Overall Feature Point Detection

In general, the corner detection algorithm worked satisfactorily. Overall the algo-
rithm works very well for most configurations with only a small error between the calcu-
lated and actual positions of the image corners (as seen on the screen) but has difficulty in
reproducing results when the image has edges that are parallel to the edge of the screen.
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6.2.2.3 Point Tracking Performance

Since the feature point search algorithm is only able to find the corners in the vi-

cinity of the initial search points, it is necessary to locate these points in the vicinity of

the corners. Some method for point tracking is therefore required for a time varying

image. In the absence of the knowledge of where the "true" location of the corners are,

the ability of the the three point tracking methods to place the initial search points in

close proximity to the feature points as calculated by the point finding algorithm is now

examined. The performance was assessed for three kinds of motion of the target,
achieved by varying the camera angles and the focal length of the lens :

1) Translation - achieved by rotating the cam-

era about the pan axis,

2) Rotation - achieved by rotating the cam-

era about the swing axis,

3) Zooming - achieved by changing the fo-

cal length of the lens.

For each of the three methods, the following graphs for each motion were plotted :

1) Calculated x-position as returned from function

solver (using a tracking method to supply an

initial search point) and estimated x-position

versus the frame number,

2) Calculated z-position and estimated z-position

versus frame number,

3) The magnitude of the error of the calculated and

estimated positions.



Due to interference from the video player, the frame grabber contents were frequently

corrupted, preventing the playing back of standard image sequences. This necessitated

the motions to be performed on line with the camera for each of the tests.

Data Analysis

The results for the various runs appear in the following figures :

method 1 - figures 6.2-8a) - 6.2-8i)

method 2 - figures 6.2-9a) - 6.2-9i)

method 3 - figures 6.2-10a) - 6.2-10i)

Method 1 Results

Figures 6.2-8a) - f) show that the position as calculated by solver are tracked

well. This is not surprising since the estimated position of the point is merely the previ-

ous position of that point. The trace of the estimated position is therefore just a one

frame lag version of the calculated position.

The performance of the tracking is better analyzed by observing the tracking error

plots, figures 6.2-8g) - 6.2-8i). A maximum tracking error of approximately 40 pixels
occurs when the camera is rotated about its optic axis. This is due to solver misplacing

the feature point.

Method 2 Results

Figures 6.2-9-1a) - 6.2-9f)) appear to show that update method two performs well
at feature point tracking. The two peaks displayed in graphs figure 6.2-9a) and 6.2-9b)
around the frame number 10 and 20 positions are caused by solver failing, therefore
causing a large tracking error to occur. However, tracking is reestablished within a few

frames. Even though the feature point was misplaced, causing a tracking error of 70 pix-

els, the error was usually under 10 pixels as Figures 6.2-9g) - 6.2-9i) show.



Method 3 Results

The feature point is again misplaced for the case of the zoom operation. The

tracking is generally acceptable, except for the case of the misplacement. The error is

around 16 pixels for translation and rotation and 100 pixels for zooming. This large error

was again caused by the point location routine failing rather than the point tracking meth-

od being grossly inaccurate.

Overall Point Tracking Results

It was found that for search radii magnitudes of 80 and 40 pixels, all three point

tracking techniques performed similarly. This should be the case if the tracking errors

are less than the size of the smaller search radius. None of the update routines perform

adequately when step changes in motion are input. The incorrect positions for the cor-

ners are sometimes calculated, with a few frames required for the calculation to settle,

and sometimes the point placement routines completely fail to find any of the feature

points. This can occur if the image moves by more than the size of the smaller search

radii. This problem could be alleviated if the magnitudes of the search radii were
changed as the speed of the feature points on the screen changes.

It was also discovered that since the point placement routines did not change the

size of the radii according to the size of the target image, findedge failed to label the

edge crossings correctly, thereby resulting in false positioning of the feature points and

sometimes in complete loss of the target. This may easily be solved by positioning the
initial search point such that the search vectors are projecting into areas of equal intensi-
ty. This will insure that the line intersection solved for is a corner of the rectangle.
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figures 6.2-8e) - f)
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Error for translation using method 1
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figures6.2.2.3e) - f)
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Error for rotation using method 2
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Error for rotation using method 3
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6.3 Image Understanding Algorithm Performance

6.3.1. Procedure for Performance Assessment

The performance of the inverse image transformations was evaluated using four

standard images as shown in figures 6.3.1-1) - 6.3.1-4). The inverse perspective transfor-

mation, which assumes the image is produced using the pin-hole camera model shown in

figure 2.2.1-1), was tested first. The inverse orthographic transformation, which assumes

that the image is produced by an orthographic projection of the target onto the image

plane, was then tested.

The standard images were obtained by camera rotations of (~ , , ) =

(00, 00, 00), (00, -100, 00), (50, 00, 00) and (50, -100, 00) ( see figure 2.2.2-1) ), with the

target positioned 1.8 metres away from the camera. The reference target shown in figure

4.1-2) was used for the tests. Due to difficulties in accurate measurement of the desired

camera rotations, the pan angle 0 was held constant. The other angles could be measured

by the deviation of a reference mark on the camera with respect to the horizontal. The

was achieved by means of a plumb bob and protractors, mounted perpendicular to the

camera's swing and tilt axes. There are two sets of results produced by both routines for

each set of camera angles due to the inherent reflective ambiguity of the calculations.

Table 6.1 gives the actual camera parameters with which the results from the inverse

image transformations should be compared.

6.3.2 The Inverse Perspective Transformation

Obtaining meaningful results from the inverse perspective transformation (IPT)

proved to be rather difficult. Even though the function that implemented the IPT was a

direct implementation, the results did not appear to correlate to the input camera angles.

The results for the four different scenes appear in Tables 6.2 and Table 6.3. These tables

show the calculated camera angles, (4, ý, 0) and and the calculated position, (rx, ry,rz), of

the bottom left hand corner of the target, with respect to the camera. It should be noted

that for each camera configuration, there are two possible sets of calculated camera angle

and target range (see Appendix A. 1).



The source of the apparent randomness of the results could be due to the algo-

rithm. The IPT for a rectangle makes use of several division operations. When the image

similar to that shown in figures 6.3.1-1) - 4), the divisors of those operations are likely to

tend toward zero. Small changes in these numbers may translate into very large errors in

the solution for the angles and hence the ranges.

Table 6.1 Actual Camera Parameters

image 1 (figure
6.3.1-1)

image 2(figure
6.3.1-2)

image 3(figure
6.3.1-3)

image 4(figure
6.3.1-4)

calculated camera
angles

0
0

0

5

5

0

-10

0

-10

0

0

0

0

calculated ranges of
bottom LH corner

rx

0

0

0

0

ry1

1.8

1.8

1.8

1.8

rz

0

0

0

0



Figre 6.3.1-1: Target mage vithcamera
angles (0,0,0).

agles (5,0,0).

Figue 6.3.1-2: T'get image vith camera
magle (0;10,0).

F•gme 6.3.1-4: Target •mage witv camera
anges (5-10,0).



6.3.3 The Inverse Orthographic Transformation

The results for the inverse orthographic transformation are also unsatisfactory.

However, the results were more consistent than those for the IPT. Notice that the com-

puted range was fairly consistent, with a mean value of 3.6m. This value was still incor-

rect since the actual range of the target from the lens was 1.8m.

Table 6.2 The Results for the Perspective Transformation
Solution Set 1

image 1(figure
6.3.1-1)

image 2(figure
6.3.1-2)

image 3(figure
6.3.1-3)

image 4(figure
6.3.1-4)

calculated camera
angles

-10.6

-9.1

-8.0

-7.2

133.2

69.4

90.3

131.2

-40.4

-9.3

-20.5

-45.5

calculated ranges of
bottom LH corner

rx

2.0

0.5

1.0

2.0

ry

2.3

3.3

2.5

1.8

rz

-0.6

-0.5

-0.5

-0.5



Table 6.2 The Results for the Perspective Transformation
Solution Set 2

image 1 (figure
6.3.1-1)

image 2 (figure
6.3.1-2)

image 3 (figure
6.3.1-3)

image 4 (figure
6.3.1-4)

calculated camera
angles

-10.g

-8.1

0.0

-0.5

4
-67.8

-46.2

-89.0

-10.7

-32.8

-48.3

176.3

-55.7

calculated ranges of
bottom LH corner

rx

1.5

2.2

-0.2

2.79

2.3

2.0

-2.8

2.1

rz

-0.5

-0.4

0.2

-0.1

Table 6.3 The Results for the Orthographic Projection
Solution Set 1

image 1
(figure 6.3.1-1)

image 2
(figure 6.3.1-2)

image 3
(figure 6.3.1-3)

image 4
(figure 6.3.1-4)

calculated camera
angles

12.3

13.8

20.9

-13.7

0.5

-10.0

0.2

-8.9

7.1

3.0

0.5

5.8

range

3.6

3.4

3.6

3.6



Table 6.4 The Results for the Orthographic Projection
Solution Set 2

image 1
(figure 6.3.1-1)

image 2
(figure 6.3.1-2)

image 3
(figure 6.3.1-3)

image 4
(figure 6.3.1-4)

calculated camera
angles

-10.2

-14.5

-10.3

13.3

0.5

-10.2

0.25

-8.9

-6.3

-10.4

-0.9

-2.6

There appears to be some coupling of the computed angles since their values

change, even when the corresponding camera angle was held constant. This is to be ex-

pected since the IOT does not return the camera look angles but rather the angles through

which the target must be rotated through to produce a scaled, coplanar version of the

image on the screen. The relationship between the target Euler angles and the camera

look angles is a function of the geometry of the camera tripod mounting. This informa-

tion was not available and hence the problem was not further pursued in this project.

range

3.6

3.6

3.6

3.6



Chapter 7

Conclusions

7.1 Discussion and Recommendations

A vision system has been developed that will serve as a framework for the imple-

mentation of various vision algorithms. The system was written in a highly modular

form so that modifications could easily be made. Provision was made for different algo-

rithms to be simply "plugged" into the system. However, the system is restricted to al-

gorithms that are based on the feature points of an image of a planar target. The philoso-

phy that drove this decision was that such shapes occur abundantly in man made environ-

ments. Since algorithms that require the feature points of an image were only explored, a

rectangular target was chosen due to its well defined vertices. Many such algorithms

only require three feature points for pose calculation, the use of a rectangle may therefore

provide a degree of redundancy in the calculations.

The edge boundary finding routine is quite fast, taking on the order of 0.03 sec-

onds. However, it is not able to to tell when the labeling is incorrect. This condition hap-

pens when the the ends of the search vectors are positioned within areas of opposite in-

tensity. This results in the misplacement of the corners of the rectangle. For a time

varying image, the system is able to recover the correct points as the target was rotated

from an unfavorable to a favorable orientation, even though the points might be originally

misplaced. Another deficiency in the algorithm is that if one or more of the points are

grossly misplaced, possibly by excessive image motions, they may "migrate" to their in-

correct corners. In this case, the program will report successful point placement, even

though the points may be located at their incorrect positions.

Even though there are many drawbacks with the labeling and point finding algo-

rithms, they are extremely robust. It is possible for part of the image to be out of the

range of the screen and yet still have all the corners to be located.



The performance was affected by the quality of the image produced by the frame
grabber. It produced a noisy image, probably due to a slight difference in synchroniza-

tion between the camera and the monitor. For a static image this caused the calculated

position of the corners to deviate from frame to frame.

The edge finding algorithm can be significantly improved. For example, the algo-

rithm finds four points on each edge, even though only two are required to locate the cor-

ners. This excess number could be used in a least squares algorithm to find the best-fit
line between the points. An alternative is to use only two of the edge boundary crossings.
This certainly will increase the speed of operation by a factor of two over the current sys-
tem but will not have the accuracy of the method.

For the dynamic versions of the software, the tracking system should use a simple
update method where the beginning of the subsequent search is the current position of the
feature point. The more complex methods of point update are more prone to error. This
is possibly due to the fact that the time difference between frames is not constant. For
cases where the inter-frame period is constant, anticipatory tracking schemes may be
more successful. The frame rate variation is most likely caused by some target orienta-
tions being more favorable for the edge boundary crossing routine. A constant frame rate
was attempted by accessing the computer clock. This method proved unreliable since the
various operating system calls also access the clock. This prevented frames being updat-
ed at equal increments in time. It is suggested that a device dedicated to providing an ad-
equate clock signal be used.

The image transformations tested did not perform satisfactorily in their current
form. The inverse perspective transformation of the rectangle provides a closed form re-
sult enabling the calculation of the camera look angles and target position. However, to
implement these equations within a program is clumsy and provides no level of redun-
dancy for a possible least squares approximation to a set of possible solutions. It is sug-
gested that this method not be used for future vision research for space robots.

Since the alignment method requires only three points and the target used was a
rectangle, a degree of redundancy was available in the calculation of the rotation matrix



R. For a rectangle, there are four sets of three points that could each be used to calculate

the components of R. The problem is solved for each set of points and a least squares

routine is implemented to find the best fit for the matrix components.

The components of the linear transformation L may be solved for the following

sets of points : {mo, mi, m2), (I, mo , m13 , (m30, m2, m3 ) and ({m, m2, m3). For each

set, a solution Li (i = 1, 2, 3, 4) is generated. A least squares solution is found in the fol-

lowing manner :

1) Given the values 11, 1, 1i, 2i, 12,

a matrix A may be set up as :

A= 1

.1

li, 12, 2 (i = 1, 2, 3, 4),

The overdetermined system of equations Ax = b is to

be solved. The vectors b are defined as :

11,2 1
11,243

12,11
/ 12, 12
12, 13 '

_12, 14

1 2, 22

b1 2,23 "

I 12,24 ,

2) For each b vector, solve :

x =(ATA) lb, xe 92

The solutions should give equations of lines parallel to

bi, = 1 1 ,11 , 2 ,b 1 , 1 311,14



the ordinate axes.

3) In case there is a slight slope in the answers, the mid-

point of the lines should chosen to be the components

of L:

1 = x1, 1 + 2.5 X2,1.

Care should be taken with the above technique since two solutions are generated when

the alignment transformation is applied. A means of identifying and applying the least

squares to the two solutions generated by the alignment transformation should be devel-

oped.

It may also be possible to develop a pose determining algorithm that is not depen-

dent on any particular image feature points. This would relieve the processor of complex

edge labeling checks and point tracking thus enabling it to carry out other important tasks

such as calculating control signals from the data generated by the vision software. It is

not anticipated that the present system will be able to operate in unison with a control

scheme on the same processor. Rather it is envisioned that the a processor will be devot-

ed to vision tasks, updating the state of the environment (or plant) and another utilizing

this information to calculate the appropriate control signals.

Immediate work should concentrate on obtaining the relevant data in order to im-

plement the orthographic transformation correctly. For "dry land" tests, this involves ob-

taining a camera mounting such that the tilt, pan and swing angles may be changed inde-

pendently and be accurately measured.
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Appendix A.1

Theoretical Background

A.1.1 Theoretical Development of the Perspective Transformation

The complete development of the pose determination of a rectangle using the per-
spective transformation is given below.

From Eqs. 2.2) and 2.4) repeated below :

x' cos 0 - f sin 0 cos 0 + z' sin 0

= x'sinO+fcos cos - z'sin

If sin 0 + z' cos 0

sin 4

]' [1[cosz' sin
-sin x*

Scos z*

x, + W
P2 = Y1

Zl

x, + W
p4= yl+L

Z1

we have for some •1, X2, X3, 4 :

x1
pi = Yl

Z1

xl
P3 = y +L

Z1

A1-2)



x' cos 0 - f sin 0 cos 4 + z'

X1 x' sin 0 + fcos 0 cos - z'

/f sin 4 + z' cos

x' cos 0 - f sin 0 cos 4 + z'

X2 x' sin 8 + fcos 0 cos - z'

+f sin C + z' cos 4

x' cos 0 - f sin 0 cos + z'

X3 x' sin 8 + f cos 8 cos - z'
f sin + z' cos

x' cos 0 - f sin 0 cos 4 + z'

4 x' sin 0 + f cos cos - z'

.f sin ~ + z' cos 4)

sin -xl -x
yiL n 1zl

sin x, + W
yi
zI

yi+L
Zl

sin 4) xl + W
= yl+L

Zi

Equations Al-3a)-d) can now be solved for 0, ) and 4 with X1, X2, X3, X4, X1, yl,
zl, W and L unknown. The first and third components of the right hand sides of Eqs. Al-
3a), Al-3c) and Al-3d) are the same and can be used to show that

cos 0 sin 4 f (x'1 - x3) + sin 0 f (zi - z3) + cos 0 cos 4 (x'Z 3 - x;3z) = 0

cos 0 sin 4 f (x2 - x4) + sin 0 f (z2 - z4) + cos 0 cos 4 (x2' 4 - x4z 2) = 0

Multiplying A1-4) by (z2 - z4) and A1-5) by (z1 - z') and subtracting yields :

cos 0 sin 4 f [(x' - x3)(z2 - z4) - (x - x4)(z - 3)]

+ cos 0 cos [(x'lz3 - X3Z1)(z2 - Z4)

- (x2Z4 - X4Z)(1 - 3)] = 0

Al-4)

Al-5)

A1-6)

Al-3a)

Al-3b)

Al-3c)

Al-3d)



Dividing Eq.A1-6) by cos 0 and solving for 0 gives :

= tan~-(x2 Z4 - x4 z2)(z1 -) - (xI 3 - -3 1 2)(Z7 - 4)

f [(x'1 - x3)(z - 4) -( - )(z- z3)
Al-7)

Since 4 has an ambiguity of 1800, the correct value can be chosen from that value be-

tween + 900. Values outside this range means the camera is looking at the hemisphere

behind it.

Multiplying Eq.Al-4) by (x2 - x4) and A1-5) by (x - x3) and subtracting gives:

sin 0 f [(z1 - Z3)(X2- x) - (Z - z4)(xl - x3)]

+ cos 0 cos 4 [(x'lZ 3 - X3Z 1)(x2 - x4)
- (x2Z4 - X4Z2)(X' - X3)] = 0

Eq.A1-8) results in :

S= tan- cos 4 (x z3 Z- 3 1)(X - x) - ( Z4 - X4 z2)(x 1 - X3)

f [(x' - x3)(z2 - z4) - (2x - X4)(Z I - Z3)

Al-8)

A1-9)

Again, the value between ± 900should be selected. Since

xi cos
Z* -sin

sin xi[
cos Zi

i=1, 2, 3, 4

it can be seen from Eqs A1-7) and Al-9) that once ý is known, 0 and 4 may be deter-

mined. As the second and third components of Eqs Al-3a) and A1-3b) are the same and

the second and third components of Eqs A1-3c) and Al-3d) are the same, an alternative

equation for 4 may be found :

Al- 10)



Z2= I z I I - 2) 1) - (X; Z4 - X4 Z3) i -1Z)

f [(x - X4)(Z1 - 2) (X'1 - X - Z4)

Eqs A1-9) and Al-11) imply :

(x' Z4 - X4 z2)(l -z3)-(x  z3 - 3 x- 4)
f [(xi - x;)(zý - z4) - (X - 4)( )

(xF zz - x1 wl)(z3 - z4) (X 4 - 4 Z3)(Z1 -l2)
f [(x - x4)(Zi - ) - (xi - x,)(z - z4)

From Eq. 1), which is restated below

X* cos 5 sin x'
z J -sin co zCOS

i= 1, 2, 3,4

the following property is noticed :

x2z4 - x4 2z = (X COS - Z Sin )( in s + ~ cos )
- (x; cos 5- z4 sin 4)(x* sin 4 + z cos 4)

** * * *= (xz 4 - X4Z) cos2 ) + (z2 - x)4) sin2 2= (Z4 - X4Z2)

The other denominators of Eq.A1-12 are similarly rotationally invariant. Eq.12) there-
fore becomes :

(x 4- *4 )[sin (X1-x3)+cos 4 -( z 1)-(xz ) [sin 4(x2x4)+cos (z 2-z4)]
x2Z4-x4z2sl 1 3 Z1-Z3), X1Z3-X3Zl) 2[sin Z

f , * * * * * *f[(xl-x3)(22-z 4)-(-x (4 z Lz
(x•-x )[sin 4 * *)csý * * $ @* * * *[
1x Z2-I2 1)s 3 4 3(Z3 Z4) X3 Z4 X4 3) [sin 12ZS(Z2)]

f [(xl-X3)(z244) 2-(x 4 )(-3)

i.e. the above states that a linear combination of the sine and cosine of 5. 5 is therefore

given by:

Al-11)

Al-12)

A1-13)

Al-14)



= tan- I [ A(z - ) - B(z~ - z) - C(z; - z~) + D(z* -z)] A-15)
[A(xl - x) - B(x - x*)- C(x* -x) +D(x* - x-)]

where

A = (x E 4 4 Z Al-16a)

(xz z;- x; z)
B= E Al-16b)

(C = 4- z)
= F Al-17c)

O (x* z -x; z;)F Al-18d)

E = f [ (x - x)(z- z ) - (x -x)(z - z ) ] Al-19e)

F = f [ (x - x2)(z -z4) - (x - 4)( 1 -)] Al-20f)

Throughout the project however, the rectangle has been assumed to lie in a y = yl
plane. This is more appropriate since in the nominal orientation, i.e. when all the camera
angles are zero, the rectangle is directly ahead. By solving the problem using the equa-

tions above but with the rectangle in a y = yl plane, the coordinate system for the original

problem of the rectangle in a z = zi plane may be thought of as having a prior rotation of

±900. The choice of +900 or -900 is depends on keeping the corners of the rectangle in

front of the image plane. The solution gives angles 0, 4, and 5. From these angles,

new angles 0, 4, and 4 may be determined so that a rotation of 0 about the z axis, fol-



lowed by a rotation of 0 about the x axis, followed by a rotation of ý about the y axis

gives the same effective rotation about the x axis of ±900, followed by a rotation about

the z axis of 0 , followed by a rotation of 4 about the x axis, followed by a rotation of 5

about the y axis.

This procedure reduces to equating the components of the two corresponding ro-

tation matrices. For a prior rotation of +900 about the axis, the components of the fol-
lowing rotation matrices must be equal :

+ sin 4 sin 0 sin 0

0 + cos sin sin O

-sin 5 cos

-sin 4
-cos 5cos

cos 5 sin 4 - sin 5 sin 4 cos 0

cos 0 cos 0

-sin sin 0 - cos 4 sin cos 0

O + sin (sin osin 0 -cos Ssin 0 - sin Ssin ocos 0 sin 5cos o

0 cos Ocos 0 sin 4

0 + cos ýsin Osin 0 -sin ýsin 0 - cos ýsin Ocos 0 cos 4cos 0

A1-21)

From this, we have:

= sin-1(cos 0 cos 0 )

0 =tan-1 cos 0 sin 0

-sin 4

tan-1 cos S sin 4 - sin sin 4cos 0

-sin sin 0 - cos sin Ocos 0

Al-22a)

A1-22b)

A1-22c)

=



A.1.2 Theoretical Development and Calculation of the Inverse Orthographic

Transformation

The following results [Huttenlocher D. P. 1988] show that given two sets of three

points each in a different plane give the orientation of one plane with respect to another.

Lemma A. 1.1 Given three non-colinear points Pm, in the plane and three corre-

sponding points Ps in the plane where i = 1, 2, 3 then there exists a unique affine transfor-

mation :

A (x)= Lx+ b,x x e Al-21)

where L is a linear transformation and b is a translation such that A (pmi) = Psr An affine

transformation of a plane is given by :

x' = alx + bly + c,
y = a2x + b2y + C2

for any point (x, y). A transform relating the points Pm, and Ps is given results

of three equations in three unknowns :

xsi = alxmi+ bymi +ci i= 1, 2, 3

Ysi = a2Xmi + b2mi + c2 i = 1, 2, 3

A1-22)

in two sets

Al-23a)

Al-23b)

Both sets of equations can be solved if :

Xmi

Xm
2

Xm3

•0

This means that the points Pm, must not be colinear.

Yml

Ym2

Ym3



Definition A. 1-1

A transformation T is a similarity transform over a vector space V if

A1-24)
I ITv1 IT 2 = IT0 V 1 V = I Iv21
TVl" Tv2 = 0 <:* V1' v2 = 0

for any v 1 and v2 in V.

Theorem A. 1.1

Given a linear transformation L of the plane, there exists a unique (up to a reflec-

tion) similarity transform U of space such that :

Lv = Uv* Al-25)

for any 2-D vector v, where v* = (x, y, 0) for any v = (x, y) and v = w iff v = (x, y) and

w = (x, y, z). The relationship between the transformations is given by :

V2 _L V2

I*

V3 tU V2

where V2 and V3 are 2-D and 3-D vector spaces respectively. U is interpreted as a rota-

tion and scale of two basis vectors that define a plane such that their image under an or-

thographic projection is the same as applying L to the basis vectors.

Proof. Some 3-D transformation exists for any L since it may be embedded in the up-

per-left part of a 3 x 3 matrix with all the remaining entries zero. The following shows

the existence of a unique (up to a reflection) similarity transformation U.



Let et and e2 be orthonormal vectors in the plane, with

es, = Lem.
es, = Lem2

If vI = Ue* and v2 = Ue2 , we have by the definition of U:

V1 = es, + ciz
V2 = es2 + c2Z

A1-26)

A1-27)

where z = (0, 0, 1) and Cl and c2 are constants.

U is a similarity transformation iff

vi" V2 =0

I Ivll I = I Iv2

A1-28a)

A1-28b)

since e* and e2 are orthogonal and of the same length. From Eqs. A-7) and A-8), we
have :

(es, + ciz). (es2 + c2z) = 0,

es,- es 2 + ClC2 = 0
A1-29)

and hence

clc2 = -esx" es2 A1-30)

The right side of Eq A-10) can be calculated since L and et and e2 are known.

In order for A-8a) to hold,

I IvI 12 = I V2112 A-31a)



A-31b)

resulting in

A-32)

Calling the right side of Eqs. A-10) and A-12) kl and k2 respectively, we have

clC2 = kl

c - C2 = k2

A-33a)

A-33b)

Eqs. A-13a) and A-13b) always have a solution that is unique up to a sign ambiguity.
Substituting

kl
C2 = i

cl A-34)

into Eq. A13b), we obtain

c4 - k2c - kl =0 A-35)

Substituting x for cj and solving for x gives

x='(k2 • kk2 + 4 kl2)
2

A-36)

Since c1 = -a, only the positive solution of Eq. A-16) is required. Eq. A-16) can

only have one positive solution as 4k 2 > 0 and therefore the quantity inside the square

root is 2 k2. Two real solutions for ci corresponding to +±Y therefore exist.

ci c2 = kl there are also two solutions for c2.

Eq.A-16) does not have a solution for x when ci = 0 as the substitution given by

Eq. A-14) does not hold. However, when cl = 0, Eq.A-15) gives c2 = ± f12-. There are

Since

I leJs 2 + c2 = leJ 12 + ci

c2 - c2 = I lesJ 2 -I leksJ



always two solutions for c2 as the following shows. Using Eq.A-11 lb) and substituting

cl = 0 we have :

lies, 12 -> I es 12  A-37)

and hence

k2 = I es 122 - I es1 FI5 0 A-38)

Since the argument under the square root is positive, c2 has two values.

There are always two solutions for cl and c2 differing in sign. Iff the similarity

transformation U exists, the equations for cl and c2 will have a solution, resulting in two

possible solutions. These solutions correspond to the reflective ambiguity in U.

Theorem A. 1-2

Given three non-colinear points Pm, in the plane and three corresponding points Ps;

(i = 1, 2, 3), there exists a unique similarity transformation (up to a reflection), Q such

that Q(p*m) = ps,, where v* = (x, y, 0) for any v = (x, y) and v = w iff v = (x, y) and

w = (x, y, z). Q is a 3-D translation, rotation and a scale factor.

Proof. From Lemma A.1-1 there is a unique affine transformation such that A (pmi) = Psi.

A consists of a translation vector b and a linear L. b can be chosen such that

b = Pm, - Ps, and L to be the linear transformation such that Lpmi - b = Ps, (i = 1, 2).

Given L by Theorem Al, there is a unique, up to reflection, rotation and scale U

such that Uv* E Lv for all 2-D vectors v. Combining b and U specifies a unique simi-

larity transformation Q consisting of a translation, rotation and scale such that

Q(pmi) = Psi.

It should be noted that it is not necessary the 3-D transformation Q for planar

models. The affine transformation A is sufficient to map points from the model plane to



the image plane.



Appendix A.2

The PCVISION Frame Grabber and its

Operation

Provided here is a brief guide to the operation of the frame grabber (FG) used for

the project. The FG digitizes an RS-170 standard video signal with an accuracy of 8-bits,
therefore being capable of representing the image with 256 levels of gray, and resolution

of 512x512 pixels.

The frame is arranged into four blocks of memory, each being 256x256 bytes (fig-

ure A.2-2) ). In order to address each pixel in terms of its row and column, it is first nec-

essary to know the memory block in which the pixel is located. Once this is determined,

the position in memory within that block is given by the high and low bytes of the memo-

ry address register. The frame memory starts from the top left hand corner of the block

and ends at the bottom right hand corner. For the purposes of this project, the origin is

located at the bottom, left hand corner of the frame. The FG is locatable to any 64K

boundary in the memory space of the PC-AT but was placed located at location HD0000

for this project (the H denotes a hexadecimal number). The appropriate image block is

selected by one of the control/status registers provided on the FG.

The user is provided with 7 registers [PCVISION 1984]for grabber status and con-

trol. These are located from memory location HFFOO to HFF06. The most commonly

used is the control/status register. The available registers are shown in table A.2-1.

The status/control register is a 16 bit register composed of various bits which may

be either be set by the user or to report the current FG state. It is located at memory loca-

tion HF000 and HF001. The low bits are mainly used for control and the high bits for to

control such operations as continual frame capture ("grabbing"), or freeze frame mode

("snapping").



Table A2.1 Frame Grabber Register Summary
(from PCVISION Frame Grabber Manual)

Register Base Address

0
1

2

3

4

5
6

A description of the control/status (low) register follows. Not all the bits in this

register are of immmediate use to the user. The board select (BDSEL) bit is used to en-

able the frame grabber. It of use when more than one board is installed in PC-AT, for

color image processing applications for example. Since only one board was required for

this project, BDSEL should always be set. Bits LUTMDO and LUTMD1 select the input

look-up tables. The input LUTs transform the image brightness prior to storage in mem-

ory. These were not used in the project and were set to zero. The ACQMODEO and

ACQMODE1 bits control the image accessing. These bits should be set to 0 and 1 or 1

and 1 for freezing ("snapping") or grabbing a frame respectively. The CLOCK bit should

be set to 1 in order that the FG uses the synchrization signal for timing.

Control/Status Low

Control/Status High

Look-up Table (LUT) Addre

LUT Data

Mask

Frame Memory Block Sele

Reset Vertical Blank InteruP

ss

ct

pt
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Figure A.2-1) The control/status (low) register (from

Addendum to PCVISION Frame Grabber

Manual)

The other important register is the frame memory block select register. Only the

least two significant bits of this register are needed. This register selects the appropriate

64K block of memory, that contains the required screen position. The bits select the

image quadrants (figure A.2.2) as shown below.

Bit 0 Bit 1 Block

0 0 0

0 1 1

1 0 2

1 1 3



Memory location HDOOFF

Top of fra
(HD0000

256 pi

Target image

Figure A.2-2) F

e grabber memory(

512 pixels

512 pixels 0

G block screen memory arrangement

Even though the FG produces a 512x512 image from a video signal, the RS-170
video standard is 480 lines. This means that 32 lines are unused and contain no useful
image information. These lines are located at the bottom of each memory block and
should not be visible to the user.

Since it is required to address the pixels with respect to the beginning of memory
block, the following routine ("glo-lo" ) is needed to convert screen point "global" into a
"local" memory block coordinate with its respective origin at the top left hand comer of
the block :

Algorithm "glo-lo" (global to local coordinates)

if X(global) < 256 AND X(global) 2 0 AND Z(global) <

256 AND Z(global) 2 0

X(local) = X(global)

F



Z(local) = 255 - Z(global)

select memory block 2

else if X(global) < 256 AND X(global) > 0 AND Z(glo-
bal) > 255 AND Z(global) < 512

X(local) = X(global)

Z(local)= 511 - Z(global)

select memory block 0

else if X(global) > 255 AND X(global) < 512 AND
Z(global) < 256 AND Z(global) 2 0

X(local) = X(global) - 256

Z(local) = 255 - Z(global)

select memory block 3

else if X(global) > 255 AND X(global) < 512 AND
Z(global) > 255 AND Z(global) < 512

X(local) = X(global)

Z(local)= 511 - Z(global)

select memory block 1

else

the point is out the range of the FG memory.



Appendix A.3

"ViSTA" Vision Software

A.3.1 Introduction

Presented here is ViSTA (Vision for Simulated Space Telerobotic Applications),

a suite of programs for testing out machine vision algorithms. All software was written

in C and compiled with the Microsoft C version 5.1 Compiler. Development was carried

out on an CompuAdd AT compatible computer running at 12 MHz. Section A.3.2 gives

the general instructions required for the running of the software. Section A.3.3 presents

the software used for the static tests, with information on how it to modify it to allow for
pose determination and section A.3.4 lists the various software modifications for the

point tracking versions of the software. Information on modification of the software is

provided in all sections and as comments within the programs.

A.3.2 General Operation of the Software

For all the versions of the software, the following sequence of operations are re-
quired to set up the frame grabber and to provide initial search points for the edge cross-
ing and feature point finding algorithms.

1) Prior to the initial operation of the frame grabber, the output
look-up table (OUTLUT) must be initialized. The tables are

used to transform the pixel intensities prior to the display.

The eight bits of pixel information coming from the frame

memory are mapped on a one-one basis to intensity i.e. the

OUTLUT is programmed as a ramp. This allows the full gray

scale to be displayed on the monitor. The program INIT must



be run to program the output OUTLUT as a ramp. The frame

grabber is now capable of either continuously acquiring or
freezing a frame from a video source.

2) In order to perform tests, it is usually required to observe the

target on the monitor before a test scene is selected. This is

achieved by running the program GRAB, which continuously

acquires a frame. Once a scene has been selected, it can be

frozen by running the program SNAP. A desired frame will

be held in memory when a key is pressed.

3) If the scene is desired to be stored on disk, the program

ISAVE may be invoked. It will prompt the user for a filena-

me. It is suggested that image files be saved as "filena-

me.pic". Once a filename has been chosen and carriage return

is hit, the frame will be stored in the current directory. As the
image is being saved, the image on the screen will be invert-
ed, pixel by pixel, to show how the save is progressing.

4) To recover an image from the current directory, the program

RESTORE should be executed. Like ISAVE, RESTORE will

prompt the user for a filename. Once carriage return is

pressed, the image will be loaded into the frame grabber. The
process takes about one minute.

The programs mentioned above appear on pages 91-97 except for their
components place.h, place.c, getval.h and getval.c. The make file is also
given in order that future modifications to these programs take minimum
effort.

A.3.3 Static Test Programs

This set of programs is used to demonstrate the edge boundary crossing and fea-

ture point detection algorithms. They are given together with there associated 'make' file



to ease program modification. They are intended to be used with a static image captured

using the programs mentioned in section A.3.2. Once an image has been placed in the
frame grabber memory, the following operations should be carried out:

1) The program pointfind should be run. The user will be

prompted for a filename in which to store data such as edge
crossing, edge gradients and feature point location. This in-
formation is also printed on the computer display as the pro-
gram progresses.

2) The user should input the size of the search radii to be used in
the search.

3) After the above information is supplied, four squares will ap-

pear on the image display. The bottom left hand pixels of
these squares are the initial search points. These squares
should be placed within the vicinity of the corners that the
search algorithm is to locate. After locating each corner by
means of the numeric keypad (8 = up, 2 = down, 6 = right, 4

= left) the '5' key should be pressed to confirm the desired lo-

cation of the current search point.

4) After the last point is confirmed, pointfind embarks upon the
binary searches required to locate the edge crossings. During
various stages of the program run, the user will be prompted
for a key press. After each prompt the program will display
on the image screen the calculated location of the edge bound-
aries.

A.3.4 Dynamic Test Programs

There are three versions of the dynamic test software, each based on the static
version. Operational setup is identical to the static version. POINT1,POINT2 and
POINT3 implement update models one, two and three respectively. Input to these pro-



grams should be a video source since they implement a function version of SNAP to up-

date the image display.

The image screen will show flashing squares to show the location of the corners

as calculated by the solver routine. If a camera is being used as a video input, the posi-

tion can now be changed to assess the ability of the algorithms to track the corners. To

prevent the programs from being caught in an infinite loop if the search vectors are un-

able to find a corner, the program will exit the current loop that it is in an attempt the

search again. The success offindedge is checked by the variable success, which if zero,

means that the routine has failed to find any edges in the vicinity of the current search

point.

The point tracking programs will record the position of the first feature point as

calculated by solver in the file specified by the user. It is suggested that these programs

not be run for more than about one minute in order to avoid excessively large data file

sizes.

System Setup Software

/* MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

FILENAME : init.h

AUTHOR : Ender St.John-Olcayto

CREATED : 11/22/89

LAST MODIFIED : 11/22/89

DESCRIPTION : sets up the input and output LUTs of the grabber

#include <stdio.h>
#include <conio.h>

#define pfgreg
#define conl
#define conh
#define luta
#define lutd
#define mask
#define fbbO
#define fbbl
#define fbb2
#define hf
#define hlO

Oxff00
pfgreg
pfgreg + Ox1
pfgreg + 0x2
pfgreg + Ox3
pfgreg + Ox4
pfgreg + 0x5
pfgreg + 0x45
pfgreg + 0x65
Oxf
OxO1

/*Frame grabber register base address*/



/* MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

FILENAME : init.c

AUTHOR Ender St.John-Olcayto

CREATED 11/22/89

LAST MODIFIED : 11/22/89

DESCRIPTION sets up the input and output LUTs of the grabber

*/

#include "init.h"

main() (

int outlut, sel, a, b, pass;
long int xluta, xlutd, xmask, xconh, xconl, xfbb0, conls;
xluta=luta;
xlutd=lutd;
xmask=mask;
xconh=conh;
xconl=conl;
xfbb0=fbb0;
pass=l;

/*-------------------------------required for RGB displays i.e 3 boards----------------------------------

/*--------------------------------- Initialise Output Look Up Tables---------------------------------------*/

for(outlut-0; outlut<-4; outlut=outlut+2) {(
/*--------------------------------------------- init LUT's 0,1 -----------------------------------------------

outp(xconl,outlut);
for(sel--0; sel<=2; sel=sel+2) {

outp(xconh,(sel*16));
/*-------------------------------------- select next LUT-------------------------------------------------*/

for(a-0;a<=255;a++) {
outp(xluta,a);

/*---------------------------------------------write address----------------------------------------------*/
outp(xlutd,a);

/*----------------- ------------------------------ write data - ------------------------------ */

outp(xconh,32); /*Set up LUT 1 for..*/
/*- -------------------------- overlays-----------------------------------------------------*/

for(a=0;a<=255;a=a+2) (
S-----------------------------zero forces output to max white----------------------------------------*/

outp(xluta,a);
outp(xlutd,255);

/*----------------------------load every oddlocation with 255------------------------------------- */

S-----------------------------set up LUT 3 for reverse video----------------------------------- */
outp(xconh,64);

/*--------------- ------------------------ select LUT3---------------------------------------------------*/
b=255;
for(a-0;a<=255;a++) {

/* ------------------------------- load LUT with inverse ramp------------------------ -------------- */
outp(xluta,a);
outp(xlutd,b);
b=b-1;

outp(xconh,96);
*---------------------------------- set LUT 3 for color bar-------------------------------------------*/



b=O;
for(a--O;a<=255;a++) (

outp(xluta,a);
outp(xlutd,O);

if(outlut--=O)
for(a=O;a<=63;a++) [

outp(xluta,a);
outp(xlutd,255);
outp(xluta,a+128);
outp(xlutd,255);

)

else if(outlut--4) (
for(a=0O; a<=31; a++) (

outp(xluta,a);
outp(xlutd,255);
outp(xluta,a+64)
outp(xluta,a+128);
outp(xlutd,255);
outp(xluta,a+192);
outp(xlutd,255);

else

outp(xlutd,255);

for(a--O; a<=127; a++) {
outp(xluta,a);
outp(lutd,255);

-/* -------------------------------------- initialize input Look Up Tables---------------------------------- */
outp(xconl,6);

/*----------------------------------------initialize LUTO-linear----------------------------- ------ */
----------------------------------------- " LUT1=inverse linear-----------------------------------*/

/*----------------------------------- " LUT2=threshold-----------------------------------------*/
P---------------------------------- " LUT3=expansion---------------------------------------*/

for(a=0;a<=255;a++) {
outp(xluta,a);
outp(xlutd,a);

/*Select LUT1*/outp(xconl,70);
for(a--O; a<=255; a++)

outp(xluta,a);
outp(xlutd,255-a);

for(sel=134; sel<=198; sel=sel+64) {
outp(xconl,sel);
for(a-0;a<=255;a++) {

outp(xluta,a);
outp(xlutd,0);

outp(xconl,134);
for(a=64; a<=196; a++)

outp(xluta,a);
outp(xlutd,255);

/*Select LUT2*/

/*Select LUT2*/

outp(xconl,246); /*Select LUT3*/
for(a-0; a<=127; a++) {

*-------------------------------------Expand from 0 to 128 in steps of two------------------------------*/
outp(xluta,a);
outp(xlutd,a*2);

/*Set Mask Register to zero*/outp(xmask,);outp(xmask,0);



outp(xconh,O);
outp(xconl,9);
outp(xfbbO,O);
conls = (inp(conl)&hf);
outp(conl,conls+hl0);
printf("Completed");

/*Set Control High to zero */
/*Set Control Control Low BDSEL and PLL*/
/*Set FBB Register to zero */

/* MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

FILENAME : snap.c

AUTHOR Ender St.John-Olcayto

CREATED 11/21/89

LAST MODIFIED

DESCRIPTION

11/21/89

Program to freeze a frame

*/

#include <stdio.h>
#include <conio.h>

#defmineconl
#defineconh

OxFF00
OxFFO1

main() (

int conls, conhs;
char s;

while ((s = getcho) !='s') {
conls = inp(conl)&(0xF);
while (conhs!= 0)

conhs = inp(conh)&(0x4);
while (conhs = 0)

conhs = inp(conh)&(Ox4);
outp(conl, conls+0x20);

while (conls!= 0)
conls = inp(conl)&(0x30);

}



/* MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

FILENAME : grab.c

AUTHOR Ender StJohn-Olcayto

CREATED 11/22/89

LAST MODIFIED 11/22/89

DESCRIPTION Continually aquires images

*/#include stdio.h

#include <stdio.h>
#include <conio.h>

main() (

unsigned port, value;

port = OxFF00;
value = 0x49;

outp(port,value);

/* MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

FILENAME : isave.h

AUTHOR Ender St.John-Olcayto

CREATED 2/24/90

LAST MODIFIED 2/24/90

DESCRIPTION Header file for isave.c

*/

#include <stdio.h>

typedef struct (

int x, z;

) coord;

unsigned char getval(coord);



MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

FILENAME : isave.c

AUTHOR Ender St.John-Olcayto

CREATED 2/24/90

LAST MODIFIED

DESCRIPTION

2/24/90

Header file for isave.c

*/

#include "isave.h"

main() (

FILE *picture;

coord point;

int c;
char filename[15];

printf("Filename = ");
scanf("%s", filename);
printf("Saving picture\n");

picture = fopen(filename, "w");

for (point.z = 0; point.z <= 511; point.z++) (
for (point.x = 0; point.x <= 511; point.x++) {

c = (int) getval(point);

/*--------------------------if pixel intensity is the same as the EOF character--------------------------------------------------------
--jack intensity up by one value of gray to prevent-----------------------------------------------------------------program from
premature termination-----------------------------------*/

if (c = Oxla)
c = Oxlb;

fputc(c, picture);

fclose(picture);



# MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

# FILENAME

# AUTHOR

# CREATED

# LAST MODIFIED

# DESCRIPTION

Ender St.John-Olcayto

2/2/90

2/6/90

MAKE file for image save (isave) program

# Macro definitions

= /As /FPi87 #small memory model, inline 8087 support
= /Ze #enable far pointers switch
= /J #unsigned chars switch
= /c /Od $(model) #compile with above and no optimization

#print linker information
= slibc7 #standard libs with coprocessor
= isave+getval
= isave.obj getval.obj
= isave

#standard .C -> .OBJ inference rule

.c.obj
cl $(stdcomp) $*.c

#dependency block definitions for compile with above rule

isave.h isave.c

#i.e. recompile if changes made to either header or source files

#compile the following as special cases

getval.obj : getval.h getval.c
cl $(stdcomp) $(fenable) $(uchars) $*.c

#link result together

$(program)
link $(stdlink) $(objects),$*,,$(stdlibs)

$(progdep)

model
fenable
uchars
stdcomp
stdlink
stdlibs
objects
progdep
program

isave.obj



/* MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

FILENAME : restore.c

AUTHOR Ender SLJohn-Olcayto

CREATED 2/24/90

LAST MODIFIED 3/13/90

DESCRIPTION : restore a 512*512 image starting from bottom LH
corner and ending at top RH corner

*/

#include "isave.h"

main() (

FILE *picture;

coord point;
unsigned char c;
char filename[15];

printf("Filename = ");
scanf("%s", filename);
printf("Loading picture\n");

picture = fopen(filename, "r");

if (!picture) exit(l);

for (point.z = 0; point.z <= 511; point.z++) (

for (point.x = 0; point.x <= 511; point.x++) {

c = (unsigned char) fgetc(picture);

place(point, c);

fclose(picture);

A.3.5 Static Test Software Listings

The following shows the software that is used for both the edge finding perfor-
mance tests and the pose determining algorithms evalations. The functional element
POINTFIND is shown with the invese perspective transformation algorithm, CONDIT1,
in place. This may be interchanged with the routine ALIGN that implements the non-re-



dundant inverse orthographic transformation. If no pose information is required, the cor-

responding function is simply commented out in POINTFIND and VISION, the "make"

file that compiles and links the files together. All occurances of variables that depend on

results from CONDIT1 or ALIGN should be removed.

There are slight differences in the data structures that return information from the

two different pose routines which should be taken into account. When function

CONDIT1 is used, the data structure CONFIGURATION is :

When the allignment transformation is used, the SEPARATION branch has only one

component, sincethe range is represented by a scaling factor of the image plane distance.



MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

Filename pointfind.h

Author Ender SL John-Olcayto

Created 1/29/90

Last modified 4/17/90

Description header file for pointfmind.c

*/#include <stdio.h
#include <stdio.h>

#include <conio.h>

#define XSCALE 4.64E-4
#define ZSCALE 3.675E-4

/*----------------------------------------------------DataTypes ----------------------------- */

typedef struct (
int x, z;

)COORD;

typedef struct (
double a;
unsigned char b;

}LEVEL;

typedef struct {
double ex, zed;

) DCOORD;

typedef struct {
double XI, PHI, THETA;

} ATIITUDE;

typedef struct (
double X, Y, Z;

)SEPARATION;

typedef struct (
ATITUDE orientation;
SEPARATION distance;

)CONFIGURATION;

/*-----------------------------------FUNCTION DECLARATIONS--------------------------------------*/

COORD *setup0;

void place( COORD );

void findedge(COORD, COORD *, int, COORD *);

void grad( COORD *, COORD *, LEVEL *);

void condition(DCOORD *, DCOORD *, DCOORD *,
DCOORD *, CONFIGURATION *);
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SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

File name pointfindl.c

Author Ender St. John-Olcayto

Created 7/1/89

Last modified 4/17/90

Description static version to determine the pose using
the inverse perspective transformation

*/

#include "pointfmind.h"

double theta;

double delta_theta = 0.3;

COORD temp;

FILE *data;

main() (

/* ------------------------------------------------ variable list---------------------------------------------*/

COORD c[3], *pO, edge[4][4],
square[8][8], origin;

DCOORD hold[4], point0,
pointl, point2, point3;

LEVEL m 1 [4], m2[4];

CONFIGURATION status;

ATTITUDE rotations;

SEPARATION proximity;

double xi, phi, thta,
rx, ry, rz,

int i, rl, r2, j, k;

char filename[15];

/*---------------------------------------------------data file setup--------------------------------------------/*

printf("Filename for the test results = ");
scanf("%s", filename);
data = fopen(filename, "w");
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fprintf(data, "STATIC POINT FINDING AND ORIENTATION DATA FILEkn");
fprintf(data, " n");

printf("rl =");
scanf("%d", &rl);
fprintf(data, "Major search radius rl\t=\t%d\n", rl);
printf('Nnr2 = ");
scanf("%d", &r2);
fprintf(data, "Minor search radius r2\t=\t%dn", r2);

/*--------------------------------load user defined initial search points-----------------------------

pO = setup();

fprintf(data, "Search centres are:\n");
fprintf(data, " \n");
fprintf(data, "1.(%u, %u)k•2.(%u, %u)\,r3.(%u, %u)\n4.(%u, %u)\nn",

p0[0].x, p0[O].z, pO[1].x, p0[1].z,
pO[ 2].x, pO[2 ].z, pO[3 ].x, p0[3].z);

/*-------------------------------------loop through all the corners-----------------------------------------*/

for (i--O; i<=3; i++) {

theta = 0;

c[0].x = p0[i].x + rl;
c[0].z = p0[i].z;
c[1].x = 0;
c[1].z = 0;
c[2].x = 0;
c[2].z = 0;

findedge(p0[i], c, rl, &edge[i][0]);

c[0] = temp;
c[1].x = 0;
c[1].z = 0;
c[2].x = 0;
c[2].z = 0;

findedge(p0[i] ,c, rl, &edge[i][2]);

theta = 0;
c[0].x = p0[i].x + r2;
c[0].z = p0[i].z;
c[1].x = 0;
c[1].z = 0;
c[2].x = 0;
c[2].z = 0;

findedge(p0[i], c, r2, &edge[i][1]);

c[0] = temp;
c[1].x = 0;
c[l].z = 0;
c[2].x = 0;
c[2].z = 0;

findedge(p0[i], c, r2, &edge[i][3]);

printf("All Edge Boundaries Have Been Detected\n");
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printf("Hit Any Key To Continuen4M");
getch();

for(i=O;i<=3;i++) {
printf("edge points are:n");
printf(" k");
fprintf(data, "edge points are:\n");
fprintf(data," Nn");

printf("edge[%d][0].x = %u\tedge[%d][0].z = %unn", i,
edge[i][0].x, i, edge[i][0].z);

fprintf(data,
"edge[%d][0].x = %u\tedge[%d][0].z = %ukn",
i, edge[i][0].x, i, edge[i][0].z);

printf("edge[%d][l].x = %uLtedge[%d][1].z = %uNn",
i, edge[i][1].x, i, edge[i][1].z);

fprintf(data,
"edge[%d][1].x = %uLtedge[%d][1].z = %uLn",
i, edge[i][1].x, i, edge[i][1].z);

printf("edge[%d][2].x = %u\tedge[%d][2].z = %u\n",
i,edge[i][2].x, i, edge[i][2].z);

fprintf(data, "edge[%d][2].x = %u\t edge[%d][2].z = %un",
i, edge[i][2].x, i, edge[i][2].z);

printf("edge[%d][3].x = %u\t edge[%d][3].z = %unW",
i, edge[i][3].x, i, edge[i][3].z);

fprintf(data,"edge[%d][31.x = %u\t edge[%d][3].z = %u\n.n",
i, edge[i][3].x, i, edge[i][3].z);

for(j=-0;j<=3;j++) {
printf("edge[%u] [%uN]", i, j);
for(t=O;t<=3;t++) (

for(s=O;s<=3;s++) {

square[tl[s].x = edge[i][j].x + t;

square[t][s].z = edge[i][j].z + s;

place(square[t] [s]);

/*---------------------------------------------Algorithm Solver -------- --------------------------- */

for(i-0O;i<=3;i++) {

grad(&edge[i][0], &edge[i][1], &ml[i]);
grad(&edge[i][2], &edge[i][3], &m2[i]);

if ((ml[i].b = 1) && (m2[i].b - 1)) (

hold[i].ex = ( ((ml[i].a)*edge[i][1].x -
(m2[i].a)*edge[i][3].x + edge[i][3].z -
edge[i][1].z)/((ml [i].a) - (m2[i].a)) );

pO[i].x = (int) hold[i].ex;

hold[i].zed = ((ml [i].a)*(hold[i].ex -
edge[i][1].x)+ edge[i][1].z );
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pO[i].z = (int) hold[i].zed;

else if (ml[i].b = 0) (

pO[i].x = edge[i][1].x;
pO[i].z = (int) ( (m2[i].a)*(pO[i].x

- edge[i][3].x) + edge[i][3].z );

else {

pO[i].x = edge[i][3].x;
pO[i].z = (int) ( (ml [i.a)*(pO[i].x

- edge[i][1].x) + edge[i][1].z );

/*-------------------------------reset the origin to the center of the screen-------------------------------*/

origin.x = 255;
origin.z = 255;

/*---------------------------reference points with respect to the new origin-----------------------------*/
/* ------------------- and scale such real dimensions are represented by the structures----------------*/

pointO.ex = (double) (XSCALE * (pO[O].x-origin.x));
point0.zed = (double) (ZSCALE * (pO[O].z-origin.z));
pointl.ex = (double) (XSCALE * (pO[1].x-origin.x));
pointl.zed = (double) (ZSCALE * (pO[1].z-origin.z));
point2.ex = (double) (XSCALE * (p0[2].x-origin.x));
point2.zed = (double) (ZSCALE * (p0[2].z-origin.z));
point3.ex = (double) (XSCALE * (p0[3].x-origin.x));
point3.zed = (double) (ZSCALE * (p0[3].z-origin.z));

/*--------------------plug in required pose determining routine here--------------------------*/

condition(&pointO, &pointl, &point3, &point2, &status);

/*--------------------- extract the range and orientaiton data structures-----------------------*/

rotations = status.orientation;
proximity = status.distance;

xi = rotations.XI;
phi = rotations.PHI;
thta = rotations.THETA;

rx = proximity.X;
ry = proximity.Y;
rz = proximity.Z;

printf("Edge Gradients:M");
printf(" \n");
fprintf(data, "Edge Gradients:\n");
fprintf(data, "

for(i-0;i<=3;i++) {
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printf("ml [%d].a = %ftml [%d].b = %u'",
i, ml[i].a, i, ml[i].b);

printf("m2[%d].a = %ftm2[%d].b = %uknn",
i, m2[i].a, i, m2[i].b);

fprintf(data, "ml [%d].a = %Nml [%d].b = %uNn",
i, ml[i].a, i, ml[i].b);

fprintf(data, "m2[%d].a = %Atm2[%d].b = %unn",
i, m2[i].a, i, m2[i].b);

printf("Press Any Key To ContinueNn");

getch();

for(j=0;j<=7;j++) (
for(k=0;k<=7;k++)

square[k] [j].x = pO[i].x + k;
square[k][U].z = pO[i].z + j;
place(square[kl[j]);

printf('"nn");
fprintf(data, '"L ");

for (i=0;i<=3;i++) (

printf("p0[%d].x = %d\t pO[%d].z = %d•\n",
i, pO[i].x, i, pO[i].z);

fprintf(data, "pO[%od].x = %dNt pO[%d].z = %dh",
i, pO[i].x, i, pO[i].z);

printf('1 ");
fprintf(data, '"\");

printf("Camera Look Angles:n");
printf(" W");
printf("xi=%tmnphi=%fithta=%Mi\n", xi, phi, thta);
fprintf(data, "Camera Look Angles:'n");
fprintf(data, " ");
fprintf(data, "xi=%f nphi=%ftthta=%fAWn", xi, phi, thta);

printf('Target Range:n");
printf(" 2");
printf("rx=%-%nry=%fonrz=%fn", rx, ry, rz);
fprintf(data, "Target Range:\n");
fprintf(data, " n");
fprintf(data, "'nnrx=%fnry=%Nnnrz%f\n", rx, ry, rz);
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MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

Filename findedge.h

Author Ender St John-Olcayto

Created 1/30/90

Last modified 4/2/90

Description header file for findedge.c

*/

#include <stdio.h>
#include <math.h>
#include <conio.h>

/*-------------define the limit top which the binary search will continue to search-------------------*/

#define EPSILON 2

typedef struct {

int x, z;

) COORD;

/*----------------------------------------function definitions-------------------------------------

void findedge(COORD, COORD *, int, COORD *);

char getval(COORD);

/*------------------------------------------global variables--------------------------------------------------*/

extern double theta;

extern double delta_theta;

extern COORD temp;
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MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

Filename findedge.c

Author Ender St. John-Olcayto

Created : 11/7/89

Last modified 4/2/90

Description function to find 8 points on the edge of a
rectangle such that the 4 corners can be found

*/

#include "findedge.h"

void findedge(COORD start, COORD *p, int radius, COORD *side) {

val[3];
d= 0;

char
unsigned int

val[0] = 0;
val[l] = 0;
val[2] = 0;

/* ------------------------------------------- Algorithm roughsearch----------------------------

while (val[0] == val[1]) {

theta = theta + delta_theta;

p[1].x = (int) (start.x + radius*cos(theta));
p[1].z = (int) (start.z + radius*sin(theta));

val[0] = getval(p[0]);
val[1] = getval(p[1]);

if (val[O] =- val[1]) (

p[0] = p[l];
val[O] = val[1];

temp = p[1];

/*---------------- -------------------------- Algorithm finesearch----------------------------------------*/

do (

/*---------------divide the vector from point p[0] to p[1] by two by bit shifting right----------------*/

p[2].x = (p[1].x + p[0].x) >> 1;

p[2].z = (p[1].z + p[0].z) >> 1;

val[1] = getval(p[1]);
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val[2] = getval(p[2]);
if (val[2] != val[1]) (

p[0] = p[2];
val[0] = val[2];

if (val[2] = val[1]) (
p[1] = p[2];
val[1] = val[2];

d = (unsigned int) ((p[1].x - p[0].x)*(p[1].x - p[0].x))
+ ((p[l].z - p[O].z)*(p[l].z - p[O].z));

/*------------ keeping dividing vector into two until length is EPSILON (two pixels)---------------*/

i while (d > EPSILON);

side -> x = p[1].x;
side -> z = p[1].z;

return;

MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

Filename

Author

Created

getval.h

Ender St. John-Olcayto

2/24/90

Last modified 4/2/90

Description

*/

#include <stdio.h>
#include <conio.h>

#define BLOCK
#define
#define
#define MK_FP(seg,ofs)

header file for getval.c

OxFF05 /block select register*/
TOP OxDO00 /*top of frame grabber*/
threshold 127 /*image threshold*/

((void far *) (((unsigned longXseg) << 16) I1
(unsigned)(ofs)))

typedef struct (
int x, z;

)COORD;
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MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

Filename getval.c

Author Ender St. John-Olcayto

Created 1/17/90

3/28/90

: Returns the grey-level of a screen point
specified in global coordinates

#include "getval.h"

unsigned char getval(COORD global) {
COORD
unsigned char far
unsigned char
unsigned int

local;
*s;

gl;
offset,
segment = TOP;

local.x = 0;
local.z = 0;

/*---------------------------------------------algorithm glo-lo------------------------------------------ */

if (((global.x < 256) && (global.x >-0 ))
&& ((global.z < 256) && (global.z >= 0))) {

local.x = global.x;
local.z = 255 - global.z;
outp(BLOCK, 2);

else if (((global.x < 256) && (global.x >= 0))
&& ((global.z > 255) && (global.z < 512))) {

local.x = global.x;
local.z = 511 - global.z;
outp(BLOCK, 0);

else if (((global.x > 255) && (global.x < 512))
&& ((global.z < 256) && (global.z >=0 ))) {

local.x = global.x - 256;
local.z = 255 - global.z;
outp(BLOCK, 3);

else if (((global.x > 255) && (global.x<512))
&& ((global.z > 255) && (global.z<512))) {

local.x = global.x - 256;
local.z = 511 - global.z;
outp(BLOCK, 1);
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/*----------------------------------else to catch out of screen excursions ------------------------------ */

else (
/*---------if COORDinates are off the screen, let the grey-level be pure black----------------*/

gl = 0;
return (gl);

offset = ((local.z << 8)llocal.x);
s = MK_FP(segment, offset);
gl = *s;
if (gl<threshold)

gl = 0;
else

gl = 255;
return (gl);

unsigned char getval(COORD);

/*
MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

Filename : place.h

Author : Ender St. John-Olcayto

Created :1/29/90

Last modified :4/2/90

Description : header file for place.c
*/

#include <stdio.h>
#include <conio.h>

#define BLOCK OxFF05
#define TOP OxD000
#define MK_FP(seg,ofs) ((void far *) (((unsigned long)(seg) << 16) I1

(unsigned)(ofs)))

typedef struct (
int x, z;

)COORD;

void place( COORD );
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MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

Filename place.c

Author Ender St. John-Olcayto

Created 1/28/90

3/27/90

places a point on the screen by NOTTING the cur-
rent backgound color

*/

#include "place.h"

void place( COORD global) {

COORD
unsigned char far
unsigned char
unsigned int

local;
*s = 0;
gl;
offset,
segment = TOP;

local.x = 0;
local.z = 0;

/*------------------------------------------Algorithm glo - --------------------------------------

if (((global.x < 256) && (global.x >= 0 ))
&& ((global.z < 256) && (global.z >= 0 ))) {
local.x = global.x;
local.z = 255 - global.z;
outp(BLOCK, 2);)

else if (((global.x < 256) &&

)

(global.x >= 0))
&& ((global.z > 255) && (global.z < 512 ))) {
local.x = global.x;
local.z = 511 - global.z;
outp(BLOCK, 0);

else if (((global.x >255) && (global.x < 512))
&& ((global.z < 256) && (global.z >=O ))) {
local.x = global.x - 256;
local.z = 255 - global.z;
outp(BLOCK, 3);)

else if (((global.x > 255) &&

else {

(global.x < 512))
&& ((global.z > 255) && (global.z < 512))) {
local.x = global.x - 256;
local.z = 511 - global.z;
outp(BLOCK, 1);

/* no operations yet - for future expansion */

111

Last modified

Description



offset = (( local.z << 8) I1 local.x);
s = MK_FP(segment, offset);
gl = *s;
*s = ~gl;
return;

MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

Filename gradih

Author Ender St. John-Olcayto

Created : 1/31/90

Last modified 4/2/90

Description header file for grad.c

#include <stdio.h>
#include <stdlib.h>

typedef struct (
int x, z;

) COORD;

typedef struct (
double a;
unsigned char b;

}LEVEL;

void

extern FILE

MIT SPACE SYSTEMS LABORATORY, LAB

Filename

Author

Created

Last modified

Description

grad( COORD *, COORD *, LEVEL *);

*data;

OF ORBITAL PRODUCTIVITY

grad.c

Ender St. John-Olcayto

1/31/90

4/2/90

edge gradient finding function

#include "grad.h"

void grad(COORD *pointl, COORD *point2, LEVEL *m) (

if( (pointl -> x) > (point2 -> x) ) (

m -> a = ((double) (pointl->z - point2->z))/
((double) (pointl->x - point2->x));
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m ->b= 1;

else if ( (pointl -> x) < (point2 -> x) ) {
m -> a = ((double) (point2->z - pointl->z))/

((double) (point2->x - pointl->x));
m -> b = 1;

else {

m -> a = 0;
m -> b = 0;

return;

MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

stp.h

Ender St. John-Olcayto

1/19/90

4/2/90

header file for stp.c

*/

#include <stdio.h>
#include <conio.h>
# include <malloc.h>
#include <stdlib.h>

NEXT '5' /*next point chosen by hitting 5*/

typedef struct (
int x, z;
) COORD;

COORD *setup();

void place( COORD );

Filename

Author

Created

Last modified

Description

#define
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MIT SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

Filename stp.c

Author Ender St John-Olcayto

Created 1/26/90

Last modified 4/18/90

Description Asks for center for search vectors for each
block and for the search radii. Supplies info
for pointfind

*/

#include "stplh"

COORD *setup() (

int i, j, k
a, b, key;

COORD pos, square[4][4][4],
*ptemp;

char *data = "Search centre = (%u, %u)\t gl = %u\n";

const char *message =
'anmalloc failed for variable ptemp in function 'stp'- aborting";

unsigned char col;

/*--------------make sure that program can allocate the required chunk of memory-----------------*/

if((ptemp = (COORD *) malloc(4*sizeof(COORD))) = NULL) (
printf(message);
exit(0);

for (k = 0; k <= 3; k++) (

switch (k) {

case 0: {
a= 0;
b =0;
break;

case 1: {
a= 256
b = 0;
break;

case 2: {
a = 256;
b = 256;
break;

default: (
a= 0;
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b = 256;

pos.x = 128 + a;
pos.z = 128 + b;

for (j = O; j <= 3; j++) {

for (i = 0; i <= 3; i++) (

square[k] [j][i].x = pos.x + i;
square[k] Uj][i].z = pos.z + j;
place(square[k][j][i]);

printf("Are these starting points OK?");
printf('qn");
printf("Use keypad to change and carriage return");
printf('"n");
printf("to fix search centres.\n");

for (k = 0; k <= 3; k++) (

while ( (key = getch() ) != NEXT) (

switch (key) {

case '4': {

for (j = 0; j <= 3; j++) {

for (i = 0; i <= 3; i++) {

place(square[k] [j][i]);
square[k][j][i].x =
square[k][j][i].x - 1;
place(square[k][j] [i]);

col = getval(square[k][0][0]);
printf(data, square[k][0][0].x,

square[k][0][0].z, -col);

break;

case '6': {

for (j = 0; j <= 3; j++) (

for (i = 0; i <= 3; i++) {

place(square[k] [j][i]);
square[k][j][i].x =
square[k][j][i].x + 1;
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place(square[k] [j][i]);

col = getval(square[k][0][0]);
printf(data, square[k][O][O].x,
square[k][O][0].z, -col);

break;

case '8': {

for (j = O; j <= 3; j++) {

for (i = 0; i <= 3; i++) (
place(square[k] [j] [i]);
square[k][j][i].z =
square[k]j][i].z + 1;

place(square[k] [j][i]);

col = getval(square[k][0][0]);
printf(data, square[k][0][O].x,

square[k][0][0].z, -col);

break;

case '2': {

for (j = 0; j <= 3; j++) {

for (i = 0; i <=3; i++) {

place(square[k][j][i]);
square[k][j][i].z =
square[k][j][i].z - 1;

place(square[k]ij][i]);

col = getval(square[k][0][0]);
printf(data, square[k] [0][0].x,
square[k][0][0].z, -col);

default: (

/* no operation */
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break;

for (i = 0; i <=3; i++) {

ptemp[i] = square[i][0][0];

return (ptemp);

# SPACE SYSTEMS LABORATORY, LAB OF ORBITAL PRODUCTIVITY

vision# Filename

# Author

# Created

Ender St. John-Olcayto

2/2/90

# Last modified

# Description

# Macro definitions

model
fenable
uchars
stdcomp
stdlink
stdlibs
objects
progdep

MAKE file for vision programs (for static test ver-
sions)

/As /FPi87 #small memory model, inline 8087 support
/Ze #enable far pointers switch
/J #unsigned chars switch

/c /Zi /Od $(model) #compile with above and no optimization
/co /li /map /noi #print linker information
slibc7 #standard libs with coprocessor

pointfmind+stp+findedge+grad+place+getval+condit1
pointfind.obj stp.obj fmindedge.obj grad.obj place.obj getval.obj\

conditl.obj
program = pointfind

#standard .C -> .OBJ inference rule

.c.obj
cl $(stdcomp) $*.c

#dependency block definitions for compile with above rule

pointfind.obj

stp.obj

grad.obj : grad.h

conditl.obj

pointfind.h

stp.h

conditl.h

pointfind.c

stp.c

grad.c

conditl.c

#i.e. recompile if changes made to either header or source files
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#compile the following as special cases

place.obj : place.h
cl $(stdcomp) $(fenable) $(uchars) $*.c

getval.obj: getval.h getval.c
cl $(stdcomp) $(fenable) $(uchars) $*.c

finmdedge.obj : findedge.h
cl $(stdcomp) $(uchars) $*.c

place.c

finmdedge.c

#link result together

$(program) : $(progdep)
link $(stdlink) /STACK:4000 $(objects),$*,,$(stdlibs)

A.3.6 Dynamaic Test Software Listings

The following software was used to test the feature point update tracking routines.

Since the three versions are all very similar, only POINT3; which implements the more

complex update routine will be shown. A functional version of the freeze frame routine

is also listed, this being the function that updates the screen display one all operations

have been completed on the current frame.

MIT SPACE SYSTEMS LABORATORY, LAB

Filename

Author

Created

Last modified

Description

OF ORBITAL PRODUCTIVITY

point3.c

Ender St. John-Olcayto

7/1/89

4/11/90

dynamic version of pointfmind that uses position,
velocity and acceleration estimates to extrapolate
the next feature point position

#include "pointfind.h"

double

double

COORD

FILE

main()

COORD

theta;

delta_theta = 0.5;

temp;

*data;

c[3], *pO, p01[ 4],
p02[4], tO[4],
edge[4][4], est[4],
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DCOORD

LEVEL

int

unsigned int

char

printf("Filename for the test results = ");
scanf("%s", filename);
data = fopen(filename, "w");

printf("rl = ");
scanf("%d", &rl);
printf('Nnr2 = ");
scanf("%d", &r2);

pO = setup();

for (i=O; i<=3; i++) {

tO[i] = pO[i];
p01[i].x = 0;
pOl[i].z = 0;
p02[i].x = 0;
p02[i].z = 0;

do

square[8][8];

hold[4];

ml[4], m2[4];

i, rl, r2, tl, t2, j, k;

flag = 0, success = 1;

filename[15];

snap();

for (i=0; i<=3; i++) {

theta = 0;

c[O].x = tO[i].x + rl;
c[O].z = tO[i].z;
c[1].x = 0;
c[l].z = 0;
c[2].x = 0;
c[2].z = 0;

/*--the new version of pointfmind checks to see if findedge is wasting time looking for a corner- */
/*---------------------------------by checking the status of the success flag-----------------------------*/

success = findedge(pO[i], c, rl, &edge[i][0]);

if (!success) break;

c[O] = temp;
c[1].x = 0;
c[1].z = 0;
c[2].x = 0;
c[2].z = 0;

success = findedge(pO[i] ,c, rl, &edge[i][2]);

if (!success) break;
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theta = 0;
c[O].x = tO[i].x + r2;
c[O].z = tO[i].z;
c[1].x = 0;
c[1].z = 0;
c[2].x = 0;
c[2].z = 0;

success = fmindedge(pO[i], c, r2, &edge[i][1]);

if (!success) break;

c[O] = temp;
c[1].x = 0;
c[1].z = 0;
c[2].x = 0;
c[2].z = 0;

success = fmindedge(pO[i], c, r2, &edge[i][3]);

if (!success) break;

for(i=0;i<=3;i++) {

if (!success) break;

grad(&edge[i][0], &edge[i][1], &ml [i]);
grad(&edge[i][2], &edge[i][3], &m2[i]);

if ((ml[i].b == 1) && (m2[i].b == 1)) (

hold[i].ex = ( ((ml[i].a)*edge[i][1].x -
(m2[i].a)*edge[i][3].x + edge[i][3].z -
edge[i][1].z)/((ml[i].a) - (m2[i].a)));

pO[i].x = (int) hold[i].ex;

hold[i].zed = ((ml [i].a)*(hold[i].ex -
edge[i][1].x)+ edge[i][1].z );

pO[i].z = (int) hold[i].zed;

else if (ml[i].b= 0) (

pO[i].x = edge[i][1].x;

pO[i].z = (int) ( (m2[i].a)*(pO[i].x
- edge[i][3].x) + edge[i][3].z );

else

pO[i].x = edge[i][3].x;

pO[i].z = (int) ( (ml[i].a)*(pO[i].x
- edge[i][l].x) + edge[i][l].z );

est[i] = tO[i];
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if (flag <2) (

to[i].x = pO[iJ.x;
to[i].z = pO[i].z;

else {

t0[i].x = 3*p0[i].x - 3 *p01[i].x + p02[i].x;
t0[i].z = 3*p0[i].z - 3*p01[i].z + p02[i].z;

p02[i] = pOl[i];

pOl[i] = pO[i];

flag = flag + 1;

for(i--O;i<=3;i++) {
for(j-0;j<=7;j++) (

for(k=O;k<=7;k++) (
square[k[j] .x = p0[i].x + k;
square[k][j].z = p0[i].z + j;
place(square[k][j]);

fprintf(data, "%d\t•o%d' %cr%dfn",
pO[0].x, pO[0].z, est[0].x, est[0].z);

/*-----....................--------------------------------------keep going until a key is hit-----------

I while (!kbhit());

fclose(data);

)

MIT SPACE SYSTEMS LABORATORY, LAB

Filename

Author

Created

Last modified

Description

OF ORBITAL PRODUCTIVITY

snap.c

Ender St. John-Olcayto

11/21/89

4/4/90

Function to freeze a frame.

#include <stdioih>
#include <conio.h>

#define conl OxFF00
#define conh OxFF01
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void snap() {

int conls, conhs;
char s;

conlrds = inp(conl)&(OxF);

while (conhs!--O)

conhs = inp(conh)&(0x4);

while (conhs---O)

conhs = inp(conh)&(0x4);

outp(conl,conls+Ox20);

while (conls!--O)

conls = inp(conl)&(0x30);

return;

}
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