
RESEARCH LABORFTORY OF ELECTRONICS
, MAACHUSETTS INSTITUTE OF TECHNOLOG
j CAMBRIDGE, MASSCHJETTS gOd4, U.SA

SOME TECHNIQUES FOR THE SYNTHESIS OF
NONLINEAR SYSTEMS

AUBREY M. BUSH

TECHNICAL REPORT 441

MARCH 25, 1966

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RESEARCH LABORATORY OF ELECTRONICS
CAMBRIDGE, MASSACHUSETTS

dry
w M



The Research Laboratory of Electronics is an interdepartmental
laboratory in which faculty members and graduate students from
numerous academic departments conduct research.

The research reported in this document was made possible in
part by support extended the Massachusetts Institute of Tech-
nology, Research Laboratory of Electronics, by the JOINT SERV-
ICES ELECTRONICS PROGRAMS (U.S. Army, U.S. Navy, and
U.S. Air Force) under Contract No. DA36-039-AMC-03200 (E);
additional support was received from the National Science Founda-
tion (Grant GP-2495), the National Institutes of Health (Grant
MH-04737-05), and the National Aeronautics and Space Adminis-
tration (Grant NsG-496).

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

Qualified requesters may obtain copies of this report from DDC.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RESEARCH LABORATORY OF ELECTRONICS

Technical Report 441 March 25, 1966

SOME TECHNIQUES FOR THE SYNTHESIS OF NONLINEAR SYSTEMS

Aubrey M. Bush

Submitted to the Department of Electrical Engineering, M. I. T.,
May 14, 1965, in partial fulfillment of the requirements for the
degree of Doctor of Science.

(Manuscript received June 16, 1965)

Abstract

We have studied some techniques for the synthesis of nonlinear systems. The sys-
tems considered here are those that can be characterized by a finite set of Volterra
kernels. The approach is to consider the kernels one at a time, by using as basic ele-
ments in the synthesis linear systems and multipliers. We present a procedure for
testing a given kernel transform to determine whether or not the kernel can be realized
exactly with a finite number of linear systems and multipliers. The test is construc-
tive. If it is possible to realize the kernel exactly, a realization is given by the test;
if it is not possible to realize the complete kernel exactly, but is possible to break the
kernel up into several lower degree components, this will also be discovered by the
test. An extension to nonlinear systems of the impulse-train techniques of linear sys-
tem theory is given. We develop properties of sampling in nonlinear systems, in
order to facilitate the use of digital techniques in the synthesis of nonlinear systems.
Bandlimiting in nonlinear systems is discussed, and delay-line models for bandlimited
systems are given. The transform analysis of nonlinear sampled-data systems by
means of the multidimensional z-transform is presented. Computation algorithms for
input-output computations are given for direct computation from the multidimensional
convolution sum, the associated partial-difference equation, and a decomposition of the
nonlinear sampled-data system into linear sampled-data systems. A relationship
between time-variant and time-invariant systems is presented, in which time-variant
systems are shown to be related to time-invariant systems of higher degree. This en-
ables one to use for linear time-variant systems the properties and techniques devel-
oped for second-degree time-invariant systems. A note on the multidimensional
formulation of nonlinear systems from the differential equation point of view is given;
it is seen that some nonlinear problems in one dimension can be mapped into a linear
problem in a higher dimensional space.
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I. INTRODUCTION

1. 1 BRIEF HISTORICAL SKETCH

The use of functional analysis as a tool for the study of nonlinear systems was first

conceived by the late Norbert Wiener.I Following his work, pioneering efforts toward

the engineering application of the theory of functional analysis in the representation of

nonlinear systems were made by H. E. Singleton, 2 and A. G. Bose, 3 who placed the

theory on a firm engineering basis for both discrete and continuous systems. Following

a series of lectures at the Massachusetts Institute of Technology by Professor Wiener, 4

several others, among them M. B. Brillant, D. A. George, and D. A. Chesler,

studied the theory of continuous nonlinear systems through the use of the Volterra func-

tional power series and the orthogonal Wiener G-functionals. A. D. Hause, George

Zames, 9 Martin Schetzen, H. L. Van Trees, 1lZ and D. J. Sakrison 3 subsequently

made useful applications and extensions of the theory. Several others have contributed

at M. I. T. and elsewhere.

Functional analysis has proved to be a useful tool in the study of a wide class of non-

linear systems. It does not provide an all-encompassing theory; however, particularly

when compared with other approaches to the study of nonlinear systems, the startling

feature of the theory is not that it does not treat all systems, but rather that the class of

systems which it does treat is so very broad.

The basic equation of the theory is

00oo

y(t) =ho+ S... hn(T1E . . . . .n) X(tT-l) ... X(t-Tn) dT1..dT n (1)
n= 1

where x(t) is the system input time function, and y(t) is the corresponding output time

function. The family of kernels

{hn(T .... Tn): n= 0, 1,2...} (2)

characterizes the system, in that knowledge of these kernels provides the means for

determining the output corresponding to a given input. Discussion of the scope and

properties of (1) and (2) may be found in the work of the authors cited above.
14,15

Methods for measuring the kernels of a system have been developed, and others

are being studied 1 6 ; the correlation methods have been verified experimentally. 17

It has been observed, originally by Wiener, that the nonlinear system of (1) can be

represented as a linear memory section and a nonlinear no-memory section, followed by

amplification and summation. This representation provides a basis for a general syn-

thesis procedure for the class of nonlinear systems represented by (1). It is based on the

expansion of the input time function in an orthogonal series, with nonlinear no-memory

operations being performed on the coefficients of this expansion. Although general and

very powerful, it may involve, practically, an unreasonably large amount of equipment.

1



1.2 THE SYNTHESIS PROBLEM

From both a practical and a theoretical standpoint, it is very desirable to develop

means of synthesizing a nonlinear system from the kernels through which it is charac-

terized. The development of some procedures for the synthesis of nonlinear systems

is the problem toward which this research is directed.

Several points are inherent in this development of synthesis procedures for nonlinear

systems. A finite set of kernels must be adequate for the representation of the system

for the inputs of interest. The kernels must be at least approximately realizable with

a finite number of components selected for the synthesis. It is to be expected that some

means of synthesis may force the abandonment of the use of orthogonal expansions of the

input time function and some of the symmetrical properties of the kernels, both

extremely valuable properties in the analysis of systems. Also, synthesis procedures

as general as that suggested by Wiener should not be expected to be efficient for the same

broad class of systems; restrictions on both the inputs to be allowed and the kernels

should be expected as the price to be paid in development of synthesis procedures.

Little prior work on the synthesis of nonlinear systems, other than the orthogonal

expansion of Wiener, has been done. Jordan 1 8 found the optimum finite-term orthogonal

expansions of the input time function. Van Trees' 1 algorithm for the determination of

the optimum compensator for a feedback system provides a solution in terms of the ker-
19

nels of the optimum system. A thesis at Stanford University by Ming Lei Liou, and

work by Schetzen 2 0 are recent contributions. Schetzen characterized those second- and

third-degree kernels that are exactly realizable with a finite number of linear systems

and multipliers, while Liou gives a procedure for the recognition of some simple struc-

tures of linear systems and polynomial nonlinear no-memory systems.

1.3 THE PRESENT APPROACH

We consider a finite family of kernels

{hn(T1.... , n):n=0, 1,2, ... ,N} (3)

and attempt to synthesize a system characterized by these kernels. We consider the

kernels one at a time and take as elementary building blocks linear systems and multi-

pliers. Any linear system that is realizable in the sense that its unit impulse response,

h(t), is zero for t < 0 is allowable. After synthesis with these elements is achieved for

each kernel of the family, simplification can be attempted, to yield a resulting system

that is an interconnection involving linear systems and nonlinear no-memory systems

whose input-output characteristic is given by a polynomial. We also consider sampled

systems, and the approximation of continuous systems by the sampled systems.

In Section II, the characterization and synthesis of kernels that are exactly realizable

with a finite number of linear systems and multipliers is given. A detailed discussion

2



of the effects of sampling in nonlinear systems is presented in Section III. Simulation

of continuous systems by sampled systems is discussed in Section IV. In Sections V

and VI a multidimensional Z-transform analysis for nonlinear sampled-data systems is

developed and used to discuss the synthesis of nonlinear sampled-data systems. An

extension to nonlinear systems of the impulse-train techniques which have proved to be

so useful for linear systems is discussed in Section VII. In Section VIII we present some

miscellaneous results that have been by-products of research into the synthesis problem.

3



II. KERNELS REALIZABLE EXACTLY WITH A FINITE NUMBER OF

LINEAR SYSTEMS AND MULTIPLIERS

Although, as demonstrated by Wiener, it is possible to approximate arbitrarily

closely any absolutely integrable kernel with a finite number of linear systems and non-

linear no-memory systems, not all systems representable by a finite set of Volterra

kernels can be realized exactly by means of these elements. We consider kernels of

the set

{h (T ... , T ): n = 0, 1, 2, .... N}

one at a time. Since the tests developed to determine whether or not a kernel is exactly

realizable by means of a finite number of linear systems and multipliers are construc-

tive tests, we shall not only determine whether or not a kernel is exactly realizable, but,

we shall, if possible, find a realization for the kernel. In the event that some portion

of a kernel is exactly realizable but the remainder is not, we shall discover this also,

again achieving a realization of as much of the kernel as possible.

We define a kernel transform pair by the relations

n a'1+j0o SITl.+S T

nHnlrl....,n (2wj SF ' Hn(Sh Tine I n n ds 

'= i ) h(T 1 .. , ' e1d ...W dTn (5)hn(n1 ..... ~ =0 n

2. 1 "CANONIC" OR BASIC FORMS

We shall develop "canonic" or basic forms for kernels that are exactly realizable

with a finite number of linear systems and multipliers. These structures are not

canonic in any minimal or precise mathematical sense; they are, however, can-

onic in the sense that any realization by linear systems and multipliers can be placed

in these forms.

Consider, first, a second-degree kernel and its transform:

h2(TlT2 ) - H 2(s1 2).

It is clear that the most general second-degree system that can be formed with

one multiplier is as shown in Fig. 1. The most general second-degree system that

can be formed by using N multipliers is shown in Fig. 2. We shall find it convenient

to think of the system of Fig. 1 as a canonic form for second-degree systems, since

all second-degree systems that can be realized exactly by means of a finite number

of linear systems and multipliers can be represented as a sum of these canonic

4



Fig. 1. Canonic second-degree system.

Fig. 2. Second-degree system with N multipliers.

5



sections, as in Fig. 2.

The kernel of the canonic section of Fig. 1 in terms of the impulse responses ka(t),

kb(t), and k (t) of the linear systems is

h2(T 1 2 ) = ka (T1l--) kb(Tz2-) k (-) do- (6)

and the corresponding kernel transform is

K2 (S1'S 2 ) = Ka(S1) Kb(S2) Kc(S+S 2 ). (7)

Then for the system of Fig. 2, we have the kernel and kernel transform

N

gZ (T lZa T 1 ) = b (T 2 -a--) k (-) do- (8)
1 1 1

i= 1

N

G2 (sl'S2) = a(s K b.(S 2 ) Kc.(S+S 2 ) (9)
i= 1 1 1

i=1

If a given kernel or kernel transform can be expressed in the form (8) or (9), for some

N, then it can be realized with at most N multipliers; otherwise it cannot be real-

ized exactly with a finite number of linear systems and multipliers. Examples of both

types of systems are given by Schetzen. 2 0

Let us now consider higher degree systems. It is clear that the canonic third-degree

system is as shown in Fig. 3. It contains five linear systems and two multipliers. In

Fig. 4 the same system is shown with the second-degree canonic form composed of ka(t),

kb(t), and k (t) and one of the multipliers shown explicitly. The kernel and the kernel

transform of this canonic section are given by

k3 (TT 2T 3 SSk (C2 ) kd(T3-2) k(-) ka(rI-ao1 - 2 ) kb(Tlz1- 2) doa-do-2 (10)

K 3 (S 1 S2 S3) = Ka(S1) Kb(S2 ) Kc(Sl+S2 ) Kd(S3 ) K(s 1+S 2 +S3 ) (11)

or by

k3(T I2T 3) = e (- 2) kd(T33-r) k2 (T1-, T2--a2 ) do-2 (12)

K 3( 1,S2,S3) = K 2 (S 1S 2) Kd(S3 ) Ke(S1+S 2+S3), (13)

where k2(T1r 2) is the kernel of the second-degree system shown explicitly in Fig. 4.

If a third-degree system has a kernel transform H 3 (s 1 ,s 2,s 3 ) which can be

expressed as

6



N

H 3 (S 1 S2,s 3 ) = I Ka.(s 1 ) Kb.(S) K.(S+S Kd(S 3) Ke.(Sl+ 2 +s 3 )
i= 1 1 1 1 1

(14)

for some N, then it can be realized exactly with at most 2N multipliers. If it cannot be

expressed in this form, then it is impossible to realize the system exactly with a finite

number of linear systems and multipliers.

Now for the fourth-degree systems the situation is somewhat more complicated. Con-

sider the systems of Fig. 5 and Fig. 6. Each of them represents a fourth-degree system

Fig. 3. Canonic third-degree system.

Fig. 4. Alternative form for the canonic third-degree system.

and each of them is composed of seven linear systems and three multipliers, but the two

forms are essentially different; that is, no block diagram manipulations can reduce one

of these forms to the other. Hence, for fourth-degree systems, we have two canonic

sections. It is clear that any fourth-degree system that can be realized with three or

7



(a)

(b)

Fig. 5. First canonic form for fourth-degree systems.

8



(a)

Fig. 6. Second canonic form for fourth-degree systems.

Fig. 7. Fourth-degree system with two multipliers.

9
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less multipliers can be arranged into one of these canonic forms. For example, the

fourth-degree system shown in Fig. 7 can be placed in the form of the section of Fig. 6.

The kernel and kernel transforms for the canonic form of Fig. 5 are given by

k4 1 (T 1 ,T 2 ,T 3,T 4 k 5 (gh3 ) kf rT 4 -3 3) ke( 2 ) kd(T 3 --- 3 ) kc(r-) kd(T32-3 ) k() k(T 1 -

ka(T 1 -l-- 2 -3 ) do-1 do-2 d 3 (15)

K41 (S ,S2,S3S4) = K(S 2 ) Kd(S3 ) Ke(S) K K(s 1 d 3 )K+ s2+s3 K(S4 + 4)

(16)
or

k41 (T1T2T3T4 ) = 5 kg(- 3) kf(T4 - 3 ) k3 (T - 3 , T2 -- 3 ,T3 -- 3 ) do- 3 (17)

K 4 1(S1'S2'S3,S4) = K 3(s1S 2 s3) Kf(S4) K(S 1+s2 +S3 +s 4 ) (18)

where k 3 (T 1,T 2 ,T3) is the kernel of the third-degree section within the fourth-degree

section.

For the canonic form of Fig. 6, the kernel and kernel transform are given by

k4(TIlT,) = SSS kg( 3 ) kf(o 2 ) k c( 1 )ka(T l-- 3) (2 - 1- 3) k d(T3-2-2 3)

ke(T4- 2- 3) d 1do-2do-3 (19)

K42 (S ,S2 ,S3,S4) K(S) Kb( 2 ) Kc(Sl+) Kd(s+) Kd(S3) Kf(s4) Kf(S +s4) K (s +S2+S3+S4)

(20)
or

k4 2 (T 1 T2,T3 T4) = Skg(o 3 ) k2 1 (T 1-- 3, T2- 3 ) k2 2 (T 3 -- 3, 4 -- 3) do- 3 (21)

K42 (S 1'2'S3'54) = K2 1 (S1ls 2 ) K 2 2 (s3,s 4) Kg(S1+S 2 +S 3+S4 ), (22)

where k 2 1 (Tl1 T2 ) and k2 2 (T3,T 4 ) represents the second-degree canonic section within

the fourth-degree canonic section above.

If a given fourth-degree system is characterized by a kernel transform H4 (sls 21 s 3 s 4 )

which can be expressed as

N 1 N2

H4(sl1 S2S 3 S4) =E K4 1 (Sls 2,s3,s4) + K4 2 .(Sl'S2'S3' 4) (23)
i=1 1 i=1

for some N1 and N 2 , then the system can be realized exactly with at most 3(N 1 +N 2 )

multipliers. If the kernel transform cannot be expressed in the form of (23), then it is

impossible to realize the system exactly with a finite number of multipliers.

For higher degree systems we shall have more canonic sections. A fifth-degree sys-

tem may be formed as the product of a fourth-degree and a first-degree system, and the

fourth-degree system may be obtained in either of the two forms given above, or we may

10
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3.1

4.1

2.2 5

3.2

(a) Tree for a fifth-degree system

3.1

4.1
Fig. 8.

3.2

3.1

- 4.2 -

2.2- R

Trees showing canonic structures.

- 6

(b) Tree for a sixth-degree system

obtain the fifth-degree system as the product of a third-degree system and a second-

degree system. A sixth-degree system may be obtained as the product of a fifth-

degree system and a first-degree system, a fourth-degree system and a second-degree

system, or a third-degree system and a third-degree system, with all possible forms

for each.

Although this nomenclature of canonic forms rapidly becomes complex as the degree

of the system is increased, we may use the concept of a tree to summarize the process

concisely, and to arrive at an expression for the number of different canonic sections

existing for an nth-degree system. The trees for the fifth-degree and the sixth-degree

cases are shown in Fig. 8.

To form the tree for, say, the fifth-degree system, we proceed from right to left. A

fifth-degree system may be formed from the product of a fourth-degree system and a

first-degree system, or from the product of a third-degree system and a second-degree

system; we need, in moving to the next level of the tree, consider only the fourth-degree,

third-degree, and second-degree systems. The third-degree and second-degree systems

have only one canonic section; hence the tree branch corresponding to this product termi-

nates there. The fourth-degree system must be broken down further, and hence this

branch of the tree continues, spreading out still further, until a level at which only one

canonic section exists is reached.

11
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Fig. 9. Tree for an eighth-degree system.
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A complication arises in the tree for the eighth-degree case, Fig. 9. Here we find

a branch corresponding to a product of two fourth-degree systems; at this point we must

expand the tree in both directions until we arrive at branches having only one canonic

section, as shown in Fig. 9.

We may now observe that the number of different canonic sections, C(n), for an n th

degree system is obtained from the expression

[n/2]

C(n) = 2 C(n-k) C(k), n2Z

k=l 1 (24)

C(1) = 1,

where [] denotes the greatest integer function. For example, the number of canonic

sections for n = 7 is given by (24) as

C(7) = C(6) C(1) + C(5) C(2) + C(4) C(3) (25)

From Fig. 8, or repeated use of (24), we have C(6) = 6, C(5) = 3, C(4) = 2, and C(3) =

C(2) = C(1) = 1, and hence from Eq. 25, C(7) = 11.

For n = 8, we have

C(8) = C(7) C(1) + C(6) C(2) + C(5) C(3) + C(4) C(4) = 24 (26)

The tree corresponding to n = 8 is shown in Fig. 9.

From the tree we may write the form of the kernel transform of each canonic section

by inspection, using the product rule and cascade rule for system combination given by

George.6 For example, from the tree for the fifth-degree system (Fig. 8a) we may write

the kernel transforms of each of the three different canonic sections for fifth-degree sys-

tems; for the canonic section corresponding to the uppermost path of the tree, the kernel

transform is written by inspection as

K 5 (S1S2, 2,S4, S5) = K3 (l,S 2 ,S3 )K 1 1 (s 4 ) K1 2 (s 5 ) K 1 3 (s 1 +s 2 +s 3 +s 4+s 5 )' (27)

where K 5 (s 1,S2,S3,s4,s5) is the kernel transform of the corresponding fifth-degree

canonic section, K3 (s 1 ,s2 ,S3 ) is the kernel transform of a third-degree canonic section

of (11) and Fig. 3, and K 1 (s), K 1 2 (s), and K 1 3 (s) are the kernels of linear systems.

Thus we see that by forming the tree, and following each path in the tree, we may

obtain quickly the form in which we must be able to express the kernel transform of an

n hdegree system in order that the system be realizable exactly by a finite number of

linear systems and multipliers. For higher degree systems the expressions will not be

simple, but we have exhibited a procedure for obtaining them with a minimum of effort.

Hence, given the kernel transform of an n th-degree system, we may test that trans-

form to determine whether or not it is realizable exactly with a finite number of linear

systems and multipliers.

It should be noted that, in any particular case, it is not necessary to perform the test

of a kernel for exact realizability in one step. One proceeds by means of a sequence of

13
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simpler tests from the higher degree side of the tree through the lower degree branches

as far as possible. Following any path completely through the tree indicates that exact

synthesis with linear systems and multipliers is possible; if it is impossible to follow any

path completely through the tree such synthesis is not possible. Even when an exact

synthesis is not found, proceeding as far as possible through the tree reduces the syn-

thesis problem from the synthesis of one higher degree kernel to the synthesis of sev-

eral lower degree kernels, which constitutes a significant reduction.

2.2 EXAMPLES

The procedures discussed above are illustrated in the following examples.

Example 1

Consider the kernel transform

H4(Sl,82,83,s) = s4/~SlS8+28 1 8+S S +SlS384+828384+2s 18+2s183+2sH 4 (sss 3 s) s /(s s2s3 4 +s1 2 s3+ 1 2 s4+s 1 3 4+s2 3 4 1 2 1 3 2 3

+s 1 s 4 +s 2 s 4 +s 3 s4 +2s 1+s+2s2 3 +s 4 +2). (28)

If this kernel is to be realized exactly with a finite number of linear systems and multi-

pliers, we must be able to express it in the form of (23). To determine whether this is

possible, we shall first try to express (28) as

H4 ( 1' 2'3's,4) = F(Sls2.s 3 ) G(s 4 ) H(s 1 +s 2 +s 3 +s 4 )

or by a similar expression with the variables permuted, which corresponds to one of the

branches in the tree for a fourth-degree system. We note that it is only necessary to

consider the denominator, which we will denote D(sl,s 2 ,s 3 ,s 4 ), since we could, if neces-

sary, take the numerator one term at a time. We set the variables equal to zero three

at a time to obtain

D(O,0,0,s 4 ) = s 4 + 2 (29)

D(O,0,s 3,0) = 2s3 + 2 (30)

D(O,s 2 ,0,0) = 2s 2 + 2 (31)

D(sl,0,0,0) = 2s 1 + 2. (32)

Since Eqs. 29-32 have no common factor other than unity, the only possible H(') is unity.

Also, the only possible G(s 4 ) is, from (29), G(s4 ) = (s 4 +2). To see if this is indeed a

factor, we divide D(sls2,'3,s4 ) by (s4+2) to find that

D(sl,s 2 ,s 3 ,s 4 ) = ( 4 + 2 )(sl s2 33++s1 2+ 3+1). (33)

Now, with the help of Eqs. 30-32, we recognize the second factor in (33) as (sl+1)(s2+1)

(s3+1), and thus have

H4(S 1 2 ' 3 4 ) = (s +(s1 +1)(s3+ 1'

14



Hence this kernel can be synthesized as shown in Fig. 10.

Example 2

Consider the kernel transform given by

H4 (S 1 lS2,S 3 9S 4 ) = (s 1 +s 2 ) (S2S3S 2 S 4 + Sls 2 S3 S4

22 2 2
+sls2 s3 s4 + slS2 S3 S 4

2 2 2 2
26s + ss + 7 s + 2S 

+ 6sls2s3s4 + 6l12 34 + 7 2 3 4 7ss2 s 3 s 4

2 2 2 2 22 22 22
+ 2 1s 2 s 3 + s2 + 2 + 2s1 3 ls+ s 1 s 2 s 4 + 2sls3 s 4

2 2 2 2 2 2
+ 2SSS +sss2 + SSss + 42slS2S3S4

2 2
+ 12sss2 s 3 + 6ss2 4

2 2
+ 10s1 s 2s3 + 6sls2 s4

+ 10Sls 2 S3 + 6 S2S 4

2 3 + s2 4
+ 14S3S4 + 7s2s3s 4

2 2 2 2
8sl3s + 8ls3s 4 + 52S3 4 + 5s2s s

22 2 2 2 22 22
+ 43 + 2S1 S4 + 2s 2 s 3 + s2 s 4 + 60SLS2S3

2
+ 36SLS2S 4 + 56sls3s + 35s2s3s + 8sls21 24 1 34 2 34 1 2

+ 8s 1 S2 + 20s1 + 12s2s4
2 2

+ 1Os2s + 6s 2s2 3 2 4

+ 16S1 S3 + 8s s + 102s3 + 5s2 s4 + 6s 3s 41 4 2 S 3 4 3

+ 63s4 + 48sLS2 + 80SLS3 + 48SLS4

+ 50s2s 3 + 30S + 2s4 + 42s3s 4 + 16s +8s 2

2 2 36s 4 + 48)
+ 12s2 + 6s4 + 64s +40s + 60s ±36s +48)

3 4 1 2 3 4

(35)

Again, we try to put the denominator D(s l,s2,s 3 ,s 4 )

3 1 branch of the fourth-degree tree. We find first

D(0,0,0,s 4 ) = 36s4 + 48 = 12(3s 4 +4)

D(0,0,s3,0 ) = 12s 3 + 60s 3 + 48 = 12(s3+4)(s3+1)

D(O,s 2 ,O,0) = 8s 2 + 40s2 + 48 = 8(s2+3)(s2+2)

D(sl,0,0,0) = 16s21 + 64s + 48 = 16(s1+3)(s +1)
1 1 1 1

into a form corresponding to the

(36)

(37)

(38)

(39)

Examination of Eqs. 36-39 shows that no common factor other than 4 exists. Hence no
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Fig. 10. System with the kernel of Example 1.

factor of the form H(s 1+s 2+s 3 +s 4 ) can exist other than H(.) = 4. We next attempt to

find a factor that is a function of only one of the variables sls2,'s3,S4; however, division

of D(sl,S2 ,S3 ,s 4 ) by each of (36)-(39) shows that such a factor cannot exist. We cannot

follow the 3 1 branch of the tree.

We then attempt to follow the 2.2 branch, or to express D(s 1 ,s 2 ,S3 ,S4 ) as

D(S1 ,S2 ,S 3 ,S4 ) = H 2 (S1', 2 ) K 2 (s 3 ,s 4 ) (40)

or by a similar expression with sl , s2 , 3, 4 permuted; we have already found that no

nontrivial factor of the form H(s 1+s 2+s 3 +s 4 ) can be present. Hence we write

2 2 2 2
D(0,0,s 3 ,s 4 ) = 6( 3s 4 +s 3 s 4 +2s 3 +s 4 +7s 3s 4 +10s3 +6s4 +8). (41)

If a factor K2 (s 3 s 4 ) exists, it must be contained in (41). Division of D(s 1l,S2,S 3 ,S4 ) by

(41) is successful, yielding a second factor, and we have reduced (35) to

+ s 2
H4(S1'S2 S3'S 4 ) = 2 2 2 2

SS 2 + S 1S2 + s + 2s + s 2 + 6ss +8s +s +

3s4 + S3 4 + 2s 3 + 4 + 7s3s 4 + 10s3 + 6s 4 + 8

We have now reduced the problem to synthesis of two second-degree systems. Note

that at this point we are not yet sure whether or not either of these second-degree sys-

tems is exactly realizable with a finite number of linear systems and multipliers. We

may, however, examine each second-degree system separately, using the techniques

of Schetzen,ZO or continuing with the methods used above. We find that we may realize

each of them, with the system whose kernel transform is given by (35) then being syn-

thesized as shown in Fig. 11.

16



Example 3

Consider the second-degree kernel transform given by

H2 (Sl,s2 ) =

-s2-
s2(-s2-e ) s2 (-s - e 1)sI(-SZe Z 1

2 2(1_ - Sl)
22

S1S2(S2-S1)

(43)

Denote the numerator of this expression N(s 1 ,s 2 ) and the denominator D(s 1 ,s 2 ), We

observe that the kernel transform cannot be put in the form (9) unless N(s 1 , s2), as well

Fig. 11. Realization of the kernel of Example 2.

as D(sl,s 2 ), contains the factor (s2-Sl). Setting s = sz = s, we find that N(s,s) = 0. We

next attempt to factor (s2-sl) out of N(s 1, s2). In order to divide out this factor, how-

ever, we must expand the exponential terms in their Taylor' s series. Before doing this,

it is convenient to rewrite N(s 1 ,s 2 ) as

2 2 2 s2 2 2 2 1 1 
N(ss) = - SS - S e - s 2 +sS +s e +S e -ss e1 1 12 2 12 12

-S 2 -S 2
+ S1S2 e - lS 2 e (44)

-s -s
Here we have added and subtracted slS2 e and s l2 e . We

as

N(sl,s2 ) =lS2(S2-S ) - S2 (S 2 -Sl)(1-e

may then write N(sl,S 2 )

)s Sls22-s -ss -s 2) - S(S-Sl)(1-e ) + S 2 (e -e ).
1 2 1 1 (45)

We note that (s 2 -S 1 ) is a factor of each

term is zero for s = 2' but (s2-sl)

expression.

We will treat each term separately,

of the first three terms;

cannot be factored out

in addition the last

to leave a closed-form

writing H2 (S 1 'S2 ) as

17
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-s -s 2 -s -s 2

1 1-e e + e -e (46)
H2(s1's2) SS 2 2 2 + '

1 2 slS2 S1S2 S1 s 2 (S 2 -S 1 )

We may now focus attention on the last term; of this term, consider the factor, which

we denote F(slS2),

-s 1 -s 2

F(sl,s 2 ) = s -e
2 - s1

Expand the exponentials in their Taylor's series, to obtain

2 3 4 2 3 4

5 - ssZsS S+S
S2 + I 1 -S sS 2 + SI2! + 42! 3! 4!

Now, although we cannot write this in closed form, and hence cannot realize H(s1 ,s 2 )

exactly with a finite number of linear systems and multipliers, we can approximate

H 2 (s 1 ,s2 ) with a kernel that is exactly realizable with linear systems and multipliers

as closely as we wish by taking as many terms as needed of (47). If we are only inter-

ested in the low-frequency behavior of the kernel, only a few terms may suffice. Thus

we cannot realize this kernel exactly, but applying the tests we have developed to deter-

mine whether or not the kernel was exactly realizable with a finite number of linear sys-

tems and multipliers led in this case to an approximation procedure that gives very good

approximations for low frequencies.

The following points should be observed from the preceding examples and discussion.

First, it is clear that the examination of a kernel to determine if it is exactly realizable

may be a lengthy and tedious process. By the use of a tree the labor required is sys-

tematized, however. In addition it should be noted that algebraic computation can always

be reduced to a first-degree problem, enabling one to use the conventional factorization

techniques, although it may be convenient, as it was in Example 3, to do some simpli-

fication at a higher level than a one-dimensional problem. Although tedious, the pro-

cedure is systematic and feasible, resulting either in a realization of the kernel, the

realization of as much of the kernel as possible, or the assurance that nothing can be

done to realize the kernel exactly with a finite number of linear systems and multipliers.

We may, in the examination of a kernel, find a good approximation even when an exact

synthesis is not possible; this is a fortuitous by-product in some cases.synthesis is not possible; this is a fortuitous by-product in some cases.

18



y(t)

Fig. 12. Nonlinear feedback system.

2.3 COMMENTS ON FEEDBACK STRUCTURES

In Fig. 12 a system characterized by a nonlinear operator H is connected in a feed-

back configuration. The input time function is x(t) and the output time function is y(t);

the function on which H operates is denoted e(t) = x(t) + y(t). The relation between x(t)

and y(t) is given by an operator G. When nonlinear systems are connected in feedback

configurations, as for example in Fig. 12, the input-output relationship of the resulting

structure can sometimes be approximated by a finite number of terms of a Volterra

series expression; it can never be represented exactly by a finite number of terms. That

is, even if the nonlinear operator H can be characterized by the second-degree Volterra

kernel alone, so that y(t) is a second-degree functional of e(t), it is still not possible to

represent y(t) as a finite-term Volterra functional of x(t).

Thus if we consider the kernels of a family one at a time, any exact synthesis must

rule out feedback configurations; however, some discussion of feedback structures is

pertinent. Zames 2 1 has tabulated the kernel transforms of the kernels of the Volterra

representation of the operator G of the feedback structure in terms of the transforms

of the Volterra kernels of the nonlinear operator H. The first few of these is given in

Table 1 for convenience. Note that the relationships are formal in nature; if the appro-

priate Volterra expressions exist, then the relationships hold, but special care must be

taken to insure that the Volterra series for the feedback structure actually exists, that

is, converges and represents the feedback structure for inputs of interest. We discuss

only the formal relationships here, referring to Zames for a discussion of the conver-

gence problem. The expressions in Table 1 differ somewhat from those given by Zames,

since we have used positive feedback and Laplace transforms rather than negative feed-

back and Fourier transforms.

From the expressions of Table 1 we make the following observations. First, sup-

pose that the nonlinear system within the loop, that is, the open-loop relationship, is

realizable exactly by a finite number of linear systems and multipliers. Then, we see

19

1"IT�- I·- -- I --�I --·-·l�--plrr--r^l--r^�---,..l;xllrr�--· I-----CI------r^--·----L�-l^---La-- -- -~ I --



Table 1. Kernel transforms for the feedback structure of Fig. 12.

H (s )
Gl(s l ) -

H1(S 1)

G2(SlS 2 ) = - 2( 1S2)H2 (S 1 s 2G2[l1(s-HH (Sl+s 2 ) [l-H1(s 2))

1 1
G3(Sl1 s2 ,S3 )= . . -- · '3-

1-H ( +82 +83 )
1 1 23) [1-H1(s

i=l

* (H 3 (s 2 1 3 ) + 2sH2H(s1 ,s2+s3 )H2 ( 2 s3) )
1-H1(s2+s3)

that each of the kernels of the closed-loop system is also exactly realizable with a finite
number of linear systems and multipliers. Second, given a finite family of kernels,
suppose that we have found a realization for each of the kernels in terms of linear sys-
tems and multipliers; if the family of kernels can be approximately realized by a feed-
back structure, then this possibility should be suggested by the repetitive nature of the
structure for each of the kernels.
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III. SAMPLING IN NONLINEAR SYSTEMS

Digital operations have become recognized as extremely powerful tools in modern

control and communication systems. In order to study the possibility of using a digital

computer effectively in the study of a nonlinear system we must first understand the

effects of sampling in nonlinear systems. We shall now consider nonlinear systems

representable by a single term of a Volterra series, and examine in detail the effects

of sampling operations at the input and at the output.

3.1 IMPULSES AND NONLINEAR NO-MEMORY OPERATIONS

In the system shown in Fig. 13, the nonlinear system is characterized by the kernel

hn(T1' ... .Tn), x(t) is the input, x*(t) is the sampled input, y(t) is the output, and y*(t)

n n~~~~~~~

x(t) f x*(t)

T.
1

y(t) . y*(t)

T
0

Fig. 13. Nonlinear system with sampled input and output.

is the sampled output. The input and output samplers operate with sampling intervals

Ti and To, respectively.

The input-output relation for the nonlinear system is

~ * n+oo +oot
y(t) = ... hn(T 1 ... Tn) x(tT x (t-T ) dT1... dTn (48)

The kernels hn(T1 ... , Tn) and the sampled inputs x (t) that are permissible deserve

close attention. Consider, in this connection, the situation in which a unit impulse is

applied to a squarer. Both the squarer and the impulse are ideal models of physical

situations. Both are useful models, but together they constitute an incompatible situation.

Regardless of how we represent the impulse as the limiting behavior of a sequence

of pulses, and even though we do not look at the limit until we have formed a sequence

of output pulses that are the squares of the input pulses, the response of a squarer to an

impulse is infinite, not only in amplitude, but also in area.

The difficulty here is in the nature of the models. The squarer places emphasis on

the amplitude of its input; no other feature of the input is considered. The impulse,

however, places emphasis on the area or weight of a signal. Nonimpulsive inputs and

no-memory systems such as squarers are compatible, impulses and linear systems are

compatible, but impulses and nonlinear no-memory systems are simply not compatible.
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A convenient model for the sampling operation is the "impulse-train modulator." The

output of the sampler is taken to be a sequence of impulses at the sampling times, with

the areas of the impulses equal to the amplitudes of the input at the sampling instants.

Using this model, we have

+oo

x (t) = Z x(kT) u (t-kT). (49)

k=-oo

We note that in order for (49) to be meaningful we must exclude impulses from the

input x(t); we may permit jump discontinuities in x(t).

But, if this impulsive input x (t) is to be presented to a nonlinear system, as in

Fig. 13, we must restrict the kernel hn(Tl ... Tn) of the system so that nonlinear

no-memory operations on the sampled input are excluded. This is conveniently accom-

plished by requiring that hn(T1 ... I Tn) have no impulsive components.

A common artifice is to require that some type of hold circuit follow the sampler, as

in Fig. 14, whenever nonlinear systems are considered. The hold circuit may assume

any of several forms,22 the cardinal hold, zero-order hold, first-order hold, exponential

hold, and others.

)x(t)

T

Fig. 14. Sampler with hold.

(t)

Fig. 15. Nonlinear system with hold.

We may think of the hold circuit in cascade with a nonlinear system, as in Fig. 15,

as a new nonlinear system. As long as the hold is linear, the cascade combination may

still be represented by an nth-degree kernel; moreover, the kernel of the combination

will not contain impulsive components.

When the nonlinear system is characterized by a kernel that has no impulsive

22
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X~(t) *HOLD NLNM*(t)

T T

(a)

x(tNNM (t) y*(t)

T

(b)

Fig. 16. Models for sampling with nonlinear no-memory systems.

components, that is, when hn(T1 . ., Tn) is not impulsive, the hold circuit is not essen-

tial to a compatible physical model.

A nonlinear no-memory operation in a situation in which we wish to introduce

sampling may be modeled as shown in Fig. 16a or 16b. In either case, y (t) is the same,

provided that the hold circuit repeats the amplitude of x(t) at the sampling instants; the

model of Fig. 16b simply avoids sampling before the nonlinear no-memory operation.

3.2 SECOND-DEGREE SYSTEMS WITH SAMPLED INPUTS

Consider the system shown in Fig. 17. The system N 1 is a second-degree system

with the kernel h 2 (T1 , T2). We exclude kernels having impulsive components. The input

x(t) is sampled by an ideal sampler, so that x (t) is a sequence of impulses of area x(kT)

occurring every T seconds. We assume that s(t) has no impulsive components. The

output y(t) is not sampled.

If the output of the sampler is a single-unit impulse, the system output y(t)

is given by

N

x(t) x*(t)

T

"1

.- y(t)

Fig. 17. Second-degree system with sampled input.
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y(t) = h 2 (t, t) .

Hence the response to a unit impulse is completely determined by the values of the ker-
nel for which the arguments T1 and T2 are equal; that is, by the values over the line
passing through the origin at 45 ° to each of the axes, as shown in Fig. 18. As indicated,

Fig. 18.

Portion of the (T1, T2)-plane that

is significant in the response to
a single impulse.

T1

however, the scale along the T1 and the T2 axes is given by the time scale; hence the
scale along the 45 ° line is [2 times the time scale. Thus, although the impulse
response is h2 (t, t), if we wish to interpret the section of the surface over the 45° line as
the output corresponding to the impulsive input, then we must scale the abscissa values
along this line by the factor 1/af2. This is accomplished conveniently by projecting into
either the T1 = 0 plane or the (T 2=0)-plane. To find the response to a unit impulse, then,
we look in the (Tl=T2)-plane and project.

Now suppose that the sampled input is a sequence of unit impulses:

00oo

x T(t) = u(t-kT). (51)

k=0

Then the corresponding output is found to be

y(t) = E h2 (t-jT, t-kT). (52)
k=0 j=0

Again, the response depends only on certain values of the kernel, and not on the entire
surface of the kernel. Observe that in each term of the double sum, the variation in each
of the two variables is the same; hence each term is given by the values of the kernel
over a line parallel to the T1 = T2 line and intersecting the T1 or T2 axis at some
multiple of T units, as indicated in Fig. 19.

Insight can be gained by examining the output y(t) in (52), term by term. The term

24
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for k = j = 0 is simply h 2 (t,t), the response to a unit impulse discussed above. The

terms for k = j = n are given by h 2 (t-nT, t-nT) and hence are the same as the k = j = 0

term, except shifted nT units in time. The situation is clearer if we rewrite (52) as

y(t) = h2 (t-nT, t-nT) + I h 2 (t-jTt-kT) + E h 2 (t-jT, t-kT). (53)

n= 0 k>j >0 k<j

At t = 0, when the first impulse is applied, the output begins just as if the system

were a linear system with the unit impulse response h2 (t, t); that is,

y(t) = h2(t,t) 0 < t < T. (54)

Now at t = T, the second impulse is applied and the output becomes

y(t) = h2 (t, t) + h2 (t-T, t-T) + h2 (t, t-T) + h2 (t-T, t), T < t < 2T. (55)

If we were dealing with the linear system characterized by h2 (t, t), we would get the first

two of these terms. The nonlinear character of the system is now evident; however, we

Fig. 19.

Portion of the ( 1 , T2 )-plane that

is significant in the response to a
sequence of impulses.

T1

have in addition the last two terms. At time t = 2T, all of these terms will start over,

just as h2 (t-T, t-T) appeared at t = T, and we shall also pick up two more terms, deter-

mined by the next two 45° line sections of the kernel of the system. At t = 3T we shall

again find new components in the output, and so on.

Eventually, the output will reach a steady-state response. This steady-state response

will be the response to an input

00oo

x(t) = u(t-kT). (56)

k=-oo
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It is interesting to note that, for the inputs considered, we can think of the output as

having been formed by applying the same input to a linear system constructed as follows:

Project all the 45 ° line sections of h2 (T1 , T2) into the T1 = T2 plane, add all the curves,

and project the sum into the T1 = 0 plane. The resulting function is the desired impulse

response

00

h(t) = h 2 (t,t) + [hz(t-nT,t)+h 2 (t, t-nT)]. (57)

k=l

The response of this linear system and the response of the second-degree system

with the kernel h2 (T1 , T2 ) will be identical for inputs (52) and (56). Note, however, that

this is a property associated with these specific inputs. If we change the inputs, that is,

change the weights of the impulses in the input sequence, the output of the linear system

and the output of the second-degree system will no longer be identical. We would need

to change the impulse response of (57) to follow the change in the input in order to main-

tain identical outputs. Thus we abstract from the kernel of the nonlinear system a linear

system relating a particular input-output pair.

3.3 HIGHER DEGREE SYSTEMS WITH SAMPLED INPUTS

The response of higher degree systems to sampled inputs retains most of the proper-

ties described above for second-degree systems. A single-unit impulse applied to a

L3

t

/ 1 t

T1

Fig. 20. Portion of T1 , T2 , T3 space that is significant in

determining the response to an impulse.

26

_ _��_____��_



third-degree system characterized by the kernel h 3 (T1, T2, T3 ) yields an output h3 (t, t, t).

In Fig. 20 the portion of the domain of the kernel on which the impulse response depends

is shown. The response is completely determined by the values of the kernel for

T1 , T2, T3 along the line through the origin at 45 ° to each of the axes. The scale along

this line is N5 times the time scale along each of the axes.

For an n -degree system a similar situation applies. The scale factor in the

nth-degree case is N-i, although the graphical interpretation is not possible.

The response of the third-degree system to a sequence of impulses xl (t) is given by

00 00 00

y(t) = C h3 (t-iT, t-jT, t-kT). (58)

i=0 j=O k=0

This sum can be rearranged to be

00

y(t) = h3 (t-nT, t-nT, t-nT)

n=0

+ 3 E E h 3 (t-nT, t-nT, t-(n+k)T)

n=0 k=l 

+ 3 1 1 h 3 (t-nT, t-(n+k)T, t-(n+k) T)

n=0 k=l

+ 6 h 3 (t-nT, t-(n+k) T, t-(n+j +k) T), (59)

n=O k=l j=l

where we have grouped together all terms in which all three arguments are equal, in

which two of the arguments are equal, and in which no two of the arguments are equal,

and have assumed a symmetric kernel.

The respdnse in this case is thus completely determined by the sections of the kernel

for which the arguments lie on lines at 45 ° to each of the axes, intersecting the planes

T1 = 0, T2 = 0, and T3 = 0 in a uniformly spaced grid T units on a side, over the positive

quadrants of the planes.

For 0 -t < T, the response is h3(t, t, t); for the next interval we have

y(t) = h3 (t, t, t) + h 3 (t-T, t-T, t-T) + 3h3 (t, t, t-T) + 3h3 (t, t-T, t-T), (60)

and again the nonlinearity becomes evident on application of the second impulse of the

sequence. In subsequent intervals more new components will appear in the output. As

in the second-degree case, we can abstract from the kernel a linear system relating this

specific input-output pair. The impulse response of this linear system is given by
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h(t) = h 3 (t,t,t) + h3 (t,t,t-kT) + 3 E h 3 (t,t-kT, t-kT)

k=l 1 k=l 

+ 6 E E h3 (t,t-kT, t-(j+k)T). (61)

k=l j=l

In the general nth-degree case, the response to x(t) is

oo co

y(t) = ... E hn(t-ilT.. in ). (62)

in=O il=0

Expressions of the form of (61) for the nth-degree case are extremely complicated. It

is clear, however, that only certain slices of the kernel are significant in determining

the response to a sequence of impulses; for sampled inputs, only the "45 ° line sections"

are important. Thus for sampled inputs, kernels that agree along these lines are com-

pletely equivalent.

3.4 INPUT AND OUTPUT SAMPLED

Returning to the situation shown in Fig. 13, consider the relation between the

sampled output y (t) and the sampled input x *(t). The sampled output is a sequence of

impulses of areas

o 00oo

y(PT ) = E ... E x(kT i ) .. x(knTi) hn(PT-k T i .. pT -k n (63)
k =-oo k 1 = - 00

where x(k 1 Ti, ... ,x(knTi! are the input sample values.

We have observed that only the 45 ° line sections of the kernel surface are important

when the input to the system is sampled; from (63) we see that only isolated points on

the surface of the kernel are important in determining the sampled output. The remain-

der of the kernel has no effect on the sampled output.

Sampling at the input restricts attention to the 45° lines; sampling at the output fur-

ther restricts attention to the points along the 45 ° lines at intervals of To units.
O
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IV. SIMULATION OF CONTINUOUS SYSTEMS BY SAMPLED SYSTEMS

It is often convenient to replace a continuous system by a sampled system; for

example, when a digital simulation of a continuous system is to be used. We can take

one of two approaches: either we try to find a sampled-data system that performs

exactly the same operation as the continuous system or we try to 'find a sampled-data

system that approximates the operation of the continuous system, with the approximation

becoming better and better as the sampling interval is made shorter and shorter. The

N

x(t)

P.

y(t)

.-

Fig. 21. Nonlinear system.

first approach is useful when the input and the system are bandlimited. If the system is

not bandlimited, then we rely on the second approach. We shall discuss the approximation

of the convolution integral by a sum approaching the integral as the sampling interval is

decreased. Then we shall discuss the bandlimited situation, including the implications of

bandlimiting in nonlinear systems, as well as modeling and simulation of these systems.

4. 1 APPROXIMATION OF THE CONVOLUTION INTEGRAL BY A SUM

We consider the approximation of a multidimensional convolution integral by a sum-

mation approaching the convolution integral in the limit of small sampling intervals. In

Fig. 21 a nonlinear system H with input x(t) and output y(t) is shown; we shall assume

that H can be characterized by a single kernel hn(T 1 ' ' ., Tn) and that hn(T, '... Tn) and

x(t) have no impulsive components. We wish to sample the input and the output and find

a sampled-data system that will approximate the continuous system as the sampling inter-

val, T, is decreased.

Consider first the linear case, n = 1. The input-output relation is then given by

y(t) = h (T1) x(t-- 1 ) dT 1. (64)

There are, of course, many ways to approximate this integral by a sum. We shall dis-

cuss a method closely related to and easily modeled by a sampled-data system, and sub-

sequently extend this method of approximation and model to higher degree systems.

We construct an approximation to h(rl) as follows. Partition the abscissa, 1, into

uniform intervals of length T,. with the origin falling at the center of an interval, as shown

in Fig. 22. Construct a stepwise approximation to h 1 (l 1 ), taking as the amplitude of each
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Fig. 22. Approximation of first-degree kernel.

segment the amplitude of hl(T1 ) at the midpoint of the interval. Now consider the step-

wise approximation to be a sequence of pulses of width T and height hl(kT). Replace

each pulse by an impulse of the same area, occurring at the midpoint of the interval.

Then we obtain an approximation

+00

hl(T-1 ) = hl(kT) U(T-kT) . (65)
k=-oo

Substituting (65) in (64) and observing the output y(t) at t = pT o yields

+co

y(PTo) = E hl(kT) x(pTo-kT) T. (66)

k=-oo

As T -0 and To -0, we make the formal replacements

T -dT

kT -T

pT ° -t

and obtain the convolution integral (64). We can represent (66) as shown in Fig. 23 with

n = 1. The amplifier with gain T is necessary in order that the sampled system approach

the continuous system as T is decreased.

For the second-degree case, n = 2, the input-output relation of the continuous system

is

y(t) = h2 (T,T 2 ) x(t - 1 ) x(t-T 2 ) d 1d 2 . (67)

To find an approximating sum for this integral we find an approximation to h2 (T1, T2 ).

Partition both the T1 and the T2 axes as described above in the linear case; forming the

Cartesian product of these partitions yields a uniform partition of the T1 , T2 plane. Form
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y(t)

Fig. 23. Approximation of a continuous system.

a stepwise approximation to h2 (T1 ,T2), taking as the amplitude of each segment the

amplitude hz(klT, k2 T) at the midpoint of each two-dimensional interval. Consider this

approximation to be a two-dimensional sequence of pulses and replace each pulse with

an impulse of the same area occurring at the midpoint to obtain for the two-dimensional

kernel

h 2(T 1,T 2) =

+00 +00

k=- k =-
k2 =-O k =-00

hZ(klT,k 2 T) Uo(Tl-klT) Uo(T2 -k 2T) T 2 .

Substitution of (68) in (67) and observation of the output at t = pT 0 yields

+00 +co

y(pT o)= I E
k2 = -O k I= -C°

h 2 (klT,k 2T) x(pTo-klT) x(pT -k 2 T) T T. (69)

As T -0 and T0 -0, we make the formal identifications
0

T -dT

kl1 T- 1

T dT2

k 2zT 2

pTo -t

to obtain the two-dimensional convolution integral (67). We can represent (69) as shown

in Fig. 23 with n = 2. The amplifier, in this case having gain T 2 , is, as in the linear

case, necessary in order to secure the desired limiting behavior.

For the n th-degree case, the approximation above extends readily to give for

hn(T 1.. ' . Tn)

+oo

hn(T ' ' '' ' Tn) = ''
k =-on

+00

I hn(k 1T,...., knT) Uo(n 1-k T)
kl=-1o

(70)

and hence for the output y(pTo) in the nth-degree case
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+oo +oo

y(pTo ) = ... hn(k1 T,. knT) x(pT 0-k 1T)... knT) xTo-kT) x(pTo-knT) T (71)
k =-o kl=-o

which is represented in block diagram form as a sampled-data system in Fig. 23.

Observing the output at t = pT o , we find that for these summations to have the desired

behavior for small T, it is necessary that the stepwise approximation to the kernel be

sufficiently accurate, and that the replacement of the pulses by impulses does not intro-

duce too great an error. Also, T must be small enough so that we are able to obtain

from the samples y(pT 0 ) a good approximation to y(t).

An alternative development of these results can be obtained by writing (67), or the

corresponding equation for linear or higher degree systems, in the equivalent form

y(t) = 2 h (t-'l,t-T 2) X(T) X(T 2 ) dTldT2 , (72)

which differs from (67) only in a simple change of variables. We may now approximate

x(t) in exactly the manner described above for the linear or first-degree kernel, (65) and

Fig. 22, to obtain

0oo

x(t) = I Tx(t) Uo(t-kT). (73)
k=-oo

Substituting (73) in (72) yields (74). In terms of Fig. 23 this amounts to associating

the sampler with the input rather than with the system. We arrive at the same type of

approximations on the input as described above for the kernel

y(pT) x(k1 T xk 2T) h 2 (PTo-klT,pTo-k2 T) (74)
k=-co k =-To

A change of index in (74) yields (69) again.

From the engineer's point of view, the length of the sampling interval necessary to

achieve an adequate approximation constitutes a compromise between conflicting require-

ments. Shortening the sampling interval requires that more computations be carried out

to obtain each sample of the output, and all of the computations will introduce errors

unavoidably. The choice of the sampling interval is then a compromise between approxi-

mation error and computation error.

4.2 BANDLIMITED SYSTEMS

The concept of bandlimiting is somewhat more complicated in nonlinear than in linear

systems; we shall define bandlimiting in linear systems in such a way that the concepts

involved will carry over to nonlinear systems.
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Ideal y(t)
Bandlimite r

Fig. 24. Nonlinear system with bandlimiting at the input and output.

We say that a linear system is bandlimited if the Fourier transform of the impulse

response of the system has a nonzero magnitude only in a certain band or certain bands

of frequencies; this definition can be interpreted in terms of properties of the system

as observed at the input and the output of the system. Similarly, we may say that a sys-

tem characterized as an nth-degree kernel is bandlimited if the multidimensional Fourier

transform of the kernel of the system has a nonzero magnitude only in a certain region

of the multidimensional domain of definition of the kernel. This definition is adequate,

but it is not quite as easily interpreted as the corresponding definition for linear systems.

To aid in interpretation of bandlimiting in nonlinear systems, we shall adopt another

definition that is equivalent to the one above, both for linear and nonlinear systems, and

which has obvious interpretation in both cases.

In this connection, consider the situation shown in Fig. 24. The nonlinear system H

is cascaded after a linear ideal bandlimiting filter L 1 and before a linear ideal band-

limiting filter L 2. The filters L 1 and L 2 do not necessarily have the same passbands.

We shall denote the transfer functions of these filters L1 ( ) and L 2 (o). We assume that

the nonlinear system H can be characterized by an n -degree kernel hn(T 1..., Tn), and

examine the effect of the ideal filters. If we think of the cascade combination of the fil-

ters L1 and L 2 with H as a new nonlinear system, this new or over-all system will still

be characterized by an nth-degree kernel, which we denote g(T 1 ,... 'Tn). The multi-

dimensional Fourier transform of this kernel is

Gn(l, ,n ) = Ll(o ) ... Ll( n ) Hn(l,.. ,Cwn) L(ol+.+wn), (75)

where Hn(wl,. I , Cn) is the transform of the kernel hn(T l'... , rn).

For convenience, assume n = 2, and we may use the sketches in Fig. 25, in which

we assume that L 1 and L 2 are lowpass, with bandwidths W 1 and W 2 , respectively. The

presence of L 1 then forces G2 ( 1 , co2) to be nonzero only within the region shown in

Fig. 25a, while the presence of L 2 limits G(l1,a) to the region shown in Fig. 25b.

We then define a system as bandlimited from the input if precascading an ideal band-

limiting filter has no effect on the over-all performance, and bandlimited at the output

if postcascading an ideal bandlimiting filter has no effect on the over-all performance.
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(a) Bandlimiter at the input.
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(b) Bandlimiter at the output.

Fig. 25. Effects of cascading lowpass filters with a second-degree system.
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Since linear time-invariant systems commute, a linear system that is bandlimited

at the input is also bandlimited at the output; there is no difference in the two types of

bandlimiting in this case. For nonlinear systems, however, the order of cascading

cannot, in general, be interchanged without a corresponding change in over-all perform-

ance or character of the system, and it is then necessary to make the above-mentioned

distinction between bandlimiting at the input and at the output. Consider again the

second-degree case, with lowpass limiting, for which Fig. 26 applies. In Fig. 26, solid

lines indicate the regions appropriate to input bandlimiting to (-W,W) or to (-2W, 2W);
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Fig. 26. Relation between input and output bandlimiting.

broken lines indicate the regions appropriate to output bandlimiting to (-W, W) or to
(-2W, 2W). The following relationships are clear from the figure: (i) if postcascading

an ideal filter with passband (-W,W) has no effect on over-all performance, then neither

will precascading the same filter, that is, a lowpass filter at the output can be duplicated

at the input without changing the over-all system; (ii) if precascading a filter with pass-
band (-W,W) has no effect on over-all performance, then neither will postcascading a
lowpass filter with passband (-2W, 2W).

These properties clearly generalize to the nth-degree case and to bandpass, as well

as lowpass, filtering. Thus, if a system is characterized by an nth-degree kernel, we
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have the following situations: (i) if the system is bandlimited at the output, then it is

bandlimited at the input also, and with at most the same bandwidth; (ii) if the system is

bandlimited at the input, then it is bandlimited at the output also, but with at most n times

the input bandwidth.

The highest frequency present in the output is at most n times the highest frequency

present in the input, where n is the degree of the system. With reference to Fig. 24,

if L 2 does not affect the output of the system, then H and L 2 commute.

a. Delay-Line Models for Bandlimited Systems

For nonlinear systems that are bandlimited at the input, we may take advantage of

the special properties of systems with sampled inputs which were developed in

x(t)

1

Fig. 27. Bandlimited system with bandlimited input.

Section III. Specifically, we may develop delay-line models for these systems, making

use of the fact that the output for a sampled input depends only on the values of the ker-

nels along certain lines in the domain of the kernels.

Consider the situation shown in Fig. 27. The nonlinear system is of second degree,

that is, it is assumed to be characterized by the kernel h2(T1 , T 2 ) alone, and we assume

that the system is bandlimited at the input to (-W,W). Now we consider the precascading

of an ideal sampler and an ideal lowpass filter with passband (-W, W), as shown, so that

the lowpass filter has no effect on the nonlinear system. For inputs x(t) that are also

bandlimited to (-W, W), the cascade combination of the ideal sampler operating with the

sampling interval T = 1/2W and the lowpass filter with bandwidth W has no net effect.

Thus, under these conditions, it is immaterial whether we present to the system the

continuous input x(t) or the sampled input x (t).

In Section III we found that the output corresponding to the sampled input is given by

+00 +00

y(t)= E I
k2=-o k=-°°

x(k1 T) x(k 2 T) h 2 (t-k 1 T, t-k 2 T),

where x(t) is the input, y(t) the output, h 2 (T1 , T2) the kernel of the system, and T the

sampling interval of the input sampler.

Now let us substitute for the continuous system with the kernel h 2 (T1 ,T 2 ) , which we

assume to be symmetrical, a system with the impulsive kernel
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00

hZ(Tr,T 2) = h2 (T1 ,T1 ) Uo(T 1 -T2 ) + 2I h2(T 1-kT,T 1 ) UO(T- kT-T 2 ),
k= 1

(77)

and present the continuous input x(t) to this new system. In terms of Fig. 27, this is

equivalent to ignoring the filter L 1 and associating the sampler with the system rather

than with the input. The output y(t) is still given by 76).

The kernel of (77) can now be realized by means of the delay-line model of Fig. 28,

in which the linear systems have impulse responses given by

k l (t) = h 2 (t,t)

k 2(t) = Zhz(t-T,t)

(78)

kN(t) = 2h2 (t-(N-1)T, t),

k1(t k2 (t) k3(t)i i [

k t)

y(t)

Fig. 28. Delay-line model for second-degree bandlimited system.
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and we assume that h2 (T1 ,T 2) is zero outside the region shown in Fig. 29.

Note that we have assumed that the kernel is exactly bandlimited and essentially time-

limited to the region of Fig. 29. It is impossible for the kernel to be both exactly time-

limited and exactly bandlimited. We may also apply the results above to kernels that are

essentially bandlimited to the prescribed band and which are time-limited. Practically,

we shall be forced to deal with kernels that are both essentially bandlimited to the

prescribed band and essentially time-limited to the prescribed region of the T1 , T2 plane,

in that almost all of the energy of the kernel lies within these regions.

Hence for a second-degree system that is essentially bandlimited at the input and

time-limited to the region shown in Fig. 29, we have for essentially bandlimited inputs

the realization of Fig. 28.

Delay-line models for higher-degree bandlimited systems can be developed similarly

to this model for second-degree systems. The complexity increases very rapidly with

T2

(N-1)T

2T

T

h2 ( T1 ,T2 ) = 0

x T1
(N-1)T

Fig. 29. Domain of the kernel of
second-degree system.

the delay-line model for a bandlimited
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the degree of the system, however. For a given number of taps on the delay line, say

N, the second-degree model requires N linear systems. The third-degree system, as

can be seen from Eq. 59, would require that we form the product of the input with the

square of the signal at each of the taps of the delay line, the product of the square of the

input with each of the tap signals, and the product of the input with the input delayed by

k units with the input delayed by j units for k = 1, ... , N - 1 and j = k, ... , N; thus the

number of linear systems needed in this case is 2(N-1) + Z N1 (N-i) or, on simplification,i= 1
1/2(N+2)(N-1). Thus the complexity grows roughly exponentially with the degree of the

system for a given number of taps on the delay line.

b. Digital Simulation of Bandlimited Systems

In order to simulate a system on a digital computer, we must sample both the input

and the output time functions. If the input is bandlimited and if the system is bandlimited

at the input and output, then the situation shown in Fig. 30 is appropriate. We assume

that H is bandlimited at the imput to (-Wi, Wi) and at the output to (-Wo,Wo), and the
input x(t) is also bandlimited to (-Wi, Wi). The output y(t) is then bandlimited to (-Wo,Wo).

We note from the discussion above that the output has a bandwidth of at most WO = nWi,
where n is assumed to be the degree of the system.

Now, since we assume that H is bandlimited at the input and output, we may omit

L 1 and L20 in Fig. 30 without changing anything. We then simulate H by operating on

x*(t) to obtain y (t), and passing y (t) through L2s to reconstruct the continuous output

y(t). The computation that must be performed is

y(pT ) = ... x(kTi) ... X (knTi ) hn(PTo-klTi.-, pTo-knTi) 179i
k =-oo kl= - o00

for discrete simulation of the bandlimited nth-degree system. To the extent that the

bandlimiting is ideal, this model performs the same operation as the continuous system.

In the computation there will be an unavoidable error, because of quantization and

roundoff.
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V. TRANSFORM ANALYSIS OF NONLINEAR SAMPLED-DATA SYSTEMS

In Sections III and IV we discussed sampling in nonlinear systems and the simulation

of continuous systems by sampled-data systems. The input-output relations for sampled-

data systems have been developed; they are multidimensional convolution sums, which

can be tedious to evaluate and give little insight into system properties. We shall now

discuss a multidimensional z-transform and modified z-transform that will facilitate

the study of nonlinear sampled-data systems.

The use of the multidimensional z-transform in the analysis of discrete nonlinear

systems has been examined briefly by Alper.2 3

5. 1 MULTIDIMENSIONAL Z-TRANSFORMS

Definition of the z-transform and Inverse z-transform. The multidimensional

z-transform of a function f(T 1 ... , Tn) may be defined as

00 oo -- k
F(zl··zn)~ C · · · C -k 1 . .. (
F(zl,...Zn) = .. f (klT,... ,knT) z1 z n (80)

kn=-o kl=-o

We note that the z-transform of a function depends only on the values of the function at

uniformly spaced sample points and not on the entire function.

We assume that f(vl,. .. , n) has no impulsive components. If the summation of (80)

converges at all, it will converge within some region defined by ai - I zi I < i, i = , .. n.

A sufficient but not a necessary condition on f( 1,.. . T,n) such that its z-transform exist

is that f(l,. .. , - n) be absolutely integrable; in this case, the region of convergence will

contain the multidimensional surface defined by the Cartesian product rlxr 2 x ... xrn,

where r i is the unit circle in the zi-plane. If a function f(T 1 ,. .. Tn) has a Laplace

transform, then it will also have a z-transform.

The value of the function at the sample points, f(klT,.. ,knT), may be obtained from

the transform in a number of ways. A closed-form expression for the sample values in

terms of the transform is given by the multidimensional inversion integral:

-be obtained as the coefficients in the series expansion of Fz1 -1
be obtained as the coefficients in the series expansion of F(zl,' Zn) in Z1 ''' Zn
about the origin in the z ... , zn-space. If F(zl,... zn) is expressed as a ratio of

polynomials in zl ,..,Zn, these coefficients may be found by division of the numerator

polynomial by the denominator. Examples of the computation of the direct and inverse
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transforms are given below. A partial difference equation can also be found which gives

a recursive method of computing the sample values from the transform; this method will

be discussed in Section 6. 2.

Properties of the Z-transform. The multidimensional z-transform has some properties

which make it useful in the analysis of nonlinear sampled-data systems. We list some
of these properties here; proofs are given in Appendix A.

If f(Tl, ... Tn) F(zl,... Zn), then

-b 1 -b
f(Tl-blT,... Tn-bnT) z ... zn F(Z l... Zn)(5. a. 1)

where b,..., bn are integers.

-a 1 -a T a T aT
e ...e nnf() '' 1F e zl,..., e zn)

i f( 1 ' . n). T - T Z iz. F(Z .. ... Zn) , i = 1, ... n.

If in addition g(T l, ... Tn) .- , G(z 1 . .. Zn)' then the transform

(5. a. 4) H(z 1 ... , n ) = F(zl,... z n ) G(zl,. . . zn )

corresponds to a function h(T1, ... n ) with sample values given by

oo

h(p 1 T,... PnT) = 

k =-oon

f(klT,..., knT) g(plT-kl T ,..., PnT-knT)

which is a multidimensional convolution expression.

Example 4

Let

f(T 1, T2) =

1
0

0 < T1 <4
if <

0 < T <42
(82)

otherwise

Then, taking T = 1, we have
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-k 1 -k 2
f(klk 2) z1 Z2F(z,, z2) k = o

k2=-o k = -0°

3 3

k2 =0 k=0

-4
1 - 1

1 - 1

-kl -k 2

z 1 Z2

-4
1 -z

2
-1

1 - Z2

3

k =02

-k 2

z 2

-kl
1I

kl=0

-4 -4 -4 -4
1 2 +1Z Z21 - 1 - + z- 1 z-12-1 -1 -1 -1'

1-z 1 - z 2 + z 1 2

Dividing the numerator by the denominator, we find the finite series with which we began:

) -1 -1 -1 -1 -2
F(z, z2 ) = 1 + z1 + z2 + 1 z2 + Z1 +

-2 -1 -2 -2 -1
2 + Z1 2 + 1 z2

-3 -3 -1 -3 -3-1 -2-2 -2-3+ + Z2 + z1 z 2 + z1 z + z 2 + z-2 z-3

-3 -2 -3 -3
+ z 1 2 z 1 2 

The coefficients of this expansion give the sample values of f(T i, T2).

Example 5

Let

f(T 1 ,T2 ) =

e-Tle 2(1 e-2T )

I
T1 > 0, T2 > 0

r1 <0 Or T2 < 0

where T =min(T 1 , T2)-

f1( 1, 'r) =

(1

l.

Consider first the function

T1 0, T2 > 0

T1 < 0 or T2 <0

Then we have for the z-transform, with sampling interval T,
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F 1 (Z1 ' 2 ) =

00oo

k2 =0

oo

(1
k1=0

-2k T )
-e

-kl -k 2

z1 z 2
k' = min(kl,k 2 )

( 1 - e )k T ( z 1 2 ) +(I-e ~ 1 
-2k 2 T

( -e 2

k 1 k2k 1>k 2 :~:

+ 0 (I
0k 1<k2

-2klT -kl -k2
-e ) Z1 Z2 z

In the second summation, make the change of index k = k 2 + k ; then this sum becomes

( -e2k 2 T )(1-e ) -(k +k') -k 2
Z 1 z2

k'=l1

k I _
koz

k2=0

(1
-ek 2 T -k2-e ) (z1z2)

The last sum, on 0 ~ kl <k 2, can be treated similarly. We then have

F 1 (Z1 ,z 2 ) = 
k=0

or, evaluating these sums,

F 1 (Z 1 z 2 ) =

( - e kT)(i 2 ) k 1 +

1
-1 -1

- Z1 2

k= 

oo

1 
k=l

1 11 _ 1
-2T -1 -1 -1

1-e z 1 z2 L -z

(1 -2T'Tzll1) ( - z-1)(1
1 2 1l-

-2T -1 -1
(1-e 2 T ) z2 11 

(90)

-1

after some simplification. Now using property (5. a. 2) for the transform of f(T1 , T2 ) we

have

-4T -6T -1 -1
(e -e ) Z1 2

(1 -- 6 Tz-1 z-1) ( -e-Tz-1)( -e-3Tz-1)

We may make use of the inversion integral for the z-transform to obtain from F(z, zZ2 )
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oo

k=O

-k 1 -k 2

Z1 z2

k=00 k2=01 2

(87)

(88)

-k
z2 2] (89)

+ 1
1 - z 2

F(z 1, 2) = (91)
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the value of any of the samples of f(T 1 ,T2). Choosing f(T,T), we have

(e- 4 T - 6T

1 (T2 P6T(e -e ) 12STf(T) T) = 2 ) (3)dz dzJ (z 2 e-6) z -e ( 2 T)(z 2 e 3T ) (z 2 (z 23T

-4T -6T 1 i2 e 5T dz,

-4T -6T 1 ( dz 2 -4T -6T
(e -e 1 --m = ) (e -e ), (92)

(z 2 - e- 3 T)

where we have evaluated first the integral on zl, then the integral on z 2, using the

Cauchy residue theorem, with r the unit circle in each of the integrations.

5.2 MODIFIED Z-TRANSFORMS

The z-transform of a function depends only on the values of the function at uniformly

spaced sample points. Often we would like to focus attention on the sample points, but

are nevertheless interested in the remainder of the function; in such cases the modified

z-transform is useful. The multidimensional modified z-transform of a function

f(T 1,. .. Tn) may be defined as

00 oo

Fm (z1 ml;... ;Zn,mn) = ... f[klT-(l-ml)T,... knT-(-mn)T] z 1 Z . zn , n

k = -oxo- - k 1 = - °
kn 1=-

(93)

where 0 mi < 1, i = 1, ... , n. Choosing a value for each of the m i amounts to shifting

the function along each of the axes in its domain of definition before taking the

z-transform. Existence of the transform, that is, convergence of (82), is insured under

the same conditions as given above for the ordinary z-transform.

The modified z-transform may be inverted to regain the function f(T 1, ... Tn) by

means of the multidimensional inversion integral

f[(kl-l+ml) T,... , (k-l+mn) T] =

''' kl-1 k n-1
n1j) 6 Zl ' z n Fm(Zml;'''1; ;Zn'mn) d z l ''' dzn ', (94)

n n

where F. is an appropriate contour in the z-plane. As for the inverse z-transform (81),
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r. i can be taken as the unit circle in the zi-plane for most of the functions considered

here. Note that ml, ... , mn are treated as parameters in the inversion integral. If

the modified z-transform Fm(zl , ml; .. ; Zn mn) is expanded in a series in z I,... zn
about the origin, the coefficients of the expansion will be functions of ml, ... , imn,
O ~ m i < 1, i = 1, ... , n, and will give the function f(T 1 , .. . ,Tn) in the corresponding

multidimensional sampling interval in the (1,. .. Tn)-space. Examples of the compu-

tation of the direct and inverse modified z-transform will be given below.

Properties of the Modified z-transform. Some useful properties of the modified

z-transform are listed below; proofs are given in Appendix B.

If f(T 1, ... , Tn) Fm(Zl ml; '; Zn' n), then

-b 1 -b
(5. b. 1) f(Tl-blT ... , n-bnT) Z Z1 zn Fm(Zl,ml;. .;Zn, mn),

where b, ... , bn are integers. For shifts not equal to an integral num-

ber of sampling intervals, we have

-1 -1
Z1 ... Zn Fm(zlml+l-Al;. ;z n , Zn m n+ l - An)

O < . i = 1,. n

f(T l-A;1T.'.' T;An n
Fm(Zl, ml-1 ; .1 · ; Zn , mn-An )

Ai m i< i=l,...,n

-alT -a T
(5. b. 2) e 1 e n frl, ... ) 

-alT(ml-1) -aT(mn-l) a1 T a T
e ... e F(e zm ;...;e nn)

(5. b. 3) Tif(T .... Tn) -- , T[(mi-l ) Fm(Zl , ml; . ; Zn' mn)

a
- Zi a F (Z' m ; . ; Zni m n) ] i = ,...n

If in addition f(T 1 ,... ,Tn) n-. F(z,... zn), then

(5. b. 4) F(z 1 ,... zn) =l .... ZnFm(Z. ,m;...; n' n) 
1 n
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For continuous f(T 1, ... Tn), we have also

F(zl,... z n ) = Fm(zlml;.. ; Zn'm n)l
I=. .. =mn=1

Example 6

Let

f(T1,TZ) =

I

-T1 -3T 2(
e e

0

T1 > 0, T2 >- 

T1 < O or T2 < 0

where T =min(T 1,T2), as in Example 5.

f1(T 1, T) =

(1-

0

Again consider first the function

T1 > 0, T2> 0

T1 < or T2 < 

Then we have

Flm(Zilml;zz m
2 ) =

00 00

k2=0 kl=O0

1 - e - 2 T (k* +m * - 1))

where k* =min (kl, k 2 ), and m =min (ml, m2).

-k 1 -k 2

z1 Z2

By making use of the same techniques

as in Example 4 (see Appendix B), this sum can be written

Flm(Zm' 1;z 2,m 2) =

-2T(m*-1)1 - e -1 -1 (-1 -2T
1 Z2

(1 - 2Tz 1 z )(1 -z-)( z-l)
Z1 2 1 2--

Then use of property (5. b. 2) for modified z-transforms gives the desired transform:

F (z "M ;z M ) = -T(m-1) -3T(m 2 - 1)
Fm(Zm 1; z 2,m 2 ) = e e

-T -l) (-e zI)( -e

(99)
-3T -1)

t 2
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(96)

(97)

- e-2T(m -1

(98)
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In order to obtain the inverse, consider first the denominator of the term in brackets;
-1 -1

we may write this as a polynomial in z 1 and z2 :

-T -1 -3T -1 -4T -6T -1 -+ e-9T-1 + e-7Tz -2 -1
l-e Z e zZ +(e -e ) z 2 e 1 2 +e 1 2

-10T -2 -2
-e z1 z z . (100)

Dividing this into unity provides an expansion, which after juggling with the operations

indicated in the numerator of the bracketed term in the transform and combining, gives

the series expansion of the modified z-transform Fm(zl, ml;...; Zn n,). The first few

terms of this expansion are

-T(m -1) -3T(m 2 -1) 2T(m*-1) -T 2Tm*+T -1
FI11 Zl'li l·iznm n = e e (1-e )(e -e )z1

+ (e-3T -e2Tm*T ) Z; 1 + (e-2T -2Tm*) -2

+ (e -6Te 2Tm*-4T)Z-2 (e - 4 T -2Tm*4T -1 -1
2 12

+ ,,.]

(101)

The coefficients of each term in this expansion display the function f(T 1, T2) as a

function of ml, m 2 in the two-dimensional sampling interval corresponding to that term.

5.3 SOME PROPERTIES OF THE TRANSFORMS OF CAUSAL FUNCTIONS

The multidimensional z-transform and the modified z-transform of functions

f(T1',.. Tn) which are "causal," that is, which are zero when any of the arguments

1, ... Tn are negative, have some special properties. We list some of these below;

proofs are given in Appendix C.

Initial and Final Value. If f(Tl,... Tn) F(Z . . Zn)' and f( 1,.. , Tn) = 0 for any

of the Ti less than zero, then
1

(5. c. 1)

(5. c. 2)

lim f(T1,... ,Tn) --- lim F(zl. Izn)I i= 1,...n.
Ti-0 Zi-o0

lim f(T1, .... Tn ) - lim (zi-l) F(zl,... zzn ), i= ,...n.
Ti-oo Zi-1
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Relation to Laplace Transforms. The z-transform F(zl,...,zn) or modified

z-transform Fm(zl,ml;...; n, mn) of a causal function f(T1, .... Tn) can be found

directly from the Laplace transform FL(l,. .. s n ) of the function by means of the fol-

lowing integrals. A justification of the integrals is given in Appendix C; an example of

their use is given below.

F(z 1 , . .. zn) |

z.=e

i=l.. .. ,n

1 an -J l-ij FL(V l''.Vn)dVl. . dvn

_( )n I ,, I_--
2rj anjoo , (1 -T(Sl-V1) (1e -T(Sn- n )

(!-e. ).,..(1-e f )

(102)

Fm(Zl'ml;' ;n'n si

z.=e

i=l2,... ,n

-1 -1 1 n
Z1 n 2wj

an,-j a1 -jo- FL(Vl.... ,Vn)e 11

IJ ... ... 
an-j= al jo (1e -T(s 1-1 )(1-e ).. (1

n n
e

-T(s n- )
-e )

dv dv

(103)

For most functions considered here we may take 1l = . .. ' =n = 0. Special care must

be exercised in the use of these expressions for a function f(Tl,... ., Tn) which is not con-

tinuous; at jump discontinuities of f(T 1 ,... ,T n) these expressions assume that

f(T1,. . . ,n) is defined to be the average value at the discontinuity.

Example 7

Let f(T 1 , T2 ) be the function whose Laplace transform is

2FL(S1 , s 2 ) =

(sl+1)(sz+3)(s +s2+6)

(104)

We may find the z-transform of f(Tl,T 2 ), with a sampling interval T, directly from

(104) as follows.
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zl=e
s2T

z2 =e

1 jI

-1 J ( 2 +3)(1-e
2wj -j- (V2+3)(1-e

-T -s1 T1 e e

2irj -T -'SlT
l-e e

jic

_jo

Go 2dvldv2

-(S 1 V1)T -(S 2-2)T
(Vl+1)(v2 +3)(v1 +V2 +6)(l-e )(-e 2 )

2dv 2

2 )(v 2 +5) 
)(2+*5)L !-e

r 1 1

1 -e

5Te 2T2(1-e e )dv2

-(s2-v2 )T -(Sl+V2+6) T

(v 2+3)(1-e )(v 2 +5)(1-e

-T 's1T
e e 1

-T 1-s T -6T siT -s2T
1-e e e e e

where

G(s 2 ) =

G(s 2 +j 2rk)
(105)-

k
~

-i

-5T eS 2 T
(1-e se 2

(s 2 +3)(s 2 +5) (106)

and we have evaluated first the integral with respect to vl, then the integral with respect

to v2 , using the Residue Theorem and closing the contour of integration in the left-plane

for v1 and the right half-plane for v 2. We recognize the summation as the Laplace trans-

form of the sampled version of the function whose Laplace transform is G(s). That is,

if g(t) - G(s) and g*(t) is the sampled version of g(t)

00

g*(t) = ~ g(kT)uo(t-kT),

k= -oo

(107)

then G (s) is given by the summation in the expression above for F(zl, z 2 ). Evaluation
sT

of this sum at e = 2 will then yield the z-transform of g(t). This z-transform is

readily obtained from a partial fraction expansion of G(s) or use of (104) for n = 1 as
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-1 -3T -5Tz 2 (e e

(1 -3 T -1)

and hence we have the desired z-transform

F(z1 , z 2 ) =

(108)

(e-4 T - 6 T -1 zz-1
(e -e ) Z1 2

(1 - eTz 1 1)(1 -e 3 Tz-1 )(1 -e- 6 Tzz1 -1)
1 - 2 1 2Z

(109)

5.4 APPLICATION TO NONLINEAR SYSTEMS

A nonlinear system with sampled input and output is shown in Fig 31. The sampling

interval at the input is T i and that at the output is To . The input is x(t) and the sampled

x(t) x*(t)

T.
I

y(t) rI
T
O

Fig. 31. Nonlinear system with sampled input and output.

input is x (t); the output is y(t) and the sampled output is y (t). The system is charac-

terized by the kernel hn(T1, .. , .n), which we assume contains no impulsive components.

This situation was discussed in Section III, where the input-output relation was given as

o00

y(pT) =

k =-oo
n

00

kl=-oo

X(klT) ... x(knT) hn(pT-klT,...,pT-knT)

and we assume, initially, that T i = To = T.

Input-Output Computation. Although (110) is not quite a multidimensional convolution

sum of the form given in property (5. a. 4), we may make use of an artifice suggested by

George25 for continuous systems, introducing the auxiliary function

00

k =-o0o
n

X(k 1T) ... x(knT) hn(p1 T-klT,... PnT-knT)

00

kl=-o

(111)

from which the sample values can be found:
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Y(n) (P 1 T,..., pnT)
I ** P 

= y(pT) (112)

Using property (5. a. 4), we find that the transform of the auxiliary function is given by

Y(n)(Z1,..., Zn ) = Hn(Z1 ..., zn) x (z) .. X(zn), (113)

where Hn(Z 1 . . . Zn) is the multidimensional z-transform of the kernel, and X(z) is the
one-dimensional z-transform of the input.

If we do not sample the output, we have in place of (111)

00

co

00

Y(n) (tl * * .tn) =

k =-oo
n

x(k1 T) ... (knT) h (tl-kT,.. , tn-knT).I n n Il' n n (114)

Taking the modified z-transform then gives

Y(n)m(Z ,m1... ; Zn' m n) = Hnm(Z, mi;...; Zn' m n ) X(z 1 ) ... X(zn). (115)

Association of Variables. As shown in Appendix D, the one-dimensional z-transform
of the output, Y(z), can be found from Y(n) (I,... Zn) by use of the following integral.

Y(z)= (j)n 6r
n-1

1 Y ( w2 
... Y (wn 1 w 1 n ......) ( 

F 1 2 ... n-1 (wn-l I..( n-l'6)

(116)

For continuous outputs, the corresponding expression in terms of the modified
z-transform is

Ym(Z, m): () T
n-1

r (WlW2 . *. Wnl ) Y(n)m. 1 w .1 ..... .wz
1 1 n-

* dwl . . dwn _1. (117)

This procedure is analogous to the association of variables given by George for the
continuous case, and, as in the continuous case, can be carried out as an inspection
technique for simple functions. The basis of the inspection technique is the replacement

A(ZlZ2 ) - A(z)

(1-eaTZ1) (1-e zbTzl) 1 e- z
l~~~~~~1 e(~' -

(118)

which is derived in the Appendix D. An example of the use of this technique is
given below.
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Different Sampling Rates at the Input and Output. If the output sampling interval is not

equal to the input sampling interval, Eq. 110 becomes

o

y(pT ) = 
k =-on

00

kl=-oo
1

x(klTi) ... X(knT i ) hn(pTo-klTi, .
.,PToknTi). (119)

Let T i = rTo, where r is a positive integer. Then we have
1 ro hr sapstv nee.Te ehv

00

y(pT0 )= =

k =-oo

oo

kl=-oo
x(klrT o) ... (knrTo) hn(pTo-klrT o.. ., pTO-knrTO).

Forming the auxiliary function y(n)(PlTo,... ,PnTo) and then the z-transform

Y(n) (Z' ... Zn), we have

Y(n)(Z1 ... Zn) = Hn(Z1 ,p *Z ) X(z) ... X(l r). (121)

Interconnections of Systems. We consider here the interconnection of nonlinear

sampled-data systems H and K when we assume that the systems are characterized by

the Volterra kernels hn(Tr ... ,Tn), n = 0, 1,...,Nh, and kn(T1 .* * Tn), n = 0, 1,... ,Nk

before the input and the output are sampled. We will denote the interconnection of H

(a)

t I - I r
T T

III

H

T

E (b)

Fig. 32. Sum of sampled-data systems.
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T

T

III

T

(b)

Fig. 33. Product of sampled-data systems.

x___T - .K - HOLD H 

(a)

III

T - } T IT
(b)

14(

T T
(C)

Fig. 34. Cascade combination of sampled-data systems.
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and K by G, with the Volterra kernels g(Vl, . .. ,), n = O, 1, ... ,Ng, before the input

and output are sampled.

Consider first the addition of H and K, as shown in Fig. 32. It is clear that the

systems of Fig. 32a and 32b are equivalent. For G = H + K, then, we have

gn(P 1T,.. . PnT) = hn(PlT ,. .. PnT) = kn(PlT,... ,pT) (122)

Gn(Z1 *... Zn) = Hn(Z1 ** , Zn) + Kn(Z 1.. , Zn) (123)

for n = O,1,..., Ng and g = max (Nh, Nk).

For the product of H and K, the situation is as shown in Fig. 33. The hold circuits

are needed in Fig. 33a, since the multiplier is a nonlinear no-memory device as dis-

cussed in Section III. The systems of Fig. 33a and 33b are clearly equivalent. For G =

H' K, then, we have

gn(p 1
T ... PnT) = hr(PI1T* .PrlT) kq(P+ T,... prT) (124)

Gn(Z1 ... Zn ) = Hr(Z ... zr) Kq(zr+l .. zn), (125)

where the sum in both (124) and (125) is taken over all pairs of integers r{O, 1,... ,Nh}

and q{0O, ,... Nk}, and both expressions hold for n = 0, 1,... ,Ng with Ng = NhNk.

The cascade combination of H following K is shown in Fig. 34. It is clear that the

systems of Fig. 34a and Fig. 34b are equivalent, while that of Fig. 34c is not equiva-

lent to the others. Following the procedure used by Brilliant 2 6 for the continuous case,

we have for the systems of Fig. 34a and 34b

Nh oo o

gn (PIT, * pnT) = C ... hi(rlT,...,riT) 11 k . ,p)T-rjT . .
i=0 ri= -o o 1 J1 1

(126)

The numbers mj are formed by taking all permutations of i non-negative integers which

sum to n. The order of the subscripts on the p() in the brackets is not important. The

second summation, for which no index is shown, is taken over all permutations of i num-

bers mj whose sum is n. The corresponding kernel transforms are given by

Nh
~h~~~ ~i

Gn(Z 1,...z H(- s n) JI Km (*Hi(* z... I (127)
where is the product of arguments of K As in (126), the second summation is over=1

where 0-j is the product of arguments of K . As in (126), the second summation is over
j m.~~~~~~~~~
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T I J T

T T~-

Fig. 35. Sampled-data feedback system.

Table 2. Kernel transforms for the feedback structure of Fig. 35.

H1(Z 1 )

G1(Z 1 ) =
1-H1(z1 )

G2 (Z1'z2 )

G3 ( ZlZ 2 Z3 )
1-H1( Z1 Z2 Z3 )

H3 (Zl1 Z2z3) + 2

H2(z1 Z1lz2 )H2(z2 ,z3)

1-H1(Z2z3 )

all permutations of i numbers mj whose sum is n, and the order of the z() is not

important.

For the values n = 0, 1, and 2, assuming ho = ko = , we have from (127)

G =0

G l (z1 ) = H1 (z1 ) K(zl) (128)

G2 (z 1 , z 2 ) = H 1 (Z1 Z2) K 2 (z 1 , z 2) + H2 (z 1 , z2 ) K1 (Z1 ) K 1 (Z2).
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The same relations given in Section II for a continuous nonlinear system in the feed-

back configuration of Fig. 12 hold for the sampled-data feedback system of Fig. 35,

except that terms involving sums of s i now involve products of z.. Table 2 gives the

z-transforms of the first few kernels of the sampled-data feedback system G in Fig. 35

in terms of the kernel transforms of the open-loop system H. We emphasize that, as

in Section II, these relations are formal; they assume that the feedback structure may

be represented by a Volterra functional series.

Example 8

Consider the system of Fig. 36. The input and the output are sampled with the

sampling interval T; x(t), x (t), y(t), and y (t) are the input, sampled input, output, and

x(t) y*(t)

Fig. 36. Nonlinear sampled-data system of Example 8.

sampled output, respectively. The linear systems N 1 , N 2 , and N 3 have the system

functions shown.

The z-transform of the kernel of this system was computed in Example 5 by using the

definition of the z-transform, and again in Example 7 by using the frequency-domain

technique of (102). It is given by

H2 (Z1 Z2 ) =

-4T -6T -1 -1
(e -e ) Z1 2

(1 -ez1 )(1 -3T-1 )(1 -6Tzl -1 )
(129)

If x(t) = e Ul(t), then we have for the auxiliary output y( 2 )(tl,t2 ), according to Eq. 114
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Y(2 )(Z1 ,Z2 ) = H2(ZlZ2)X(Zl1)X(z 2 )

(e-4T -6T -1 -1
e -e )zll1 z 2

-6T -1 -1 T - -3T -1 -2T -1 -2T -1
(1-e Z1 z2 )(1-e z )(1-e z )(1-e z )(1-e z )

-4T -6T)(e -e )

-T -2T -3T -2T(e -e )(e -e )

-Te

1-T -11e Z1

-1 -1
z1 Z2

(1-e 6T z-1 -1
(-e 1 2 )

[
-3T

e

-3T -1l-e 2

-2T
e

-2T -11-e z2

(130)

Then multiplying out the terms in brackets and using the inspection technique for the

association of variables we have

-4T -6i
(e )-e

-T -2T -3T
(e -e )(e

-1
I z

-2T -6T -1
-e ) l-e z

-4T
e

I e-4T -1

-5Te
-5T -1

1-e z

e-3T

-3T -1 
1-e z

-4T 
e
-4T -1l-e z _

from which the sample values of y(t), y(kT), can be easily computed.
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VI. SYNTHESIS OF SAMPLED-DATA SYSTEMS

We shall now consider methods of synthesis for sampled-data systems. As in Sec-

tion II, we consider nonlinear systems that can be represented by a single term from

a Volterra functional series, and hence are characterized by a single Volterra kernel,

hn(T1 .. '' n). We assume that the sample values of the kernel, hn(klT, . .. , kT), and

the corresponding z-transform, Hn(zl,. , Zn), are given. The basic building block

for the synthesis of sampled-data systems is the digital computer; we consider methods

of computing the output sample values y(pT) from the input sample values x(kT). We are

concerned only with computation algorithms, and ignore both quantization and round-off

error.

First, we consider direct computation of the convolution sum, then we discuss

computation of the sample values of the auxiliary output function y(p 1 T, . . pnT)

through the associated partial difference equation, and finally we describe the

decomposition of an nth-degree system into a combination of linear sampled-data

systems.

6. 1 DIRECT COMPUTATION OF THE CONVOLUTION SUM

For an n th-degree system with sampled input and output, the input-output relation

was found in Section III to be

00 co

y(pT) = E ... 7 x(klTi) ... x(knTi) hn(pTo-klTi,... ,pTo-knTi). (132)

k = -o k 1 = -o

If we assume that the kernel is realizable or causal and that the input is applied at t = 0,

( 132) become s

a a

y(pT0 ) = I ... E X(klTi) ... X(knTi) hn(PTo-kTi,.. . , PTo-knTi), (133)

kn=O kl=O

where a = [(To/Ti] is the greatest integer function in P(To/Ti) There are an terms in

this sum; evaluation of the sum requires the computation and addition of each of these

terms. This is a formidable task indeed if p is very large.

If we assume that the kernel is symmetrical and that only a finite number of the

samples of the kernel are nonzero, that is, that the system has a finite memory, com-

putation of the sum in (133) is simplified. But the amount of computation required will

even then be prohibitive except in simple cases. Direct computation from the convolu-

tion sum, except in simple cases, is a severe problem even for linear systems; in the

nonlinear case, the computational difficulty grows roughly exponentially with the degree

of the system.

59

_�--111·111 -�--·1 --I - _ -I __ 1_ ·-·l��--�·�·-LI^^^-.-1__111-·111-^1^---^ IIC·llllll-Ill^l_



6. 2 COMPUTATION FROM THE ASSOCIATED PARTIAL DIFFERENCE EQUATION

The input-output relation for the transforms of the input and output functions was

found in Section V to be

Y (n)(Z ... zn )= Hn(Z ,.. n ) X(z 1 ) ... X(zn), (134)

where Y(n)(zl ... Zn) is the z-transform of the auxiliary output function

Y(n)(Pl1 T ... PnT), Hn(zl, ... Zn) is the z-transform of the kernel hn(klT,... knT),
and X(z) is the z-transform of the input x(kT), and we assume that the input and output

sampling intervals are equal and equal to T.
-1 -1If Hn(zl , -* · Zn) can be expressed as a ratio of polynomials in z, ,..., zn

P(z 1 ... , Zn)

Hn(zl .... Zn ) = , (135)
Q z 1(z ... n

where P( ) and Q(.) are polynomials, then we may write

Q(z 1 ', 'n) Y(n)(Zl ** '' Zn) = P(z -1n) X(z 1 ) ... X(zn) (136)

-b.
Recognizing from property 5. a. 1 that z i 1 can be interpreted as a delay operator, we

may take the inverse z-transform of both sides of (136) to find a linear partial differ-

ence equation with constant coefficients, which relates the auxiliary function

(n)(P T,... pnT) to the input x(kT). This partial difference equation provides a recur-
sive computation algorithm for the auxiliary output function and hence for the output

y(pT). We illustrate this method with the following example.

Example 9

Let

-4T - 6T -1 -1
(e -e ) z1 z2

H 2 (z 1 , z 2 ) = 2 (137)

(1 -6Tz- l z-1 ) (- e-Tz1 ) (1-e -3T z21 )

Then we have

[-eT Z-1 -3Tz -1 +-4T -6T )z-1lz+e- 7T -2 -+e -9T - -2 -e10T z-2- [le-T z1 -e z2 +(e -e )z1 z2 +e z z +e z z -e z ziYlzz)

=(e- 4 T -6T -1 -1
(e 4T-e ) zl 12 X(z 1 ) X(z 2 ) (138)

and hence
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y(p 1 T, p2 T) = e-Ty[(pl-)T, T] + e 3 Ty[pT, (p2-1)T] - (e- 4 Te - 6 T ) y[(pl-1)T, (p 2 -1)T]

e-7Ty[(p 1 -2)T, (p 2 -1)T]- e 9Ty[(pl-1)T, (p 2-2)T]

+ elTy[(pl-2)T, (p-Z)T] + (e 4 T-e P-T) x[(pl-1)T] x[(p2 -l)T],

in which we have dropped the subscript on y(plT, P 2 T) for convenience.

If we assume that x(O) = 1, and that all other input samples are zero, then (139) is a

recursive relation for the computation of the inverse z-transform of Hz(z 1 , Z2 ), and thus

we have arrived at another method of inversion for z-transforms, in addition to those

given in Section V. For arbitrary x(kT), in fact even for random x(kT), since over any

observation interval of arbitrary but finite length we could conceptually find the corre-

sponding z-transform, we have a recursive computation algorithm for finding the out-

put samples for a given sequence of input samples.

The major drawback of this method is that we must actually compute more than just

the output samples of interest; we must compute the samples of the entire auxiliary

function. Thus in Example 9, we must compute 2p samples, which are not of interest

as far as the output y(pT) is concerned, in order to compute the pth output sample from

the (p- 1) t h output sample.

This is in contrast to the situation for the linear case, in which the corresponding

recursive relation is an ordinary difference equation, and all output samples that must

be computed are actual output samples. In the nonlinear case, we must compute at each

step the value of samples that are not of interest in order to get to the next sample of

intere st.

6.3 DECOMPOSITION INTO LINEAR SAMPLED-DATA SYSTEMS

In Section II we developed a procedure for determining whether or not an nth-degree

kernel can be realized exactly by using a finite number of linear systems and multipliers.

By using the same trees and the rules for the interconnection of sampled-data systems

which were given in Section V in place of the corresponding rules for the interconnection

of continuous systems, we can determine from the kernel transform Hn(Z1i .. I Zn)

whether or not an nth-degree sampled-data system can be decomposed into an intercon-

nection of linear sampled-data systems. When such a decomposition is possible, we

may form a computation algorithm for each of the component linear systems considered

separately, and thus achieve a composite algorithm for the computation of the output

samples of the nonlinear system from the input samples.

Example 10

Consider again the kernel transform of Example 9. We can write
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H 2 (z 1 ,z 2 ) = (e -e 6 T )

-4 T
Hg(Z1, z2) = (e

-1 -1
ZI z2 1

-T -1 -3T -1 -6T -11 - e-Tz 1 l-e z 1 - e (z 1 z2

-e 6T)
-e ) Ka(Zl) Kb(ZZ) Kc(Z1 Z2 ),

where Ka(z), Kb(z), and Kc(z) are the systems functions of linear sampled-data systems.

The equations

u[pT] = e-Tu[(p-1)T] + x[(p-1)T]

v[pT] = e 3Tv[(p-1)T] + x[(p-1)T]

r(pT) = u(pT) v(pT)

y[pT] = e- 6 Ty[(p-1)T] + e -4 T -e 6 T ) r[pT]

(142)

then form a computation algorithm for computation of the output samples y(pT) from the

input samples x(kT).

Example 11

Consider again the kernel of Example 3.

h2 (T ' T2 ) = (1--T1 -T2) U_1(1 -T 1-- 2 ) U_1 (1 ) U_1 I( 2 ) (143)

We found in Example 3 that, as a continuous system, this kernel was not realizable

exactly with a finite number of linear systems and multipliers. It is of interest to exam-

ine the corresponding sampled kernel. The z-transform of the kernel (143), if we

assume a sampling interval of T, is

H 2 ( 1 , Z2 ) =

oo 00

k2=-°° kl=-co

-k 1 -k 2
(1-k 1 T-k 2T) U_l(1-k1 T-k 2 T) U_l(klT) U_l(k 2 T) z1 z2

(144)

Make the change of index kl + k 2 = k. Then (144) becomes

1-T k -kl -(k-kl) 0 k-k=kT) kz = (1k= kT)z

k=O k I=0 k=O

-k 1 - (Z1/z)
- k - 1

(z /zz) 1 (
1 - (Zl/Z2 ) -
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or as

(140)

(141)

H2 (z 1 , z 2 )

Now

-kz

(Z1/Z2)

k

kl=0

k

kl=O

(145)

(146)

I/



The remaining sum may be interpreted as the sum of a step, a negative ramp, and a

delayed positive ramp.

1/T -1
(l-kT)Z k = _1 T- z _+ z-1/T z Z

k=O Iz (1-z ) (1-z)

1 - (l+T)z - 1 +T - ( 1 /T) - l
Z = F(z). (147)

Combining these results, we evaluate (145) as

H(z, 2 ) -1 [F(z2) - (Zl/Z2) F(zl)], (148)
Zl'Z I 1 - (Zl/z ) -F

or

(1z )g(z 1 ( l + T ) z 2 + T z ( 1/ T )_ 2 ) (l_z-1) ( z -l _ (l + T ) z 2 + T z ; ( / T ) - 2)

(149)

The factor (z2'-zl) in the denominator may be divided out to give

H2 (z 1 , z2 )

1- (+T)(z 1 l+z 2
1 ) + (1+2T)zlz2

1 + T(z 2 1z-(l/T)+z(/T)-l z-(1/T)-lz21)

I z2(1/z;1 2 (l-z21)Z '( * 1 )+z ( )1

+ 2 (150)
(1z 1)

Examination of (150) shows that H 2 (z 1 , Z2) can be represented as an interconnection of

linear sampled-data systems, although this realization will be rather complex, par-

ticularly for small T.
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VII. TIME-DOMAIN SYNTHESIS TECHNIQUE

7. 1 IMPULSE-TRAIN TECHNIQUES IN LINEAR SYSTEM THEORY

An important feature of the use of the convolution or superposition integral in linear

system theory is the possibility of impulse-train techniques. 7 The input-output relation

for a linear time-invariant system may be given by the convolution integral

(151)y(t) = +00
-00

where x(t) is the system input, y(t) is the output, and h(T) is the unit impulse response

or kernel of the system. A generalized expression is

y(m+k) (t) = +co

-00

h
( m ) () ( k )

(t-T) dT, (152)

where m and k are positive or negative integers, with f(k) (x) representing the k t h deriv-

ative of f(x) if k is positive and the k t h successive integration, as in (153), when k is

negative.

f( 1 )(x) = 
- -00O

f(y) dy. (153)

If some derivative of h(.) or x(.) yields only impulses, evaluation of (152) becomes

very simple. This technique is useful in the evaluation of (151), in finding the transform

of h( · ), and in finding approximants to h( · ), and is thus extremely useful in the synthesis

of a linear system when h(.) is given.

7.2 GENERALIZATION OF IMPULSE-TRAIN TECHNIQUES TO

SYSTEMS

We shall now demonstrate the use of impulse-train techniques

Consider a nonlinear system for which the input-output relation

NONLINEAR

for nonlinear systems.

r+00 ,>+00

Jy O n 1= ... hn(Ti..Tn ) x(t-T 1 ) ... x(t-Tn) dT 1 ... dTn (154)

applies, where x(t) is the input, y(t) the output, and hn(T 1 . . . Tn) the kernel of the sys-

tem. This relation may be generalized just as in the linear case to give

y(t) = +0co
-00

. + h (m)( . . ,k)(t 1 . x (k)(t-T ) dT . dT -00 n m(n I k (k d.. (155)

Here the superscripts x(-) have the same significance as in (152), and m + k = 0.

We define
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anmhn( n)
h(m)

aTm... aT 1
n 1

for m positive. For m = -1, we define

h(-1 ) n(156)nh~ ( , = & *.& h,, .hn(nl , ,n) dl 11 .. drln. (156)
n -00 -00

(m)For m any negative integer, hn m(T, ., Tn) is found by repeated application of (156).

Although (155) is true for any n, it appears to be most useful for n = 2, since we may

often use graphical techniques in this case. Examples of the use of (155) for calculation

of kernel transforms and synthesis of a given kernel for second-degree systems are

given below.

7.3 EXAMPLES OF THE USE OF IMPULSE-TRAIN TECHNIQUES FOR

SECOND-DEGREE SYSTEMS

Example 12

Consider the second-degree kernel given by

h2( 1 , I2) = U-1(T 1 ) u_l(1-T1 ) u_ 1 (T2) u_ 1 (1-T 2 ) (157)

and sketched in Fig. 37a. Form the partial derivatives with respect to T1 and then with

respect to T2 . This may be accomplished either graphically or analytically, with the

following result:

ah
a 2 = [Uo(T 1)-Uo(1-T1)] U_ 1( 2 ) U(1-- 2)

1

2 (158)
a hZ

-T2h s U o( 1 ) Uo(T2 ) - Uo( 1) U1T2) + Uo(1-T 1) A (1-T ) -U (1 1) Uo2).

These partials are sketched in Fig. 37b and 37c. A type of singularity which we shall

call an "impulsive fence" occurs in the partial with respect to T1 (Fig. 37b).

The four impulses of the second partial can be realized as shown in Fig. 38a, and

combined as a sum to give the system of Fig. 38b, which is a realization of the second

partial. Simplification yields the equivalent system shown in Fig. 39. Precascading

an ideal integrator, as in Fig. 40, yields a system which realizes the original kernel.

Note that only one integrator is required, although two differentiations were performed.

Simplification yields the system of Fig. 41. Of course, in this simple example, we could

have found the system of Fig. 41 directly from the expression for the kernel (157).

We may also use this technique to obtain the kernel transform, as in Eqs. 159 and 160,
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i1 (a)

(b)
n

(c)

Fig. 37. The kernel of Example 12.

66

T1

·· --- ---- --- --

' 2

T2

T2



sq -_
(i)

(ii)

(iii)

(iv)

-delay q

(a)

(b)

a2h
Fig. 38. Realization of aT1 2 of Example 12.
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a2h
Fig. 39. Simplified realization of 2 of Example 12.

Fig. 39· T~aTI Of xa8Tle T1

Fig. 40. Realization of the kernel h 2 (T1 , TZ ) of Example 12.

k(t)

Fig. 41. Simplified realization of the kernel of Example 12,
with k(t) = u_l(t) U_l (l-t).

since the transforms of the components of the singular kernel of Fig. 37c can be writ-

ten by inspection. Factoring the transform expression of (160) to separate variables, we

obtain the transform expression (161). The system of Fig. 41 is recognizable from this

form also.

2h

--2 1 + e 1 e - e - e (159)
8T 2aT 1

-s1 s2 -S 1 -S2
1 + e e -e e (160)

h2 "----

1Hz(s l, s) = ( l) ( e2) (161)

Example 13

Consider the second-degree system characterized by

h 2 (T 1 , T2 ) = (-T 1-T 2 ) U_i(1--T 1 -- 2 ) U_I(T 1 ) U_ 1(T 2) (162)
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T 1 (a)
hi

I % - ."

1)
ah 2

aT2DT 1

'T2

1 (C)

Fig. 42. The kernel of Example 13.
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and shown in Fig. 42a. Partial differentiation of this kernel yields

ah2

T = - U1 ( 1-T 1-T 2 ) U1 (T1 ) U1 (T2 ) + (1-r 2 ) U_ 1 (l-T 2) U-1 ( 2 ) Uo(T 1)
1

a 2 h2 (163)

2 -U~aT1 ° 2) - 1(Ti) U1 (T2) - U_1(1-T1) U 1(T1) Uo(T2)

- U 1 (1--T2 ) U_1 (T2 ) Uo(T1 ) + Uo(T1 ) U0 (T2 )

These partial derivatives are sketched in Fig. 42b and 42c.

Let us find the transform of the kernel (162). We shall look at the derivative (163),

taking each term separately and summing. The transform of the second partial deriva-

tive is thus

-s 1 -S 2
1 -e 1 -e

s 1 s2

-s 1 -s 2
e -e

s 2 - s

Simplification yields

s - 2 - 2) - s(1 - 1 - e1)
s1 -s s 21 - s -s e)
SS2(S2-S 1)

as the transform of the second partial, and hence we have

Fig. 43. The kernel of Example 14.
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ah 2

3T1

(a)

a2h

' 2

(b)

Fig. 44. The kernel of Example 14.
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1 - 2 - e 2- s 1-sI) 2( 1 esI
H2 (S1 s 2 ) = (164)

Example 14

Consider the kernel given by

h2 (T1 ,T 2 ) = (1-- T1 -T 2 1) U_ (1-T 1-T 2 1) U 1 (T1 ) U1 (T2) (165)

and shown in Fig. 43. This kernel may be differentiated as shown in Fig. 44a and 44b.

The transform corresponding to Fig. 44b is

-s
2 1 -e

1S+ S2 s1
s 1 + s 2 s 1

-S 2-e

S2

-S 1
e

S1 + S2

-S 2
e

S1 + S2

(166)

Simplification and division by s and s 2 yields the kernel transform for (165):

- s 1 - e - s 1

H2 (S1 ,' 2 ) =
- 2 - e-s 2 )

(167)
2 2(s1+s2 )

We see by inspection of this transform expression that the kernel is realizable by a

Fig. 45. Realization of the kernel of Example 14.

1

Fig. 46. Simplified realization of the kernel of Example 14.
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finite number of linear systems and multipliers. An equivalent but unsymmetrical kernel

transform is

-s 1
1 1 e +s 1 -1 

H ( s 2, S (168)
2 S1 S2 S 2 l1+ S2

This kernel can be realized readily with only one multiplier as shown in Fig. 45 and in

simplified form in Fig. 46.

7.4 REMARKS

Some important observations can be drawn from these examples. From the kernel

transforms of these examples, we can see that the kernels of Examples 12 and 14 are of

the class that can be realized exactly with a finite number of linear systems and multi-

pliers, while the kernel of Example 13 (considered also in Example 3) cannot be realized

with a finite number of linear systems and multipliers.

We might attempt to approximate an arbitrary kernel h2 (T1 , 'T ) with planes, so that

we could differentiate with respect to T1 and T2 to obtain a new function consisting of

impulses and impulsive fences; if we could find a system that realized this singular

kernel, then the original kernel would be realized by this system cascaded after an ideal

integrator. Manipulation of the resulting system as in Example 12 might lead to a quite

simple realization.

7.5 REALIZATION OF IMPULSIVE FENCES

Exactly Realizable Impulsive Fences. Example 13 shows, however, that not all impul-

sive fences are realizable with a finite number of multipliers and linear systems. In

fact, a little reflection shows that the only impulsive fences that can be realized with one

sq

Fig. 47. A system whose kernel is an impulsive function.

multiplier and linear systems are those that lie along lines intersecting the T1 or T2 axes

at a 45° angle, or along lines parallel to the axes. Such an impulsive fence is

f(Tr1 , T2 ) = Uo(T1 -r 2 ) U_ 1 ( 1 2) (169)
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which has the transform

1
F(s 1 ,s 2 ) + 2

Z SI S 5 
(170)

This is realizable as shown in Fig. 47.

A unit impulsive fence passing through the origin of the T1, T2 plane at any other

angle will not be realizable with a finite number of linear systems and multipliers. For

example,

g(T 1, T2 ) = U(T 1-aT 2) U_T 1) U_1 (T 2)

has the transform

1
G(s 1,s 2 ) = s2 + asl '

Approximation Realization of Impulsive Fences. The impulsive fence

-s 1 - 2

U (1-1--T 2 ) U 1 (T1 ) U_1 (T2 ) s 2 - S1

(171)

(172)

(173)

of Example 13 lies perpendicular to the 450 lines and thus cannot be realized exactly with

linear systems and multipliers. We can, however, realize this impulsive fence approx-

imately by means of an appropriately weighted set of isolated impulses occurring on the

same line in the T1 , T2 plane.

1

TI+T2=1

(7 3
~~T-

1T- 1'~

Fig. 48. Approximation of an impulsive fence.
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Partition the line T1 + T2 = 1 into intervals of length T as shown in Fig. 48, so that

the end points of the intervals fall at the points (kT, 1-kT), k = 0, .... 1/T. At each of

these points we place an impulse whose area is equal to T times the amplitude of the

envelope of the impulsive fence at that point. Hence we have

1/T

Tu(T 1-kT) u(T 2-1+kT) (174)

k=0

as the proposed approximation to the impulsive fence of (173). The transform of (174) is

1/T -kTs - 1/T
-1k2 - 2 2-kT(Sl-S 2T e e = T e 2 e (175)

k=0 k=0

We can write the expression on the right in (175) in closed form as

-sz 1 - (s l - s 2 ) ( + T ) S s2 +
T e 2 2 = e 1 - eT T(176)

-T(s 1-S 2 ) -T(Sl -S 2 )
1-e -e

As T - 0, by l'Hpital's Rule, we have the limit

-s 2 -S 1
e -ee -e (177)

S1 - S2

Thus, to approximate this impulsive fence, we need only isolated inpulses along the

line of the impulsive fence, weighted according to the envelope of the impulsive fence.

Other impulsive fences may be approximated in exactly the same fashion.
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VIII. ANCILLARY RESULTS

8.1 TIME-INVARIANT SYSTEMS AND TIME-VARIANT SYSTEMS

Physical situations can sometimes be modeled with either a time-variant system or

a nonlinear system, according to the viewpoint one adopts. There is a very close con-

nection between time-variant systems and nonlinear time-invariant systems, as we shall

point out.

xl(t)

x2(t)

y(t)

Fig. 49. Configuration for cross-term output.

Consider a second-degree

with input x(t) and output y(t).

system characterized by the symmetrical kernel h2 (T1 , T2 ),

The input-output relationship is given by

y(t) = h2 (T1 , T2 ) x(t-T 1 ) x(t-T 2 ) dT 1 dT 2 . (178)

Consider the configuration of Fig. 49. The three systems are identical, and the inputs

and outputs are combined as shown. After scaling the gain by a factor of one-half, we

obtain the output

y(t) = hZ(T 1 , T 2) Xl1 (t-T 1 ) X2 (t-T 2 ) d 1 dT 2. (179)
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Now suppose that we let x 2 (t) = uo(t) and keep xl(t) arbitrary. The output now

becomes

y(t) = h 2 (Tl, t) Xl(t-T) dTl. (180)

That is, by application of a timing pulse x 2 (t), with second-degree time-invariant sys-

tems we have precisely the situation encountered in a linear time-variant system. The

restriction as to the class of linear time-variant systems may be represented in this

way or determined by the kernels h2 (T1 , T2 ) that we permit. We could also choose the

input x2 (t) in other ways, for example, an impulse train or other periodic signal; we may

choose to make x2 (t) random in order to model a randomly time-variant situation.

We have assumed in (180) that the kernel h2 (T1 , T2) is symmetrical; however, if we

are able to identify in a realization of the second-degree system which portions are

identified with T1 and which with T2, then the requirement of symmetry is not really

necessary. For example, in Fig. 50, if the upper branch is identified with T1 and the

lower branch with T2 , we may apply x1 (t) and x2 (t) as shown to obtain a time-variant

system without the restriction to a symmetrical kernel.

xl(t)

x2(t)

y(t)

Fig. 50. A linear time-variant system.

Thus, if a time-variant kernel h(T, t) is given, we can realize h(T 1 , T2) as a second-

degree nonlinear system using any of the properties or techniques of the preceding sec-

tions, but keeping track of which parts of the realization we wish to identify with T1 and

which with 2; then application of a timing pulse or signal to the 2 branches and the

input x(t) to the T1 branches yields a realization of h(T, t).

Second-degree time-variant systems may be obtained from third-degree time-

invariant systems from the configuration shown in Fig. 51. The output is given by

y(t) = h3 (T1 ,z T2 3) x 1(t-- T 1 ) x2(t-T 2 ) x3(t-T 3) dT 1 dT2dT 3 . (181)
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x (t) _

x2(t)

x3 (t)

Fig. 51. Configuration for cross-term output.

If we allow x1 (t) = x 2 (t) to be arbitrary, but make x3 (t) = uo(t), we obtain

y(t) = S h3 (Tl T2, t) X(t-T 1 ) X(t-T 2 ) dTldT2 , (182)

in which we have dropped the subscripts on the input x(t). This can be interpreted as

representing a second-degree time-variant system. Other variations are also possible,

and, with rapidly increasing complexity, we may consider higher degree systems too.

8. 2 RELATION BETWEEN INTEGRAL AND DIFFERENTIAL CHARACTERIZATIONS

OF NONLINEAR SYSTEMS

Consider the nonlinear system shown in block diagram form in Fig. 52. N1, N2 , and

N 3 are linear systems, and N4 is a multiplier. The behavior of the system can be
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characterized by the set of Eqs. 183-186.

dz(t)
dt + az(t) = x(t)dt

dw (t)

dt + bw(t) = x(t)dt

d2y(t) dy(t)

dt 2 +d dt + ey(t) =dt z

dr (t)
cr(t) + dt

r(t) = w(t) z(t),

where x(t) is the input, y(t) is the

put of the multiplier, as shown in

N1 through N4. We shall assume

x(t)

output, and w(t), z(t), and r(t) are the inputs and out-

Fig. 52. Equations 183-186 describe the behavior of

that all initial conditions are zero.

y(t)

w(t)

Fig. 52. A simple nonlinear system.

We would like to find a differential equation relating y(t) and x(t); that is, we would

like to eliminate w(t), z(t), and r(t) in Eqs. 183-186. In order to do so, we shall

extend the domain of definition from a line to a plane, and look along the 450 line in the

plane.

Define r(t 1 , t 2 ) = w(t1 ) z(t2 ) and (tl, t 2 ) such that y(t) is (t, t 2)tl=t2= t. Substitute

t l for t in (184) and t 2 for t in (185). Then multiplication of (183) and (184) and use of

the definition of r(t 1, t 2) yields

(187)

2/\
a r(tl, t 2) ar(t t2) ar(t 1, t2)

tar 1 -+ a +b + abr(tl, t 2 ) = x(tl ) x(t2).atz at 1 at z at 1
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In order to express (186) in terms of (t1, t 2) we must find an expression for dy(t)/dt in

terms of (t1 , t 2 ). Since (t,t) = y(t), the desired derivative will be the directional

derivative of y(t 1 , t 2 ) along the line t = t 2 , scaled by the factor NJI to obtain the proper

rate of change. The directional derivative is given by the dot product of the gradient of

y(tl, t 2) with the unit vector in the direction of the 45P line. Hence we have the corre-

spondence

dy(t) 1 aYtt2 att)
dt '

~ ~4- (VY(tl' 1 t2 )) ' = at1 + at (188)

Repeating this operation, we find the correspondence for the second derivative.

d y(t) a 2Y i' t2) a2Y t2) a2y(tl t)
+2 + (189)

dt 2 at2 at2atl at 2
2at 1 2

By using these results (186) can be extended to

2/\ 2A 2 a a
ay aY ay ay ay ar a^r

at at 2 at at + ey cr a + at (190)at at 1 2 1 21 2

We must now combine (190) and (187) to eliminate (t1 , t 2). This may be accomplished

as follows. Take the partial of both sides of (187) with respect to t1 to obtain (191), and

with respect to t 2 to obtain (192).

3^ 2 ZA A dx(t)
ar + a ar + b ar ar d (t (191)

a2t + a a + b + ab = 2 (192)
atat at at2 1 2t 21 2 2

Also, we take the partial of (190) with respect to t1 to obtain (193), with respect to t 2 to

obtain (194), and with respect to t 1 and t 2 to obtain (195).

31\ 3^ a 3/ 2 ^ 2^a3y ay ay ay a2y� a a2 r

at -at + at +at2 at a +e at=1 +c a t at2t (193)

a3_ a3 a3y^ a2 9 a29 aY a^ a2^ a2^
+t +d t + + (194)

attd t t +e t tt at tat3 atat 1 at

~~~3at2at 1 at23 tl(at2at atat at at atat 2 1 at at

(195)
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Next, multiply through (187) by c, and add the resulting equation to (191) plus (192).

Multiply through (194) by a, (193) by b, and (190) by ab, and add the sum of these new

equations to (195). We then can write

dx(t 2) dx(tl)
cx(tl) x(t 2) + x(tl) dt2 + dtl x(t2 )

a3r a3r a 2 a2 aF ar
2 + a2 + (a+b+c) +b + a + (ab +bc) + (ab+ac) + abcr

a4 a4t a4 a3 a3^ a3^ay Oy ay y 8y 
att+2 + t + (a2bd) 2 + (2a+b+d) 2 +b 3attat at4at at 4a at3at l attl a

83 8z az^ az?ay ay ay y
+ a - + (ad+2ab+bd+e) at 2 at + (ab+bd) at 2 + (ab+ad) at2

at2 a 1 at at

ay^ ay
+ (abd+be) - t + (abd+ae) -Z + abey

or

a4^ a4^ a4^ a3\ a3^ a3^

+ 2 + + (a+b+d) 2 + (2a+b+d) 2- + b
at2at at2 at at at at atz atzat at3

21 22 2 212 2a3 y a2y a2y ay
+ a + (ad+2ab+bd+e) at at + (ab+bd) -+ (ab+ad) at2

t2 2 i at1 2

ay ay 
+ (abd+be) a- + (abd+ae) at- + abey

dx(t 2 ) dx(t1 )
cx(tl) x x(2) + x(t) dt2 + x(t 2 ). (196)

We have thus obtained a single differential equation relating y(t) and x(t). The equa-

tion is a linear partial differential equation with constant coefficients.

This linear partial differential equation is particularly well suited to solution by
means of the two-dimensional Laplace transform. Taking the transform of each side,
we find

s3 s2+2s 1sZ+sl s2+(a+2b+d)s s2 + (2a+b+d) s +bs 3+as3 +(ad+Zab+bd+e)sls2

2 2
+(ab+bd)s + (ab+ad)s 2+ (abd+be) s 1 +(abd+ae) s2+abe Y(s 1, 2)

= (s1+s2+C) X(s 1) X(s2).
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Factoring the polynomials in this expression and solving for Y(s1 , s2 ), we have

S1 + S2 + c
Y(s 1 , s 2 ) = X(s l ) X(s2). (197)

(s 1+b)(s 2 +a) (s +s ) +d(sl +s 2 )+eX

We now note that

An ~ s1 2+ S +C
H 2 (s1 , s 2 ) =

(s1 +b) (s 2 +a) [(s1 +s2) +d(s1 +s 2 )+e]

is the transform of the Volterra kernel, h 2 (T1 , T2), of the system of Fig. 1 when the sys-

tem is characterized by the integral equation

y(t) = h 2 (i 1 , T2) x(t--T1) X(t-T 2 ) dTl dT 2 . (198)

In fact, taking the inverse transform of (197) we have

Y(t t ) = h2 (Ti T2 ) X(tl- T 1 ) (t 2 -T2 ) d dT 2

from which (198) follows by setting t = t 2 = t.

From this example the following observations may be made.

1. Given a system of equations that are the dynamic description of a nonlinear sys-

tem, by extending the domain of definition from one dimension to two dimensions, we

were able to find a single linear partial differential equation that also characterizes the

system. That is, by extending from one dimension into two dimensions, a one-

dimensional nonlinear problem was converted into a two-dimensional linear problem.

2. Equations 183-186 and Eq. 198 describe the same situation. A system that is

characterized by a single integral equation is equivalently described by a set of several

ordinary differential equations and a nondifferential equation. A description by one non-

linear ordinary differential equation does not seem to be possible.

3. Whenever a system is characterized by an n th-degree Volterra kernel having a

rational transform, a linear partial differential equation with constant coefficients can

be found which relates the auxiliary output function (t1l tn) to the input function x(t).

If the kernel is of the class that can be realized exactly with a finite number of linear

systems and multipliers, then an equivalent description by a set of ordinary differential

equations and nondifferential equations can be found.

Although the example and observations presented here have not yet led to the solution

of any problems that cannot be easily handled by other methods, it is felt that the view-

point presented is unique and may lead to a deeper understanding of the properties of

nonlinear systems.
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IX. CONCLUSION

We have studied some techniques for the synthesis of nonlinear systems. The sys-

tems considered are those that can be characterized by a finite set of Volterra kernels:

{hn(T1 , ... Tn): n= 0, 1,2, ... ,N}. The approach adopted throughout has been to consider

the kernels one at a time, using as basic elements in the synthesis linear systems and

multipliers.

We have presented a procedure for testing a given kernel transform to determine

whether or not the kernel can be realized exactly with a finite number of linear systems

and multipliers. The test is constructive. If it is possible to realize the kernel exactly,

a realization is given by the test; if it is not possible to realize the complete kernel

exactly, but it is possible to break the kernel up into several lower degree components,

this will also be discovered by the test.

An extension to nonlinear systems of the impulse-train techniques of linear system

theory is given. Although applicable in principle to higher degree systems, the use of

impulse-train techniques as graphical methods is effectively limited to second-degree

systems.

The use of digital systems is recognized as a powerful tool in modern system theory.

We have developed properties of sampling in nonlinear systems, in order to facilitate

the use of digital techniques in the synthesis of nonlinear systems. Bandlimiting in non-

linear systems is discussed, and delay line models for bandlimited systems are given.

The transform analysis of nonlinear sampled-data systems by means of the multi-

dimensional z-transform is presented. Computation algorithms for input-output com-

putations are given for direct computation from the multidimensional convolution sum,

from the associated partial difference equation, and from a decomposition of the non-

linear sampled-data system into linear sampled-data systems.

A relationship between time-variant and time-invariant systems is presented, in

which time-variant systems are shown to be related to time-invariant systems of higher

degree. This enables one to use for linear time-variant systems the properties and

techniques developed for second-degree time-invariant systems.

A note on the multidimensional formulation of nonlinear systems from the differential

equation point of view is given; it is seen that some nonlinear problems in one dimension

can be mapped into a linear problem in a higher dimensional space.

As with linear systems, the problem of the synthesis of a nonlinear system is the

problem of finding a finite-dimensional state space in which the system may be

described. One expects that an attack on the problem directly from the state space point

of view may be fruitful.
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APPENDIX A

Proofs of the properties of z-transforms given in Chapter V are given below.

A. 1 Proof of 5. a. 1

-k 1 -k n
f[(kl-bl)T,..., (kn-bn)T] z 1 ... zn

k =-oo kl=-oo
n 1

f[(k 1-b1)T, .
-(k 1-b 1) -(kn-bn)

· (kn-bn)T] z 1 Zn
k =-oo k =-oo
kn 1

-b I -b
= Z .Z n F(z... z)

A. 2 Proof of 5. a. 2

oo

k =-oo
n

-a lk T
e

-ankTnn -k
f(klT,...,knT) 1

o0

kl=-o0

Z1 , .

f(klT,... ,knT) (ealT ( anT znkn

.. ,e zn

A. 3 Proof of 5. a. 3

-k
f(klT,... knT) z1

oo

. . (-T)f(kT

kl=-oo

kn T)ziazi8
1

-k
z n Tif(T
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1

oo

-k
n

z
n

oo

k -oon

= Fe a lT

a-Tz 
8z1

00

k =-oon

oo

kl=-oo

-k
n

n

o00

k =-oo
n

00oo

k =-oo
n

r-kl
IZ1 -kn

n

00 -k

kiTf(klT,... ,knT) 1 1 ,

kl=-oo

,. . Tn )

---

co

k =-00



A. 4 Proof of 5. a. 4

H(zl,. ' ' Zn) =

oo

p =-o o

oo

pn= - oo
n

o00

*-- hn(zlp. 'Zn) Zl ' 1 zPn
P1=-CO

f(klT,.. ,knT)

co oo

P 1=-o kn =-oo

00

k =-o

-P 1
* g(PlT-kl T, ... , pnT-knT) z 1

00 00

I .* f(k 1 T,... knT)
k =-oo k =-oo

n 1

-P 1
g(PlT-klT.... PnT-knT) 1

k =-oo k 1 = -o
n 1

-Pn
· ,. z n

-k z knG(z
zI , - n G(l... .. I
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APPENDIX B

Proofs of the properties of modified z-transforms given in Section V, and the details

of Example 6 are presented here.

B. 1 Proof of 5. b. 1

o

k =-oon

-k
n

Z. Z
n

o

kl=-0o

oo

-1 -1
z1 *- zn

k =-co
n

co

kl=-co

f{k 1T-[1l-(+m l- A )]T......k ,kT-[-(l+m-An)]T}l ... z nI 1 n n n I ''I ~~n

-1 -1
z 1 Z. Zn m(zll+m l -A 1;... ;z n , +m-A n ) for 0< m. <A. <1,

1 1
i= 1,...,n.

For 0 < Ai. mi < 1, we may write the left side of the equation above as
1 1

00

k =-o
n

= Fm(zl ml-A 1; ... ; Zn ' mn-An).

For shifts equal to an integral multiple of T, the proof of this property is the same as

that given above for the ordinary z-transform.

B. 2 Proof of 5. b. 2

I ... -al[klT-(1-ml)T]
G .. e e

k =-o
n k 1-c

-k 1 -kn
.Z1 ''I Z n

a 1 (1-m 1 ) an(1 -mn)

k =-on kl=-00

an( 1 n)
... e F e I

mea1T

ealTz k

a T 
n

;eZn mn ,

anT zjkn
... e zn
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B. 3 Proof of 5. b. 3

[kiT-(l-mi)T] f[k1 T-(-m l) T.... . ,knT-( -mn)T] z 1
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kn= -oo k 1=-co

-k 1 -k n
. z ... zn1 n

T= [(mi-1) Fm(Zl, ml;...; Zn' mn)-
a

zi a Fm(Zl' m1 ;...; z n m)].1

B. 4 Proof of 5. b. 4

When f(vl,. . , ,Tn) is continuous from the right in each of the variables,

Fm(zl, m l1; ... ;

oo

Zn' mn) =

k =-oon

oo

kl=-oo

-k
f(k 1T-T,..., knT-T) z 1

-k
n

n

-1 -1
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k -oo
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00oo
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-k 1 -k n
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87

00oo

k =-oon

-k
n

n

lim
mr.-

i=l,... n

lim

1
i=l,. . . n

111-----`--�-` -- �s-�I-�I�- 111�1�-1�-�-.-1. 1.�1^ __lll�.�lll�··-·C------�_l·L··�-�lll .-~· - . ·- - _ _

00

.

k 0

kiTf [k1T-(l-m)T, ... ,knT-(l- n)T]



B. 5 Details of Example 6

Direct Transform:

00

F 1 (Z1 , z 2) = 2
k=O

(1 - e - 2T(k+m *- 1)) (z 1 z 2
- k

oo

kl=l

2o

k2=0

(1

+ 1 -e
k2= 1 kl=0

-2T(k2+m
e

l*1)

-2T(k +m*-l)1 )

-(k 1 +k 2 ) -k 2

Z1 z2

-k 1 (k 2 +k 1 )
Z1 Z2

1
-1 -1

1 - z 1 z2

e-2T(m -1)
-2T -1 -1

1 - e Z1 z 2

-1+ 1
-1

1 - z 1

1 - eZT(m -1)1 - e - z- z21 (e - 2 T

l ZZ2 e

(l-e 2zllz-1) (1-z1 )(1 -1)

Inverse Transform:

1
- 6 T -1 -1

1-e Z1 Z2

1
-T -1

1-e z1 l-e1
-3T -1 (+

z2

-6T -1 -1 -12T -2 -2 -18T -3 z-3+. 
-Z1 z2 +e Z1 z2 +e Z1 2 

(+e - T -1 -2T -2 +e- 3 T -3+. ) ( +3 T -1 - 6 T -2.) +e z +e z 
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APPENDIX C

Proofs of properties of the transforms of causal functions in Section 5. 3 are given

below.

C. 1 Proof of 5. c. 1

For causal f(T 1 , .. Tn ) we have

F(zl .z 0 n )

00 00

kn 2

00

kl=O

-k 1 -k 2
f(klT,k 2 T....knT) Z 1 z 2

lim F(z 1 ... z )
z1-00

00

k =O
n

00

k2=O

For z2' ... Zn a similar relation holds.

f(O, k2 T, ... , knT)
-k 2

z2

Hence

lim F(z 1 , ... Zn) a lim f(T 1 , ... , Tn)
Z.i00 Ti-U

1

C. 2 Proof of 5. c. 2

f(T 1+T, T2 .. T n) - f(T1 .. n )

[f(k1 T+T, k 2 T, .... knT)-f(kl T,

00 P

k2=-oo kl=- p

The expression on the right may be written

00 +P

... I lim I [f(klT+T, k2T,

k2=_oo kl=-p

-k -k 2
.,knT)-f(klT, ... ,knT)] z1 2

For z1 = 1, the inner sum is
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+p

+ j [f(k T+T k2T ., kTfk

1i=
knT) ]

- f(T, k 2 T,..., knT) + f(O, kT, ... , knT).

These sums telescope, to give

lim f[(p+l)T, k 2 T, .. .,knT] - f(O,k 2 T, ... knT) + f[(l-p)T, k 2 T . ..knT]

+ f(T, k 2 T, .. , knT) - f(T, kT, ... , knT) + f(O,k2T, . .. , knT).

Now since f(T 1, ... , Tn) is causal by hypothesis, this becomes

lim f[(p+l)T, k2 T,..., knT] .
p-ioo

Hence, if this limit exists,

(zl-1) F(z 1l ... Zn)lir f(T1p ..... Tn) )~- lim
T1-00 zl-1

A similar relation holds for i = 2, ... , n.

C. 3 Proof of Eqs. (84) and (85)

We prove only Eq. 85 from which (84) follows also by 5.b.4.

Define 6 T(T1 .... I Tn) by

T(T1 ... Tn ) =
kl=Ou(T1

- k T) ..' I
10 1 1

Uo (Tn-k n

Then the Laplace transform of 6T(T1 .... Tn) is

n
AT(S1 l ... Sn) = I

i= 1

1

-s T'
1 -e

For causal f(T 1 , ... Tn ) we may write the modified z-transform Fm(zlml; .. ;Zn,m n )

as the z-transform of

f* (T ml; ... ; Tn, mn) = f(T 1 -T+mT, ... Tn-T+mnT) T(T 1 ... , Tn)

= f( 1+mT-T,..., Tn+mnT-T) 6 T(T1-T, . . . T-T)
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It is clear that F(s . . ., sn), the Laplace transform of f *(T1 , ... ,Tn), evaluated at
s.T 

e 1 = i' i = 1,...,n is the z-transform of f (T1 ,ml;...;Tn' mn). The Laplace trans-

form of a product of functions results in the complex convolution of the Laplace trans-

forms of the factors. Now the Laplace transform of f(T 1 +mlT, ..... Tn+mnT) is

s1m T snm T
e ... e F(sl, ...sn),

where F(s, .. . n) is the Laplace transform of f(T 1, Tn) We then have

-s T -s T slmlT s m T
Fm(z, ml;1 ;.; Zn mn) =e ... e e ... e F(s,1 s n )

s.T
1

z.=e

i=l, .... ,n

AT(S * .Sn)

where ® denotes multidimensional complex convolution. This is the expression given

explicitly in (85). We note that in this expression, because of the nature of the Laplace

inversion integral, it is assumed that f(T1 T) is defined as the average value at

jump discontinuities.
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APPENDIX D

Equations stated in Section V without proof are justified below.

D. 1 Proof of Eqs. 116 and 117

We shall prove (116)for n= 2. The extension to the higher dimensional case is clear.

y( 2 )(kT, kT) =
(1j) k-1 k-1

1 2 Y(Z)(Z 1lz 2) dzldZ2 -

Let z = z l z 2; then dz = z 1 dz 2 and

2

Y( 2)(kTkT) =(
I i k-Z1 Y

k 1 Y(2)r 
( 1 ) 1

and hence

z1 Y(
Y (2) Z 

For the modified z-transform (1 17), we have

Y( 2)[(kl-l+ml)T,(k2-1+m2 )T] =

1 z2 k -l k 2 -1

t(-j2) Yr9 r z 2 Y()m(zlml; z 2 m 2 ) dzldz2 .

Setting k = k 2 = k and m = m 2 = m yields

y[(k-m+l)T] = 2
r Sr (z 1 z2)k-lyI(2)m(Zlm; ZZ,m) dzldz 2.

From this point the proof follows that above for the z-transform, and (118) follows for

n = 2. The extension to higher dimensions is clear.

D. 2 Derivation of Eq. 118

21 Z1 A(z)
27rj F 1

A (z) 2 r

1
-aT -1

1 e Z1

1
-aT

z 1 -e

1

-bT( z -11 - e %1;

ebTz
bT

e z - z 1

dz1 =

dz 1 = A(z)1
1

1 -e-(a+b)T -l1-e z
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