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Abstract

We consider the problem of functional compression. The objective is to separately
compress possibly correlated discrete sources such that an arbitrary deterministic
function of those sources can be computed given the compressed data from each
source. This is motivated by problems in sensor networks and database privacy. Our
architecture gives a quantitative definition of privacy for database statistics. Further,
we show that it can provide significant coding gains in sensor networks.

We consider both the lossless and lossy computation of a function. Specifically,
we present results of the rate regions for three instances of the problem where there
are two sources: 1) lossless computation where one source is available at the decoder,
2) under a special condition, lossless computation where both sources are separately
encoded, and 3) lossy computation where one source is available at the decoder.

Wyner and Ziv (1976) considered the third problem for the special case f(X, Y) =
X and derived a rate distortion function. Yamamoto (1982) extended this result
to a general function. Both of these results are in terms of an auxiliary random
variable. Orlitsky and Roche (2001), for the zero distortion case, gave this variable a
precise interpretation in terms of the properties of the characteristic graph; this led
to a particular coding scheme. We extend that result by providing an achievability
scheme that is based on the coloring of the characteristic graph. This suggests a
layered architecture where the functional layer controls the coloring scheme, and the
data layer uses existing distributed source coding schemes. We extend this graph
coloring method to provide algorithms and rates for all three problems.
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Chapter 1

Introduction

Generally speaking, data compression considers the compression of a source (sources)

and its (their) recovery via a decoding algorithm. Functional compression considers

the recovery not of the sources, but of a function of the sources. It is a method for

reducing the number of bits required to convey relevant information from disparate

sources to a third party. The key contributions of this thesis are to provide meaning to

the word "relevant" in this context. We will derive the information theoretic limits for

a selection of functional compression problems and give novel algorithms to achieve

these rates.

1.1 Motivations and Applications

We are motivated to study this problem mainly by two problems. First, consider a

statistical database, such as a medical records database. There are enormous amounts

of private data in the database. The database manager wants to release certain statis-

tics, or functions, of the data in order to provide utility to, for example, researchers.

Thinking of the data as a bit-string, we provide a way for the database manager to

compute a certain function while each person reveals a minimal number of their own

bits. Thus, our archticture allows for a minimal loss of privacy, given the need to

compute certain statistics.

Next, consider a network of wireless sensors measuring temperature in a build-



ing. There are bandwidth and power constraints for each sensor, and the sensors

do not communicate with each other, only a central receiver. Further, the receiver

wishes only to compute the average temperature in the building. Given the receivers

intentions, we want to determine if it possible to compress beyond the traditional

distributed data compression rate bounds given by Slepian and Wolf.

We can frame both of the above questions as functional compression problems.

The common thread is that of using extra information, the end-user's intentions,

either to guarantee privacy or to achieve higher compression rates (thus conserving

bandwidth and power).

For the statistical database problem, if one knows the rate required to compute

a. certain malicious (or privacy-compromising) function, one simply needs to ensure

that the database is compressed beyond that minimum rate required. This would

ensure that the malicious function is impossible to compute.

Conversely, in the sensor network problem, one wishes to compute a function, so

one would compress the information to a rate such that it is computable. This rate

would be smaller than the best-known compression gains because of the utilization

of knowledge of the function.

In general, then, the problem is that of determining the jointly minimal statistics

of discrete memoryless sources X and Y in order to compute some fixed deterministic

function f(X, Y).

We demonstrate the possible rate gains by example.

Example 1.1. Consider two sources uniformly and independently producing k-bit

integers X and Y; assume k > 2. We assume independence to bring to focus the

compression gains from using knowledge of the function. First suppose f(X, Y)

(X, Y) is to be perfectly reconstructed at the decoder. Then, the rate at which X can

encode its information is k bits per symbol (bps); the same holds for Y. Thus the sum

rate is 2k bits per function-value (bpf).

Next, suppose f(X, Y) = X + Y mod 4. The value of f(X, Y) depends only upon

the final two bits of both X and Y. Thus, at most (and in fact, exactly) 2 bps is the

encoding rate, for a sum rate of 4 bpf. Note that the rate gain, 2k - 4 is unbounded



because we are reducing a possibly huge alphabet to one of size 4.

Finally, suppose f(X, Y) = X + Y mod 4 as before, but the decoder is allowed to

recover f up to some distortion. We consider the Hamming distortion function on f.

Consider recovering f up to a 1-bit Hamming distortion. One possible coding scheme

would simply encode the single least significant bit for both X and Y. Then one could

recover the least significant bit of f(X, Y), thus achieving an encoding rate of 1 bps

per source or 2 bpf. O

Using knowledge of the decoder's final objective helps achieve better compression

rates. Example 1.1 is relatively simple because the function is separable. The function

need not always be separable: consider f(X, Y) = jX - Yj, for example. In that

setting, it is much less obvious how to separately encode X and Y. Therefore, we

want a more general framework.

This thesis will provide a general framework that allows us to solve both the

problem of finding the best possible rates as well as finding coding schemes that allow

for approximations of these rates.

Example 1.1 showcases the three specific scenarios considered in this thesis: side

information with zero distortion, distributed compression with zero distortion, and

side information with nonzero rate distortion. We proceed by placing our results in

their historical context.

1.2 Historical Context

We can categorize compression problems with two sources along three dimensions.

First, whether there is one source is locally available at the receiver (call this "side

information") or whether both sources are communicating separately (call this "dis-

tributed"). Second, whether f(x, y) = (x, y) or is more general. Finally, whether

there is zero-distortion or non-zero-distortion. In all cases, the goal is to determine

the rates (Rx, R) at which X and Y must be encoded (R, = 00 when Y is side

information) in order for the decoder to compute f(X, Y) within distortion D > 0

with high probability.



Table 1.1: Research progress on zero-distortion source coding problems

Problem types f(x, y) = (x,y) General f(x, y)

Side information Shannon[23] Orlitsky and Roche [20]

Slepian and Wolf [24] Ahlswede and Kmrner [1]
Distributed Pradhan and Ramchandran [21] K6rner and Marton [183

Coleman et al. [8] *

1.2.1 Zero Distortion

First, consider zero distortion. Shannon [23] considers the side information prob-

lem where f(x, y) = (x, y). Slepian and Wolf [24] consider the distributed problem

where f(x, y) = (x, y). Many practical and near-optimal coding schemes have been

developed for both of the above problems such as DISCUS codes by Pradhan and

Ramchandran [21] and source-splitting techniques by Coleman et al. [8]. Thus, the

left side of Table 1.1 is fairly complete. We provide the precise theorems in a later

section.

Orlitsky and Roche provided a single-letter characterization for the side informa-

tion problem for a general function f(x, y). Ahlswede and Kbrner [1] determined

the rate region for the distributed problem for f(x, y) = x. Kbrner and Marton

[18] considered zero-distortion with both sources separately encoded for the function

f (x, y) = x + y mod 2. Nevertheless, there has been little work on a general function

f(x, y) in the distributed zero-distortion case. This is summarized in Table 1.1.

The * indicates where this thesis makes contributions. Specifically, for zero dis-

tortion, we provide a framework that leads to an optimal modular coding scheme for

the side information problem for general functions. We give conditions under which

this framework can be extended to the distributed problem for general functions.



Table 1.2: Research progress on nonzero-distortion source coding problems

Problem types f(x, y) = (x, y) General f(x, y)

Side information Wyner and Ziv [28] Yamamoto [29]
Feng et al. [16] *

Berger and Yeung [4]
Distributed Barros and Servetto [3]

Wagner et al. [25]

1.2.2 Nonzero Distortion

Next, consider nonzero distortion problems. Wyner and Ziv [28] considered the side

information problem for f(x, y) = (x, y). The rate region for the case of nonzero-

distortion with both sources separately encoded is unknown but bounds have been

given by Berger and Yeung [4], Barros and Servetto [3], and Wagner, Tavildar, and

Viswanath [25]. Wagner et al. considered a specific distortion function for their

results (quadratic). In the context of functional compression, all of these theorems

are specific to f(x, y) = (x, y).

Feng, Effros, and Savari [16] solved the side information problem in the case where

both sources are one step removed from the encoder and decoder (i.e., the encoder

and decoder have noisy information). Yamamoto solved the side information problem

for a general function f(x, y). This is summarized in Table 1.2.

Again, the * indicates where this thesis makes a contribution. Specifically, for

nonzero distortion, we extend the framework derived for zero distortion and apply

it in this more general setting. As indicated above, the distributed setting with

nonzero distortion and a general function is quite difficult (even the special case

f(x, y) = (x, y) is not completely solved).

1.3 Overview of Results

There are several key issues that we hope to elucidate: the idea that knowing the

function in some sense provides information, the information theoretic limits in the



X - f (X,Y)

Figure 1-1: The functional compression problem with side information.

above problems, and deriving schemes that are easy to implement. Now, we describe

the three problems considered in this thesis along with an overview of the results.

1.3.1 Functional Compression with Side Information

The side information problem is depicted in Figure 1-1. We describe an optimal

scheme for encoding X such that f(X, Y) can be computed within expected distortion

D at a receiver that knows Y.

The optimal rate for the functional compression with side information problem

was given by Orlitsky and Roche in the zero distortion case. While the resulting char-

acterization is complete and tight, it is difficult to calculate even'for simple source

distributions. For this problem, this thesis provides a new interpretation for that

rate through a simple algorithm that can be approximated with available heuristics.

Computing the Orlitsky-Roche rate requires optimizing a distribution over an auxil-

iary random variable W. We provide an interpretation of W that leads to a simple

achievability scheme for the Orlitsky-Roche rate that is modular with each module

being a well-studied problem. It can be extended to and motivates our functional

distributed source coding scheme below.

As mentioned earlier, Yamamoto gave a characterization of the rate distortion

function for this problem as an optimization over an auxiliary random variable. We

give a new interpretation to Yamamoto's rate distortion function for nonzero distor-
tion. Our formulation of the rate distortion function leads to a coding scheme that
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Figure 1-2: The distributed functional compression problem.

extends the coding schemes for the zero distortion case. Further, we give a simple

achievability scheme that achieves compression rates that are certainly at least as

good as the Slepian-Wolf rates and also at least as good as the zero distortion rate.

For zero distortion, the rate is a special case of the distributed functional compres-

sion problem considered next where one source is compressed at entropy-rate, thus

allowing for reconstruction at the decoder.

1.3.2 Distributed Functional Compression

The distributed functional compression problem is depicted in Figure 1-2. In this

problem, X and Y are separately encoded such that the decoder can compute f(X, Y)

with zero distortion and arbitrarily small probability of error. We describe the con-

ditions under which the coding scheme mentioned in the previous section can be

extended to the distributed set up. Further, we provide a less general condition de-

pending only upon the probability distribution of the sources under which our scheme

is optimal.

Thus, we extend the Slepian-Wolf rate region to a general deterministic function

f(x, y). Our rate region is, in general, an inner bound to the general rate region, and
we provide conditions under which it is the true rate region.



1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 gives the problem statement

and presents the related technical background necessary to understand the main re-

sults. Chapter 3 presents those results. The proofs follow in Chapter 4. Chapter

5 gives the implications of the results to the scenarios presented at the start of this

chapter. Future research directions and conclusions are given in Chapter 6. Ap-

pendix A recalls some information theory fundamentals including the Slepian-Wolf

and Wyner-Ziv source coding problems.



Chapter 2

Functional Compression

Background

We consider the three problems presented herein within a common framework. The

necessary preliminaries for understanding this framework are given in this section.

We explain where each problem differs in context. We borrow much of the notation

from [9, Chapter 12].

2.1 Problem Setup

We consider two discrete memoryless sources. We assume the sources, {Xi}= 1I and

{Yi}J1, are drawn from finite sets X and y according to a joint distribution p(x, y).

Denote by p(x) and p(y) the marginals of p(x, y).

We denote n-sequences of random variables X and Y as X = {X.k+ 1-l and

Y = {y}ik+n-1 respectively, where n and k are clear from context. We generally

assume k = 1. Because the sequence (x, y) was drawn i.i.d. according to p(x, y), we

can write the probability of any instance of the sequence as p(x, y) = H1•l p(xj, yi).

The sources encode their messages (at rates R,, R, E [0, 00]) for a common decoder

to compute a fixed deterministic function f : x y -- Z or f : Xn y, - Z ', its

vector extension. (The n will be clear from context.)

For any n, D, R,, and R,, we define a n-distributed functional code for the joint



source (X, Y) and function f as two encoder maps,

ey :yX {1,..., 2"nR}2 ,

and a decoder map,

r: {1,.. ., 2nRx } {1,..., 2R Zn.

Consider a distortion function, d: Z x Z -# [0, oo), with vector extension

d(zZ 2)-1 dd(Z1, Z2) d(li 2i

i=1

where Zl, Z2 E Z n . As in [28], we assume that the distortion function satisfies

d(Zl, z 2) = 0 if and only if z1 = z2. (Otherwise, one can define the equivalence

classes of the function values to make this condition hold.)

The probability of error is

Pn = Pr[{ (x, y) : d(f(x,y), r(e,(x), e,(y))) > D}].

A rate pair, (Rx, Ry), is achievable for a distortion D if there exists a sequence of

n-distributed functional codes at those rates and distortion level such that Pn -4 0 as

n -+ oc. The achievable rate region is the set closure of the set of all achievable rates.1

Our most general objective is to find this achievable rate region. If f(x, y) = (x, y),

this formulation is the same as the problems considered by Shannon [23] (when D = 0

and RY = 0 or R, = oc), Slepian and Wolf [24] (D = 0), etc. Thus, the main difference

is in the probability of error definition.

1The set closure of a set S is a set closed A such that S C A and A C T for any other closed set
T such that S c T.



2.2 Previous Results

We begin by defining a construct useful in formulating all the results.

Definition 2.1. The characteristic graph G, = (V., Ex) of X with respect to Y,

p(x,y), and f(x,y) is defined as follows: V = X and an edge (xl,x 2) E X 2 is in E,

if there exists a y E Y such that p(xl, y)p(x 2, y) > 0 and f(xi, y) / f(x 2, y).

Defined thus, G. is the "confusability graph" from the perspective of the receiver.

If (x 1 , x 2) E Ex, then the descriptions of xz and x2 must be different to avoid confusion

about f(x, y) at the receiver. This was first defined by Shannon when studying the

zero error capacity of noisy channels [22]. Witsenhausen 127] used this graph to

consider our problem in the case when one source is deterministic, or equivalently,

when one encodes X to compute f(X) with 0 distortion. The characteristic graph

of Y with respect to X, p(x, y), and f(x, y) is defined analogously and denoted G,.

When notationally convenient and clear, we will drop the subscript.

The importance of using the characteristic graph construct becomes clear when

considering independent sets2 of the graph. By definition of the edge set, knowledge

of Y and the independent set uniquely determines f(x, y).

For all vertices in a particular independent set, given Y, f is fixed by definition of

the edge set. The characteristic graph thus realizes the intuition behind confusability.

We illustrate this with Example 2.2.

Example 2.2. To illustrate the idea of confusability and the characteristic graph,

consider again the sources from Example 1.1. Both sources are uniformly and in-

dependently generating, say, 3-bit integers. The function of interest is f(X, Y) =

mod 4. Then, the characteristic graph of X with respect to Y, p(x, y) = 1 and f will

be as shown in Figure 2-1. Specifically, we see that there is an edge between xl and x 2

if and only if they differ in one or both of their final two bits. This is because, given

any y, f(xl, y) = f(x 2, y) if and only if xl and x2 have the same final two bits. O

2A subset of vertices of a graph G is an independent set if no two nodes in the subset are adjacent
to each other in G. With the characteristic graph, independent sets form equivalence classes.



Figure 2-1: Example of a characteristic graph.

Next, we define graph entropy, which we use later to more generally derive the

rate required for communication for problems such as in Example 2.2.

Definition 2.3. Given a graph G = (V, E) and a distribution on the vertices V,

Korner [17] defines the graph entropy as:

HG(X) = min I(W; X), (2.1)
xewEr(G)

where F(G) is the set of all independent sets of G.

The notation X E W e F(G) means that we are minimizing over all distributions

p(w, x) such that p(w, x) > 0 implies x E w where w is an independent set of the

graph G. We now demonstrate how this can be used to solve problems like that given

in Example 2.2.

Example 2.4. Consider again the scenario in Example 1.1 as presented in Example

2.2. For the graph in Figure 2-1, the maximally independent sets are the sets with

the same final two bits. Thus, to minimize I(X;W) = H(X) - H(XIW) or to

maximize H(XIW), we must have p(w) uniform over the 4 maximally independent

sets. This is because H(XIw) = 1 for all maximally independent w. Therefore, we

get HG(X)= 3- 1 = 2. El

As alluded to earlier and demonstrated in the example, Witsenhausen [27] showed

that the graph entropy is the minimum rate at which a single source can be encoded



such that a function of that source can be computed with zero distortion. For this

result, the vertices of the graph are the support of the random variable X and the

edge set is such that x and x' have an edge when f(x) $ f(x'). In other words, it is

our characteristic graph from above when there is no randomness in Y.

Orlitsky and Roche [20] defined an extension of K6rner's graph entropy, the con-

ditional graph entropy.

Definition 2.5. The conditional graph entropy is

HG(XIY) = min I(W; XIY). (2.2)
XEWEr(G)
W-X-Y

The additional constraint that W - X - Y forms a Markov chain formally states

the intuition that W should not contain any information about Y that is not available

through X. If X and Y are independent, HG(XIY) = HG(X).

Theorem 2.6 (Orlitisky-Roche Theorem, 2001 [20]). When G is the characteristic

graph of X with respect to Y, p(x, y), and f(x, y), R_ > HG(XIY) is the rate region

for reliable computation of the function f(X, Y) with zero distortion and arbitrarily

small probability of error when Y is available as side information.3

A natural extension of this problem is the functional compression with side infor-

mation problem for nonzero distortion. Yamamoto gives a full characterization of the

rate-distortion function for the side information functional compression problem [29]

as a generalization of the Wyner-Ziv side-information rate-distortion function [28].

Specifically, Yamamoto gives the rate distortion function as follows.

Theorem 2.7 (Yamamoto Theorem, 1982). The rate distortion function for the func-

tional compression with side information problem is

R(D) = min I(W; XIY)
peP(D)

3The knowledge of Y at the decoder can arise either through side information or an independent
description of Y at rate H(Y).



where P(D) is the collection of all distributions on W given X such that there exists

a g: IW x y -- Z satisfying E[d(f(X, Y), g(W, Y))] < D.

This is a natural extension of the Wyner-Ziv result, Theorem A.4. Additionally,

the variable W E I(G) in the definition of the Orlitsky-Roche rate (Definition 2.2) can

be seen as an interpretation (for the zero-distortion case), of Yamamoto's auxiliary

variable, W, as a variable over the independent sets of G. Namely, when the distortion

D = 0, the distributions on W given X for which there exists a reconstruction function

g place nonzero probability only if w describes an independent set of G and x E w.

2.3 Graph Entropies

Our results depend on the use of more graph tools, which we now describe. Alon and

Orlitsky denoted [21 the OR-power graph of G as G" = (V,, E,) where V, = V" and

two vertices (X1,x 2) E En C Vn x V, if any component (Xli, X2i) E E. This can be

interpreted as an encoding of a block of source observations.

A vertex coloring of a graph is any function c : V - N of a graph G = (V, E) such

that (x 1 , x 2) E E implies c(xi) - c(x 2). The entropy of a coloring is the entropy of

the induced distribution on colors p(c(x)) = p(c-'(c(x))) where c-l(x) = {2: c(2) =

c(x)} and is called a color class.

Definition 2.8. Let A C X x Y be a high probability set (i.e., be any subset such that

p(A) > 1 - e). Define p(x, y) = p(x, y)/p(A). In other words, P is the distribution

over (x, y) conditioned on (x, y) E A. Denote the characteristic graph of X with

respect to Y, ^, and f as x = (Vx, E,) and and the characteristic graph of Y with

respect to X, P, and f as G, = (Vy, E). Note that E; C E. and E Cg Ey. Finally,

we say c, and cy are E-colorings of G, and G, if they are valid colorings of G: and

G, defined with respect to some high probability set A.

Alon and Orlitsky [2] defined the chromatic entropy of a graph G.



Definition 2.9.

Ha(X) = min H(c(X)).
c is an e-coloring of G

Well-known typicality results (e.g., [9]) imply that there exists a high probability

set for which the graph vertices are roughly equiprobable. Thus, the chromatic en-

tropy is a representation of the chromatic number of high probability subgraphs of

the characteristic graph. We define a natural extension, the conditional chromatic

entropy, as follows.

Definition 2.10.

HY(XIY ) = min H(c(X)IY).c is an e-coloring of G

The above optimizations are minima and not infima because there are only finitely

many subgraphs of any fixed G, and thus only finitely many e-colorings regardless of

E. Later, in order to use typicality results, we allow a block length n and look at a

G", in order to drive error to zero. Thus, as n -- oc, we will look at the infimum over

all n.

These optimizations are NP-hard [6], but they can be approximated using existing

heuristics [5, 19]. With these definitions and results, we can now discuss our formal

results.





Chapter 3

Main Results

In this chapter, we formally state our results for the problems described earlier. The

proofs are provided in Chapter 4.

3.1 Functional Compression with Side Information

(D = 0)

We begin by describing this zero distortion problem for a single source. For example,

consider the case where the desired function depends only on X, and there is no side

information at the decoder. Witsenhausen [27] tells us the optimal rate is the graph

entropy HG(X) defined earlier in Definition 2.3 where G is the characteristic graph

of X with respect to the function f(X). As stated earlier, the chromatic entropy

is a representation of the chromatic number of a high probability subgraph of the

characteristic graph. K6rner proved [17] that in an appropriate limit, the chromatic

entropy approaches the graph entropy:

Theorem 3.1 (Korner Theorem, 1973).

1
lim -H •(X)= HG(X). (3.1)

n-oo n

The implications of this result are that we can compute a function of a discrete



memoryless source with vanishing probability of error by first coloring a sufficiently

large power graph of the characteristic graph of the source with respect to the func-

tion, and then, encoding the colors using any code that achieves the entropy bound

on the colored source. The previous approach for achieving rates close to the bound

HG(X) was to optimize with respect to a distribution over W as in the definition

of HG(X). This theorem allows us to move the optimization from finding the op-

timal distribution to finding the optimal colorings. Thus, our solution modularizes

the coding by first creating a graph coloring problem (for which heuristics exist), and

then transmitting the colors using any existing entropy-rate code. Moreover, we can

extend this technique to the functional side information case.

Now recall the problem described by Figure 1-1. For the problem with two sources,

Orlitsky and Roche proved the optimal rate for the zero distortion functional com-

pression problem with side information is HG(XIY). Recall from Definition 2.5,

HG(XIY) is also achieved by optimizing a distribution over W. Thus, our goal is to

extend Korner's Theorem to conditional chromatic and conditional graph entropies.

We do this in the following theorem.

Theorem 3.2.

lim 1HL (XIY)= HG(XIY)
n- 00 n

This theorem extends the previous result to the conditional case. In other words,

in order to encode a memoryless source, we first color a graph G" for sufficiently large

n. Then, we encode each source symbol with its corresponding vertex's color. Finally,

we use a Slepian-Wolf code on the sequence of colors achieving a rate arbitrarily close

to H(c(X)IY). This allows for computation of the function at the decoder, and

the overall code will then have rate arbitrarily close to the Orlitsky-Roche bound

HG(XIY) by Theorem 3.2. Thus, it is asymptotically optimal. Figure 3-1 illustrates

our coding scheme.

The Orlitsky-Roche achievability proof uses random coding arguments and proves

the existence of an optimal coding scheme, but does not specify it precisely. Our

coding scheme allows the use of heuristics available for finding good colorings as well
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Figure 3-1: Source coding scheme for the zero distortion functional compression prob-
lem with side information.

as the use of optimal source codes that achieve the conditional entropy. Finding the

minimum entropy colorings required to achieve the bound is NP-hard [6], but the

simplest colorings will (weakly)' improve over the bound H(XIY) that arises when

trying to recover X completely at the receiver by the Data Processing Inequality.

This solution gives the corner points of the achievable rate region for the distributed

functional compression problem, considered next.

3.2 Distributed Functional Compression (D = 0)

In this section, we prove rate bounds for the distributed functional compression prob-

lem. The derived rate region is always achievable and sometimes tight. The region

directly evolves from the coloring arguments discussed in the above section.

Recall the problem shown in Figure 1-2. Our goal is to provide an achievability

scheme that extends the modular scheme given in Figure 3-1 for the functional side

information problem. In other words, we provide a scheme that first precodes the

data (coloring) and then uses existing coding schemes on the precoded data. Here,

the natural choice for existing coding schemes would be codes that achieve rates close

to the Slepian-Wolf rate region boundary.

The Slepian-Wolf Theorem (see Theorem A.3) states that in order to recover

'For all functions f(X, Y), H(c(X)JY) < H(XJY). For any non-injective function f(X,Y) and
large enough block length n, H(c(X)IY) < H(XIY).

m

I-' -- - -- - - - - -'
I I



a joint source (X, Y) at a receiver, it is both necessary and sufficient to encode

separately sources X and Y at rates (Rx, Ry) where

R, 2 H(XIY)

R, > H(YIX)

Rx + RY > H(X, Y).

Let this region be denoted R(X, Y).

Also, for any n, and functions gx, and gy defined on X ' and yn respectively,

denote by Rn(gx, gy) the Slepian-Wolf region for the induced variables gx(X) and

g,(Y) normalized by the block length. In other words, R"(g, gy) is the set of all

(Rx, Ry) such that:

Rx > H(gx(X)|gy(Y)),

RY > -H(gy(Y) gx(X)),
1

R, + R, > -H(g(X), gy(Y)).

If Y is sent at rate H(Y), it can be faithfully recovered at the receiver. Thus, the

rate for X is then HG,(XIY) as given by Orlitsky and Roche. And the rate for Y

when Rx > H(X) is HGc,(YIX). Therefore, we know the corner points for the rate

region for the distributed functional compression problem.

Our goal is to determine the region as well as give a scheme analogous to the

one given in Figure 3-1 that achieves all rates in the given region. We proceed with

the following philosophy: color both X and Y and encode the colored sequences

using codes achieving the Slepian-Wolf bounds. We want to characterize when this

approach is valid. In other words, we want to find the conditions under which colorings

of the characteristic graphs are sufficient to determine f(x, y) for the zero distortion

problem.



3.2.1 Zigzag Condition

A condition which is necessary and sufficient for a coloring scheme as presented to

give a legitimate code is given below.

Condition 3.3. For any n, consider e-colorings c, and cy of Gn and Gn with asso-

ciated probability distribution P. The colorings cx and c, and the source distribution

p(x, y) are said to satisfy the condition if for all colors (y, a) E cx(X n ) x cY,(Y), and

all (X1, y 1), (x 2,y 2 ) E Cz 1(Y) X C 1 (r) such that pi(x1, y1)p(x 2,y2 ) > 0, f(x 1 ,y 1)=

f(X2, Y2)

Condition 3.3 presupposes an encoding scheme. We next present a condition that

does not.

Condition 3.4 (Zigzag Condition). A discrete memoryless source {(X, Yj)}iC with

distribution p(x, y) satisfies the Zigzag Condition if for any E and some n, (xl, yl),

(x 2,y 2) E Tn, there exists some (i,y) E Tn such that (i, yi), (xi,y) E T" for each

i c {1, 2}, and (, y) = (Xij, y(3-i)j) for some i {1, 2} for each j.

Under Condition 3.3, deciding whether to use our encoding scheme would re-

quire the encoding scheme to already exist because it relies on cx and cy. This is

problematic. On the other hand, the Zigzag Condition depends only on the source

distribution. Further, it implies Condition 3.3. The Zigzag Condition is weaker, but

easier to check: if not satisfied, there still may be colorings which satisfy Condition

3.3 and are thus valid and possibly optimal codes.

However, if the Zigzag Condition is satisfied, so is Condition 3.3 and the encoding

scheme is optimal. The Zigzag Condition is sufficient to ensure that any coloring of

the characteristic graphs will be sufficient to determine the function, and the com-

munication will be at a necessary rate. We want to understand the Zigzag Condition

in terms of what sources must satisfy it.

Consider some (xl,yl), (x2, y 2) E T7n . Then, we must have some (R, y) E Tf such

that (R, yl), (i,y 2), (xi, (x 2, y) E TP. This is represented in the Figure 3-2. If a
2

solid line is between two values, then the pair is in T4". If a dashed line is between the
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Figure 3-2: An illustration of the Zigzag Condition.

two values, then the paier is in T'. Thus, the Zigzag Condition forces many source
2

values to be typical, which suggests this condition is, in fact, strong.

Next, consider a source that does not satisfy the Zigzag Condition. One way we

could force it to satisfy the Condition would be to make previously atypical source

values typical. However, this would necessarily increase the rate and we have no

guarantee of optimality.

3.2.2 Rate Region

Next, define SE = U ) where for all n c and are -colorings of-- - Un Xl U Y(C),C()" 
n Cy) where for all n, C an Y are

Gn and Gn. Let S be such that S C 85 for all E > 0, and for any other A c S' for all

E > 0, A C S. Thus, S is the largest set that is a subset of 85 for all E > 0. Let S be

the set closure of S. 2 Finally, let R be the rate region for the distributed functional

compression problem. We can now state the rate region in the notation just given.

Theorem 3.5. For any e > 0, SE is an inner bound to the rate region, and thus, S

is an inner bound to the rate region. In other words, R C S. Moreover, under the

Zigzag Condition, the rate region for the distributed functional source coding problem

is 7 = S.

Thus, under the Zigzag Condition, any colorings of high probability subgraphs of

G' and Gn will allow for computation of the function. Furthermore, no other encod-

ings can achieve better rates. Thus, we have decoupled the encoding for functional

compression such that we first color our graph, and then we apply a Slepian-Wolf
2The set closure S is the smallest closed set that contains S.



code on the colors, an extension of Theorem 3.2 to the distributed case. Further,

while the above characterization is not single letter, any coloring (except when the

coloring is injective) necessarily does better than the Slepian-Wolf rates, by the Data

Processing Inequality (cf. [9]).

Also, we know that the Orlitsky-Roche bound is consistent with our region at

R, = H(Y). To see this, note that if R, = H(Y), this is the same as saying cy(y) = y

for all y typical with some x. Thus, the rate Rx must be R, > 1 H(cx(X)IY) which

is minimized at HGx (XIY) by Theorem 3.2. Next, we derive a characterization of the

minimum joint rate, R, + RY in terms of graph entropies.

Corollary 3.6. Under the Zigzag Condition, if there is a unique point which achieves

the minimum joint rate, it must be R, + Ry = HG. (X) + HGy(Y).

Thus, both encoders can use only p(x) and p(y), respectively, when encoding, and

encode at rates H(cx(x)) and H(c,(y)), respectively, to achieve the optimal joint rate.

Next, we consider the case where there jointly optimal rate is not unique. We want

to determine how far Rx + RY = HGx(X) + HG, (Y) is from the optimum.

Theorem 3.7. Let IGc(X; Y) = Hx(X) - HGx(XlY) be the graph information of

X with respect to Y. Let IG,(Y; X) = HG,(Y) - HG,(YIX) be the graph information

of Y with respect to X. Let Rx, = Rx + RY represent the value of the minimum joint

rate. Then, under the Zigzag Condition:

[HG.(X) + HG,(Y)] - Rxy < min IGx (X; Y), IG(Y;X)} .

Thus, for the case in Corollary 3.6, the mutual information of the minimum en-

tropy colorings of Gn and Gn goes to zero as n -+ oo:

lim -I(c(X); c(Y)) = 0.
n--·oo n

Further, Theorem 3.7 implies that if f is very simple in the sense that the independent

sets of Gx are large, then HG,(X) and HGx(XIY) are close, and IGc(X; Y) is close to

zero. Therefore, coloring followed by fixed block length compression (using p(x), not
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Figure 3-3: An example rate region for the zero distortion distributed functional
compression problem.

p(x, y)) is not too far from optimal. (Similarly, for G,.) Another case when the right

hand side of Theorem 3.7 is small is when X and Y have small mutual information.

In fact, if X and Y are independent, the right hand side is zero and Corollary 3.6

applies.

The region given in Theorem 3.5 has several interesting properties. First, it is

convex by time-sharing arguments for any two points in the region. Second, when

there is a unique minimal joint rate R,+Ry, we can give a single-letter characterization

for it (Corollary 3.6). When it is not unique, we have given a simple bound on

performance.

Figure 3-3 presents a possible rate region for the case where the minimal rate is

not unique. (For ease of reading, we drop the subscripts for Gx and GY and write G

for both.)

The "corners" of this rate region are (HG, (XIY), H(Y)) and (H(X), HG, (YIX)),

the Orlitsky-Roche points, which can be achieved with graph coloring, in the limit



sense, as described earlier. For any rate Rx E (HG,(XIY), H(X)), the joint rate

required is less than or equal to the joint rate required by a time-sharing of the

Orlitsky-Roche scheme. The inner region denoted by the dotted line is the Slepian-

Wolf rate region.

The other point we characterize is the minimum joint rate point (when unique)

given as (HG. (X), HG, (Y)). Thus, we have given a single-letter characterization for

three points in the region.

3.3 Functional Compression with Side Information

(D > 0)
We now consider the functional rate distortion problem; we give a new characteriza-

tion of the rate distortion function given by Yamamoto. We also give an upper bound

on that rate distortion function which leads to an achievability scheme that mirrors

those given in the functional side information problem.

Recall the Yamamoto rate distortion function (Theorem 2.7). According to the

Orlitsky-Roche result (Theorem 2.6), when D = 0, any distribution over independent

sets of the characteristic graph (with the Markov chain W - X - Y imposed) is in

P(0). Any distribution in P(0) can be thought of as a distribution over independent

sets of the characteristic graph.

We show that finding a suitable reconstruction function, f, is equivalent to finding

the g on W x Y from Theorem 2.7. Specifically, for any m, let Fm(D) denote the set

of all functions fm : x Y ' -m Zm such that

lim E[d(f(X, Y), fm(X, Y))] < D.
m-oo

To prove this, we will eventually consider blocks of m-vectors; thus, the functions

in the expectation above will be on X " n x y m n. Let F(D) = Um•s Fm(D). Let

G(f) denote the characteristic graph of X with respect to Y, p(x, y), and f for any

f E F(D). For each m and all functions f E F(D), denote for brevity the normalized



graph entropy ±HG(f)(X|Y) as HG(f)(XY).

Theorem 3.8.

R(D) = inf HG(f)(X Y)
f Fc(D)

Note that G(f) must be a subgraph of the characteristic graph Gm (for appropriate

m) with respect to f. Because Gm is finite, there are only finitely many subgraphs.

Thus, for any fixed error E and associated block length m, this is a finite optimization.

This theorem implies that once the suitable reconstruction function f is found, the

functional side information bound (and achievability scheme) using the graph G(f)

is optimal in the limit.

This characterization is mostly illustrative. Indeed, T-(D) is an (uncountably)

infinite set, but the set of graphs associated with these functions is countably infinite.

Moreover, any allowable graph dictates an ordinal function, but it has no meaning in

terms of distortion. Given the ordinal function f, choosing the cardinal values that

minimize expected distortion is a tractable optimization problem. This shows that if

one could find an approximation function f, the compression rate may improve (even

when f is not optimal).

The problem of finding an appropriate function f is equivalent to finding a new

graph whose edges are a subset of the edges of the characteristic graph. This motivates

Corollary 3.9 where we use the a graph parameterized by D to look at a subset of

F(D). The resulting bound is not tight, but it provides a practical tool for tackling

a very difficult problem.

Define the D-characteristic graph of X with respect to Y, p(x, y), and f(x, y), as

having verticies V = X and the pair (Xl, x 2) is an edge if there exists some y E Y

such that p(xl,y)p(x 2, y) > 0 and d(f(xl,y), f(x 2,y)) > D. Denote this graph as

GD . Because d(zl, z2) = 0 if and only if zl = z2, the 0-characteristic graph is the

characteristic graph, i.e. Go = G.

Corollary 3.9. The rate HGD(XIY) is achievable.

Constructing this graph is not computationally difficult when the number of ver-

tices is small. Given the graph, we have a set of equivalence classes for f. One can



then optimize f by choosing those values for the equivalence classes that minimize

distortion. However, any legal values (values that lead to the graph GD) will neces-

sarily still have distortion within D. Indeed, this construction guarantees that not

only is expected distortion less than or equal to D, but actual distortion is always

less than or equal to D. There are many possible improvements to be made here.

Theorem 3.2 and the corresponding achievability scheme, Corollary 3.9, gives a

simple coding scheme that may potentially lead to large compression gains.

3.4 Possible Extensions

In all of the above problems, our achievability schemes are modular, providing a

separation between the computation of the function and the correlation between the

sources.

The computation module is a graph coloring module. The specific problem of

interest for our scheme is NP-hard [6], but there is ample literature providing near-

optimal graph coloring heuristics for special graphs or heuristics that work well in

certain cases [5, 19].

The correlation module is a standard entropy coding scheme such as Slepian-Wolf

coding. There are many practical algorithms with near-optimal performance for these

codes. For example DISCUS codes [21] and source-splitting techniques [8].

Given the separation, the problem of functional compression becomes more tractable.

While the overall problem may still be NP-hard, one can combine the results from

each module to provide heuristics that are good for the specific task at hand.

We note that all results consider only two sources X and Y. Extending the

correlation coding to a more general scenario of N sources is a solved problem [9,

p. 415]. Thus, it seems likely that given a suitable extension of the graph coloring

technique and an extension of the condition required for distributed compression (the

Zigzag Condition), a full region for N sources would resolve. However, we focus on

the two-source scenario because, as with Slepian-Wolf, we have gained many insights

into the problem. We leave the extension to future work.





Chapter 4

Proofs and Ancillary Results

In this chapter, we provide full proofs of all our previously-stated results.

4.1 Functional Compression with Side Information

We recall Theorem 3.2:

lim -H,(XIY ) = HG(XIY ) .  (4.1)
n--oo n~

To prove this, we borrow proof techniques from Korner [17], and Orlitsky and Roche

[20]. We first state some more typicality results. We use the notion of e-strong

typicality (see Definition A.2).

Lemma 4.1. Suppose (X, Y) is a sequence of n random variables drawn indepen-

dently and according to the joint distribution p(x, y), which is the marginal of p(w, x, y).

Let an n-sequence W be drawn independently according to its marginal, p(w). Sup-

pose the joint distribution p(w, x, y) forms a Markov Chain, W - X - Y. Then, for

all E > 0, there is a E1 = k -. , where k depends only on the distribution p(w, x, y),

such that for sufficiently large n,

1. P[X 0 Tn] < el, P[Y ý Tn] < El, and P[(X, Y) Tn] < ea,

2. For all x E Te, P[(x, W) E T"] Ž 2
- n(I(W;X)+I)



3. For all y E Tnj, P[(y, W) E Tn ] < 2 -n(I(w;X)-e j )

4. For all (w,x) E Tn,

P[(w, Y) E Tel(x, Y) E T,] > 1 - E1.

Part 1 follows from [9, Lemma 13.6.1], parts 2 and 3 follow from [9, Lemma 13.6.2],

and part 4 follows from [9, Lemma 14.8.1].

4.1.1 Lower Bound

Consider any n and the corresponding OR-product graph G". Let c be an e-coloring

of Gn that achieves HGn(XIY), i.e.

HG,(XIY) = H(c(X)IY).

As stated earlier, a minimum entropy coloring exists because the set of all colorings

on a graph with a finite number of verticies (here, fewer than IXI") is finite. With

this coloring, we prove that there is a scheme that encodes at rate HG (XlY) such

that the decoder can compute f(X, Y) with small probability of error. Proving that

would establish achievability of the rate 'HGX(XIY). Theorem 2.6 proves that no

achievable rate can be below HG(XIY). This will give us the following lemma.

Lemma 4.2.
1

lim inf -HG (XlY) Ž HG(XIY).
n--oo n

Proof. For any n > 0, let c, as above, denote a coloring on Gn that achieves HG (XlY),

for G the characteristic graph of X with respect to Y, p(x, y), and f(x, y). Let

E = {c(x) : x E Xj}, the set of all colors. For every color a E E and y E yn, let

g(a,y) = f(,,y) where x E c-l(a) = {x : c(x) = a} with p(jR,y) > O. If no such x

exists, g is undefined.

Consider (x, y) as an instance of the source. Thus, p(x, y) > 0. Suppose c(x) = a

and y are available at the decoder where c is defined as above. Then, there is a



decoding error when g(o, y) - f(x, y). This is true only if there exists some x E X"

such that c(0) = o, p(, y) > 0, and f(, y) $ f(x,y). However, because c(R) =

c(x), it is true that (x, ) ý E, where E is the edge set of G". Therefore, for all

y•C yn with p(x, y)p(x, y) > 0, it must be true that f(x, y) = f(k, Y). This means

f(k, y) = f(x,y) for all X E c- 1(a) with p(, y) > 0. Thus, g(a, y) = f(x, y). This

shows that the side information along with just the color is sufficient to determine f.

It remains to be seen how to make c(x) and y available at the decoder. Recall that

if a source is encoded at a rate equal to its entropy, it can be recovered to arbitrarily

small probability of error at the decoder. Thus, having Y available at the decoder

as side information is the same as encoding Y at rate greater than H(Y). Recall

the Slepian-Wolf Theorem [24] on sources C and Y states that if RY > H(Y), an

encoding with rate Rc > H(CIY) suffices to recover (C, Y) at the decoder.

We consider our source as (c(X), Y). Thus, an encoding of rate at least H(c(X)IY)

suffices to recover the functions with arbitrary probability of error. Encoders (and cor-

responding decoders) exist by the Slepian-Wolf Theorem. Let e : Em - { 1, ... , 2m }
be such an encoding with f : {1,..., 2mR }I x ynm -- Em x ynm its corresponding

decoder. Thus, the idea here is to first color n-blocks of the source. Then, one encodes

m-blocks of the colors. The overall rate will be 1H(c(X)lY)).

Formally, fix some n C N. Suppose e > 0. With an encoder as above, let m be

such that

Pr [f(a, Y) $ (a, Y)] < E. (4.2)

To show achievability, we need to prove that there exists an encoder e : m" +

{1,... , 2 mH(c(X)IY)} and a decoder r : {1, ... ,2m H (c(X )JY )  nm X Zn m such that

the probability of error is also small:

Pr [r(e(X), Y) # f(X, Y)] < e. (4.3)



To prove this, define our encoder as

Then define the decoder as

r(e(xi, ... , xm), (yi,.. ,Ym)) = (g(c(x), y 1),... g(c(xm),ym)),

when i correctly recovers the pair (c(xi), yi) and is undefined otherwise.

The probability that f fails is less than e by (4.2). If f does not fail, then, as

described earlier, the function will be correctly recovered. Thus, we have shown

(4.3).

Therefore, for any n, the rate IHG. (XJY) is achievable. Thus,

lim inf 1HG, (XjY) _ HG(X|Y),n--oo

completing our proof of the lower bound. O

4.1.2 Upper Bound

Next, we prove that the encoding rate required to recover c(X) given Y is at most

HG(X Y):

Lemma 4.3.
1

limsup-HGS(XIY) < HG(XIY).
n-0oo n

Proof. Suppose e > 0, 6 > 0. Suppose n is (sufficiently large) such that: (1) Lemma

4.1 applies with some e1 < 1, (2) 2-n < el, and (3) n > 2 + -

Let p(w, x, y) be the distribution that achieves the HG(XIY) with the Markov

property W - X - Y. (This is guaranteed to exist by Theorem 2.6.) Denote by p(w),

p(x), and p(y) the marginal distributions. For any integer M, define an M-system

(W 1,... ,W WM) where each W. is drawn independently with distribution p(w)

EI=1p(w).



Our encoding scheme will declare an error if (x, y) ý T,ý. This means that the

encoder will code over e1 colorings of the characteristic graphs. By construction, this

error happens with probability less than e1. Henceforth assume that (x, y) E Tn.

Next, our encoder will declare an error when there is no i such that (Wi, x) E T".

This occurs with probability

M

(b)Pr[(Wi, x) B T"Vi) 1- Pr[(Wix) < T"]= (1 - Pr[(W, x) E T])M

(1 - 2-n(I(W;X)+E)) M

(d)_M.2n((w;x)+1)

where (a) and (b) follow because the Wi are independent and identically distributed,

(c) follows from Lemma 4.1 part 2, and (d) follows because for a E [0, 1], (1 - a)n"

2- n a. Assuming M > 2 n(I(W;X)+el +b),

Pr[(Wi, x) ( TVi] < 2- n <

because n is large enough such that the final inequality holds. Henceforth, fix an

M-system (W 1,... ,W WM) for some M > 2n(I(W;x)+ei+ ) . Further, assume there is

some i such that (Wi, x) E T6.

For each x, let the smallest (or any) such i be denoted as 6(x). Note that C is an

e1-coloring of the graph G". For each y, define:

S(y) = {f(x) : (x, y) E Tn,

Z(y) = {W : (Wi, y) E Tn,

s(y) = IS(y)l,

z(y) = IZ(y)f.

Then, s(y) = -•M 1 liES(y), because our coloring scheme ^ is simply an assignment of



the indices of the M-system. Thus, we know

M

E[s(Y)] = ZPr[i E S(Y)].
i=1

Similarly, we get z(y) = -- 1 lw Z(y). Thus,

E[z(Y)] =
M

E Pr[Wj E Z(Y)]

M

> S Pr[Wi E Z(Y) and i E S(Y)]
i=l

M

= Pr[i E S(Y)]P[Wi E Z(Y)(i E S(Y)]
i=l

We know that if i E S(Y), there is some x such that 6(x) = i and (x, Y) E TE. For

each such x, we must have (by definition of our coloring), (Wi, x) e T,. For each

such x where (Wi, x) E Tn,

Pr[Wj E Z(Y)Ii E S(Y)] = Pr[(Wi, Y) c T"lI(x, Y) E T,]

> 1 - E1

by Lemma 4.1 part 4. Thus, we have E[z(Y)] Ž (1 - 61)E[s(Y)]. This, along with

Jensen's inequality, imply

E[log s(Y)] 5 log E[s(Y)]

< logE [Iz(Y).- L1 -EJ

Finally, (using a Taylor series expansion) we know log < E2 = 2E, + when

0 < E1 < 1. Thus,

E[log s(Y)1] log E[z(Y)] + e2, (4.4)



We compute

E[z(Y)] =
M

P[(Wi, Y) E Tn]

= M P[(Wi, Y) E TC]

because the Wi are i.i.d. Therefore,

E[z(Y)] < M- 2 -n(I(W;Y)-Ej) (4.5)

by Lemma 4.1 part 3.

By the definition of S(y), we know that determining c given Y = y requires at

most log s(y) bits. Therefore, we have

(4.6)

Putting it all together, we have

HX (XIY)
H(( X)a)Y)

< H(6(X)IY)

(b)
< E[log s(Y)]
(c)
< log E[z(Y)] + e2
< log (M 2-n(I(W;Y)--)) ± £2

(log ( 2n(I(W;X)-I(W;Y)+2e+6) + 1) + 2

(f)
< n(I(W; X) - I(W; Y) + 2e1 + 3) + 1 + E2

where (a) follows by definition of the conditional chromatic entropy, (b) follows from

inequality (4.6), (c) follows from inequality (4.4), (d) follows from inequality (4.5),

(e) follows by setting M = [2n(I(W;X)+EI+6)], and (f) follows because log(a + 1) <

log(a) + 1 for a > 1.

H(ý(X) Y ) <5 E[log s(Y)].



For Markov chains W - X - Y,

I(W; X) - I(W; Y) = I(W; XIY).

Thus, for our optimal distribution p(w, x, y), we have

HG~(XIY) < n(HG(XIY) + 21 + 6) + 1 + 62

Because n > 2 + -L,1+2 < ei. Thus, IHG,(XIY) • HG(XY) + 3E1 + 6. This

completes the proof for the upper bound:

1
limsup -HGn(X|Y) • HG(XIY).

n---oo n

The lower and upper bounds, Lemmas 4.2 and 4.3, combine to give Theorem 3.2:

1
lim -HG (XIY) = HG(XIY).

n-0oo n

4.2 Distributed Functional Compression

Recall Theorem 3.5 states that the achievable rate region for the distributed functional

compression problem, under the Zigzag Condition (Condition 3.4), is the set closure

of the set of all rates that can be realized via graph, coloring.

We prove this by first showing that if the colors are available at the decoder, the

decoder can successfully compute the function. This proves achievability. Next, we

show that all valid encodings are e-colorings of the characteristic graphs (and their

powers). This establishes the converse.



4.2.1 Achievability

We first prove the achievability of all rates in the region given in the theorem state-

ment.

Lemma 4.4. For sufficiently large n and c-colorings c, and c, of Gn and G , respec-

tively, there exists

f : :c(X n) x cY(y" ) -,+ Z

such that f (c.(x), c,(y)) = f(x, y) for all (x, y) E Tn.

Proof. Suppose (x, y) E Tn, and we have colorings c_ and cy. We proceed by con-

structing f. For any two colors -y E cx(X n ) and a E c,(Yn), let ^i E cx-1(y) and

y E cyl'() be any (say the first) pair such that p(ki, 9) E Tn. Define f(7, a) = f(i, 9).

There must be such a pair because certainly (x, y) qualifies.

To show this function is well-defined on elements in the support, suppose (xi, Yl)

and (x 2 , Y2) are both in Tn. Suppose further that cx(xI) = cx(X 2) and cy(yl) = cy(y 2 ).

Then, we know that there is no edge (xl, x2 ) in the high probability subgraph of G"

or (yi, y2) in the edge set of the high probability subgraph of Gn by definition of

graph coloring.

By the Zigzag Condition, there exists some (i, k) such that (k, yl), (R, y2), (xl,1),

(x 2 ,y) n Tn. We claim that there is no edge between (xi, R) or (yi, y) for either i.

We prove this for (xl, i) with the other cases following naturally. Suppose there

were an edge. Thus, there is some Y such that f(xl, Y) :- f(i, Y). This implies that

f(x 13 , I) ) f(xJ, j) for some j. Define k' as ? in every component but the j-th,

where it is 9j.

We know that for all (x, y) E X x y,

IV(x i,)(x, y) - p(x, y)I < o 21XIIYI

by Definition A.2 of i-typicality. Therefore,

It(xi,,S)(, y) - p() , y)l < )I Y21XllYI



for all (x, y) such that y $ yj and y y9j.

Next, we can choose n large enough such that n > 21XIIYI Then, for y = ,j or

y = 9j, the empirical frequency changes by at most -. Thus, for all (x, y) (includingn

y = ýj and y = 9j), we have

E 1IV(,xi')(X, Y) -p(x, y)l < + - <2XIIYI n - IxllYI

Thus, ý' is e-typical with both x, and X2. By construction, f(x, ') - f(x 2, ').

Therefore, there must be an edge in the high probability subgraph between (xl, X2),

an impossibility. Thus, there is no edge (xl, i). The others follow similarly.

Thus, by definition of the graph,

f(xI,yi) = f(, Yl) = f(,Y) = f(x 2,y) = f(x 2,y 2).

Therefore, our function f is well-defined and has the desired property. O

Then, Lemma 4.4 implies that we can successfully compute our function f given

colors of the characteristic graphs. Thus, if the decoder is given colors, it can look up

f based on its table of f. The question is now of faithfully (with probability of error

less than E) transmitting these colors to the receiver. However, when we consider the

colors as sources, we know the achievable rates.

Lemma 4.5. For any n, e-colorings cx and c, of G' and G', respectively, the achiev-

able rate region for joint source (cx(X), cy(Y)) is the set of all rates, (R', Rb), satis-

fying:

Rc > H(cx(X)lc,(Y)),

R >_ H(c,(Y)I c(X)),

Rx + Rc > H(c (X),c,(Y)).

Proof. This follows directly from the Slepian-Wolf Theorem [24] for the separate

encoding of correlated sources. Ol



Suppose the probability of decoder error for the decoder guaranteed in Lemma

4.5 is less than f. Then the total error in the coding scheme of first coloring Gn and

Gn, and then encoding those colors to be faithfully decoded at the decoder is upper

bounded by the sum of the errors in each stage. Thus, Lemmas 4.4 and 4.5 together

to show that the probability that the decoder errs is less than e for any e provided

large enough n (and block size m on the colors).

Finally, in light of the fact that n source symbols are encoded for each color, the

achievable rate region for the problem under the Zigzag Condition is the set of all

rates (Rx, R,) such that

Rx 2 _H(c"(X)jc"(Y)),
1

R > 1H(c"(Y)cIn(X)),
n

R, + R, > -H(ce(X), c"(Y)).

where c" and c" are achievable e-colorings (for any E > 0). Thus every (Rx, Ry) E S'

is achievable for all e > 0. Therefore, every (Rx, Ry) E S is achievable.

4.2.2 Converse

Next, we prove that any distributed functional source code with small probability of

error induces a coloring.

Suppose E > 0. Define for all (n, E),

"= {j: Pr[f(X, Y) f(X, Y)] < e}.

This is the set of all functions that equal f to within E probability of error. (Note

that all achievable distributed functional source codes are in ~,F for large enough n.)

Lemma 4.6. Consider some function g : X x Y --+ Z. Any distributed functional

code that reconstructs g with zero-error (with respect to a distribution p(x, y)) induces

colorings on the characteristic graphs of X and Y with respect to g, p(x, y), and Y



and X, respectively.

Proof. Suppose we have encoders e, and ey, decoder d, and characteristic graphs G'

and Gn. Then by definitions, a zero-error reconstruction implies that for any (x, y2),

(x2, y2) such that if p(xl, yi) > 0, p(x 2, 2) > 0, ex(x 1 ) = ex(X2), and ey(yi) = e,(y 2),

then

f(x 1 ,y 1) = f(X 2, Y2) = r(ex(XI), e y(y)). (4.7)

We now show that ex and e, are valid colorings of Gn and Gn. We demonstrate

the argument for X. The argument for Y is analogous. We proceed by contradiction.

If it were not true, then there must be some edge with both vertices with the same

color. In other words, there must exist (xl, X2,y) such that p(x,y)p(X2, y) > 0,

ex(xI) = ex(X 2), and f(xI,y) f(X 2, y). This is impossible (by taking Yi = y2 = Y

in equation (4.7)). Hence, we have induced colorings of the characteristic graphs. El

We now show that any achievable distributed functional code also induces an

e-coloring of the characteristic graphs.

Lemma 4.7. All achievable distributed functional codes induce e-colorings of the

characteristic graphs.

Proof. Let g(x,y) = r(ex(x),e,(y)) E Tn be such a code. Then, we know that a

zero-error reconstruction (with respect to p) of g induces colorings, ex and ey, of the

characteristic graphs with respect to g and p by Lemma 4.6. Let the set of all (x, y)

such that g(x,y) # f(x,y) be denoted as C. Then because g E F , we know that

Pr[C] < E. Therefore, the functions ex and e, restricted to C are e-colorings of Gx

and Gy (by definition). OL

Thus, the Lemma 4.6 and Lemma 4.7 establish Theorem 3.5 in full.

4.2.3 Minimal Joint Rate

Recall Corollary 3.6 states that under the zigzag condition, when there is a unique

point achieving the minimum joint rate, it must be Rx + Ry = HGc(X) + HG,(Y).



Proof. First, we recall the rate pair (HG,(X), HG,(Y)) can be achieved via graph

colorings. This is true by the achievability result of Theorem 3.5 along with Theorem

3.1, which states that graph colorings can achieve each of HGc (X) and HG, (Y). In the

achievability proof above, we showed that, under the zigzag condition, any coloring

scheme will lead to achievable rates. Therefore, (HGc (X), HG, (Y)) is in the rate

region. (Note, that we have not yet used the uniqueness of the minimum.)

Suppose (R., Ry) achieves the minimum joint rate. By Theorem 3.5, this must

be in some Slepian-Wolf region for the colors. Because it is a minimum, we must

have Rx + R, = !H(c"(X), c"(Y)). This can be achieved with RX = 1H(ce(X)) and

Ry = 1H(cy(Y) Ic(X)) or with Rx = •H(c"(X)Icn(Y)) and R, = H(c"(Y)).

By assumption, there is only one such point, thus we must have 1I(cn(X); cy(Y)) -

0 as n coo. Thus, the minimal rate is 1H(cxn(X))+ H(c"(Y)) -- Rx+R, as n - oo.

We know for all n, HGx(X) + HG,(Y) <• H(cx(X)) + 1H(c"(Y)) by Theorem 3.1.

Therefore, we must have that the minimum achievable joint rate is HG,(X) +

HG, (Y). O

This corollary implies that minimum entropy colorings have decreasing mutual

information as n increases. Thus, the closer we are to the optimum via graph coloring,

the less complicated our Slepian-Wolf codes must be. In the limit, because mutual

information is zero, each source only needs to code to entropy. Thus, the Slepian-Wolf

codes are unnecessary when achieving the minimal joint rate. (Nevertheless, finding

the minimum entropy colorings is, again, NP-hard.)

Next in Theorem 3.7, we consider the case when the minimum is not uniquely

achievable.



Proof. The joint rate must always satisfy:

1Rx + R, = H(cx(X), c(Y))

=-H(c"(X)) + -H(c"(Y)lc((X))
n Tn

>HGx(X) + 1H(cn(Y)IX)

2HGx(X) + HG,(YIX)

The first inequality follows from the Data Processing Inequality on the Markov chain

c"(Y) - X - cn(X), and the second follows by definition of the conditional graph

entropy. Similarly, we get:

Rx + Ry = -H(c(X),c C(Y))x Yn Y()
1

=-H(c"(X)
1

Icn(Y)) + -H(cI(Y))
CYnH%'

2HGc(XIY) + HGy(Y)

Thus, the difference between the optimal rate (Rx + Ry), and the rate given in

Corollary 3.6 is bounded by the following two inequalities:

[HGx (X) + HG,(Y)] - [R y + Ry] < HGx(X) - HG (XIY)

[HGx (X) + HG,(Y)] - [Rx ± R] < HGY,(Y) - HGY,(Y X)

4.3 Functional Rate Distortion

In this section, we prove Theorem 3.8 and Corollary 3.9 for the functional rate dis-

tortion problem.



We restate Theorem 3.8 for completeness:

R(D) = min HG(f)(XIY)
fEG~(D)

Proof. We prove that the given characterization is valid by first showing the rate

HG(j)(XIY) is achievable for any f E F(D), and next showing that every achievability

scheme must be in F(D).

By Orlitsky and Roche, we know that the rate HG(f)(XIY) is sufficient to deter-

mine the function f(X, Y) at the receiver. By definition,

lim E[d(f(X, Y), f (X, Y))] < D.
n--+oo

Thus, the rate HG(y)(XIY) is achievable.

Next, suppose we have any achievable rate R, with corresponding sequence of

encoding and decoding functions en and en respectively. Then the function f(., ) =

e2 (e(-),.) is a function f": X x y' × -+ Z n with the property (by achievability) that

limn-,oo E[d(f(X, Y), f(X, Y))] < D (again because as n --+ oc, e is driven to 0).

Thus, f E F(D), completing the proof of Theorem 3.8. O

Next we prove Corollary 3.9, which states that HGD(XIY ) is an achievable rate.

We show this by demonstrating that any distribution on (W, X, Y) satisfying W -

X - Y and X E W E F(GD) also satisfies the Yamamoto requirement (i.e. is also in

P(D)).

Proof. Suppose p(w, x, y) is such that p(w, x, y) = p(wlx)p(x, y), or W - X - Y is a

Markov chain. Further suppose that X E W E F(GD). Then define g(w, y) = f(x*, y)

where x* is any (say, the first) x E w with p(x*, y) > 0. This is well-defined because

the nonexistence of x such that p(x, y) > 0 is a zero probability event, and x E w

occurs with probability one by assumption.

Further, because w is an independent set, for any zx, x 2 E w, one must have

(x1 , x 2 ) ý ED, the edge set of GD. By definition of GD, this means that for all y E Y

such that p(xI,y)p(x 2,y) > 0, it must be the case that d(f(xl,y),f(x 2,y)) < D.



Therefore,

E[d(f(X, Y), g(W, Y))] = E[d(f(X, Y), f(X*,Y))] < D

because both X E W and X* E W are probability 1 events.

We have shown that for a given distribution achieving the conditional graph en-

tropy, there is a function g on W x y that has expected distortion less than D. In

other words, any distribution satisfying W - X - Y and X E W E F(GD) is also

in P(D). Further, any such distribution can be associated with a coding scheme,

by Orlitsky and Roche's work [20], that achieves the rate I(W;XIY). When the

distribution is chosen such that I(W; XIY) is minimized, this is by definition equal

to HGo(XIY). Thus, the rate HGD(XIY) is achievable, proving Corollary 3.9 and

providing a single-letter upper bound for R(D). O



Chapter 5

Applications

In this chapter, we present some applications of the work presented in the previous

chapters.

5.1 Blue Force Tracking

In this section, we consider a sensor network scenario in which there are several

sources communicating with some central receiver. This receiver wishes to learn

some function of the sources.

Specifically, we consider Blue Force Tracking, which is a CPS system used by the

U.S. Armed Forces to track friendly and enemy movements. Sometimes the nodes

in the system communicate with each other, and sometimes they communicate with

some central receiver, such as a UAV, which is the case considered here.

We present preliminary experimental results for the algorithm given for the dis-

tributed functional compression. We obtained tracking data from SRI International.'

This data represents GPS location data. It includes information on various mobiles,

including latitude and longitude coordinates. We ignored the other information (e.g.,

altitude) for the purpose of this simulation. See Figure 5-1. The blue represents the

trajectory through time of one vehicle, and the red curve represents the trajectory of

1We thank Dr. Aaron Heller for providing the data, available at: http://www.ai.sri. com/ajh/
isat.
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Figure 5-1: Blue Force Tracking Data.

the other.

We focused on these two mobiles, our sources. We assume that our sources are

the positional differences (i.e. A-encoding), X1 and X2, where each is actually a pair,

(AX1,LAT, AX1,LON) and (AX2,LAT, AX2,LON), of the latitude and longitude data.

The use of A-encoding assumes that the positional differences form a Markov chain,

a common assumption. Our goal is to test the hypothesis that there can be significant

encoding gains with even very simple coloring schemes when a function and not the

full sources need to be recovered. We consider three relative proximity functions2 for

2We would have liked to use a true proximity function, but then we could not form a valid
comparison because our uncolored rate would be in terms of A-encoding, but our coloring would
necessarily have to be in terms of an encoding of the true position. Therefore, we examine functions
that measure how far two mobiles moved towards or away from each other relative to their previous
distance, a kind of distance of positional differences.

n4 nP%
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Figure 5-2: Levels of compression.

our analysis:

fLAT(X 1, X 2) = IAX1,LAT-AX2,LATI<Z ,

fLoN(X1, X2) = IIAX1,LON-aX2,LON<Z,

f(X 1 ,X 2) = 1 • 2f (Xb X2) = I X(Ax1,LAT-AX2,LAT) 2
+(AXI,LON-AX2,LON) <z

Thus, the functions are 1 when the sources change their relative position by less

than Z (along some axis or both), and 0 otherwise. To compare the results of our

analysis with current methods, we consider the joint rate R1 + R2 where X, is com-

municated at rate R 1 and X 2 is communicated at rate R2. There are several means

of rate reduction summarized in Figure 5-2.

First, the most common (in practice) means of communication is to actually com-

municate the full index of the value. This means that if X1 takes MI possible values

and X 2 takes M2 possible values, each source will communicate those values using

log MI bits and log M2 bits, respectively. Thus, the joint rate is log M1 M2. This is

clearly inefficient.

Second, we can immediately reduce the rate by compressing each source before

communication. Therefore the rate for X1 would be H1 = H(X1 ), and the rate for

X 2 would be H2 = H(X 2 ). The joint rate would be H1 + H2. This is strictly better
than the first method unless the sources are uniformly distributed.

Third, we can further reduce the rate using correlation, or Slepian-Wolf, encoding.

m



We could use any of the techniques already developed to achieve near optimal rates,

such as DISCUS codes [21] and source-splitting [8]. The joint rate would be H 12 =

H(X 1, X 2). This is strictly better than the second method unless the sources are

independent.

Fourth, we could use our coloring techniques from Section 3.2. If we considered

each source communicating its color to the central receiver, the joint rate will be

H x + H2x = H(ci(Xi)) + H(c2 (X 2 )). This may not be better than the above third

method, though it certainly will be for independent sources. It will always be better

than the second method.

Finally, we could use Slepian-Wolf coding over the colors to achieve a joint rate of

H 2 = H(cl(X 2), C2(X 2)), which will be strictly better than the third method unless

cl and C2 are both injective and strictly better than the fourth method unless cl(X 1)

and C2(X 2) are independent. Thus, the rate relations are as follows:

H 12
log M 1 M2 > H F + H 2  H12 > Hx1.

H x + H2

In our simulations, we test various values of Z to see how the likelihood p

P[fLON(X , X2) = 1], which changes with Z affects the rate reduction.' Intuitively,

we expect that as p becomes more extreme and approaches either 0 or 1, the rate

reduction will become more extreme and approach 100%. (Because if fLON = 1 or

fLON = 0 with probability 1, there is nothing to communicate and the rate required

is 0. This is shown in Figure 5-3 where we plot the empirical probability p = p(Z)

versus the rate HX2.

We expect it would be more symmetric about 1/2 if we used optimal encoding

schemes. However, we are only considering G = G1 (no power graphs) when coloring,

as well as a quite simple coloring algorithm. Had we used power graphs, our rate gains

would be higher, though the computational complexity would increase exponentially

with n. Our coloring algorithm was a simple greedy algorithm that did not use any

of the probability information nor was it an e-coloring. We expect better gains with

3We only show our results for fLON for brevity. The intuition remains for f and fLAT.
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Figure 5-3: Empirical probability versus rate.

more advanced graph coloring schemes.

In Table 5.1, we present the rate results for the various stages of compression in

Figure 5-2. All units are in bits. In the table, we use the values of Z that provide the

lowest rate reductions; in other words, we use the worst case rates by testing various Z

as in Figure 5-3. The percentage next to each number shows the percentage decrease

in rate. Thus, for the first column, we see 0%, and in the second we see

7.93
1 - 0.149 15%.

9.32

We can see that the sources are close to independent, as H12 is only slightly smaller

than H1 + H2 . Therefore, there is not much gain when considering the correlation

between the sources. Nevertheless, the coloring provides a great deal of coding gain.

For the simpler fLAT and fLON, the rate has been reduced almost threefold.

This provides evidence that our techniques can indeed lead to large rate gains. For

the more simple functions, the rate has been reduced over 60%. Further, considering

_ __



Table 5.1: Empirical results for our encoding scheme.

Rates log M1 M2  H/ + H2  H12 HX + H2 HX2

f(X 1,X 2 ) 9.32 (0%) 7.93 (15%) 7.78 (17%) 5.44 (42%) 5.29 (43%)

fLAT(X1,X2) 9.32 (0%) 7.93 (15%) 7.78 (17%) 3.38 (64%) 3.37 (64%)

fLON(X1,X 2 ) 9.32 (0%) 7.93 (15%) 7.78 (17%) 3.55 (62%) 3.53 (62%)

that the indices are often sent without compression, it is worth noting that even

simple compression is 15% better.

5.2 Privacy

Privacy is a difficult notion to define. Samuel Warren and Louis Brandeis famously

wrote privacy as "the right to be let alone" [26]. Nevertheless, the existence of vast

electronic troves of data such as census and medical databases requires a definition

of privacy that can be interpretted by a computer. Tore Dalenius [10] maintained

that "nothing should be learnable from the database that cannot be learned without

access to the database" [14].

These semantic definition do not lend themselves to implementable schemes to

achieve privacy in databases. In fact, it has been proven that Dalenius's scheme is

impracticle in the face of outside information [14]. There have been few systematic

attempts to quantify privacy for databases.

Consider databases D = {X'}i 1 , where m is the size of the population and

each X'i  X, some finite set. Thus, one way to treat databases is as a realization

of a variable D E V where D is the collection of all possible datasets, and D is

drawn according to some population distribution. Some database manager (like the

government) is in control of the data. The manager wants the data to provide utility

to researchers who would, say, conduct research on the efficacy of public policies. The

public, on the other hand, wants to protect their data.

There is a fundamental tension between the privacy and the utility of data in a



database. The public can achieve perfect privacy by providing no data. The public

can allow perfect utility by providing complete data. The goal is to quantify the

tradeoff. We consider two approaches, both of which quantify in different ways the

amount of privacy any given function will give.

First, given some desired level of privacy, what statistics should be allowed. In

other words, some quantum level of privacy determines the set of all statistics, or

functions, that can be made available to the general public by the benevolent central

body. This is the approach taken by Cynthia Dwork [14] and described in the next

section.

Second, given some statistics that must be computable, encode the data so as to

guarantee that only those statistics are computable. Conversely, given some undesired

statistics, encode the data so as to make computation of those statistics impossible.

Further, this is done at the citizen-level so each citizen only gives up as much infor-

mation as required, and no more. In that sense, the central body can be less than

trustworthy for this scheme to work. Functional compression is applicable here, and

this is the approach taken by us in Section 5.2.2.

5.2.1 Dwork's Differential Privacy

Dwork defines the differential privacy of randomized functions.4

Definition 5.1 (Dwork's Differential Privacy [14]). A randomized function IC gives

e-differential privacy if for all data sets D 1 and D2 differing on at most one element,

and all S C IC(D),

P[IC(D1) E S] < exp(e) x P[IC(D2 ) E S].

We modify the definition slightly to shift the emphasis from the function to the

quantum of privacy.

4Dwork, her co-authors, and others have done extensive work on database privacy be-
yond the papers of immediate interest. See http://research.microsoft.com/research/sv/
DatabasePrivacy/ for a list of papers on the subject by this group.



Definition 5.2. The differential privacy of any randomized function KI is:

e = min {fC gives 6-differential privacy} .

The main idea of differential privacy is to ensure that the removal of one's own

data from the data set does not make any output from the function more or less likely.

Consider first what the definition means for deterministic functions K.

Example 5.3. For a deterministic function, K, P[K(DI) E S] < exp(e) xP[K(D2) E

S] is equivalent to saying K(D1 ) = K(D2) for any e > 0. This is because we can con-

sider S = {K(Di)}. This means P[K(D1) E S] = 1. Because for E > 0, exp(E) _ 1,

this means P[K(D2) E S] > 1, which means K(D1) = K(D2 ).

Thus, e-differential privacy, or just differential privacy because e is irrelevant here,

implies that for any D1 and D 2 differing on at most one element, K(D1) = K(D 2 ).

This is similar to our Zigzag Condition, but is considerably more strict. O

Most statistics of interest are not randomized. Thus, Dwork et al. [15] came up

with a "sanitizing" algorithm that would take any deterministic function and ensure

any level of privacy by randomizing it in an appropriate way.

Their sanitization is a randomized function KCf(D) where D E D such that

P[KCf(D) = a] cc exp(- f(D) - al/a). The idea is for any query f on the database

D, return a realization of Kf(D). Dwork et al. prove that KCf has differential

privacy at most Af/a where Af is the £ 1-sensitivity of a function f defined as

Af = maXDI,D2 If(Di) - f(D 2 )1 for all D 1 and D 2 differing on at most one element.

Consider a simple example.

Example 5.4. Consider some f : {00 , 0 1 , 10, 11} -+ {0, 1}, where f is the sum

of its arguments modulo 2. Then, KCf(D) is drawn according to P[KC(D) = a] oc
exp(-If(D) - al/a). This provides I/a-differential privacy because Af = 1. In order

to provide maximum privacy, we let a go to oo, making the data useless. In order to

provide minimal privacy, we let a go to 0, and return f(D) exactly. O

Thus, this explicitly shows the tradeoff between privacy and utility. If a query



function compromises too much privacy, then adding the random noise to the value

will decrease the utility of that value such that privacy is maintained at a fixed level.

5.2.2 A New Definition of Privacy

We approach the issue of privaicy from a different angle. Information theoretically,

everybody in the population is holding some bits: their information. The database

manager (e.g., the U.S. Census) mandates that they need to be able to compute some

statistics for various reasons. We want to quantify how many bits the public must

reveal in order for the manager to compute its statistics (and make those statistics

available). We begin with an assumption.

Assumption 5.5. Assume that Theorem 3.5 applies to M sources under an extension

of the Zigzag Condition. Further, assume the extended Zigzag Condition applies to

the databases we consider.

We have not proven a completely tight bound for the distributed functional com-

pression problem in Section 3.2, and certainly have not extended it to M sources.

Nevertheless, we proceed with a proof of concept. If Assumption 5.5 is false, the

results would still provide a one-sided bound. This means that the bits revealed by

the population would be necessary, but perhaps not sufficient, to compute the given

statistics. Therefore, for the purposes of this section, assume there is some coloring

solution for this problem.

Consider the database D = {Xi}iM_ as M sources drawn from the same population

distribution p(x). These are drawn independently, so it is reasonable to assume any

extension of the Zigzag Condition applies. Then, by Assumption 5.5, there is some

rate-optimal encoding of this information through a coloring scheme. Further, because

every source is drawn according to the same distribution, we need only consider the

coloring of a single graph G. Call this rate-optimal coloring c.

We propose the following scheme for computation of a function f:

1. The database manager determines the population distribution. This could be



done by looking at historical data for the population.5 The manager could

also achieve this goal by sampling the population relegating a subset of the

population to have zero privacy by revealing all their bits.

2. The manager reveals a public coloring scheme. Because each member of the

population is drawn from the same distribution given in the above step, a single

public coloring scheme can be made available. This coloring scheme would be

rate-optimal at R = H(f) (X). Further, any atypical member of the population

would randomly (proportionate to p(c(x))) choose a color to report.

3. Members of the population reveal their colors to the manager. They each do

this at rate H (f)(X).

This scheme has several nice properties. First, any atypical member of the popula-

tion does not reveal their data. In that sense, no "singleton" could ever be discovered

by any function. Such a scheme is also privacy-optimal in the sense that members

of the population reveal as few of their bits as possible to the manager, who may be

untrustworthy, to compute the statistics.

This leads directly to a different quantitative definition of privacy.

Definition 5.6. The privacy allowed by a function f is

H(X) - HG(f)(X)

H(X)

We can consider this as a percentage. Thus, zero privacy would mean R = H(X)

and total (100%) privacy would be R = 0. Consider the following example.

Example 5.7. Consider again f : {00, 01,10, 11}M - {0, 1}, where f is the sum

of its arguments modulo 2. We consider randomness on the database. Suppose the

data is drawn according to p(x) = 1/3 - e for x E {01, 10, 11} and p(OO) = E.

Considering e-colorings on G(f), the optimal coloring is c(01) = c(ll) = cl and

c(10) = c2 . Then, clearly Hg(f)(X) = lln~In3+ In . For e c (0,0.1), the privacy is

H(X) - HG(f)(X) E (42%,49%).

5This fails only if there are large changes in the population over time.



This approach necessarily places utility of the data over the privacy of the indi-

viduals and is, in a sense, dual to the Dwork approach. Whereas the Dwork approach

determines the set of allowable functions for a given level of privacy, our approach

determines the level of privacy for a given set of functions.6

6We do not require the functions to be cardinal, so more concrete comparisons remain difficult.





Chapter 6

Conclusion

This thesis considered the problem of coding for computing in new contexts. We

considered the functional compression problem with side information and gave novel

solutions for both the zero and nonzero distortion cases. These algorithms gave an

explicit decoupling of the computing from the correlation between the sources as a

graph coloring problem. We proved that this decoupling is rate optimal. We extended

this encoding scheme to the distributed functional compression with zero distortion.

We gave an inner bound to the rate region, and gave the conditions under which the

decoupling is optimal in the distributed case.

We never considered the nonzero distortion distributed functional compression

problem mainly because even the case of f(x, y) = (x, y) is unsolved. Nevertheless,

it is our hope that the methods discussed in this thesis will yield new results for the

more general problem.

All of our results concern two sources. An extension of these results to M sources

seems plausible. However, the graph constructs used rely heavily on the two source

structure and would need to be modified to deal with M sources. We leave that to

future work.

Finally, we examined the applicability of our results to two scenarios. For the

Blue Force Tracking scenario, we saw that even simple coloring schemes yielded large

compression gains (64%). For the database scenario, we presented a new notion

of privacy using functional compression. Our privacy can be thought of as dual to



existing notions of database privacy.

In summary, this thesis is about modeling the distillation of relevant information

from disparate sources. We hope the work presented herein serves as a step towards

more research in this area.



Appendix A

Information Theory Fundamentals

This appendix states some important well-known results from information theory

without proof. These are provided as a backdrop to the results of this paper. Through-

out this section, consider discrete memoryless sources. We recall Shannon's funda-

mental results on data compression.

Theorem A.1 (Shannon, 1948 [23]). Consider discrete memoryless sources X E X n

and Y E y". For any e > 0, there exists an N and a coding scheme (en, d4) for some

n > N where en: X" -{ 1, ... ,2"(R+E)} and dn : {1,..., 2n(R+E)} x y -- X n such

that P [X = d,(en(X))] < e, as long as Rx > H(XIY).

In other words, this theorem states that one can recover source X given source Y

at rate H(XIY). If Y is independent of X, the rate required is H(X). This provides

intuition about the concept of entropy. This concept of entropy is not explanatory,

however, when the question is changed so that recovery of a function of the source is

desired. That requires a new definition of entropy to be introduced later in Definition

2.3.

This source coding theorem above is the fundamental basis for much of the work

in this thesis. The arguments used to prove it are based in random coding and

typicality. We next define typicality and give some standard results. These can be

found in Cover and Thomas, 1991 [9, p. 358].
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Figure A-1: The Slepian-Wolf problem.

Definition A.2. For any n, and any sequence x of length n, define the empirical

frequency of the symbol x in x as

(x) = I{i: x, = x}
n

Then a sequence x is e-strongly typical for e > 0 if for all x E X with p(x) > 0,

I (x - Ap( l <

and for all x E X with p(x) = 0, v,(x) = 0. The set of all such e-strongly typical

sequences, called the e-typical set will be denoted as Tn(X), or Tn when the variables

are clear from context. A similar definition naturally extends for the case of joint

variables.

Next, we discuss the result of Slepian and Wolf which gives the achievable rate

region for the distributed compression problem.

The problem is that of separately encoding X and Y such that both can be

recovered at the receiver. See Figure A-1. The goal in this problem is to determine

the set closure of the set of all rate pairs (R., ,,R) that are achievable in the sense that



H(YIX)

H(XIY) H(X)

Figure A-2: The Slepian-Wolf rate region.

there are some encodings (and a decoding) at those rates such that the probability

of error in decoding is neglibly small.

Theorem A.3 (Slepian and Wolf, 1973 [24]). The achievable rate region for the

distributed compression problem is the set of all rates rates (Rx, R,) where

Rx 2 H(XfY)

Ry 2 H(YIX)

R, + Ry > H(X,Y).

A plot of the rate region is provided in Figure A-2. We consider a similar problem

where the goal is to discover the achievable rate region when the receiver computes

a general f(X, Y), not just f(X, Y) = (X, Y). We provide a rate region for this

problem. See Figure 3-3.

Wyner and Ziv considered the problem depicted in Figure A-3. They wished to

_ Y



X

Figure A-3: The Wyner-Ziv problem.

determine the rate distortion function, i.e. the rate R, required for the decoder to

recover X at the receiver. We will consider a similar problem where the goal is to

recover a function of the source and side information within a distortion criterion.

We provide both the rate distortion function for both zero and non-zero distortion.

The result of Wyner and Ziv is given below [28].

Theorem A.4 (Wyner-Ziv Rate Distortion Function with Side Information [28]).

Given some distortion function d : X 2 -- R+, the rate distortion function is:

R(D) = min min I(X; WIY)
p(wjx) g

where W - X - Y forms a Markov chain and g :Y x W -- X is such that

E[d(X, g(Y, W))] < D.
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