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Abstract

Fano Sequential Decoding is a technique for communicating at a high information
rate and with a high reliability over a large class of channels. However, equipment
cost and variation in the time required to decode successive transmitted digits limit its
use. This work is concerned with the latter limitation.

Others have shown that the average processing time per decoded digit is small if
the information rate of the source is less than a rate Rcomp. This report studies the

probability distribution of the processing time random variable and applies the results
to the buffer overflow probability, i.e., the probability that the decoding delay forces
incoming data to fill and overflow a finite buffer. It is shown that the overflow proba-
bility is relatively insensitive to the buffer storage capacity and to the computational
speed of the decoder, but quite sensitive to information rate. In particular, halving the
source rate more than squares the overflow probability. These sensitivities are found
to be basic Sequential Decoding and arise because the computation per decoded digit is
large during an interval of high channel noise and grows exponentially with the length of
such an interval.

A conjecture is presented concerning the exact behavior of the overflow probability
with information rate. This conjecture agrees well with the (limited) experimental
evidence available.
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THE COMPUTATION PROBLEM WITH SEQUENTIAL DECODING

CHAPTER I

INTRODUCTION

A. BACKGROUND AND PREVIOUS WORK

The branch of statistical communication theory known as coding theory has received much

attention since the results of C, E. Shannon in 1948. Many investigations were and are attracted

to coding theory because of the potential for ultrareliable communication suggested by Shannon's

Noisy Coding Theorem. Loosely stated, this theorem says that data can be encoded for trans-

mission over a noisy channel in such a way that the probability of a decoding error is arbitrarily

small,provided that the information rate of the source is less than a rate called channel capacity;

the converse to the Noisy Coding Theorem essentially says that channel capacity is the largest

rate at which the probability of error can be made arbitrarily small.

The implications of the Coding Theorem are obviously stimulating. The fact that codes ex-

ist for noisy channels which achieve small error probabilities while operating at a fixed informa-

tion rate is quite surprising. A priori, one would have expected that reliability could be achieved

only by repeating the transmitted message, that is, that reliability is obtainable only at the ex-

pense of less information per unit time, i.e, a reduction in rate.

Although the Coding Theorem indicates the potential for ultrareliable communication, it has

been found that this ultrareliability costs either a great deal in equipment or in decoding delay.

Both costs are exorbitant if the decoder operates so as to strictly minimize error probability.

Practical considerations force one to consider less than optimum codes and decoders (in a

probability of error sense). A number of such codes and decoders have been invented. Included

among these various coding techniques are Massey's Threshold Decoding, Gallager's Low Den-

sity Parity Check Codes,3 Bose-Chaudhuri Codes with the Peterson Decoding Procedure,4 Itera-

tive Decoding, ' 6and Sequential Decoding ' 8as first presented by J. M. Wozencraft and later

modified by R. M. Fano. Each of these procedures and others 9 ' not mentioned find application

depending upon the performance requirements which are set and the economics of the application.

Sequential Decoders score reasonably well in both the performance and economic categories. We

shall concentrate on Sequential Decoding, and in particular on the Fano Sequential Decoding Algo-

rithm, in this report.

B. FORMULATION OF PROBLEM

In many ways, the Fano algorithm is an attractive decoding procedure. It applies to a large

variety of channels in contrast with the algebraic codes such as Bose-Chaudhuri codes which are

best adapted to symmetric channels with an equal number of inputs and outputs (which is a power

of a prime 4). The Fano algorithm is also recommended by the fact that it will operate with high
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reliability at a substantial fraction of channel capacity. Thus, it is ideally suited for systems

handling high-quality, high-volume traffic.

The Fano algorithm, however, possesses at least two disadvantages. The first is that the

necessary encoding and decoding equipment is expensive. The second and most damaging dis-

advantage of the Fano algorithm is that the time required to process the incoming data is varia-

ble and assumes very large values during intervals of high channel noise. The variability of the

processing time requires that incoming data be buffered. The fact that this processing time

assumes large values implies that occasionally and eventually a finite buffer will fill and over-

flow. After overflow, it is found that the decoder often performs erroneously. Such an event

is catastrophic unless moderated with periodic resynchronization, the use of a feedback channel,

or some other means.

Not only is overflow serious, but it occurs much more frequently than do undetected decod-

ing errors (i.e., errors without overflow). Thus, it is the controlling event in the design of the

decoder. Although the overflow event is serious, the decoder can be so designed and the infor-

mation rate be so restricted that overflows are very infrequent. It is, therefore, a problem

which can be resolved.

Our concern in this report is to obtain some understanding of the sensitivity of the overflow

probability to the following: the buffer capacity, the machine speed and the information (or

signaling) rate. This is a difficult analytical problem. As a result, we have been forced to

analyze the machine performance and to determine the various sensitivities indirectly. Our

approach to the overflow question has been to consider a random variable of computation (called

"static" computation) which is related to the computation performed by the machine as it decodes.

We have shown that the cumulative probability distribution function PR [C > L] of the random

variable of "static" computation C is an algebraic function of the distribution parameter L,

that is, it behaves as L c, a > 0, for large L. From this behavior and a study of the exponent

c, we have found through a heuristic argument that the probability of buffer overflow is relatively

insensitive to a change in machine speed or to the size of the buffer but that it is quite sensitive

to information rate, being more than squared by a halving of rate.

The deductions on the sensitivities of the overflow probability indicate that practical limits

on the size and speed of a decoder are set primarily by the overflow probability and that the

machine performance is really only sensitive to information rate. This sensitivity is due to the

fact that PR [C > L] behaves as L a for large L. We shall find that PR [C > L] behaves as L -

for large L because for every transmitted codeword there exists an interval of high channel

noise such that "static" computation is large and growing exponentially with the length of the

interval of high channel noise. The probability of such a noisy interval decreases exponentially

with the length of the interval. It is the balance between the two exponentials which forces the

algebraic nature of the distribution of "static" computation, PR [C > L]. Since this same balance

is fundamental to the entire concept of Sequential Decoding, it does not appear that the buffer

overflow problem can be avoided unless some major modification of the decoding procedure can

be devised.

These results and arguments are explained in detail in the following chapters.

Chapter II focuses on the Fano Sequential Decoding Algorithm. The algorithm is defined,

motivated and discussed. Many of its properties are clearly outlined. The buffer overflow

problem is discussed and the random variable of "static" computation is defined.
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Chapter III is prefaced with a discussion of the connection between an exponential growth

in computation with the length of an interval of high channel noise and the algebraic nature of

the distribution of "static" computation. The main purpose of the chapter is to underbound the

distribution of "static" computation. A general underbound is found which applies to all codes

on the "completely connected" discrete memoryless channel (DMC). A lower bound is also

found for the (small) subset of codes which have fixed composition, again for the "completely

connected" DMC. Both bounds to PR [C > L] are algebraic in L.

Chapter IV concentrates on obtaining an upper bound to the distribution of "static" computa-

tion, PR [C > L]. Since there are "poor" codes, codes for which PR [C > L] is large so that

large computation occurs with high probability, we must establish that codes exist with a

PR [C > L] which decreases as an algebraic function in L. (It cannot decrease any faster be-

cause of the lower bound result.) We show that such codes exist by averaging PR [C > L] over

the ensemble of all tree codes. This average is algebraic in L so that many codes exist with

an algebraic distribution function.

Chapter V interprets the upper and lower bounds to PR [C > L], describes an experiment

performed at Lincoln Laboratory and compares the results of this experiment to the tail be-

havior of PR [C > L], i.e., its behavior for large L. The comparison leads to a conjecture on

the true tail behavior of PR [C > L]. It is shown that this conjecture has a very close connec-

tion to some fundamental results in information theory which are expressed in the Coding

Theorem. Finally, a heuristic connection between the distribution of "static" computation and

the overflow probability is established and the sensitivity of the overflow probability to machine

speed, buffer size and information rate is brought out. Some problems deserving further re-

search are also suggested.
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CHAPTER II

DESCRIPTION OF FANO SEQUENTIAL DECODING ALGORITHM

This chapter briefly discusses the encoding problem and introduces the Fano Sequential

Decoding Algorithm. The dynamics of the algorithm are described and a definition of computa-

tion is presented. This chapter serves as preparation for the following analytical chapters.

A. TREE CODES

Let us assume that the output of a source with a b-letter alphabet is encoded for transmission

on a discrete memoryless channel (DMC). (The DMC is characterized by the set of transition

probabilities {p(yj/xk)} where {Xk}, 1 kg K is the channel input alphabet and {yj}, i j J is
the channel output alphabet.) Consider encoding the source by mapping a sequence of source

digits into a sequence of channel digits. The channel digits are selected from an array that

topologically resembles a tree and will henceforth be called a tree (see Fig. 1).

For the moment, consider mapping a finite sequence On = (1' 2' '.,n) of n digits drawn

from the source alphabet onto a finite channel sequence un (u1 U2 . . un), where uq =

(uql .... uqu ... UqQ) is the subsequence of digits (or a tree branch) drawn from the channel

input alphabet. At the qth node of the tree, pq directs a path along the bottom branch if qq = al,

3-62-3206 

0 -

= ( 12,010, 201,221.)
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211 201
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112 122

010

221
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Fig. 1. Convolutional tree code.
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along the second branch from the bottom if q = a2 , and along the top branch if /iq = ab. (A path

is a contiguous sequence of branches.) For example, the channel input sequence 3
= (112, 010,

122) corresponds to the source sequence 3 = (1, 0, 2) in Fig. 1 when the source and channel input

alphabets are both {O, 1, 2}.

The extended source sequence /3(=P,) specifies an infinite path u(=o ) through the tree. The
thpath will be called the correct path. For each node of the correct path, say the q , q

0, 1, 2, ... , where the 0 th node is the origin, we define an "incorrect subset." The incorrect sub-

set at the qth node consists of (1) the q node itself and (2) all nodes (of depth greater than q)

diverging from the qth node, which are not part of the correct path. For example, see Fig. 1

where the incorrect subset at the 2 d node of the correct path is shown.

We shall find it useful to classify nodes in each incorrect subset. Consider the qth such

subset. Consider a node "at penetration s" in this subset (such a node is the terminus of a path

of q + s branches). There are a number of nodes at this penetration s. Let the node in question

be mth from the bottom of this set of nodes. Then, it is uniquely identified by the triplet (m, s, q).

This triplet indicates that the particular node is m in rank among nodes at penetration s in

the qth incorrect subset (see Fig. 1). The qth node of the correct path (or the reference node)

is identified by the triplet (1, 0, q). (By convention, this single node is said to be at penetration

zero in the qth incorrect subset.) Denote by M(s) the number of nodes at penetration s in the
th

q incorrect subset. Then,

M(O) = 1

M(1) (b - 1)

M(2) (b - 1) b

s-I
M(s) = (b - 1) b for s1 . (1)

There are M(s) paths at penetration s in the qth incorrect subset, and each of these paths con-

tains q + s branches.

Given that n = (u .... n) is transmitted, let n = (1' v . .vn) be the received sequence,
th

where v (Vql ... Vq, . . ., Vq) is the q subsequence of channel output digits. The prob-

ability that Vn is received when un is transmitted is computed from the transition probabilities

of the DMC as follows:

n n £

PR [Vn/Un ]= "I PR -q/Uq] = 1 P [qh/uqh] (2)
q=1 q=1 h=1

where p [vqh/uqh] = p [yj/xk] when vqh yj and u h = xk

The data (or signaling) rate (in bits per channel use) is defined as

log2 b
R = l (3)

If the successive source digits are equally likely and statistically independent, then R is also

the source entropy (or information rate) per transmitted digit. We shall assume that successive

source digits meet these conditions.
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B. CONVOLUTIONAL CODES

Although we shall later assume for analytical convenience that data are encoded with an

arbitrary tree code, we present convolutional codes here to show that tree codes may be realized

with a minimum of equipment.

Define a basic sequence = (g,-g2 . .-gS 0, 0, ... ), called the code generator, where

gr= (grl' . - gr ) is the rth subsequence of digits, and S is called the code constraint length.

We also define translates of by

n

gn (, 0,...,0,g' ' . ' .

where 0 indicates a subsequence of zeros. Assume that the letters in the generator and

the letters of the source alphabet coincide and consist of the set of integers {0, ... b - I b

a prime. Then, the source sequence 1 = (31' R2 ... ) generates the channel sequence u =

(u, u2, ... ) by

E= 0 }3nn (4)

Multiplication and vector addition are taken modulo b. Following this rule the tree, partially

shown in Fig. 1, may be constructed from the code generator g = (112, 010, 201, 221, 000, ... ).

In particular, the source sequence 3 = (1, 0, 2, ... ) generates the channel sequence u =

(112, 010, 122, .... ).

13-62-3201

DATA -

Fig. 2. Convolutional encoder.

ENCODED DATA

This code can be realized (see Fig. 2) with a standard shift register of S stages (the code

constraint length), multiplierst and adders (modulo b). Clearly, the size of the convolutional

encoder does not increase faster than linearly in the code constraint length. Others have shown

that the probability of a decoding error with Sequential Decoding on convolutional codes decreases

exponentially in the code constraint length (for almost all codes). In a probability of error sense,

convolutional codes are near optimum.

t The circles in Fig. 2 indicate multiplication by the enclosed numbers.
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This example has assumed that the source alphabet and channel alphabet are identical.

Neither this restriction nor the restriction that the alphabets contain the same number of ele-

ments is needed (see Ref. 11). In addition, the constraint that b be prime is not essential. For

example, b may be a power of a prime and the components of : and may be chosen as ele-

ments of a general Galois field, addition and multiplication taken in this field.

C. FANO ALGORITHM

In preparation for a discussion of the Fano search procedure, we introduce and motivate

the "metric" with which the procedure operates.

1. Metric

Assume that a source generates a sequence of outputs 3. This sequence directs a path u

through a tree code. The branches of this path are transmitted over a discrete memoryless

channel. A sequence of branches is received at the channel output. The Fano decoder is a

device that operates on this sequence and produces a replica of the transmitted sequence, unless

decoding errors occur.

The Fano decoder (or algorithm) is a rule for searching efficiently through the paths in the

tree code in an attempt to find a "best fit" with the received sequence v. To determine a "best

fit," values are assigned to nodes in the tree. The value of a node is said to be the value of the

metric between the path terminating on this node and the corresponding received sequence. As

the decoder searches nodes, values of the metric are compared to the criteria of Fig. 3. The

criteria Ti = i t are straight lines of zero slope separated by an amount t.

T2

o

aro:
I T

rr

13-62-32151

CORRECT PATH

/1~~~~~~~ ~LENGTH Fig. 3. Criteria and typical paths.
INCORRECT PATH

It E ~~~~~~~~~'-

Let us be precise about the definition of metric. We define a "branch metric" and associate

a value of this branch metric with each branch of the tree? Let u0 = (uol, uo2 ... , Uo£) be a tree

branch and let v = (v o , Vo.. .o Vo) be the corresponding received branch. The branch metric

between u and vo , d(u o , v ), is defined as
-o o -- 0 -

d(u o, v ) ~ X [I(uohVoh) - (5R])

h=l

t This is not a metric in the mathematical sense because d(uo,vo) may be negative.
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wheret

I(uh v ) Alog P [Voh/uoh]
i(Uoh Voh) log2 f(voh) (6)

Here, p [voh/uoh] = p [xj/xk] when Voh = yj and Uoh = xk. We let f(voh) be a probability-like func-

tion. It may be interpreted as the probability of channel output symbol Voh when the channel in-

puts are assigned probabilities {Pkl} 1 < k< K. The function f(voh) and the probability assignment

{pk} will appear during the "random code" argument of Chapter IV and an interpretation will be
attached to f(yj) and {pk}.

The "path metric," d(m, s, q), on the path containing q + s branches and terminated by node

(m, s, q), is defined as the sum of the branch metric on each of the q + s branches. The value

of this path metric is associated with node (m, s, q). When we plot d(m, s, q) for paths in the

tree, we indicate the values of the path metric with nodes. The nodes in this plot have a one-

to-one correspondence to nodes in the tree and will be indexed with the same triplet (m, s, q).

This definition of path metric is justified by two facts - it leads to a workable decoder and

this decoder can be studied analytically. The definition is recommended by the fact that a large

value of the path metric indicates that the path in question is very probable a posteriori (see

below) which is equivalent to saying that with high probability this path is the transmitted path.

We now show that the value of the metric is monotone increasing in the a posteriori probability

of a path.

Let un, n = q + s, represent the tree path (m, s, q) and let vn be the corresponding received

sequence. Then, the value of the metric on Un is

n I

d(m, s,q) A L Z [I(urh, vrh)-R]
r=l h=l

PR [Vn/un]
= log 2 I- n -n R (7)

where urh, vrh are the hth digits on the rt h branch of un, vn, respectively, and

n n

f(vn ) _ II H f(Vrh) (8)
r=l h=l

In obtaining Eq. (7), we have used Eqs. (4) and (5), together with the definition of PR [Vn/n] of

Eq. (2). Now, PR [vn/Un]' the conditional probability that vn is received when un is transmitted,

is proportional to PR [Un/vn]' the a posteriori probability of un, since (from Baye's Rule)

PR [Un]

(9)PR [un/vnl = PR [n/n] PR [ Vn] (9)

and PR [un] ' the a priori probability of un, is constant under variation of un. (We have assumed

that successive source digits are statistically independent and identically distributed.) Thus, we

have established for the given source that the path of n branches with the largest value of the

metric is that path of n branches which is a posteriori most probable.

t If output y occurs with probability f(y) then I(x,y) is the "mutual information" between x and y.

9
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We have attached a value of the branch metric to each of the b branches stemming from a

node. We observe by analogy with the argument above, that of these branches, that branch with

the largest value of the branch metric is the a posteriori most probable branch at that node.

Then, we order branches at a node according to their value of the branch metric and say that

they are "most probable," "second most probable," etc.

We consider next the motivation for and definition of the Fano algorithm.

2. Search Procedure

Sequential Decoding procedures in general, and the Fano algorithm in particular, are moti-

vated by the following consideration: For a properly chosen code and for signaling rates which

are suitably restricted, the a posteriori probability of the correct path and the value of the path

metric on it will typically increase (see Fig. 3). On the contrary, any incorrect path branching

from the correct path will typically decrease in path metric (see Fig. 3). Thus, a separation

will typically occur between the correct path and some incorrect path. Using a set of thresholds,

a decoder can eliminate from consideration a large number of improbable, hence, incorrect

paths. As long as the channel "noise" is not too severe, the separation between the correct and

incorrect paths will become increasingly evident. A period of high channel noise, however, may

force a large amount of searching and even cause decoding errors. We shall consider these two

points later.

The set of rules for searching tree paths which we shall consider here is known as the Fano

Sequential Decoding Algorithm. A logical flow chart of this proceduret is given in Fig. 4. To

13-6-32141

START 
SET THRESHOLD = 0

r- ---------- 1 r------------ 1

LOOK FORWARD ON BAD BAD
XMOST PROBABLE' BRANCH r LOOK BACK BA

A OK I I B OK

STEP FORWARD ) ( STEP BACK 

NO FIRST TIME I NO S THERE A
AT THIS NODE? BRANCH OF THIS NODE?

I D L-------J l I I EI
YES j L_______ YES

-iGHTEN THRESHOL) 

L_______-__- I lII ILOOK FORWARD
_ _ _ BAD ON IT

C OK

LOWER TRE SHOLD

ONE STEP 

Fig. 4. Flow chart of Fano algorithm.

tSee Ref. 8 for the flow chart of the computer program which realizes the chart of Fig. 4. The bookkeeping re-
quired by D of Fig. 4 is accomplished with a small number of instructions in the computer program. This chart
is based on a flow chart suggested by Professor .M. Jacobs.
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describe the operation of this algorithm we introduce the notions of forward mode and search

mode operations. The machine operates in the forward mode when it is searching for the first

time a path whose metric is nondecreasing. (We shall be more precise about this point later.)

Roughly speaking, the machine operates in the search mode when it is looking for a path which

has a continuously growing metric.

Let us now be specific. Suppose that the decoder is following a path which is growing in

metric and that this path is being followed for the first time so that the machine is operating in

the forward mode. Then, at each node of this path the decoder raises a threshold, called the

running threshold T in units of to until it lies just below the value of the path metric at each

node. In Fig. 4 this operation is performed by D. After the threshold is tightened at a node, the

decoder looks forward along the "most probable" branch (that one which has the largest value of

the branch metric). If the path metric on the extended path remains above the existing value of

the running threshold T, and if the extended path is examined for the first time, forward mode

operation continues. If the extended path falls below T, as in Fig. 5, search mode operation

begins. Operation B of Fig. 4 is then performed.

J

U
r

,0

so

3-62-32291

, "a-----------RUNNING THRESHOLD

ENTER AND LEAVE
I4 [ I I r I I I I= SEARCH MODE

LENGTH

Fig. 5. Typical machine search.

When the machine enters B it is looking for a path which will remain above T. Hence, it

looks back to the preceding node to determine whether it remains above T. If so, (OK) perhaps

the "next most probable" branch extending forward from the original node will remain above T.

At E, the machine determines whether a "next most probable" node exists, and if not, it looks

back again with the same intention, that is, of finding an extendable path. If in looking forward

in C the machine finds that the extended path remains above T, it steps forward tightening the

running threshold if this node is visited for the first time. (This threshold is tightened and the

machine enters or remains in the forward mode only when a node is examined for the first time.

Otherwise, looping would occur.) If the forward look in C is successful, the machine steps

forward and continues to look forward, as indicated by Fig. 5. If the forward look in C is un-

successful, the machine again looks back in search of a node from which an extendable path may

be found (i.e., a sequence of nodes which remains above T). If an extendable path cannot be

found, that is, if every sequence remaining above T and connected to the node at which searching

begins eventually crosses T, then the running threshold T must be reduced. After the threshold

is reduced, the decoder looks forward along "most probable" branches until it reaches the node

at which it entered the search mode. The branch on which the decoder looks forward is a new

branch, so that the threshold may be increased if this extended path lies above T (see Fig. 6).

11
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A- , ' IUNNING THRESHOLD

ENTER SEARCH MODE

' THRESHOLD REDUCED

LENGTH

Fig. 6. Threshold reduction, b = 2.
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I I I I I I

LENGTH

Fig. 7. Branch examination with a threshold.

13-82-32 131

jf4------- CORRECT PATH

I '(

I ~~~~~~~~~~~mrq)

LENGTH

Fig. 8. Minimum threshold TD.
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The machine operation may be summarized as follows: The decoder operates in the forward

mode, extending along "most probable" branches and increasing the running threshold as it pro-

gresses, until an extension fails the running threshold T. At this point, search mode operation

begins and the decoder looks for a sequence of nodes which remains above T. If each sequence

of nodes connected to the node at which search mode operation began is such that it crosses T

before forward mode operation resumes, then T is reduced. As soon as the decoder finds a

new path remaining above the existing value of T, forward mode operation begins and T may

be increased.

D. COMPUTATION

We now establish that the decoder does not look forward or back on any given branch more

than once with each value of the running threshold. There are three situations which need to

be considered. There is a node at each end of the given branch. We need to consider the case

where both nodes lie above a given threshold, and where either the preceding or following node

lies below the given threshold. If both nodes fall below some threshold, the branch considered

will not be examined with this threshold.

If the node preceding the branch in question lies above the given threshold, while the follow-

ing node lies below this threshold (see a of Fig. 7), then the decoder may look forward on.this

branch, but it cannot look back because it would have to step forward to do so. But from A of

Fig. 4, it cannot step forward while this threshold is in effect. Next consider the situation of

b in Fig. 7. The decoder can look back on the given branch, but it cannot look forward because

it would have to step back to do so, which is prevented by the restriction OK in B of Fig. 4. The

third situation to be considered is that of c in Fig. 7. Both nodes terminating the branch in ques-

tion lie above the given threshold. With this threshold the decoder may look forward and then

step forward (A of Fig. 4) from the preceding to the following node. The decoder may then search

forward and later return to the second node with this same threshold. We now show that the de-

coder cannot return to the first node and then retrace this branch. We observe from B, E, and

C of Fig. 4 that this branch with the given threshold cannot be retraced because the decoder can

extend only along either the "next most probable" branch at the first node, or along the "next

most probable" branch at an earlier node. The decoder can only retrace the original branch by

exiting from B on BAD (Fig. 4) and lowering the threshold. Thus, with any given threshold any

particular branch cannot be examined in the forward and reverse directions more than once.

Now let us consider the lowest threshold which is used by the decoder. Consider paths

branching from the q node of the correct path and terminating on nodes labeled (m, s, q),
th

1< m < M(s), 0 s · . Let D be the correct path minimum at or following the q node and

let TD be the threshold just below Dt (see Fig. 8). Assume that the received path is decoded

correctly, that is, that decoding errors are not made. Then paths which cross TD will not

be examined beyond the point at which they cross TD. This is true since threshold T D - t o is

used only if all paths fall below TD; but by definition the correct path remains above TD. This

implies that the decoder will not step forward to a node which lies below TD nor to any node

connected to and following such a node (see (m, s, q) of Fig. 8).

t Since the decoder operation depends only on incremental values of the metric, we may assume that the q cor-
rect node lies between T and T1, and measure D and TD from T = 0.
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We may also deduce that if D < 0 and all nodes connecting any node such as (m', s', q) in

Fig. 8 to (1, 0, q) [including (m', s', q)] be above TD + to , then the decoder must look forward

from (m', s', q) before the threshold is reduced to TD . (The constraint D < 0 is necessary be-

cause if D > 0 the machine may never be forced back to (1, 0, q) so that forward or backward

looks from (m, s, q) may never occur.)

The two central results of the last three paragraphs may be summarized as follows:

(1) Consider a node (m, s, q) branching from the qth node of the correct

path. Let D be the correct path minimum on or following the qth

node. Let TD be the threshold just below D. Assume that node

(m, s, q) lies between thresholds Tn+l and Tn where Tn a TD as in

Fig. 9. Let Nk be the number of forward or backward looks from

this node with threshold Tk. Then, for each threshold Tk > TD and

Tk < T , Tni > ... Tk . . TD, we have

0 4Nk b + 

Nk is zero for any other threshold. The lower limit represents a

situation of the type represented by (m, s, q) in Fig. 8; in this case,

the machine does not look forward or backward from the node in

question.

The conditions under which Nk = 0 and the bounds on Nk in Eq. (10)

are central to the arguments of Chapter IV, which is concerned with

overbounding the statistics of the decoder behavior.

(2) Consider a node such as (m', s', q) of Fig. 8. This node remains

above TD + to and is connected to (1, 0, q) through a set of nodes

all of which lie above TD + to . If D 0, the decoder must look

forward at least once from this node before the threshold T is re-

duced to TD (to which it must be reduced, since the decoded path

is the correct path and this path lies below TD + t o at some point).

U

I
xi

LENGTH

Fig. 9. Typical path trajectories.
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The conditions under which the decoder must look forward at least once from node (m', s', q)

are central to the arguments of Chapter III, which is concerned with underbounding the statistics

of the behavior of the decoder.

We shall call the number of forward and backward looks at a node the "computation" at this

node. These looks are the operations which require machine time. In the remainder of this

report, we use this definition of computation to investigate the computational demands of the

decoder.

E. BUFFER AND DYNAMICS OF DECODER

In the previous section, we assumed implicitly that the decoder is capable of searching back

indefinitely into the tree in the process of decoding. Although this assumption will be needed for

later analysis, it is not consistent with a physical machine. To search back indefinitely requires

that all received branches be stored in the decoder. Practical limitations on the cost and size

of the decoder force one to consider buffers for storage which are of finite size. We shall con-

sider now a particular buffer realization and discuss the dynamics of the decoder operation. 2

RECEIVED
BRANCHES

Is .R

EMPTY

EXTREME
EXTREME

0 . 0 0..

13-62-3231 

DECODED
DATA

SAFETY
SEARCH

LOGIC, TREE GENERATOR

Fig. 10. Buffer.

Assume that the decoder operates with the buffer of Fig. 10. Received branches are inserted

at the left end of the buffer and progress through the buffer at the rate at which they arrive. The

buffer stores B branches. Below each branch there is space to register an element of the source

alphabet. As the decoder operates, it inserts into these places tentative source digit decisions.

Insertions are made at the position of the "search" pointer. When these tentative decisions reach

the left-hand side of the safety zone they are considered to be final. When they reach the right-

hand side of the safety zone they are considered to have been decoded. If a digit released from

the right end of the safety zone disagrees with the corresponding source output digit, a decoding

error is said to have occurred.

The "search" pointer indicates the received branch at which the decoder is looking. The

"extreme" pointer indicates the most recently received branch that has been examined. As the

machine operates the two pointers may advance together toward the left-hand side of the buffer

until a search is necessary. At that time the search pointer and the extreme pointer will drift

back, the search pointer moving away from the extreme pointer. (When the extreme pointer is

not moving forward, it drifts back because branches are arriving at a constant rate.) As the
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search pointer moves back it erases previous tentative decisions, and in moving forward it in-

troduces new tentative decisions. Digits in the safety zone cannot be changed.

It has been found from simulation1 3 that under normal operating conditions the two pointers

usually hover near the left-hand side of the buffer. Occasionally, however, they will drift back

a substantial distance. During this drift, the two pointers usually are separated by a small frac-

tion of the distance they have drifted from the buffer end. (This behavior is rationalized by the

observation that the number of machine computations tends to grow exponentially with the depth

of the search from the extreme point.)

Occasionally, the search pointer reaches the far end of the buffer. Then, the decoder is

likely to release an incorrect digit into the safety zone; thereafter, the decoder tries to advance

on an incorrect tree path. Since this is difficult, the machine must do a large amount of computa-

tion. The search pointer then hovers near the far end and additional erroneous source digits

are released into the safety zone. Thus, if the search pointer is forced to the far end of the

buffer, it will tend to remain at this end and to decode in error. We call this event buffer over-

flow. This report is motivated by a concern for this event.

Although, decoding errors may occur without causing a large machine computation, it is

noted from simulation 1 3 (and may be rationalized heuristically) that for safety zones of moderate

size, decoding errors are almost always preceded by overflow. The heuristic argument states,

in effect, that the noise sequences, which are responsible for errors in the absence of overflow,

occur with vanishingly small probability, especially for safety zones of large capacity.

Since buffer overflow can be detected, the decoder can discard the unreliable digits in the

safety zone. Thus, the probability that an erroneous digit is released to the user before the

buffer overflows can be made very small, much smaller than the probability of overflow. This

observation is equivalent to the statement that the probability of a machine failure, where fail-

ure means overflow or error is dominated by the probability of buffer overflow. Represent this

probability by PBF(N). We define PBF(N) as the probability that the first buffer overflow occurs

on or before the time at which the Nth source decision enters the safety zone.

We shall be concerned in this report with the sensitivity of PBF to buffer size B, to the

speed of the decoder and to the data rate R. We shall find that PBF is relatively insensitive to

buffer size and machine speed, but quite sensitive to data rate. We shall establish the mechanism

which is responsible for the particular sensitivities of PBF' Throughout, we assume that the

decoder is working with a fixed channel.

A preliminary statement can be made here concerning the largest signaling rate R at which

PBF is "small" or at which the decoder will function well. Others 7 ' 8 ' 4 have shown, through
analysis and simulation, that the largest rate at which the average computation per decoded digit

is small is a rate called Rcomp. Since large average computation implies frequent buffer over-

flows, R is an upper limit on the rate at which the machine will function properly. R
comp comp

is strictly less than channel capacity, except for pathological channels, and is a large fraction

of channel capacity for many but not all channels.

F. "STATIC" COMPUTATION

Unfortunately, the statistics of the dynamical computation performed by the Fano decoder

as it operates in time are too difficult to study directly through analysis. Consequently, we are
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led to consider a kind of computation called "static" computation which is at once analytically

tractable and closely connected to the real machine computation. Through an investigation of

"static" computation, we shall be able to make strong qualitative statements about the sensi-

tivities of PBF'

A restriction to the study of "static" computation has been found necessary without exception

by all others who have investigated the Fano algorithm. By "static" computation we mean

a computation which is eventually performed by the decoder, if no digits are decoded in error

and if the buffer is infinite. Thus, the assumptions are that the decoder has a buffer of infinite

capacity, that it has operated for an indefinite length of time, and that it has decoded correctly.

Let (m, s, q) be a node of the qth incorrect subset where 1 m M(s), 0 s < , and M(s)

is given by

M(O) = 1

s-i
M(s) = (b - 1) b , for s 1 [Eq. (1)]

We define "static" computation associated with the qth correct node as the number of computa-

tions made on each node (m, s, q) of the qth incorrect subset.

The connection between "static" computation and the probability of overflow will be made

later.
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CHAPTER III

LOWER BOUND TO DISTRIBUTION OF COMPUTATION

In this chapter, we underbound the cumulative probability distribution of the random variable

of "static" computation C, namely, PR [C > L]. This underbound applies to discrete, memory-

less channels (DMC) which are completely connected (all channel transition probabilities are

strictly positive). We show that this lower bound is an algebraic function of the distribution

parameter L for large L; that is, PR [C L] (A/La) for all L greater than some constant

Lo, where A, a > 0.

The lower bound derivation is preceded by a discussion of the condition on the random vari-

able of "static" computation which is responsible for its having an algebraic distribution function.

Roughly speaking, this condition states that the distribution is algebraic if "static" computation

is large during an interval of high channel noise and grows exponentially with the length of such

an interval. This important result is responsible for the particular sensitivities of the overflow

probability mentioned in Chapter II.

A. BEHAVIOR OF DISTRIBUTION OF COMPUTATION

The computation performed by the Fano decoder is a random variable. It is large during

periods of high channel noise and small otherwise. The same is true of the random variable of

"static" computation C associated with the qth node of the correct path. We now argue some-

what loosely that exponential growth of "static" computation implies that it has an algebraic dis-

tribution function.

Let be the sequence of s channel transitions (corresponding to s tree branches) following
th

the q correct node. The sequence is alone is not sufficient, as a rule, to determine C com-

pletely. Knowledge of 4s is sufficient, however, to determine whether C is large or not.

If s for large s represents a long interval of high channel noise, then C will still be random,

but all values in its range of values will be very large. In particular, let us assume that for

each s > s there exists a s such that C >Ao 2S where Ao, > 0, that is, the "static" compu-

tation grows exponentially with the length of an interval of high channel noise. (Following argu-

ments similar to those of the next section, it may be verified that such an assumption holds for

all codes on the completely connected DMC.)

PR [C > L] >PR [C >Ls] PR [s ] 10)

where PR [s ] is the probability that the particular sequence 4s of s channel transitions is the

sequence of s transitions following the qth reference node. Both s and s in Eq. (10) are arbi-

trary. For each s let s be a high channel noise sequence. Now choose s such that

Ao 2s o >L >A2 ( (11)

Then, for this s and the high channel noise sequence 4s we have by assumption that C > Ao2

Therefore, from Eq. (11), C > L which implies that PR [C > L I s] = 1. Thus, for the particular

value of s defined by Eq. (11) and for the high channel noise sequence s of that length, we have

PR [C > L] >PR [ s] (12)
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For the completely connected DMC (the only channels considered in this chapter) we have

PR [s ] > 2- s' (13)

where p A -I log2 min p [yj/Yk because PR [s ] is the product of s channel transition proba-
j, k

bilities all of which exceed the smallest transition probability, the latter being nonzero by the

connectedness assumption. Combining Eqs. (11) and (13) we have the following lower bound to

PR [C > L]. The bound applies only for s > s o or L > Ao2 

PR [C > L]>A ) 2 9 for L > L A2 0 (14)
PR [C > LL] >/0 - 1

Exponential growth of computation with the length of an interval of high channel noise implies

that the distribution of "static" computation is algebraic, which in turn implies the particular

sensitivities of the overflow probability discussed in Chapter II. The existence of exponential

growth is, therefore, a most important characteristic (or defect) of a decoding scheme.

B. LOWER BOUND ARGUMENT

Our intention in this section is to underbound, without a loss of rigor, the probability

PR [C > L]. To underbound PR [C > L], we find an event which implies that C > L. The proba-
bility of the former event underbounds the probability that C > L and is used as the underbound

to PR [C > L]. As a preliminary, we recall some of the definitions and statements of Chapter II.

"Static" computation associated with the qth incorrect subset is defined as the number of

forward or backward "looks" required by the Fano decoder on the reference node (the q correct
th

node) or on nodes in the q incorrect subset. "Static" computation is measured under the as-

sumption that the decoder decodes without error, that the qth correct node is in the infinite past

of the decoding process, and that the buffer has infinite storage capacity. The latter assumption

is equivalent to the assumption that the machine can search forward or backward to any length

in the tree.

A node in the qth incorrect subset is labeled (m, s, q) to indicate that it is at penetration s
th

in this subset (there are s branches between it and the reference node) and it is m in order

among the M(s) nodes at that penetration in the qth incorrect subset; M(s) is given below.

M(O) = 1

M(s) = (b - 1) b s - for s 1 [Eq. (1)]

There are bt nodes at penetration t or less, since

t

M(s) = 1 + (b- 1) + (b- 1) b ... + (b- 1) bt

s=O

= 1 + (b- ) (1 + b + b +...+ bt- )

+(b-)bt - = b (15)

The reference node is labeled (1, 0, q) and is said to be at penetration zero in the qth incorrect

subset.
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A path metric is defined and the value of the path metric on a path terminated by node

(m, s, q) is associated with node (m, s, q) and is called d(m, s, q). Let un represent the path of

n = q + s branches terminated by (m, s, q) and let vn be the corresponding portion of the received

sequence.t Then, d(m, s, q) is defined as

n 2

d(m, s, q) _ , [I(Urh, vrh) - RI [Eq. (7)]

r=1 h=1

where

P [Vrh/urh]
I(Urh, vrh) log2 f(vrh) [Eq. (6)]

and urh, vrh are the ht h of digits on the rth branches of un, respectively. p [vrh/u h] is a

channel transition probability and f(vrh) is a probability-like function which is interpreted as

the probability of the channel output digit vrh when channel inputs are assigned probabilities

Pk)'}, 1 < k < K.
As the Fano decoder operates, it attempts to extend along a path which increases in path

metric. A set of threshold Ti = i to, -0 < i < -, is used to ascertain whether a path being ex-

amined grows or decreases in metric. The decoder operation depends on increments in the

path metric. Thus, we may assume that the reference node (1, 0, q) lies between To = 0 and

T1 = to, i.e., 0 < d(l, 0, q) < t

Our intent is to find an event which implies that C > L and to underbound the probability of

this event. It was observed in Chapter II that if D is defined as the minimum value of the cor-

rect path metric at or following (1, 0, q), and TD is the threshold just below D, then at least one

computation (a forward look) is required on node (m, s, q) and on each node connecting it to

(1, 0, q) if D < 0, and node (m, s, q) and all nodes connecting it to (1, 0, q) lie above TD + to

One forward look on node (m, s, q) and each of the connecting nodes is required under these

conditions before the decoder reduces the running threshold from T D + to to T D. This latter

threshold is used at least once since the decoded path is the correct path (by assumption)- and

this path dips below TD + to (see Fig. 11).

We assume that the channel is completely connected. This implies that the path terminated

by some node (m, t, q) cannot fall from the value of the metric on the reference node, d(l, 0, q),

with a slopet of magnitude larger than (R - Imin ) where §

min min log 2 /] (16)
rin j, k y

That is,

d(m, t, q) >- d(1, 0, q) -tf(R - Imi n ) (17)

t The subscript n on u or V is reserved for sequences of n branches measured from the origin. The subscript s
on U or will indicate sequences of s branches measured from the qth correct node.

t Slope is defined as the increment in the metric for a one-node change in path penetration.

§ It may be shown that Imin < 0.
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Fig. 11. Trajectories of correct path and incorrect path.

We are now prepared to describe an event which implies C > L. As shown by Eq. (15),

there are bt nodes at penetration t or less in the qth incorrect subset. If each of these b t nodes,

bt > L > bt- , lies above some threshold Ti, and if the correct path falls below Ti at some node

beyond (1, 0, q), say at node (1, 0, q + s) [which is s branches removed from (1, 0, q)], we find

that the "static" computation on just the bt nodes of the incorrect subset equals or exceeds L

(since t is defined by bt > L > bt- l) so that the total"static" computation C equals or exceeds L.

We have the desired underbound if we let Ti be the threshold below the value of the path

metric on the path (m, t, q) which falls at the maximum rate. In particular, we have that

d(1, 0, q) - t (R - Imin) Ti > d(l, 0, q) - l(R - Imin) - to (18)

If the correct path falls below this underbound to Ti., then threshold T. is used and at least

bt , b t > L > b , nodes in the q incorrect subset will have at least b computations done

on them. Therefore, the probability that the correct path falls below the T. of Eq. (18) under-

bounds PR [C > L].

The metric on the (q + s)t h correct node is defined as d(l, 0, q + s). If d(l, 0, q + s) is less

than the underbound to Ti, this threshold will be used. This condition is written as

d(l, 0, q + s) < d(l, 0, q) -ti(R - Imi n ) -t o (19)

If we let Us represent the s branches of the correct path which follow node (1, 0, q) and let VS

be the corresponding section of the received sequence, we have from Eqs. (6) and (7)

s 1

d(l, 0, q + s)--d(l, 0, q) = Z [I(Urh, vrh)-R] (20)

r=1 h=1

d(1, 0, q + s) - d(l, 0, q) A I(usI, V) - s R (21)

where urh, Vrh are the ht h digits on the rt h branches of Us, respectively. Equation (19) is

now rewritten with the aid of Eq. (21).

I(us, vs ) < sl R - t(R - Imi n ) - t° (22)
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Recalling that bt > L > bt- and remembering that R (log 2 b)/I, we obtain the final result,

namely, if

I(us, v s )< sR-(log 2 L + 1) ( R-In)t (23)

then the static computation C must exceed L. Therefore, the probability of the event in Eq. (23)

underbounds PR [C > L]. We note that s is arbitrary. It is chosen to maximize the underbound

to PR [C > L]. The desired result then is

PR [C > L] > max PR [I(Us, Vs) < s R -t -(log 2 L + ) ( R )] (24)
S

It should be noted that the random variable I(us, vs) is assigned with probability PR [Us' Vs]'

which is the probability that the first s branches of the transmitted and received sequences fol-

lowing the q correct node are Us, vs, respectively. The inequality of Eq. (24) applies to any

particular code and Us is a codeword (of s branches) in this code.

Let p (X) A PR [I(Us, Vs) < x]. Then, the lower bound result is formally summarized below.

Theorem 1.

The "static" computation in the qth incorrect subset, when the Fano algorithm is used on

the completely connected DMC, has the following bound on its cumulative probability distribution:

PR [C L] > max s sIR-to-(log 2 L + 1) ( mi) 1 (25)

where Imin is defined by Eq. (16).

Next we further lower bound Eq. (25) so that the dependence of the bound on L and R be-

comes explicit. First, we lower bound p s(x) in terms of the smallest value of the conditional

probability ps(xl s), defined as the conditional probability that I(Uis, v s ) < x given Us

p S(X) A , Ps(xIUs) PR [s ] (26)
U in the code
S

Ps(X) > min p (XIUs) (27)
all U

Here the minimum is taken over all words of sl digits, not just words in the code. Since Eq. (27)

is independent of code, we shall use it to obtain a bound valid for all codes. Equality holds in

Eq. (27) under certain conditions on the channel and the probability-like function f(yj). Equality

is equivalent to saying that Ps(x) is independent of the code. The conditions are:

(a) The channel is uniform at the input, i.e., the set of transition proba-
bilities {p(yj/xk)}, 1 < j < J is independent of k;

(b) f(yj) = constant for all 1 < j < J.

In the second major step directed at exhibiting the dependence of the bound on L and R, we

introduce and apply a theorem due to Gallager.l 7 We shall use it to underbound ps(xlus). Al-

though it is a weaker theorem than the Central Limit Theorem for Large Deviations (Ref. 18),

23

__11__�1_(__1___^1__I 11-1�11111 �^1·1 --11_�--__.�_111 1 IllIlI I



it is sufficient to demonstrate the dependencies of PR [C > L] for

theorems are asymptotically equal.

Theorem 2. (Gallager)

Let {i)}, 1 < i < N be a set of statistically independent random

J values w.i, 1 < j < J, with probabilities {PR(wij)}. Let be the
N iD

= Z ii. Define i(a) byt
i=1

large L because the two

variables. i assumes the

sum of these N variables,

(28)
log2

li(- ) - log 2

Then,

N

'(c) log 2 2 a = Z i( a)

i=l

and for a < 0 we have

B()- (a)] 4 2 N(1 -Pin
PR [ a < 1'(C)] > 2 exp2 

Pmin

where the prime indicates differentiation with respect to cr, and Pmin is defined by

pmin- min PR [min w]
Pmin i

j wj

(29)

(30)

(31)

To use this theorem in underbounding Ps(xlUs), we must associate the N random variables

{4 i} with the random variables appearing in the definition of ps(xlUs). We recall that

P s(x s) = PR [I(us', s) < x s]

where I(-us, s) is defined from Eqs. (20) and (21) as

l I p [Vrh/Urh]

I(S, V )= Z Z log2 f(vrh )

r=1 h=1

(32)

(33)

and Urh, vrh are the h of digits on the r branches of Us, Vs, respectively. With us fixed,

this random variable I(Us, V s ) is assigned with probability

s Q

PR [Vsus] r r P [Vrh/urh]
r=1 h=1

[Eq. (2)]

The s random variables

f| p [Vrh(/Urh]l
1°g2 f(Vrh )

tThe bar notation indicates a statistical average.
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are therefore statistically independent and assigned with probabilities p [vrh/urh]. Thus, if we

make the following indentifications, Theorem 2 applies to ps(x s):

N S

i (r - 1) + h

A logP [vrh/urh]
i- log2 f;vf(Vrh)

A P [yj/Urh
w. i log? f(yj)

1J YJ

PR [wij] p [yj/urh]

1'(a) A x . (34)

The particular definition of the index i is one which leads to a natural ordering of the s pairs

(urh, Vrh).

Before we apply Theorem 2 to Ps(xlus) we observe that by decreasing Pmin we further

weaken the inequality of Eq. (30). Therefore, we may replace Pmin with Pmin'

min min p [yj/xk] (35)
minj, k

Now let us consider the form of i(a) and of ((u). From the definitions of Eq. (34) we have

J

11i() = log2 p [yj/urh] f(y)- (36)

j=1

If we define Q0 = (q . . ., qk ) as the composition of codeword Us, that is, if Nqk represents the
K

number of times channel input symbol xk appears in Us, qk = i, then we have for (a) the

following: k

N K

() = i( N Z qk'Yk(c) (37)
i=1 k=1

where

yk(u) = log 2 E p [yj/xk]1+ f(y)- (38)

j=4

All terms of Theorem 2 have been defined so that we may now state the desired lower bound to

p s(xl s). If Us has composition Q , then,

K

Np k [2( k [) ( 4 2N(1-P
k=1 4k__1(min

Ps(X s) 2 P (39)
min
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This bound is independent of the order of symbols in the codeword. Therefore, for that (unusual)

class of codes having all codewords of the same composition, this lower bound applies directly

to all words Us in the code. Moreover, independence of the order of symbols in a codeword

applies to p(xIu s ) as well as to its lower bound: it can be shown that ps(xlus) = p (xlI s ) when

U' and US have the same composition. It follows that the inequality of Eq. (27) is weaker thans s
necessary for codes of fixed and known composition; for this class of codes we may write

Ps(X) = Ps(xliUs) (40)

for any Us in the code. It should be noted again that Eq. (40) applies only to codes of fixed com-

position, whereas Eq. (27) applies to all codes.

Our primary task is to exhibit the dependence of the bound of Theorem 1 on L and R. We

now have the necessary tools to do this. We use either Eq. (40) or Eq. (27), depending on whether

the bound is to apply to a code of fixed composition or is to apply to all codes, together with the

bound of Eq. (39) and the inequality of Eq. (25) of Theorem 1. We shall consider the fixed composi-

tion case first since it serves as an introduction to the general lower bound.

For fixed Qo, we have from Theorem 1, the definition of Eq. (34), the equivalence of the state-

ment in Eq. (40), Theorem 2 and the bound of Eq. (39') the following lower bound to PR [C > L]:

PR [C >_ L] > max ps(x) > max ps(xlUs)
N N

N Z q k[k() ()] 2N(i -- P )
k=i 4 n - in_ [ max 2 exp P (41)

N min

where

x = NR-F

F t + (log 2 L + i) ( R Imin

N s (42)

The maximization over N in Eq. (41) is taken subject to the following constraint

K

Z qky (a) R 
k=1

or

F
N K (43)

R- qk¥y( a)
k=1

which is implied by the first equation in Eq. (42), the last equation in Eq. (34) and the definition

of (a), Eq. (37). The function F is independent of Qo and N, and is constant with respect to

the maximization.
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Strictly speaking, the maximization on N must be taken only for values of N which are

multiples of , the number of digits per tree branch. We now drop this constraint and permit N

to assume all values 1 < N < o. The imprecision introduced neither affects the character of the

end result nor materially alters its numerical value.

Let us now consider the connection between N and from the second equation in Eq. (43).

One can show that

'Yj(a) Q > 0 (44)Tk'(f) = ( _)>2° (44)

where 4 assumes the same values as does 4i of Eq. (34) but it is assigned each such value with

the probability

P [yj/U rh]1+ f(yj) -
PR [t = wij] =J (45)

F, P [Yj/urh] i + U ff(yj)-a

j=i

when urh = Xk. Consequently, y(a) is monotone increasing in , which implies that N is mono-

tone increasing in a. Since 0 N < , we must restrict a in Eq. (43) to be less than the value at

which N is infinite. We shall impose this restriction implicitly by extending the definition of

I/[R - Z qky ()] so that it is infinite for (r larger than the critical value. At the end of the

next paragraph, it will become clear that this extension does not affect the maximization, serv-

ing only to simplify the analysis.

We return now to the maximization of Eq. (37). If h(N) and q(N) are positive, then

max h(N) q(N) >_[max h(N)] q(N') (46)
N N

where N' may assume any value. Thus, if we maximize Eq. (41) with respect to the first of

the two factors, we further lower bound PR [C > LI. The maximum of the first factor occurs

at the maximum of the exponent

K

NE((J) A N Z qk[Yk ( C) - ray()] (47)

h=i

Let us study this exponent. It is negative since E(a) is negative. We see this by observing that
K

E(a) assumes value zero at a = 0 and has derivative Z qk(-a) Yk'(() > 0 for r • 0, the range of
k= I

a of interest. To determine whether the exponent NE((r) has a maximum in a, we take the first

derivative with respect to .

K
K Zqk [1k(a) - ayk(a)]

dd N Z qk ['k (a) - ky( ) ]= F d k= K
do K

k=1 R- qk ' ( a)
k=1

() K l) r K Yk(a)("' qk-y a) R - Z q -

k=1 k=at
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K
All factors are positive for cr < 0, with the possible exception of the term R - qk [Yk( ) ] / '

K k=1
Since qk [Yk ( f) ] / a has derivative

k=l

K

d 
k=l

yk() K

qk a -
k=t

(49)
o' Ur() -- Yk(O)] - u)

qk 2 ] - 2 > 
k a-

K
we find that R - Z qk [k(r)]/ is positive for ur a0 and negative for > aT0 where uo is such

k=1
that

K

R= Z
k=l

(50)

We can now sketch NE(a)/F for a-< 0 (see Fig. 12). It is negative for o•< 0 and has a maximum

at = . The value of this maximum is
O

N(ao ) E((0 o )

F

E(aO)

K
ao1 qk [k( ) - aoYk(o)])

9 k 'Y k0 0 

=a
0

(51)

i.e., the maximum (ao, o ) lies on a straight line of slope one passing through the origin. For
K

f < a o', R > Z qk [Yk( o)/ao] so that NE(gc)/F > , that is, N(o)/F lies above the unit slope
k=l

line passing through the origin for a< a o. Maximizing NE() over N is equivalent to maximiz-

ing this exponent over a- where N and are related by Eq. (43). Therefore, the maximum of
F

the first term in Eq. (41), 2 , is related parametrically to the rate R by Eq. (50).

The final bound is obtained if in the second factor of Eq. (41) we use N' = N(-o ), the value

of N which maximizes the first factor. Then using Eq. (46) we have for the fixed composition

case

a F

PR [C > L] > 2-2

13-82-3261 ar
CIO

/
/

/
/

/

I
/

/
/

4 |0 1 -Pin
e E(Cro) Pmin

Fig. 12. Behavior of Ne(a)/(F) with a.
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where o < 0 is such that

Yk(ao)
R qk a [Eq. (50)]

k= 0

The range -1 < a 0 < 0 suffices since, as shown in Eq. (49), the sum in Eq. (50) is monotone in-

creasing in a, being negative for aT < -1. This is the lower bound result for the fixed composi-

tion case. We must now consider the general lower bound, valid for all codes. We shall use

many of the results obtained above.

To obtain the general lower bound, we lower bound PR [C > L] using Theorem and in-

equalities (27) and (39).

ma mm 2 NE( T) 4 2N(I- P min
PR [C L] > max min 2 e P(53)

N Q min-o

where a < 0. We would like to focus attention on the first of the two factors above. We justify

our doing this as follows: Let h(N, Q ), g(N, Q ) > 0. Then,

h(N, Qo) > min h(N, Q , g(N, Q o)> min g(N, Qo)1-o- - o -0
9o go

h(n, Qo) g(N, Qo) > min h(N, Q {min g(N, Qo)

so that

min {h(N, Qo ) g(N, Qo)} > min {h(N, Qo)} min {g(N, Q )}
-o 90 90

and

max min {h(N, Q ) g(N, Q )} > max min {h(N, Q )} min {g(N', Q )} (54)
NQ - - NQ Qo -o -o

In the last step we have used Eq. (46). Thus, if we minimize the second term in Eq. (53) on Qo

and use in it the value of which achieves the max-min of the first term we will have a valid

lower bound. We minimize the second factor Q if we maximize N' on Qo'

N (a) max N'(a) = R-max (a55)max R -max (kO
-o k

Then, we have

m a x m i n N e ( u )

1 ~ o 42max min
PR [C > L] > 2 exp - i (56)

Pmin

Our next concern is with the max-min of NE(C). We assert that the minimum on Q (the

components of Q are positive and sum to one) of NE((T) occurs when Qo has a single nonzero

component, having the value unity. This component qk = 1 is such that fixed < 0
k0
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Fig. 13. Minimization of Ne(a)/(F) over Q
-

I ,

o 

13-2- 3270 1

Fig. 14. Relative values of Yk(a )/a.
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k (a)- y (CT)
ko ko Yk() Yk( ) 

0-R-Y (-) < R _yk(T all k (57)
R - cr (u) R (Yg

This assertion is proved as follows: Let 6 be defined as the difference between NE(O)/F for

arbitrary Q and the value of NE(c)/F at the supposed minimum on QO' Then we have

E qk [Yk() - y()] _Yk 
( ) - Y ( 5)

6 k K R-yk t) (58)

k=l R- Z qkY() 0
k=1

K
Using Eq. (57) and remembering that by extension of its definition R - , qky () cannot be

k=1
negative for any Qo' we see that 6 > 0. We also observe that 6 = 0 for the assumed composition.

Thus, this composition achieves the minimum. Now if we sketch [yk(o) -- Cyk(g)]/[R -yk(a)] for

each k and all values of a < 0 (keeping in mind that R -- y (-) >- 0 by extension of its definition)

we see that we achieve the minimum NE(a) on Q by taking the lower envelope of these functions

(see Fig. 13). Notice that the maxima of the individual functions occur on the straight line of

unit slope passing through the origin. The maximum of the kt h function occurs at = (k where

k is such that R = 'yk( )/k. For < urk, the kt h function lies above the unit slope straight line

passing through the origin.

Figure 13 provides a graphical interpretation of the function min NE(a) vs Cr. We now con-
Qo

centrate on maximizing this minimum on N or, equivalently, on < 0. We assert that this max-

imum occurs in Fig. 13 on the straight line of unit slope. This should be clear from the figure.

If k is such that R = k((k)/k, that is, if {Cak) are the loci of the maxima, we further assert

that the maximum over a of min NE() occurs for equal to the smallest of the (Tk. This too

9- o
should be clear from the figure.

We have found that the max-min of the exponent NE(a) occurs at the maximum gCk of one of

the functions [yk(M) - gyk' (0)]/R - yk( ), and that this particular maximum is the smallest of

the maxima. At the particular maximum we have

max min NE(CT) = F (59)
NQ o-o

where oT0 is the smallest of the {ak} satisfying R = yk(CTk)/gk. Since 'yk(c)/a is monotone in-

creasing in Ix from Eq. (55), we see from Fig. 14 that the smallest k' as a function of R is the

solution to the equation:

Yk(a )

R = max (60)
k o

If we now choose = in N max(a), the value of N' in the exponent of the second factor of Eq. (56),

we have

N ()= F .(61)
Nmax(o) yk(6To)

max -max Y'( )
k Co k
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The denominator is positive because yk( )/u > yk(c) as implied by the fact that yk() - Uay'() =

E(a) < 0, for < 0.

The complete general lower bound to PR [C > L], valid for all codes, can now be stated.

1 Fcy 4 2min- Pmin}
PR [C >)L] > 2 exp (62)

k o k

where is the solution to the equation

Yk((o)
R = max [Eq. (60)]

k 0o

We collect the lower bounds to PR [C > L] for the two cases in the following theorem.

Theorem 3.

On the completely connected DMC, the random variable of "static" computation C has the

following lower bound to its cumulative probability distribution function, PR [C > L]:

P [C > L 2 exp -4 A ) min (63)

where

Pmin l min p [y/x [Eq. (35)]
, k

R -I[
F to +(log L )( R min [Eq. (42)]

p [/x~
mI -min log2 yk [Eq. (16)]

and f(yj) is a probability-like function of output symbol yj, interpreted as the probability of y.

when channel inputs are assigned with probabilities {Pk 1 k K.

K

f(yj) i- PkP [Yj/X k] (64)
k=l

The function A(u ) and the parameter o-p are related parametrically to the rate R. The re-

lationship depends on whether the bound applies to all codes or to codes of known and fixed

composition.

(1) For a code of fixed composition Q0 = (q1 . qk) we have

A(a ) 1 (65)

fz qk a o Yk O y]
k=i 0
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K k(o) for - (50)]
R= Z 9k for - o-• . [Eq.o(5)]

k=l

(2) For all codes we may choose

A(a) A (66)

Yk ( o)
R = max o for -1 < ao < 0 [Eq. (60)]

k o

Here yk(u) is defined as

J

yk(a) log2 p [yj/xk]l+U f(yj)-O [Eq. (38)]
j=1

An important observation can be drawn immediately from the bound of Eq. (63). For very

large F, corresponding to very large L, the bound is controlled almost entirely by the factor

Fu (-u)(R-Imin)/r
2 . Thus, the bound behaves as (1/L) for large L, so that the distribution

is algebraic with large L.
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CHAPTER IV

"RANDOM CODE" BOUND ON THE DISTRIBUTION OF COMPUTATION

The previous chapter has established the algebraic character of the distribution of "static"

computation. In this chapter, we shall obtain an overbound to the distribution of computation

averaged over the ensemble of all tree codes. By so doing, we show that a large number of codes

exists whose distribution of "static" computation is bounded by a multiple of the average. To-

gether, the results of this chapter and of the preceding chapter de-limit the tail behavior of the

distribution of computation. Chapter V will interpret and relate the result of these two chapters.

A. RANDOM VARIABLE OF COMPUTATION

The approach we use to bound the ensemble average of the distribution of computation re-

quires that we overbound the random variable of "static" computation. The discussion of

Chapter II is sufficient to allow a bound on this random variable. We repeat the pertinent ar-

guments of that chapter.

"Static" computation associated with the qth incorrect subset is defined as the number of

forward or backward "looks" required by the decoder in the incorrect subset associated with

the qth node of the correct path. This subset consists of the qth correct node, labeled (1, 0, q),

and of nodes on paths disjoint from that portion of the correct path which extends beyond (1, 0, q).

A particular node of this type is labeled (m, s, q) to indicate that it is in the qth incorrect subset,

is at "penetration" s, that is, is connected to (1, 0, q) through s branches, and is m in order

among the M(s) nodes at penetration s. The number of nodes at penetration s, M(s), is defined

below.

M(0) = 

M(s) = (b - 1) b s - 1 for s 1 . [Eq. (1)]

The qth correct node, or the reference node (1, 0, q) is said to be at penetration zero in the qth

incorrect subset.

A "path metric" d(m, s, q) on node (m, s, q) has been defined. If e is the generic symbol

representing the path terminating on node (m, s, q), then the path metric on this path of n = q + s

branches is defined as follows:

n £

d(m, s, q) = [I(orh, vrh)-R] (67)

r=1 h=1

where erh vrh are the hth digits (of digits) on the rth branches of e and vn, the received

sequence of n branches.t The function I(Orh, vrh) is defined by

P [rh/Erh]
I(eh, Vrh)= log2 rhrh (68)

where f(vrh) is a probability-like function, interpreted as the probability of channel output
symbol vrh when channel inputs are assigned with probabilities {Pk), 1 k K. That is, when

Vrh = yj, we have

t The subscript n on subsequences of the transmitted or received sequences, namely un, Vn, indicates their length
in branches from the origin. The subscripts r, or s indicate their length from the reference node (1,0O,q).
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K

f(yj) = Pk P [Yj/xk] [Eq. (64)]
k=1

Later in this chapter, we will find that f(yj) is equal to a probability appearing in the "random

code" argument.

With this path metric, the Fano decoder searches paths in the tree code trying to find a path

which tends to increase in path metric. A set of criteria T. = i t is defined. A path whose path
1 O

metric tends to cross an increasing sequence of criteria will with high probability be the correct

path. As the machine searches for the correct path it must perform a number of forward or back-

ward "looks" from nodes in the tree. We are concerned with a subset of the total computation

ever performed, which consists of the number of computations eventually performed in the qth

incorrect subset. Since the machine computation depends on increments in the path metric, we

may choose to let the value of the metric, d(l, 0, q), on the first node of this subset, (1, 0, q), lie

between T o= 0 and T1 = to , that is, we may assume that 0 < d(I, 0, q) to.

We found in Chapter II that the computation in the q incorrect subset depends on the min-

imum value of the path metric at or following the reference node (1, 0, q) and on the trajectories

of the individual incorrect paths. Let D be the correct path minimum at or following (1, 0, q),

and let TD be the threshold just below D. We overbound computation on a particular node

(m, s, q) by disregarding the history of the path preceding this node, looking only at the value of

the metric d(m, s, q) on this particular node. If d(m, s, q) is in a favorable position, we include

node (m, s, q) in our computation count. As discussed in Chapter II, d(m, s, q) is in a favorable

position if d(m, s, q) TD. In particular, if d(m, s, q) Tk > TD, then the machine may do as

many as (b + 1) computations on node (m, s, q) with each such threshold Tk. If Tk > d(m, s, q),

the machine never does any computation on (m, s, q) with Tk.

Before we define a random variable which overbounds the random variable of "static" com-

putation, we further consider the metric d(m, s, q). Let d(m, s) be the change in d(m, s, q) from

the value of the metric on the reference node, d(i, 0, q). Then, if now represents the s

branches if the qt incorrect subset preceding the node (m, s, q), and if Vs represents the cor-
s

responding portion of the received sequence, we have

d(m, s) _ d(m, s, q) - d(1, 0, q)

s f

=I(, v s )-s R E [I(erh, Vrh)- R] (69)

r=1 h=1

where I(Orh', rh) is defined by Eq. (68). Then, since we have assumed that d(i, 0, q) lies between

To = 0 and T1 = to, we have that d(m, s, q) < d(m, s) + to . If d(m, s, q) is replaced with this larger

value for each node (m, s, q) the computation required on nodes {(m, s, q)) is increased, because

these nodes may be examined with a larger number of thresholds. (The correct path minimum

D is not changed.) Now, if we decrease by an equal amount the value of the path metric on each

correct node following the reference node, we further increase the computation on nodes {(m, s, q)).

If we let ur , Vr , be the r branches of the transmitted and received sequences following the
o o

reference node, and define d(u r , Vr ) as the change in the value of the metric from d(1, 0, q) to
O O0d 0 qrth

d(l, 0, q + r ), the value of the metric on (q + r ) correct node, we have
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d(U r 'Vr ) d(l, , q r) - d(l,O,q)
o o0 0

r

I(r Vr ) rIR _ 2 2 [I(Urh, Vrh)R] (70)
r=1 h=1

We note that d(l, 0, q) O0 so that d(1, 0, q + r) d(ur , Vr ). If d(l, 0, q + ro) is replaced with
O O

d( r , Vr ) computation on the incorrect nodes {(m, s, q)} is increased. We are now prepared to
o o

an overbound to the random variable of "static" computation.

Using d(m, s) + to for d(m, s, q) and d(u r , v, ) for d(l, 0, q + r ), r > 0, we raise the value
O O

of the metric on incorrect nodes and lower the value of the metric on correct nodes following the

reference node. Thus, we overbound the computation on incorrect nodes. Equivalently, we over-

bound "static" computation. Now, as discussed above, the machine may do as many as (b + 1)

computations on node (m, s, q) with threshold Tk if d(m, s) + to > Tk> TD where D' is the correct

path minimum with the metric d(ur , Vr ). No computation is required on (m, s, q) with Tk if
O O

d(m, s) + to < Tk. Therefore, if there are N thresholds between d(m, s) + t o and TD,, including

TD,, the machine may do as many as (b + 1) N computations on node (m, s, q); N is a random

variable. A convenient representation for N in terms of the upper bound to the value of the met-

ric on node (m, s, q), d(m, s) + to , and the lower bound to the value of the metric on nodes of the

correct path d( r , Vr ) is had with the random variable z.i s(m). We define z.i s(m) = 1 if
O O

d(m, s) + to >,T i (that is, d(m, s) >,Ti_1 since Ti = i to ) and if d( r, ,Vr ) < Ti+1 for some r 1.
O o

If these conditions are not satisfied z.i s(m) = 0. This type of random variable is called a char-

acteristic function. Then,

1 if d(m, s) Ti_1 and d(u r Vr )< Ti+l for some ro °>

zi, s(m) o o

0 otherwise (71)

A little reflection indicates that

0oo

23z. (m)= N
i, S

the number of thresholds between d(m, s) + to and TD,. Therefore,

00

(b + 1) zi, s(m)

i= -oo

is an overbound to the computation on node (m, s, q). If this quantity is summed over all nodes in

the qth incorrect subset, that is, for 1 , m < M(s), 0 < s, we have an overbound to the random

variable of "static" computation C in the qth incorrect subset. Hence,

o oo" M(s)

C< 2 Z {zi, s(m) + zi s(m)} (72)

i=O s=0 m=1

where M(s) is given by Eq. (1) and the i = 0 term is repeated twice.
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We are now prepared to overbound the distribution of computation using a "random code"

argument.

B. MOMENTS OF COMPUTATION

Although a lower bound to the distribution of computation PR [C > L] was found by consider-

ing an appropriately chosen subset of the set of events leading to L or more computations, if we

are to overbound this distribution, we must consider every event which may lead to L or more

computations. We have overbounded the random variable of computation to simplify the analysis

and to include each event which might contribute to computation.

The technique which we shall employ to overbound the distribution is to bound the moments

of computation and use a generalized form of Chebysheff's Inequality.

Lemma 1. (Chebysheff's Inequality)

If C is a positive random variable, then

CP

PR [C >L]4 - p >0 (73)

where CP is the p thmoment of C.

Proof.

CP >, cPp( c ) > LP Z p(c)

c>L c>,L

where p(c) is the probability that the random variable C assumes value c. Q. E. D.

The following two examples indicate the "tightness" that might be expected with Chebysheff's

Inequality.

Example 1:- Let C assume values 0, co with probabilities 1 - a, a, respectively, then

CP = acP and PR [C L]a( )

For L = co, the bound is exact.

Example 2:- Let C > 1 be a continuous random variable with density p(C) = A/(Ca) where

ac > 1 and A = a - . Then, for p < a- -1

A A 4
a-p-- and PR [C > L]a LA

As p approaches a -1 , the moment (hence the bound) becomes indefinitely large. However,

the behavior of the tail as a function of L more closely approximates the true tail behavior
a -t

Judging from Example 2 and the fact that the distribution of computation is algebraic, we

should expect that the application of Lemma 1 will lead to a bound which degenerates rapidly as

the tail behavior of the bound approaches that of the true distribution. This phenomenon will

appear in our results.

Moments of computation cannot, as a rule, be computed directly for any arbitrary code.

We can, however, compute these moments over the ensemble of all possible tree codes, and
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deduce that at least one code has moments less than the ensemble average. The ensemble of

codes is generated by assigning probabilities to the codes in such a way that each digit (there

are per tree branch) is statistically independent and identically distributed and is assigned

with probabilities (pk, that is, channel digit xk occurs on a branch in a code with probability

Pk' Note that we have deliberately chosen the probability assignment used to compute f(yj),
Eq. (64).

As the last topic in this section, we introduce Minkowski's Inequality (see the Appendix for

proof).

Lemma 2. (Minkowski's Inequality)

Let {Wh}, 1< h E H be a set of positive random variables. Then

[( L wli) ] .< (h ) , p > 1 (74)

h=l h=l

Using this inequality on Eq. (72), the upper bound to the random variable of computation, we

have as a bound on the moments the following:

CP < E E zi, s(m ) 

i=O s=O m=l

.0 0 M(s) 1 /p

+ -i z s ) (75)

i=O s=O m=l

where M(s) is defined by Eq. (1) and we use the fact that Zi s(m) > 0.

Evaluating the moments without using Minkowski's Inequality seems to be a practical impos-

sibility because of the number of cross terms which occur. With this inequality we reduce the

problem to that of computing moments of computation on incorrect paths at the same length

M(s.)
with the same threshold, namely, , zi, s(m). If p is an integer, the latter term may be

expanded as follows: m

M(s) M(s)

z i, E zi s(m) i (m76)z ~s z. (76)

m=i m =1

where the terms in the expansion are expectations of a composite characteristic function or

probabilities. Since an expansion of this type does not apply to fractional p, we shall limit our

attention to integer p.

In following sections, the first term in Eq. (75) will be overbounded. Since the first and

second terms differ only in the sign of the index i, we shall find that the bound on the first term

can be applied with minor modification to the second term of Eq. (75).

C. PRELIMINARY COUNTING ARGUMENTS

The two terms in Eq. (75) differ in the sign of the index i. This section will deal primarily

with the first term, but the discussion here may also be applied directly to the second term.
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We are considering the term

0o 00 M(s) \p 

zi, s(m)) (77)
i=0 s=O m=l

The pth moment term has been expanded in Eq. (76) for integer p, the only case considered.

M(s) \p M(s) M(s)U z(m) = , , z(mt), z(mp (78)
m=1 ml=l m =1

The subscripts i, s have been dropped for the remainder of this section.

In Eq. (78), the terms corresponding t (ml, m2 , m3 , m4 ) = (1, 10, 4, 10) and (4, 1, 10, 1) for

the case p = 4 are equal since z n(m) = z(m) = 1 or 0 and the ordering of characteristic functions

in the product does not affect the value of the product. This suggests that many terms in Eq. (78)

are equal, since the indices (ml . m .. p) are dummy variables. Let us now consider the multi-

plicity of a particular term.

Assume that the p-tuple of indices (ml, m2 , ... mp) contains t < p distinct elements

{01, 02 . .. O}. (Each corresponds to a particular incorrect path of s branches.) Since
z(m), .. , z(mp) = z(O), .. z(Et), all p-tuples with the set {0 1 . .. Ot} as distinct elements

have corresponding terms which are equal. Let W(t, p) be the number of such p-tuples. This

number is independent of the particular elements in the set of t distinct elements. We bound

W(t, p).

W(t, p) may be viewed as the number of ways of placing one ball in each of p distinguishable

cells where the balls are of t different colors and each color must appear at least once. The

number of such collections of p balls is less than the number of collections one would have if

we include the situations where one or more colors do not appear. This larger number is the

number of ways of placing t different elements in each of p distinguishable cells, or tP . There-

fore, W(t, p) . t p.

To underbound W(t, p), we now establish that W(t, p) A>t W(t, p - 1). Consider W(t, p - 1),

the number of ways (p - 1) balls of t different colors may be placed in (p - 1) cells. Consider

extending the collection by placing one additional ball with one of the t colors in a pth cell. This

new collection contains t W(t, p - 1) items. It must contain fewer items than does the collection

of W(t, p) items because one color appears at least twice and every other color at least once,

establishing the desired bound. Iterating this lower bound (p - t) times and observing that

W(t, t) = t we have W(t, p) Ž> tP-tt! The two bounds are summarized in the following lemma.

Lemma 3.

The number W(t, p) of different p-tuples (ml .... , omp) generated from the set of t distinct

elements {01, 02 ... Or}, each element appearing at least once has the following bounds:

,ir e-ttP,< W(t, p) ,< t p (79)

Proof.

We use the fact that1 9

t > t t t e- t

40



The second and final counting argument anticipates results to be obtained in the next section.

First, however, let us rewrite Eq. (78) in terms of W(t, p).

M( s) p min [M(s), p]

z(m) = W(t, p) z(O . z(O t ) (80)

m=l t=l all sets of t
distinct elements
(,{e .. , ... , }

The upper limit on t indicates that the number of elements in a p-tuple (ml, m2 .... mp) cannot

exceed either p or M(s), the number of values of each index. In constructing the sets of t dis-

tinct elements { 1 , O2' . . , t}, we draw each 0 i from a set of M(s) items. They correspond to

nodes at penetration s in the incorrect subset and are otherwise labeled as (a, s), 1. a< t.

The terms z(O 1) z(O 2), .. .,z(Ot) in Eq. (80) are probabilities defined on t distinct paths at

penetration s in the incorrect subset. These t paths are composed of a number of branches

which is less than or equal to ts, since some paths may have branches in common. (See Fig. 15

where the paths involved are checked.) The next section will show that z(O l ) , . . , z(O t ) may be

bounded in terms of the number of branches on the paths {01l . . , Ot}. That being the case, any

two sets of t different paths with the same number of branches will have the same bound. We

now proceed to count the number of sets {l .. t} with an equal number of branches.

The paths {1, 102 . . , t} may be visualized by placing a check next to each of these paths

(of length s) in the tree. Above every branch on a path ending with a check place a 1 (see Fig. 15).

The number of such ones equals the number of branches on these t paths. Let a r be the number

of ones on branches at length r from the reference node and define E by A ( . .. . a
... s

/

I/
I/

/Y¥
¥

/
Fig. 15. Topology of tree paths.
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S

In terms of , the number of branches on the t paths {e1 .. . } equals a A c . Let
r= r

Nt(a) be the number of sets of t distinct paths {Of . . . t} which contain a branches. The

following lemma bounds Nt(c).

Lemma 4.

Nt(a) , (t- ) (s + )t - 2aR (81)

s
S

where a = Z ar; a ranges between s a < st.
r=l

Proof.

The proof is by construction. We first show that Nt(a) < (t - 4)! st- 2 aR for s 1. Con-

sider placing the first of the t paths into the incorrect subset of the tree (containing M(s) ,< bS

paths). It may assume no more than bs positions. A second path connecting with the first, but

having d separate branches may assume any one of b positions since its point of connection

to the first path is fixed by its length d. A third path with d2 branches distinct from the first
d2

two may connect to either path and terminate in one of b positions, that is, it can assume no

2 th
more than 2b places. The t path having dt branches distinct from the first t - 1 paths may

dt- i
be connected to any one of them and may terminate in any one of b positions; hence, can be

dt-
situated in no more than (t - 1) b places. Thus, given that the second path has d branches

distinct from the first, that the third path has d2 branches distinct from the first and the second,

etc., the number of arrangements of the t paths cannot exceed (t - 1)! ba where =

s + d + d2 +.. .+dt-1, the number of branches on these paths. All that remains is to determine

the number of ways that values may be assigned to d, d2 ... dt_2. (Note that dtl is fixed

given a and d . . .dt 2.) Since each number d. represents a portion of a path, 1 di < s, val-
t-2

ues may be assigned to d, d2 ... , dtr_ in no more than s ways. Hence, the number of arrange-

ments of t paths containing a branches cannot exceed (t - 1)! st-2b . Observing that b = R ,

we have the desired result for s 1. We also have s < a < st since one path contains s branches

and the number of branches on all paths cannot exceed st. Now, when s = 0, the bound on Nt(a)

is zero. We cannot let this bound be zero since M(o) = 1, and we must include the s = 0 term.

Therefore, replace s by (s + 1). Q. E. D.

As mentioned above, the results of the following section show that z(O i ) ... , z(O t ) may be

overbounded in terms of a. Let this bound be Qi, s(a) We terminate this section by using the

counting arguments introduced here to bound Eq. (76).

M(S) ZsSp min [M(s), p1] st

zi, s (m < W(t, p) Nt) Qi,s(a) (82)
mi= t=l a=s

where W(t, p) and Nt(a) are bounded by Lemmas 3 and 4, respectively. From Lemma 4, the

number of values a cannot exceed st.
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D. PROBABILITY TERM

The purpose of this section is to overbound the probability zi· s(0O) .. . zi s(Ot) and show

that this bound depends on the tree paths 1, . . .,e t only through o, the number of branches

which they contain. We call this bound Qi, s( a ).

Before we proceed, it is useful to repeat the definition of the random variable z. (0 ).
i, s a

From Eq. (71) we have

1 if d(O a , s) >Ti_ and d(r vro)T i+1

z. (a)- = for some r >1
zi, ( a )

=

0 otherwise (71)

The expectation of a product of characteristic functions such as zi s(O1). Zi, s (t) is the

joint probability of the events on which each characteristic function has value one. Thus, we

have that zi s(1) .. Zi, s(Ot) is the probability that d(01, s) >/Ti1t, d(O2, s) Ti 1 . . , d(Ot, s)haveithat z. t or 2 o 3 o
>Ti dU, Vr ) Ti+ t for r = 1 or 2 or 3 or... . This is the probability of the union (on ro)diii r Vr iT+i o...

o o
of a set of intersections. This may be overbounded by the sum of the probabilities of the various

intersections. Therefore, we have

0oo

zi, s() ).....z i, s(Ot )< Z PR [d(0a' s) > Ti_1 , 1< a < t
r =1
o

d(u r, Vr ) Ti+1] (83)
o o

Let us reduce Eq. (83) to a more manageable form. We introduce two lemmas to aid in this

task. The first is a probabilistic statement and the second is a form of the Chernov Inequality.

Lemma 5.

Let {Wh), 14 h,< H be a set of random variables and {Wh}, 1 < h < H a set of constants.

Then,

PR [w < W' w2 >/W 2 ., WH< WH]

PR [hwh >< ahWh, h < H] R E hwh E hWh (84)

h=l h=1

where ah > O for the inequality wh >Wh and aoh < 0 for the opposite inequality.

Proof.

The equality follows immediately. The inequality follows since the second event is implied

by the first.

Lemma 6.

Let w be a random variable and W some constant. Then,

PR [w >W]<2 W2W (85)
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Proof.

2W > L 2Wp(w) >2W E p(w)

w>,W w>W Q. E. D.

Equation (83) is overbounded with the aid of Lemmas 5 and 6. We use Lemma 5 with

H = t + 1, u 0 for 1 a t and t+ -o <0 . Then,

t
E aa)Ti--(oTi+l

zi, s) Zi s(Ot) 2

t \
00 E O ad(ea, V)+ odr V' r

X 2 a= 0 0 (86)

r =i
o

Any optimization now or later of the parameters ea, 1 a < t, is too difficult to be rewarding.

Therefore, we let a = 1/(1 + t), 1 g a, t, since this selection leads to meaningful results.

Recognizing that Ti = + i to, and remembering that d(Oa, s) = I(Oa, v s ) - siR, d(u, vr ) =

O O

I( r Vr ) - r IR from Eq. (69) and (70), where 0a is the set of s branches preceding (O, s),
0 0

we further reduce Eq. (86). (It should be remembered that to is the separation between criteria

whereas t is a variable.)

+t (- - ) -it( ( ± )0 -sR( t
zi, s() <2 o +t 0 2 ito(l+to ) -S R(2t+t

It o( r)a~1 o
x E g 2 r0R 1+ta a 1 ( (Ur r (

2 2 (87)

r =1
0o

where tree paths a, 1 . a t, are of length s. [Note that 0a indicates the node (a, s), whereas

Oa is a tree path of s branches preceding (a, s).]

Now focus attention on the expectation in Eq. (87). The various bounding techniques and

choices of parameters to follow are justified by the end result. The following lemma will be

needed:

Lemma 7. (Holder t s Inequality)

Let {Wh}, 1 2 ha H, be a set of positive random variables and let {vh 1' 1 • h < H, be a set

of positive numbers satisfying

H

h=l

Then,

H H 1"/
e 7.le (h)

wh h w
h=1 h=1
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Proof. (See the Appendix)

The expectation taken in Eq. (87) is over the ensemble of correct and incorrect sequences

and received sequences. Let V be a received sequence which includes v and v , that is, v
s r

o

contains more than r or s branches. We may visualize the average in Eq. (87) as consisting

of two successive averages, the first taken over the correct and incorrect sequences with the

received sequence fixed (indicated with Iv), the second average taken over the received

sequence V (indicated with - V). With V fixed, correct and incorrect sequences are statis-

tically independent by construction of the "random code" ensemble. This implies that

t

1+t a= ( a s C ('r, Vr )
2 a

V

a0I(Ur ' r )
x I2 V V (88)

v

where the averages are conditioned on V. The average in Eq. (87) is the average of Eq. (88) over

v. We overbound the average in Eq. (87) using Lemma 7, where the average of that lemma should

be considered as an average on V. We have H = 2 and we let v = (1 + t)/t, v2 = 1 + t. Then, we

have for the expectation in Eq. (87),

vjt/(i +t)
l+t I(O , V s)+o I r v
+t a= o 

2 <

x

v- (/(l+t)

(89)

v~i~Here the average is first carried out over the ensemble of codes with the received sequence fixed

and then over the received sequence. Final arguments in this section are concerned with evaluat-

ing and bounding these two terms.

From Eq. (69), we have

S SP [V h/ 0.a l

I(0 a, s) = log2 f(rh) (90)

r=1 h=r

a th th
where v rh0 rh are the h digits on the r branch of vs. 0a respectively, each of s branches.

An equivalent statement applies [from Eq. (70)] when 0a is replaced by the correct path ur
o

Over the ensemble of codes, digits on correct and incorrect paths are statistically independ-

ent and identically distributed with probability assignment {Pk} We evaluate the second factor

in Eq. (89) by observing that I(ur, Vr ) is a sum of r0o statistically independent random variables
o o

each of which assumes values
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plg [y]/xk] f jJ kKlog 2 .< I 1 j< J, 1 < k< K

Conditioned upon , each of these r I random variables assumes value

log 2 { P [/xk]
lo f (yj)

with probability

P [yJ/x k]

PR [k/Yj] = Pk f(y)
YJ

when the corresponding received digit is

output symbol yj when input symbols are

Eq. (89), we have

yj. We recall that f(yj) is the probability of channel

assigned probabilities {Pk}. For the second factor in

[(-ro· F·'U' v 1 /(1+t)'O J
roQiLt(a o )

tt l o g 2

I f | K p yj/x] 1+0o +t

j) Pk f(yj)
j=t k=1

Before evaluating the first factor in Eq. (89), let us observe that several of the t paths

{l ... Ot)} at penetration s may have branches in common. We recall that in the previous

section we identified branches on the paths { 1,O .. . et} by placing a 1 above each (see Fig. 15).

We then defined r as the number of branches at length r, that is, the number of i's on branches

at length r. Since ofr . t, a branch at length r may belong to more than one of the t terminal

paths. Let 6 be the number of terminal paths containing the nt h of the cr branches at length r,Since the total number of terminal paths is t, we have
1 < n< r' Since the total number of terminal paths is t, we have

r

z 6 n=t
n=l

(95)

th n n
(The dependence of 6 on r is implicit.) Call this nt h branch at length r or and let q rh be the
th digit (of digits) on this branch. Then, in Eq. h digit (of I digits) on this branch. Then, in Eq. (89) we have

t s ar

a I( a Vs) = n=Z 
a=1 r=1 n=1

I

6n
h=1

[Vrh/P rh]
log 2 f [vrh]
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where

(92)

(93)

(94)

(96)
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Over the ensemble of codes, the tree digits rh are statistically independent and identically

distributed and drawn with probabilities pk }. Since prh is a digit on a branch in the incorrect

subset, it is statistically independent of the corresponding transmitted digit and of the corre-

sponding received digit vrh. Therefore, sets of digits (vrh, .orh 'qPrh ) are statistically

independent of one another as are the digits in each set. Digit vrh assumes value yj with prob-

ability f(yj), given by Eq. (64). This is the same function f(yj) appearing in the definitions of the

metric. The conditional expectation in the first term in Eq. (98) becomes:

t -[ 6 1
o [ j

i F[[ a1 Vs k [ r logf((98)
a=1 frh

r=l h=1 n=1 k=1

But the digits Vrh are statistically independent; hence, the first term in Eq. (89) becomes, with

the aid of Eq. (98), the following:

/(l+t)
t1 

2+t a I(oa"
a=1

U' Y; ,a (1+t)/t It/(k[t)s J r K n/(+t): rI f(Yj) rI P Pk f(yj) i (99)
r=1 j=1 n=1 k=1

where we recognize that the random variables in the square brackets of Eq. (98) are statistically

dependent.

The above probability is not yet in usable form. As the first of two steps directed at putting

it in usable form we use Holder's Inequality (Lemma 7) on Eq. (99) where we identify wh with

K P [y/Xk] 6n/(l+t) (+t)/t

P k f( Yj) 
k=1

and we let vh = t/6. We note that

H °r

h t 1 6 =1
h=1 n=1

so that the vh satisfy the necessary constraint. Then,
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t
1 It -1 a'

a1+t I( a,2 a=
+t)

;s ar f K ] n/(+t})(+t)/6n] 6/(t (100)
r=1 n=1 j=1 k=1

In the second step we define

J K1+

R - - log2 Pk p [ j/Xk] /(1+) (10)

j=1 k=1l

and observe that terms in Eq. (100) can be rewritten as follows:

[J( K 6 [ /(+ t) (+t)/6n] n / ( l + t ) (1 n) R
j=l k=1

where

1 +t-6
- n (103)6

n

We note that fi t since 1 6n < arm t.

Next, we deduce from the following lemma that +Rp > + Rt for P .t so that -R t and

Eq. (102) may be overbounded by replacing R3 with Rt .

Lemma 8.

R as defined above is a monotone decreasing function of for /3 > 0.

Proof. (See the Appendix.)

Replacing R/3 with Rt in Eq. (102) and inserting this result into the inequality of Eq. (100), we

have the following final bound:

t/(l+t)
stRt

-a+t (104)
- 2 J~t 2 (104)

s

where a! = a r is the number of branches on the set of paths {O, .. O}) and we have used
r=1

Eq. (95). Combining Eqs. (93) and (94) in Eq. (89) we have the following:

l+t aI( a' s) o (Ur r r r t(ro) 2 +t -r IR
2 00~~<2 t 2 2 (105)

where t(go) and Rt are given by Eqs. (95) and (101), respectively.

Our last step, which is to use Eq. (105) in Eq. (87), is stated formally in the following

theorem:
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Theorem 4.

The probability z.i s(O1) . . i, s(Ot) is bounded by the following, where is the number

of branches on the tree paths of length s, { 1o . . , et}:

z. (__ ). z* +s(Ot) <Qi s(-)A- t °(+t - ) -it ( + ao)
z (e ).. ( 1 ),I 5 (&) A olit 2 ' 1ol+t 
i s 1 i... z s t) < Qi, S(i) =- 2

Slt (Rt-R) -aIR t
x 2 + t 2 (106)( ° -r[oR-Lt(o)])zO 1 

where ao0 0,

[Eq. (101)]Rt A t log 2

J

- log2 E f(y
j=1

[Eq. (94)]

(We shall discuss the convergence of the sum in Eq. (106) later.)

This is the result at which this section has been directed. We have obtained a bound on the

probability term which depends on the paths {O, .. , } only through a, the number of branches

which they contain. An identical proof (which we do not include) shows that the probability term

corresponding to negative values of i differs from the bound above only in the sign of i and in

the value of o (which we shall call 01).

The following section combines the results of this section with the counting arguments of the

previous section to obtain the complete bound on the moments of "static" computation.

E. BOUND ON MOMENTS

The purpose of this section is to combine the results of the two previous sections, thereby

bounding the moments of computation.

From Eq. (82) we have

M(s)p min[M(s), p]

m=1 t=1

Si

W(t, p) Nt(a) Qi, s ( )

( -- s

The multiplicities W(t, p) and Nt(a&) are bounded by Lemmas 3 and 4 which are repeated here in

abbreviated form.

Lemma 3.

[Eq. (79)]
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and

[Eq. (82)]

z Z k P yj / k] /(l+t)

j=1 k=1

K 1+t
) Z i y;x 

j)k=1cP[~~J~c j k~

A 1
~t( U) = 1 

· J~e-ttP < W(t, p) tp



Lemma 4.

Nt(a) (t - 1)! (s + -)t 2atR
t [Eq. (81)]

The lower bound to the function W(t, p) was introduced in order to establish that the bound in

Eq. (82) must grow approximately as t. To further overbound Eq. (82) we overbound min [M(s), p]

by p. Since M(s) = (b - 1) b for s ~ 1, it grows rapidly with s and the minimum will equal p

for most values of s. These observations lead to the following bound on Eq. (82):

M(s)

m=1l

z. s(m))1, 

P

2, tp
t=1

st

(t- 1)! (s + )t- 2 2a R Q i (a )

(~:=S

We are now prepared to use the results of the preceding section, Theorem 4, namely,

+t (--a ) -i2 to( +t +o ) 2(+t)(Rt R )
Qi, s( °) < 2 2

(107)

-r [ R- t( a )] )
2

-aaRt 0
X2 t 

r =
o

This bound and that given above yield

-+t -c ) -it (I-cy)

.< tP2 1+t °)2 i t ° ( 1+t 
t=1

(t- 1) (s + 1)t -

s (R-R) / st
s +t (Rt R) ( 

a=s

-af (Rt R))( 

r =10

-ro [rR- t(cr) )]

In the previous section (Lemma 8) we discussed Rt and said that it was monotone decreasing

with increasing t. If we choose R < Rp, then Rt > Rp for t < p and each term in the sum on is
-sl(Rt-R)

less than 1 and each is overbounded by 2 . (We note that this largest term occurs at

a = s which corresponds to the case where the paths O1 . ... t are one and the same.) Then,

M(s)

m=1

P t t
-. < tP2+t ° ( l+ t-- () -it (t+ao )

zi, (M))<t=pz 02 ol+t t(s + 1) t - 1
t=t

-sl(Rt-R) /0

X 2 l+t z

r=1

-ri[a R- Lt(ao ) ] )

We have yet to discuss whether the sum on r above converges and if so, for what values of

a0. The semi-invariant moment generating function it( 0o) is given by

jt(o 2 3i k=1 C [Y-/x 1+1 o)l [Eq. (94)]
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(108)

(109)
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Using the following lemma, we find that t ( go ) < p.p(a).

aoR - Lp(aO ) > O then aoR - pLt() > 0 for t < p.

Lemma 9.

Thus, if there exists a To such that

Let w be a positive random variable and 0 < v < n. Then

()41/v (wn) i/n (110)

Proof. (See the Appendix.)

We must ascertain whether there exists a < 0 when R < Rp such roR -pp(a o ) is positive.

If so, the sum on r in Eq. (109) converges. The next lemma will aid us in our determination.

Lemma 10.

The function coR - p(Co ) where p(Cro ) is given by Eq. (94) is positive for ' , ao < 0 where

p(g')/(r' = R, and p. p(a )/ ° is monotone increasing in co.

Proof. (See the Appendix.)

We deduce from the monotonicity of pp(Co)/aC that ar' < -p/(l + p). Therefore, there exists

a <-p/(l + ), aO > - such that R- -bp(ol) > 0 and coR -p p(C) > 0 when R < R. We shall

need these results soon.

In any further bounding of Eq. (109) we must consider the two polarities in i, namely i < 0,

i >0. We bound Eq. (109) over the two ranges of the index i, using the monotonicity in t/(l + t)

(up), in Rt (down) and in p.t(a) (up) with increasing t.

Theorem 5.

For i >,0, R < Rp, and o > r'

M(s)

m=1
z1,(m)) 2

/p~~~~~` 2 t oa o

-sf(Rp-R)

X 2 l+p

For i 0, replace o0 by Cl and 2 by

2 +ito( 1+p + 1)

(r

r=l

pp! (s + 1 )P- 1 pP

-rl [aoR-P(a) ])

We note that (t)/(l + t) < (p)/(l + p), using the lower bound for i > 0 and the upper bound

for i< 0.

Theorem 5 is now employed to compute the sum of the two terms in Eq. (75).

Theorem 6.

There exists Co, crTl 0 such that the following is bounded for R < Rp:01 1 Z ~~~~~~~~~~P
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Proof.

The discussion following Lemma 10 indicates that for R < R there exists a > - and

a < -(p)/(1 + p) such that o0 R - 0p(o) > 0 and a1R - [ip(al) > 0. These first two conditions

and the last two conditions guarantee convergence of the i and r summations, respectively.

Q. E. D.

We conclude our discussion of the moments with the following theorem which summarizes

the results of the last three sections. We recall the bound Eq. (75).

c Z l[( zi s(m))I

i=O s=O m=l

rM(s) P 1/p

+I( m Z-i s(m))J [Eq. (75)]

Theorem 7.

On the DMC, the pth moment of computation with the Fano Sequential Decoding Algorithm

is CP , which is considered as an average over the ensemble of tree codes, and is finite for

R < R where

pK +

j=l k=l

A bound to CP is obtained by combining Eq. (75) with Theorem 6.

F. COMPOSITE BOUND ON DISTRIBUTION

Our concern for the moments of computation was motivated earlier by the statement that

the moments may be used with a form of Chebysheff's Inequality to bound the distribution of

computation. We restate Lemma 1.
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Lemma 1.

Let C be a positive random variable with moments CP . Then,

C
P

PR [C >.L]( - [Eq. (73)]

Since the moments have been averaged over the ensemble of all tree codes, we have a bound

on the distribution considered as an average over the ensemble of tree codes. Indicate this

average with PR(C ?.L).

It has been shown above that CP is finite for R < R . We cannot establish the exact behavior
p

of CP from our arguments since CP has been overbounded. Therefore, we shall be content to

consider only those moments, namely, first, second, ... pt , such that R < Rp. To avoid con-
P

fusion let k indicate an arbitrary order of moment and define p by Rp+1 < R < Rp (note that Rp

is monotone decreasing in increasing p). Therefore, moments of order k.< p converge and may

be used in bounding PR [C ?. L].

1
Al

1-1
, 

-1/2
C6 C2 C2/c

L

Fig. 16. Bound on distribution.

Given that moments of order k< p are to be used in bounding the ensemble average of the

distribution of computation, we ask for that order of moment for which the bound is smallest.

If the kt h order moment is used and L (k) /k then the bound on the distribution is greater
kl /k

than one, so that one must be used as a bound. Since C increases with k (Lemma 7), the

bound on the distribution must be one for L < C and C/L for L just greater than C. This bound

is used for values L such that C2/L exceeds C/L. The point of intersection of these two

curves occurs at L = C 2/C (see Fig. 16). For values of L greater than this value, the second-

order moment is used until L = C3 /C2 at which point the third-order moment is applied, etc.

In general, we use the k h order moment for Ck/Ck - . L (Ck+)/Ck. The composite bound

is stated below (see Fig. 17).

Theorem 8.

Let C be the random variable of computation with moments Ck over the ensemble of tree

codes, then, for k.< p, where Rp+i < R < Rp.

1 p 

PR [C L]~ < c
C /L k , (ck/ck - 1)< L < ck+1/C k (113)
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Ck/Ck- c + '/Ck
L

Fig. 17. Composite bound on distribution.

With probability equal to 0.9 a code of rate R chosen at random from the ensemble of codes

will have PR [C >L]< 10 PR [C L]. Codes in the ensemble are assigned probabilities in such

a way that digits in the code are statistically independent and identically distributed with proba-

bilities {Pk ).

Proof.

The bound on the average distribution has been discussed above. The second statement

follows from Markov's Inequality (a variant of Chebysheff's Inequality), namely, if x is a pos-

itive random variable

PR [x< a] = 1 -PR [x > a]< - -

where x is a distribution of computation and a = 10.

The composite bound is the lower envelope of the bounds corresponding to the individual

moments. For large L (the distribution parameter) the distribution behaves as L- P where p

is the largest order moment which is guaranteed to converge. That is, p is such that

Rp+1 ,< R < Rp.
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CHAPTER V

INTERPRETATION OF RESULTS AND CONCLUSIONS

This report is motivated by a concern for the computational requirements of the Fano

Sequential Decoding Algorithm as reflected in the probability of a buffer overflow. This prob-

ability plays a central role in the design of the Fano decoder for two reasons:

(a) The probability of an overflow is much larger than the probability of an
undetected error (errors without overflow);

(b) When overflows occur a serious break in the decoding process results.

Our particular concern with the overflow event is to determine its sensitivity to the storage

capacity of the decoder, to the decoder's speed of operation, and to the signaling rate of the

source. We have had to approach these questions indirectly to avoid difficult analytical prob-

lems. Our approach has been to consider a random variable of computation known as "static"

computation C. We have over- and underbounded the probability distribution of "static" compu-

tation, PR [C > L], and have shown that it behaves as L- a , > 0, for large L. The bounds to

PR [C L] lead to bounds on .

We shall describe an experiment performed at Lincoln Laboratory and indicate the corre-

lation between this experiment and the analytical bounds on a. This will lead to a conjecture

about the true tail behavior of PR [C L], i.e., the behavior of this probability for large L. We
shall interpret the conjectured exponent a in terms of established bounds on exponents of prob-

abilities of error, these exponents being derived from coding theorems.

In this chapter, we also establish a heuristic connection between the probability of buffer

overflow and the distribution of "static" computation PR [C > L]. From this connection we in-

dicate the sensitivities to buffer size, machine speed, and signaling rate which are displayed

by the overflow probability. Finally, we introduce and discuss several research problems.

We begin this chapter with a discussion of the tail behavior of PR [C L].

A. COMPUTATION EXPONENT

In Chapter III, a lower bound applying to all codes was found for PR [C > L]. A lower bound

for codes of fixed composition was also found. We shall be concerned here only with the general
lower bound.

In Chapter IV, an overbound to PR [C L] was found using the "random code" technique. It
was shown that a large fraction of the set of all tree codes have a distribution function PR [C L]

which is less than some fixed multiple of the ensemble average of PR [C L].

It was indicated by Example 2 of Chapter IV that the upper bound on PR [C L] of that chap-
ter should be numerically weak. Because of the lower bounding technique described in Chapter III,

the same may be said for the lower bound. Example 2 did indicate, however, that the behavior of

the upper bound in the distribution parameter L should approximate the true (ensemble average)
tail behavior. We are thus motivated to consider the behavior of PR [C > L] with L for large L.

To study this behavior, we introduce a function e(R) called the computation exponent.

A | j L-)o (- log PR [C L]) (114)e(R) R lim (4)
L-- log L

55

___��_11�1_



Since PR [C L] behaves as L - 0 for large L, the exponent a is related to the computation ex-

ponent e(R) by a = e(R)/R. Multiplication by the rate R normalizes ac so that e(R) is a bounded

function.

We now use the definition of Eq. (114) on Theorems 3 and 8 to obtain upper and lower bounds,

respectively, to e(R). We note that e(R) is an implicit function of the code, since PR [C >L] is

a function of the code.

Theorem 9.

On the completely connected DMC, a code cannot be found with a computation

ceeding e(R) where

e(R) A (- a) (R - Imin)

and (a is the solution to
o

exponent ex-

(115)

Yk(U o)
R = max

k o
for -1 < (o 0

Here, Yk(r) is given by

J

Yk(a) A log2 P [Yj/xk1t +° f(yj)-a
j=1

it, P [Y/Xk]
Imi n = min log f(j)

K

f(yj) = Z P [yj/xk]
k=l

Theorem 10.

On the general DMC there exist codes

e(R) where

e(R) = p R

for Rp+ R < R p, p = 1, 2, 3,..., and

J K A +p

j=: k=I

with computation exponents greater than or equal to

(116)

[Eq. (04)]

The probabilities {pk} are the probabilities assigned to letters in codes in the "random code"

argument. They also appear implicitly in the definition of the path metric through the function

f(yj). The path metric on the path terminated by node (m, s, q) of the q incorrect subset,

d(m, s, q), is defined as by

n 2

d(m, s, q) = 

r=l h=l

log2I P [Vrh/Urh]
g f(vrh)
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[Eq. (60)]

and

[Eq. (38)]

[Eq. (17)]

[Eq. (64)]
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Here u n, n = q + s, represents the given tree path; vn represents the corresponding section of

the received sequence; and Urh, vrh are the ht h digits on the rt h branches of un, vn, respectively.

Theorems 9 and 10 delimit the tail behavior of PR [C L] as measured with the computation

exponent e(R); e(R) ,< e(R) for all codes on the completely connected DMC, and there exist codes

on the general DMC such that e(R) e(R). We now consider the behavior of the two bounds,

e(R) and e(R), with the signaling rate R.

First consider e(R). We wish to show that it is a monotone decreasing function of increasing

R. We recall from the discussion of Chapter III that _yk(uo)/uo is a monotone increasing function

of a o. This implies that R = max []yk('o)/ao] is also monotone increasing in o0. Moreover,
k

vYk(o)/0o is continuous in r0 as is R = max [yk(co)/o]. If we can show that e(R) = (-( o ) (R - Imin )k
is monotone decreasing in increasing 0o, we will have established that e(R) is a continuous de-

creasing function of R. The monotonicity of (-Cro) (R - Imin ) is established by considering its

derivative in o. The derivative is taken at a value of (o0 which is not a transition point of

max [k(a0o)/o], that is, a point at which the index which achieves the maximum is changing
k

from k = kl to k = k2 .

d d 1
doo (-) (R- Imi n ) d0 ko o min

d[k Io) Imin I (118)

where

J r tY~/2,1 l+o -0 VlyjxkI
YE1 P yj/xk 1 f(y log 2 f(y )

k 0
1 Op K f(y) o

1 7 P Yj/xkj l+g (119)
j=1

We may underbound each of the log 2 {p [yj/xkl]/f(yj)}), appearing in Eq. (119), by the smallest

such term. By definition, this must exceed Imin . Therefore, yi (o0 ) >/ I m i n and (- o) (R - Imin )

has a negative first derivative at values of a0 which are not transition points. Since (-Oo)

(R -Imin) is continuous in (o, we have that e(R) is continuous and monotone decreasing in R.

At =-1, R = 0 and e(R) =-Imin > 0. At o = 0, R = lim max [yk(go)/Uo] = max -y(0) [since
-O0 k k

o

Yk(0 ) = 0] and e(R) = 0. These results are summarized in the following lemma.

Lemma 12.

The computation exponent upper bound e(R) is continuous and monotone decreasing in in-

creasing R. It decreases from e(R) = -Imin at R = 0 to e(R) = 0 at R = max Yj(0O). The compu-
k

tation exponent bound e(R) is sketched in Fig. 18 for a typical channel and a typical probability

assignment {Pk}

One may show that the rate at which e(R) = 0, namely max y(0), may exceed channel ca-
k

pacity. On the contrary, if the assignment Pk) that achieves channel capacity Co is used then
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Fig. 18. Computation exponent upper Fig. 19. Computation exponent lower
bound e(R). bound e(R).

max y (O0) = Co . We recall that channel capacity CO is defined as the maximum mutual informa-
k o

tion between channel inputs and outputs. Let I(x, y) be the mutual information between channel

inputs and outputs; then,

C / max I(x,y) max Z Pk / [Yyj/xk]g2 (y) (120)

{ P) {Pk) j=1 k1 j kl

It has been shown 2 0 that the {pk} which maximizes I(x, y) is such that

P [y./xkl
p [yj/xk] log2 ; k = 1,2,. .,K (121)

j=1

with equality when Pk , 0. Therefore, if this set (Pk} is used in the definition of f(yj), that is,

in the definition of the path metric, then max y'(0) = Co and the rate at which e(R) = 0 is channel

capacity. k

We shall now consider the behavior of e(R) with R. As given by Theorem 10, e(R) = pR for

Rp+l R < Rp, 1, 2, .... Fix p. Then, for Rp+l R < Rp, e(R) increases with R on a line

of slope p passing through the origin. The full curve e(R) is sketched in Fig. 19. For R arbi-

trarily close to, but less than Rp, e(R) = Rp. We now show that the points pRp form an in-

creasing sequence for increasing p, whereas the Rp form a decreasing sequence. This will

establish that the sketch of Fig. 19 is accurate.

From Lemma 8, Rp, , 0, is monotone decreasing in increasing f. We show that pR is

monotone increasing in p by showing that 2 P is monotone decreasing in p for a fixed set of

2-pR = i K A +p
2 PRp k= Z Z k p [y/xk] / ( + p )' (122)

jLemma 9 is sufficient =1 k=l

Lemma 9 is sufficient to establish the monotonicity of 2- P. We repeat this lemma here.
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Lemma 9.

Let w be a positive random variable and let 0 < v < 77. Then,

(WP) /v (w) t1

Therefore, if we apply this lemma to the sum over k for each j in Eq. (122), we find that in-

creasing p decreases 2 P or increases pRpR

We now show that on the completely connected DMC, pRp has a well-defined, nonzero limit

as p o. For large p,

[j/xk]/(+P) Aexp It p lnp [yj/xk]} 1 + p lnp [yj/xk] (123)

and

K l/(l+p) l+p K

Pk P [Yj/xk] _ exp (1 +Zp)n + Pklnp np [yj/xk]
k=t k=t

exp 1 pklnp [YJ/xk]I (124)

Therefore, on the completely connected DMC, as p becomes indefinitely large, pRp approaches

K~J~- exp Z Pkl nP[Y1/xk]K

log 2 Z 2k=
j=

This implies that Rp = pRp/p approaches zero on the completely connected DMC. When the

channel is not completely connected, the limit of pR as p - o may be infinite. This implies thatp
R - C > 0. These results are summarized in the following lemma.

p o

Lemma 13.

The computation exponent lower bound e(R) is a set of straight lines of increasing slope,

e(R) = pR for Rp+ < R < Rp, p = 1, 2, 3 ... On the completely connected DMC the points

pRp increase with decreasing Rp to the following limits

K
J Z Pklogp[y/xk]

lim R = 0 , lim pRp = log2 2
k =

pP p Po j=1

When the channel is not completely connected, lim R = C+ where C + may be strictly positive,

CO+> O.

The largest rate for which e(R) is nonzero is R. For R > R1 , e(R) is zero. It will be

obvious from a later discussion that R1 ,< Co, channel capacity.
As an example of the computation exponent bounds, we show in Fig. 20 the two exponents

e(R) and e(R) for the binary symmetric channel (BSC) with transition probability po = 0.01. We
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Fig. 20. Bounds on the computation exponent for BSC with po = 0. 01.
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Fig. 21. Empirical distribution of computation.
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select Pk =
2, k = 1, 2. Since this assignment achieves channel capacity, (R) = 0 at R = Co. For

this channel and the given assignment (Pk), we have e(R) = (p/l + p) [Rp + log (/2po)], where

R = R and p assumes all values greater than zero (not just the integers). At R = 0, (R)

-Imin= log 2 (1/2Po).
In the next section we correlate the analytical results with an experiment.

B. AN EXPERIMENTAL RESULT

A computer simulation 3 of the Fano algorithm was run recently at Lincoln Laboratory under

the direction of K. L. Jordan who has made data from this experiment available to the author.

These data represent slightly more than one million decoded digits on the BSC with po = 0.01 and

have been used to compute an experimental distribution of computation (see Fig. 21). The compu-

tation variable measured in this simulation will be discussed shortly. It suffices to say that it

differs somewhat from "static" computation.

In the experiment, a convolutional tree code of the type described in Chapter II with b = 2

was used. In the generator g = (g,g 2 .. . gS ), S = 60; g was chosen to maximize the Hamming

distance between the two tree branches at the first node of the tree. Given gl, g2 is chosen to

maximize the minimum Hamming distance between the four codewords of two branches. Several

other subgenerators were chosen in this way. The remainder were chosen at random. The BSC

was simulated with a random number generator and as the decoder operated, it was assumed to

have an infinite buffer.

The computation variable recorded by the computer is best defined with the aid of two im-

aginary pointers. We may visualize a pointer "extreme" below the tree code indicating the

furthest penetration into the tree made by the decoder. Another pointer, "search," below the

tree indicates the depth of the node presently being examined by the decoder. The search pointer

either lies on or behind the extreme pointer. Every time the two pointers move ahead together

in the tree, the computer program records one computation. If a search is required, the ex-

treme pointer remains fixed and the program records the number of operations required before

the search pointer returns to the extreme pointer and the two move ahead. The data from the

simulation are reduced and the computer program prints out the number of times the computation

exceeds 2 k for k = 0, 1, 2, .... In the particular run used by the author the signaling rate R was

2 bit per channel use. The largest number of computations in this run was less than 256 and

greater than 128 and it was observed that the search pointer never drifted back more than 45

branches from the extreme pointer.

Although the computation recorded by the program is not "static" computation, we shall

argue later that it is a small multiple of "static" computation. Since this multiple does not affect

the tail behavior of the experimental distribution, we are justified in computing the computation

exponent for the experimental distribution and comparing this exponent to the bounds of Fig. 20.

The experimental point is shown in Fig. 20. Other computer runs at rates R = , 4 were re-

corded but large computations were so infrequent that the data were not considered reliable and

were not used.

In the next section, we conjecture about the true-value of the computation exponent.

C. A CONJECTURE

We are led to conjecture a form for the "true" computation exponent by consideration of the

experimental result of the last section and the derivation of the "random code" bound on the
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distribution of "static" computation. In the discussion of this bound in Chapter IV, we limited

attention to integral moments of computation for analytical reasons. As a result of this limita-

tion, e(R) has the shape of Fig. 19. We now suggest that the true "random code" computation

exponent has the form e* (R) = pRp when R = Rp for all p / 0 (not just integer p). We suggest

that this is an exponent which may be achieved, that is, that codes can be found with this expo-

nent. (This is partially substantiated by the experimental point discussed in the last section.

The conjectured "random code" computation exponent and this point differ by only 5 percent at

R = for the BSC example.) Finally, we suggest that e* (R) cannot be exceeded, that is, that no

code exists with a computation exponent which exceeds e* (R). These suggestions are summa-

rized below.

Conjecture

The computation exponent e (R),

e* (R) = pRp , RRp for p > 0 (125)

cannot be exceeded by any code used with the path metric of Eq. (114) and codes exist which

achieve this computation exponent.

The conjectured exponent e (R) is a monotone decreasing function of R. This may be de-

duced from the earlier discussion of the exponent e(R). The value of e (R) at R = 0 is identical

with the value of e(R) at R = 0. The exponent e* (R) is zero for p = 0 or R = I(x, y) where I(x, y)

is given by Eq. (120).

The conjectured exponent of this section is interpreted in the following section in terms of

"list decoding" exponents and the "sphere-packing" exponent.

D. INTERPRETATION OF COMPUTATION EXPONENT

The conjectured computation exponent e* (R) has a simple interpretation in terms of the

"list decoding exponent," that is, the exponent of the "random code" bound on the probability of

error with "list decoding." 2 1 -23

"List decoding" is similar to maximum a posteriori decoding. We assume that one of

M A 2 nR equally likely codewords is transmitted over the DMC. Here n is the code block length

in channel symbols and R is the signaling rate. At the receiving terminal, the decoder makes

a list of the k a posteriori most probable codewords given the received channel sequence. If

the transmitted codeword is not in this list of k codewords, an error is said to hav.e occurred.

With "list decoding" the probability of error is reduced from the probability of error with maxi-

mum a posteriori decoding, k = 1, by accepting some ambiguity in the transmitted message.

The probability of error with list decoding has been overbounded using a "random code"

argument. The probability of error is averaged over the ensemble of codes by assigning to

each code a probability, computed as if each letter in the code were chosen independently with

the assignment (pk), the assignment of Chapter IV. The ensemble average of the probability of

error with list size k, Pk(e), k = 1, 2, 3,..., has the following bound

-nEk(R)
Pk(e) 2 (126)

where

Ek(R)= max [pRp-pR] (127)
O0p k
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The exponent Ek(R) is the upper envelope of the straight lines pRp -pR for all 0 < p < k (see

Fig. 22). At R = I(x, y), Ek(R) = 0. For R < R-, the point of tangency of the straight line of

slope -k to the curve E.(R) A lim Ek(R), the exponent Ek(R) increases along a straight line of
k-oo

slope -k to kRk. The limiting exponent Eo(R), as well as Ek(R), depends on the probability

assignment fPk. If Eo(R) is maximized on pOk} , one finds that the resulting exponent equals

the "sphere-packing" exponent. This latter exponent is an exponent t on a lower bound to the

probability of error which applies to every block decoding procedure, list decoding or otherwise,

and as such the "sphere-packing" exponent represents the largest possible exponent on the prob-

ability of error with any block decoding procedure. It is a fundamental bound on exponents to the

probability of error.

We now return to the conjectured computation exponent e* (R). A simple construction on

Eo(R) yields e (R) (see Fig. 23). From R a straight line tangent to E (R) is drawn; e (R) is

the height of the intersection with the exponent axis. This straight line has equation pRp -pR

for some p by definition of E, (R), where p is the magnitude of the slope of the tangent line.

Although the conjectured computation exponent [which equals e(R) for R Rp, p = , 2, . . .

has an interpretation in terms of the "list decoding exponent" and the "sphere-packing" exponent,

there is no obvious connection between them. Since the latter two exponents are fundamental in

a sense, the fact that the conjectured exponent is interpreted from them suggests that this expo-

nent may also be fundamental. Unfortunately, there is no other evidence to suggest that this is

the case.

E. OVERFLOW QUESTION

In this section, we establish a heuristic connection between the probability distribution of

"static" computation, which we have studied extensively, and the probability of buffer overflow.

Our discussion will indicate the sensitivity of the overflow probability to signaling rate R to

machine speed, to buffer size and to the number of digits decoded before overflow. We begin by

summarizing the discussion of Chapter II on the overflow event.

We assume that the Fano decoder operates with the buffer shown in Fig. 24. Branches arrive

from the channel and are inserted at the left-hand end of the buffer. They move through the

buffer at the rate at which they arrive and are released when they reach the right-hand side of

the buffer. Below each branch, space is provided to record tentative decisions on the source

digits. This portion of the buffer is empty to the left of the pointer "search."

As the decoder proceeds, it inserts or erases tentative source decisions recorded below the

tree branches. These insertions or erasures occur at the search pointer because this pointer

indicates the received tree branch presently being examined by the machine. The pointer "ex-

treme" indicates the latest received tree branch examined to date. Branches to the left of this

pointer have never been compared to branches in the tree code.

The search and extreme pointers hover near the left-hand side of the buffer when the decoder

has little trouble decoding. Occasionally, however, an interval of high channel noise forces a

large amount of computation and the two pointers drift to the far right end of the buffer. When

this happens, there is a high probability that an erroneous digit will be released into the safety

zone. Since the decoder is unable to change digits in the safety zone (the corresponding received
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branches have been discarded), the decoder is forced to consider extending on incorrect paths.

This is very difficult, so that thereafter both pointers tend to hover near the far end of the buffer,

releasing erroneous digits. Although overflow can be detected, it is a serious disturbance and

must be combated either with the use of a feedback channel or periodic resynchronization or by

some other means. We will attempt to estimate the sensitivity of the overflow probability to the

system parameters.

Now that we understand the meaning of overflow, we return to a consideration of "static"

computation. Our intention is to lay the groundwork for a discussion of PBF(N), the probability

of a buffer overflow on or before the time at which the Nt h source decision enters the safety zone.

Consider the qth node on the correct path (1, 0, q). "Static" computation associated with

q correct node is defined as the computation eventually performed with the Fano algorithm on

nodes of the qth incorrect subset when the correct message is ultimately decoded. We now argue

that whatever computation is performed in this incorrect subset is performed on nodes which are

close to the reference node (1, 0, q) and that almost all of these computations are performed

together in time rather than a substantial fraction now and a comparable fraction later. We are

in effect going to argue that "static" computation is very closely related to "dynamic" computa-

tion. The argument is as follows:

(1) For a properly chosen code and for a reasonable range of signaling rates,
R < R 1 , computation in an incorrect subset is due almost completely to an
interval of high channel noise and a concomitant dip in the correct path.
We argue that this is true by noting that if the correct path does not dip,
the decoder will never be searching far from the correct path.

(2) Let W be the width of a dip in the correct path (the separation between
points A and B in Fig. 25). Let the magnitude of the dip remain fixed.
Then it can be shown that a dip of width W occurs with a probability
which decreases exponentially fast in W. Therefore, this width will
typically be small.

(3) If the qth correct node (1, 0, q) is in the region of a dip in the correct
path (see Fig. 25), then paths in the associated incorrect subset may be
above the minimum of the dip over the region A to B of Fig. 25, but
beyond B they will typically fall rapidly below the dip minimum never
to be extended.

(4) It is conceivable that a dip far ahead of a particular correct node will
force a return to the incorrect subset associated with this node. The
probability of such an event is very small as is seen from the following
observations: Typically, the correct path will rise from a particular

u

Fig. 25. Typical correct path trajectory. x
w
2

01

13-62-32901

to

' I I I

(, O,q) I 
I I 
C A

SEARCHI 'EXTREME

LENGTH

65

,

I



correct node [see (1, 0, q') of Fig. 25]. If a later dip in the correct path
is to force a return to node (1, 0, q'), this dip will have to equal or ex-
ceed the rise which previously occurred in the correct path. If such a
dip occurs far in the future, it will typically be very large in magnitude.
Such an event is very unlikely. It occurs with a probability which de-
creases exponentially in the magnitude of the dip.2 5

(5) Thus, if computation is required in the qth incorrect subset, with high
probability it will be due to a dip in the correct path which is close to
the qth correct node. Since the width of the dip will typically be small,
all the computation performed in the qth incorrect subset is usually per-
formed on nodes close to the qth correct node. The behavior of the prob-
abilities mentioned in (2) and (4) can be established with a "random code"
argument.

Statement 5 summarizes the argument which suggests that "static" computation is related

to "dynamic" computation. We note that the "static" computations in the adjacent incorrect sub-

sets, which are located within the region of a correct path dip (C to B in Fig. 25) will be com-

parable so that the total "dynamic" computation due to the dip will be a small multiple, say

Navg, of the "static" computation in one incorrect subset. We also note the pointers "search"

and "extreme" indicated in the buffer description may also be applied to the path trajectories of

Fig. 25. As a result of a correct path dip, the extreme pointer will move out to point B and will

typically remain there until the running threshold has been reduced sufficiently to pass the correct

path. It is this argument which justifies our comparing the computation exponent bounds to the

data taken from the Lincoln Laboratory simulation. We may also observe from the discussion

of Chapter III that the computation increases exponentially with the width of the correct path dip

so that for a dip which causes a large computation, the extreme pointer of Fig. 24 will drift back

by an amount x while the extreme and search pointers will have a separation proportional to

log x. We are now prepared to discuss the overflow probability.

The buffer overflow probability PBF(N) is defined as the probability that overflow occurs on

or before the time at which the N source decision reaches the safety zone. It certainly exceeds

PBF(1), that is,

PBF(N) PBF() . (128)

First, we shall consider PBF(1) in order to bring out the dependence of PBF(N) on signaling rate

R, machine speed, and buffer size.

PBF(1) is the probability that the buffer overflows on or before the time at which the first

source decision reaches the safety zone. Since the buffer is empty before the first received

branch enters the buffer, overflow can occur if computation in the first incorrect subset and ad-

jacent subsets is sufficient to force the search pointer from the left- to the right-hand side of the

buffer. Large computation in these subsets (let there be Nvg of them) is due to a local dip in
avg

the correct path so that if the total "static" computation over these Nvg incorrect subsets ex-
avg

ceeds Lo, where L is the number of computations needed to force the search pointer to the far

end of the buffer, then overflow occurs. If Tch is the time between branch arrivals and B is the

number of branches which may be stored in the buffer, then it takes BTch seconds to fill the

buffer. We neglect the distance between the search and extreme pointers and assume that each

computation requires m seconds. Then if L = BTch/Ym or more computations are required

in the first Navg incorrect subsets, then overflow will result. If the computation in these sub-

sets is comparable, and if the "static" computation in each one of them exceeds BTch/Navg'Ym

overflow occurs. Therefore,
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PBF PBF(1) PR I L avgm (129)P ® >PBF(Ni) ~PF PR C >~L -NTm
We may deduce from the fact that PR [C , L] behaves as L[-e(R)]/R, for large L, where e(R)
is the computation exponent, that PBF(N) is relatively insensitive to a change in B, the storagecapacity of the buffer, or to a change in ym, the time for one machine computation. PBF(N) isvery sensitive to signaling rate, however, because the exponent [e(R)]/R increases rapidly with
a decrease in rate. These are the sensitivities mentioned in Chapter II. Let us now consider

the sensitivity of PBF(N) to N.
It should be clear that PBF(N) will increase rapidly to one with N, the number of sourcedecisions released into the safety zone, if the average number of decoding operations required

by the Fano algorithm exceeds the number of computations per second which the decoder can
perform. We find from inspection of the conjectured computation exponent that the average com-
putation required by the algorithm is very large if R ~ R1. Therefore, PBF(N) must grow rapidly
to one with N for R R1. This then is an upper limit to the rate at which the Fano algorithm
may operate with infrequent overflows. It has been shown that the average computation is small
if R < 0.9 R1, being several computations per decoded digit. Thus, if the machine speed is such
that several times this number of computations per second can be performed, then we do not ex-
pect PBF(N) to grow rapidly with N. In fact, one may reasonably argue that decreasing the sig-naling rate rapidly decreases the probability of frequent intervals of large "dynamic" computa-
tion, and this implies that with a reduction in signaling rate the machine decodes easily and both
the search and extreme pointers hover near the left-hand end of the buffer. If large computations
are infrequent, we expect only one burst of computation at a time, which is to say, that bursts
will be statistically independent. PBF(N) then is proportional to N and PBF(1), that is,

PBF(N) --NPBF() 
(130)

when Ra 0.9 R1, PBF(1) is small, and the machine speed exceeds by several times the speed
required to handle the average computation.

While the statements of this section are strictly heuristic, there is good reason to believe
Eq. (29) because of the experimental result cited above. The statement of Eq. (30) is less
secure than that of Eq. (129). At best, it may serve as a guideline.

This completes the discussion of overflow probability.

F. SOME RESEARCH PROBLEMS
We conclude this chapter with a discussion of some problems suggested by the results of

this report. We shall discuss these suggested problems in inverse order of importance.
The distribution of "static" computation and the probability of buffer overlow were loosely

connected in the previous section. It is unfortunate that the connection had to be heuristic.
Perhaps a more direct connection is possible.

If a direct, nonheuristic, approach to the probability of buffer overflow cannot be found,
then the heuristic approach of the last section should be improved by improving the bounds on
the distribution of "static" computation. In particular, there is reason to believe that a stronger
lower bound argument than that presented in Chapter III may be found and that such a bound would
not require the assumption that the DMC is completely connected.
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A more important problem than the two suggested, concerns the choice of a path metric.

The metric assumed for this report, Eq. (117), requires exact knowledge of the channel transi-

tion probabilities. There are several reasons for not using a metric of this type.

(1) It may be too difficult to measure the channel transition probabilities;

(2) The channel may be time varying so that a metric for the poorest channel
state may be necessary;

(3) The channel transition probabilities may be known but they may be either
so large in number or sufficiently difficult to compute in the decoder that
some other metric is desirable.

Thus, there is a need to consider the performance of the Fano Sequential Decoding algorithm

with a variety of metrics. If we choose to measure the performance of the algorithm with the

computation exponent, an analytical treatment of the various metrics may be possible using the

technique of Chapter III. It is not expected that the "random code" argument will carry through

for many different metrics. It is more reasonable to expect, however, that a fruitful study of

the effect of a change in metric on the Fano algorithm will be achieved through simulation. A

preliminary study of this type has been completed at Lincoln Laboratory. 3 The behavior of the

Fano algorithm appears to be insensitive to a variation in metric.

We come now to the most important problem area suggested by this report, that of overflow.

Since it occurs with a much larger probability than do undetected decoding errors, it deserves

further examination. In our study of the overflow probability PBF(N) we have found that it is

insensitive to buffer size and machine speed, but strongly dependent on signaling rate. This

suggests that a sizable decrease in PBF(N) is obtainable only with a decrease in rate. For many

applications, large signaling rate is desired. Hence, if PBF(N) could be made to decrease more

rapidly with buffer size and machine speed, then the decoder could operate at a higher rate with

an equal overflow probability. We are motivated then to consider ways of reducing the size of

the "static" computation for each channel noise sequence. As mentioned in Chapter III for Se-

quential Decoding there exists some high channel noise sequence such that "static" computation

is large and growing exponentially with the length of this interval of high channel noise. If the

rate of growth of computation with such a channel noise sequence is reduced, then PBF(N) will

decrease more rapidly with buffer size and machine speed.

Conceivably, a reduction in the rate of growth of computation with channel noise is possible

by modifying the Fano algorithm. If the rate of growth of computation with a modified algorithm

remains exponential, then the modified algorithm should be expected to be similar in design and

performance to the Fano algorithm. If the rate of growth realized is nonexponential, it is doubtful

that the modified algorithm will resemble the Fano algorithm in any way. Exponential growth of

computation seems to be characteristic of this algorithm.

If the rate of growth of computation is to be nonexponential, there is some question that the

probability of error can be made to decrease with the constraint length of the code S as fast as

2-SE(R) as it does for Sequential Decoding algorithms.7 As a matter of fact, there are a number

of decoding procedures for which the computation is bounded by a function which is algebraic in

the constraint length or block length S, that is, which grows no faster than SP for some P , 0;

but at the same time the error probability decreases only as 2 S E(R) where E is some num-

ber strictly greater than zero.3 ' 9,10 There seems to be an important sacrifice in error prob-

ability for a reduction in computation. Since a small error probability can be realized with
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small cost, a trade-off of this type may be desirable. We are prompted to suggest that the

obtainable trade-off between computation and error probability is limited by the channel and the

signaling rate. If such a trade-off exists, the knowledge of the best balance between computa-

tion and error probability would be of great conceptual, and ultimately, practical interest.

Note added in proof: In a recent paper to be published, I. Jacobs and E. Berlekamp through

a direct argument have underbounded the probability of a buffer overflow or an undetected error.

This bound grows linearly with the number of information digits processed by the decoder and it

has as computation exponent that given by the conjecture of this chapter.

Also, H. Yudkin has recently shown that the random code bound of Chapter 4 can be refined

so that the lower bound to the computation exponent agrees with the conjectured exponent for

rates less than R
comp
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APPENDIX

LEMMAS

Lemma 2. (Minkowski's Inequality)

Let Wh), i < h H be a set of positive random variables. Then,

p >1h )]/p H
h=l h=l

Proof.

Holder's inequality established below, will be used. Write

s = w1 +...+ WH

and let S = s p . Using Holder's Inequality for two variates with v = p and v2 = p/(p - 1) we have

H H

SP = I whsP-t Z
h=l h=i

Then,

H

sP h_(PPtPSp - 1
1-t

or

.· H P /p H

S = ( w h)] H

h=l h=l

Lemma 7. (Holder's Inequality)

(W P)1 /ph

Let {Wh}, 1 h H be a set of positive random variables and let {Vh}, 1 h H be a set
of positive numbers satisfying

H

- vh
h=l

Then,

H H

I Wh< nI
h=1

h /Vh

h=i

Proof.

It suffices to establish that

ab < v a ) (b)l/ a,b >O0
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when (1/v) + (1/1) = 1 since this inequality may be iterated to obtain the inequality of the lemma.
Let the joint probability that a = ai and b = b i be pi. Then,

ab = piaibi

i

Let (t) = t /v-- (1/v) t for t > O. Then,

e(t) = (t-l/1 -
V

) = 

<t < 1

t=1

t>1

Therefore, (t) achieves a maximum at t = 1 over the range t > 0. Hence,

e(t) < e(i) = 
,1

Let t = A/B and multiply by B where both A and B are positive to obtain the following

A /v B < A + B
v 77

Now, choose

A = 1iai

Z piai
i

Y pib
1 1

Replacing A

namely,

and B by their values and summing on i, we arrive at the desired inequality,

E Piaibi <
i

Lemma 8.

As defined below, R is a monotone decreasing function of increasing /3 for /3 > 0.

J K

R =- log 2 Z ( z
j=1 k=1

Proof.

Let E(P3) = 3BR. Then,

Pkp [yj/xk ]t/(t+3))+

dR - d E(p) _ 3E'(/3 - E(p)

d/ d/3 2

At /3 = 0 the numerator is zero. Its derivative is /3E"(/3). We show below that E"(p) < 0; hence,
the numerator is negative for /3 > 0 as is the derivative of R.

To show that E"( () < 0 we shall demonstrate that E(/) is a convex upward function.
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]1/(1+P) +0
J K

E(g) =-log2 (k PkP [Yj/xk

j=l k=l

Holder's Inequality for the two variate case will be used twice. We apply it to the inner sum

above with

Vtl = 1 +P
x =(1 + 31)

1 +p
2 - X)(1+:2)

where 0 < X < 1, pi1 ,2 > 0 and p = XP1 + (1 -X) 2

K

k=1

/X(1++ 1)
p [yI1/j(x1+ 1)

Pkp [Yj k]

(1(1 -)(x)( + p 2)
1/[(1-X)( J+32)] )

Applying Holder's Inequality to the double sum in the definition of E(3) with v = l/, v 2 = /(1--X)

we have

J

j=1

K

k=l

K

k=1

J K

[j (
.j=1 k=t

]1/( 1+ )) ]

+12] I-

Pk p [yj/xk]

Pk P [Yj/X k ]

The inequality is strengthened if the exponents of p [yj/xk] are replaced by 1/( + i ).

E [XA1 + (1 - ) 2] > E(p1) + (1 -) E(13 2)

which establishes that E"(p) 0.

Lemma 9.

Let w be a positive random variable and 0 < v < .

Then,

Q. E. D.

Then,

(7w) l/v < (w) 1 / 

Proof.

Let w = wi with probability Pi, then,
1 .2

We have
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K

"( E P kP [j/x k
k=1

Lj 1

1

1/1(1-)(+P2)

V1/
piwi

(wV) l/V =

p tj/ I/(Yp +



d wv3 l/v 1 Fwv3l (v i pi + (v) l/v-l pwV lnw
dv -2 (w) PiWi PWi

( ) i PiQi nQi)

w.
Q = 1 > 0

? Piwi

and

PiQi = 
i

Using the standard inequality lnx >1 - (/x), the derivative is lower bounded by

d (w) /v ( [ Pi Q i- = 0 Q. E. D.

Lemma 10.

The function oR - .p( o ) where F p(Oo ) is given by

f y K P [Yk/Xk ]+0] 1+p
p() +p log 2 fi(Yj) yPk

j=l k=1P A

is positive for ' < co < 0 where ' is such that p(g')/a' = R, and '.p(o)/O is monotone in-

creasing in o0.

Proof.

For CooR - p(go) to be positive we must have R < p((o)/o° since < 0. If 4ip(o)/ is

monotone increasing in ao, the desired result is established. We shall now show that such is

true. The derivative

d 1p(O) _ ao0p(o) -p( ao )

do a 2
0 0 (0

is positive if the numerator is positive. Since the numerator is zero for o = 0 it suffices to

show that its derivative, o"(a ), is negative for O < 0 or F1
1( o ) > O.op o p 0

Let ajk = p [yj/xk]/f(yj). Then,

J K + p K +oK 

p(oE ) j yZ (kl pkajk Pkajk in akp 0 j=i f yj ) (k 
log 2 e (i+p)[p.(go)

2
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K 1+c

(=1 Pkajk

( 1+p)p( o )
2

J K 1+a p K

f(y ( Pkak / a 
j=l J k=l k=l Pkajk (ln ajkI/

(1+p)p(0 o )

--(t +p)

K

i k- 1

J K 1+ P K
j-l i ,k-l k jkc_. Kj f k=) kj Ok\akk1

j=1 k=1 Pa k=1

Pkaj k

qjk

(1+P)[P(aJo)

l+ar

Pkajk

((1+p)p(0 o)
2

K

hj = qjk

k=1

both of which are "tilted" probabilities and let

K

k=1
Pkajk o lnajk

K 1+0r
Zk1 Pkajk

k=i

then, we have

= p = hj(qO) 2 -(i =1 ) ]

[ E qjk(lnajk ( qjk lnajk)][j= k=1 j= k=l

which is positive because both terms are variances. Therefore, Lp (a )/O- is monotone increas-

ing in increasing ao . Q. E. D.
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